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Abstract 

Numerous decision-makers have an interest in how forest biodiversity and functioning will alter under 

environmental change. Currently, forest management models focus predominantly on trees and 

ignore the herbaceous layer (the understorey). This is a crucial oversight, as the understorey is a 

biodiversity reservoir, provides vital ecosystem services and can influence forest functioning. We 

investigated whether decision-makers in forest management across Europe consider the understorey 

when facing uncertainty. We distributed a questionnaire to decision-makers to assess what objectives 

drive management decisions. Biodiversity loss, forest regeneration and climate change were top 

priorities, motivated by a sense of environmental protection.  Respondents identified the understorey 

as an “Important” target and infrequently used recognized decision support systems (DSS). We 

reviewed available forest management DSS and found a lack of understorey-oriented DSS. We 

subsequently designed a prototype of an understorey DSS to aid decision-makers in their quest to 

attain biodiverse and resilient forests for the future. The methods and technicalities of this working 

prototype of “UnderSCORE” are explained in this report.  
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1 Introduction 

1.1 Project outline 

The ERC proof-of-concept project UnderSCORE (2020) is a proof-of-concept web-based Decision 

Support System (DSS) to score forest understorey dynamics in response to management interventions 

in a changing world. One tool for decision-making (in general, and in forest management in particular) 

is the use of predictive decision support systems (DSS). Decision support systems have varied 

conceptualizations (Gordon et al., 2014), but can be an integrated system to provide support around 

decision problems, by combining a user interface, simulation tool, expert rules, stakeholder 

preferences, database management and optimization algorithms (Muys et al., 2010).  

Currently, forest management models focus predominantly on tree dynamics following interventions 

(Landuyt et al., 2018), and tend to ignore the plant species found below the trees on the forest floor 

(below ca. 1 m the understorey). Ignoring the understorey is a crucial oversight, as this vegetation is 

the major component of floral biodiversity; provides vital ecosystem services (properties that ensure 

human wellbeing: e.g. food supply, pollinator habitat and resources, recreational visits for 

wildflowers); and, can influence the overall functioning of the forest with its impact on – for instance 

- nutrient cycling and forest regeneration (Gilliam, 2007; Landuyt et al., 2019). A greater emphasis 

from policy makers and society on maintaining and enhancing biodiversity values of forests requires 

managers and auditors to be aware of likely outcomes of management interventions for the 

understorey. However, there is a general ignorance of such outcomes. As such, there is a need for a 

user-friendly tool to help predict key understorey characteristics (e.g. biodiversity, share of species of 

conservation concern) across environmental contexts and overstorey tree management. The 

construction of a user-friendly tool requires an underlying model that can predict forest understorey 

dynamics in relation to environmental and management contexts. 

Preceding the development of the proof of concept DSS described herein, we performed a study on 

the availability and needs for an understorey DSS. We investigated the availability of an understorey 

component in existing DSS through a literature review, combined with a questionnaire on the need 

for such a DSS to support decision-makers in forest management (Blondeel et al., 2021). We honed in 

on the availability of, and requirements for, understorey DSS in a European context, targeted towards 

decision-makers active in (mixed) temperate forest. We found that regardless of specific occupation 

(forest manager, policy maker, scientist, consultant, educator), respondents focused on mitigating and 

adapting to climate change, sustaining forest regeneration, and preventing biodiversity loss, strongly 

motivated by a sense of environmental protection. These foci require a consideration of the 

https://www.ugent.be/en/research/research-ugent/trackrecord/trackrecord-h2020/erc-h2020/underscore.htm
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understorey, given its importance as a biodiversity reservoir, for tree regeneration, and as an indicator 

to forest responses to climate change.  

We aimed to fill the void in understorey-oriented DSS by developing a working prototype of a web-

based DSS (UnderSCORE), to support decision-makers when facing uncertainty in forest conservation 

and management in a changing world. The name “UnderSCORE” emphasizes (underscores) the 

requirement to consider the overlooked understorey, and reflects its output: easily comprehended 

scores for different understorey indicators which users can compare across environmental and 

management contexts and over time. This tool transfers the research output of the ERC 

PASTFORWARD project (2015 – 2019) into a shape that is of direct use for policy makers and forest 

managers. Such a tool is not currently available but clear legal and societal imperatives (e.g. Natura 

2000, European Biodiversity Strategy) require its development, and provide the context for its 

adoption by potential users.  

UnderSCORE is, simply put, a practical application of the findings from the research in the 

PASTFORWARD project, by assessing the need for decision support on understorey management. The 

focus of understorey change due to multiple environmental changes and management are the shared 

benchmarks between UnderSCORE and PASTFORWARD. However, as the name suggests, 

PASTFORWARD had a specific focus of accounting for past dynamics, and those of land-use legacies in 

particular. Given the proof-of-concept nature of UnderSCORE, we specifically decided to exclude any 

land-use transitions into the predictions, by focusing only on ancient forest (sites continuously 

forested since at least 1850). UnderSCORE intends to include such past dynamics in its predictions in 

future versions that would build on this prototype. The current prototype of the tool focuses on the 

combined effects of multiple environmental changes (climate warming, atmospheric N deposition, 

and canopy change) on four selected understorey characteristics (richness, cover, proportion of 

woody species, and proportion of forest specialists).  

1.2 Scope of the UnderSCORE DSS 

Ecosystems are globally threatened by multiple environmental change drivers that have joint effects 

on ecosystem patterns and processes (Bowler et al., 2020). For temperate understorey vegetation in 

Europe, among the key drivers are climate change, atmospheric nitrogen (N) deposition, and forest 

canopy change due to management (Bernhardt-Römermann et al., 2015; Landuyt et al., 2019, 2018). 

Climate change can induce a “thermophilization” of the understorey, due to an insurgence of warm-

loving plants at the expense of cold-loving plants (De Frenne et al., 2013; Zellweger et al., 2020). Excess 

atmospheric N deposition can cause acidification and eutrophication (N saturation) at the forest floor 

(Bobbink et al., 2010; De Schrijver et al., 2011; Schmitz et al., 2019), with potential species loss due to 

an increasing insurgence of generalist nutrient-loving plants at the expense of less nutrient demanding 

https://pastforward.ugent.be/
https://pastforward.ugent.be/
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plants (Staude et al., 2020; Verheyen et al., 2012). These effects can be accelerated when canopies 

are opened due to e.g. the removal of trees in forest management (Verheyen et al., 2012; Zellweger 

et al., 2020), as light can accelerate plant responses to warming  (Blondeel et al., 2020; De Frenne et 

al., 2015) and eutrophication (DeMalach et al., 2017; Hautier et al., 2009). The joint effects of these 

three environmental changes can act in unison, and may produce counter-intuitive combined effects 

due to non-linear relationships between the environmental variables (De Laender, 2018).  

UnderSCORE predicts four understorey properties: species richness, cover (%), proportion of woody 

species (%) and proportion of forest specialists (%). Richness is a simple measure of the number of 

species. Understorey cover is a simple measure to assess productivity. Compositional change is 

assessed via the relative amount of woody species (which includes tree regeneration) and the relative 

amount of typical forest species (which is of conservation concern). UnderSCORE provides trends in 

these understorey properties in scenarios of environmental change for the period of 2020-2050.  

This working prototype of UnderSCORE is built on a frequentist statistical-based model using GAM 

(general additive models) to predict the mean values of understorey properties in temperate Europe. 

This prototype operates with formulated scenarios provided by the IPCC and European Union. The 

UnderSCORE DSS can account for average environmental conditions in EU regions, for the focal 

environmental variables (mean annual temperature, N deposition), but also for soil conditions (pH) 

and precipitation (mean annual precipitation) in the regions (Table 1).  

Table 1. Schematic overview of the UnderSCORE DSS scope 

UNDERSCORE… 

✓ DOES  Does NOT 

✓ Use average environmental 

conditions of the EU regions 

✓ Use fixed climate change and N 

deposition scenarios 

✓ Use a statistical approach 

✓ Predict based on trends in datasets 

✓ Predict large-scale trends 

✓ Work for temperate forests 

✓ Work for ancient forests (at least 

forest since 1850) 

 Use fine-scale local environmental 

conditions 

 Use dynamic climate change and N 

deposition scenarios with feed-

backs 

 Use a mechanistic approach 

 Predict based on physical processes 

 Predict trends for specific forest 

sites 

 Work for other forest types 

 Work in other regions than the EU 

 Look at land-use legacy 
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2 Methods 

2.1 Data collection 

2.1.1 Understorey vegetation surveys 

We used resurvey data across temperate deciduous forests in Europe from the forestREplot network. 

ForestREplot is a database network of vegetation plot records with understorey and overstorey 

community composition. Each dataset in this database is composed of multiple nonoverlapping (in 

space) plot records from two time points.  The time interval between surveys in the 40 datasets and 

1814 plots analysed here is considered sufficient to detect directional change in the herbaceous layer 

(a mean interval of 38 years, see De Frenne et al., 2013; Perring et al., 2018). Each dataset comes from 

a relatively homogeneous area in terms of climate and atmospheric nitrogen (N) deposition such that 

we considered all plots within a given dataset to have experienced the same macroclimatic and 

atmospheric N deposition conditions. A priori, our analysis focused on European temperate 

broadleaved deciduous forests and we therefore excluded plots from North America in the database, 

and any conifer-dominated plots. We also omitted forested plots known to be located on former 

agricultural land (Perring et al., 2018b, 2018a), and hence restrict our predictions to ancient forest 

(continuously forested since at least 1850).  

We complemented the data from forestREplot with the resurvey data from the PASTFORWARD 

project (Maes et al., 2020). This data contains 192 vegetation plots from 19 European regions, 

scattered across spatial environmental gradients of atmospheric N deposition and climate conditions 

(mean annual temperature) within the Central-Western European temperate deciduous forest biome 

(Maes et al., 2020). ForestREplot and PASTFORWARD are highly compatible data, given their origin as 

a pooled effort to understand forest understorey changes under environmental change led by 

Verheyen et al. (2017). Understorey definitions among the datasets varied (Landuyt et al., 2020), but 

broadly applied the notion of ca. 1 m vegetation height (Gilliam, 2007). Next to complete species 

records of each plot, both databases hold information on mean annual temperature (MAT, °C), mean 

annual precipitation (MAP, mm) and atmospheric N (Ndep, kg N ha-1 y-1) deposition (Bernhardt-

Römermann et al., 2015; Maes et al., 2020; Perring et al., 2018a). In both datasets, overstorey cover 

data in selected regions, at the time of the initial and recent surveys were available. These tree cover 

percentages were recalculated using the Fischer correction method so that the total tree cover is 

mapped on values between 0 and 100% (Bernhardt-Römermann et al., 2015). The values of these 

environmental variables were used to train and test general additive models with cross-validation (see 

section 2.2).  

https://forestreplot.ugent.be/
https://pastforward.ugent.be/
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The response variables of interest were understorey species richness, total Fischer-corrected 

understorey vegetation cover (%), proportion of woody species (%) and proportion of forest specialists 

(%). Richness and Fischer-corrected vegetation cover were directly estimated from the forestREplot 

and PASTFORWARD databases (Bernhardt‐Römermann et al., 2015). The proportion of woody species 

(%) was estimated from the LEDA trait database, as “woodiness” is a categorical trait included in this 

database (Kleyer et al., 2008). We counted all woody species in a plot and calculated the proportion 

of woody species as the ratio of number of woody species: total richness. This proportion of woody 

species can be a proxy for the amount of woody regeneration in the understorey. Similarly, we 

included a proportion of forest specialists (woody or non-woody) from the database of Heinken et al. 

(2019). We use the proportion of forest specialists as a proxy to the amount of species with 

conservation concern, as these are the species that are specifically linked to ancient forests. Heinken 

et al. (2019) have created a list of vascular plant species and their affinity to forests in discrete classes. 

As classifications of species within this list is specific to European regions, we tallied the number of 

times each species was counted as a specialist (categories “1.1” and “1.2”). If this specialist tally was 

higher than the tally from all other classes combined, it was classified as a specialist and otherwise as 

a generalist. For instance, this means that e.g. Anemone nemorosa was entered as a generalist, 

although it is classed in Belgium as a specialist (Hermy et al., 1999; Verheyen et al., 2003). This is 

because in many parts of Northern Europe it is found in pastures (Brunet et al., 2012; De Frenne et al., 

2011). 

2.1.2 Setting spatial boundaries of the DSS 

We specified the spatio-environmental boundaries as the Central-Western European areas with 

temperate or mixed deciduous forest. For this, we used the climatic stratification of Europe by 

Metzger et al. (2005) to identify this biome. We selected the area that is taken up by the Atlantic 

Central, Atlantic North, Continental, Nemoral and Pannonian Environmental Zones (Metzger et al., 

2005). This selection allows for temperate deciduous broadleaved forest types, which are not included 

in the Boreal zones of Northern Europe, the Mediterranean zones in Southern Europe, and any high-

altitude Alpine zones.  

We overlaid the selected environmental zones with the Nomenclature of Territorial Units for Statistics 

(NUTS) administrative regions of the European Union (EU). This nomenclature of administrative 

boundaries allows to aggregate regional environmental data in the EU (or a dato 2020 affiliated to EU 

such as the United Kingdom and the Swiss Confederation). These administrative units are a common 

nomenclature that can be easily translated for intra- and supranational policies. We selected the NUTS 

level 1 for our purpose, which separates administrative regions of countries on the level of major 

socioeconomic regions (e.g. Regions in Belgium, BundesLänder in Germany, the national level in Czech 



7 
 

Republic).  To aggregate gridded environmental data on a regional level, we randomly distributed 30 

sample points within each NUTS region and falling within the overlapping extent of the temperate 

forest biome (Figure 1). Sample points were thus never outside our intended temperate forest 

environmental zone, even when a NUTS-1 region also contains another environmental zone (e.g. 

Alpine areas in Switzerland). These sample points were used to calculate regional averages of 

environmental variables (MAT, MAP, N deposition and pH) that originated from pan-European gridded 

data, as explained in the next section, and that are used as input to the DSS. As explained in the next 

section, we used similar environmental data sources for the GAM but with a focus on the area around 

the specific plots.  

 

Figure 1. Extent of underSCORE in the EU, following the environmental zones of the temperate forest biome. 

2.1.3 Environmental data for starting conditions of the DSS 

We used the CRU TS3.4 climate database to calculate the long-term climate over the period 1980 – 

2015. We recalculated this monthly data of average surface temperature (“tmp”) and precipitation 

(“pre”) into mean annual temperature (MAT) and mean annual precipitation (MAP) values and use 

these aggregate means as the contemporary climatic input data of the DSS. We use the long-term 

climate mean within this period in favor of only aggregating the latest years, because interannual 

climate variability is common on the short term which can muddle any long-term trends. A period of 

ca. 30 years is a common window to accurately estimate a long-term climate mean (Fick, 2017). 

Climate change has already caused an average increase in temperature of ca. 1 °C since the industrial 

revolution, with an expected warming of at least as 0.5°C on average globally for the period 2020 – 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.24.01/
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2050 depending on the carbon emission pathway (IPCC, 2018). Although the newest CRU 4 version 

with data up until 2019 has been released very recently in the summer of 2020 (Harris et al., 2020), 

we used the CRU TS3.4 data (1980 – 2015) because these data were applied in the compilation of the 

forestREplot and PASTFORWARD datasets (Bernhardt‐Römermann et al., 2015; Maes et al., 2020). This 

means that the climatic training data for the GAM models have the same origin as the climatic input 

data of the tool, which allows for fewer extrapolation of predictions beyond the range of the original 

data.  

We used the European Monitoring and Evaluation Programme on air pollution (EMEP) data to 

estimate N deposition across the NUTS regions in Europe. We used the most recent N deposition data 

available, calculated for the year 2018. Nitrogen deposition has been steadily declining in the last 

decade (Dirnböck et al., 2018; Verstraeten et al., 2012), hence we used the latest annual modelled 

deposition available. We refrained from using long-term N deposition data (i.e. cumulated over a ca. 

30 year period), because such values currently do not have a clear policy implication (Dirnböck et al., 

2018). However, a solid scientific basis for including such long-term cumulative N deposition to 

understand biodiversity change exists (Bernhardt-Römermann et al., 2015; Rowe et al., 2017). In 

contrast, currently, excessive amounts of N deposition are formulated as “Critical Loads” (Bobbink et 

al., 2015), i.e. an annual rate of N deposition when ecosystems become saturated with N leading to 

negative effects. These adverse effects of excessive reactive N in ecosystems include acidification and 

eutrophication (De Schrijver et al., 2011; Stevens, 2019), which usually drive species loss due to an 

increasing dominance of nitrophilous species and a concurrent limitation of other resources (e.g. 

water, light, other nutrients). The critical load for N deposition in temperate forests is empirically set 

at 10 – 20 kg N ha-1 y-1 (Bobbink et al., 2015) , where the large range in values is dictated by e.g. canopy 

openness (Simkin et al., 2016). To calculate an annual deposition of reactive N, we summed the 

available data on dry and wet oxidized and reduced N from the EMEP MSC-W model 

(“DDEP_OXN_m2Grid”, “WDEP_OXN_m2Grid”, “WDEP_RDN_m2Grid”, “DDEP_OXN_m2Grid”). We 

recalculated the data into an average N deposition in kg N ha-1y1 at a spatial resolution of 1 degree by 

1 degree, before sampling from this gridded raster using our sampling point layer (Figure 1).  

Users can include information on the canopy closure (tree cover), as a proxy for light availability at the 

forest floor. We selected the Fischer-corrected tree cover (Bernhardt‐Römermann et al., 2015) as the 

proxy to canopy closure (continuous values: 0% -100%). Canopy closure is strongly influenced by tree 

species, gap creation and forest management intensity (Pretzsch et al., 2014; Sercu et al., 2017). 

Management practices such as regeneration cuts or thinning remove direct competitors of future crop 

trees in forest stands. These interventions serve to increase growing space for these future crop trees 

but also bring more light to the forest floor (Hedwall et al., 2013). This increasing light availability can 

https://thredds.met.no/thredds/catalog/data/EMEP/2020_Reporting/catalog.html
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alter soil microbial communities and enhance their activity, thus raising N availability (Ma et al., 2018; 

Ni et al., 2018). Canopy gaps also receive more wet N deposition, along with raised light availability 

and warmer temperatures due to the loss of the microclimate buffering canopy trees (De Frenne et 

al., 2019; Zellweger et al., 2020). These factors combined lead to a potential acceleration of forest 

understorey responses to environmental change due to light availability (Blondeel et al., 2020; De 

Frenne et al., 2015). From that perspective, forest managers can manipulate the input and target 

values for canopy closure to buffer climate change (Zellweger et al., 2020) and N deposition (Simkin 

et al., 2016; Verheyen et al., 2012) effects on understorey vegetation.  

We included information on topsoil pH (0-5 cm) by using the 250m resolution spatial data from the 

SoilGrids database. Data on field-measured pH was available for PASTFORWARD (192 plots) but not 

for forestREplot (1814 plots). For continuity, and avoiding a discord between data sources in 

PASTFORWARD and ForesREPlot, we extracted the pH values from SoilGrids for all plots and used this 

data throughout. The data from SoilGrids was also used for the regional input data of the DSS tool, 

again allowing for fewer extrapolation of predictions beyond the range of the original data. All pH 

values are treated as static through time.  

Input values can be dynamically entered via sliders for the global change variables, i.e. N deposition 

and MAT. Users are thus allowed to change the input value of their region if they want to tune the 

input conditions to a known within-region MAT or N deposition, as such aggregated regional data 

obviously obscures some existing within-region variability (Blondeel et al., 2019). Precipitation (MAP) 

and soil acidity (pH) are treated as constants within this analysis, they do not change over time and 

only the regional means are used (i.e. users cannot adjust them). Changing rainfall patterns in 

temperate Europe, in terms of mean annual precipitation, is expected to be relatively unchanging 

(Rollinson and Aye, 2012), while the within-year variation might change considerably due to changes 

in the global climate system (Jackson et al., 2015). We decided to not include pH and MAP as dynamic 

inputs, given that there are no real policy outputs related to these variables.  

2.1.4 Environmental data for ending conditions of the DSS: scenario analysis 

We used existing policy scenarios of Nitrogen deposition (the Clean Air Outlook) and climate change 

(MAT in shared socioeconomic pathways [SSP]) to predict understorey property change in the future. 

DSS predictions end at the year 2050. Our selection of scenarios was inspired by Dirnböck et al. (2018), 

who evaluated forest plant species trajectories under current legislation emission scenarios of N 

deposition (i.e. The EU Clean Air Outlook) in combination with climate change scenarios 

(Representative Carbon Pathways [RCP]). Dirnböck et al. (2018) found that current legislation is likely 

insufficient to curb forest plant species loss in the future, especially for oligotrophic species. To 

https://soilgrids.org/
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account for a customization of these scenarios, e.g. in case of requiring stricter targets, we included 

the option to adjust an input value via dynamic sliders into a desired target. 

We included two scenarios for N deposition: a business-as-usual (BAU) scenario, and a current 

legislation scenario. The BAU scenario simply propagates the same annual rate of N deposition in 2018 

until the final modelled year of the DSS (2050). The current legislation scenario for N deposition is 

presented by the Clean Air Outlook of the European Commission. The Clean Air Outlook 

(COM(2018)446) was published in June 2018 and formulates agreed objectives on air pollution 

emissions from industry and agriculture. The targets of the Clean Air Outlook are available on the 

Greenhouse Gas – Air Pollution Interactions and Synergies portal (GAINS). We selected the European 

N deposition EMEP 28km SVG gridded data (available on map view under tab “Air quality and 

impacts”), with the scenario specified as “EU Outlook 2017 – ver Dec. 2018” and 

“REF_post2014_CLE_v.Dec.2018” (see also Dirnböck et al., 2018). We recalculated the unit of eq N ha-

1y-1 by applying the conversion factor of 1 keq N ha-1yr-1 equal to 14 kg N ha-1yr-1. We used our set of 

30 sample points per NUTS-1 region to calculate an average scenario-specific N deposition within each 

included region (see section 2.1.2).  

We included four climate change scenarios, based on Shared Socio-economic Pathways (SSPs). The 

SSPs are a set of carbon emission scenarios driven by different socioeconomic assumptions for the 

future. These SSPs are included in the Sixth Assessment Report of the International Panel on Climate 

Change (IPCC AR6). The SSPs are compatible with the Representative Carbon Pathways (RCPs), 

formulated in the IPCC AR5 report. RCPs are scenarios that examined different possible future 

greenhouse gas emissions and were named after the radiative forcing (W m-2) that they could 

engender (RCP 2.6; RCP 4.5; RCP 6.0; RCP 8.5). The updated scenarios of SSPs also translate into a 

radiative forcing level, that is SSP1 – 2.6; SSP2 – 4.5, SSP3 - 7.0 and SSP5 – 8.5. The SSP scenarios come 

with a narrative to describe the socio-economic pathway that leads to a specific emissions amount 

(Table 2). SSP4 was not included in the DSS, given the lack of available data for this scenario on the 

WorldClim database.  

The data of future climate under these scenarios is available from the Coupled Model Intercomparison 

Project Phase 6 (CMIP, O’Neill et al., 2016). The available data are downscaled future climate 

projections with WorldClim v2.1 as baseline climate data. Nine models were available via WorldClim 

to include as a source for target MAT under the different SSPs. We selected 10 minutes gridded data 

of the IPSL-CM6A-LR model, as this is a European (French) model that is linked to the ORCHIDEE 

dynamic global vegetation model and consequently fitted for our temperate European forest focus. 

We selected the period of 2041 – 2060, as our ending year of 2050 nicely fits in the center of this 

https://ec.europa.eu/environment/air/clean_air/outlook.htm
https://gains.iiasa.ac.at/models/gains_models3.html
https://www.worldclim.org/data/cmip6/cmip6climate.html
https://www.worldclim.org/data/cmip6/cmip6_clim10m.html
http://forge.ipsl.jussieu.fr/igcmg/wiki/IPSLCM6
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available climate period. We used our set of 30 sample points per NUTS-1 region to calculate an 

average MAT over this period for each included region and SSP scenario (see section 2.1.2). 

Table 2. Narratives that are included with each of the SSP scenarios (O’Neill et al., 2017). 

SSP1 Sustainability – Taking the Green Road (Low challenges to mitigation and adaptation) 
The world shifts gradually, but pervasively, toward a more sustainable path, emphasizing more inclusive development 
that respects perceived environmental boundaries. Management of the global commons slowly improves, educational 
and health investments accelerate the demographic transition, and the emphasis on economic growth shifts toward a 
broader emphasis on human well-being. Driven by an increasing commitment to achieving development goals, inequality 
is reduced both across and within countries. Consumption is oriented toward low material growth and lower resource and 
energy intensity. 

SSP2 Middle of the Road (Medium challenges to mitigation and adaptation) 
The world follows a path in which social, economic, and technological trends do not shift markedly from historical 
patterns. Development and income growth proceeds unevenly, with some countries making relatively good progress 
while others fall short of expectations. Global and national institutions work toward but make slow progress in achieving 
sustainable development goals. Environmental systems experience degradation, although there are some improvements 
and overall the intensity of resource and energy use declines. Global population growth is moderate and levels off in the 
second half of the century. Income inequality persists or improves only slowly and challenges to reducing vulnerability to 
societal and environmental changes remain. 

SSP3 Regional Rivalry – A Rocky Road (High challenges to mitigation and adaptation) 
A resurgent nationalism, concerns about competitiveness and security, and regional conflicts push countries to 
increasingly focus on domestic or, at most, regional issues. Policies shift over time to become increasingly oriented toward 
national and regional security issues. Countries focus on achieving energy and food security goals within their own regions 
at the expense of broader-based development. Investments in education and technological development decline. 
Economic development is slow, consumption is material-intensive, and inequalities persist or worsen over time. 
Population growth is low in industrialized and high in developing countries. A low international priority for addressing 
environmental concerns leads to strong environmental degradation in some regions. 

SSP4 Inequality – A Road Divided (Low challenges to mitigation, high challenges to adaptation) 
Highly unequal investments in human capital, combined with increasing disparities in economic opportunity and political 
power, lead to increasing inequalities and stratification both across and within countries. Over time, a gap widens 
between an internationally-connected society that contributes to knowledge- and capital-intensive sectors of the global 
economy, and a fragmented collection of lower-income, poorly educated societies that work in a labor intensive, low-tech 
economy. Social cohesion degrades and conflict and unrest become increasingly common. Technology development is 
high in the high-tech economy and sectors. The globally connected energy sector diversifies, with investments in both 
carbon-intensive fuels like coal and unconventional oil, but also low-carbon energy sources. Environmental policies focus 
on local issues around middle and high income areas. 

SSP5 Fossil-fueled Development – Taking the Highway (High challenges to mitigation, low challenges to adaptation) 
This world places increasing faith in competitive markets, innovation and participatory societies to produce rapid 
technological progress and development of human capital as the path to sustainable development. Global markets are 
increasingly integrated. There are also strong investments in health, education, and institutions to enhance human and 
social capital. At the same time, the push for economic and social development is coupled with the exploitation of 
abundant fossil fuel resources and the adoption of resource and energy intensive lifestyles around the world. All these 
factors lead to rapid growth of the global economy, while global population peaks and declines in the 21st century. Local 
environmental problems like air pollution are successfully managed. There is faith in the ability to effectively manage 
social and ecological systems, including by geo-engineering if necessary. 

 

https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
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2.2 Model selection and validation 

2.2.1 GAM model structure 

We applied general additive models (GAM) to calculate non-linear relationships between 

environmental variables and the understorey response variables in Rstudio version 4.0.2 (R Core 

Team, 2019). The separate non-linear effects in GAMs are added together for multiple environmental 

variables, and thus produce complex compound effects depending on the input values. Given the 

nature of the model structure and the training data (see section 3.3), predictions from these GAMs 

are interpretable as trends in average understorey property values in a given set of environmental 

conditions on a large regional European scale. These GAMs can thus detect deviations of an average 

understorey property (e.g. richness) in average environmental conditions of a region (e.g. Flanders, 

Belgium) in future climate change scenarios. These GAMs cannot accurately predict understorey 

properties in a specific forest site where localized land-use legacies, edaphic, microclimatic and other 

spatio-environmental variables can cause high variability in such understorey properties. It is 

important that users bear in mind that the UnderSCORE DSS only produces projections for average 

understorey properties based on average regional environmental conditions in temperate Europe. 

Hence, the usability of the output remains operable for high-level decision-makers in the EU.  

We consistently used the same predictor variables in the GAMs for all four response variables These 

four response variables that users view as output are species richness, total Fischer-corrected 

understorey cover (%), proportion of woody species (%) and proportion of forest specialists (%). We did 

not transform these response variables so that residuals conformed to normality, but rather selected 

optimal link functions given the distribution of the data. This is a Poisson distribution for richness, 

given that these are count values (Oksanen et al., 2019). We adopted the beta-distribution for the 

three other response variables, because these continuous proportional values bounded from 0 to 1  

can be easily characterized in this distribution (Douma and Weedon, 2019). The GAM model structure 

always included seven terms, of which five were environmental variables (N deposition, MAT, Tree 

cover, MAP and pH) and two were survey-related covariates (Plot size and Survey Year).  When 

predicting from this GAM in the DSS, the Plot size is set at 100 m² and the coefficient of Survey Year is 

excluded from the estimate (but not the confidence interval, see section 4). This model structure 

implies a space-for-time approach: the collection of environmental gradients defines a community-

environment relationship on a fixed plot size, but with growing uncertainty of estimated response 

variables when predicting further over time.  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ~ 𝑠(𝑁_𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 𝑠(𝑀𝐴𝑇) + 𝑠(𝑇𝑟𝑒𝑒_𝑐𝑜𝑣𝑒𝑟) + 𝑠(𝑀𝐴𝑃) +  𝑠(𝑝𝐻) + 

𝑠(𝑃𝑙𝑜𝑡_𝑠𝑖𝑧𝑒) + 𝑠(𝑆𝑢𝑟𝑣𝑒𝑦_𝑌𝑒𝑎𝑟) 

Equation 1. Model structure for the General Additive Models (GAMs) 
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2.2.2 Cross-validation of models 

We evaluated the model performance on the available datasets in order to make robust predictions 

that are not prone to inflated errors from overfitted models. For this, we cross-validated the GAMs to 

select the optimal splining method and the dimension (k) of the included smoothing terms. First, we 

randomly split the complete dataset without empty records (n = 3733) into five equal portions using 

the crossv_mc function from the modelr package (Wickham, 2020). The first portion (n = 747) was set 

aside to use as a test dataset on the final model when the training procedure via cross-validation was 

finished.  

On the remaining 80% of the data (n = 2986), we applied a repeated five-fold cross-validation 

procedure to train and test the models. In this five-fold procedure, each portion (“fold”, n = 597) is 

once used as a testing set when the other portions combined serve as the training set (n = 2389). We 

evaluated the model performance by calculating the root mean squared error (rmse) in predictions, 

i.e. the standard deviation of residuals in the model predictions of the test dataset. We repeated the 

five-cross validation procedure on six randomized sets of five portions. This gives a total of 30 (6x5) 

rmse calculated per evaluated model. The model syntax with lowest rmse on average was retained for 

further use. Models with low rmse would balance the benefits of overfitting, i.e.  good performance 

on training data but poorly generalizable to other data; and underfitting, i.e. poor performance on 

training data but more robustly applicable to other input values. 

We applied the cross-validation in three consecutive steps for a given response variable. 

Step 1: Identify the optimal penalty type for the penalized regression.  

Smoothers (s) in GAM are used to define a non-linear relationship between two variables via 

regression splines (Perperoglou et al., 2019). These regression splines model the response y as 

separate low-degree polynomials on regular intervals of the predictor variable x. The penalty term 

prevents the smoothing spline from reaching too high order polynomials which lead to overfitting the 

training data. We identified whether the default penalty in the smoothing term (s) of the gam function 

was suited to prevent overfitting. The default is set to thin plate regression splines (tp). The strength 

of this penalty type is its flexibility in producing fitted curves, yet this flexibility also makes it prone to 

overfitting which is problematic when making predictions (Perperoglou et al., 2019). As a more 

“conservative” penalty type, we selected penalized cubic regression splines with shrinkage. This 

shrinkage allows to further reduce the effective degrees of freedom to produce less variable 

smoothing splines that are useful for predictions (Marra and Wood, 2011). We expected that cubic 

regression splines with shrinkage would produce lower rmse values and be more applicable for 

predicting across a wider range of input variables.  
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Step 2: Stepwise selection of the dimensions (k) in each smoother (s)  

After selecting the optimal penalty type for the penalized regression, we selected the upper limit on 

the degrees of freedom associated within the smooth term. We iteratively varied k from 3 to 10 for 

each term in the model, as 3 is the lowest value possible for a non-linear fit between two variables 

while k ~ 10 is generally an outcome of applying the automated selection within the gam function 

(activated by setting k = -1). In general, we prefer lower values for k which would benefit the model 

predictions by producing lower rmse when presented with new data, resulting in a smoother curve 

with less inflection points.  

Step 3: Evaluate the optimized model with newly presented data 

The final step in the model validation procedure returned to the original full dataset (n = 3733). One 

fifth (n = 747) of this dataset was previously set aside as a test set to perform this final model 

validation. We re-trained the GAM models on the remaining 80% of the data (n = 2986) and used this 

previously unused 20% portion as a new test set. In this final step, we calculated the rmse of two 

models: one model where the penalty type and k values are set to default, and another where the 

model syntax obtained from our iterative approach is used (after step 1 and 2). This way, we could 

evaluate whether our final model predicts more accurately when presented with new data than a 

default model. When the default model would produce lower rmse values, we would select that model 

for use in the DSS (this was not needed). However, if our custom model performed better than the 

default model, we went ahead and fitted our obtained model syntax to the full dataset (n = 3733). We 

present the model diagnostics of the final full model only for each response variable.  

3 Results 

3.1 Optimizing penalty  

We evaluated whether selecting a custom penalty type improved the quality of predictions, i.e. 

produced lower root mean squared error (rmse) values. Our repeated cross-validation method (see 

section 2.2.2) provides 30 test datasets to model these predictions errors. We a priori expected that 

selecting a stricter penalty type (cubic regression splines with shrinkage, cs) would produce lower 

prediction errors than the flexible default type (thin plate regression splines, auto), and hence would 

be more suited to use in a predictive DSS.   

We found no significant difference in mean prediction error between the two penalty types of the 

GAMs for any of the four response variables ( 

 

Table 3). However, a closer inspection to the rmse value distribution across the 30 observations of 

each penalty type reveals some variation between training datasets (Figure 2). The distributions of 

rmse reveals lower minimum values in the cover and forest specialists response variable and fewer 
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outlying datasets with high rmse in the woody ratio. There was no visual distinction for rmse of both 

penalty types in the richness response variable.  

Based on these observations, we decided that using cubic regression splines with shrinkage (cs) in the 

GAM terms is favorable for the UnderSCORE DSS. The shrinkage in this method has indeed reduced 

the amount of variability in prediction errors (rmse) in three of the four response variables (cover, 

woody and specialists) and not performing differently than a default setting in one response variable 

(richness).  

 

Figure 2. Distribution of root mean square errors (rmse) of model predictions using two penalty types in the training sets (n 
= 30).  
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Table 3. Estimates and standard error (S.E.) of mean prediction error (rmse) of the penalty in the default setting using thin 
plate regression splines (Intercept) and the estimated mean difference with the custom setting of cubic regression splines 
with shrinkage (cs). We found no significant differences in mean prediction error (rmse) between the two penalty types. 

Response Model rmse 
estimate 

S.E. Chi² 
Statistic 

P-value 

Richness (Intercept) 22.7 0.093 244 < 0.0001 
Richness cs -0.001 0.132 -0.004 0.997 

Cover (Intercept) 0.495 0.005 93.3 < 0.0001 
Cover cs -0.011 0.008 -1.491 0.141 

Woody (Intercept) 1.70 0.004 414 < 0.0001 
Woody cs 0.003 0.006 0.553 0.582 

Specialists (Intercept) 0.575 0.004 143 < 0.0001 
Specialists cs 0.000 0.006 -0.053 0.958 

 

3.2 Stepwise selection of k 

 

Figure 3. Stepwise selection of k (number of dimensions) in each smoothing term. Notice that lower k values generally yield 
lower prediction errors (rmse).  
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We found that low dimensions in the smoothing terms (k = 3) yielded the overall most reliable 

predictions by producing the lowest errors (rmse) when predicting from the test datasets (Figure 3). 

Likewise, as in optimizing the penalty, this stepwise selection of k did not provide lower predictions 

error in richness but rather showed that the smoothing terms in these GAMs were not sensitive to a 

change in k. For the other response variables (cover, woody ratio and specialists ratio), we found a 

clear separation in the distribution of prediction errors with lower rmse when k = 3 (Figure 3). 

 

Figure 4. Distribution of root mean square errors (rmse) of model predictions from the training sets (n = 30) in the models 
without specifying k (“control”) and with applying k = 3 (“low_k”). Both model syntaxes used cubic regression splines with 
shrinkage (“cs”), as per section 3.1.  

We then compared the model prediction errors in two model syntaxes to discern whether optimizing 

k provides lower prediction errors. The first model syntax is a “control”, where k is adjusted 

automatically based on the testing datasets (syntax: “k = -1”) but still used cubic regression splines 

(see section 3.1). The other model included a fixed k value (k = 3) for all smoothing terms (see Figure 
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3). We found that the rmse was significantly (p < 0.0001) improved in three response variables (cover, 

woody ratio and specialists) in models with low k values (Table 4). A statistically significant lower mean 

prediction error when k = 3 in these three response variables is also clear when observing the whole 

range of rmse values (Figure 4). For richness, we again found no improvement of the prediction error 

with optimizing the k value, albeit no statistically distinguishable poorer performance either (Table 4). 

Hence, for continuity in the use of GAM, and maximizing robustness in performing predictions from 

these GAMs in the DSS, we used a low k value (k = 3) throughout in the final models.  

Table 4. Estimates of mean prediction error (rmse) of the models in the default setting with internal automated selection of 
k (Intercept) and the estimated mean difference with the custom setting where k has been lowered to k = 3 (see Figure 3). P 
-values are highlighted in bold when this difference in rmse is statistically significant (alpha = 0.05).  

Response Model rmse 
estimate 

S.E. Chi² 

Statistic 

P-value 

Richness (Intercept) 22.7 0.093 243 <0.0001 

Richness cs and low k 0.025 0.132 0.190 0.849 

Cover (Intercept) 0.484 0.005 97.853 <0.0001 

Cover cs and low k -0.122 0.007 -17.4 <0.0001 

Woody (Intercept) 1.80 0.004 407 <0.0001 

Woody cs and low k -0.052 0.006 -8.36 <0.0001 

Specialists (Intercept) 0.583 0.004 144 <0.0001 

Specialists cs and low k -0.033 0.006 -5.77 <0.0001 

 

3.3 Performance of final model 

The final model structure, after optimizing the penalty and number of dimensions (k) was equal for all 

the four response variables (Equation 2).  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ~ 𝑠(𝑁𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑏𝑠 = "cs", 𝑘 = 3) + 𝑠(𝑀𝐴𝑇, 𝑏𝑠 = "cs", 𝑘 = 3)

+ 𝑠(𝑇𝑟𝑒𝑒_𝑐𝑜𝑣𝑒𝑟, 𝑏𝑠 = "cs", , 𝑘 = 3) 

+𝑠(𝑀𝐴𝑃, 𝑏𝑠 = "cs", 𝑘 = 3) +  𝑠(𝑝𝐻, 𝑏𝑠 = "cs", 𝑘 = 3) + 

𝑠(𝑃𝑙𝑜𝑡_𝑠𝑖𝑧𝑒, 𝑏𝑠 = "cs", 𝑘 = 3) + 𝑠(𝑆𝑢𝑟𝑣𝑒𝑦_𝑌𝑒𝑎𝑟, 𝑏𝑠 = "cs", 𝑘 = 3) 

Equation 2. Final model syntax. “bs” here is the code to specifiy the penalty type, which is set to cubic regression splines with 
shrinkage enabled (“cs”). The k value equals 3 in all smoothing terms.  

The model validation procedure returns to the full dataset (n = 3733) in the final step. One fifth (n = 

747) of this dataset was initially reserved to perform this final model validation. We re-trained the 

GAM models on the remaining 80% of the data (n = 2986) and used this previously unused 20% portion 

as a final test set. In this final step, we calculated the rmse of two models: one model where the 

penalty type and k values are set to default, and another where the model syntax obtained from our 

iterative approach is used. Similarly in previous steps, we found clear separation in rmse for cover, 

woody ratio and forest specialists, which indicate better model performance by optimizing the penalty 

type and selection of k values in the GAM (Table 5). As before, altering the penalty type and k values 
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in richness GAMs did not change the prediction error. Hence, for our purpose, we uniformly apply 

cubic regression splines and a low k value (k=3) across all smoothing terms for the four response 

variables.    

Table 5. Calculated rmse from two models trained on 80% of the data (n = 2986) and tested on an initially set-aside 20% 
portion of this data (n=747). Hence, this calculation is not a mean rmse but rather a single observation from this training and 
test dataset combination.  

Response Model rmse 

Richness auto 22.8 

Richness cs and low k 22.8 

Cover auto 0.485 

Cover cs and low k 0.372 

Woody auto 1.81 

Woody cs and low k 1.76 

Specialists auto 0.565 

Specialists cs and low k 0.544 

 

 

Figure 5. Two-dimensional scatterplots of the model response variables (y-axes) in response to each predictor variable (x-
axes). Each smoother uses cubic regression splines with shrinkage as a penalty, with a fixed number of dimensions for the 
smoother (k = 3).  

Pairwise scatterplots between all four response variables and each of the seven predictor variables 

(Figure 5) reveals considerable variation in the observations. Indeed, when reviewing the model fits 

for the final GAMs (Figure 6), we found relatively low R² overall. For richness, cover, and the proportion 
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of woody species, 20% of the variation was explained by the predictor variables, but with relatively 

even residual variance over the range of fitted values. This means that, across the range of 

environmental values, the mean values of observations roughly matches the mean values of 

predictions. However, for cover, R² was low (10%), which resulted in a consistent prediction of the 

intercept value (0.6 – 0.7, i.e. 60 – 70% cover). Such a consistent prediction of the average cover value 

across the whole data range, and being insensitive to a change in environmental conditions, is a display 

of the poor predictive capacity of this particular model. Overall, both scatterplots (Figure 5 and Figure 

6) show that the GAMs cannot accurately predict forest properties in one particular site (i.e. 

observation), but are capable in picking up averaged (non-linear) trends of understorey properties 

across environmental gradients.  

 

Figure 6. Model fits of each GAM for the complete dataset (n = 3733).  
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4 DSS at work 

The underSCORE DSS is implemented with the Shiny and Leaflet libraries from R (Chang et al., 2020; 

Cheng et al., 2020). A specific in-depth walkthrough of the underSCORE DSS for end-users is provided 

in the introductory video and executive summary on the UnderSCORE web page. We present the 

background in the methodology of the simulation here.  

The interface asks users to select a region to begin the simulation procedure (step 1). When selecting 

a region (e.g. Vlaams Gewest, Belgium), users will see the sliders of the input environmental conditions 

(conditions in 2020) change according to the average environmental values for that region (see section 

2.1.3). Other metadata is also shown on a bubble in the map (Figure 7).  

 

Figure 7. Excerpt from the input panel of the underSCORE DSS 

https://underscore.shinyapps.io/understorey_tool_project/
https://pastforward.ugent.be/underSCORE.html
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Next, users can select a N deposition scenario and a climate change SSP scenario (step 2). These 

scenarios provide the conditions furthest removed in time, i.e. 2050 (see section 2.1.3). The difference 

between these environmental conditions is computed linearly over time for N deposition until the 

year 2030, because the Clean Air Outlook is envisioned to reach its goal by 2030. Annual N deposition 

in the scenario remains constant after that. In the example of Figure 7 , this means an annual decrease 

in N deposition of 0.2 kg N ha-1y-1 each year for the period 2020-2030 (19 to 17 kg N ha-1y-1 divided by 

ten). After that, each year has an input value of 17 kg N ha-1y-1. For MAT, the difference between the 

starting conditions and ending conditions is bridged over the whole period from 2020-2050. In the 

example of Figure 7, that means an annual increase of +0.057 °C (1.7°C divided by 30). Users can also 

select starting and ending conditions for canopy closure (i.e. tree cover). The input values correspond 

to open (25% cover), intermediately closed (75% cover) and closed (100% cover).  

The final step displays the outputs of the DSS (Figure 8). The outputs are four simulated timeseries of 

the average understorey property, included 95% confidence, over the period 2020 – 2050. As 

explained in section 2.2.1, the predictions are performed on a fixed plot size (100 m²). The “Year” term 

trend is not included in the prediction of the mean values, as the model is poorly capable of coping 

with values larger than included in trained dataset (i.e. larger than 2015). However, Year is included 

in the prediction of the confidence interval. This has the favorable outcome that uncertainty of 

estimated response variables grows when predicting further over time.   

 

Figure 8. Output timelines of the DSS with the four response variables 
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