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Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory

disorders and hematological cancers. Unfortunately, their use is associated with

debilitating side effects, including hyperglycemia, osteoporosis, mood swings, and

weight gain. Despite the continued efforts of pharma as well as academia, the search

for so-called selective glucocorticoid receptor modulators (SEGRMs), compounds with

strong anti-inflammatory or anti-cancer properties but a reduced number or level of side

effects, has had limited success so far. Although monoclonal antibody therapies have

been successfully introduced for the treatment of certain disorders (such as anti-TNF for

rheumatoid arthritis), glucocorticoids remain the first-in-line option for many other chronic

diseases including asthma, multiple sclerosis, and multiple myeloma. This perspective

offers our opinion on why a continued search for SEGRMs remains highly relevant in an

era where small molecules are sometimes unrightfully considered old-fashioned. Besides

a discussion onwhich bottlenecks and pitfalls might have been overlooked in the past, we

elaborate on potential solutions and recent developments that may push future research

in the right direction.

Keywords: glucocorticoids, glucocorticoid receptor, selectiveGRmodulators, drug discovery, inflammation, assay

development, GR, SEGRM

INTRODUCTION

Glucocorticoids (GCs) are endogenous steroidal hormones involved in metabolism, stress,
development, and immunity (1). They exert their effects by binding the glucocorticoid receptor
(GR), a nuclear receptor (NR) consisting of an intrinsically disordered N-terminal domain (NTD),
a central DNA binding domain (DBD), a hinge region (HR), and a C-terminal ligand-binding
domain (LBD) (2). Upon ligand binding, GR typically translocates from the cytoplasm to
the nucleus where it acts as a genuine transcription factor to regulate target gene expression
via multiple mechanisms (Figure 1A), which are discussed in detail in (3). The discovery of
the anti-inflammatory effects of endogenous GCs preceded the development of synthetic GCs,
which are used to treat, among others, inflammatory disorders, and hematological cancers (4).
Unfortunately, the therapeutic efficacy of such exogenous GCs is, particularly for systemic use,
overshadowed by an unacceptably high number of undesired side effects such as hyperglycemia,
osteoporosis, mood swings, and weight gain (5).
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FIGURE 1 | Overview of glucocorticoid receptor activity with classic glucocorticoids and selective GR modulators. (A) General action mechanism of the glucocorticoid

receptor (GR). Glucocorticoids (GCs) diffuse through the cellular membrane and bind GR. The latter dissociates from its chaperone complex and migrates to the

nucleus. There, it dimerizes and binds glucocorticoid response elements (GREs) to upregulate downstream target genes. Monomeric GR also undergoes

protein-protein interactions with DNA-bound pro-inflammatory transcription factors (TFs) to downregulate their activity, or it binds directly to the TF response elements

(TF-RE). (B) Distinct actions of classic GCs and selective GR modulators (SEGRMs). In contrast to classic GCs, SEGRMs are hypothesized to reduce GR’s capacity to

dimerize and therefore reduce GRE-mediated transcription. Interference with TF activity is driven via monomeric GR and therefore maintained with SEGRMs.

Frontiers in Endocrinology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 559673

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Van Moortel et al. Improved Glucocorticoid Receptor Ligands

Some of these side effects stem from direct binding of
homodimeric GR to pseudopalindromic glucocorticoid
reponse elements (GREs) in the promoter regions of genes
controlling key metabolic pathways (Figure 1). The resulting
GRE-driven upregulation of tyrosine aminotransferase (TAT),
glucose 6-phosphatase (G6P) and phosphoenolpyruvate
carboxykinase (PEPCK) for instance leads to hyperglycemia
(6). The suppression of nuclear factor (NF)-κB- and activator
protein (AP)-1 activity on the other hand, is typically explained
via protein-protein interactions with monomeric GR (called
tethering) (7). Despite the controversies on the actual underlying
mechanism (see further), the targeting of activities of pro-
inflammatory transcription factors undoubtedly contributes
substantially to the anti-inflammatory actions of GCs.

The discrepancy between monomer- and dimer-driven effects
of GR was first suggested in 1994 with the demonstration that GR
with a dimerization-disrupting mutation in the DBD (GRdim) is
still able to repress AP-1-driven genes, while no longer able to
induce GRE-mediated activation (8). Four years later, Reichardt
et al. established that mice carrying this homozygous mutation
were viable and healthy, in contrast to GR full knock-out mice
(9), arguing for an equally viable mechanistic basis to separate
beneficial from undesired effects. This was the starting point of
the search for so-called dissociative or selective GR modulators
(SEGRMs), GR ligands that can still repress inflammation via
monomer-driven NF-κB, and AP-1 inhibition, while no longer
inducing GRE-driven side effects (Figure 1B).

In the meantime, a few shades of gray have been added
to the original black-and-white monomer-dimer paradigm.
First of all, dimer-mediated gene activation also contributes
to the anti-inflammatory effects of GCs via the upregulation
of anti-inflammatory genes such as glucocorticoid-induced
leucine zipper (GILZ) and dual specificity phosphatase (DUSP1)
(10). This helps explaining why GRdim mice show increased
sensitivity to acute inflammation such as septic shock (11).
Secondly, it was shown in cellulo that Dex still promotes
dimerization of the GRdim mutant (12). However, introducing
an extra point mutation in the GR LBD almost completely
disrupted dimerization and abrogated GRE-driven activity, but
preserved the inhibition of NF-κB activity. Thirdly, monomeric
GR was shown to bind directly to genomic NF-κB and AP-1
response elements, without the need for the transcription factor
itself (13, 14). This finding challenges the original tethering
hypothesis but still supports the notion that suppression of NF-
κB and AP-1 activities does not require GR dimerization. Taken
together, given the bodies of evidence on a large contribution of
dimeric GR to particular side effects vs. the role of GRmonomers
to support anti-inflammatory actions in a chronic setting, the
notion that compounds that favor signaling via monomeric GR
can hold a therapeutic benefit against persistent inflammation,
still stands.

The development of successful SEGRMs has proven to be a
long and extremely bumpy road. Many compounds that showed
promising initial results (listed in Table 1) never got past the
pre-clinical stage or failed later on in clinical trials. It is well-
known that the success rate for the development of any kind of
small molecule drug from bench to clinic is very low, typically

starting from 10,000 compounds to end up with one market-
approved drug (44, 45). In addition, we believe that in the case of
GR, multiple technical, and biological factors have been reducing
the prospect to success even further. Fortunately, molecules
are still being developed, trying to meet the hope of many
patients who would benefit from GR modulators. For instance,
AZD7495 (asthma, NCT03622112) and AZD9567 (rheumatoid
arthritis, NCT03368235) are currently under evaluation in
clinical trials.

This perspective offers our opinion as molecular biologists
on the rationale why a continued search for SEGRMs still
makes sense and bears significant relevance. We offer our
view on a number of bottlenecks and pitfalls that might
have hampered research progress in the past and elaborate on
which new developments and insights could help overcome
these issues.

SEGRMs: THE UNMET MEDICAL NEED

The need for more selective GR ligands remains highly
relevant. Although more targeted therapies have successfully
been introduced, such as anti-tumor necrosis factor (TNF)
for arthritic disorders and inflammatory bowel diseases (IBD),
these therapies are not without limitations. For one, anti-
TNF therapy has been associated with a 250% increase in the
occurrence of tuberculosis (46). Furthermore, these therapies
have been reported to trigger multiple sclerosis (MS) and other
demyelinating conditions (47–50). This is in line with the
reported disease worsening in patients with pre-existing MS in
clinical trials for Lenercept and cA2, two types of anti-TNF
therapy (51, 52). Beside such side effects, monoclonal therapies
are generally very expensive, laying a huge burden on health
care systems, which will only increase with aging populations
in western countries. Their price also makes them unaffordable
for most people in low income countries, which is particularly
a problem for asthma, for which 80% of disease-related deaths
occur in low to low-medium income countries (53).

GCs on the other hand are generally much cheaper and
are still the first-line treatment for asthma, multiple sclerosis,
and multiple myeloma among others (54–56). However, their
side effects are a well-known problem and not necessarily
limited to patients receiving oral or intravenous GCs. While
topical skin treatments, especially with the newest generation
glucocorticoids, impose a very low risk for systemic side effects
(57–59), topical eye treatments, and inhaled GCs (IGCs) have
both been associated with adrenal suppression (60, 61). This can
lead to growth retardation in infants and children, who form a
large cohort of the asthma patient population. The long-term use
of high doses IGCs has also been associated with decreased bone
mineral density in both children and adults (62–64). Although
the benefits of ocular and IGCs usually outweigh the risks,
patients would still benefit fromGCswith lower risks for systemic
side effects.

Taken together, the need for more selective GCs reaches
further than systemic treatments and is also high for ocular and
inhalation therapies.
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TABLE 1 | Available pre-clinical data of SEGRMs.

Compound In vitro assays and in cellulo

overexpression assays

In cellulo assays for endogenous

anti-inflammatory and/or side effect

targets

Inflammatory animal models Status and latest

progress

References

LGD-5552 Ligand-binding assays GR, AR, MR,

PR

MMTV-luciferase in CV-1 cells

(overexpressed GR)

E-selectin-luciferase in CV-1 and

HepG2 cells (overexpressed GR)

IL-6-luciferase in HepG2 cells

(overexpressed GR)

Cofactor binding assays

PEPCK and PDK4 mRNA in H4IIE cells

COX2 and APOCIII mRNA in H4IIE cells

POMC mRNA in ATT20 cells

Collagen-induced arthritis in

mice

Freund’s complete

adjuvant-induced arthritis in rats

Experimental autoimmune

encephalomyelitis in rats

Discontinued (preclinical) (15, 16)

AL-438 Ligand-binding assays GR, PR

RSV-LTR-GRE-luciferase in CV-1 cells

(overexpressed GR)

TAT-luciferase in HepG2 cells

(overexpressed GR)

E-selectin-luciferase in HepG2 cells

(overexpressed GR)

Cofactor binding assays

Eosinophil counts in BAL

Human PBMC cell and rat splenocyte T-cell

proliferation assays

Osteocalcin protein in MG-63 cells

Aromatase activity in hDSF cells

IL-6 release in HSKF1501 cells

Carrageen-induced paw edema

in rats

Freund’s complete

adjuvant-induced arthritis in rats

Discontinued (preclinical) (17–19)

MK-5932 MMTV-luciferase in A549 cells

MMTV-luciferase in HeLa cells

TNFα-β-lactamase in U937 cells

TNFα, IFNγ, IL-1β, IL-6 secretion in human

whole blood

TNFα, IL-6 secretion in rat whole blood

Oxazolone-induced contact

dermatitis in rats

Discontinued (preclinical) (20, 21)

GW870086 Functional selectivity MR, AR, PR, ER

on MMTV-luciferase in CV-1 cells

MMTV-LTR-luciferase in A549 and

MG-63 cells

E-selectin-κB-RE-alkaline

phosphatase in A549 cells

Lymphotoxin-β, COX-2, Cyp24a1, MAP-7,

GPR64, GILZ, DUSP1, MICAL2, FKBP5,

CDKN1C, RGS2, SGK mRNA in A549 cells

Delayed-type oxazolone-induced

contact hypersensitivity in mice

Ovalbumin-induced airway

inflammation in mice

Discontinued

Phase II for asthma: no

difference with placebo

(NCT00945932)

Phase II for atopic

dermatitis: weaker effects

than fluticasone propionate

standard (NCT01299610)

(22–24)

(Continued)
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TABLE 1 | Continued

Compound In vitro assays and in cellulo

overexpression assays

In cellulo assays for endogenous

anti-inflammatory and/or side effect

targets

Inflammatory animal models Status and latest

progress

References

BI653048 Ligand-binding assays GR, PR

MMTV-luciferase in HeLa cells

IL-6 release in CCD-1112Sk cells

Osteocalcin levels in MG-63 cells

Human ERG potassium channel inhibition in

Hek293T cells

Canine low dose endotoxemia

model

Discontinued

Phase I: no improvement on

side effect profile compared

to prednisolone

(NCT02217631,

NCT02224105, NCT02217644)

(25–27)

Mapracorat Ligand-binding assays GR, PR, AR, MR

MMTV-luciferase in HeLa cells

Collagenase-luciferase in HeLa cells

κB-RE-luciferase in SV-40 transformed

hCEpiC cells

TPA-RE-luciferase in SV-40 transformed

hCEpiC cells

TAT activity in HepG2 cells

IL-12p40, IFNγ secretion in PBMC cells

Eotaxin-1 (+/– GR siRNA), −3, CCL5 (+/– GR

siRNA), G-CSF, IL-6, IL-8, MCP-1 release in

hConF cells

Eotaxin-3, CCL5 (+/– GR siRNA), CCL27,

ICAM-1 (+/– GR siRNA), IL-6, IL-8, MCP-1,

TNFα release in hCEpiC cells

IL-6, MCP-1 release and (p)p38, (p)JNK protein

in SV-40 transformed hCEpiC cells

IL-6, IL-8 release in hONA cells

IL-1β, ICAM-1 release in hREC cells

IL-6, IL-12p40, MCP-1 release in THP-1 cells

(p)JNK, (p)p65, (p)p38, IκBα levels in hCEpiC

cells

MYOC levels in mkTM cells

Migration, apoptosis, IL-8 release, annexin-1,

and CXCR4 expression in human eosinophils

IL-6, IL-8, CCL5, TNFα release in hMC-1 cells

GM-CSF, TNFα, PGE2 production and COX-2,

(p)p38, (p)MK2, DUSP1 protein in Raw 264.7

cells

IL-6, IL-8, MCP-1, PGE2 release, COX-2, RelB,

(p)IκBα protein, RelA and RelB DNA binding in

human keratinocytes

Croton oil-induced irritant

contact dermatitis in mice and

rats

Dinitrofluorobenzene

(DNFB)-induced allergic contact

dermatitis in mice and rats Dry

eye model in rabbits

Paracentesis model in rabbits

Ovalbumin-induced allergic

conjunctivitis in guinea pigs

Compound 48/80-induced

wheal and erythema skin

inflammation in beagles

Discontinued

Phase III for cataract

surgery, no results reported

(NCT01591655)

Phase I for psoriasis, no

results reported

(NCT03399526)

Phase I to assess corneal

endothelial cell changes, no

results

reported (NCT01736462)

(28–36)

(Continued)
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TABLE 1 | Continued

Compound In vitro assays and in cellulo

overexpression assays

In cellulo assays for endogenous

anti-inflammatory and/or side effect

targets

Inflammatory animal models Status and latest

progress

References

(Fos)dagrocorat Gal4-RE-luciferase with

Gal4-DBD-LBD in Huh7 cells

Cofactor binding assays

IL-6 release in A549 cells

IFNγ in human whole blood assays

Human pre-adipocyte differentiation

FABP4 mRNA in adipocytes

TAT, PEPCK in human primary adipocytes

Osteocalcin levels in human

primary osteoblasts

Murine LPS-induced

endotoxemia model

Discontinued

Phase II for rheumatoid

arthritis: no improved

benefit-risk ratio compared

to

prednisone (NCT01393639)

(37, 38)

AZD5423 Ligand-binding assays GR, MR, PR,

AR, ERα, ERβ

TPA-RE-β-galactosidase stable in

ChaGoK1 cells

TNFα-release in hPBMC cells Sephadex-induced airway

inflammation in rats

Discontinued

Phase II for asthma

(NCT01225549)

Phase II for

COPD (NCT01555099)

(39–41)

AZD7594 Ligand-binding assays GR, MR, PR,

AR, ERα, ERβ

TPA-RE-β-galactosidase stable in

ChaGoK1 cells

TNFα-release in hPBMC cells Sephadex-induced airway

inflammation in rats

Ongoing

Second phase II for asthma

completed 11/2019

(NCT03622112)

Phase I in adolescents

ongoing (NCT03976869)

(39, 42)

AZD9567 Ligand-binding assays GR, MR, PR,

AR, ERα, ERβ

MMTV-β-galactosidase stable in

ChaGoK1 cells

TPA-RE-β-galactosidase stable in

ChaGoK1 cells

Cofactor binding assays

TAT in primary hepatocytes

Osteoprotegerine in human fetal osteoblasts

Streptococcal cell wall

reactivation arthritis model in rats

Ongoing

Phase II for rheumatoid

arthritis completed

11/2019 (NCT03368235)

(43)

Information on clinical trials was retrieved from clinicaltrials.gov. A549, human lung epithelial carcinoma cell line; APOCIII, apolipoprotein C18; AR, androgen receptor; ATT20, mouse pituitary tumor cell line; BAL, bronchoalveolar

lavage; CCD-1112Sk, human foreskin fibroblast cell line; CCL (5), C-C motif chemokine (5); CDKN1C, cyclin-dependent kinase inhibitor 1C; hCEpiC, human corneal epithelial cells; ChaGoK1, human bronchogenic carcinoma cell line;

hConF, human conjunctival fibroblasts; COX-2, cyclo-oxygenase 2; CV-1, African green monkey kidney cell line; Cyp24a1, vitamin D (3) 24-hydroxylase; CXCR4, C-X-C chemokine receptor type 4; hDSF, human dermal skin fibroblasts;

ER, estrogen receptor; hERG, human ether-a-go-go potassium channel; FKBP5, 51 kDa FK506-binding protein; G(M)-CSF, granulocyte (macrophage) colony-stimulating factor; GPR-64, G-protein coupled receptor 64; H4IIE, rat

hepatocellular carcinoma cell line; Hek293T, human embryonic kidney cell line; HeLa, human cervical adenocarcinoma cell line; HepG2, human hepatocellular carcinoma cell line; HSKF1501, human foreskin fibroblast cell line; Huh7,

human hepatocellular carcinoma cell line; ICAM-1, intracellular adhesion molecule 1; IFNγ , interferon γ ; IκBα, NF-kappa-B inhibitor α; IL(-12p40), interleukin (12 subunit p40); (p)JNK, (phospho-)c-Jun N-terminal kinase; κB-RE, NF-κB

response element; LTR, long terminal repeat; MAP-7, microtubule-associated protein 7; hMC-1, human mast cell line; MCP-1, monocyte chemotactic protein 1; MG-63, human osteosarcoma cell line; MICAL2, molecule interacting

with CasL protein 2; (p)MK-2, (phospho-)mitogen-activated protein kinase-activated protein kinase 2; MMTV, mouse mammary tumor virus; MR, mineralocorticoid receptor; MYOC, myocillin; hONA, human optic nerve astrocytes;

(p)p38, (phospho-)mitogen activated protein kinase p38; (p)p65, (phospho-)nuclear factor kappa B subunit p65; PBMC, peripheral blood mononuclear cells; PDK4, pyruvate dehydrogenase kinase 4; PGE2, prostaglandin E2; POMC,

pro-opiomelanocortin; PR, progesterone receptor; Raw264.7, mouse leukemia macrophage cell line; hREC, human retinal endothelial cells; RGS2, regulator of G-protein signaling 2; RSV, Rous sarcoma virus; SGK, serum/glucocorticoid

regulated kinase; THP-1, human leukemic monocyte cell line; mkTM, monkey trabecular meshwork cells; TPA-RE, 12-O-Tetradecanoylphorbol-13-acetate response element; U937, human histiocytic lymphoma cell line.
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BOTTLENECKS AND PITFALLS
OBSERVED IN THE PAST

Current tools for screening potential SEGRMs suffer from
shortcomings and do not always capture the complexity of
GR signaling. First of all, the lack of three-dimensional
structures of full-length GR highly restricts our knowledge of
GR’s structure-activity relationship and decreases the predictive
power of molecular modeling and docking studies. Additionally,
all existing crystal structures of ligands in complex with
GR’s LBD were obtained upon the introduction of one or
more mutations in this LBD. Although these mutations were
predicted not to influence the LBD structure, this can never
be claimed with absolute certainty. F602S for instance, one
of the most commonly used GR mutations allowing growth
of LBD crystals, causes chemical shift perturbations in LBD
nuclear magnetic resonance spectra compared to wild-type
LBD (65). Furthermore, GR is allosterically regulated through
interactions with its corresponding response elements and
cofactors (66), and more general also for other NR members,
conformational changes in one NR domain can allosterically
alter the conformation of another domain within the same NR
molecule (67). Thus, most probably the conformation of the LBD
studied in isolation is an incorrect reflection of this domain’s
conformation in the full-length protein.

Further, while high affinity and selectivity for GR can be
captured using in vitro ligand-binding assays, confirmations in
a cellular or in vivo context are sometimes lacking. This harbors
an inherent risk to miss out on off-target effects of the compound
in question. Therefore, the confirmation of GR dependency in
a cellular and an in vivo context is still an important validation
to make, for instance by testing compounds in wild-type vs. GR
knock-out models.

Table 1 provides an overview of the assays typically carried
out to characterize GR-mediated actions of a set of well-
known SEGRMs. To our opinion, a lack of predictive power
is one of the problems most difficult to solve, especially
when moving from simplified assays to more complex biology.
Direct GRE-driven activity, potentially leading to side effects,
is almost universally monitored via reporters driven by a
mouse mammary tumor virus (MMTV) promoter. Although
a fast and straightforward and thus defendable method for
initial compound characterization, a GRE-driven reporter assay
can be a poor predictor for regulation of endogenous GRE-
driven genes, as was also observed for MMTV (15, 22).
The effects of GCs are highly gene-specific and GRE-driven
activity can differ depending on the sequence of the GRE
and the surrounding chromatin environment (68–70). The use
of overexpressed GR should also be avoided in such assays,
as this may lead to compound potencies and efficacies that
are not necessarily representative for an endogenous context.
Additionally, not all side effects are dimer-driven and are
therefore not predictable via GRE-driven reporters. Mimicking
the right gene- and context-specificity of GR activity remains one
of the greatest challenges. Making a switch from reporters driven
by minimal recombinant promoters to more physiologically
relevant promoters could already offer some benefit. These

promoters would ideally belong to genes that are confirmed
mediators of underlying therapeutic - or side effects. Validation
on a well-representative set of relevant endogenous target genes is
even more important (see below, section Potential Solutions: The
Way Forward).

Cell- and tissue-specificity of GC actions is another variable
parameter. The MMTV-driven reporter for instance showed
stronger upregulation by GW870086 in bone osteosarcoma
cells compared to lung epithelial carcinoma cells (22). It thus
remains essential to screen compounds in cell types that are the
best proxies for the underlying therapeutic and/or side effects
in vivo, for instance the use of hepatocytes to study effects
on glucose and lipid metabolism, or the use of osteoblast or
osteoclast cell lines for drugs that would be used in arthritis
patients. Further, although characterization of compound activity
in cellulo is essential, this will always be an oversimplification of
the situation in a living organism. Therefore, validation of an
improved therapeutic benefit depends on representative animal
models. While this is readily implemented for anti-inflammatory
effect scoring, concomitant testing of side effect parameters
(such as glucose tolerance, insulin tolerance, cortisol levels,
bone mineral density) presents a bottleneck, because a longer
treatment protocol may be needed to surpass the thresholds of
measurable results for these parameters or because of species
differences (see below) (22, 43).

Lack of translatability from animal models to human patients
is yet another hurdle to overcome. Differences in ligand activity
between species can be an underlying cause, as observed for AL-
438 and MK-5932, which both had stronger anti-inflammatory
effects in rat vs. human blood (17, 20). While it would be
recommended to perform initial cellular tests in human cells
as much as possible, in vivo interspecies differences remain a
hurdle in the entire field of drug discovery and are currently
difficult to overcome. Another concern is when animal models
used to study a particular disease insufficiently mimic the
pathology observed in humans. A careful design and set-up
of animal models remains key to study anti-inflammatory as
well as side effects. If a well-known side effect (marker) of
a classic GC in man is not observed in the animal model
used, this model will obviously have no predictive power on
(markers of) this particular side effect in patients and will
therefore be unsuited to evaluate the improved benefit-risk
ratio of SEGRMs over classic GCs. For instance, in a canine
model of low dose endotoxemia used to investigate the anti-
inflammatory and bone-sparing effects of BI653048, neither
BI653048 nor prednisolone treatment affected osteocalcin levels
(25). However, prednisolone does reduce bone mineral density
in dogs and decreases bone formation markers in humans after
1 day (71, 72). Indeed, in a phase I clinical trial, BI653048,
and prednisolone both caused decreased serum osteocalcin
levels (26). Studies with other SEGRMs also concluded that
osteocalcin levels in cellulo do not always reflect in vivo decreases
in bone density (18, 26, 27, 37, 38), casting doubts on the
value of osteocalcin as proxy for the in vivo reduction of bone
mineral density.

Lastly, notwithstanding the notion that dissociating GCs may
improve the benefit-risk ratio in chronic inflammatory disorders,
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a portion of the anti-inflammatory effects of GR does remain
dimer-driven (73). Hence, the likelihood decreases for truly
dissociating compounds to match the therapeutic efficacy of
the strongest classic GCs. Taking into account that some side
effects, such as osteoporosis, are at least partially mediated by
monomeric GR (18), makes the quest to find a SEGRM that
scores better on multiple side effects even more challenging.

POTENTIAL SOLUTIONS: THE WAY
FORWARD

Although pre-clinical characterization of compounds will
never suffice to accurately predict their effects in patients,
particular improvements on current screenings could increase
the predictive power. First of all, reporter genes driven by
physiological promoters relevant for the clinical context of the
tested SEGRM should be preferred over artificial promoters. An
example could be the use of the G6P- or PEPCK-promoters in
liver cells to monitor hyperglycemia (74, 75), or a Runt-related
transcription factor (Runx)2-driven promoter in osteoblasts
or Smad-driven promoters in osteoclasts as markers for GC-
induced osteoporosis (76, 77). A consistent and thorough
screening of endogenous targets in a relevant human cellular
context adds to importance. While monitoring GR activity in
every targeted pathway for every compound is impossible to
achieve, identification of reliable in cellulo biomarkers with a
higher predictive power for species-independent in vivo anti-
inflammatory and/or side effects would be a tremendous help.
This requires a full understanding of the molecular mechanisms
driving both anti-inflammatory and side effects in human tissues
as well as in animal models. This is, particularly for side
effects, not always the case. Continued efforts to unravel the
underlying molecular mechanisms driving particular GC side
effects are therefore crucial. However, some important side effect
mediators have already been identified and could be suitable
markers. Examples are muscle ring finger (MuRF)1, atrogin-
1, and Krüppel-like factor (KLF)15 in muscle atrophy (78),
regulated in development and DNA damage response (REDD)1
in skin (and muscle) atrophy (79, 80), and G6P and PEPCK in
liver (74, 75). In bone, the upregulation of cleaved caspase 3
and−9 or the reduction of bone morphogenetic protein (BMP)2
and Runx2 activity are important predictors for reduction in
osteoblast numbers (81, 82), while upregulation of receptor
activator of nuclear factor-κB ligand (RANKL)-RANK signaling
and cathepsin K activity are important markers for increased
osteoclast differentiation and activity (respectively) (76, 83).

Reduction of publication bias toward “negative results” and
joining forces between pharmaceutical companies and academic
groups should push the current boundaries and drive research
forward. At times, underlying reasons for discontinuation
of (pre-)clinical research remain enigmatic. As one concrete
example of many other examples that can be brought forward,
results from three completed phase III clinical trials on the
use of Mapracorat for post-operative treatment of cataract
surgery (NCT01230125, NCT01591161, and NCT01591655)
await publication, leaving fundamental scientists on the sideline

wondering why Mapracorat was never market approved. More
insights on where exactly discontinued SEGRMs failed, if those
reasons are on the scientific level, will encourage academic
labs with the right expertise to dig deeper into the underlying
causes, and create feedback-knowledge that may flow back to
industrial programs.

Even though fully dissociating SEGRMsmight never reach the
therapeutic efficacy of the most potent classic GCs, they can still
offer relevant therapeutic benefit. Many inflammatory disorders
are characterized by a disease course that alternates between
periods of remission and exacerbation or relapse. SEGRMsmight
not trigger the full-on anti-inflammatory cascade that is required
to suppress an exacerbation, but might be ideal for maintenance
therapy. To maintain disease control, lower GC doses often
suffice. SEGRMs could match the anti-inflammatory efficacy of
the lower dose classic GCs while still showing a reduced side
effect burden. Combination of classic GCs with SEGRMs or
other therapeutic agents is another strategy to increase benefit-
risk ratios. Combination of Dex with CpdA was for instance
shown to increase anti-inflammatory effects while reducing
GRE-driven signaling in cellulo (84). Finally, the development
of compounds that do not bind the classic ligand-binding
pocket but instead target the dimerization interface might be an
interesting alternative strategy to disrupt GRE-driven signaling.

The intrinsically disordered nature of the GR NTD (85), has
so far prohibited resolving a crystal structure of full-length GR.
However, some smaller (however technically still challenging)
advances could already lead to important new insights. Crystal
structures of wild-type LBD in absence of stabilizing mutations
would already give more confidence in the reliability of current
docking approaches. Secondly, crystal structures of the DBD-
hinge-LBD portion would not only lead to a better understanding
of the structure-activity relationship of GR, but might pose extra
advantages for molecular modeling or docking studies. Since
efficient GR dimerization seems to require both DBD and LBD
(12), crystal structures of at least the DBD-hinge-LBD portion of
GR should improve predictions on those molecular entities that
are truly dimer-disrupting.

Another important emerging strategy to find more efficacious
GCs is to minimize exposure to non-inflamed tissues. IGCs can
for instance be optimized to undergo rapid elimination once
they enter the systemic circulation, a strategy that was applied
for the development of AZD7594 (39). For systemic GCs, the
use of liposomal formulations is showing very promising results.
While these not only improve distribution to tissues that are
anatomically difficult to reach (86–88), they can lower the side
effects of systemic GCs by maximizing concentrations at the
inflamed tissues while minimizing distribution to other tissues
(89, 90).

While it may be utopia to try and develop compounds that
alleviate all side effects, improved profiles for particular side
effects may be achievable. Skin thinning and ocular hypertension
are for instance among the most problematic side effects for
topical and ocular GC treatments, respectively (5). For systemic
treatments, liposomal formulations in combination with selective
improvement of particular side effects may be a viable way
forward. Liposomal SEGRMs that do not affect bone metabolism
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might for instance have an increased benefit-risk ratio over classic
GCs for the treatment of arthritic disorders.

CONCLUSION

While there still seems a long road ahead toward SEGRMs
with a real improved benefit-risk ratio, there is light at the
end of the tunnel. The pipeline of SEGRM compounds under
clinical evaluation is not empty and new insights from ongoing
(or future) research is expected to lead to optimized screening
tools with maximized predictive power. Additionally, strategies
to limit exposure to off-targets tissues, such as liposomal
formulations for systemic treatments, show promising results
(86–90). Combination of these approaches with the identification
of reliable markers to predict on-target side effects, (e.g., ocular
hypertension in ocular treatment, osteoporosis in rheumatoid
arthritis, skin thinning in topic applications) may be an effective
and achievable leap forward.
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