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Chapter 1: 

 General Introduction 
 

 

 
 

“Map design can be thought of as mind design; the way a map is 

designed will influence the views of the world it stimulates or inhibits.” 

 

Daniel R. Montello, 2002 
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1.1. Background Information 

1.1.1 Spatial Cognition and Cognitive Cartography 

Cognition is defined as “the intelligent process and products of the human mind includes such mental 

activities as perception, thought, reasoning, problem solving and mental imagery”. Mental image is an 

important topic in cognition studies. “The mental image is an internal representation similar to sensory 

experience but arising from memory” (Peterson, 1994, p.35). On the other hand, spatial cognition can be 

defined as restructuring the space on a mental level and its assimilated reflection. Similar to perception, 

spatial cognition is related to both physical environment and the abilities of individuals regarding socio-

cultural, economic and political characteristics of their daily life. As Boulding (1956) and Lynch (1960) 

introduced spatial cognition can be explained by two terms: (i) spatial image (other terms used instead are 

mental map, cognitive map) and (ii) cognitive mapping. In this context, spatial image refers to a cognitive 

representation of the nature and attributes of the spatial environment, whereas cognitive mapping is “…a 

process composed of a series of psychological transformations by which an individual acquires, codes, 

stores, recalls and decodes information about the relative locations and attributes of phenomena in their 

everyday spatial environment” (Downs & Stea, 1973, p.7). Thus, human spatial behavior is dependent on 

the individual’s cognitive map of the spatial environment. Because cognitive mapping is considered as the 

basic component of human adaptation and a cognitive map is a must for everyday environmental behavior. 

These environmental behaviors occur when seeking answers for ‘where certain valued things are’ and ‘how 

to get to where are from where we are’ (Downs & Stea, 1973, p.313). 

 

Due to the above definitions, cognitive mapping process is characterized by how individuals make use of 

the information existing in different environments and how it affects spatial behavior (coping with complex 

data, interpretation, etc.). Hence, the perception of the environment plays a significant role for 

improvement of spatial images. It is important that individuals perceive and comprehend a foreknown 

concept with its spatial relationships; that is how cognitive maps are established (Güç, et al., 2012). In this 

context, a cognitive map is not necessarily a map, it is actually an analogy of process, not product which a 

cartographic map. In fact, a cartographic map itself has a huge impact on our spatial images and our 

concept of cognitive maps (Boulding, 1956; Downs & Stea, 1973). Montello (2002) also stated that map 

design is about human cognition design and according to him, this can be termed as “intuitive map 

psychology”. In spite of the situation before, the intuition of maps become a formal part of cartographic 

education in 20th century. By this way, cartographers proposed that intuitions about map cognition can be 

developed by borrowing theories and methods of psychology in a more systematic way. This approach 

created a new research area called cognitive cartography. Applying cognitive theories and methods to 

understand maps, and map applications to understand cognition are subjects of cognitive cartography 

(Montello, 2002; Keskin, et al., 2016). 

 

Abstraction of physical reality shows differences in geometry and cognition. In geometry, the spatial world 

can be described in terms of points, lines, and areas. On the contrary, in cognition, basic entities usually are 

not points; they may be theentire physical objects like books or chairs. Figure 1.1 demonstrates how to 

conceptualize a physical object in geometry and in cognition. The cognitive apparatus is flexible as to which 
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level in a huge lattice of part-whole relations to select as ‘basic level’; it can also focus either on the relation 

between an object and a configuration of objects, or on the relation between an object and its parts (Freska, 

2013). For this reason, to increase the understandability of a cartographic visualization, we need to link the 

geometric fundamentals to the cognitive processes. Within map design, the relationships between 

geometry and cognition should be taken into an account as the premise criteria. The understandability of 

a cartographic representation is highly correlated with the effectiveness of its design. For instance, the 

visual variables that will be used in the design can be decided based on the strategy of Shneiderman’s 

(1996) visual information mantra; overview first, zoom&filter, details on demand. 

 

 
Figure 1.1. Left: In geometry, aggregation of structures from atomic point entities. Right: In cognition, no matter 

geometrical complexity or meaningfulness, basic entities can be decomposed into more elementary entities or 

aggregated into more complex configurations; without invoking elementary constituents (Freska, 2013). 

1.1.2. Principles of Cartographic Design for increasing Spatial Cognition 

As Jones (2010) mentioned, in 1996, the Society of British Cartographers published a list of five principles 

which should guide good map design;  

 Concept before Compilation 

 Hierarchy with Harmony 

 Simplicity from Sacrifice 

 Maximum Information at Minimum Cost  

 Engage the Emotion to Engage the Understanding 

 

For all those principles guiding good map design, the user of the map is a very important factor throughout 

the design procedure. A map should invoke our spatial attention and evoke things in our spatial memory 

with its design. Regarding to that, understandability of a cartographic representation is highly correlated 

with the usefulness of its design. These fundamentals of map-use lead us to user-centered design (UCD). 

The basic philosophy of UCD is to put the user at the center of the development process by focusing the 

needs of the real people who will use their product and what do they want to achieve with it (Haklay & 

Nivala, 2010). There are several approaches and guidelines for UCD, however, the principles of Norman 

(1990) & Gould and Lewis (1985) are the most widely adopted ones (Table 1.1). 
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Table 1.1. UCD principles 

Norman’s principles Principles of Gould and Lewis 

1. Use both knowledge in the world and knowledge 

in the head. 

2. Simplify the structure of tasks. 

3. Make things visible. 

4. Get the mapping right. 

5. Exploit the power of constraints, both natural and 

artificial. 

6. Design for error. 

7. When all else fails, standardize. 

1. Early focus on users and tasks 

Observe users and engage them to the design process. 

2. Empirical measurement 

Measure different elements of the design – from the 

recording of users’ reaction and performance with a 

prototype to the evaluation of the final version. 

3. Iterative design 

Go back and redesign if problems are identified in a user 

testing. Keep in mind ‘design, test, measure, and 

redesign’ cycle. 

 

Gould and Lewis’s (1985) framework was translated in ISO 13407 into a set of instructions that help 

achieving user needs by utilizing a UCD approach throughout the whole life cycle of a system (Haklay & 

Nivala, 2010). The three-step design is an iterative process (Figure 1.2): 

1. Step: Find out the user requirements.  

Study potential users and the context. Decide on which usability criteria are to be emphasized in the study: 

effectiveness, efficiency, satisfaction, memorability, and/or minimal errors. 

2. Step: Provide design solutions. 

The first design prototypes and preliminary mock-ups. 

3. Step: Analyze whether the defined user requirements have been met.  

Use usability engineering methods.  

 
Figure 1.2. UCD cycle for geospatial technologies (Haklay & Nivala, 2010). 

 

If the results indicate that the user requirements have not been achieved, the iterative process goes back to 

redefining the user requirements. If the requirements are met, the product is deployed. However, 

evaluations for existing product should continue to make sure the product still satisfies user needs (Haklay 

& Nivala, 2010). 



6 

 

1.1.3. User Centered Design (UCD) and Usability Research Relationship 

While user centered design (UCD) can be described as an approach to the design and development process 

focusing on gaining a deep understanding of who will use the product (URL 1), usability is a measure of 

user experience interacting with the design. According to International Organization for Standardization 

(ISO) definition, usability is the extent to which a product can be used by specified users to achieve specified 

goals with effectiveness, efficiency and satisfaction in a specified context of use. In this context, usability 

standards (ISO 9241-11) are categorized as primarily concerned with: 

 the use of the product (effectiveness, efficiency and satisfaction in a particular context of use) 

 the user interface and interaction 

 the process used to develop the product 

 the capability of an organization to apply user centered design (URL 2)  

 

As a component of the product use, effectiveness refers whether users complete tasks, achieve goals with 

the product. Another issue is efficiency, which is mostly measured with time and about how much effort 

users require to do a specific task. Lastly, satisfaction can be described as users’ conception on the products 

ease of use. There are also some fundamental factors affecting the use of product such as users, their goals 

and context of use. Users can be highly trained, experienced or novice. The use purposes of the product 

may vary based on where and how the product is being used (URL 3). Related to ISO 9241-11, ISO 13407 

defines UCD activities for the entire life cycle of interactive computer-based systems including human 

factors, ergonomics knowledge and techniques as presented in Table 1.2 (URL 2). This standard is the basis 

for many UCD methodologies. 

 

Above stated standards can also be applied for usability research of cartographic products. In this context, 

first, user tasks should be prepared and classified based on specific criteria. Throughout the task design 

procedure, user group, goal, context of use and the tasks expected to be completed by users should be taken 

into consideration. User groups may diversify in terms of education level, expertise, age, gender, culture, 

and sensory disabilities, and these factors directly affect spatial perception of individuals as well as the 

perception of cartographic products (Slocum et al, 2001).   

 

After determining the user group and user goals, the context of use, which is also one of the usability 

measurement types defined by ISO, should be specified. The context of use is related to visualization 

environment, visualization method (i.e. whether it is 2D, 3D, static, dynamic or interactive) and the 

advantages and/or disadvantages of visualization method to choose. For instance, MacEachren et al (1999) 

introduced four criteria (i.e. immersion, interactivity, information density, intelligence of display objects) 

for usability evaluation of geospatial virtual environments (GeoVEs). Immersion refers to the sensation of 

being enveloped by the environment, while interactivity allows manipulating the characteristics of 

environment components. Information density handles the level of detail in the geovisualization 

environment, and the last criteria, which is intelligence of display objects, can be described as assisting 

components that help users to interpret the representation on the screen. 
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Table 1.2. Usability Metrics defined by ISO 13407:1999, ISO 9241-11:199 

Usability measurement type Definition 

Effectiveness 
The accuracy and completeness with which users achieve 

specified goals 

Efficiency 
The resources expended in a relation to the accuracy and 

completeness with which users achieve goals 

Satisfaction 
Freedom from discomfort, and positive attitude to the use 

of the product 

Context of use 
Characteristics of the users, tasks and the organizational 

and physical environments 

Goal Intended outcome 

Task Activities required to achieve a goal 

 

To design user-tasks, it is good to follow a task taxonomy. In literature, there are many task taxonomies 

developed for cartographic representations (Amar, et al., 2005; Casner, 1991; Kveladze, 2015; Roth & Mattis, 

1990; Roth, 2012; Wehrend & Lewis, 1990). For instance, Armstrong & Densham (1995) offers a sequence of 

steps that normally are followed in formulating and solving the location-selection problem, whereas Knapp 

(1995) produced a six-step task analysis model. Knapp’s task analysis model includes task (what is to be 

accomplished), goal (why it is to be accomplished), physical actions (how it is to be accomplished), mental 

actions (thought process while accomplishing it), data (the data set with which it will be accomplished) and 

visual operators (primitive operators for visual interaction with display) that users would be associated 

with. In addition, user tasks may incorporate from simple to complex questions based on the visualization 

and its abilities. 

 

The ability of users on performing user tasks is measured by identifying the methods used to test user 

behaviors. There are several theoretical and empirical methods to test the usability. Empirical methods 

allow ideas to be generated and verified by systematic observation and measurements. Systematic 

observations are standardized, controlled, recorded, repeatable, and publicly verifiable. In that manner, 

systematic empiricism should be held separate from trial-and-error map design approach developed by 

cartographers over the years. Similarly, informal experiments held by cartographers to evaluate the 

effectiveness of a design should be distinguished. As all empirical research on cartography does not include 

cognitive theories or human subjects, it is not possible to claim that only empirical methods leads the truth. 

However, it is obvious that combination of empirical research and predictive and explanatory ideas can 

lead scientific outcomes (CCS, 1995; Montello, 2002). As Slocum et al. (2001) stated that building an effective 

visualization method is a two-step process which involves theory-driven cognitive research and usability 

engineering to evaluate existing methods. Theory-driven cognitive research covers studies to understand 

how users create and make use of mental maps of real world phenomena when they interact with maps. If 

theories related to these are developed, there will not be much need for user tests of a specific 

geovisualization technique. On the other hand, usability engineering refers identification of methods to 

analyze and enhance the usability of software. Usability term here means the ease of use and effectiveness, 

efficiency and satisfaction, just as mentioned by ISO. “User testing” and “user studies” applied in 
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cartography show significant similarities with the empirical research subjected to usability engineering 

(Slocum et al., 2001).  All in all, the key to developing highly usable cartographic products is employing 

UCD and employing UCD requires usability research that focuses on user behaviors and needs (URL 1). 

1.1.4. User Interface/User Experience (UI/UX) Design for Cartography 

User studies conducted in cartography show significant similarities with the empirical research subjected 

to usability engineering (Slocum et al., 2001).  In general, humans use interfaces which corresponds to user 

interface (UI) design and they experience interactions which are related with user experience (UX) design. 

The user experience proceeds in stages and each stage should be carefully designed. Interaction is a two-

way conversation; it is important to provide affordance and feedback to maintain the dialogue. When a 

map user interacts with a cartographic design, cartographic interaction occurs. Cartographic interaction is 

the ability to manipulate the map temporarily to meet user needs (Figure 1.3). 

 

 
Figure 1.3. Cartographic Interaction Primitives (Roth, 2012) 

 

Roth (2013) listed the six fundamental questions of cartographic interaction as follows: 

 What? the definition of cartographic interaction in the context of cartographic research 

 Why?  the purpose of cartographic interaction and the value it provides 

 When? the times that cartographic interaction positively supports work 

 Who? the types of users provided cartographic interaction and the way in which differences across users 

impacts interface designs and interaction strategies. 

 Where? the computing device through which cartographic interaction is provided and the 

limitations/constraints on cartographic interaction imposed by the device 

 How? the fundamental cartographic interaction primitives and the design of cartographic interfaces that 

implement them. ‘How?’ is the most important question for cartographic interaction because it seeks 
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for answers for cartographic representation by deciding on which visual variables should be 

employed for a specific design. 

1.1.5. Usability Research Methods 

Keeping in mind the empirical and theoretical classification of usability research, practical usability 

methods can be categorized as qualitative and quantitative (Table 1.3). Qualitative research includes user 

experience, actions and behaviors including their feelings, opinions and emotions to gain insight into 

reason or motivation of their reactions. The methods may vary but qualitative research generally seeks for 

explanation about influences and processes of user experience from discussion, interview or so. Qualitative 

methods can be listed as; focus group, post-experience interview, think aloud, observation, video 

recording, audio recording, and screen recording (Van Elzakker, 2004; Kveladze, 2015; Ooms, 2012). These 

methods are used often for usability of 2D, 3D static, dynamic and interactive visualizations. 

Table 1.3. A comparison of quantitative and qualitative methods (URL 4) 

Quantitative Methods Qualitative Methods 

Learn about design for perception & 

cognition 

Learn about design for culture & 

preference 

Difficult to translate insights into practice Insights often constrained by current 

practices 

Produces general insights Produces specific insights 

Insights are superficial Insights are deep 

Identify significant differences Explain significant differences 

May not explain differences May not identify differences 

Harder to design Easier to design 

Easier to analyze Harder to analyze 

 

Usability evaluation methods such as interview and think-aloud protocols are widely used due to the fact 

that they require no measurement apparatuses and allow usability experts to measure usability of software 

systems in a relatively easy way. However, analyzing and evaluating the collected data from these methods 

are time consuming. Additionally, the results of the analysis may be hard to replicate because the collected 

data is based on qualitative evaluations. To overcome this limitations, quantitative evaluation methods 

have been developed (Kimura et. al., 2009). Different from qualitative methods, quantitative research 

allows measuring, quantifying and counting issues considered in a usability study (Kveladze, 2015). Task 

analysis, questionnaire, sketch maps, eye tracking and EEG (electroencephalogram) can be counted as 

frequently used quantitative methods. It is important to decide which method to use in which cases or in 

which stages of the usability research considering the following four aspects (URL 4): 

 Participants: the people recruited for the study (if empirical) 

 Materials: the cartographic products that are to be evaluated 

 Procedure: the process that participants need to complete 

 Analysis: the way to collect and interpret the data 
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1.1.5.1. Monitoring gaze activity in the context of spatial cognition - Eye tracking 

Eye tracking is one of the quantitative usability research methods and a frequently used user experience 

technique for user interfaces and websites (e.g., Djamasbi, et al., 2010; Fleetwood & Byrne, 2006). It allows 

tracking the movements of the participant’s eyes: his point of regard (POR) is registered at a certain 

sampling rate. From this long list of (x, y) positions, eye movement metrics such as fixations and saccades 

can be derived. A fixation is a stable POR during a certain time span (at least 80 to 100 ms) and indicates 

the users’ content interpretation at that location. A saccade is a rapid eye movement between two fixations, 

typically completed in tens of milliseconds. A scan path can be described as a succession of fixations and 

saccades (Ooms, 2012). 

 

The first eye tracking application in user experience domain was conducted by Fits, et al. (1950), who used 

motion picture cameras to study the movements of pilots’ eyes. Jenks (1973) initiated eye tracking use for 

cartographic purposes by exploring the scan paths of users looking at a dot map. Although a few more 

studies followed this first one, no significant eye tracking study on the assessment of the cartographic 

products have been implemented for almost 10 years because of the following reasons presented by Jacob 

and Karn (2003):  

 technical problems related to capturing the actual eye movements that may cause inaccurate and 

unreliable results  

 complicated and time-consuming data extraction, and  

 difficulty in interpretation of extracted data.  

 

However, later advances in eye-trackers and eye tracking software and their decreasing costs concluded 

that eye tracking technology is useful for interpretation of visual information efficiently while performing 

a complex visual and cognitive task (Duchowski, 2007; Jacob & Karn, 2003; Ooms, 2012). It is also possible 

to execute detailed analysis and eye tracking contributed to psychological research on the cognitive 

processes linked with visual search (Ooms, 2012). For instance, Çöltekin et. al. (2010) studied the users' 

visual interaction with highly interactive interfaces. The study mainly investigated whether the efficiency 

of users can be characterized by specific display interaction event sequences, and whether studying user 

strategies could be incorporated in a way to improve the design of the dynamic displays. Another research 

intended to combine eye tracking with user logging (mouse and keyboard actions) with cartographic 

products and referenced screen coordinates to geographic coordinates in order to know which geographic 

object corresponds to the gaze coordinates at all times. This approach is promising in terms of efficiently 

studying user behavior with interactive and static stimuli in multiple research fields (Ooms, et al., 2014). 

1.1.5.2. Monitoring brain activities in the context of spatial cognition  

Developments in medical research have led observing neurons in the brain with a high spatial and temporal 

resolution. The discovery of place cells also marks an attention to research on spatial cognition. Place cells 

are located in entorhinal cortex, which is a part of temporal lobe and functionate as the center of memory 

and navigation. The entorhinal cortex is the main interface between the hippocampus and neocortex 

(Figure 1.4). Understanding the activity of the place cell in the hippocampus equals to understanding how 

neurons code complex cognition. Hence, ‘… any discussion of the hippocampal neurophysiology of spatial 
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cognition needs to start from the fact that spatial location is a primary driver of neural firing patterns in the rodent 

hippocampus and spatial firing is clearly the best first-order description of rodent hippocampal representations’ 

(Redish & Ekstrom, 2013, p.30). 

 

There are several researches on spatial representations in the medial temporal lobe. Hippocampal lesions 

lead various deficiencies on spatial cognition such as impairments in forming spatial relationships and 

spatial learning abilities. For instance, patients with hippocampal lesions succeeded retrieving a single 

route to a hidden location, unlike retrieving the location of multiple hidden objects within a spatial 

environment (Bohbot et al., 1998, 2007). These findings implied that calculations including multiple routes 

and environments are mostly related to hippocampus. 

 

 

Figure 1.4. Hippocampal system (Kessels & Kopelman, 2012) 

 

Besides hippocampus, the neural basis of human spatial memory depends on parahippocampal cortex and 

retrosplenical cortex which include visual-spatial scene processing and survey representation (Redish & 

Ekstrom, 2013). Patients with hippocampal deficiencies still keep on activities involving spatial memory 

such as locating a recently learned object within a room (Bohbot et al, 1998). In this context, the patient who 

was widely studied and known by his initials, H.M., played an important role in the development of 

cognitive neuropsychology. H.M. was a memory disorder patient who had a “bilateral resection of the 

entire (pyriform–amygdaloid–hippocampal) complex including the hippocampal gyrus extending 

posteriorly for a length of 8–9 cm from the tips of the temporal lobes in an attempt to cure his epilepsy 

(Corkin et al, 1997). Some research conducted with H.M. showed that he succeeded in many spatial 

memory tasks, including knowledge of the layout of his apartment. The posterior parts of his hippocampus, 

which might be important for spatial processing, were not damaged. However, he was unable to learn, 

store and retrieve new spatial routes, especially multiple routes. This situation suggested that the parts of 

his hippocampus that are responsible for spatial processing were damaged (Redish & Ekstrom, 2013). In 

addition, posterior parahipocampal cortex that receives signals from visual areas, allows allocentric 



12 

 

processing of visual-spatial information. For instance, some studies involving the same spatial tasks 

presented that patients with parahippocampal lesions encountered very serious deficiencies, whereas 

patients with more profound hippocampal lesions did not show deficits (Bohbot et al, 1998; Ploner, et al., 

2000). Another example is that compared with sighted ones, parahippocampal cortex of blind participants 

who imagine navigating showed less activation (Deutschländer et al., 2009). Due to results of the previous 

studies, parahippocampal cortex plays a valuable role in visual-spatial processing (Redish & Ekstrom, 

2013).  

 

All the above findings were acquired by functional Magnetic Resonance Imaging (fMRI), which allows 

measuring neural activity indirectly by using blood oxygen–level dependent (BOLD) signal. fMRI 

facilitates imaging brain activity with a high spatial resolution (~1mm), depending on the oxygen 

consumption in the activated brain area, and the increment and decrement in metabolism energy. Shortly, 

it measures the metabolic activity related whole-brain changes. Despite the fact that fMRI is unable to 

measure the activity of single neurons such as place cell activity, it ensures significant information related 

to the functions of hippocampus and parahippocampal cortex during navigation. Since it is not an invasive 

method, it can be employed for healthy participants as well (Redish & Ekstrom, 2013). 

 

Although it has been used rarely in cartography, fMRI (functional magnetic resonance imaging) provided 

some essential information how user perceive maps and respond map-related tasks. One of the studies 

implemented fMRI technology showed that the ability to find targets embedded within complex visual 

environments requires the dynamic programming of visuomotor search behaviors based on fMRI results. 

The research revealed many significant results. For instance, visuomotor search resulted a greater 

activation in the posterior parietal cortex and the frontal eye fields in the right hemisphere. Furthermore, 

the activity in a network of cortical regions have an influence on the search-dependent variance in superior 

colliculus activity. Saccadic eye movements, covert shifts of attention, and visuomotor search occurred 

overlapping but not identical zones of activation. Lastly, this study focused on functional anatomy of overt 

spatial exploration rather than covert shifts of spatial attention (Gitelman et al., 2002) Another research 

carried out by Lobben et al. (2005) attempted to measure and analyze users’ navigational abilities by using 

fMRI. In this context, individual performances of users and activated brain areas were determined while 

they perform rotation and sleuthing tasks. The research had some interesting results such as; during 

sleuthing, activation in the right and left hemispheres were similar. However, rotation task activated the 

right hemisphere more. In addition, while rotation caused more activation in the lateral occipital gyri which 

is the center of visual processing, sleuthing activated middle frontal gyrus, postcentral gyrus, and the 

angular gyrus more than rotation task. 

 

Similar to fMRI, EEG records the electrical activity along the scalp produced by firing of the neurons in the 

brain with high temporal resolution and relatively low cost. In this method, electrodes placed in specific 

parts of the brain, which vary depending on which sensory system is being tested, make recordings that 

are then processed by a computer (Lee et. al., 2009). As a single neuron is not sufficient to draw a 

measurable potential at the scalp, the aggregation of synchronized neurons is considered during EEG. Since 

EEG is time-sensitive (i.e. a single millisecond) and a direct measure of the electrical activity in the brain, it 
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resolves the changes depending on the different cognitive processes while performing certain tasks. 

However, because of the fact that the electrical activity is measured by electrodes placed at few specific 

regions, it is difficult to locate where in the brain the activity comes from. EEG can be used simultaneously 

with fMRI so that high-temporal-resolution data can be recorded with high-spatial-resolution (Lee et. al., 

2009) (URL 5). 

 

EEG has been used for various medical purposes such as critical monitoring and diagnostic tool in the 

clinic, sleep or fatigue monitoring (Winslow et al., 2013). Besides medical purposes, it helps addressing the 

question of how the brain answers to a specific visualization, image or design (Lee et. al., 2009). What 

generally recorded in EEG is called ERP (event-related potentials) allowing to check an EEG in certain 

moments when subjects received the event. The EEG signal represents oscillations observed across a wide 

range of frequencies which are commonly divided into distinct frequency bands (e.g., alpha band: 8–12 Hz, 

theta band: 4-8 Hz). Spectral analyses of the EEG can be used to compute the band-specific frequency power 

for given periods of time. Event-related power decreases from a reference to an activation interval are 

commonly referred to as event-related desynchronization (ERD), while power increases are referred to as 

event-related synchronization (ERS) (Pfurtscheller & da Silva 1999). These EEG metrics will be explained 

in detail in Chapter 3, 4 and 5. 

1.1.6. Why mixing methods, i.e. integrating eye tracking with brain imaging methods? 

Many methods such as eye-tracking, thinking aloud, interview or questionnaire have hitherto been applied 

in cartographic usability research (e.g. Herbert & Chen, 2015; Kveladze, Kraak & van Elzakker, 2017; Ooms, 

2016; Ooms, Dupont & Lapon, 2017). On the one hand, how human brain supports spatial tasks has not 

sufficiently been researched yet, despite the advances in brain science and spatial cognition. There is 

especially a lack of research on the sources of individual differences (i.e. expertise, gender, etc.) and the 

relationship between the organization of spatial thinking and geographic space. On the other hand, there 

is limited empirical evidence on the user’s cognitive processes involved in map-related tasks, although 

cartographers hold theoretical knowledge on usability and design issues of maps (e.g. Kimerling, Buckley, 

Muehrcke & Muehrcke, 2009; MacEachren, 2004; Ooms, et al., 2015; 2016). Many disciplines from sports 

(e.g. Barfoot, Matthew & Callaway, 2012; Masaki, Hirao, Maruo, Foti & Hajcak, 2018) to marketing (e.g. 

Ohme, Reykowska, Wiener & Choromanska, 2010; Verhulst, Slabbinck, Vermeir & Larivière, 2018) make 

use of brain imaging techniques (e.g. EEG, fMRI) to understand the cognitive procedures of individuals. 

EEG provides direct measures of instantaneous electrical brain activity; it can benefit cartographic user 

studies, be combined with other quantitative methods, such as eye-tracking (ET) and sketch maps, to gain 

a better understanding of cognitive abilities and limitations of novice and expert map users. The insights 

that particularly arose from the differences due to expertise will henceforth contribute to creating effective 

cartographic products.  

 

Eye tracking studies provide valuable information about use/user issues of cartographic products. 

Additionally, some other spatial cognition research employed brain imaging techniques to understand user 

behaviors. Linking the psychological/mental processes underlying the sensations we experience in 

everyday life to their underlying physiological biochemical processes is a challenging research area. To 
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achieve this goal, we have to understand perception, in other words, how our brain makes sense out of the 

signals coming from our senses. Not only ‘how the perception is processed’, but also ‘the attention’ (how 

our brain can cope with the huge data and how it selects certain information)’ should be understood 

(Görgen, 2010). There are two types of attention; overt and covert. Overt attention is defined as selectively 

processing one location over others by moving the eyes to point at that location. Covert attention is defined 

as paying attention without moving the eyes. While overt attention is externally observed, covert attention 

process is not visible from outside. To investigate covert attention, one can use psychophysical experiments 

or apply techniques like EEG or fMRI. For overt attention, one can use eye tracking to find out what actually 

guides the process and whether physical features of pictures play a role in guiding our attention. In this 

case, although eye tracking provides information about the gaze location, it does not provide any 

information about neuronal activity. Likely, EEG or fMRI do not directly provide information about the 

gaze position (Görgen, 2010). Hence, we need a holistic approach to understanding and interpreting map 

user behaviors.  

 

There are several different usability studies on cortical processing in response to stimulus presentation. 

Thus, if an EEG experiment is designed in a way to parse eye tracking data simultaneously, it will be 

possible to monitor performance of users in visual tasks. By this way, it may lead a significant insight to 

the map user behaviors.  Combined EEG and eye tracking has been used in many research areas. For 

instance, Alves et al. (2012) introduced a concept to explore customer experiences in service design by 

considering an augmented customer journey using EEG and eye tracking. Another research intended to 

enhance cognitive performance in sport by measuring neurocognitive activity and visual focus in real time 

which can be used to provide immediate feedback to the coach, in ‘real world’ settings, for optimizing 

training protocols for the individual athlete or for Eye Movement Desensitization & Reprocessing  therapy, 

focused relaxation, etc. (Bartfut, et. al., 2012).  

1.2. Research rationale and synopsis 

For a map to become meaningful, it requires a map user, and to improve the understanding of map design, 

cartographers should be well aware of the principles of human perception and cognition and that design 

has a great impact on usability (Griffin, 2017). According to Eckert (1908), map logic agrees to the map 

production rules that has strong influence on cartographic perception. To be able to understand map users’ 

behaviors, it is important to identify the cognitive procedures. A need for research that evaluates the 

cognitive issues related to map-use, has been identified long time ago, but remains largely unanswered. It 

is essential that experts in cartography – professional map-makers – understand how the novice users read, 

interpret, and store the visual information presented to them. With the understanding of map knowledge 

of users, cartographers can determine how to use the input stemmed from individual differences to 

enhance the design of maps for specific purpose and user groups, in other words, focus on effective map 

designs that ideally do not cause a high cognitive load. To do so, EEG and eye tracking can be integrated 

since both methods suggest statistical and visual analysis, which may reveal significant insights about map 

user behaviours.  
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1.2.1. Research objectives & thesis outline 

Research Objective 1: 

Contribute to the understanding of how different map users process the visual information on digital 2D static maps. 

RQ 1: How do expert and novice map users “study and store” the visual information presented on digital 

2D static maps? 

RQ 2: How do expert and novice map users “recall and use” the visual information previously presented 

on digital 2D static maps? 

 

Research Objective 2: 

Evaluate the potential of brain imaging techniques, integration of EEG with eye tracking for cartographic 

cognitive/usability research 

RQ 3: What is the added-value of EEG in terms of cartographic usability research?  

 

Research Objective 3: 

Explore the influence of a subset of visual variables (i.e. location, size, shape, color) in spatial cognition and the use of 

this input to enhance the design and communication of cartographic products. 

RQ 4: How does the participants’ attentional behavior vary towards the map elements of interest? 

RQ 5: How do we improve the design of maps based on the input collected through user experiments?  

 

Research Objective 1 aims to understand the influence of expertise on the spatial memory abilities and the 

attentional behavior of expert and novice map users by extending the eye tracking usability research done 

by Ooms (2012). In this context, while RQ1 focuses on the procedures during the map study phase (i.e. map 

learning), RQ2 refers to the processes of the retrieval of the previously gathered map-related information 

(i.e. spatial memory). Research Objective 2 explores the contribution of EEG in cartographic usability 

research to understand the usability issues of maps and the cognitive issues of map users whereas Research 

Objective 3 deals with the influence of a subset of visual variables in map-learning and how this input can 

be integrated into map design. 

 

To cover the above-mentioned research objectives and questions, two user experiments were conducted 

which will be explained in detail in the following chapters. I will try to provide explanations for the 

fundamentals of the cartographic user experiment design, specifically with eye tracking and EEG, and 

answer the research questions through conducted user experiments. In both experiments, gaze and brain 

activity were recorded simultaneously, however, Experiment 1 had a simple design and an exploratory 

characteristic, since we would initially assure that the eye tracking and EEG synchronization is of sufficient 

quality to explore users’ cognitive behaviors towards map stimuli. On the contrary, in Experiment 2, a 

complex and more structured approach was followed as a result of lessons learned from the previous 

experiment and collaborating with the domain experts, therefore, it was hypothesis driven. Table 1.4 

summarizes all the experimental design elements together with the goals and hypothesis of both 

experiments whereas, Table 1.5 overviews the structure and the methodological aspects of these 

experiments, which will be explained in detail in the following chapters.  
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Table 1.4. Summary of the two experimental designs 

 Experiment 1 Experiment 2 

Research 

Question 

How does cognitive load vary between 

expert and novice participants while 

memorizing the main structuring elements 

of a map stimulus without any time 

constraints? 

How does cognitive load vary between 

expert and novice participants while 

memorizing a (part of) map content in a 

limited study period? 

How does the complexity/difficulty of the 

task influence the cognitive load? 

 

Goal 

To evaluate the cognitive processes, abilities 

and/or limitations of map users when they 

first study a digital 2D static map and 

retrieve this information later. 

To test the effect of task difficulty on 

behavior, which is the retrieval of the main 

structuring elements with varying levels. 

Hypothesis 

We expect that the spatial memory task will 

cause higher cognitive load in novice 

participants compared to expert ones. 

The tasks involving the retrieval of only 

linear features will cause lesser cognitive 

load for both groups compared to the other 

features. 

We additionally expect that expert 

participants would perform better at tasks 

demanding higher cognitive load. 

Participants 

56 participants: 

24 experts (13 females, 11 males) 

30 novices (7 females, 23 males) 

Age range: 18-35 

38 participants: 

17 experts (9 females, 8 males) 

21 novices (9 females, 12 males) 

Age range: 25-35 

Task 

procedures 

Participants studied one map stimulus  for 

as long as they wanted to memorize all the 

main structuring elements included in the 

map they studied. 

Once they thought they had studied the 

map long enough, they pressed a certain key 

and then they had to draw this map from 

memory by using MS Paint. After drawing 

the sketch map, participants used a special 

key to terminate the task. 

Randomized block design: Seven blocks 

representing seven difficulty types. Each 

block includes 50 trials (i.e., one for each 

stimulus) focusing on the similarity of: 

Block 1: The whole map 

Block 2: Roads and hydrography 

Block 3: Roads and green areas 

Block 4: Green areas and hydrography 

Block 5: Green areas 

Block 6: Hydrography 

Block 7: Roads 

Independent 

variables 

1 map design type (i.e., digital 2D static 

topographic map) 

1 task difficulty level (i.e., retrieval of the 

main structuring elements of the whole map 

stimulus) 

2 expertise levels (i.e., experts vs. novices) 

1 map design type (i.e., screenshots of 

Google’s road maps) 

7 task difficulty levels (i.e., classified as easy, 

moderate, hard) ~ linear & polygon features 

within blocks 

2 expertise levels (i.e., experts vs. novices) 

Dependent 

variables 

Trial durations*, eye movements, EEG 

(alpha power, FAA), self-reported metrics 

(i.e., questionnaire)* 

Response time of correct answers, eye 

movements, EEG metrics (ERD-ERS), self-

reported metrics (i.e., questionnaire)* 

*not mentioned in this chapter, but published in Keskin et al. (2018). 
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As seen in Figure 1.5, there is no one-to-one correspondence between the research questions and the 

chapters. Chapter 2, 4, and 5 are the modified versions of the articles published on international peer-

reviewed journals. This chapter is dedicated to the literature review related to spatial cognition, cognitive 

cartography, user-centered cartographic design and usability research methods that are the basis of the 

thesis rationale. In Chapter 2, Experiment 1 is presented with a focus on eye tracking and sketch maps, 

therefore leaving the EEG part out. Chapter 3 includes an overview of the technical and methodological 

issues of a cartographic user experiment design using eye tracking and EEG mostly based on hands-on 

experience. That chapter also explains how the second user experiment was designed and Chapter 4 

concentrates on eye tracking and EEG methods used in both experiments. In this context, two user 

experiments are compared in terms of their design and the preliminary results of eye tracking and EEG are 

presented. In Chapter 5, Experiment 2 is explained and full eye tracking and EEG results are provided. 

Chapter 6 is dedicated to the post-hoc eye tracking analysis based on AoI (area of interest) using the data 

collected in Experiment 2. Chapter 7 discusses the results of the user experiments as the research questions 

are revisited and further recommendations are made, whereas Chapter 8 summarizes the results of the 

previous chapters and presents concluding remarks. 
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Table 1.5. Summary of two user experiments 
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Figure 1.5. Dissertation Outline 
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Chapter 2: 

Experiment 1:  

Digital sketch maps & eye tracking 
 

 

 

 

 

 
 

 

 

 

 

 

“Sketch maps reflect differences  

both between worlds and within worlds.” 

 

Mark Billinghurst & Suzanne Weghorst, 1995 
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Abstract. This chapter explores (a group of) map users’ cognitive processes in learning, acquiring and 

remembering information presented via digital 2D static topographic maps. In this context, we conducted a mixed-

methods user experiment employing digital sketch maps and eye tracking. On the one hand, the performance of 

the participants was assessed based on the order with which the objects were drawn and the influence of a subset 

of visual variables (i.e. presence & location, size, shape, color). On the other hand, trial durations and eye tracking 

statistics such as average duration of fixations, and number of fixations per seconds were compared. Moreover, 

selected AoIs (Area of Interests) were explored to gain a deeper insight on visual behavior of the participants. 

Depending on the normality of the data, we used either two-way ANOVA or Mann-Whitney U test to inspect the 

significance of the results. Based on the evaluation of the drawing order, we observed that experts and males drew 

roads first whereas; novices and females focused more on hydrographic object. According to the assessment of 

drawn elements, no significant differences emerged between neither experts and novices, nor females and males 

for the retrieval of spatial information presented on 2D maps with a simple design and content. The differences in 

trial durations between novices and experts were not statistically significant while both studying and drawing. 

Similarly, no significant difference occurred between female and male participants for either studying or drawing. 

Eye tracking metrics also supported these findings. For average duration of fixation, there was found no significant 

difference between experts and novices, as well as between females and males. Similarly, no significant differences 

were found for the mean number of fixation. 

 

 

Author contributions: Conceptualization: Merve Keskin, Kristien Ooms; Methodology: Kristien Ooms, Merve Keskin; 

Software, Validation, Formal Analysis: Merve Keskin; Investigation: Merve Keskin, Kristien Ooms, Ahmet Ozgur Dogru; 

Resources: Kristien Ooms, Philippe De Maeyer; Data Curation, Merve Keskin; Writing-Original Draft Preparation: Merve 

Keskin; Writing-Review & Editing: Merve Keskin, Ahmet Ozgur Dogru, Kristien Ooms, Philippe De Maeyer. 

 

 

 

 

 

This chapter is modified from: 

Keskin, M., Ooms, K., Dogru, A. O., & De Maeyer, P. (2018). Digital sketch maps and eye tracking 

statistics as instruments to obtain insights into spatial cognition. Journal of Eye Movement Research, 

11(3). 
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2.1. Introduction  

Maps convey direct and indirect information about the objects they represent. In addition to information 

about the location, name, shape, and size of objects, maps provide spatial relationships among these objects. 

When a person needs to find a geographic phenomenon, select a route, navigate, or estimate a distance, 

(s)he tends to memorize the relevant direct or indirect information on a map. Together with human 

(perceptual, cognitive, and visual) abilities, the retrieval of spatial information is strongly correlated with 

map learning. Map learning is distinguished from other learning concepts because (i) it requires 

comprehending and memorizing the direct information presented in maps and (ii) all the information to 

be learned is presented at once. These two characteristics of map learning allow map users flexibility 

regarding when, how and in which order they execute tasks such as selecting and focusing (Thorndyke & 

Stasz, 1980). Hence, each user/user group develops different strategies for approaching the spatial 

information on maps (e.g. Çöltekin, Fabrikant & Lacayo, 2010; Ooms, De Maeyer & Fack, 2014a; Ooms, De 

Maeyer & Fack, 2015; Schriver, Morrow, Wickens & Talleur, 2008; Voyer, Postma, Brake & Imperato-

McGinley, 2007). 

 

This chapter intends to examine map users’ cognitive processes of learning, acquiring and remembering 

information presented via digital 2D static topographic maps. The map users targeted in the research are 

broadly categorized as novices and experts considering their individual group differences of age, gender, 

ethnicity and language. The main research question addressed in this chapter is “do novices and experts 

use different strategies while studying maps and recalling map-related information?”. In this context, the 

experiments are designed based on the principles and strategies defined by Thorndyke & Stasz (1980), 

Montello, Sullivan & Pick (1994) and Ooms et al. (2015). Various methods (e.g. think-aloud, eye tracking, 

interview) have been applied to evaluate the recall of map-related information from memory (e.g. Herbert 

& Chen, 2015; Kveladze, Kraak & van Elzakker, 2017; Ooms, 2016; Ooms, Dupont & Lapon, 2017). Sketch 

maps are one of these methods, since they concretize the extracted information from a cognitive map (also 

called a mental image, map image, mental map) through drawing. This concept is further discussed in the 

literature review in the following section. 

 

User testing methods can be mixed for many reasons such as to enrich the quantitative research in 

cartography, to better contextualize map design and use/user recommendations, to improve the 

consistency and detail of results, and to adopt and adapt new approaches to our study design (Ooms, 2016; 

Ooms, et al., 2017; Popelka, Stachoň, Šašink & Doležalová, 2016; Roth, et al., 2017). In our study, we also 

use mixed methods of sketch maps, eye tracking (ET) and a post-test questionnaire. Both eye tracking and 

sketch map methods individually provide a considerable amount of valuable information related to map 

users. Therefore, the combination of these methods potentially brings advantages to the user study design 

in terms of methods, materials or user needs and to the evaluation of results, in addition to yielding 

additional insights about map users’ behaviors. In fact, sketch maps and ET can be considered as 

complementary to one another; for instance, ET metrics can explain an outcome obtained from sketch maps 

or vice versa. ET is also valuable for the validation of results acquired from one method with those from 

the other. 
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2.2. Literature Review 

2.2.1 Map learning and cognitive map production  

Learning and remembering cartographic information are associated with how the human cognitive system 

addresses geographic information presented via maps to produce cognitive maps. Especially in the past 

four decades, cognitive maps have become an intriguing research topic in geography (Downs & Stea, 1977; 

Portugali, 1996) as well as in neuroscience (O’Keefe & Dostrovsky, 1971; O’Keefe, 1976; O'Keefe & Nadel, 

1978) and psychology (Shettleworth, 2010). The discovery of place cells (O'Keefe & Nadel, 1978) and grid 

cells (Hafting, Fyhn, Molden, Moser & Moser, 2005) stands as evidence that there exists a group of neurons 

in the brain that are responsible for our cognitive maps and inner navigation. Various studies in 

cartography have emphasized how we see maps and how we derive meaning from them (Kimerling et al., 

2009; MacEachren, 2004; Ooms et al., 2016).  

 

Learning a map involves two interacting cognitive factors: (i) control processes and (ii) the memorial 

system (Kulhavy & Stock, 1996). The first cognitive factor of map learning refers to matching the map to 

the prior knowledge existing in the memory and the achievement of the map-learning task. In this respect, 

prior knowledge can originate from general and specific map knowledge. General map knowledge helps 

in distinguishing maps from other spatial displays. It enables the encoding of maps and the development 

of strategies for map learning. 

 

The influence of general map knowledge on map learning depends on the perception of “maplikeness” 

and the degree of expertise (Dickmann, 2013; Kulhavy, Stock & Kealy, 1993a). Past studies have presented 

that map learning is more efficient when the stimulus is more maplike (Kulhavy, Schwartz & Shaha, 1983; 

Kulhavy, Stock, Woodard & Haygood, 1993b) and that experts and novices differ somewhat in terms of 

their ability to learn and remember information presented via maps (Thorndyke & Stasz, 1980). If an 

effective spatial behavior requires using vector-like information about distances and directions, this 

information should be stored as maplike representations (Shettleworth, 2010). O’Keefe and Nadel (1978) 

proposed that the spatial learning system forms cognitive maps through exploration and a later study 

claimed that associative learning integrates “all kinds of spatial information spontaneously into a unitary 

maplike representation” (Shettleworth, 2010, p.288). In addition, Portugali (1996) listed much research 

showing that without any prior training, children can comprehend aerial photographs at appropriate scale 

and are able to use them as maps. This outcome proves that maplike behavior is very fundamental in 

human development and that mapping skills develop much earlier than predicted. 

 

Expertise plays a role equally important to maplikeness in map learning. To recall the locations and 

configurations of spatial objects from the memory usually requires experience with cartographic products 

in which topographic and topological information are represented by graphic symbols (Dickmann, Edler, 

Bestgen & Kuchinke, 2016). Unlike general map knowledge, specific map knowledge stems from the 

modifications of related information in the long-term memory (LTM) based on the degree of familiarity 

with particular map representations. These representations are called knowledge-weighted cognitive 
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maps, which are constructed from perceptual stimulus, initial map-learning conditions and the way that 

the information has been used (Intons-Peterson & McDaniel, 1991). 

 

The second cognitive factor of map learning - the memorial system - addresses the mode of representation 

and the resources to store and maintain cognitive maps (Kulhavy & Stock, 1996). A map image holds both 

features represented by visual variables and structural information. The structural information refers to a 

spatial framework such as geometric and metric relations among features, whereas the visual variables, 

described by Bertin (1967) are the fundamental units that help distinguishing map symbols and encoding 

information presented via maps. Visual variables (i.e. position, size, shape, value, color hue, orientation, 

and texture) play a key role in cartographic design because their use for map symbols has a great impact 

on visual attention and perception. How these variables are perceived depends on their property (i.e. 

selective, associative, ordered or quantitative) (for further reading see also Wolfe, 2000). 

 

As Kulhavy & Stock (1996) argued, we should understand whether our cognitive map is just a collection 

of features and their properties or it encodes structural relationships as well. The answer depends on the 

similarity of the map and its cognitive map. Clearly, all individuals create their own unique cognitive maps. 

Cognitive map creation occurs in a fashion similar to Haken’s (1977) theory of information and self-

organization (synergetics). Synergetics, originating in physics, is a method and a philosophy to explain the 

formation and the self-organization of individual elements in an open and complex system for the stability 

and the survival of the whole system (Haken & Portugali, 2016). Let us try to explain cognitive map creation 

in the human brain, which is also an open and complex system. When the brain receives spatial information 

through the external world (a physical environment or maps), the cognitive system constructs a cognitive 

map out of a partial set of features stored in the brain as internal representations. During this procedure, 

the cognitive system is governed by order parameters, which are the common principles shaped by the 

interactions among the individual elements of the system (Haken & Portugali, 1996). According to the 

synergetics theory, atoms form order parameters, and order parameters enslave (govern) atoms (Haken & 

Portugali, 2016). Therefore, cognitive map construction can only be achieved “when a certain mapping 

principle, or mapping order parameter, enslaves the various features” through associative memory 

(Portugali, 1996, p. 14). As a result, the cognitive map is successfully created from the interaction of the 

internal and external representations of the environment influenced by order parameters (for further 

reading, see Lakoff, 1987; Edelman, 1992). 

 

Nevertheless, our cognitive system is capacity-limited in terms of encoding new information for storage in 

LTM and also of retrieving and making use of old information already in memory (Kulhavy & Stock, 1996). 

As Atkinson & Shiffrin (1968) proposed, memory involves a sequence of three stages; sensory memory, 

working (short-term) memory, and LTM. Sensory memory holds the information gathered through all our 

senses for a brief time span and then decays and is lost. A part of the information in the sensory memory 

is transferred to the working memory (WM). The WM can receive selected inputs from the sensory register, 

as well as from LTM. WM is active during encoding and storing new information for short time periods or 

during the retrieval and use of the old information. On the other hand, LTM retains the informative 

knowledge (memories, things we learn, etc.) permanently, because it has an almost limitless capacity. Once 
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WM transfers information to LTM, this information can be remembered for longer periods. This 

transmission is called the learning process and requires rehearsal (Atkinson & Shiffrin, 1968; Kulhavy & 

Stock, 1996; Ooms et al., 2015) (Figure 2.1). Unlike LTM, WM has a limited capacity in terms of individual 

items of information called chunks. A chunk is any stimulus that has become familiar, hence recognizable, 

through experience (Simon, 1989; Cooper, 1998). To be able to draw cognitive maps, the chunks of 

information obtained from maps must be transferred from LTM to WM.  

 
Figure 2.1. The interaction between memory types 

 

Besides WM capacity, object-location memory and landmarks play principal roles for the cognition of the 

spatial objects, the formation of the cognitive representations and the recall processes of those. According 

to Tversky (1992), the brain reorganizes the information entirely through (i) hierarchical organization or 

categorization, (ii) the use of perspective, and (iii) the use of landmarks or cognitive reference points. Once 

people learn the locations of objects, they can establish the spatial structure of a map to form a mental 

representation or cognitive map of the environment. Cognitive maps hold information not only about 

spatial objects, but also the relations and distances between objects, even the absence of spatial objects. The 

distortions in the spatial object positions and their relations are indicators of hierarchical encoding and 

perceptual organization (Edler, Bestgen, Kuchinke & Dickmann, 2014). In this context, landmarks and 

routes are considered as the core units of a spatial representation and are helpful primarily for orientation 

(Siege & White, 1975; Bestgen, Edler, Kuchinke & Dickmann, 2016). 

 

In cartography, empirical studies focusing on map design and spatial cognition are increasing, however, 

only a number of them devoted to the exploration of cartographic elements (e.g. visual variables) which 

play an important role in cognitive map formation (e.g. Stachoň et al., 2013; Edler et al., 2014; Dickmann et 

al., 2016). Hence, we cannot yet formulate the cognitive map production precisely and the assessment of 

this procedure is not straightforward. Nevertheless, sketch maps, considering their complexity, can be 

utilized as one of the sources to examine this process. 

2.2.2. Sketch maps  

Sketch maps are the reflections of individual cognitive maps. According to Forbus, Usher & Chapman 

(2004, p.61), sketch maps are defined as “compact spatial representations that express the key spatial 

features of a situation for the task at hand, abstracting away the mass of details that would otherwise 

obscure the relevant aspects”. Therefore, the interpretation of sketch maps reveals the underlying task-
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related cognitive process of individuals. A sketch map is also a three-dimensional representation through 

space, time and sequence because the ordered retrieval of movements within time and space results in our 

cognitive maps (Huynh & Doherty, 2007). The hierarchical order of nodes and paths drawn on the sketch 

maps represents the hierarchical order of information (primary-level, secondary-level, and so on) presented 

on the maps. As Lynch (1960, p. 86) describes, “the sequence in which sketch maps were drawn seemed to 

indicate that the image develops, or grows, in different ways.” The earlier the element is recalled, the more 

important it is to a person. Lower hierarchical levels correspond to decreasing amounts of spatial 

information, decreasing frequency of use and greater difficulty of remembering (Golledge & Spector, 1978). 

Hence, drawing order can yield insights into how these elements are stored in the user’s memory. In other 

words, if an element is drawn earlier, it means that it is more accessible in LTM, thus, retrieved with ease 

(Ooms et al., 2015). 

 

Sketch maps have been used in several research projects as a data collection method to investigate the 

cognitive processes of map users (e.g. Bell & Archibald, 2011; Billinghurst & Weghorst, 1995; Forbus et al., 

2004; Huynh & Doherty, 2007; Ooms, 2012). Sketch maps are often combined with the think aloud 

procedure as a complementary data collection method (e.g. Kettunen, Putto, Gyselinck, Krause & 

Sarjakoski, 2015; Ooms et al., 2015) because thinking aloud gives insights into the user’s unfiltered 

thoughts. Thinking aloud itself, however, has the disadvantage that it also consumes part of the user’s 

memory capacity. 

2.2.2.1. Retrieving a sketch map from memory 

Spatial memory is controlled by perception-based and memory-based processes (Edler et al., 2014). Sketch 

maps underlie the map users’ cognitive procedures of learning and remembering the information 

presented via maps. Hence, it is essential to identify the cognitive procedures involved during both 

learning and the retrieval of map-related information. Learning requires to create a higher framework of 

specific graphic features (e.g. map-inherent features or grids). While studying, a map reader first 

perceptually divides the map into a number of spatial chunks. In this context, the structuring map elements, 

such as roads, hydrographic features or gridlines, initiates chunking process, thus, helps regionalizing the 

map and assists learning of map elements and their spatial relations. These structuring elements represent 

the spatial information of the map content in a hierarchically structured fashion and form fundamental 

units of cognitive maps, therefore, facilitate the perception and recognition of object locations (Edler et al., 

2014).  

 

The first step of retrieval process is the orientation of the participant regarding the task (i.e. establishing a 

strategy to execute the task from the beginning to the end) and the surroundings (in this case, the drawing 

environment and its tools). The second step is task execution, in which participants form links between 

cognitive processes through WM and LTM. In chronological order, the participant first consults WM to 

check whether there is information about map elements that must be drawn. If the information exists in 

WM, the participant draws these elements; if not, he must consult LTM, which is responsible for the 

recalling act. For a participant to draw an element whose information is stored in LTM, this information 

needs to be transferred to WM. Afterwards, evaluation occurs for editing or redrawing, and then, the 



32 

 

participant asks WM once again to finalize the procedure (Ooms et al., 2015). It is important to remember 

that this procedure is repetitive and continues until the participant is satisfied with the result. During this 

procedure, the sensory memory captures the image of the sketch map and transfers it to the WM. The 

memories of this original stimulus, which were previously stored in LTM, need to be recalled. Once the 

participant retrieves that information, (s)he can compare the sketch map with the original stimulus 

depending on the location, size, shape, color, etc. The retrieval process for chunks of information requires 

activation of the related information. This activation involves pointers, schemas and links between schemas 

stored in LTM. These pointers activate and retrieve the desired chunks of information from LTM and place 

them in WM (Ooms et al., 2015). 

2.2.3. Eye tracking  

It is known so far that the early beginnings of perceptual organization is evidenced by the first fixation on 

a visual stimulus (Edler, et al., 2014). The fixation-related behavior and other eye movement data can be 

measured via eye tracking which is a widely used quantitative user-testing method. Eye tracking has 

contributed to human-computer interaction usability studies in numerous disciplines varying from 

psychology to software engineering, marketing, sports, aviation, navigation and so forth (e.g. Ball, Lucas, 

Miles & Gale, 2008; Bertrand & Thullier, 2009; Crundall, Underwood & Chapman, 2002; Jacob & Karn, 2003; 

Poole & Ball, 2006; Schriver et al., 2008; Wedel & Pieters, 2008;). Many cartographers also employed eye 

tracking in their usability research, especially for the assessment of visual elements (e.g. Çöltekin et al., 

2010; Dickmann et al., 2016; Fabrikant, Hespanha & Hegarty, 2010; Ooms, 2012; Ooms et al., 2014b; Ooms 

& De Maeyer, 2015; Ooms et al., 2017).  

 

As explained earlier in the previous chapter, visual elements in topographic maps assist learning and 

recognition of location of map elements. Some eye tracking research has revealed how a map user processes 

those visual elements (e.g. Bestgen et al., 2016; Dickmann et al., 2016; Kuchinke, Dickmann, Edler, 

Bordewieck & Bestgen, 2016). Eye movement statistics, which can be linked to the cognitive processes when 

a participant interact with visual stimuli on the screen, consist of a list of pixel coordinates on the screen 

regarding various positions of the gaze (POR: point of regard). From the raw data, useful metrics such as 

how long (fixation duration) and how often (fixation count) a person focuses on a specific area of interest, 

together with his scan-path characteristics (the length and speed of the gaze activity), can be derived (Ooms 

et al., 2014b). These metrics can also be analyzed for specified regions of the stimulus, called Areas of 

interest (AoIs). AoIs are subregions of a stimulus that are of high importance for a hypothesis and are 

created based on the semantic information of the stimulus (Blascheck, et al., 2014). 

 

Our literature study showed that there is a lack of research on the sources of individual differences (e.g. 

expertise, gender, etc.) and the relationship between the organization of spatial thinking and geographic 

space. Furthermore, there is a limited empirical evidence on user’s cognitive processes involved in map-

related tasks, although cartographers hold theoretical knowledge about usability and design issues of 

maps. Therefore, we aim to evaluate the abovementioned cognitive process on a digital 2D static 

topographic map to determine the cognitive abilities and/or limitations of map users when they first study 

the map and retrieve this information later. In this context, we propose collecting data via digital sketch 
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maps, instead of conventional pen and paper method, to be able to link this with ET statistics. Both the ET 

data and the sketch maps give insights in the users’ cognitive processes, but from a different angle. By 

triangulating the obtained insight, a deeper understanding regarding individual differences of map users 

can be obtained.  

2.3. Methods 

2.3.1 Participants 

A total of 56 participants took part in the study, with 24 experts and 30 novices. The numbers of female and 

male participants were 7 and 23, respectively, for novices and 13 and 11, respectively, for experts. The ages 

of 96% of the participants ranged between 18 and 34, which corresponds to a rather young user group. The 

novice participants were undergraduate Business and Economy students whose ages varied between 18 

and 24 years and who gained credits in return for their participation. The expert group, whose ages ranged 

between 25 and 34, consisted of participants who had at least a MSc. in Geography, Geomatics Engineering 

or related areas, and all of them were affiliated with the Department of Geography (Ghent University). The 

majority of the participants were Belgian (native language=Dutch), and there were six Asian expert 

participants (native language=Chinese). The experiment itself was designed in English. 

 

While experts work with cartographic products on a daily basis, novices use cartographic products from 

time to time (e.g. Google maps) and were not trained before the experiment. Eight female and eight male 

experts had participated in a user experiment with ET previously. Two novice males indicated that they 

had participated in a user study before. The remaining 38 participants took part in user testing for the first 

time. All participants unanimously indicated in the post-test questionnaire that the map stimulus was not 

familiar to them.  

2.3.2 Apparatus and recording  

The experiment was conducted in the Eye Tracking Laboratory of the Marketing Department of Ghent 

University. The participants’ eye movements were recorded with an SMI RED250 eye tracker mounted to 

the stimulus monitor. The stimulus was shown on a 22” color monitor with 1680 x 1050 spatial resolution. 

We did not use a chin rest and the average distance between the participant and the monitor was 65 cm. 

Simultaneously with the gaze recording, we performed EEG measurements to estimate the cognitive load 

(Please see Annex 1 for orientation script). However, this chapter is dedicated to eye tracking and sketch 

map methods, we will introduce the theoretical background of EEG data acquisition, the synchronization 

of EEG and ET and related analysis in the upcoming chapters (see Chapter 3-5). 

2.3.3 Materials 

The stimulus was selected from the Belgian 1:10k topographic map series (Figure 2.2). We paid attention 

that it was not too complex yet contained some specific main structuring elements. To combat the learning 

effect, the selected map did not cover a well-known area/city. 
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,  

Figure 2.2. Original map stimulus shown in memory task (This map stimulus is the same material used by Ooms (2012). 

This data was produced by Belgian national mapping agency, NGI/IGN (Nationaal Geografisch Instituut/Institut 

Géographique National)). 

2.3.4 Procedure 

Participants were instructed to study the map stimulus – for as long as they wanted – to be able to 

remember the main structural elements (rivers, roads, water bodies, etc.). Once they thought they had 

studied the map long enough, they pressed a certain key as instructed beforehand and thereby exited the 

first part of the assignment. Next, they had to draw this map from memory by using MS Paint. This tool 

was selected because neither experts nor novices would need any prior training. After the execution of the 

task – in other words, drawing the sketch map – participants used a special key to terminate the task. There 

was no time limitation for either the studying or the drawing part. While participants studied and drew 

the map, their eye movements were recorded (please see Annex 2 for full instuctions).  

2.3.5 Sketch maps analysis 

The first step of sketch map analysis was to quantify the information presented within the maps. Therefore, 

we determined the structural map elements on the original map/stimulus and then counted and classified 

them into four main categories: hydrology, land-cover, settlements, and roads. The original map consisted 

of four hydrographic features, four land-cover features, eight residential areas/settlements, and ten roads 

(in total, 26 map elements). 
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The sketch maps were analyzed based on the literature on cognitive processes and sketch map evaluation 

for cartographic usability (see previous section). In this context, two main criteria were identified; (i) 

drawing order and (ii) the score on drawn elements.  

2.3.5.1 Drawing order 

Drawing order information was derived from the registered eye tracking video and each participant’s data 

were processed individually. For the assessment of drawing order, the scoring system used by Ooms et al. 

(2015) was implemented. The scoring was 100, 50, 25, and 5 for the first, second, third, and fourth elements 

of a certain category, respectively. If a certain element did not exist on the sketch map, it did not receive 

any point. The rationale behind this scoring algorithm is simply assigning the highest score on the first 

drawn element and the least to the last drawn one. Among the first three classes (i.e. drawn elements), the 

weight is halved in value for each consecutive class so that the first drawn element stands out more. The 

last drawn element (i.e. fourth class) should have the least score, but not zero, since it is drawn on the sketch 

map. Therefore, its weight equals to the 1/5 of the third class. Finally, the average scores for each map 

category were calculated separately for expert and novice groups. Higher scores indicated that a certain 

element belonging to one of the four categories was drawn earlier. Therefore, 100 points would mean that 

all participants drew this category first. In this way, drawing order analyses contributed to the 

understanding of the hierarchical construction of the cognitive map. 

 

The visual variables considered for the scoring of the drawn map elements were presence and accuracy 

(position), size, shape, and color, which corresponded to the qualitative characteristics of the sketch maps. 

The scoring provided information about how well the sketch map was executed (complete and accurate) 

and accordingly, how well the cognitive map was constructed.  

2.3.5.2 Score on drawn elements 

Presence and accuracy 

The scoring system as used by Ooms et al. (2015) was implemented to quantify the position of map features. 

If present and in the correct relative location, an object scored one point. If present and in a considerably 

wrong relative location, an object scored half a point. Finally, if absent, an object scored zero point. If a 

person successfully located every map element in the correct location, (s)he scored 26 points (total number 

of map elements). The results were expressed in percentages with 26 points representing 100%. 

Shape, size and color 

The shape, size and color characteristics of drawn elements were ranked by employing a system similar to 

that used by Billinghurst & Weghorst (1995). Their ranking scale was only modified to a 100-point scale; 

therefore, an incorrect score was 33.3, a partially correct score was 66.7, and a correct score was 100. Here, 

the participant’s drawing ability was neglected, and instead, we focused on how well the sketch map 

represented the area in the topographic map. For instance, linear objects such as roads and rivers should 

be illustrated as lines with varying thickness, and when individual roads connect, they should picture the 

overall road construction. Different logic should be followed for the aggregation of areal objects such that 

the individual buildings can be grouped and drawn as a single element (i.e. settlement), since the 
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participants were particularly asked to draw the main structural elements. Additionally, only the major 

shape characteristics of the map elements were taken into consideration for scoring. For instance, both 

roads and railroads could be drawn as single lines, although they were depicted by double lines in the 

original map. 

2.3.5.3 Aggregation presence & accuracy (1), shape (2), size (3) & color (4) 

Presence & accuracy, shape, size and color of drawn elements show “how well” the sketch maps were 

drawn. Until this point, we have tried to evaluate the influence of each criterion individually. However, 

the aggregation of all criteria used for scoring the drawn elements can offer a more objective measure to 

compare the quality of sketch maps. Inherently, the quality of sketch maps reflects the performance of 

participants. We treated each of the four parameters as if they have equal importance for the overall 

performance of a participant, and thus, we assigned each parameter the same weight. Overall performance 

scores were calculated as the average of individual performances for the four different groups (expert 

females, expert males, novice females and novice males) in a 0-100 scoring scale. 

2.3.6 Eye tracking metrics 

In addition to extracting the drawing order information from eye tracking data, eye tracking metrics such 

as the number of fixations per second and the average duration of fixation were analyzed. Similar to Ooms 

et al. (2015), the number of fixations per second was considered instead of the fixation count because the 

fixation count is an absolute measure that is related to the length of the trial. Since every participant 

completes the task in a different time span, the fixation count would be merely a reflection of the trial 

duration. It is important to note that there is a strong relationship between the number of fixations per 

second and another widely used metric, average fixation duration. The longer the fixation durations are, 

the fewer the fixations per second. The fixation duration is also linked to the cognitive processes of the 

visual stimulus. Longer fixations may indicate that reading the map becomes harder, which causes a rise 

in the cognitive load (Duchowski, 2007; Ooms et al., 2014b), or that the user finds the map or a certain part 

of it interesting (Ooms, 2012). People also concentrate their fixations on the most informative parts of the 

visual stimulus (Henderson & Ferreira, 2004).  

 

These metrics were further complemented with trial durations to study the map on one hand and to draw 

the associated sketch map on the other hand (results presented separately in 5.1). Although there was no 

time limitation for both study and drawing parts of the memory task, trial times give insight about 

motivation and top-down attention. Inherently, longer trial durations for studying the map indicate higher 

level of interest or difficulty in storing the information in memory. 

 

Furthermore, some ET metrics were analyzed for specific AoIs. These were created on the basis of a 

previous study of Ooms et al. (2014a) which implemented the same stimuli.  This study revealed that, based 

on a gridded approach of AoI, users tended to focus most on main structuring topographic characteristics 

in the map stimulus (i.e. major roads, settlements and hydrographic features). In this study, we, thus 

selected the same object to be included in the AoI. Buffers were created around the linear features similar 

to what was done by Bargiota, Mitropoulos, Krassanakis & Nakos (2013). Based on the accuracy of eye 
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tracker (0.5°) and the viewing distance (65 cm), buffer size was set to 21 pixels. In this context, the statistics 

such as how quickly participants notice an element (time to first fixation), how much time the participants 

spent in the region (dwell time), how many fixations occurred (fixation count, the number of fixations per 

second) and for how long (average fixation duration) were considered. These metrics were further 

complemented with trial durations to study the map, on the one hand, and to draw the associated sketch 

map on the other hand (results presented separately in 5.1).  

2.4. Results 

2.4.1 Trial durations 

Trial durations were assessed in two phases: (i) study time for the map stimulus and (ii) the drawing time 

for the sketch map. Figure 2.3 illustrates a general overview of the study and drawing performances of 

experts and novices. The graph clearly shows that drawing took approximately twice – or in some cases 

more than twice – as much time compared to the study phase. 

2.4.1.1. Study time 

The average (mean) time for studying the map was 102.7 s (N= 24, MED= 72.0 s, SD= 61.7 s) for experts with 

a minimum of 27.1 s and a maximum of 226.6 s (Figure 2.4a) and 81.5 s (N= 30, MED= 59.2 s, SD= 57.6 s) for 

novices with a minimum of 23.2 s and a maximum of 292.8 s (Figure 2.4b). If we classify the performances 

of participants regarding to study time, 17% of experts spent 0-50 s; 41%, 50-100 s; 21%, 100-150 s; and 21%, 

150 s and more. On the other hand, 35% of novices spent 0-50 s; 46%, 50-100 s; 6%, 100-150 s; and 4%, 150 s 

and more. The results confirm that experts allocated more time in studying than novices did. No significant 

interaction effect was observed between expertise and gender (F (1,50)= 0.484, p= 0.490). 

 

 
Figure 2.3. Trial durations of experts and novices 

2.4.1.2. Drawing time 

As for the study part of the memory task, there was no time limitation for the drawing part. The average 

drawing time for experts was 253.5 s (N= 24, MED= 175.3 s, SD= 262.9 s) with a minimum of 76.5 s and a 

maximum of 356.1 s (Figure 2.5a), whereas the average drawing time was 195.4 s (N= 30, MED= 196.9 s, 

SD= 75.6 s) for novices with a minimum of 50.2 s and a maximum of 1169.4 s (Figure 2.5b). We found no 

significant interaction effect between expertise and gender (F(1,50)= 0.539, p= 0.466). 
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Figure 2.4. Study time of experts (a) and of novices (b) (black line: average) 

 

The time spent on sketching the map might correspond to the richness of detail depicted in the sketch map, 

the difficulties encountered due to the lack of experience (e.g. unfamiliarity of the task and of the drawing 

tool), or recall issues. The fact that novices were faster in both studying and drawing may explain that 

novices were not aware of procedures involved in map production, did not exactly know what to 

remember. In addition, they are less involved with cartography, thus they might have paid less attention 

to having good results. Since the average drawing time for experts is greater than that for novices, some 

experts spent the longest time on the task. The extreme values that occurred in the expert group can be 

explained by the richness of main structural elements on the sketch maps. These sketch maps were detailed, 

contained larger numbers of structural elements and scored higher than the average among their group. 

Unlike in the expert group, there was a more balanced trend among novices (Figure 2.5b). However, the 

novices who spent the longest time (corresponding to one-third of the time that experts spent) received 

scores equal to those for experts on their sketch maps. 

 

A Kolmogrov-Smirnov test was used to test of normality on the dependent variables, which are study time 

and drawing time. For both data, p= 0.000 suggested strong evidence of the data was not normally 

distributed (Dstudy (54)= 0.209, p < 0.05, and Ddrawing (54)= 0.258, p < 0.05). Since the data did not fit normal 

distribution, Mann-Whitney U non-parametric method was chosen to test significance of the results. It can 

be concluded that the differences occurred between novices and experts while both studying (M= 90.9 s, 

SD= 59.9 s) and drawing (M= 221.2 s, SD= 194.3 s) were not statistically significant (Ustudy= 275, p= 0.139 and 

Udrawing= 320, p= 0.486). Similarly, no significant difference emerged between female and male participants 

for either studying or drawing (Ustudy= 265, p =0.179 and Udrawing= 321, p= 0.734). 



39 

 

 
Figure 2.5. Drawing time of experts (a) and of novices (b) (black line: average) 

 

2.4.2 Sketch map analysis 

2.4.2.1. Drawing order  

Although the spatial distributions of elements on the sketch maps were not properly structured or were 

even distorted, the drawing order (sequence) was similar to that found by Lynch (1960).    

 

Figure 2.6 depicts the examples of sketch maps drawn by experts and novices for the memory task. 

According to the average scoring results of all participants, the hydrography (M= 70.1, MED= 50, SD= 32.5) 

and road (M= 67.7, MED= 50, SD= 33.6) categories were linked to the highest scores, whereas settlements 

(M= 30.5, MED= 25, SD= 21.8), and land-cover (M= 9.1, MED= 5.0, SD= 11.7) were associated with the lowest 

ones (Figure 2.7). This result means that the majority of participants drew hydrographic objects first. The 

drawing orders for experts and novices show a slight difference. While experts drew roads first, novices 

focused more on hydrographic objects such as rivers and water bodies. Hydrography and roads form the 

main structural elements on the maps. Settlements and land-cover elements (in this case, forest) were 

drawn third and fourth, respectively, for both user groups. 

 



40 

 

       

      
Figure 2.6. Sketch map examples (top and bottom left: novices; top and bottom right: experts) 

 

 
Figure 2.7. Scores for drawing order (Error bars indicate SD) 

 

The fact that both experts and novices drew linear objects (hydrography and roads) first can be explained 

by the hierarchical structures of schemas in LTM. This fact gives a clear idea that the sketch maps are 

hierarchically constructed. This finding corresponds to what Huynh and Doherty (2007), Huynh, Hall, 

Doherty & Smith (2008) and Ooms et al. (2015) found. They discovered that participants start drawing their 

sketch maps with the main linear structures and continue with other landmarks. Furthermore, female 

participants started with hydrographic objects, while male participants chose roads in the first place. 

Accordingly, both females and males drew settlements in the third place, and land-cover objects in the 

fourth place. 
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2.4.2.2 Score on drawn elements 

The presence and accuracy 

A Kolmogorov-Smirnov test was used to test for normality on presence and accuracy, D(54) = 0.090, p= 

0.200 indicated that the data was normally distributed. Based on the average scores of all participants, the 

average location score was 41.3 (N=54, MED= 43.3, SD= 14.9). Experts placed map elements slightly more 

accurately than the novices did, but according to two-way ANOVA, no significant difference emerged, 

with F(1,55)= 0.888 and p= 0.350. The most pronounced performance difference between two groups 

occurred when placing the settlements (12.0%) (Figure 2.8). The reason for this finding could be explained 

by the amount, the complexity and the distribution of elements falling into this category. The original 

stimulus contained eight residential areas, which was the highest number of elements that a category held. 

Inherently, remembering all of them together with their positions would be harder, especially for novices, 

compared to other categories having fewer than eight elements. The more isolated the feature was, the 

more distinctive and easier to remember it became. Hence, the isolated settlements stood out more, and 

participants tended have higher probabilities of drawing them. 

 

On the other hand, the presence and accuracy results favored females with a 6.3% difference. However, 

this difference was not statistically significant according to two-way ANOVA (F(1,55)= 1.672 and p= 0.101). 

 

 
Figure 2.8. Presence and accuracy scores (Error bars indicate SD) 

Shape, size and color 

Based on average scores all participants, the average shape score was 82.1 (N=54, MED= 83.3, SD= 12.9). 

Figure 2.9 shows the shape scores for experts and novices based on the four main map element categories. 

A Kolmogorov-Smirnov test was used to test for normality on shape (D(54) = 0.131, p= 0.022), size  (D(54) = 

0.144, p= 0.007) and color (D(54) = 0.309, p= 0.000). The test results indicated that the data was not normally 

distributed. Experts illustrated the shape of the map elements 7.5% better than novices did, and Mann-

Whitney U test showed that this difference was significant, with Ushape= 247 and p= 0.044. Similar to the 

results for presence and location, the greatest difference in performances between novices and experts 
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occurred in settlements at 13.8%. On the other hand, female participants outperformed males with a 5.9% 

difference which was not significant according to Mann-Whitney U test (Ushape = 249, p= 0.077). 

 

 
Figure 2.9. Shape scores (Error bars indicate standard deviation) 

 

Size is one of the most effective visual variables in terms of its selectiveness, associativity, and ease of 

perception as ordered. Larger elements can be perceived immediately compared to smaller ones. To score 

the size of drawn elements, the relative sizes on the sketch maps were considered. If the size of an element 

was in line with the size of its surrounding elements, it was accepted as a correct size depiction. Based on 

the average scores of all participants, the average shape score was 82.7 (N=54, MED= 83.3, SD= 12.2). 

Accordingly, experts drew map elements 7.8% better than novices did considering their size, and based on 

Mann-Whitney U test, the size scores, with Usize= 244.5 and p= 0.040. The greatest difference occurred for 

settlements (14.3%) (Figure 2.10). A possible explanation could be that the depiction of settlements requires 

higher-level generalization knowledge. Since individual buildings come together to form a settlement or 

village, aggregation is needed to define a group of buildings as a settlement. On the other hand, no 

significant gender difference emerged, according to Mann-Whitney U test (Usize = 283.5, p= 0.254). 

 

During the drawing process, participants did not receive any information about using colors. However, the 

color palette embedded in MS Paint was available to all participants. Other than three novice and five 

expert participants who chose to use only black, the remaining participants delivered colored sketch maps. 

Our color assessment criteria regarded the color correspondence of an element drawn on the sketch map 

with the one on the original map. We also paid attention to whether the elements drawn in the same color 

represent the same category. Based on the average scores of all participants, the average color score was 

75.0 (N=54, MED= 83.3, SD= 31.2). Novices depicted the map elements slightly better using corresponding 

colors. However, this surprising difference between novices and experts was not statistically significant 

regarding to Mann-Whitney U test (Ucolor= 342.5 and p= 0.753). The greatest difference in performance was 

in hydrology (14.9%) (Figure 2.11). This result can be related to missing map elements on the sketch maps 

(since we assigned a score of zero to absent elements) or to the fact that some experts did not prefer to use 

color.  
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Figure 2.10. Size scores (Error bars indicate standard deviation) 

 

Although women were superior to men for the depiction of colors with 1.7% performance difference, no 

significant difference occurred among these two groups (Ucolor= 342 and p= 0.934). 

 

 
Figure 2.11. Color scores (Error bars indicate standard deviation) 

 

Figure 2.12 shows the performances of experts and novices based on shape, size, color, and presence & 

location. We clearly see that the lowest overall performances for both groups occurred for presence & 

location. This result proves that drawing a map element in the correct location was more difficult than 

describing its shape, size, and color. The sample size was not sufficient to study the differences of four 

groups; expert males (N= 11), expert females (N= 13), novice males (N= 24) and novice females (N= 7).  
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Figure 2.12. Summary of performances (Error bars indicate standard deviation) 

2.4.2.3. Aggregation presence & accuracy (1), shape (2), size (3) & color (4).  

A Kolmogorov-Smirnov test was used to test for normality on the aggregated scores (D(54)= 0.126, p= 0.027) 

and the test results indicated that the data was not normally distributed. According to the aggregated 

analysis, the average score of experts was 71.8 (N= 24, MED= 76.8, SD= 19.2) with a minimum of 39.9 and a 

maximum of 92.8, whereas it was 68.2 (N= 30, MED= 68.8, SD= 11.1) with a minimum of 36.3 and a 

maximum of 92.2 for novices. The difference of 3.6% on expertise was not statistically significant regarding 

to Mann-Whitney U test (U= 254, p= 0.065). The results implied that experts and novices showed no 

difference in map learning, unless the stimulus required specific map knowledge that only an expert 

possessed. In terms average scores of drawn elements, we found no significant interaction between 

expertise and gender (F (1,50)= 0.197, p= 0.659). 

 

The average score of females was 73.2 (N=20, MED= 75.7, SD= 14.5) with a minimum of 39.9 and a maximum 

of 92.8, whereas it was 68.7 (N=34, MED= 70.3, SD= 2.2) with a minimum of 36.3 and a maximum of 92.2 for 

males. The difference among genders was not statistically significant regarding to Mann-Whitney U test 

(U= 264.5, p= 0.146). Although it was not possible to make generalized assumptions or draw conclusions 

regarding to gender differences between experts and novices as explained earlier, the results showed that 

both expert and novice females were favored in their groups. Expert females were the most successful 

group overall with a score of 74.2. Novice females (69.9), then expert males (69.3) and lastly novice males 

(66.5) followed them.  

2.4.3 Eye Tracking  

While studying the map, the average duration of the fixations was 230.0 ms (N= 24, MED= 230.8 ms, SD= 

50.1 ms) for experts and 244.1 ms (N= 30, MED= 243.0 ms, SD= 48.4 ms) for novices. These values were 234.0 

ms (N= 20, MED= 239.8 ms, SD= 56.3 ms) for females, and 240.1 ms (N= 34, MED= 232.8 ms, SD= 45.3 ms) for 

males. A Kolmogorov-Smirnov test was used to test for normality on the average duration of the fixations 

indicated that the data was normally distributed: D(54)= 0.082, p= 0.200. 
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The average duration of fixations for novices was slightly higher than it was for experts, whereas only 

slight differences emerged between the expert and novice groups and between females and males. 

However, according to two-way ANOVA, no significant difference was found (F(1,5)= 0.074, p= 0.787) 

between experts and novices, as well as between females and males (F(1,55)= 1.001, p= 0.322). Further, 

Cohen’s effect size value (d= 0.09) suggested that the effect was rather small for expertise (d= -0.123) and 

gender (d= -0.289). No significant interaction effect was observed between expertise and gender (F(1,50)= 

0.251, p= 0.619). 

 

The average number of fixations per second for the stimulus was 3.5 (N= 24, MED= 3.7, SD= 1.0) for experts 

and 3.6 (N= 30, MED= 3.6, SD= 0.5) for novices. These values were 3.4 (N= 20, MED= 3.4, SD= 1.1) for females, 

and 3.7 (N= 34, MED= 3.7, SD= 0.5) for males. A Kolmogorov-Smirnov test was used to test for normality 

on the number of fixations per second indicated that the data did not fit normal distribution: D(54) = 0.145, 

p= 0.007. The average number of fixation of novices and experts slightly differed, as well as it did for 

females and males. Regarding to Mann-Whitney U test, the differences emerged neither from expertise, 

nor from gender were statistically significant (Uexpertise= 338, p= 0.702; Ugender= 254, p= 0.123). No significant 

interaction effect occurred between expertise and gender (F (1,50)= 0.286, p= 0.595). 

 

Having visually inspected, we observed that the gaze behaviors of all participants depicted in the focus 

map clearly reflect the main structural elements of the map stimulus (Figure 2.13). When visually 

interpreted, the focus map highlighted the main road construction, water bodies and large settlements 

belonging to the stimulus. The river located in the upper side of the map especially stood out. This result 

proves why the hydrography was the most remembered category with the highest score in drawing order. 

Furthermore, forests located on the bottom-right of the map look almost dark, which proves that the 

participants showed less interest in this part of the map. This finding supports the fact that the land-cover 

was the least drawn category (see results for drawing order) and also corresponds to what was registered 

by Ooms et al., 2014a. Therefore, we could use the proposed AoI around the main structuring elements on 

the map. 

 

The AoIs considered for the further analysis include all three main roads and hydrographic elements, 

which are aggregated as a single object, four settlements, and one land-cover object as depicted in Figure 

2.14. Road 1 with the tilted Y-shape is located in the lower center of the map and forms the longest road 

feature. The largest settlement is the one located in the upper center of the map (Settlement 1), whereas 

another fundamental linear feature, the hydrography, covers the upper side of the map.  

 

The time to the first fixation reflects that the larger objects and the objects located in the upper middle of 

the screen caught a participant’s attention earlier than the others did. Both experts and novices gazed at 

Settlement 1 first (350.7 ms for experts, 49.4 ms for novices), Road 1 second (3463.0 ms for experts, 3162.2 

ms for novices) and Hydrography third (3821.1 ms for experts, 4455.2 ms for novices). The longest time to 

the first fixation was spent for the land-cover object (24976.8 ms for experts, 29863.9 ms for novices) that is 

located in the bottom-center of the map and has a relatively smaller size. 
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Figure 2.13. Focus map of all 54 participants 

 

 
Figure 2.14. Selected AoIs 
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The dwell times of participants for all AoIs showed that there was similar behavior between experts and 

novices. The dwell times of experts were higher for Hydrography, whereas novices spent more time for 

Settlement 1. Both group spent less time for Roads 2 and 3, approximately 1/10 of what they spent for 

Hydrography and Settlement 1. 

 

On the other hand, the number of fixations within AoIs was slightly higher for experts. Hydrography 

received the highest fixation counts with 57.4 for experts and 46.5 for novices. The next highest numbers of 

fixations occurred for Settlement 1 and Road 1 (Figure 2.15). These map elements also resulted in longer 

dwell times. The fixation count was closely linked to the time a participant spent for a certain region (dwell 

time). Therefore, the number of fixations per second is a more objective measure to explore differences 

between experts and novices. 

 

The average fixation durations of participants were higher for all settlements (except Settlement 2) and 

Road 1 regardless of the expertise. Settlement 3 received the highest average fixation duration, whereas 

Road 2 received the lowest (Figure 2.16). Although both objects have relatively small sizes, participants 

seemed to have different reasons why they fixated on those objects for longer or shorter periods. The 

complexity of the object mostly resulted in higher fixation durations. In this case, the settlement was a more 

elaborate object compared to the road and required more processing time and thus, more cognitive load. 

Furthermore, our results proved that the fixation duration and the number of fixations were inversely 

proportional. The shorter the fixation duration was, the higher the number of fixations per second. For 

instance, Settlement 3 had the longest average fixation duration (287.0 ms, see Figure 2.16), while it received 

a lower number of fixations per second (i.e. 3.7, see Figure 2.15) than the other objects did. 

 

 
Figure 2.15. The number of fixations per second 
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Figure 2.16. Average fixation duration (dark bars: experts, light bars novices) 

2.5. Discussion 

The results of the study are valid for a specific map stimulus representing only one specific area. However, 

the map, which was simplified only by removing altitude lines and labels, is a part of a map series covering 

the whole territory of Belgium. Therefore, the same trends could be observed on all these maps as they are 

based on the same symbology, although the generalization of results is limited. Although between- subjects 

design provided some potentially valuable insight, the outcomes may not apply for every condition. The 

performance of individuals is mainly influenced by the task and stimulus because the cognitive load can 

be manipulated by the complexity of the visual material and the difficulty of tasks. Therefore, if this study 

is extended by including other types of map stimulus and tasks, different results might be obtained.  

 

The memory task in the experiment required recalling the main structural elements of a screen map. This 

retrieval act involved WM-LTM transitions, such as retrieval of spatial information stored in WM through 

LTM or strategies for constructing hierarchy among map elements. 

 

We regarded visual variables such as location, shape, size and color as though they were equally important 

for the drawing order which can be influenced by the use of visual variables. Besides other visual variables, 

color has long been recognized as a preattentive feature (Wolfe, 2000). The order of drawing varied between 

participants, so that experts drew roads (depicted as red) in first place, whereas novices drew the elements 

hydrography (depicted as blue). Same situation applies for female and male participants, respectively. 

 

In the original stimulus, roads were linear objects depicted in red, whereas hydrographic objects could be 

linear (rivers) or areal (water bodies) representations depicted in blue. Our retina includes light -sensitive 

cells named rods and cones. While rods mediate night vision, cones play role in photopic vision (during 

daylight) (Hsia & Graham, 1952). The spectral sensitivity of cones follows the order of the visual spectrum. 

Therefore, our eyes perceive the most in red wavelengths (500-760 nm) and the least on blue wavelengths 
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(380-550 nm), and green wavelengths (430-673 nm) fall under the red range (Schubert, 2006). To the best of 

our knowledge, in map design, red tends to focus in the foreground; yellow and green, in the middle; and 

blue, in the background (NRCan, n.d.). Thus, important objects or the ones to emphasize are shown in red, 

and blue is a good color for backgrounds. This feature could be the reason why the experts drew the red 

linear objects (roads) first. On the other hand, having drawn the hydrographic elements first, novices might 

have found areal objects as important or interesting and thus as memorable as linear objects. We can infer 

that size is as important as color for the retrieval of an object. Except for one participant, all novices drew 

water bodies on their sketch maps regardless of the order. Therefore, it is suggested that experts and 

novices use different strategies in spatial orientation, as well as females and males do. For instance, men 

tend to refer to environmental geometries or structuring elements, while women rely on landmarks 

(Sandstrom, Kaufman & Huettel, 1998; Voyer et al., 2007). However, the common characteristic of the first 

drawn elements by all participants was that they both contained linear objects. This finding referring that 

the structuring elements guide spatial recognition is in line with what Edler et al. (2014) and Ooms et al. 

(2015) found. Additionally, the hydrography category included lakes, which were areal representations. 

Starting with the areal elements instead of linear ones (or in our case, polygons (lakes) and lines (rivers) 

that were parts of a whole (hydrography)) proves that size of an object also plays an important role when 

recalling map information.  

 

Based on the assessment of sketch maps considering the aggregated analysis of presence & location, shape, 

size, and color of drawn elements, we concluded that neither expertise, nor gender differences were 

influential on the retrieval of spatial information. Our findings related to gender differences corresponds 

to those by Lloyd & Steinke (1984), Patton & Slocum (1985), Beatty & Bruellman (1987), Golledge, 

Dougherty & Bell (1995), Lloyd & Bunch (2010) and Edler et al. (2014). On the other hand, our findings on 

the influence of expertise agree with the earlier research of Thorndyke & Stasz (1980) who focused on 

experts’ and novices’ abilities to learn and remember information presented via maps. The fact that novices 

and experts did not differ in terms of how they learned and remembered map-related information could 

be explained by the general map knowledge that stepped in when both user groups observed a typical 

planimetric map stimulus. Hence, various levels of map experience may have resulted in modest 

differences (Kulhavy & Stock, 1996). The original map shown to participants was a simplified 1:10k 

topographic map and did not contain any familiar places (or names) to eliminate or minimize the degree 

of familiarity. Thus, both experts and novices observed the map for the first time, and we presumed that 

the maplikeness of the stimulus had a great influence on their map learning (study and recall) process. 

However, the later work (e.g. Gilhooly, Wood, Kinnear & Green, 1988; Ooms et al., 2015) failed to replicate 

Thorndyke & Stasz’s (1980) findings. Instead, they found that experts performed better in recalling schemas 

in a richer and more detailed fashion. Although our results present that experts and novices do not differ 

in terms of the amount of information they recall, the learning/recalling strategies of experts and novices 

may differ. The drawing order results could be evidence that they might use different approaches.  

 

In addition to the maplikeness and the simplicity of the map, the task to be executed was influential on 

performance. It is important to remember that if the task required domain-specific knowledge about 

geography or related areas, experienced users would perform better compared to novices (Kulhavy & 
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Stock, 1996; Thorndyke & Stasz, 1980). Although individual factors other than expertise and gender might 

have affected the results, the sample size was not sufficient to draw conclusions regarding ethnicity or 

native language. 

 

While encoding spatial information through maps, structuring elements (e.g. topographic details and grid 

lines) lead attentional shifts towards “to-be-learned object locations” which improve memory performance. 

The fact that the first fixation is influenced by experimental manipulations can be seen during recognition 

and it suggests that the structuring elements are involved in cognitive map production (Kuchinke et al., 

2016). Therefore, eye tracking metrics provided valuable insight on how mental representations formed. In 

this context, average fixation duration and the number of fixations per second revealed that there was no 

significant difference between the expert and novice groups, as well as between men and women. Although 

this outcome was different from what was found by Ooms et al. (2014a), it supports our results obtained 

by digital sketch map assessment. 

 

In addition, the eye tracking metrics (time to first fixation, dwell time, fixation count, the number of 

fixations per second, average fixation duration) for selected AoIs were explored. The time to first fixation 

statistics showed that larger AoIs were gazed at earliest and the dwell times for such objects were much 

longer compared to those for other AoIs. As expected, the majority of participants drew these map elements 

on their sketch maps. On the other hand, most participants paid less attention (late first fixation and less 

dwell time) to the relatively small linear (i.e. roads) and areal features (i.e. land cover) within the specified 

AoIs. However, when comparing the presence and accuracy scores of drawn elements, both groups mostly 

drew small roads on their sketch maps but not land-cover features. We could infer from this result that the 

linear features were easier to learn and remember, although the viewer did not pay much attention. 

Additionally, our results supported the fact that shorter fixation durations resulted in higher numbers of 

fixations per second. Consequently, longer average fixation durations for a specific AoI indicated that the 

chances were higher to remember that object. This finding corresponded to the number of objects depicted 

on the sketch maps; the objects that were absent on the sketch map received the shortest fixation durations 

during the study phase. However, longer fixation durations may also indicate participants’ difficulty to 

recognize the information in the observed visual scene. 

 

Although it was beyond the scope of this study, the sequence of visited AoIs can be further explored to 

analyze how the map elements within specified AoIs are associated to form a sketch map. The sequential 

order of included elements may vary among individuals who draw sketch maps of the same map stimulus 

and sequence analysis can provide more insightful outcomes related to how map users encode structure, 

learn, remember and later use the spatial information presented via maps (e.g. Huynh, et al., 2008). 

Furthermore, the similarity between sequences can be studied by quantifying and comparing scanpath 

behaviors of individuals. Scanpath analysis promises rich information regarding to spatial and temporal 

characteristics of eye movements and contributes to understanding individual differences in a more 

systematic way (e.g. Anderson, Anderson, Kingstone & Bischof, 2014; Dolezalova & Popelka, 2016). 
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2.6. Conclusion 

This study utilizes digital sketch maps to understand the cognitive abilities and limitations of a group of 

map users during a memory task via drawing. On one hand, we assessed the quality of sketch maps based 

on the drawn elements (e.g. the influence of visual variables), which we predicted would reflect the 

performances of different user groups and might reveal significant insights about their cognitive processes 

and strategies of retrieving spatial information. On the other hand, we integrated ET statistics to quantify 

the cognitive processes to advance time-related, gaze activity-related (especially fixations) analyses. We 

also derived the order in which the sketched objects were drawn from the ET data. The order of drawing 

offered significant insight into the hierarchical construction of cognitive maps and might have unveiled the 

differences in the retrieval strategies of experts and novices, if there were any.  

 

Instead of traditionally used pen and paper method, we collected sketch maps digitally to be able to match 

them with the corresponding eye tracking metrics. Therefore, ET and sketch map were considered as 

complementary user testing methods providing detailed insight into user behaviors. No significant 

differences emerged between experts and novices, as well as females and males based on sketch map 

analyses, and this result was also confirmed by a number of ET statistics. This finding arose from a user 

experiment that considered a simplified static map for a memory task related to the map elements. 

However, this research can be extended by considering more rapidly evolving cartographic stimuli (3D 

visualizations, interactive displays, mobile maps, etc.) and tasks that require different levels of expertise to 

achieve a better understanding of map users. The more we understand the cognitive limits and abilities of 

map users, the more we become able to create effective cartographic products. 
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Chapter 3: 

The Design of Experiment 2 
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“A well-designed experiment is likely to produce meaningful and interpretable results 

that have implications for theories and may inspire new research,  

even if the data are noisy and only basic analyses are performed” 

 

Mike X Cohen, 2014 
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Abstract. Designing a user experiment with ET and EEG is not straightforward, because of the methodological and 

technical issues this integration causes. The methodological issues are related to the experiment design, including 

research goals, participants, task and stimuli, psychological measures to use, evaluation methods and possible analyses 

for collected data, whereas the technical concerns refer to the synchronization of ET and EEG recording systems, their 

accuracy and quality, and numerous data processing steps. In this chapter, both issues will be explained and discussed 

within the frame of cartographic user experiment design. The issues mentioned in this chapter and lessons learned in 

the first experiment were incorporated in the design of the second experiment. 
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3.1. Methodological issues while designing an EEG & ET user experiment in a 

cartographic context 

Although there exists quite good amount of literature on EEG and ET experiments in psychology or related 

domains (e.g. Dimigen, Sommer, Hohlfeld, Jacobs & Kliegl, 2011; Nikolaev, Meghanathan & van Leeuwen, 

2016), EEG is quite new for cartographic user research and besides psychological experiment design rules, 

there are many other factors that should be taken into account when maps come into play. Therefore, it is 

essential to mention methodological issues, substantially based on hands-on experience, for researchers 

who aim to study the individual differences of map users by employing ET and EEG. In this context, we 

would like to present how an ET-EEG experiment set up should be done and what type of analysis is 

possible relevant to the experiment design with a special focus on a spatial memory task related to digital 

2D static maps. The referred task is designed to evaluate the cognitive strategies of expert and novice 

participants when they are asked to memorize and then remember a (part of) map content. This chapter 

aims to explain and discuss the methodology to be used for designing an ET & EEG experiment, rather 

than answering the research questions, which are covered in the following chapters within the actual 

experiments, such as: 

 How do cognitive strategies differ for experts and novices for memorizing map-related 

information? How does cognitive load vary across those two groups during this process? 

 How does the complexity of task influence cognitive load while memorizing map content? 

 

The methodological issues are situated in many aspects of the experimental design and its set-up, which 

includes identifying the research goals, participants, task and stimuli, psychological measures to use, 

evaluation methods and possible analyses of the collected data. Within in this section, a theoretical 

overview covering the fundamentals of the experimental design is presented regarding to the best practices 

in the existing literature.  

3.1.1 Theoretical background 

A well-designed user experiment is essential to obtain meaningful and interpretable results of complex 

behavioral and cognitive processes, regardless of the quality of the collected EEG or ET data (Cohen, 2014). 

Even though the purpose of the experiment is established in a cartographic context to assess the 

cartographic content and the users trying to interpret it, the experimenter should primarily consider the 

fundamental design principles of psychological experiments (e.g. empiricism, determinism) for the study 

to be reliable (Gregory, 2004; Urbina, 2014). A psychological test is conducted “to evaluate individual 

differences or variations among individuals” (Kaplan & Saccuzzo, 2017, p.9). The most crucial step in 

psychological testing is to determine a clear research goal and related hypotheses and this in turn needs to 

be investigated with appropriate tools for data collection considering “their administration, scoring, 

interpretation, and the judicious use of the data collected to make inferences about the question at hand” 

(Urbina, 2014, p.25). In this context, it is important to verify beforehand that the identified research 

questions can indeed be answered by implementing (ET and) EEG in the experiment design. Due to its high 

temporal resolution and non-invasive application, EEG is more likely to explore the timing of cognitive 

processes and it is quite sensitive to capture the brain organization related to perception, attention, and 
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memory (e.g. cognitive load). Therefore, the most common application of EEG is to study stimulus or event 

related response of the brain (for detailed overview see Teplan, 2002). Accordingly, with EEG, it is possible 

to answer our research questions focusing on the cognitive differences of experts and novices while they 

study map stimuli to remember their main structuring elements. 

3.2.1.1. Within vs. between user study design 

The research question underlies the entire experimental design, especially to decide whether within-

subjects (i.e. repeated measures) or between-subjects design, will be employed. If the influence of an 

independent variable, in a single group is explored, within-subject design is preferred. Cognitive load can 

be manipulated in different ways, such as assigning a difficulty level (i.e. easy, moderate, hard) to tasks, 

increasing/decreasing the presentation time of the stimulus (i.e. the duration of the map stimulus on the 

screen) and varying the complexity of maps (e.g. each (group of stimuli or) stimulus including a different 

number of the map elements). The increasing number of map elements and the decreasing presentation 

time of the map stimulus correspond to increasing cognitive load. All of these variables affecting cognitive 

load can be implemented as independent variables in the study design. However, to study the influence of 

an independent variable among two or more groups, between-subject design is appropriate. In between-

subject experiments, it is important to recruit the groups of novices and experts whose age and gender are 

counterbalanced, which act as possible confounders to data analysis because EEG is very sensitive to those 

factors. On the contrary, the individual differences of participants (i.e. age, gender) have no impact on 

within-subject design, since the outcome of the experiment relies on a large number of trials. Note that 

between- and within-subject design can perfectly be combined in one experiment. 

3.2.1.2. Stimuli and trials 

Having identified the research question, one should build the design of the task and stimuli around it. First, 

regardless of the type of the task, a large number of trials are typically necessary for the reliable EEG 

analysis (Cohen, 2014). In this context, trials refer to the repetition of the same stimulus condition. 

Theoretically, the recorded EEG contains two types of signals; one is stemmed from brain-related activity 

and the other is the noise elicited from external sources (e.g. eyes, muscles, recording device) for any given 

trial. If an infinite number of trials were possible, the effect of the noise part would be canceled out and the 

remaining signal part would be an indicator of the brain-related activity (De Haan, 2007; Talsma & 

Woldorff, 2005). This assumption is valid for an ideal situation, but one could question the influence of the 

fatigue of the users on the measurements if the number of trials increases – and thus the experiment 

duration is very long (more than one hour). However, increasing the number of trials is a common 

approach to eliminate the noise and reveal the EEG signal occurred due to the brain activity. For instance, 

many trials of the same stimulus are averaged to disentangle the event-related potentials (ERP), which are 

the time-locked electrical activity derived from the EEG signal in response to a discrete stimulus or event 

(Handy, 2005). ERPs can be considered any measured brain responses that are directly the result of a 

thought or perception; therefore, they can identify distinct phases of cortical processing in response to 

stimulus presentation such as cognitive load (Winslow et al., 2013). Despite that there is no recommended 

number for trials in the literature, most ERP studies include approximately 100 trials (Delorme, Miyakoshi, 

Jung & Makeig, 2015; Handy, 2005; Ouyang, Sommer & Zhou, 2016; Talsma & Woldorff, 2005), which 

correspond to a significant number of stimuli compared to those used in other cartographic user studies 
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(e.g. ET, think-aloud, sketch map). However, the number of trials highly depends on the component the 

experimenter looking at. For instance, A P300- component could be observed with 30 trials, whereas for an 

early attentional component like the C1, one would need at least 300 trials to have a decent signal. 

 

Besides their quantity, the order in which the trials and stimuli are presented in the experiment should be 

well planned. For instance, the duration of the stimulus presentation (i.e. presentation time) should be 

identified and limited based on the existing literature or pilot tests. The difficulty levels of the tasks should 

also be assigned beforehand. 

3.2.1.3. Psychological Measures 

Another essential issue of the experimental design is choosing which psychological measures will be 

utilized to extract the cognitive load. Achieving meaningful outcomes from the integration of EEG and ET 

methods is only possible with an appropriate experiment design. The preparation and presentation of the 

stimuli and the task should allow collecting data required for cognitive load assessment. In the literature, 

there are two widely used ET metrics as indicators of cognitive load: fixations and pupil size. Fixation 

duration indicates attention paid to a fixated location because the eye fixates to a certain point as long as 

the information is being processed (Henderson & Ferreira, 2013). Fixation duration increases under 

processing load, i.e. when visual processing requires more effort (Duchowski, 2007; Holmqvist, et al., 2011; 

Meghanathan, van Leeuwen & Nikolaev, 2015). Besides, task-invoked pupillary response directly reflects 

the cognitive load on working memory. Greater pupil dilation is found to be associated with high cognitive 

load (Beatty, 1982; Fehrenbacher & Djamasbi, 2017; Granholm, Asarnow, Sarkin & Dykes, 1996) and pupil 

size is particularly sensitive to cognitive load when it is above the limit of memory capacity (Meghanathan, 

et al., 2015). Pupil metrics are only useful when eye movements are restricted by the experiment design, 

e.g. by using fixated targets to direct gaze activity of the participant to a certain portion of the screen where 

the stimulus is shown. 

 

Cognitive load can be measured using EEG activity power spectrum and several researchers have 

repeatedly proved that the spectral power changes under alpha and theta frequency band are related to 

task difficulty and therefore good predictors of cognitive load in a variety of working memory task 

demands (Gevins & Smith, 2000; Witvoet, 2013). These studies have found that alpha activity (particularly 

over the parietal and occipital areas) decreases with growing task demands that inherently cause working 

memory performance to decrease, whereas theta power increases (over frontal midline areas) when there 

is a cognitive activity and encoding new information (Klimesch, 1999; Kumar & Kumar, 2016; Pfurtscheller 

& da Silva, 1999; Witvoet, 2013). Event-related power changes in EEG signal can be quantified in a specified 

frequency band during a cognitive task. Event-related power decreases that cause a reduction of amplitude 

in response to a stimulus, are called as event-related desynchronization (ERD), whereas power increases 

resulting an increment of amplitude with the stimulus presentation are referred to event-related 

synchronization (ERS) (Pfurtscheller & Da Silva, 1999; Witvoet, 2013). Alpha desynchronization and theta 

synchronization are fundamental EEG phenomena that have been used in multiple studies on cognitive 

load and task difficulty (Anderson, et al., 2011; Gevins, Smith, McEvoy & Yu, 1997; Gevins & Smith, 2003; 

McEvoy, Smith & Gevins, 1998; Sauseng et al., 2005). ERD/ERS of the alpha band has been found to be 
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especially sensitive to cognitive task performance and higher cognitive abilities (e.g., Fink, Grabner, 

Benedek & Neubauer, 2006; Neubauer and Fink, 2009). For instance, Gevins et al. (1997) examined changes 

in cortical activity during spatial and verbal working memory tasks and observed lower alpha activity in 

the difficult tasks compared to easy ones and theta activity increased in magnitude with higher task 

difficulty. These results suggest that alpha and theta oscillations are differently related to the task difficulty. 

As task difficulty increases, alpha activity decreases (desynchronize), whereas theta activity increases 

(synchronize) (Witvoet, 2013). In this context, the event-related changes in EEG power spectral density 

(PSD) can be calculated for alpha and theta frequency bands. PSD refers to the measure of signal's power 

content versus frequency (see Keskin et al., 2020). I will explain further with the formulas to calculate ERS 

and ERD in Chapter 4.2.2.4. 

 

Alternatively, one of the most widely used EEG components is ERP referring to a set of voltage changes 

contained within EEG epochs that are time-locked to the stimulus (Coles & Rugg, 1995). In most cases to 

extract the ERP signal, a number of EEG epochs are averaged through the repetition of the same event. 

Cognitive psychologists have long studied ERP, and it has contributed to sensory, perceptual and cognitive 

research (see for review: Coles & Rugg, 1995; Jiang, 2014). It is also possible to track cognitive processes 

that occur during a single eye fixation by using eye-fixation-related-potentials (EFRP) which combine eye 

movements and ERPs for studying cognitive behavior. As Baccino & Manunta (2005) stated, both eye 

movements and ERPs suggest temporal measurements, but eye movements (i.e. fixation duration) describe 

a summation of all the cognitive processing occurring during identification while ERPs show the sequence 

of the processes. The major advantage of EFRP is to couple accurate time measures from ERPs and the 

location of the eye on the stimulus, so it can be used to disentangle perceptual/attentional/cognitive factors 

affecting retrieval process. Furthermore, with the EFRP technique, experimental settings allowing for a 

strong ecological validity can be used since the technique allows one to move the gaze freely onto any 

complex stimuli (text, visual scenes, etc.) (Baccino, 2011). However, EFRP method requires high precision 

in terms of time synchronization of ET and EEG systems. 

 

Besides ET and EEG data, behavioral data (e.g. reaction time and correct answers) is a good indicator of 

cognitive load. In psychological experiments, tasks are often presented with strong time constraints (e.g. to 

respond as quickly as possible to which option is true by pressing a button) in order to study the effect of 

some variables (e.g. task difficulty) on the mean response time of a given number of subjects. In this context, 

it is assumed that the longer the response time, the more complex the cognitive process leading to that 

choice and inherently the harder the decision to make. When evaluating the reaction time, it is common to 

exclude the trials with incorrect answers, since only a correct answer is an evidence that the subject 

completely and correctly processed the task. This approach is also valid for the assessment of EEG and ET 

data due to the necessity of having the same trials contributing the analyses of behavioral, gaze and 

neurophysiological data, and the fact that wrong answers contain error related negativity, which may affect 

the correct EEG pattern. Accordingly, the inverse efficiency score (IES) is the oldest and the most frequently 

used measure to consider the corrected reaction times based on the amount of errors (Townsend & Ashby, 

1978) (Equation 3.1),  

IES = RT / (1−PE)                                                                    (3.1) 
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where RT is the subject’s average (correct) RT of the condition, and PE is the subject’s proportion of errors 

in the condition. Table 3.1 summarizes all the methodological aspects of the experiment design explained 

until here, covering research question & goals, participants, materials, procedures and analysis. 

Table 3.1. Summary of the methodological issues in our experiment design 

Issue Summary 

Research 

Question  

&  

Goals 

- How does cognitive load vary between experts and novices while memorizing map content 

and how does the complexity of task influence the cognitive load? 

Hypothesis: We expect that memory task will cause higher cognitive load in novices 

Goal: to test the effect of task difficulty on behavior, which is the retrieval of maps and map 

features. 

 

Participants 

Stimulus  

&  

Task 

Novice and expert participants matching age and gender with normal or corrected-to-normal 

vision 

- 10-15 participants for each group (age range: 25-35) 

 The map stimuli: Screenshots of Google’s road maps at zoom level 15 with 1km scale bar. 

The sketch maps in the answer screen: by digitizing the main structuring map elements (i.e. 

major roads, hydrography, green areas) 

 

 Randomized block design: Seven blocks representing seven difficulty types included in the 

experiment. Each block includes 50 map stimuli and 50 trials (i.e. one for each stimulus) 

focusing on the similarity of one of the below listed: 

Block 1: The whole sketch map 

Block 2: Roads and hydrography 

Block 3: Roads and green areas 

Block 4: Green areas and hydrography 

Block 5: Green areas 

Block 6: Hydrography 

Block 7: Roads 

 

Procedures The order of blocks and trials within blocks are randomized across participants to combat 

learning effects. 

 Preparation stage (e.g. placement of EEG cap, instructions for the experiment, ET 

calibration, presentation of the training task) 

 Main task (presentation of fixation cross, encoding display (map stimulus), search 

display (graphical response screens)) 

 Post-test questionnaire 

2.5 hours (with two three short breaks because fatigue starts at ~30 minutes) 

 

Analysis Interpretation of results based on statistics applied to the collected data. 

Metrics to estimate cognitive load: behavioral: accuracy/correctness, reaction time, 

neurophysiological: EEG (ERD – ERS, spectral power analysis), gaze: ET (fixation duration, 

number of fixations) 

Report both descriptive and inferential statistics. 
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3.3. Technical issues while designing an EEG & ET user experiment in a 

cartographic context 

Technical concerns refer to the (i) synchronization of ET and EEG recording systems, their accuracy and 

quality, and (ii) numerous processing steps (i.e. preprocessing, the alignment of collected ET and EEG data, 

removal of non-cerebral activities from EEG data, segmentation and re-referencing). In this part, we present 

an overview of the theory behind each technical issue and provide information about how we dealt with it 

in our experiments (see Table 3.2 for a summary of this section). 

3.3.1. Synchronization of EEG and ET recording systems, their accuracy and quality 

As Xue, Quan, Li, Yue & Zhang (2017) explained, it would be ideal to sample electrophysiological and 

behavioral data with the same device and sampling rate. However, due to different hardware and software 

used for data acquisition in practice, we have to implement hardware and software based synchronization 

methods. Because both hardware and software have their own internal latencies, the temporal accuracy of 

the co-registration of an ET and EEG has to be identified. To achieve synchronized ET and EEG data 

collection, there are two most widely acknowledged hardware methods based on the signal characteristics 

of the events; TCP/IP (Transmission Control Protocol/Internet Protocol, i.e. network) and TTL (Transistor-

transistor logic). In network or TCP/IP method, the events are sent through a LAN network where both the 

sender and the receiver are the recording computers sharing a common TCP/IP communication protocol 

(e.g. Xue et al., 2017). 

 

Using TTL pulses to trigger the sampling onset is known to be the most reliable ways to send information 

with accurate time, especially if they are generated by a dedicated hardware. The events are based on 

standardized electrical signals levels sent through the different pins of a TTL output port. Depending on 

the number of pins of the TTL output and input port, the number of different events that can be sent varies 

in a binary format (e.g. 8 pins: up to 255 events). (e.g. Baccino, 2011; Dimigen, et al., 2011; Plöchl, Ossandón 

& König, 2012; Savage, Potter & Tatler, 2013). 

 

Simultaneous data acquisition of ET and EEG can be accomplished with a single or dual PC set up (for 

further information, please read SMI, 2016). One crucial technical issue in this synchronization is the exact 

timing of all subparts of the system and the accuracy of this, which is referred as software methods 

including the timing synchronization protocols (Xue et al., 2017). If the experiment relies on the precise 

timing, the timings need to be specified in the order of milliseconds. The deviations in the timings can be 

jittered or fixed delays. For EEG, ET or Reaction Time measurements, effects of jitters can be neglected 

because the subject variance is high, or in other words: they level out in a large group of participants and 

stimuli. Nevertheless, the fixed delays must be identified precisely and taken into account either in the 

experiment or in the analysis stage. Spatio-temporal resolution of the eye-tracker 0.01◦ / 2 kHz and the TTL 

itself is within one millisecond accurate, which corresponds to the delay between when the TTL pulse is 

sent – the stimulus PC issues a command to display a stimulus – and when arrives at the EEG isolator. 

However, the big unknown within this setup is how long it takes an operating system to actually execute 

the call to display a stimulus and next how long it takes, physically, to display this on the monitor. The 
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monitors are usually the largest source of fixed delays, which can be measured by a photo sensor. What is 

measured with a photo sensor is not the delay between the ET and EEG system, but the delay between 

when a stimulus is presented and when it is actually displayed (i.e. how long it takes for monitor to load 

the stimulus). Furthermore, monitors have a certain refresh rate which brings certain limitations to the 

synchronization. For instance, if the monitor used in the experiment has a 60Hz refresh rate, the system 

cannot do any better than 16.67 millisecond in terms of synchronization with the eye tracker and EEG data. 

Therefore, TTL offset and monitor offset must be taken into an account while synchronizing ET and EEG 

data (Dimigen et al., 2011).  

 

The quality of EEG recording relies on the quality of EEG system and experimenter’s skills in electrode 

placement. To maintain a sufficient data recording quality (i.e. to maximize signal/noise), impedance at 

every electrode contact with the scalp must be checked using an EEG impedance meter at the beginning of 

every experiment. Measuring the impedance between the highly conductive living skin overlying the skull 

and the electrode allows verifying if skin-electrode interface is good enough in advance of recording 

(Kappenman & Luck, 2010; Casal & La Mura, 2016). Since modern amplifiers have high input impedance 

(e.g. the one we use, EEG100C, has 2 M Ohm differential and 1000 M Ohm common mode input 

impedance), electrode impedances of the whole circuit (i.e. ground, active EEG, reference electrodes) less 

than 10 K ohms are acceptable (Herman, et al., 2015; Teplan, 2002). Although impedance fluctuation is one 

of the patient related artifact sources, decreasing the impedance helps to reduce technical artifacts such as 

AC power line noise. 

3.3.2. Data processing steps 

3.3.2.1. Preprocessing 

Except filtering out the unwanted portions, preprocessing of ET data mostly includes data management 

(e.g. data export and conversions, restructuring the data content) due to the necessity of converting data 

into compatible EEGLAB compatible format by following Dimigen & Reinacher’s (2013) tutorial of 

MATLAB Toolbox for Simultaneous Eye tracking & EEG. 

 

While the preparation of ET data can be handled with a small scripting (e.g. written with Python), 

preprocessing of EEG data requires an extensive workflow with several steps to follow. Although it is not 

a scientific or an official publication of EEGLAB, Makoto’s preprocessing pipeline is recommended as a 

very useful guideline on how to perform these steps in EEGLAB, and consulted by many researchers 

dealing with EEG data (Miyakoshi, 2018). It covers all the preprocessing stages from importing data to 

filtering it regarding on the desired psychological measures to study. Therefore, it might be useful to 

consult this online and regularly updated documentation, if needed. 

 

If EEG data are imported correctly, first step prior to further analysis is filtering which corresponds to 

eliminate portions of the EEG record that are contaminated by gross motor movements or eye blinks (i.e. 

biological artifacts). These artifacts are electrical activities originate from non-cerebral sources like muscles 

and EOG (Electrooculography). EOG signal should be removed to reveal clean EEG reflecting neural 

activity. Blind Source Separation (BSS) or Independent Component Analysis (ICA) is commonly applied 
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for EOG removal (see Chapter 3.3.2.3 for detailed information on ICA). Besides biological artifacts, one of 

the biggest sources for external noise (i.e. environmental artifacts) is power-line interference, which is often 

characterized by high power at high frequencies or spikes in the power spectrum at some characteristic 

frequencies (Repovš, 2010; Samadi & Cooke, 2014). AC power line noise, which can be either 50 Hz or 60 

Hz, causes a directional effect on channels, making the raw EEG data impossible to analyze. Therefore, it 

should be removed either on the fly with a built-in filter or with a relevant notch filter afterwards. 

 

Due to the factors such as sweating, lost data during recording, drifts in electrode impedance leading to 

changes in voltage and the saturation of the amplifier, it is recommended to filter out the frequencies below 

0.01 Hz. A low-pass filter at 100 Hz is applied for filtering out the noise at the other end of the spectrum of 

frequencies that are of interest. On account of the of the contraction of muscles that causes a strong signal 

with frequencies above 100 Hz, those frequencies should be suppressed to eliminate movement artefacts 

in the EEG signal (Luck, 2005; Repovš, 2010; Teplan, 2002). 

 

After filtering, bad EEG channels, if there are still any, should be removed prior to the detection of eye 

movements and the rejection of bad eye-tracking data. Besides ET and EEG data, channel location 

information of EEG electrodes (provided in polar, spherical or Cartesian coordinates) is necessary to plot 

EEG scalp maps in either 2-D or 3-D format, or to estimate source locations of the recording electrodes in 

EEGLAB. A channel location file is simply a text file, which can be created with any text editor and load 

manually to EEGLAB, or can automatically be detected if the data is compatible with the existing sample 

location files available in the channel location library of EEGLAB. 

3.3.2.2. Alignment of the EEG and ET data  

Verifying that the recordings are of sufficient quality, preprocessed ET and EEG data should be aligned. 

This process is also called offline synchronization and Dimigen et al. (2011) proposed three possibilities to 

synchronize EEG and ET systems in EEGLAB; (i) message + triggers, (ii) analogue output, (iii) shared 

triggers. In the first method, while triggers are still sent to the EEG, messages (i.e. short text strings inserted 

in ET data) are used as the corresponding events for the ET. Here, the ET computer is given a command to 

insert an ASCII text message (containing a keyword and the value of the corresponding EEG trigger) into 

the ET data. In the stimulation software, the commands to send a trigger (to the EEG) and a message (to 

the ET) are given in immediate succession. The latter method is that copy of the eye track is fed directly 

into the EEG. A digital-to-analogue converter card in the ET outputs (some of) the data as an analogue 

signal (Dimigen & Reinacher, 2013). The last method is shared triggers which involves sending common 

trigger pulses ("triggers") frequently from the stimulation computer to both ET computer and EEG 

recording computer. This is achieved via a Y-shaped cable that is attached to the parallel port of the 

stimulation computer and splits up the pulse so it is looped through to EEG and ET. 

 

To align the collected EEG and ET data, we chose “message + triggers/events” method as explained by 

Dimigen & Reinacher (2013). The EYEEEG plugin requires that there are at least two shared events present 

in the ET and EEG; start-event and end-event. This can be achieved by using a unique event value (e.g. 

"100") to mark the start-event and other unique value (e.g., "200") for the end-event. Eye-tracking data in 
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between the start-event and end-event are then linearly interpolated to match the sampling frequency of 

the EEG. In messages + triggers method, synchronization messages sent to the eye tracker need to have a 

specified format. 

 

On the other hand, the event text file should be composed of three columns; the first containing the latency 

of the event (in seconds), the second the type of the event, and the third a parameter describing the event 

(for example, the position of the stimulus). Thus, we wrote a Python script that enables us to remove 

unwanted columns (channel, label), convert the time unit in seconds and minutes into milliseconds and 

change the column names into “latency, type, position” as suggested in the EEGLAB tutorial (Delorme & 

Makeig, 2012). Since EEGLAB cannot read string, each stimulus label was expressed as an integer (i.e. 101, 

102, 103, etc.). In Raw ET data, we also assigned every stimulus the same integer code in order to 

synchronize ET and EEG data. For instance, in raw ET data (text) file, ‘# Message: NoImage’ expression in 

the stimulus column was replaced with ‘# Message: SYNC 100’. The SYNC codes created here is used while 

parsing ET data. Additionally, other string data in ET file should be replaced with integer values. Therefore, 

we assigned “0” to blinks, “1” to saccades, “2” to fixations and “3” to “-“ (see  Annex 4 for the Python 

scripts). 

 

The next step is the detection of fixation and saccades and the rejection of bad eye-tracking data. Before 

extracting fixation and saccades, eye movement data should be filtered considering the saccade size and 

fixation durations that are meaningful for further analysis. After detecting eye movements, we filtered out 

saccades exceeding 20 degrees, and their corresponding following fixations. Fixations whose durations 

were outside the range of 50-1000 ms were excluded together with their corresponding preceding saccades 

(Figure 3.1). ET data exceeding the screen coordinates of PC (1680 x 1050) were also rejected (see Annex 5 

for the Python scripts). 

 

Once we filtered EEG and ET data, and obtain the channel locations for EEG electrodes are obtained, the 

alignment of ET and EEG recordings (synchronization) can be established through triggers/events (Figure 

3.2). Events represent time stamps when the stimulus is shown to a participant. These time points can be 

derived from raw ET data with scripting, therefore Python scripts were used to extract events and organize 

data in a compatible EEGLAB format). Figure 3.3 illustrates a portion of an EEG recording merged and 

aligned with eye movement data (saccades and fixations). The horizontal axis represents time and the 

vertical axis shows the amplitude (µV), i.e. the amount of energy in frequency bands listed on the left-hand 

side of the graph. Amplitude scale was adjusted in a way that the EEG waves are clearly visible but not 

overlap (Keskin & Ooms, 2018). 
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Figure 3.1. Properties of saccades and fixations 

 

 
Figure 3.2. Integration of the collected data 
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Figure 3.3. Synchronized ET and EEG data 

3.3.2.3. Removal of non-cerebral activities from EEG data 

EEG data include diverse source information related to either cortical or non-cortical activities such as 

artifacts that are usually independent of each other. Independent Component Analysis (ICA) is an 

established and a plausible method to separate these independent EEG activities in each participant’s data 

assuming that the observed EEG signals from electrode channels are a linear mixture of independent source 

signals (or components). As a result of ICA, the EEG channels are broken down into components reflecting 

the activity of one source domain that is locally coherent and includes its projections to all the scalp 

channels, while the activities of unrelated EEG sources will be rejected from this independent component 

(IC) and isolated into other ICs (Onton & Makeig, 2006; Samadi & Cooke, 2014; Zeng & Song, 2014). For 

instance, it is very useful to separate out non-cerebral activity (e.g. blinks) from EEG data. However, 

interpretation of ICA results is mostly carried out subjectively and the classification criteria are rarely 

reported in the publications, thus, to decide which IC consists non-cortical artifact source requires an 

expertise (Dimigen, 2017). 

 

There are several different ICA algorithms, however infomax ICA, which is freely available in EEGLAB, in 

particular, provides reliable results for data of sufficient quantity and quality having almost any number 

of channels as claimed by Onton & Makeig (2006). 

3.3.2.4. Segmentation (epoching) & re-referencing 

The next step is the segmentation of the usable data relative to the stimulus onset. Segmentation should be 

performed in a way to extract the cognitive load through the event-related changes in EEG power spectral 

density (PSD) for alpha and theta frequency bands and therefore, to calculate the event-related 

synchronization/desynchronization (ERS/ERD) in alpha and theta, which were explained in Chapter 

3.2.1.3.  
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After epoching the data based on successful trials, EEG electrodes must be re-referenced before EEG power 

spectrum analysis. Theoretically, a reference could be anywhere but has to be selected carefully, because 

any activity in the reference electrode will be reflected at other electrodes. There is no best common 

reference site in the literature, however there are some widely utilized approaches for re-referencing; by 

using mastoids (i.e. physical references), by using a fixed electrode or by averaging the activity at all EEG 

electrodes (i.e. reference-free). Re-referencing is essential for the comparison of results (i.e. ERD/ERS) 

among different participants, since in EEG data voltages recorded at each electrode are relative to voltages 

recorded at other electrodes and each individual’s brain waves are unique (Teplan, 2002) (URL 2). Table 

3.2 demonstrates a summary of the technical issues covered in the experiment design. 

3.4. Discussion  

The motivation of this chapter is to introduce/explain how an EEG&ET user study should be designed in a 

cartographic context based on the hands-on experience and the relevant literature. I would like to 

emphasize that there exists no best solution available when it comes to EEG&ET user experiment design, 

and this is another important reason of why we attempt to list issues related to experimental design 

together with possible solutions. Consequently, I present a set of rules to follow to achieve a good 

experiment design within the frame of research objectives. On the one hand, as methodological decisions 

are highly dependent on the research questions and hypotheses regarding to them, it is important to 

describe a solid objective for the user study with the psychological design principles in mind and identify 

relevant metrics answering the research questions specified at the beginning. In this context, I tried to focus 

on the data we would like to acquire and what EEG can answer.  

 

On the other hand, although the experiment is limited to a spatial memory task, and the methodological 

design of the other experiments may vary on a large scale, the technical issues to overcome and the 

preprocessing steps of the collected data are valid for almost all ET&EEG experiments. Technical and data-

analytical issues, which unfold in two parts; (i) synchronization of ET and EEG recording systems, and (ii) 

processing of the collected data, play determinant roles in methodological and the experimental design. 

Recording EEG and ET data in free viewing tasks has been a challenge and rarely applied especially due 

to the precise co-registration of gaze position. The technical problems I mentioned throughout the chapter 

are similar to what was mentioned by Dimigen et al. (2011), such as muscle artifacts stemmed from 

unnatural sitting positions, electromagnetic artifacts resulting from other electric devices affecting EEG 

sensors, proper synchronization of EEG and ET records. To minimize the muscle artifacts, using chin rest 

and adapting the position of the participant is crucial; besides making sure that the participant had enough 

rest between blocks so that they move as little as possible during the experiment. Electromagnetic artifacts, 

which is introduced as line noise in EEG data, should be identified and filtered out. For accurate 

synchronization of both EEG and ET data records, TTL triggers are preferred as it is the most 

straightforward and reliable method (e.g. Dimigen & Reinacher, 2013; Nikolaev et al., 2016). Although the 

proper synchronization can be achieved with TTL trigger method, in our experiment, the monitor offset 

value restricts studying the eye-fixation related potentials requiring high temporal resolution in terms of 

synchronization of EEG and ET.  
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Table 3.2. Summary of the technical issues covered in the experiment design 

  Theory Our experiment 

System 

architecture 

Recording 

Equipment 

For EEG 
BIOPAC, BrainVision, Biometric, Biosemi, 

ObseverXT, iMotions, EGI’s Netstation 

BIOPAC Acqknowledge hardware & 

software 

For ET SMI, Tobii, EyeLink, iMotions 
SMI RED 250 Eye tracker, SMI iViewX 

software 

For stimulus presentation 
E-prime, Superlab, OpenSesami, NBS 

presentation 
SMI Experiment Center 

Synchronization 

of EEG & ET 

recording system 

Synchronization 

method 

(i) through  TTL events 

(ii) through TCP/IP 

events 

dual PC setup with TTL triggers 

 

 

 

 

 

 

 

Processing Software 

For EEG 

Open source: EEGLAB, Brainstorm, 

Okazolab, etc. 

Commercial: BIOPAC, Biosemi, EGI’s 

Netstation, iMotions, etc. 

EEGLAB: MATLAB tool with EYEEEG 

plugin to handle EEG & ET data together 
For ET Opensource: PyGaze, Ogama, etc. 

For ET & EEG 
Open source: EEGLAB 

Commercial: BIOPAC Acqknowledge 

Data management For EEGLAB 
converting ET & EEG & event data into EEGLAB compatible format & rearranging ET 

and events with Python scripting 
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 Theory Our experiment 

Filtering EEG data 

(i) Low pass filter ((ii) 

High pass filter 

(iii) Notch filter 

 

Low pass filter at 100 Hz 

High pass filter at 0.01 Hz 

Notch filter at 50 Hz 

 

EEG channel location 

information 

polar, spherical or 

Cartesian coordinates 

Creating a text file including polar, spherical or Cartesian coordinates for EEG channel 

locations 

Bad channel removal 

 

For EEG; due to bad 

contact or noise 

 

not more 5 channels per participant because re-referencing might be performed by 

averaging the EEG channels. 

Alignment of ET 

& EEG data 
Method 

(i) shared events                     

(ii) message + triggers 

(iii) analogue output 

message + triggers 

Detection of eye 

movements &  

Rejection of bad 

eye-tracking data 

Criteria 

For ET; data exceeding 

screen coordinates, all 

blinks, and a part of 

saccade and fixations 

ET data exceeding the screen coordinates of PC (1680 x 1050) 

saccades > 20 degree and also their corresponding following fixations 

fixations outside 50-1000 ms interval together with their corresponding preceding 

saccades 

Removal of non-

cerebral activities 

from EEG data 

Method For EEG 
ICA 

BSS 
ICA 

Segmentation & 

Re-referencing 
Method For EEG 

Linked mastoids, 

Fixed electrode 

Average at all electrodes 

Fixed electrode 
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However, it allows studying EEG activity power spectrum to estimate the cognitive load and ET data can 

still be synchronized offline and ET metrics can be correlated with EEG data on a trial basis. Therefore, the 

feasibility of the methodology should always be verified in advance, due to the possible technical 

constraints stemmed from the recording equipment. 

 

Although some procedures such as data management (e.g. converting data into a compatible format with 

EEGLAB) and noise filtering (e.g. applying high- and low-pass filters on the fly) can be automatized, many 

other steps such as bad channel removal, which is mostly carried out by visual inspection, are performed 

manually. In addition, preprocessing and analyzing the data are inherently the most labor-intensive and 

complicated part of the study. Since each participant data consists of a number of trials and should be 

handled individually, processing stage is overall very time-consuming. 

3.5. Conclusion 

This chapter aimed to provide a methodological overview of what is possible with co-registration of EEG 

and ET to investigate the temporal characteristics of cognitive processes in free viewing condition, only 

within the frame of the specific spatial memory study described throughout the chapter. Combining EEG 

and ET is not straightforward since there are numerous methodological and technical problems to 

overcome, yet it is indeed a very valuable technique to explore the individual differences and similarities 

of map users through perceptual and cognitive procedures. If we continue staying engaged with 

experimental psychology and cognitive science research, it will contribute to the future progress of 

scientific cartography. The more we know about the limitations and capabilities of visual perception and 

cognition of different map users, the higher the possibilities to design cartographic products in a more 

efficient, understandable and usable way.  
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Chapter 4: 

Experiment 1 vs Experiment 2:  

Eye tracking & EEG 
 

 

 

 

 

 

 

 

“The brain internally simulates what will happen 

 if you were to perform some action under specific conditions. 

 Internal models not only play a role in motor acts (such as catching or dodging)  

but also underlie conscious perception.” 

 

David Eagleman, Incognito: The Secret Lives of the Brain, 2011 
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Abstract. The aim of this chapter is to evaluate the use of ET and EEG for studying the cognitive processes of a group 

of expert and novice map users and to explore these processes by comparing two types of spatial memory experiments 

through cognitive load measurements. The first experiment consisted of single trials and participants were instructed 

to study a map stimulus without any time constraints in order to draw a sketch map afterwards. According to the ET 

metrics (i.e., average fixation duration and the number of fixations per second), no statistically significant differences 

emerged between experts and novices. A similar result was also obtained with EEG Frontal Alpha Asymmetry 

calculations. On the contrary, in terms of alpha power across all electrodes, novices exhibited significantly lower alpha 

power, indicating a higher cognitive load. In the second experiment, a larger number of stimuli were used to study the 

effect of task difficulty. The same ET metrics used in the first experiment indicated that the difference between these 

user groups was not statistically significant. The cognitive load was also extracted using EEG event-related spectral 

power changes at alpha and theta frequency bands. Preliminary data exploration mostly suggested an increase in theta 

power and a decrease in alpha power. 
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4.1. Introduction 

Developments in medical research allow scientists to observe neurons in the brain with a high spatial and 

temporal resolution. As “scientific cartography” emerged in the early 1900s, it became possible to borrow 

theories and methods from experimental psychology to study how map design influences map use in a 

formal, systematic and empirical way rather than the trial and error method (Griffin, 2017). In this respect, 

scientific cartography has long dealt with cognitive issues of maps and map use, and Eckert applied 

experimental psychology principles to establish the laws of map logic (Griffin, 2017). According to him, 

map logic complies with the map creation laws, which strongly influence cartographic perception (Eckert, 

1977).  

 

To be able to understand map users’ behaviors, it is important to identify the cognitive procedures. Human 

memory functions within a sequence of three stages; sensory memory, working (short-term) memory, and 

long-term memory (LTM) (Atkinson & Shiffrin, 1968). Cognitive processes and strategies particularly occur 

during circumstances such as being aware of where to look at in a map or the interpretation of map-related 

information regarding other knowledge stored in LTM. Since different map users have different 

information stored in their memory, they are expected to have different strategies while reading maps 

(Griffin, 2017). Therefore, expertise is one of the major individual differences across map users. During a 

map-related task, all map users, especially novices, rely on the general map knowledge (e.g., knowing that 

the contour lines represent the elevation) whereas experts mostly consult their specific map knowledge 

(e.g., knowing the direction of slope by interpreting the contour lines). Specific map knowledge enables 

experts to establish spatial relationships in a more structured and systematical way compared to non-

experts (Keskin, Ooms, Dogru & De Maeyer, 2018). With the understanding of map knowledge of users, 

cartographers can focus on effective map designs that ideally do not cause a high cognitive load. 

 

As fundamental units of cartographic design, Bertin’s (1967) visual variables (i.e., position, size, shape, 

value, color hue, orientation, and texture) maintain the visual hierarchy (as described in Gestalt theory) 

which is essential to improve map logic by distinguishing and grouping map symbols and encoding map-

related information (Griffin, 2017; Keskin et al., 2018). That is why map perception is, in a way, dependent 

on the decision of the visual variables used in its design. As important as design elements, the map task is 

fundamental in cognition because cognitive procedures generally occur instantaneously and within a 

specific task or context.  

 

To measure real time cognitive responses of map users, cartographers have hitherto implemented many 

methods in cartographic usability research such as eye tracking (ET), sketch maps, thinking aloud, 

interviews or questionnaires (e.g. Herbert & Chen, 2015; Kveladze, Kraak & van Elzakker, 2017; Ooms, De 

Maeyer, Dupont, Veken, de Weghe & Verplaetse, 2016). The cartographic eye-tracking research has focused 

on the interpretation of visual information while performing a complex visual and cognitive task (e.g. 

Duchowski, 2007; Jacob & Karn, 2003), visual interaction with highly interactive interfaces (e.g. Çöltekin, 

Fabrikant & Lacayo, 2010), cognitive processes linked with visual search in maps (e.g. Ooms, 2012), and 

learning and remembering the information presented via maps (e.g. Keskin et al., 2018). The insights 

provided by eye tracking studies are promising for understanding how the human brain handles map-
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related cognitive tasks, yet there is still much research to do to elaborate how visual elements affect map 

use (e.g., perception, memory, cognition, etc.) and how to leverage visual variables to facilitate map use 

with less cognitive load. There is also a lack of empirical evidence on the users’ cognitive processes involved 

in map tasks, especially on the sources of individual differences (i.e., expertise, gender, etc.) and the 

relationship between the organization of spatial thinking and geographic space (e.g. Kimerling et al., 2009; 

MacEachren, 2004; Ooms, de Maeyer, and Fack, 2015). 

 

Authors propose that non-invasive brain-imagining techniques (e.g., EEG) can benefit cartographic user 

studies by providing direct measures of brain activity during cognitive processes. EEG, which is used to 

monitor the electrical activity in the brain, can be combined with other quantitative methods, such as eye 

tracking, to gain a better understanding of cognitive abilities and limitations of different groups of map 

users and how visual elements influence map use. The insights that particularly arose from the differences 

due to expertise will henceforth contribute to creating effective cartographic products. 

 

Although there exists not much research showing the relationship between ET and EEG within the 

cartographic context, the outcomes of these two methods might provide different outcomes in terms of 

cognitive load. For instance, Gedminas (2011) explored how hurricane advisory maps are perceived by 

comparing the existing maps and their alternative map designs and found out that fixation durations and 

the number of fixations that these maps received do not differ significantly, while frontal EEG analysis 

indicated that the alternative maps had a larger and more positive effect on the user. 

 

This study deals with the cartographic user experiments employing ET and EEG as simultaneous and 

synchronized data collection methods in collaboration for spatial memory tasks on maps (see Figure 4.1). 

The goal of the study is twofold: (i) studying the cognitive processes of participants, and (ii) evaluating the 

use of EEG for these processes by comparing two types of experiments, also allowing to triangulate ET and 

EEG findings and draw conclusion on the suitability of the methods, especially the contribution of EEG.  

 

In this context, we introduce two user experiments both aiming to explore the (cognitive) strategies of 

experts and novice participants through cognitive load measurements when they are asked to memorize 

and then remember a (part of) map content with varying levels of complexity. Due to the methodological 

differences in the experiment designs, in the first experiment, we used simple and exploratory 

measurements for cognitive load extraction. However, the findings of the first experiment contributed to 

the experimental design of the second one. They were utilized as inputs for hypothesizing the second 

experiment as some of the findings were fundamental for the motivation of the second experiment. 

Therefore, the second experiment was designed in a more complex way of addressing in-depth 

investigation of cognitive load. In other words, it became possible to identify how cognitive load affects the 

recalling performance for both map user groups, and whether some features are recalled independently of 

task difficulty. If so, we can identify which features are recalled easily/primarily with respect to other 

features recalled within the task, especially when the task demands higher cognitive load. Moreover, we 

hope to contribute to cartographic usability research by introducing a brief overview on the methodology 

of ET and EEG experiments, because it enables us to explore the behavioral and neurophysiological 
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responses of map users and helps with understanding the influence of cartographic design and task on 

individual map users. It has rarely been applied in a cartographic setting before, especially for map reading 

instead of map usability (e.g. Gedminas, 2011). 

 
Figure 4.1. Synoptic diagram of our dual PC hardware set-up 

 

4.2. Methodology 

The (spatial) memory task in both user experiments focuses on the study process of the main structuring 

map elements (i.e., roads, green areas, and hydrography) of a map stimulus to be retrieved later. 

Accordingly, visual variables (e.g., shape, size, color, etc.) used for depicting those elements play an 

important role in the experimental design because we utilize them to design maps to be used either with 

less or more cognitive load. While roads contain only linear, and green areas contain only polygon features, 

hydrography contains both linear and polygon features. Inherently, recalling one or a combination of those 

can be linked to the different levels of task difficulty; hence, each different (or a group of) task is assumed 

to cause different cognitive loads. For instance, linear features are easier to learn and remember regardless 

of paying too much attention, and besides the color, the shape and size of map elements have an equally 

important impact on visuospatial memory (Keskin et al., 2018). Table 1.4 in Chapter 1 summarizes all the 

aspects of the experiment design for the first and second experiment. Please also see Annex 1 for the 

orientation scripts and Annex 2 for the full instructions of both experiment. 

4.2.1. Experiment 1 

In the first experiment, participants were asked to study a map stimulus as long as they would like in order 

to draw a sketch map of what they had studied. The map stimulus used in this experiment is a simplified 

topographic map that was produced by Belgian National Mapping Agency, NGI/IGN (Nationaal 

Geografisch Instituut/Institut GéographiqueNational), and was also used by Ooms (2012) and Keskin et al. 

(2018). According to the results of these studies, we hypothesized that the spatial memory task will cause 

higher cognitive load in novices. To explore participants’ recalling strategies, we evaluated the drawn 

elements in the sketch maps and analyzed fixation related and AOI-based eye tracking metrics (for more 

detail about the experimental settings and results, please read Keskin et al. (2018).  
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This experiment resulted as single trials of one spatial memory task, but of long ET and EEG recordings 

due to the absence of time constraints. The ET metrics used as indicators of cognitive load were (i) average 

fixation duration and (ii) the number of fixations per second, which are commonly used metrics by many 

researchers when studying individual differences (e.g. Gedminas, 2011; Ooms, 2012; Togami, 1984). 

Average fixation duration is useful to study attentional procedures to one specific stimulus, whereas the 

number of fixations per second reveals the speed of attention (Bigne, Llinares and Torrecilla, 2016). 

 

To extract the cognitive load from EEG data, we first averaged alpha power for all recording EEG channels 

and calculated Frontal Alpha Asymmetry (FAA) using frontal channels. Cognitive load can be measured 

using EEG activity power spectrum, and several researchers have repeatedly proved that the spectral 

power changes under alpha and theta frequency bands are related to task difficulty and therefore good 

predictors of cognitive load in a variety of working memory task demands (Gevins and Smith, 2000; 

Witvoet, 2019). These studies have found that alpha activity (particularly over the parietal and occipital 

areas) decreases with growing task demands that inherently cause working memory performance to 

decrease, whereas theta activity increases (especially over frontal midline areas) when encoding new 

information (Klimesch, 1999; Kumar and Kumar, 2016; Pfurtscheller and Da Silva,1999; Witvoet, 2019). A 

decrease in alpha power is a sign of attentional demands or comparatively high neuronal excitability (i.e., 

processing visual information or responding to internal events, e.g., mental activation or cognitive effort), 

while an increase in power reflects inhibition or cortical deactivation (Guay, De Beaumont, Drisdelle, Lina, 

Jolicoeur, 2018). 

 

FAA is a commonly used measure for motivation, emotion, and cognitive control (e.g. Coan and Allen, 

2003; Harmon‐Jones, 2003). Greater relative left frontal activity is associated with increased memory & 

attentional performance and more-focused task performance (Lanini-Maggi, 2017). FAA is the average 

hemispheric difference in EEG alpha power between the left and right frontal regions of the brain during 

EEG recording (Adolph, Glischinski, Wannemüller, and Margraf, 2017; Quaedflieg, Smulders, Meyer, 

Peeters, Merckelbach, and Smeets, 2016; Smith, Reznik, Stewart, and Allen, 2017). We computed the alpha 

asymmetry using the left (F3) and right (F4) frontal channels with the following formula (Davidson, 1984) 

(Equation 4.1):  

 

FAA = log (alpha F4) − log (alpha F3) (4.1) 

 

Since EEG power is inversely correlated with the activation, the negative alpha asymmetry scores 

correspond to greater relative right frontal activation, whereas positive ones indicate greater relative left 

frontal activity (Coan, Allen, McKnight, 2006; Davidson, 1984, 1998; Tomarken, Davidson, Wheeler, 1992). 

More activity in the left-frontal hemisphere indicates approach and motivation, whereas greater relative 

right activation refers to withdrawal and avoidance (Lanini-Maggi, 2017).  
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4.2.2. Experiment 2 

The goal of the second experiment is fundamentally the same as the first one, but more complex, and there 

were some important modifications in terms of experimental design including participants, task and 

stimuli, procedures, and psychological measures to extract cognitive load. In this chapter, we will touch on 

all these aspects in detail. 

 

The theoretical background for formulating the hypotheses of the second experiment was based on the 

observations in Experiment 1 (Keskin et al., 2018), whose outcomes will be presented in the results section, 

and the existing literature (Edler et al., 2014; Ooms et al., 2015). In this context, linear features are primary 

to construct the whole map, and therefore, they are easily accessible in working memory. We additionally 

expect that experts would perform better at tasks demanding higher cognitive load. 

4.2.2.1. Participants 

Since we intend to explore the influence of the task on cognitive load between expert and novice 

participants, within and between designs should be combined. In this context, both experts (5 females, 6 

males), novices (6 females, 5 males), whose age and gender match (N= 22, MED= 27.5, SD= 3.9), performed 

the same experiment under the same conditions. The dataset used for the combined eye tracking and EEG 

analysis is a subset of a larger dataset and the user characteristics of the recruited participants are given in 

Table 1.4 and Annex 6. 

4.2.2.2. Task and Stimuli 

The spatial memory task in this experiment focuses on the retrieval of the main structuring elements with 

varying difficulty levels. Compared to the first experiment, we increased the number of stimuli of interest 

and the reference stimuli (e.g., fixation cross), presented them as randomized blocks, added more levels of 

task difficulty, put time constraints in place, and allowed participants to select from multiple choices 

instead of drawing the sketch maps themselves as applied in the first experiment.  

 

Next to the fixation crosses used as a pre-stimulus reference, the experiment included two types of visual 

materials: (i) original map stimuli to be studied and (ii) the corresponding skeleton maps displayed on the 

graphical response screens. The original map stimuli were acquired from Google maps at zoom level 15 

with 1 km scale bar (since the resolution of a map with the Mercator projection is dependent on the latitude, 

the scale of the maps (collected from regions all around the world) varies slightly but is approximately 

1:40000). The skeleton maps are the simplified representations of map stimuli indicating the main 

structuring map elements of interest for that specific task and were prepared by digitizing the main 

structuring map elements on the original stimuli using a GIS software. Throughout the design of the 

skeleton maps used in the experiment, we paid attention to depict each map feature class with a unique 

color and to make sure that these colors remained true to the ones used in the original stimuli. Accordingly, 

the main roads were assigned to yellow, major hydrographic features to light blue and the green areas to 

light green. The maps (1344 × 768 pixels, 14’ × 8’) and the graphical response screens including four panels 

(576 × 326 pixels, 6’ × 3.4’) were shown on a 22” color monitor with 1680 × 1050 spatial resolution. 
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Figure 4.2. Example stimulus and experiment blocks a. Original stimulus, b. Block 1: The whole map, c. Block 2: Roads 

and hydrography, d. Block 3: Roads and green areas, e. Block 4: Green areas and hydrography, f. Block 5: Green areas, 

g. Block 6: Hydrography, h. Block 7: Roads. 

 

Tasks including the same number of trials related to the same map element were classified as blocks. For 

the randomization of stimuli used in trials, randomized block design was used and in total seven blocks of 

trials were designed. Each block consisted of one trial for each stimulus (i.e., 50 trials within a block) 

focusing on the similarity of one of the criteria listed in Figure 4.2: the main structuring elements of (b) the 
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whole map, (c) roads and hydrography, (d) roads and green areas, (e) green areas and hydrography, (f) 

green areas, (g) hydrography, and (h) roads. The trials in Block 1 were designed to study the recalling 

performance related to the entire map stimulus; therefore, the skeleton maps were prepared by digitizing 

all the main roads, all the major hydrographic features and the green areas on the original map stimuli. The 

trials included in Block 2, 3 and 4 were dedicated to the retrieval of the combination of two map feature 

classes. In this case, Block 2 refers to the main roads and major hydrographic features, whereas Block 3 

addresses the main roads and green areas, and Block 4 involves major hydrographic features and green 

areas. The trials belonging to Block 5, 6 and 7 deal with a single map feature class; either green areas, 

hydrographic or road features, respectively, and each of them were digitized individually on the original 

stimuli. 

 

One important concern about the design is that the task difficulty may not be predicted easily in advance, 

because it depends on many factors rather than only the number of object classes to remember. According 

to the average reaction time of the correct answers (i.e. inverse efficiency score) provided by all participants, 

we observed clustering among some blocks and natural breaks between those clusters (as explained in 

Chapter 3.2.1.3). Subsequently, Block 1 and 2 were designated as hard; Block 3 and 4 as moderate; and the 

rest were assigned to easy level (Figure 4.3). By this way, the blocks falling into the same category can be 

treated similarly when analyzing and interpreting the gaze and neurophysiological data (i.e., eye tracking, 

EEG) collected during the entire experiment.  

 

 

 

Figure 4.3. Experiment blocks and difficulty levels 

 

4.2.2.3. Procedures 

Measuring the cognitive load is linked to how a participant indicates a correct answer on the response 

screen presented to her/him, and reaction times of key presses are a simple and rather reliable way to 

measure it. During the trial, participants were first asked to study a map stimulus and during the stimulus 

presentation, they were free to shift their gaze across the display. The response screen appeared with four 

graphical response panels that shows skeleton maps indicating specific main structuring map elements 

(Figure 4). Only one of the panels corresponded to the map that a participant just saw (a correct response). 
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Participants were instructed to press the space bar immediately when they found the panel with the correct 

skeleton map and to remember the corresponding letter. 

  

Pressing the space bar indicated that the search was complete by allowing participants to move to the 

second response screen where they would see only the letters (i.e., no pictures) (Figure 4.4). They should 

click on the letter, which they were keeping in memory to complete the task. If multiple features were 

needed to be remembered (e.g., roads and hydrography), a participant might remember only one type (e.g., 

hydrography), and then find a correct skeleton map based only on this type of information. Thus, the 

options in the graphical response panels assured that a response based on partial information was 

impossible. Additionally, the possible answers (correct skeleton maps) appeared at different locations 

between each consecutive trial and the block orders were counter-balanced across participants. Overall, 

each participant had to complete all seven blocks (please see Annex 2 & 3). 

 

 
Figure 4.4. i. Graphical response screen, ii. Response screen with letters 

4.2.2.4. Psychological Measures to Use: ET & EEG Metrics 

We used the same eye-tracking metrics employed in the first experiment to extract the cognitive load: 

average number of fixations per second and fixation durations for each trial. 

 

Events refer to the time points where the stimuli of interest are presented to the participants. During a 

cognitive task, event-related power changes in EEG bands can be calculated in a specific frequency band. 

As explained in Chapter 3, if the event-related power decreases, it causes a reduction of amplitude in 

response to a stimulus, and therefore is called event-related desynchronization (ERD), whereas power 

increases result in an increment of amplitude with stimulus presentation, and hence, are referred to as 

event-related synchronization (ERS) (Gevins and Smith, 2000; Pfurtscheller and Da Silva, 1999). Many 

studies suggest that alpha activity decreases (i.e., desynchronizes) and theta activity increases (i.e., 

synchronizes) as task difficulty increases (e.g. Anderson et al., 2011; Gevins et al., 1997; Gevins and Smith, 

2003; Sauseng et al, 2005). 

 

To be able to extract the alpha and theta spectral powers, the EEG data went through a series of 

preprocessing steps. For handling EEG and ET data together, we decided to use EEGLAB, an open source 

and interactive MATLAB toolbox (Delorme and Makeig, 2012), with the EYEEEG extension (Dimigen, 
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Sommer, Hohlfeld, Jacobs, and Kliegl, 2011). EEGLAB processes continuous and event-related EEG and 

other electrophysiological data (supports data from most of the commercially available software), and 

performs time/frequency analysis, artifact rejection, event-related statistics, and visualization of averaged 

or single-trial EEG data. Figure 4.5 demonstrates the pre-processed (i.e., filtered, bad channels removed, 

events added and modified based on correct responses, re-referenced, and segmented) EEG recordings 

belonging to an expert female participant. The vertical axis shows the amplitude (µV), i.e., the amount of 

energy in artifact-free EEG frequency bands listed on the left-hand side of the graph, whereas the horizontal 

axis represents time in seconds. The vertical lines on the graph labeled with vertical lettering (e.g., 148, 149, 

150) are the event codes, and the intervals represented between the blue vertical lines and numbers above 

the upper part border of the graph (e.g., 16, 17, 18) indicate the epochs.  

 

 
Figure 4.5. Preprocessed EEG data 

 

Once EEG data had gone through preprocessing steps, we segmented it based on trials. Figure 4.6 

demonstrates the trial sequence of the experiment. To be able to calculate event-related power change at 

an electrode, we created epochs from the events of our interest based on two different intervals:  

 [0 2] s for the events in the reference interval - fixation crosses 

 [2 9] s for the events in the activation interval - map stimuli 

 

Bad epochs containing blink or muscle artifacts were rejected based on visual inspection and collected eye-

tracking data. Prior to epoching, we synchronized the EEG recording with its corresponding ET recording 

through shared events present in the ET and EEG: start-event and end-event. Although the time 

synchronization accuracy of our system was not sufficient for studying eye-fixation-related potentials, 

fixation and saccade detection on EEG helps explaining the EEG spikes elicited from the eye movements. 
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Therefore, we think offline synchronization of ET data is still useful for artifact rejection and excluding the 

epochs contaminated with blinks (Figure 4.7). 

 

 
Figure 4.6. Trial sequence. The fixation cross was followed by the stimulus presentation; the stimulus remained visible 

throughout the study time. Activation interval ended with the presentation of a graphical response screen. 

 

 
Figure 4.7. EEG and eye movement data synchronized through shared events. 

 

For the computations of the changes in EEG power spectral density (PSD), first, the band power of the EEG 

signal was computed by means of a time–frequency analysis that employs a standard Fast Fourier 

Transform (FFT). FFT transforms the EEG signal from the time domain into the frequency domain. 

Therefore, any time-dependent signal can be broken down into a collection of sinusoids, and EEG 

recordings can be plotted in a frequency power-spectrum. After the transformation, we averaged the 

spectral power of alpha (8.5–12.5 Hz) and theta (4.5–6.5 Hz) bands for our 7-seconds-long EEG recording 

(i.e., duration of the stimulus on the screen, activation period) of valid trials in each block.  

 

We first computed EEG power spectral density (PSD) for alpha and theta frequency bands and to extract 

the cognitive load, event-related power changes can be quantified by contrasting the power in a specified 

frequency band during a cognitive task (e.g., spatial memory) with a preceding reference interval (i.e., ERD 
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& ERS) (for detailed information please read Pfurtscheller, and Da Silva, 1999). In this context, the baseline 

(pre-stimulus) period of EEG was used to compare with the event-related EEG power dynamics during the 

activation intervals in each epoch (Chuang, Cao, King, Wu, Wang, and Lin, 2018). Event-related power 

change (ERP) at an electrode was obtained by subtracting the log-transformed power during pre-stimulus 

reference intervals from the log-transformed power during the activation intervals according to the 

following formula (Benedek, Schickel, Jauk, Fink & Neubauer, 2014) (Equation 4.2).  

 

ERP(i) = log(Powi, activation) − log(Powi, reference), (4.2) 

 

Note that this ERP should not be confused with the commonly used abbreviation for event-related 

potentials in EEG domain. After computing ERPs at alpha and theta frequency bands for all task difficulty 

levels considering expertise, the powers were compared to study the differences between expert and 

novices particularly based on low and high levels of complexity of tasks. 

4.3. Results 

4.3.1. Experiment 1 

The average duration of the fixations was 230.0 ms (N= 24, MED= 230.8 ms, SD= 50.1 ms) for experts and 

244.1 ms (N= 30, MED= 243.0 ms, SD= 48.4 ms) for novices. Two-way ANOVA test suggested that no 

significant difference occurred between experts and novices (F(1,55)= 0.074, p= 0.787). The average number 

of fixations per second for the map stimulus was 3.5 (N= 24, MED= 3.7, SD= 1.0) for experts and 3.6 (N= 30, 

MED= 3.6, SD= 0.5) for novices. Regarding the Mann-Whitney U test, the difference between these two user 

groups was not statistically significant (Uexpertise= 338, p= 0.702) (for detailed results, please read Keskin et al., 

2018).  

 

The average alpha power across all usable common EEG electrodes (i.e., C3, F3, F4, O1, P3, T5, T6) for all 

participants (usable data: 6 novices, 6 experts) was 0.000939 (SD= 0.000051, range= 0.000225 - 0.002218). 

Shapiro–Wilk test was used to test the normality of the distribution of the data since our dataset is smaller 

than 2000 samples (N= 84). p= 0.000 suggested strong evidence that the data was not normally distributed 

(D(84)= 0.930, p < 0.05). The difference of 0.000171 in alpha power between experts (M = 0.001282, SD = 

0.000064) and novices (M= 0.000853, SD= 0.0000777) was statistically significant according to non-

parametric Man–Whitney U test (p= 0.024 < 0.05). The greater alpha power is associated with the lesser 

cognitive load, therefore, the results indicate that experts spent considerably lesser cognitive load on this 

memory task compared to novices. This outcome was important because while sketch map evaluation and 

ET metrics claimed the other way, EEG alpha power provided an additional insight referring to a 

significant difference in the spatial memory performance of experts and novices.  

 

For the memory task, average FAA score across participants (usable data: 7 novices, 10 experts) was −0.149 

(SD= 0.275, range= −0.810 to 0.160). According to the Shapiro–Wilk test, p= 0.006 showed that the data was 

normally distributed (D(17)= 0.870, p > 0.05), therefore, we applied two-way ANOVA to explore whether 

the difference between expert and novice groups was statistically significant. Novices (M= −0.054, SD= 

0.252) and experts (M= −0.216, SD= 0.283) showed no significant difference in FAA scores (F(1,15)= 0.199, 
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p= 0.245). However, 70% of experts had negative scores on this metric, which reflects greater relative right 

activation, suggesting withdrawal-related motivation. Although the average FAA scores were negative for 

novices, 57% of them exhibited larger left-hemispheric activation, which is an indicator of approach-

oriented motivation and positive affective states. 

4.3.2. Experiment 2 

ET results are shown in Figure 4.8. Fixation durations of novices were longer, and the difference between 

experts and novices increased as the difficulty increased. For the hard tasks, this difference was the highest. 

On the contrary, the number of fixations (per second) of experts was higher, and the difference increased 

as the difficulty decreased. Therefore, these two groups differed the most for the easy tasks. The eye 

movement data for both metrics fit normal distribution (Shapiro–Wilk test) for easy and moderate tasks. 

For these two categories of task difficulty, no statistically significant difference emerged between experts 

and novices in terms of the average fixation duration (Feasy= 0.261, p= 0.232; Fmoderate= 0.174, p= 0.514). 

Additionally, no significant interaction effect was observed between expertise and task difficulty (F (2,22)= 

0.208, p= 0.814). 

 

The difference in the number of fixations per second was not significant (Fmoderate= 1.861, p= 0.165) for 

moderate tasks, whereas it was significant for easy tasks (Feasy= 0.006, p = 0.019). For the hard tasks, the 

average fixation durations were not normally distributed across participants (Shapiro–Wilk test) and we 

observed no statistically significant difference between expert and novice groups (Mann–Whitney U, p = 

0.886). The data for the number of fixations per second fit the normal distribution (Shapiro–Wilk test), and 

no significant difference occurred between the two groups based on two-way ANOVA test (Fhard= 0.064, p= 

0.983). Moreover, the interaction between expertise and task difficulty was not significant (F (2,22)= 1.616, 

p= 0.221). 

 

 
Figure 4.8. ET metrics belonging to Experiment 2 (a. average fixation duration (ms), b. the number fixations per second) 

 

Figure 4.9 depicts the ERPs in theta and alpha averaged for a novice male for Block 1 and Block 2. Here, we 

would like to show how individual data might include inconsistencies, although we observed negative 

alpha power and on the contrary, positive and relatively higher powers in theta frequency in most EEG 

channels (see Table 4.2). Frontal channels (e.g., Fp1, F3, F7, and F8) might not be trusted because they might 
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still contain small blink artifacts acting as confounding effects, however, except for that, we usually 

observed ERD in alpha and ERS in theta power. Obviously, the cognitive load cannot be interpreted based 

on one or two participant data for a single block. The overall results will be of aggregating blocks based on 

task difficulty (i.e., easy, moderate, hard) and averaging many trials of many participants for every 

difficulty level. However, the preliminary data analysis seems promising for further analysis of the EEG 

power spectrum. With this study, we attempted to verify the proposed methodology and prove that with 

our experiment design and hardware & software set up, it is possible to synchronize ET and EEG data to 

obtain more detailed insight on user behaviors and observe the EEG metrics, alpha and theta power. 

Table 4.1. The event-related changes in EEG power spectral density (PSD) for alpha and theta frequency bands 

between activation and reference intervals. 

EEG channels 
ERP theta 

(4-8 Hz) 

ERP alpha 

(8-13 Hz) 

ERP theta 

(4-8 Hz) 

ERP alpha 

(8-13 Hz) 
 

 Block 1 (μV2/Hz) Block 2 (μV2/Hz)  

C3 4.76x10-5 -5.83x10-6 8.57*10-1 -4.92*10-2  

F3 -1.37x10-5 -3.87x10-6 4.58*10-1 -1.15*10-2  

F7 2.58x10-4 2.59x10-7 3.15 9.89*10-2  

F8 3.25x10-4 8.36x10-6 5.23 -2.18*10-3  

Fp1 5.42x10-4 -1.54x10-6 6.15 -1.7*10-2  

Fp2 7.15x10-4 3.22x10-6 7.13 3.49*10-3  

O1 3.29x10-5 -2.76x10-6 9.32*10-1 -6.22*10-2  

O2 3.11x10-5 -1.23x10-5 5.41*10-1 -7.39*10-2  

P3 1.11x10-4 -3.49*10-6 1.75 -3.83*10-2  

P4 6.03x10-5 -5.18x10-6 3.72*10-1 -2.32*10-1  

T4 9.72x10-5 -5.30x10-6 1.05 -1.54*10-2  

 
Figure 4.9. The event-related changes in EEG power spectral density (PSD) for alpha and theta frequency bands (left 

figure for Block 1, right figure for Block 2) (μV2/Hz). 
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4.4. Discussion 

ET metrics in the first experiment showed that there was no significant difference between expert and 

novice participants, similar to what was found in the second experiment, except for novices exhibiting a 

lesser number of fixations for easy tasks. This finding is interesting considering our hypotheses and it can 

be evidence that expert and novices use similar strategies for moderate and hard tasks; however, novices 

might think about easy tasks more deeply or they find even easy tasks more confusing. On the other hand, 

we observed more fixations and longer fixation durations for novices in hard tasks, and a similar situation 

applies for experts in easy tasks. To be able to interpret this outcome, we can look into saccade-related 

metrics because of longer search times, more fixations, shorter saccades, and longer fixation durations with 

increasing crowding and decreasing span size (Vlaskamp, and Hoog, 2006). Triangulating ET data with 

EEG data might also contribute to judging this result better, therefore, there is still a lot of work to do in 

terms of further analysis. For instance, while ET metrics do not differ across different conditions, EEG 

metrics argue otherwise (e.g. Gedminas, 2011). 

 

Studying the EEG metrics indicating the cognitive load suggested an important insight on map users and 

seems assuring to be integrated as a complementary methodology and a way of assuring the validity of 

research. However, EEG requires a quite extensive experience to acquire, analyze and interpret the data, 

and one of the motivations of this research was to emphasize the importance of the experiment design, 

especially when EEG comes into play.  

 

On the one hand, as methodological decisions are highly dependent on the research questions and 

hypotheses regarding them, it is important to describe a solid objective for the user study with 

psychological design principles in mind and to identify the key metrics answering the research questions. 

On the other hand, although the experiment within this study is limited to a spatial memory task and the 

methodological design of the other experiments may vary on a large scale, the technical issues to overcome 

and the preprocessing steps of the collected data are valid for almost all ET&EEG experiments. Recording 

EEG and ET data in free-viewing tasks has been a challenge and rarely applied, especially due to the precise 

co-registration of gaze position. To minimize the muscle artifacts due to unnatural sitting positions, using 

a chin rest and adapting the position of the participant is crucial; besides, this makes sure that the 

participant has enough rest between blocks so that they do not exhibit fatigue and move as little as possible 

during the experiment. Electromagnetic artifacts that are elicited from other electrical devices and 

introduced as line noise in EEG data should be identified and filtered out. For accurate synchronization of 

both EEG and ET data records, Transistor-transistor logic (TTL) triggers is preferred as it is the most 

straightforward and reliable method (e.g. Dimigen, and Reinacher, 2013; Nikolaev, Meghanathan, and van 

Leeuwen, 2016). Although proper synchronization can be achieved with the TTL trigger method, in our 

experiment, the monitor offset value limited studying the eye-fixation-related potentials requiring high 

temporal resolution in terms of synchronization of EEG and ET. However, our experiment setting allows 

for studying the EEG activity power spectrum, and ET data can still be synchronized offline and ET metrics 

can be correlated with EEG data on a trial basis. Therefore, the feasibility of the methodology should always 

be verified in advance considering the possible technical constraints related to the recording equipment. 
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Although some procedures such as data management (e.g., converting data into a compatible format with 

EEGLAB) and noise filtering (e.g., applying high- and low-pass filters on the fly) can be automatized, many 

other steps such as bad channel removal, which is mostly carried out by visual inspection, are performed 

manually. In addition, preprocessing and analyzing the data is inherently the most labor-intensive and 

complicated part of the study. Since each participant’s data consists of a number of trials and should be 

handled individually, the processing stage is overall very time-consuming. 

4.5. Conclusions 

We presented two cartographic user experiments first to demonstrate what is possible with the co-

registration of EEG and ET and to investigate the spectral characteristics of cognitive processes in free 

viewing conditions, only within the frame of the specific spatial memory task described for this study. Our 

results showed that EEG can be employed as a complementary technique to get a detailed insight about 

user actions and behaviors and reveal the information that we did not observe with eye tracking. While 

eye tracking metrics in the first experiment demonstrated that the difference between experts and novices 

are not significant, the EEG alpha power analysis suggested that this difference was significant, indicating 

that this specific spatial memory task caused more cognitive load in novices. Therefore, triangulating EEG 

and ET data seems useful to be able draw conclusions on user’s behavior and also shows that the data 

require more investigation. 

 

Although the analysis of the second experiment is still in progress, preliminary results of event-related 

power changes in alpha and theta allowed us to estimate the variations in the cognitive load that a certain 

task demands. The future work will focus on alpha & theta power computations considering both user 

groups and varying task difficulties. In this respect, alpha and theta power changes will be averaged for 

easy, moderate and hard tasks considering experts and novices to explore the influence of expertise on the 

cognitive load. By this way, we will be able to tell whether there is a difference across participants, and if 

so, how much this difference is and how significant it is. Having ET metrics calculated, we will then link 

and correlate them with EEG metrics to estimate the overall cognitive load. 

 

Combining EEG and ET is not straightforward since there are numerous methodological and technical 

problems to overcome, yet it is indeed a very valuable technique to explore the individual differences and 

similarities of map users through perceptual and cognitive procedures. If we continue staying engaged 

with experimental psychology and cognitive science research, it will contribute to the future progress of 

scientific cartography. The more we know about the limitations and capabilities of visual perception and 

cognition of different map users, the higher the possibilities to design cartographic products in a more 

efficient, understandable and effective way.  
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Chapter 5: 

Experiment 2: Eye tracking & EEG 
 

 

 

 

 

 
 

 

 

“One of the most pervasive mistakes is to believe that  

our visual system gives a faithful representation of what is “out there” 

 in the same way that a movie camera would. 

… 

You are not perceiving what is out there.  

You are perceiving whatever your brain tells you.” 

 

David Eagleman, Incognito: The Secret Lives of the Brain, 2011 
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Abstract. The main objective of this chapter is to explore the cognitive processes of a group of expert and novice map 

users during the retrieval of map-related information within varying difficulty levels (i.e. easy, moderate, hard) by 

using eye tracking and EEG. In this context, we present a spatial memory experiment consisting of a large number of 

stimuli to study the effect of task difficulty on map users’ behavior through cognitive load measurements. Next to the 

reaction time and success rate, we used fixation and saccade related eye tracking metrics (i.e., average fixation 

duration, the number of fixations per second, saccade amplitude and saccade velocity), and EEG power spectrum (i.e. 

event-related power changes in alpha and theta frequency bands) to identify the cognitive load. While fixation metrics 

indicated no statistically significant difference between experts and novices, saccade metrics proved the otherwise. 

EEG power spectral analysis, on the other side, suggested an increase in theta power (i.e. event-related 

synchronization) and a decrease in alpha power (except moderate tasks) (i.e. event-related desynchronization) at all 

difficulty levels of the task for both experts and novices, which is an indicator of cognitive load. Although no significant 

difference emerged between two groups, we found a significant difference in their overall performances when the 

participants were classified as good and relatively bad learners. Triangulating EEG results with the recorded eye 

tracking data and the qualitative analysis of focus maps indeed provided a detailed insight on the differences of the 

individuals’ cognitive processes during this spatial memory task. 
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5.1. Introduction 

Cognitive processes emerge from both overt (externally detectable) and covert attention (internally 

detectable), and attention is a fundamental cognitive function that controls all the other cognitive processes 

such as perception, memory and learning. Attention can be driven unintentionally by external events (i.e. 

bottom-up) or deliberately by internal expectations requiring cognitive control (i.e. top-down). Top-down 

attention influences the selection of visual stimuli based on previous experience and current goals, while 

filtering out distracting objects/visuals. The working memory, whose performance depends on the 

cognitive demands of the task, plays a critical role in guiding these top-down attentional processes by 

keeping present goals in mind (Pratt et al, 2011). Map learning involves complex cognitive processes and 

is different from other learning concepts, in the sense that it requires understanding and memorizing the 

information presented in map format, and this information is presented at once (Thorndyke & Stasz, 1980). 

When people need to perform a spatial memory task, they tend to memorize the location, color, shape, and 

size of the objects (i.e. visual variables) together with their spatial relationships between each other (Keskin 

et al., 2018). They also adapt themselves to when, how and in which order they select and focus on a map 

object of their interest. Therefore, each map user can develop their own strategy to approach the spatial 

information on maps. Being an example of top-down attentional tasks, map learning causes a cognitive 

load that varies depending on the task difficulty and the individual characteristics. Cognitive load refers to 

the used amount of working memory resources. It has been used to explain how humans deal with 

increasing cognitive demands associated with the increased task difficulty in actions where the cognitive 

skills are more important than the physical ones. Even if the task’s difficulty is one of the most essential 

factors affecting performance, cognitive load is used to describe the mental cost of accomplishing task 

demands. Fluctuations of attentional state are also modulated by cognitive load in a sense that an increase 

in cognitive load involves increased attentional processing (Di Stasi et al., 2011). In this context, map design 

and the level of complexity of maps might have an impact on cognitive load and even influence how 

difficult a particular task can be. 

 

Performance is generally defined by the reaction times and accuracy/success rates. It is worth mentioning 

that the reaction time can be related as a metric to indicate the fatigue of participants. More difficult tasks 

would require more cognitive effort from a user and may result in longer response times. Cognitive load 

can be a complementary measure to distinguish between users who perform a task with equal reaction 

time and accuracy rates but with different levels of cognitive effort, helping to develop interfaces that 

require less cognitive capacities.  

 

Cognitive load can be extracted by using both fixation and saccade related eye tracking metrics, On the one 

hand, fixations are stable point of regards (PORs) during a certain time span (at least 80 to 100 ms) and 

indicate the users’ content interpretation at that location (Ooms, 2012). For instance, average fixation 

duration is associated with the attentional procedures, while the number of fixations per second indicates 

the speed of attention. Fixation duration and the number of fixations are generally inversely correlated and 

higher fixation durations indicate higher processing load (Keskin et al 2018, 2019). On the other hand, 

saccades are short (e.g. typically 30-80 ms) and voluntary eye movements between two fixations and can 

be visualized as scan paths. Saccadic eye movements are identified with their amplitude, duration, and 
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velocity, and the relationship between these three parameters is called the ‘main sequence’. The 

measurements of saccade velocity and amplitude helps observing the pattern of a scan path and exploring 

the cognitive effort. Saccade amplitude (length) and saccade velocity are highly correlated to each other 

and discriminatory parameters in terms of cognitive performance (Di Stasi et al., 2011). Saccade velocity 

(°/s) is the average saccade speed in degrees per second, whereas saccade amplitude (°) is the size of the 

saccade in degrees. Higher saccade velocity average indicates higher stress and task complexity and lower 

concentration while doing the task. The higher the cognitive load, the shorter the saccades, and the higher 

the saccade velocity (Behroozi et al., 2018). 

 

Based on the existing eye tracking literature on the differences between expert and novice map users, we 

know that experts have better defined eye-scanning patterns, mostly have shorter reaction times and 

fixations and more fixations per second (e.g. Li et al., 2013, Ooms et al., 2012), and also fewer saccades (e.g. 

Dong et al., 2018) of which all are correlated with a low cognitive load. Regardless of their expertise, users’ 

eye movements reflect the main elements on map stimuli and their attention is influenced by deviating 

colors on maps (Ooms et al., 2014). The cognitive strategies of experts and novices might differ as well, 

regardless of the type of the visual stimuli. In the context of solving a physics problem, correct answers are 

associated with the fact that the participants look at thematically relevant areas, unlike wrong answers 

being correlated with their focus on perceptually salient areas of the visual stimulus (Carmichael, et al., 

2010). Similarly, while solving a thematic map problem, unsuccessful participants were not able to use of 

the thematic legend properly, focus on the relevant map layout elements and adequate map content 

(Havelková & Gołębiowska, 2020). 

 

EEG is another non-invasive and direct method to measure cognitive processes in the brain. The EEG signal 

represents oscillations observed across a wide range of frequencies which are commonly divided into 

distinct frequency bands (i.e. delta band: <4 Hz, theta band: 4-8 Hz, alpha band: 8–12 Hz, beta band: 13–30 

Hz, gamma band: >30Hz) (Fink and Benedek, 2013). Spectral analyses of the EEG (i.e. power spectral 

density (PSD)) can be used to compute the band-specific frequency power for given periods of time, i.e. 

during a task/trial. Event-related power decreases from a reference to an activation interval are good 

indicators of cognitive load. As explained in Chapter 3 and 4, alpha and theta power are associated with 

the cognitive load in a sense that alpha decreases and theta increases as cognitive processing increases 

(Pfurtscheller & Da Silva, 1999). The power deccreases are commonly referred to as event-related 

desynchronization (ERD), on the contraray, the power increases are referred to as event-related 

synchronization (ERS). 

 

To study the cognitive procedures of individuals during a map learning task, eye tracking and EEG 

technologies can be combined (e.g. Al-Samarraie, 2019; Gedminas, 2011; Keskin et al., 2018; 2019; Lanini-

Maggi, 2017). Since eye movements and attentive cognition are linked, it is possible to detect users’ 

cognitive states in situ via eye trackers. Once these cognitive states are understood, effective spatial 

visualizations that adapt themselves to their users’ current cognitive capacities (e.g. cognitive load) can be 

developed (Zagermann et al., 2016). While eye tracking is used to detect overt attention through gaze 

movements, EEG, which is sensitive to the instantaneous changes in the brain, is more likely to detect covert 
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attention through direct measures of the electrical activity along the scalp. As well as eye tracking, EEG 

requires a statistical and visual analysis of cognitive processes. Furthermore, it has commonly been applied 

in cognitive and experimental psychology to study how the human brain responds to any kind of external 

stimuli (e.g. Bombeke, 2017; Meghanathan et al.,2019; Verhulst, 2018). Therefore, the co-registration of eye 

movements and EEG rhythms is promising for cartographic usability research especially when studying 

the behavior of different map user groups (e.g. experts, novices) as the insights that particularly arose from 

the personal differences contribute to creating effective and user-friendly cartographic products for those 

user groups. 

 

Our main research objective is to explore the cognitive processes of expert and novice map users during 

the retrieval of map-related information contained in a map stimulus and within varying difficulty levels. 

Therefore, we aim to test the effect of the task difficulty on map users’ attentional behavior through 

cognitive load measurements. We are interested to explore whether the cognitive procedures used by 

experts and those used by novices differ for basic spatial memory tasks. We expect that experts might apply 

more structured strategies that are particular for map use and might execute the tasks faster and in a more 

efficient way due to their specific map knowledge. 

 

Previously, we investigated the spatial memory (i.e. map learning) abilities of map users through two user 

experiments employing mixed methods of (i) sketch maps and eye tracking (Chapter 2) and (ii) eye tracking 

and EEG (Chapter 4) by emphasizing the importance of cartographic/psychological experimental design. 

While, in Chapter 4, we mostly focused on the experimental set-up of the user study presented in this 

chapter, we now present the results of the EEG analysis in detail with the aim of triangulating them with 

the recorded eye tracking data. With this approach, we will be able to interpret cognitive processes 

occurring during this spatial memory task in a more holistic way. In this context, we introduce the 

behavioral data (i.e. reaction time, response accuracy), saccade-related metrics such as saccade velocity and 

saccade amplitude, their relationship with the previously obtained fixation related metrics and their impact 

on understanding the cognitive strategies of expert and novice map users. Additionally, attentional 

behaviors of two groups are further explored with the qualitative analysis of focus maps. We also provide 

event-related EEG analysis (i.e. PSD) of two user groups for different difficulty levels of the spatial memory 

task. Alternatively, the recruited participants were classified as good learners and relatively poor learners 

based on their overall task success rates, and we present the results of the EEG analysis conducted with 

respect to this classification as well. 

5.2. Methodology  

The methodology used to process the collected eye tracking and EEG data is not straightforward, and the 

algorithms used to detect fixation, and saccades or EEG rhythms could influence the results. We used the 

same methodology for the experimental design and a subset of the same dataset for data analysis of the 

collected data as in Chapter 4. Table 5.1 summarizes the experimental design elements. Preprocessing of 

the EEG recordings including the steps such as noise filtering, bad channel removal, channel interpolation, 

re-referencing and segmentation was handled in EEGLAB open-source MATLAB toolbox by following 

Makoto’s preprocessing pipeline (Delorme & Makeig, 2012). Event-related changes in the spectral power 
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density (PSD) with respect to alpha and theta frequency bands were calculated as explained in Klimesch 

(1999) and Pfurtscheller (1999). We calculated the EEG metrics not only for experts and novices (i.e. 

classification based on expertise), but also for good learners and relatively poor learners (i.e. classification 

based on success rates). Theoretically similar to what was done by Thorndyke and Stazs (1980), we defined 

good learners as those who performed better than the average did and the rest would be relatively poor 

map learners, regardless of their expertise.  

Table 5.1. Experimental design elements (modified from Table 1.4). 

 Experiment 2 

Participants 

20 participants 

10 experts (5 females, 5 males) (average age: 28) 

10 novices (5 females, 5 males) (average age: 26.4) 

Average age: 27.2, SD: 3.9 

Task procedures 

& 

Stimuli 

Randomized block design: Seven blocks representing seven difficulty 

types. Each block includes 50 trials (i.e., one for each stimulus) focusing 

on the similarity of: 

Block 1: All map elements (the whole map) 

Block 2: Roads and hydrography 

Block 3: Roads and green areas 

Block 4: Green areas and hydrography 

Block 5: Green areas 

Block 6: Hydrography 

Block 7: Roads 

Independent variables 
7 task difficulty levels (i.e., classified as easy, moderate, hard) 

2 expertise levels (i.e., experts vs. novices) 

Dependent variables 

Response time, success rate (i.e. correct answers), 

eye tracking metrics (average fixation duration, the number of fixations 

per second, saccade velocity, saccade amplitude, EEG metrics (alpha and 

theta power changes (ERD/ERS)) 

5.2.1. Apparatus 

A dual PC set-up was established for EEG and eye tracking to simultaneously capture participants’ 

psychological data (see Keskin et al., 2019). EEG was recorded using BIOPAC Acqknowledge software and 

hardware, and an International 10-20 System ECI electrode cap (i.e. recording electrodes: Fp1, Fp2, F3, F4, 

C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6; the linked mastoids as reference and ground) with a sampling 

rate of 500 Hz. The SMI RED 250 eye tracker was synchronized with EEG to capture the gaze activities 

simultaneously and to monitor the possible eye movement artifacts on EEG. To ensure a good enough skin-

electrode interface, the impedance was measured using BIOPAC EL-CHECK in advance of recording for 

every participant. We paid attention to keep the electrode impedances of the whole circuit (i.e. ground, 

active EEG, reference electrodes) less than 10 K ohms as suggested by Herman et al. (2015) and Teplan 
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(2002). To ensure that participants remained at a fixed distance from the screen and to avoid head 

movements, we established a chin rest, which was positioned at 70 cm from the screen. The horizontal and 

vertical eye positions for both eyes were recorded at a rate of 250 Hz. 

5.2.2. Participants 

This research got the approval of the Ethics Committee of the Faculty of Business and Economics of Ghent 

University where we conducted our experiments. We considered experts who hold at least an MSc degree 

in geomatics and other geo-related domains. The novices were selected from the volunteers who had no 

professional experience with maps. As a rule of psychological experiments, they were at least above 23-

years-old to be able match their age with the average age of experts with a low standard deviation. In total, 

both experts and novices, whose age (N = 20, MED = 27.2, SD = 3.9) and gender (10 F, 10 M) match, 

performed the same experiment under the same conditions (see Table 5.1 for more detail). 

5.2.3. Task and Stimuli 

The spatial memory task related to the retrieval of the main structuring elements of maps varied in 

difficulty; hard, moderate, and easy. Hard tasks focused on (1) all elements, and (2) roads & hydrography; 

moderate ones focused on (3) roads & green areas, and (4) green areas & hydrography; and easy ones 

focused on (5) green areas, (6) hydrography, and (7) roads. Accordingly, the stimuli included in tasks were 

presented as seven randomized blocks; each including 50 trials of the same type of map elements (i.e. in 

total 350 trials) (Figure 5.1). For the classification of the task difficulty, we considered the average reaction 

times of all participants corrected based on the amount of errors committed, i.e. the inverse efficiency score 

(Townsend & Ashby, 1978).  

5.2.4. Procedures 

Before each trial, participants were shown a fixation cross in the middle of the screen for a duration of two 

seconds. This is called baseline period (i.e. reference interval) and refers to the pre-stimulus duration 

without any task demands except for concentrating on a displayed cross. During the trial, participants were 

asked to study a map stimulus in a free-viewing condition for seven seconds. This is called the task period 

(i.e. activation interval), where the participants were required to perform the experimental task. After 

studying the map stimulus, four graphical response panels appeared. The panels included skeleton maps 

in which only the main structuring element(s) of interest were drawn and the participants were instructed 

to select the panel with the correct skeleton map corresponding to the stimulus they had just studied. By 

the time they decided on their answers with a simple key command, the trial was terminated and they were 

automatically presented with the fixation cross for two seconds and then the next map stimulus/trial was 

initiated. With the preparation of the participant (i.e. reading instructions, signing  (please see Annex 2 for 

full instuctions and Annex 3 for the task structure), wearing the EEG cap, impedance check, and calibration 

of the eye tracker) and small breaks between blocks to combat the fatigue, each participant averagely 

required 2.5 hours to complete the experiment consisting of seven blocks. 
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Figure 5.1. Example stimulus and experiment blocks: (a) Original stimulus; (b) Block 1: All map elements; (c) Block 2: 

Roads and hydrography; (d) Block 3: Roads and green areas; (e) Block 4: Green areas and hydrography; (f) Block 5: 

Green areas; (g) Block 6: Hydrography; (h) Block 7: Roads (modified from Keskin et al., 2019). 

5.2.5. Psychological measures to estimate cognitive load  

Next to the average fixation duration and the number of fixation per second, which were previously 

published in (Keskin et al., 2019), we explored saccadic eye movements as measures of cognitive processing 

demands, i.e. cognitive load, because they are highly distinctive, task-dependent and can be correlated with 

fixation duration to interpret the overall cognitive load (Zagermann et al., 2016). There is a strong evidence 

that longer fixation duration and shorter saccades are related to higher cognitive load  (Holmqvist et al., 

2011) and indicate that more attentional resources were required (Debue & Leemput, 2014). Consequently, 
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it is possible to formulate that fixation duration and saccade velocity increase but saccade length decreases 

when information processing rises. 

 

In addition to the above-mentioned quantitative analysis of the collected eye fixations and saccades, we 

randomly selected 10 stimuli used in the experiments and conducted a qualitative analysis (e.g. visual 

inspection of eye fixations) focusing on the attentional behavior of the participants to the map elements of 

interest using focus/heat maps. 

 

For EEG, we focused on the specific group of electrodes due to the fact that alpha reduction (alpha ERD) is 

generally observed at parietal regions e.g. (Keil et al 2006; Klimesch, Doppelmayr, Roehm, Pöllhuber & 

Stadler, 2000) and theta increase (theta ERS) is most profound over frontal electrode locations (Brouwer, 

2012). In this context, we focused on the Fp1, Fp2, F3, F4, F7 and F8 frontal channels for theta power and 

the P3 and P4 parietal channels for alpha power e.g. (Jensen & Tesche, 2002; Missonnier, et al., 2006; 

Sauseng et al., 2005) (Figure 5.2). After averaging all usable trials within the reference and activation 

periods, event-related power changes at an electrode were calculated by subtracting the log-transformed 

the power during activation intervals from the log-transformed the power during the reference intervals 

(Keskin et al., 2019) (see Chapter 4). Consequently, we grouped the trials based on the task difficulty and 

averaged the theta spectral power at frontal channels and alpha spectral power at parietal channels for 

novices and experts separately. 

 
Figure 5.2. Selected electrodes for the EEG analysis (International 10-20 system). 

5.3. Results 

5.3.1. Behavioral measures 

The overall average reaction time was 5.1 s (SD= 1.1) for experts and 3.7 s (SD= 0.5) for novices, 

consequently, experts spent more time than novices did for all tasks. For hard tasks, experts spent 6.9 s 

(SD= 1.4) whereas novices took 5.0 s (SD= 0.6); for moderate tasks, experts completed them in 5.4 s (SD= 

1.4) while novices took in 2.9 s (SD= 0.6); and lastly for easy tasks, experts responded in 3.7 s (SD= 0.9) and 
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novices took in 2.8 s (SD= 0.4) (Figure 5.3a). These differences between the two groups are statistically 

significant across the hard and moderate tasks (Mann–Whitney U test: Uhard= 106.000, p= 0.022; Umoderate= 

114.000, p= 0.035), however, it was not the case for easy tasks (Mann–Whitney U test: Ueasy= 128.000, p= 

0.138). 

 

(a) (b) 

Figure 5.3. (a) Reaction times; (b) Success rates (*significant difference). 

 

The overall average success rate (i.e. correct answers in %) was quite high for both group of participants, 

averaged for 350 trials per participant in total, Moverall= 91.8% (SD= 4.7, range= 78.3%-98.3%). For hard tasks, 

experts scored 90.6% whereas novices scored 86.8%; for moderate tasks, experts achieved the score of 

93.5%, while novices scored 88.8%; and lastly for easy tasks, experts responded the trials with a 95.5% 

success rate and novices scored a 93.3% success rate (Figure 5.3b). The success rate did not significantly 

differ across the categories of expertise for any difficulty level (Mexperts= 93.2%, Mnovices= 89.6%; Mann–

Whitney U test: Ueasy= 165.000, p= 0691, Umoderate= 150.000, p= 0.400, Uhard= 178.500, p= 1.000). The reason for 

high success rates underlies the design of the experiment because we intended to collect the data with as 

many correct answers as possible for EEG analysis. When accomplishing a task or failing it, different 

cognitive processes occur in the brain, hence, it is appropriate to consider correct and wrong answers 

separately. If approximately equal in number, correct and wrong answers could be compared in terms of 

EEG-related analysis. However, we were interested in the cognitive processes occurring during the 

accomplishment of the task, in other words, correct answers. In this context, the experiment was designed 

as a rather easy one so that when we exclude the wrong answers, which are much less in number, there 

would still remain enough trials to average for the EEG power spectrum analysis. 

 

Although we observed slight differences in performances, it might be interesting to explore success rates 

in terms of good and relatively poor map learners instead of experts and novices. Theoretically similar to 

what was done by Thorndyke & Stazs (1980), we defined good learners who performed better than the 

average did and the rest would be relatively poor map learners regardless of their expertise. Out of 20, 15 

participants were good learners with an average score of 94.6% overall and consisted of nine experts (4F, 

5M) and six novices (3F, 3M); the remaining five were relatively poor learners with an average score of 
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85.8% and this involved one expert (F) and four novices (2M, 2F). This difference was statistically significant 

(Mann–Whitney U test: U= 67.500, p= 0.000) and showed that good map learners remembered more map 

elements compared to the relatively poor learners. 

 

The overall average success rate for hard tasks were 88.7% with the lowest score of 66.0% and the highest 

being 98.0%. Good learners averagely scored 92.5%, whereas the other group scored 77.4%. The overall 

average success rate for moderate tasks was 91.2% with the lowest score of 74% and the highest being 

98.0%. The average score of good learners was 93.7% and the relatively poor learners scored 83.4%. The 

overall average success rate for easy tasks was 94.4% with the lowest score of 80.0% and the highest being 

99.3%. Good learners resulted as 96.1% while the remaining group as 89.2%. The difference occurred 

between good learners and the relatively poor learners for easy tasks was 6.9%; for moderate ones, 10.3%; 

and for hard ones, 15.1%. It is also important to mention that we observed an increase in terms of the 

performance differences between good learners and relatively poor learners as the task difficulty increases 

(Figure 5.4). 

 

One interesting finding to note is that the reaction times longer than the average (i.e. between 4.5 s - 6.6 s) 

all belonged to the good learners, which consisted of five experts and one novice. Additionally, the top 

three shortest overall reaction times (i.e. 3.0s, 3.1s, 3.5 s.) all belonged to the relatively poor learners (all 

novices) with the top three lowest overall success rates (i.e. 78.3%, 80.0%, 85.1%). This shows that spending 

more time on tasks helped experts achieving higher accomplishment rates whereas the fast responses of 

novices resulted in a lower number of correct answers. 

 

 
Figure 5.4. Success rates of good and relatively poor learners 

5.3.2. Psychological measures 

Although novices had longer fixation durations compared to the experts did for all tasks (Figure 5.5a),this 

difference for fixation duration was not considered as significant as a result of applied statistical tests (Feasy= 

0.261, p= 0.232; Fmoderate= 0.174, p= 0.514, Mann–Whitney U test: Uhard= 1812391.500 p= 0.886). Experts mostly 

exhibited a higher number of fixations per second for all difficulties (Figure 5.5b). However, the difference 

between experts and novices was not significant for hard and moderate tasks (Fmoderate= 1.861, p= 0.165, Fhard= 
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0.064, p= 0.983), whereas it was significant for easy tasks (Feasy= 0.006, p= 0.019) (see Chapter 4 for more 

detail). 

 

In Chapter 4, we suggested that it would be useful to investigate saccade related metrics to interpret the 

cognitive load further. Figure 5.5c and 5.5d show saccade amplitude and velocity varied for experts and 

novices for the easy, moderate and hard tasks. As the task becomes harder, we observed that the saccade 

amplitude becomes smaller; hence, the saccades become shorter which indicates a higher cognitive load. 

Regarding to saccade velocity, a contradicting trend is seen between experts and novices. Novices exhibited 

the highest velocity with the easy category, which is linked with the highest amplitude, and they 

demonstrated the lowest with the hard category, which is linked with the lowest amplitude. This finding 

is in line with the previous research, e.g. (Behroozi et al., 2018), however, the expert group showed the 

opposite result, in the sense that they had the highest velocity with the most difficult category and thus the 

lowest amplitudes. 

 

None of the saccade related metrics for all types of tasks (i.e. easy, moderate, hard) fits the normal 

distribution. (Shapiro-Wilk test for saccade amplitude: W= 0.933, p= 0.000 < 0.05; for saccade velocity: W= 

0.970, p= 0.000 < 0.05). Therefore, we applied Mann-Whitney U non-parametric test to measure the 

significance of the differences between two groups, and as a result, saccade amplitude (Uhard= 1554376.500, 

phard= 0.000 < 0.05; Umoderate= 1363219.500, pmoderate= 0.000 < 0.05; Ueasy= 3061036.000, p= 0.000 < 0.05) and saccade 

velocity (Uhard= 1750439.000, phard= 0.000 < 0.005; Umoderate= 1536918.500, pmoderate= 0.000 < 0.05; Ueasy= 3368847.500, 

peasy= 0.000 < 0.05) of expert and novice participants were all significantly different for all types of tasks. For 

both metrcis, we observed no significant interaction between expertise and task difficulty (i.e. for saccade 

amplitude: F (2,22)= 0.310, p= 0.736; for saccade velocity: F(2,22)= 0.281, p= 0.757). 

 

Compared to experts, novices exhibited larger saccades at all difficulty levels, and the difference in saccade 

amplitude between experts and novices increased as the task difficulty decreased (Figure 5.5c). The easy 

tasks received the larger saccades and the hard tasks received shorter saccades as expected. Due to the 

higher number of elements to pay attention to in hard tasks, the participants had to jump from one object 

to another in a short amount of time; therefore, they exhibited shorter saccades. Shorter saccades 

demonstrated a higher cognitive load for experts at all difficulty levels, however, the saccade velocity data 

claimed slightly differently. The novices accomplished moderate and easy tasks with a faster saccade 

velocity, whereas experts had higher saccade velocity in hard tasks (Figure 5.5d). These findings show that 

experts manifested more cognitive load in hard tasks according to their shorter saccade amplitudes and 

higher saccade velocity, although their fixation durations were shorter compared to the novices but not 

significantly. Accordingly, experts did not accomplish the tasks with a lesser cognitive load but they scan 

the map faster and in a more effective way (with higher success rates) when it comes to hard tasks.  
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(a) (b) 

(c) (d) 

Figure 5.5. (a) fixation duration; (b) number of fixations per second (also published in Keskin et al., 2019); (c) saccade 

amplitude, (d) saccade velocity (purple bars: experts, blue bars: novices, *: significant difference,  error bars indicate 

standard deviation). 

 

We observed several common characteristics between expert and novices when heat/focus maps of 

randomly selected ten stimuli were visually evaluated. Some fundamental remarks are listed as follows 

(see Figure 5.6): 

 Block 1 – All map elements: the road junctions, especially in the center or close to the center of the 

map, are where all the participants inherently focused the most. Both experts and novices generally 

paid most attention to the green areas that are large and isolated. These isolated and large green 

areas received more and longer fixations in comparison to the water bodies. Hydrographic features 

received lesser fixations compared to others. The labels/texts on the map also received much 

attention from both groups. This outcome might be due to the unfamiliar language used for labels 

or the size and position of the labels; therefore, it was a distraction, yet it could be a useful input in 

map design. 

 Block 2 – Roads & Hydrography: Independently from what the spatial memory task demands, 

green areas received as many fixations as roads and hydrography did from both groups. In some 

cases, participants drew their attention even to the smaller green areas. 
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 Block 3 – Roads & Green areas: Similar situation as in Block 2 occurred for Block 3, and in this case, 

the hydrographic elements received as many fixations as the roads and green areas did. 

 Block 4 – Hydrography & Green areas: Large green areas and road junctions received the most 

fixations. In this case, the relatively larger hydrographic areas did not receive as many fixations as 

the smaller ones did. 

 Block 5 –Green areas, Block 6 - Hydrography, Block 7 – Roads: Both expert and novice participants 

majorly focused only on what the task demanded, therefore, in their focus maps only the map elements 

of interest stood out. This shows that it was easier to maintain an undivided attention when 

participants needed to focus on only one map element class. 

 

Figure 5.6. Focus maps belonging to the example stimulus in Figure 1. The maps in the red rectangle represent hard 

tasks: (1a) Block 1 - experts, (1b) Block 1 - novices, (2a) Block 2 - experts, (2b) Block 2 - novices. The maps in the yellow 

rectangle represent moderate tasks: (3a) Block 3 - experts, (3b) Block 3 - novices, (4a) Block 4 - experts, (4b) Block 4 - 

novices. The maps in the green rectangle represent easy tasks: (5a) Block 5 - experts, (5b) Block 5 - novices, (6a) Block 6 

- experts, (6b) Block 6 - novices, (7a) Block 7 - experts, (7b) Block 7 - novices. 

 

Based on the PSD analysis of alpha and theta, we observed an ERD alpha and ERS in theta for easy and 

hard tasks. This finding is in line with the literature on the frontal theta activity increasing e.g., (Antonenko 

et. al, 2010; Jensen & Tesche, 2002; Missonnier et al., 2006; Mussel, 2016), and parietal alpha decreasing e.g., 

(Keil et al., 2006; Klimesch et al., 2000; Morton et al., 2019) with the cognitive load in a working memory 

task. For moderate tasks, alpha power was observed to be increasing as well as theta was. Although the 
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changes in alpha power seem very small, the theta effects seem stronger and confirm that the experts and 

novices have a different experience in this spatial memory task in a sense that experts exhibited more theta 

in moderate and hard tasks whereas novices did more in easy tasks. The increase in alpha during moderate 

tasks might be due to this spectral power feature possibly not being sensitive enough to discriminate on an 

aggregated level. A great deal of information is lost considering the values for alpha power activity are 

averaged for the whole duration of the condition (Morton et al., 2019). However, the results indicate an 

interaction with the participants for easy and hard tasks (see Figure 5.7, Table 5.2). 

 

 

Figure 5.7. Changes in PSD of alpha and theta for experts and novices (μV2/Hz ) (Alpha values are multiplied by 10 

for visualization purposes). 

 

Table 5.2. Changes in PSD of theta and alpha averaged for all tasks. 

Changes is PSD 

(μV2/Hz) 

Easy Moderate Hard 

Experts Novices Experts Novices Experts Novices 

theta (average of frontal 

channels) 
0.0005319 0.0006844 0.0004911 0.0004449 0.0006153 0.0004781 

alpha (average of parietal 

channels) 
-0.0000008 -0.0000014 0.0000023 0.0000026 -0.0000029 -0.0000002 

 

To compare the cognitive load based on the task difficulty, we focused on theta power since a very small 

alpha effect was observed. The difference of theta power changes between experts and novices was 
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0.0001525 for easy tasks; 0.0000462 for moderate tasks and 0.0001372 for hard tasks. For none of the 

difficulty levels, theta values fit the normal distribution (Shapiro Wilk test: Whard= 0.875, p= 0.001; Wmoderate= 

0.773, p= 0.000 < 0.05; Weasy= 0.922, p= 0.002), accordingly, we applied Mann-Whitney U test for assessing 

the significance of the differences. The distribution of the theta power change was the same across 

categories of expertise and difficulties (Uhard= 77.000, phard= 0.519 > 0.000; Umoderate= 124.000 pmoderate= 0.367; Ueasy= 

262.000 peasy= 0.766), which shows that the difference between two user groups was not statistically 

significant. This finding suggests theta power may not be as sensitive for average cognitive load and that 

it may be developed into a valid objective measure of average cognitive load although its true potential lies 

in the possibility to measure online fluctuations in cognitive load or instantaneous cognitive load (Castro-

Meneses et al., 2020). We found no significant interaction between expertise and task difficulty (F(2,103)= 

0.443, p= 0.644) 

 

Although we expected that there would be a greater effect on theta power for the hard tasks compared to 

the others, we observed the greatest difference for easy tasks. This could be due to the hard tasks being too 

overwhelming, it being hard to stay motivated, and also the participants’ tendency to give up and not to 

invest mental effort and resources anymore e.g. (Morton et al., 2019). Participants confirmed in their post-

test questionnaires that they find the task hard to focus on and tiring. 

 

Alternatively, we calculated event-related theta and alpha power changes in EEG power spectrum for good 

and relatively poor map learners (Figure 5.8, Table 5.3). Good learners exhibited slightly higher cognitive 

load at all the levels of difficulty. Regarding the overall performances, only small and non-significant power 

changes occurred in alpha (Mann–Whitney U test: Ualpha= 846.000, p= 0.501 > 0.05), whereas the theta power 

seemed higher for good learners in all tasks and the difference that emerged between good and relatively 

poor learners was significant (Mann–Whitney U test: Utheta= 753.000, p= 0.020 < 0.05). It shows that the good 

learners exhibited higher cognitive load, regardless of the task difficulty. The biggest difference (0.000377) 

in terms of theta power change between good learners and relatively poor learners was observed for easy 

tasks. However, the differences in theta power among none of the difficulty levels was statistically 

significant ((Mann–Whitney U test: Uhard= 53.000, phard= 0.589 > 0.000; Umoderate= 90.000 pmoderate= 0.323; Ueasy= 

125.000 peasy= 0.068). 

Table 5.3. Changes in PSD of theta and alpha averaged for all tasks. 

Changes 

in PSD 

(μV2/Hz) 

Hard Moderate Easy 

GL1 RPL2 ΔP3 GL1 RPL2 ΔP3 GL1 RPL2 ΔP3 

theta 0.000594 0.000391 0.000203 0.000511 0.000351 0.000160 0.000695 0.000318 0.000377 

alpha -0.000002 0.000000 - 0.000003 -0.000001 - -0.000001 -0.000005 - 

1 GL= Good Learners, 2 RPL= Relatively Poor Learners, 3 ΔP= difference in power change. 
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Figure 5.8. Changes in PSD of alpha and theta for good learners and relatively poor learners (μV2/Hz ) (Alpha values 

are multiplied by 10 for visualization purposes). 

5.4. Discussion and Conclusion 

In this chapter, we investigated the spatial memory abilities of a group of expert and non-expert map users 

within a simple map-learning task using eye tracking and EEG and triangulated the behavioral and 

psychological data to indicate the cognitive load caused by the task. Some highlights of the findings are 

listed as follows: 

 Experts had longer reaction times (significantly longer for moderate and hard tasks), but higher 

success rates. They might be a bit more ambitious and driven to accomplish the task compared to 

novices, and have saved an extra time to review or verify their response before submitting it. It 

seems the fact that experts exhibiting more cognitive load paid off with higher success rates. 

 Novices were observed to have longer fixation durations, mostly lower number of fixations per 

second and higher saccade velocity (except for hard tasks) which indicate a higher cognitive load 

for novices. Additionally, the saccade amplitudes of novices were longer. In longer saccades (i.e. 

larger amplitude), the search goes all across the image and is thus less organized. Experts 

exhibiting shorter saccades means a more targeted search from one focal point to the next, which 

are close to each other in the map, therefore, a less chaotic search pattern. The shorter fixations of 

experts also show that they needed less time to interpret what they saw. 

 Although not significant, experts demonstrated higher theta power (except for easy tasks) which 

can be associated with a higher cognitive load. 

 Qualitative analysis of the eye movements shows that both groups showed similar attentional 

behavior in terms of the map area covered and the map elements on which they focused. 
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Based on the findings, it is difficult to favor one user group in terms of their performance while retrieving 

the map-related information. The map-learning and recalling strategies of experts and novices and their 

approach to the task might not be similar, however, the overall performances of them did not differ much. 

In fact, novices, in some cases, outperformed experts. This outcome might seem to contradict the results 

within the expert-novice research paradigm e.g. (Dong et al., 2018; Ooms et al., 2012); however, it is in line 

with the findings in the field of geography e.g. and in map learning domains e.g. (Thorndyke & Stasz, 1980). 

 

On the one hand, the reason why we did not find significant differences between novices and experts might 

be that they pay attention to the different aspects of a task. This affects both their perceptions of task 

complexity (i.e., task analyzability and variability) and their performance on the task. Superior performance 

by experts depends on the match between the experts' cognition and the demands of the task (Haerem & 

Rau, 2007). The fact that novices sometimes perform better than experts’ would be an evidence that they 

use different learning strategies. As explained by Postigo and Pozo (1998) ‘the subject lacking domain-specific 

knowledge tends to construct a visual-spatial mental representation, as opposed to the semantic representation of the 

expert. Experts represented given information in a domain-specific manner that was concerned with the deep semantic 

structure of that information, whereas the novices mentally represented focused-upon superficial domain-general 

aspects’ (p. 77-78).  

 

On the other hand, the reason why expertise is not as influential as we think especially for simple map-

learning tasks is due to the effect of other individual differences. According to Hunt (1978), those 

differences originate from ‘the use of simple processing procedures, knowledge related to the task and the ability to 

perform the low-level mechanics of information processing’. Experts did not always outperform novices, which 

could explain that domain knowledge was not that relevant to the task, instead general education and the 

ability to perform basic operations such as decoding, visualization, selective filtering, memory retrieval, 

and memory comparison, played an influential role in high-level procedure and strategy choices. 

Therefore, the variation in performance and strategy choice might arise from the differences in basic visual 

or spatial ability. Additionally, the competence of the expert group does not only rely on their extensive 

knowledge, but also the organization of this knowledge that forms their cognitive representations and 

characterizes them (Postigo & Pozo, 1998; Thorndyke & Stasz, 1980). 

 

We alternatively grouped the participants as good learners and relatively poor learners based on their 

success rates, and we calculated the changes in EEG power spectral density with respect to this 

classification. We observed that good learners exhibited significantly higher theta ERS considering their 

overall performance. Although the cognitive load of these groups did not differ based on the task difficulty 

within the frame of this study, classifying participants based on their spatial memory performances 

provided different insights on map user’ cognitive processes. Similar to what was found by Havelková and 

Gołębiowska (2020), unsuccessful participants differed in the general problem-solving approach, in a way 

that they tended to choose fast, less cautious strategies and lacked motivation. 
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This study also showed that high cognitive load is not necessarily associated with the low task 

performance, in fact, for most cases, it was an indicator of more elaborate, structured and efficient cognitive 

strategies especially demonstrated by experts. Therefore, it is useful to triangulate data collected via 

difference sources (i.e. quantitative and qualitative methods) to interpret the cognitive load and to 

understand the underlying behavior of the participants. 

 

Within this chapter, we analyzed the influence of the independent variables such as task difficulty and 

expertise level on the cognitive strategies of map users. As well as task and expertise, map design 

characteristics play an important role in users’ cognitive load and learning performance, hence, should be 

evaluated in order to contribute to enhancing the design and usability of cartographic products e.g. (Al-

Samarraie, 2019). We used screenshots of Google’s road maps, which is designed for everyone (i.e. 

regardless of the users’ individual differences of spatial cognition) as stimuli in our experiments, and we 

found no significant difference between experts and novices in terms of the cognitive load that these maps 

caused. It is important to mention that if the quality of the cartographic design fulfills its purpose of the 

design, it has a positive effect on users’ experience. 

 

Furthermore, the EEG power metrics used in the study and the procedures of extracting them have an 

influence on the results. To have more detailed insights on cognitive load and to detect the small changes 

in the EEG power spectrum, different procedures can be applied to the collected data. For instance, the 

seven-seconds-long study period can be segmented into sub-parts and the exact time points of the peak 

values of alpha and theta can be identified. These peak values can further be analyzed simply for the time 

periods of interest by visually inspecting the EEG time-frequency plots. Another interesting approach is to 

investigate the lower (8-10Hz) and upper (10-12Hz) alpha bands separately in order to indicate specific 

frequency effects that are not distinct when only looking at the broad alpha range as suggested by Morton 

et al. (Morton et al., 2019). There are a number of researches demonstrating different activity in upper and 

lower alpha bands in cognitive load conditions in a sense that upper alpha decreases when cognitive 

activity increases e.g. (Fink 2006; Klimesch et al., 1997; Sauseng et al., 2005. It is also possible to measure 

gamma oscillations, which are directly proportional to the cognitive activity e.g. (Fitzgibbon, 2004), and 

beta oscillations increase upon cognitive load e.g. (Güntekin et al., 2013).  

 

EEG data might be overwhelming, and there are various other aspects to investigate further and a countless 

number of analysis to perform besides the ones mentioned above. However, the experimental design has 

a primary importance in a sense that deciding on where to pay attention to and what to expect from the 

collected data have to be well planned and tested, before conducting the main experiments. When 

integrated with other qualitative and quantitative user testing methods, EEG indeed suggests a valuable 

contribution to the understanding of the cognitive processes of individuals. 
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Chapter 6: 

AoI-based Eye Tracking Analysis  
 

 

 

 

 
 

 

 

 

 

 

 

“All perceiving is also thinking,  

all reasoning is also intuition,  

all observation is also invention.” 

 

Rudolf Arnheim, Art and Visual Perception, 2004 
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Abstract. The contrast, geometry, color, location, shape and size of the map elements (i.e. visual variables), the 

distribution of the content within the map drawing area, and the task difficulty have an impact on the spatial cognition 

of linear and polygon map features. When measured and quantified based on the level of detail or the complexity of the 

map, all these characteristics can be associated with the cognition of the map element class of interest. Drawing AoIs 

around key elements of maps (i.e. green areas, water bodies, major rivers and roads, road junctions) is a more precise 

way to analyze the attention distribution of the participants. This chapter presents a preliminary AoI-based eye 

tracking analysis of Experiment 2 considering the participants’ average fixation duration, time to first fixation and 

the number of objects they covered within AoIs. 
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6.1. Introduction 

One of the important research questions is to elaborate on how the results of the conducted experiments 

can be interpreted in terms of the cartographic design principles, therefore, how they can contribute and 

drive map design. e.g., what kind of visualization/symbolization/generalization method can be 

recommended based on the distribution of the map objects? How to control advantaged and disadvantaged 

map objects equally/in the same way while visualizing, etc. The contrast, geometry, color, location, shape 

and size of the map elements (i.e. a subset of visual variables), the distribution of the content within the 

map drawing area, and the task difficulty have an impact on the spatial cognition of linear and polygon 

map features. When measured and quantified based on the level of detail or the complexity of the map, all 

these characteristics can be associated with the cognition of the map element class. 

 

The results obtained in the conducted user experiments reveal that there are no big differences between the 

participants considering expertise and success rates. The reason for this might be that the maps used are 

compatible with the production purpose and the target users that is the general audience. Nevertheless, we 

intend to investigate further what results, whether known or unknown, could be drawn towards 

cartographic design from the existing findings. Due to the large size of the collected data in terms of the 

number of map stimuli and the main structuring elements included in them, we randomly selected 10 

stimuli for which we conducted qualitative analysis with the focus/heat maps considering the map 

elements receiving the highest number of fixations. This provided a general overview of the participants’ 

attentional behavior towards the map elements of interest and the similarities related to their map learning 

strategies (see Chapter 5.3.2). However, for measurable results, drawing AoIs around key elements of maps 

(i.e. green areas, water bodies, major rivers and roads, road junctions) is a more precise way to analyze the 

attention distribution of the participants. 

6.2. Methodology 

We chose one stimulus from Experiment 2 for detailed AoI-based eye tracking analysis considering the 

average fixation duration and time to first fixation metrics. The average fixation duration will reveal the 

amount of attention drawn to a certain AoI, and the shorter the time to first fixation, the earlier the attention 

is drawn to that region. AoIs were drawn on the selected map stimulus using SMI BeGaze, and similar to 

what was done in Chapter 5, related metrics were exported considering both classification of the recruited 

participants based on (i) expertise (i.e. expert vs novices), and (ii) overall success rates (i.e. good learners 

vs relatively poor learners). Not only the AoIs relevant with the task, but also the remaining AoIs within 

the map content were considered while calculating the eye tracking metrics. For instance, Block 2 is 

dedicated to the retrieval of main roads and hydrography; nevertheless, we investigated the attention 

distribution of the participants on green areas as well. 

 

We present the average fixation duration and time to first fixation to the relevant AoIs for all seven 

experiment blocks that were grouped based on the task difficulty by emphasizing the differences and the 

similarities between participants. Additionally, the overall average fixation duration and the overall time 

to first fixation to the relevant AoIs were calculated by averaging these metrics for all blocks. To explore 

how many objects within an AoI group received the participants’ attention can contribute to the 
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understanding the attentional behavior of participants. For instance, how many roads are there, and how 

many of them received fixations and how many of them did not receive any? This could help us to 

understand which objects are the fundamental to focus, how much is enough in order to remember one 

information later or which objects are ignored and why? Therefore, using time to first fixation metrics, we 

counted the objects that received fixations separately for each block regarding three map object classes; 

roads, green areas, hydrography (rivers and water bodies). We finally discuss the attentional behavior of 

the participants towards the main structuring elements considering their geometry, size and distribution 

in the map drawing area. 

6.2.1. Participants 

We used the eye tracking data of 38 participants (Mage= 29.6, SD= 4.9) recruited for Experiment 2 and in 

this context; there were 21 novices and 17 experts. Next to level of expertise, we categorized the participants 

based on their overall success rates within the Experiment 2 for exploring the effect of their learning abilities 

on their cognitive behaviors. Therefore, 28 participants were assigned as good learners (GL) whereas 10 

participants as relatively poor learners (RPL).  

6.2.2. Stimulus & AoIs 

AoIs depicted in Figure 6.1 correspond to the main structuring elements that were required to be 

remembered by participants within different difficulty levels. The total number of AoI is 53 including 25 

main roads, 18 green areas and 10 hydrographic features (4 water bodies, 6 rivers). The roads cover the 

27.0% of the AoIs, whereas green areas 53.6% and hydrography 19.4%.  

Figure 6.1. AoIs correspond to the main structuring elements of the selected map stimulus from Experiment 2. 
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6.3. Results 

6.3.1. Average fixation duration 

The average fixation duration for the tasks demanding the recall of the polygon features were the longest 

for all participants, i.e. Block 5 (green areas), Block 6 (hydography), whereas the participants exhibited the 

shortest average durations when the task required the retrieval of linear features, i.e. Block 7 (roads). On 

the one side, we observed similarities between participants in terms of the AoIs that did not attract attention 

at all (Table 6.1). R22, R24, R25 (except for Block 2 (roads and hydrography)) and G8 were the AoIs 

neglected by all participants for all blocks regardless of task demands. All of them were located within the 

lower left corner. Furthermore, R5, which is the road lies close to the upper left corner of the map drawing 

area, received fixations only for Block 7 when the task demanded the retrieval of the main roads (Figure 

6.2). 

Table 6.1. The full list of the common AoIs that did not receive any fixations 

Blocks Roads Green Areas Hydrography 

Block 1 

(all elements) 

R25, R24, R23, R22, R20, R16, R5, 

R2 

G17, G16, G15, G12, 

G8, G6, G1 
H7, H6 

Block 2 

(Roads & Hydrography) 

R24, R22, R21, R16, R15, R14, R13, 

R6, R5 

G16, G14, G8, G6, 

G3 
- 

Block 3 

(Roads & Green areas) 

R25, R24, R23, R22, R18, R16, R15, 

R14, R9, R6, R5, R1 
G8 H7 

Block 4 

(Green areas & Hydrography) 

R25, R24, R23, R22, R20, R18, R16, 

R5 
G14, G8, G3 H7 

Block 5 

(Green areas) 

R25, R24, R23, R22, R21, R20, R16, 

R15, R13, R9, R8, R6, R5, R2 

G16, G11, G8, G6, 

G3 
H9, H7, H5, H1 

Block 6 

(Hydrography) 

R25, R24, R22, R15, R9, R7, R6, R5, 

R2, R1 

G16, G15, G14, G8, 

G7, G6 
H7 

Block 7 

(Roads) 
R25, R24, R22, R20, R16, R13, R11 G18, G16, G8, G7 H6, H5, H4, H1 

 

On the other side, we focused on the differences between the participants within hard, moderate and easy 

tasks. 

Experts vs. Novices 

Hard tasks: Themost significant difference between novices and experts was observed at H5 for Block 1 (i.e. 

all map elements) as novices did not gaze at H5 at all, and at H1 for Block 2 (i.e. roads and hydrography) 

with longer fixation duration for novices. H5 is a small water canal inside G2, which is the biggest green 

area and the AoI of all. H1 is a water body located on the very bottom left corner (Figure 6.3). 

Moderate tasks: The biggest difference between novices and experts occurred at H3 for Block 3 (i.e. roads 

and green areas) in a sense that novices exhibited longer fixation duration and at G1 for Block 4 (i.e. green 

areas and hydrography) with longer fixation duration for experts. H3 & G1 are in between two road 
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junctions; (i) R3 and R4 that are located on the right side, close to the center, (ii) R1 and R8 lie on the upper 

left side, respectively (Figure 6.4). 

Easy tasks: The biggest difference between novices and experts was remarked at R17 for Block 5 (i.e. green 

areas), at H2 for Block 6 (i.e. hydrography) both with longer fixation duration for experts, and at G11 for 

Block 7 (roads) with longer fixation duration for novices. R17 is the third longest road that is located in the 

middle of the map and partially contained within G2. H2 is a small water body also nested in G2, whereas 

G11 is a small area partially surrounding H3 that is the third largest water body (Figure 6.5). 

 

Figure 6.2. The common AoIs did not receive any fixations for none of the blocks. 

Good learners vs. relatively poor learners 

The differences in terms of average fixation duration was more visible between good learners (GL) and 

relatively poor learners (RPL) compared to those between experts and novices, especially for the hard tasks.  

Hard tasks: The biggest difference between GL and RPL was observed at H3 for both Block 1 & Block 2 as 

RPL demonstrated longer fixation durations. H3 is in between two road junctions; R3 & R4 on the right 

side, close to the center (Figure 6.6). 

Moderate tasks: The biggest difference between GL and RPL was observed at G13 for Block 3, and at R17 for 

Block 4 as in both occasions there occurred longer fixation durations for RPL. G13 is a small green area 

located approximately on the upper left corner of the map. R17 is the third longest road in the middle of 

the map, partially in contained within G2 that is the largest map element of all (Figure 6.7). 

Easy tasks: On the one hand, the biggest difference between GL and RPL was observed at H2 for Block 5 as 

GL exhibited longer fixation duration. On the other hand, for Block 6 the biggest difference occurred at H4 

and for Block 7 at G11, RPL demonstrated longer fixation durations in both cases. H2 is a small water body 

inside G2, H4 is a water body on the upper side of G2 and G11 is a small area partially surrounding H3 

(Figure 6.8).
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Figure 6.3. Average fixation duration for experts and novices at hard tasks (i.e. Block 1 & Block 2). 
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Figure 6.4. Average fixation duration for experts and novices at moderate tasks (i.e. Block 3 & Block 4). 
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Figure 6.5. Average fixation duration for experts and novices at easy tasks (i.e. Block 5 & Block 6 & Block 7).
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Figure 6.6. Average fixation duration for GLs and RPLs at hard tasks (i.e. Block 1 & Block 2). 
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Figure 6.7. Average fixation duration for GL and RPL at moderate tasks (i.e. Block 3 & Block 4). 
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Figure 6.8. Average fixation duration for GL and RPL at easy tasks (i.e. Block 5 & Block 6 & Block 7) 
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We summarized the average fixation durations within all 53 AoIs based on seven experiment blocks for 

experts and novices (Figure 6.9a), for GL vs RPL (Figure 6.9b) and showed a comparison of their overall 

average fixation durations averaged for all blocks (Figure 6.9c). The average fixation durations within AoIs 

relevant with the task were additionally presented regarding both expert vs novice (Figure 6.9d), and GL 

vs RPL (Figure 6.9e) classifications. The overall average fixation durations of all groups averaged for each 

block are shown in Figure 6.9f. The overall average fixation durations within the AoIs relevant with the 

task were higher than those were within all 53 AoIs. We additionally observed that the differences between 

novices and experts are positive in sense that experts had longer fixation durations, whereas the differences 

between RPL and GL are negative in a way that RPL had longer fixation durations. 

6.3.2. Time to first fixation 

The participants took longer time to focus on AoIs associated with Block 1, 2 and 3 whereas they focused 

on the AoIs with Block 4 quicker. We do not have a specific pattern (e.g. decreasing/increasing with the 

task, decreasing/increasing based on the object geometry or the number of object classes within the block) 

for time to first fixation neither between experts and novices nor between GL and RPL. The biggest 

difference between experts and novices occurred for Block 3 (800ms) (Figure 6.10a) and between RPL and 

GL for Block 2 (618ms) (Figure 6.10b). Unlike experts, RPL spent the longest time to fixate on the relevant 

AoIs. This finding shows that the experts were the fastest of all to gaze at the map objects of interest (Figure 

6.10c). 

6.3.3. The number of objects covered within AoIs 

The total number of objects covered within all seven blocks is 235 for GL, 219 for novices, 199 for experts 

and 160 for RPL. This result favors GL. We present the rest of the results as percentages in Figure 6.11. A 

similar trend is observed for all groups, namely experts, novices, GL and RPL in a way that all participants 

covered the objects within hydrography, the most; green areas, the second; and the roads, the last. When 

the task demanded the recall of all map elements (i.e. Block 1), all user groups paid attention to 

approximately (+/-10%) the half of the map objects of interest (i.e. roads, green areas, hydrography) as 

hydrography being the most. 

 

The biggest difference between experts and novices in terms of the total number objects they covered was 

observed in Block 4 (i.e. green areas and hydrography) for green areas. The number of green areas and 

hydrography that novice participants focused on was 28% and 20% higher than that of expert users, 

respectively. (Figure 6.12a,c).  

 

The differences in terms of the map elements covered within selected AoIs are much more visible between 

GL and RPL compared to those between experts and novices. The biggest difference between GL and RPL 

in terms of the total number of objects they covered was observed in Block 3 and 4 (i.e. green areas and 

hydrography) for hydrography. In both blocks, the number of hydrographic objects that GL focused on 

was 40% higher than that of RPL did. (Figure 6.12b,d). 
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Figure 6.9. Average fixation durations within all 53 AoIs [ms] a. Experts vs. Novices; b. GL vs RPL; c. Overall average fixation durations within all 53 AoIs [ms] 

averaged for all blocks. Average fixation durations within AoIs relevant with the task [ms] d. Experts vs. Novices; e. GL vs RPL;. f. Overall average fixation durations 

within AoIs relevant with the task averaged for all blocks [ms]
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Figure 6.10. Time to first fixation to the AOIs relevant with the task [ms] a. Experts vs Novices; b. GL vs. RPL; c. All 

groups averaged for all blocks in comparison 
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Figure 6.11. The rate of objects covered within AoIs (%) a. Experts, b. GL, c. Novices, d. RPL
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Figure 6.12. The difference between groups in terms of the rate of the objects covered within AoIs (%) a. Experts vs 

Novice; b. GL vs RPL; The difference between groups in terms of the total number of objects covered within AoIs (%) 

c. Experts vs Novice; d. GL vs RPL 

6.4. Discussion 

We interpret the results of the average fixation duration, time to first fixation and the number of the objects 

covered within AoIs based on the objects’ geometry, size, and the distribution in the map drawing area. 

6.4.1. Average fixation duration 
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to its size. 
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 The biggest differences in average fixation durations either between experts and novices or 

between GL and RPL mainly occurred for the map features that are small and nested in large areas 

or those that are located close to the map frame or the corners of the map drawing area.  

 The overall average fixation durations within the AoIs relevant with the task were higher than 

those were within all 53 AoIs. This can be interpreted as the task demands (e.g. the tasks in Block 

7 require the retrieval of the main roads) has an impact on the attentional behavior of participants. 

The participants were able to neglect the map objects that were irrelevant with the task. 

Nevertheless, experts exhibited longer fixation durations (except for B3) compared to novices did, 

while GL always demonstrated lower fixation durations than the RPL did. This outcome shows 

that GL experienced lesser cognitive load than the rest did.  

 There is no trend in terms of the differences occurred regarding to the blocks, therefore, the fixation 

durations within the (relevant) AoIs did not depend on the task difficulty. 

6.4.2. Time to first fixation 

The participants took longer time to focus on AoIs associated with Block 1, 2 and 3 whereas they focused 

on the AoIs with Block 4 quicker compared to other blocks. One common feature of the tasks in Block 1, 

Block 2 (i.e. hard tasks) and Block 3 (i.e. moderate task) is that they all required the retrieval of roads, which 

only contained linear objects. On the other hand, when the task demanded the retrieval of more polygon 

features, the participants were quicker to fixate on the relevant AoIs. For instance, Block 4 has more polygon 

features (i.e. green areas and hydrography) and the attentional behavior of the participants were similar 

towards these polygons. This might be an evidence that the participants treat linear and polygon objects 

differently in a sense that they tend to scan through linear objects and fixate/focus on the polygon objects. 

To perceive a linear object as a whole, one needs to know the start and the end of it, therefore, the eye will 

follow the linear object instead of focusing on parts of it unless distracted, whereas focusing at the center 

of a polygon object is sufficient to perceive its size and shape, especially considering the polygon AoIs in 

the example stimulus.   

6.4.3. The number of objects covered within AoIs 

 The number of objects covered within hydrography being the highest was expected due to the 

lowest number of objects belonging to that category (i.e. seven water bodies, three rivers) in the 

map drawing area. Experts and GL even covered 100% of the hydrographic objects for Block 2, 

which required the retrieval of road and hydrography (see Figure 6.11a, b). The second map object 

class in terms of the number of objects covered by participants was green areas whose areal 

coverage was the biggest in the map drawing area. Roads were the least covered objects compared 

to the other classes and this might be due to two reasons: (i) the road category having the highest 

number of AoIs, which makes it hard to pay attention to all of them in a short time, (ii) the 

distribution and the location of the roads in the map drawing area, e.g. roads located close to the 

map frame. However, when the task only demanded the retrieval of the roads (i.e. Block 7), the 

number of road objects covered was the highest above all other blocks for all groups (see roads for 

Block 1-7 in Figure 6.11a). GL covered the highest number of road objects in total and in Block 7. 

We do not observe a similar behavior when roads had to be remembered together with the other 

type of objects (i.e. Block 2: roads and hydrography; Block 3: roads and green areas). According to 
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these findings, similar to what was observed within time to first fixation results; the eye scans 

through linear objects and fixates/focuses on the polygon objects.  

 The difference between experts and novices was more visible when the task required the retrieval 

of more polygon features as in Block 4 (i.e. green areas and hydrography) for green areas (Figure 

6.11a, c). However, it did not influence the success rates of the participants since the average success 

rate in Block 4 was 93% for experts and 91% for novices. Similarly, the biggest difference between 

GL and RPL was observed in Block 3 (i.e. roads and green areas) and Block 4 (i.e. green areas and 

hydrography) for hydrography (Figure 6.12b,d). This has an influence on the success rates in a 

sense that the average success rate in Block 4, 83.6% for RPL and 94.3% for GL. This outcome might 

be an evidence that ‘good learners vs. relatively poor learners’ classification was probably more 

realistic for usability testing of the general use maps for basic map learning tasks. For instance, 

Havelková and Gołębiowska (2020) claimed that novices/unsuccessful solvers are not one 

homogenous group; however, it is possible to categorize them into subgroups. Furthermore, 

expertise is not as influential as we think in these cases because ‘the subject lacking domain-specific 

knowledge tends to construct a visual-spatial mental representation, as opposed to the semantic 

representation of the expert (Postigo and Pozo [40] (p. 77-78), subsequently, the performances of non-

expert subjects can be as good as the expert ones.  

6.5. Conclusion 

The obtained results are just preliminary and specific for the map stimulus used for the AoI analysis yet 

the anlaysis involved a large number of trials belonging to many participants. The results cannot be 

generalized due to uneven groups (28 GL, 10 RPL) and also because of the post-hoc analysis conducted 

with the same experiemental data; nonetheless, we list some of the hightlights of the AoI-based eye tracking 

analysis: 

 

 The location of the map elements, as well as their distribution in the map drawing area, is more 

influential on the participants’ gaze behavior compared to the size of them. 

 The participants were usually able to neglect the map objects that were irrelevant with the task. 

 Experts were the fastes to fixate on an AoI relevant with the task; however, their fixation durations 

were longer than of RPL. 

 GL always demonstrated lower fixation durations and covered more map objects than the RPL did. 

GL experienced lesser cognitive load than the rest. 

 We did not find a correlation between the average fixation duration and the task difficulty, hence, 

the fixation durations within the (relevant) AoIs did not depend on the task demands. 

 The participants took longer time to focus on AoIs associated with the roads whereas were quicker 

to fixate on the relevant AoIs when the task demanded the retrieval of more polygon features. 

 When the task only required the retrieval of the roads (i.e. Block 7), the number of road objects 

covered was the highest above all other blocks for all groups. 

 The eye scans through linear objects and fixates/focuses on the polygon objects. 

 Good learners vs. relatively poor learners’ classification was probably more realistic for usability 

testing of the general use maps for basic map learning tasks. 
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According to the above results, GL’s higher number of fixations towards the relevant AoIs and the objects 

covered within them and their shorter average fixation durations indicated that GL are good at formulating 

a learning strategy, therefore, spent less cognitive effort. Our results also showed that GL and expert 

participants had shorter time to first fixation to AoIs relevant with the task and that their selective attention 

was influenced by the task demands. These findings will further be discussed within the frame of the 

cartographic design recommendations made in Discussion (see Chapter 7, Research Objective 4). With the 

existing dataset, this study can be extended by increasing the number of map stimuli and the AoI metrics 

for more detailed insights on the attentional behaviors of map users. The influence of other visual variables 

can be included as well, for instance, the effect of the location of the objects within the map drawing area 

and relative to each other can be explored. Additionally, unlike what was applied in our preliminary 

analysis, the intertwining AoIs (e.g. polygon in polygon, line in polygon, line intersecting line) should be 

treated separately for more accurate conclusions. 
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Chapter 7: 

 General Discussion 
 

 
 

 

 

 

“Constant reminding ourselves that we not see with our eyes  

but with our synergetic eye-brain system working as a whole  

will produce constant astonishment as we notice,  

more and more often,  

how much of our perceptions emerge from our preconceptions.” 

 

 

David Eagleman, Incognito: The Secret Lives of the Brain, 2011 
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Abstract. This chapter summarises and discusses the results obtained throughout the dissertation. Within each of the 

previous chapters, a detailed description of the achievements is presented. The aim of this chapter is to provide a link 

between these findings and place them in a broader context by discussing these findings in the light of the research 

objectives and questions that were identified in Chapter 1.2.1. Finally, this chapter concludes with the critical 

reflection on methodology, the challenges and venues for future work. 
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In this discussion, we aim to reconsider the major findings of the user experiments mentioned in the 

previous chapters and provide concise overview of all the results. Table 7.1 demostrates the highlights of 

the two conducted user experiments. In the context of the study, certain research objectives, which were 

solidified though research questions were defined and described in Chapter 1. Each of the chapters in this 

dissertation focuses on different aspects of one or more research questions and, these different 

contributions are summarised and discussed in relation to each research question in the following sections. 

Table 7.1. Overview of the dissertations’ highlights with respect to expert vs. novice categorization 

Experiment 1 Experiment 2 

Metrics used Highlights Metrics used Highlights 

reaction time (the study 

period) 

Experts spent longer time to 

study the map stimulus. 

reaction time (the 

answering 

period) 

Experts spent longer time to 

choose the correct answer from 

the multiple choice graphical 

response screen. 

score on drawn 

elements on sketch 

maps 

Although not significantly, 

experts had higher scores and 

their sketch maps of experts 

were more detailed 

success rate 

Although not significant, experts 

had higher success rates, however, 

significant difference between GL 

and RPL in a sense that GL 

remembered more map elements. 

the influence of the 

visual variables on the 

attentional behavior 

Size, color, shape and location 

of a map object has an equally 

important role in recalling a 

map element 

the influence of 

the visual 

variables on the 

attentional 

behavior 

The location of the map elements, 

as well as their distribution in the 

map drawing area, is more 

influential on the participants’ 

gaze behavior compared to the 

size of them. 

drawing order 

The majority of the participants 

first drew linear objects: 

experts: roads (red); novices: 

hydrography (blue) they might 

have used different strategies 

since hydrography contains 

both linear and polygon 

features. 

 

  

average fixation 

duration 

Although not significantly, the 

average fixation duration of 

novices were longer. 

average fixation 

duration 

Although not significant, fixation 

durations of novices were longer, 

and the difference between 

experts and novices increased as 

the task difficulty increased 

number of fixations per 

second 

No significant difference 

between experts and novices 

number of 

fixations per 

second 

Although not significant, the 

number of fixations (per second) 

of experts was higher, and the 

difference increased as the task 

difficulty decreased. 

  saccade velocity 

& amplitude 

Novices had higher saccade 

velocity, which indicate a higher 

cognitive load and longer saccade 

amplitudes indicating that the 

search is less organized. 
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Experiment 1 Experiment 2 

qualitative analysis of 

focus maps 

The focus map belonging to all 

participants highlighted the 

main structuring elements of 

the stimulus: main road 

construction, water bodies and 

large settlements. 

 

qualitative 

analysis of focus 

maps 

Both groups showed similar 

attentional behavior in terms of 

the map area covered and the map 

elements on which they focused 

AoI-based 

eye tracking 

Larger AoIs were gazed at 

earliest and the dwell times for 

such objects were much longer 

and the majority of participants 

drew these map elements on 

their sketch maps. 

AoI-based 

eye tracking 

The participants were usually able 

to neglect the map objects that 

were irrelevant with the task. 

 

The linear features were easier 

to learn and remember, 

although the viewer did not 

pay much attention. 

 

 

The participants took longer time 

to focus on AoIs associated with 

the roads whereas were quicker to 

fixate on the relevant AoIs when 

the task demanded the retrieval of 

more polygon features. 

  

 
 

The participants tend to scan 

through the linear objects and 

fixate/focus on polygon objects 

 

The objects that were absent on 

the sketch map received the 

shortest fixation durations 

during the study phase 

 Experts were the fastest to fixate 

on an AoI relevant with the task 

average alpha power 
Experts spent considerably 

lesser cognitive load 

the event-related 

changes in power 

spectral density 

at theta frequency 

band 

Although not significantly, 

experts demonstrated higher theta 

power (except for easy tasks) 

which can be associated with a 

higher cognitive load 

FAA 

(frontal alpha 

asymmetry) 

All the participants exhibited 

negative FAA scores, which 

suggested a greater relative 

right activation, therefore, 

withdrawal-related motivation. 

No significant difference 

occurred between experts and 

novices. 

the event-related 

changes in power 

spectral density 

at alpha 

frequency band 

ERD in alpha was observed but 

alpha effect seem very small 
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7.1. Revisiting the Research Questions 

Research Objective 1: 

Contribute to the understanding of how different map users process the visual information on digital 2D static maps.  

 

RQ 1: How do expert and novice map users “study and store” the visual information presented on digital 

2D static maps? 

 

We aimed to explore the attentional behavior of the participants during the map study/map-learning 

period. In this context, Experiment 1 included a simple map-learning task using one simplified digital 2D 

topographic map with no time constraints. Reaction times described in Chapter 2 show that experts 

allocated more time in studying than novices did. This result might contradict with the traditional expert-

novice paradigm (e.g. Dong et al., 2018; Li et al., 2013; Ooms et al., 2012), however, it shows that experts 

take their time while comprehending a map stimuli they see for the first time. Allen and McGeorge (2011) 

studied the enumeration process of the air traffic controllers on stimuli containing the same number of 

objects whose distribution arranged differently (e.g. line, triangle, etc.) and found out that experts out‐

perform novices but their response times were significantly slower. This finding suggests that “expertise is 

not rigid and automatic but, rather, is flexible and responsive to the specific situation, allowing experts to switch 

between strategies”. Experiment 2 was complex in a way that it contained large number of stimuli and tasks 

with varying difficulties and since all participants had a fixed amount of time to study the map stimulus, 

reaction time corresponded to the time when they decide which skeleton map to choose from the multiple 

choice graphical screen. Therefore, it is the retrieval of the main structuring elements and will be discussed 

in relation to the success rates within the RQ 2. 

 

A visual stimulus can only be interpreted if the attention is subsequently concentrated on different sub 

parts of the stimulus and the attentional behavior of the users can be identified by registering the eye 

movements (Ooms, 2012). The visual analyses of the recorded eye movements were addressed in Chapter 

2, 5 and 6. In this context, although not significantly, the average fixation duration of novices were longer 

in both experiments. Additionally, the difference between experts and novices increased as the task 

difficulty increased. Next to the fixation related metrics, analyzing saccades in the second experiement 

provided insights that the more traditional fixation analyses do not afford. The saccade-related analysis of 

Experiment 2 shows that novices had higher saccade velocity, which hints a higher cognitive load for 

novices and longer saccade amplitudes indicating that the search goes all across the image and is thus less 

organized. On the contrary, some of the previous studies (e.g. Gegenfurtner, Lehtinen & Säljö, 2011) 

claimed that the ability for holistic analysis should be reflected in longer saccade length; hence, experts 

should demonstrate longer saccade length. However, the reason of the shorter saccades of the experts in 

this experiment is that shorter saccades may increase the number of fixations per second and experts 

exhibited greater number of fixation per second than the novices did (Ooms, 2012). 

 

Alternatively, in a post‐hoc hypothesis, we examined high‐performers’ visual strategies against low‐

performers. In this context, the participants in Experiment 2 were grouped as good learners (GL) and 

relatively poor learners (RPL) based on their success rates. The saccadic eye movements showed that there 
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may be differences between high and low performers in a way that GL appeared to have higher cognitive 

load which was also the case with experts in some metrics. Perhaps the experts were trying harder, because 

there is also a speed accuracy trade off and this outcome is in line with what we found in the first 

experiment. Although we followed a valid analytical approach, the issue with the comparison of GL and 

RPL is that it was based on the uneven sample sizes (i.e. 15 GL and 5 RPL). Therefore, we acknowledge 

that this analysis might lead statistical power issues and needs to be further studied with more participants 

to solidify the observations. 

 

Additionally, all of the participants exhibited negative FAA scores, which suggested a greater relative right 

activation, therefore, withdrawal-related motivation and no significant difference occurred between 

experts and novices. The average EEG alpha power results of Experiment 1 indicated that experts spent 

significantly lesser cognitive load while studying the map stimulus. On the contrary, in Experiment 2, 

although not significantly, experts demonstrated higher theta power (except for easy tasks) than the 

novices did which can be associated with a higher cognitive load. The reason for experts experiencing low 

cognitive load in Experiment 1 and experts and novices showed no significant difference in Experiment 2 

might be due to the time constraints in the second experiement. 

 

RQ 2: How do expert and novice map users “recall and use” the visual information presented on digital 2D static 

maps? 

 

We aimed to explore how the cognitive load varies between two groups during the retrieval stage and 

whether these two groups use different strategies while remembering the map-related information. The 

results of Experiment 1 shows that the majority of the participants first drew linear objects on their sketch 

maps in a sense that experts started with roads (depicted in red) and novices started with hydrography 

(depicted in blue). It is evident from the findings that expert and novice users might have used different 

retrieval approaches since hydrography contains both linear and polygon features. Furthermore, objects of 

a same category, for example lakes or rivers, were mostly drawn together as a group. As also found by 

Ooms (2012), this outcome agrees with the Gestalt Theory claiming that humans try to organise or group 

the objects in a visual image.  

 

In Experiment 1, although not significantly, experts had higher scores on drawn elements on their sketch 

maps but the average drawing time for experts was observed to be greater than that for novices. The time 

spent on sketching the map might correspond to the richness of detail depicted in the sketch map, the 

difficulties encountered due to the lack of experience (e.g. unfamiliarity of the task and of the drawing tool), 

or recall issues. The fact that novices were faster may explain that novices were less involved with 

cartography, not aware of procedures involved in map production and did not exactly know what to 

remember, thus they might have paid less attention to having good results (see Chapter 2). Similar to the 

Experiment 1, experts generally had significantly longer time to choose the correct answer from the 

multiple-choice graphical response screen yet again higher success rates in Experiment 2. It seems the fact 

that experts being slower paid off with higher success rates. 
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The scores of the sketch maps in the first experiment and success rates in the second experiment implied 

that experts and novices showed no difference in map learning, unless the stimulus required specific map 

knowledge that only an expert possessed. We presumed that the general map knowledge, maplikeness of 

the stimulus (e.g. Thorndyke & Stasz, 1980), the simplicity of the map and the task (e.g. Kulhavy & Stock, 

1996) had a great influence on their map learning (study and recall) process. In Experiment 1, the original 

map shown to participants was a simplified 1:10k Belgian topographic map which incuded no familiar 

places and both experts and novices observed for the first time. In Experiment 2, we used screenshots of 

Google’s road maps (approximately 1:40k) that are produced for general audience and we paid attention 

that the regions covered in maps were not widely known. User characteristics of the recruited participants 

confirm that almost all participants use Google Maps everyday or once/twice a week (i.e. experts 94% and 

novices 90%) and they find it easy to use (i.e. experts 100%, novice 90%) (see Annex 6). Although our results 

present that experts and novices do not differ in terms of the amount of information they recall, the 

learning/recalling strategies of experts and novices may differ. The drawing order results could be evidence 

that they might use different approaches (Chapter 2). Longer reaction times are generally associated with 

the higher cognitive load but it is not accurate to interpret the slower responses of experts in both 

experiments as being purposeless guesses, less motivated performance or confusion, since they maintain a 

greater accuracy. As explained by Allen and McGeorge (2011), it takes time to mobilize and focus attention 

and experts obviously did something more attentionally demanding and spent additional time for a 

strategically beneficial purpose. Havelková and Gołębiowska (2020) also confirms this outcome by 

explaining as follows “slow task solving is not a feature of inexperienced behavior or inefficient strategy, as it is 

attributable to their endeavor to solve the task correctly. It is characteristic to go back to the task formulation and the 

phase of solving the problem after already comparing the solution found with the possible solutions given, i.e., by 

verifying that the solution obtained is correct, even when a different problem-solving strategy was used”. In this 

context, experts might be a bit more ambitious and driven to accomplish the task compared to novices, and 

saved an extra time to review or verify their response before submitting it. (Chapter 5). When we look at 

the user characteristics of the recruited participants in Experiment 2, it is also clear that experts found the 

experiment more interesting compared to novices did, i.e. 65% of experts reported positive comments 

whereas only 24% of the novices gave positive feedback (see Annex 6). 

 

When combining the discussion of RQ1 and RQ2, it is obvious that the main structuring elements act as a 

reference frame and the design of these elements essential in the whole communication process during 

both the interpretation and recall phase, in a way that they must be visible and organized to guide map 

users’ attention. This is linked with which objects are stored in the long-term memory and whether they 

can be retrieved easily or in a structured way (Ooms, 2012). 

 

The overall performances of experts and novices did not differ much; therefore, we assume that the 

influence of the expertise in a simple map-learning task is not substantial. This situation is not unexpected 

as also found by Gegenfurtner et al. (2011) that the performance differences are smaller when the 

visualization is static as in our experiments. Furthermore, the participants can be considered as sufficiently 

homogenous in terms of their spatial abilities or experience with maps for this specific map-learning task 

with simple map stimuli (e.g. Havelková & Gołębiowska, 2020). Comparing the performaces of GL and 
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RPL, we observed a significant difference between these groups in terms of the changes in EEG power 

spectral density. Accordingly, GL exhibited slightly higher overall cognitive load regardless of the 

difficulty of the tasks. On the contrary, AoI analysis indicated that GL remembered more map elements, 

had more fixations on the relevant information and demonstrated shorter average fixation durations than 

RPL did. Similar to what was found by Havelková and Gołębiowska (2020), unsuccessful participants 

differed in the general problem-solving approach, in a way that they tended to choose fast and less cautious 

strategies and they were also not as good as GL to distinguish relevant from irrelevant information. 

Nevertheless, all unsuccessful participants do not necessarily used inefficient strategies, since average 

successful participants needed more time to respond as explained above. As we explained previously, the 

distinction of GL and RPL is very much dependent on our specific sample in the experiment and since this 

sample size is quite small, we doubt the generalizability of the results, yet we find this disctinction quite 

useful and worth repeating with an even and larger sample. This classification gave us a hint that it might 

be better to group participants based on their spatial abilities next to their expertise, especially for further 

studies. 

 

Research Objective 2: 

Evaluate the potential of brain imaging techniques, integration of EEG with eye tracking for cartographic 

cognitive/usability research 

 

RQ 3: What is the added-value of EEG in terms of cartographic usability research? 

 

EEG and ET integration is not straightforward and time consuming especially when the experimenter lacks 

experience in EEG experimental design and analysis. Hence, we first intended to explain why the co-

registration of eye movements and brain activity is important for cartographic usability research, 

specifically to explore the attentional behaviors of map users (Chapter 1). Later on, we strived to present a 

methodology for EEG and eye tracking experiment with a map-learning use case based on the technical 

availabilities and limitations in Chapter 3. We hope to contribute to the cartographic usability research by 

borrowing theories and methods from experimental and cognitive psychology and applying them in 

cartographic domain. In this context, the pros and cons of this methodology and possible analysis are 

clearly explainded based on the existing literature, knowledge of the domain experts and our hands-on 

experience.  

 

Table 7.2 presents an overview of the time spent for the design, data collection and the analyses together 

with the data in numbers. When Experiment 1 and 2 are compared, two different approaches followed in 

the experimental design; either single trials but rather long EEG recordings per participant or multiple trials 

(e.g. at least 100 trials per condition) but short EEG recording per trial. It is clear that the preparation and 

the data management of Experiment 2 are much more complex, require expertise and might discourage the 

researchers who wants to conduct a similar research due to the requirement of great amount of time and 

labor. Many steps can be automatized such as converting, filtering, cleaning and analyzing the collected 

data with scripting (e.g. Annex 4 & 5). Nonetheless, some steps, such as excluding the bad EEG channels 

after filtering or removing bad epochs after segmentation, require visual inspection although it can be 
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handled automatically. Furthermore, stimuli preparation might be automatized as well; however, it was a 

little tricky while identfying the main structuring elements on the map stimulus to compose the skeleton 

maps shown in the multiple-choice graphical answer panels as cartographic generalization was involved.  

Table 7.2. Collected data in numbers and time spent for the user experiments 

 Experiment 1 Experiment 2 

Experimental Design 

in collaboration with 

a cartographer 

who is an eye tracking expert 

(1 month) 

in collaboration with 

an experimental psychologist 

who is an expert in ET and EEG 

(12 months) 

Stimuli Preparation 

one trial with one map stimulus 

that was existent before the study 

free-hand digitial 

sketch map drawings of 

participants 

- 50 map stimuli 

- 50 trials * 7 blocks * 4 graphical 

options 

1400 skeleton maps prepared by 

digitizing the map stimuli 

(4 months) 

Pilot tests 

& 

EEG & ET recording 

- 0.5 h (per participant) 

(5 participants per day) 

- 3 p. For pilots & 57 p. 

for the main experiment 

0.5 * 60 = 30 h – 12 days 

- 3 h (per participant) 

(1 or 2 participants per day) 

- 10 p. for pilots & 

38 p. for the main experiment 

3 * 48 = 144 h – 25 days 

Preprocessing 

the EEG data 

Raw EEG data 5.5 GB 32 GB 

Raw ET data 3 GB 10 GB 

Data export 10 days 17 days 

Filtering 

the EEG data 
4 GB (15 days) 10 GB (15 days) 

Adding 

the events 
- 8 GB (15 days) 

Segmentation 

of EEG data 
- ~2.5 GB (21 days) 

Re-referencing 

& 

Computations of EEG metrics 

- Frontal Alpha Asymmetry 

- Average alpha power 

4 participants per day 

(15 days) 

- Power spectral density 

- Event-related changes 

1 participants (7 blocks) per day 

(40 days) 

TOTAL TIME SPENT ~3 months ~21 months 
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Chapter 4 and 5 provide the outcomes of the conducted EEG analysis to extract the cognitive load of the 

expert and novice participants. As discussed within RQ1, EEG results might reveal a different aspect into 

map users’ cognitive strategies. For instance, the average EEG alpha power results of Experiment 1 

indicated that experts spent significantly lesser cognitive load in the map learning task in which the trial 

duration is not restricted, although the eye tracking metrics and sketch map analysis claimed otherwise. 

The main takeaway from the co-registration of ET and EEG is that using EEG, one gets some nuance that 

performance data and/or eye movement analysis alone cannot capture, in other words, what FAA tells in 

Experiment 1 cannot be obtained with eye tracking. The negative alpha asymmetry scores corresponded to 

a greater relative right frontal activation which refers to withdrawal and avoidance whereas, positive ones 

indicate a greater relative left frontal activity which is associated with approach and motivation (e.g. Lanini-

Maggi, 2017). In the first experiment,  we observed that all of the participants exhibited negative FAA 

scores, which suggested a greater relative right activation, therefore, withdrawal-related motivation. 

Therefore, EEG is required to understand the motivation behind participants’ behavior towards to the task 

at hand. On the contrary, in Experiment 2, although not significantly, experts demonstrated higher theta 

power (except for easy tasks) than the novices did which can be associated with a higher cognitive load 

whereas fixation-related eye tracking metrics indicated no significant difference between experts and 

novices. Hence, it is important to maintain a holistic approach by triangulating data coming from different 

sources while interpreting the cognitive load. 

 

Research Objective 3: 

Explore the influence of a subset of visual variables (i.e. location, size, shape, color) in spatial cognition and the use of 

this input to enhance the design and communication of cartographic products. 

 

RQ 4:  How does the participants’ attentional behavior vary towards the map elements of interest? 

 

The focus map belonging to all participants in Experiment 1 highlighted the main structuring elements of 

the stimulus: main road construction, water bodies, major rivers and large settlements. Both groups 

showed similar attentional behavior in terms of the map area covered and the map elements on which they 

focused as also in accordance with what was found by Ooms (2012). According to AoI analysis of the eye  

movements collected through Experiment 1, larger AoIs were found out to be gazed at earliest, the dwell 

times for such objects were much longer, and the majority of participants drew these map elements on their 

sketch maps. The linear features were easier to learn and remember, although the viewer did not pay much 

attention. The objects that were absent on the sketch map received the shortest fixation durations during 

the study phase as expected. It shows that the users first tried to store a general reference frame of map 

objects and later on more detailed objects were processed. This result is in correspondence with what was 

proposed by Kulhavy and Stock (1996) and Ooms (2012).  

 

On the other hand, preliminary AoI analysis of Experiment 2 demonstrate that the participants took longer 

time to focus on AoIs associated with the roads whereas were quicker to fixate on the relevant AoIs when 

the task demanded the retrieval of more polygon features (e.g. Block 4 demands the retrieval of green areas 

and hydrography, which contains more polygon features). The average fixation duration for the tasks 
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demanding the recall of the polygon features were the longest for all participants, i.e. Block 5 (green areas), 

Block 6 (hydography), whereas the participants exhibited the shortest average durations when the task 

required the retrieval of linear features, i.e. Block 7 (roads). Both experiments proved that the participants 

tend to scan through the linear objects and fixate/focus on polygon objects. Furthermore, the participants 

were usually able to neglect the map objects that were irrelevant with the task and experts were the fastest 

to fixate on an AoI relevant with the task. This finding is in line with what was found by Gegenfurtner, 

Lehtinen & Säljö (2011), explaining that “experts devoted more fixations on task-relevant areas, and fewer fixations 

on task-redundant areas; owing to superiority in parafoveal processing and selective attention allocation”. This can 

be explained with information-reduction hypothesis of Haider and Frensch (1999) which explains how 

experts optimize the amount of information should be processed based on the task demands and 

strategically concentrating only on the relevant information in the visual span (i.e. selective attention).  

 

RQ 5: How do we improve the maps based on the input collected through user experiments?  

 

We interpreted the results of average fixation duration, time to first fixation and the number of the objects 

covered within AoIs based on the objects’ geometry, size, and the distribution in the map drawing area for 

a single map stimulus. Since it was a general use map and the participants were encountered with a simple 

spatial memory task, we mostly found no significant difference between experts and novices, hence, we 

concentrated on the similarities on their attentional behaviors to make recommendations to improve the 

effectiveness of digital 2D static maps. Benefiting the results especially discussed within the Chapter 2 and 

6, we kept the following questions in mind: 

 What kind of visualization method(s) can be enabled based on the distribution, size and geometry 

of the map objects? 

 How do we control advantaged and disadvantaged map objects equally/in the same way while 

visualizing? 

 

By visualizing data in a structured way due to the attention having high importance to interpret the map 

content, the main structuring map elements should be recognizable at first glance by increasing their 

saliency or stressing the image or symbology in its general reference frame (Ooms, 2012). For instance, our 

results described that the participants can mostly define the main roads and their surroundings, however, 

the map elements that are located close to the map frame were easily neglected (Chapter 6). The simplest 

rule of good map design is that the primary information should be placed in or close to the center of the 

map drawing area; hence, important but neglectable information due to its size can be placed in the regions 

that are easily perceived by map users and the rest of the objects can be arranged accordingly. On the other 

hand, the participants do not pay attention to the map objects that are small and contained in larges areas. 

In this case, the perception and identification of these objects can be improved by providing contrast with 

other objects, therefore, by increasing the hue of the existing color used to depict that object class, e.g. using 

a darker blue for a water body inside a green area.  

 

While continuous linear objects such as roads and rivers are easy to detect and recognize, the objects such 

as road intersections, small water bodies and green areas are more difficult to detect and recognize. To 
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enhance the identification of the small objects, the outer frame of the polygon can be highlighted or 

emphasized using a darker tone of the current color, which corresponds to exaggeration and changing the 

contrast. 

 

According to the preliminary AoI analysis for Experiment 2, it is clear that the eye scans through linear 

objects and fixates on the polygon objects. This finding shows the difference in perception between 

continuous objects (e.g. roads, rivers) and discontinuous objects (e.g. forests, lakes). In this case, 

exaggeration can be applied to small objects or the objects with similar characteristics can be aggregated 

into one feature to make them more recognizable. Accordingly, the multiple objects can be 

merged/amalgamated into one geometry to be able distinguish different object classes as they are clustered 

closer together on a map especially with changing zoom or scale levels. All of the suggested cartographic 

generalization operations help balancing the identification of the advantaged and disadvantaged map 

objects by map users. 

  

Additionally, using grids might contribute to the interpretation and recalling the map-related information. 

Edler et al. (2014) confirmed that grids help reduce distortion and increase recall performance in 

topographic maps that are influenced by several factors adding complexity to a map. This complexity is 

not necessarily a bad thing for map users, on the contrary, a higher amount of visual objects guides spatial 

memory and the formation of detailed and accurate cognitive representations. For instance, a topographic 

base map showing a rural area provides less support than a topography consisting of more urban features. 

Moreover, recall performance is poorer on a map depicting only the main roads than the one containing 

additional point and polygon features. On the other hand, Thorndyke & Stasz (1980, p.171) explained the 

good learners’ strategy of map learning as follows: “they first segmented and focused systematically on subsets 

of information from the map. They demonstrated a variety of successful techniques for encoding both spatial 

relationships and verbal labels. Finally, they evaluated their learning progress consistently and accurately, using 

knowledge of their own uncertainties to determine their subsequent fixations and study behaviors.” The “divide-

and-conqure” strategy of good learners can be adapted into map design that stimulates the cognition of 

poor learners as well. In our case, the complexity of the maps can be balanced by using square grids, which 

will divide the attention into sub-parts and increase the object identification, therefore, improve the 

cognition of the map. Grids can especially be useful to enhance the retrieval of the map objects located in 

the corners or close to the map frame, however, the aesthetic aspects of map making should be considered 

while designing them. Keil et al. (2020) reported that holographic grids utilized with AR (Augmented 

Reality) improves distance estimation and location memory in 3D indoor environments when applied 

correctly. 

7.2. Critical reflection on the methodology 

The first experiment had an exploratory characteristic and we intended to explore the influence of gender 

next to expertise. Due to our lack of experience in psychological experimental design, the number of 

participants and their gender were not counterbalanced and we did not find a significant difference 

between males and females as opposed to many other existing research favoring males. However, we 

mentioned the effect of gender to argue on the traditional male-female paradigm. It was one of the lessons 
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learned in the first experiment and this issue was fixed in the second experiment by counterbalancing the 

age, gender, number of the participants from expert and novice groups as much as possible to minimize 

the influence of these individual characteristics on spatial cognition. Hence, we no longer focused on 

gender. On the other side, the profile of the participants were not diverse enough to study the effect of the 

ethnicity and language, although they are not of least importance. Additionally, we introduced time 

constraints in the second experiment, which could have been done in the first experiment as well. Although 

it is the ecological valid way of studying the learning strategies of the participants, on the one hand, our 

decision to let the participants study the map as long as they like, had an important effect on the results, 

mainly because of the fact that time being a tool to manipulate cognitive load. The reason of experts 

experiencing low cognitive load in Experiment 1 and experts and novices showed no significant difference 

in Experiment 2 might be due to the time constraints in the second experiement. Restricting time adds a 

level of stress/pressure that might increase the cognitive load.  

 

On the other hand, the role of expectations towards the experimenter might affected the task performance. 

For instance, it is possible that some participants felt that they had to do this as fast as possible which makes 

it more likely to forget things or some were more driven to provide accurate results instad of quick 

responses, so they devoted more time. Unstructuredly and informally, I discussed their strategy with the 

participants after the Experiment 1. One interesting comment was that they counted the number of objects 

belonging to the each object class considering their locations relevant to the line features on the map, in 

other words, a reference frame of the map. Their strategy was simply splitting the map drawing area (using 

roads or rivers) into sub-regions and quantifying the information within these zones. This feedback is also 

in line with our suggestion using grids to enhance map learning.  

 

In the second experiment, due to the long experiment hours (approx. 2,5h) and voluntary participation, we 

did not want to take more time of the participants. However, in the post-test questionnaire, although not 

quite relevant with their map learning strategy, they were asked to put the experiment blocks in order from 

"easy to remember" to "hard to remember" according to their experience. However, their answers did not 

quite match with their performance (success rate and reaction time). Nonetheless, the experts were more 

consistent with how they performed and what they think about the difficulty of blocks. That is why 

subjective data cannot be trusted alone and needs to be verified with the quantitative data. 

 

Accordingly, a future study that controls the trial time, i.e., giving everyone say 3 minutes to study the 

map, might show the effect of expertise somewhat more. It would be interesting to repeat the first 

experiment with more balance participant group, a particular trial time in the future, and a structured post-

test questionnaire to collect information regarding the learning strategies of participants.  

 

The first experiment had long EEG recordings but a single trial per participant and included no event marks 

to study the specific time points of the trial. Furthermore, I was inexperienced about the correct placement 

of EEG cap and the impedance check that had to be done for every single participant. These issues caused 

a much lower number of usable EEG data and the lessons learned within the Experiment 1 were 

incorporated in the design of the second experiment. While we were planning the second experiment which 
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was a mixed design of between and within subjects, we collaborated with an experimental psychologist, 

who is specialized in EEG & eye tracking co-registration. He suggested recruiting 15 participants from each 

group, since approximately the half of them would be excluded due to the EEG signal noise, the muscle 

and blink artifacts or some other possible limitations such as not enough respondance, high attrition level, 

long experiment hours and recruitting volunteers. Accordingly, we were careful while selecting 

participants to minimize the influence of individual characteristics. In the second experiment, we recruitted 

38 participants (17E, 21N) whose age and gender were counterbalanced. Since the participants we were 

able recruit, especially experts, were limited in number, we increased the number of trials. This strategy is 

also in line with the literature (e.g. Boudewyn, Luck, Farrens & Kappenman, 2017; Ito, Nikolaev & Van 

Leeuwen, 2005). Due to the signal/noise ratio in the EEG data, we had to exclude almost the half of the 

collected EEG data. There were 350 trials per participant (i.e. 100 hard, 100 moderate, 150 easy) and we 

paid attention to not to exclude more than 5-10% of the epoched data and the wrong answers not more 

than 10% of the all answers. In this context, we had at least 880 (i.e. 11*(100-20)) data points for each 

condition per group (expert and novice). The statistical power were calculated as 0.9 using using G*power 

(Wilcoxon-mann Whitney test: post-hoc, two tailed, effect size: 0.3) (Faul, Erdfelder, Lang, & Buchner, 

2007). Nonetheless, while interpreting the results, it should be noted that due to the small group of 

participants, gender might be contaminated by expertise, although there were enough data points for 

statistical analysis.  

7.3. Recommendations for further research 

The experiments described in this dissertation create several possibilities for future research and although 

they are out of the scope of this dissertation, the variables used, the analysis conducted and the 

methodologies selected can be improved in order to obtain additional results. First, the data collected 

within the experiments is quite large and there are several other possible ways to extract information, 

especially, preliminary AoI-based eye tracking analysis can be extended using all the map stimuli involved 

in Experiment 2 to obtain more accurate and detailed information on the attentional behavior of this group 

of map users. Accordingly, a subset of visual variables (i.e. geometry, size, and the distribution in the map 

drawing area) and the eye tracking metrics considered within this analysis (i.e. average fixation duration, 

time to first fixation and the number of the objects covered within AoIs) can be increased to explore the 

influence of map design on users’ cognition. On the other hand, additional analysis can be conducted with 

the collected EEG data in a way that the frequency bands can be decomposed into sub-parts to extract the 

cognitive load. As explained in Chapter 5, lower and upper alpha are differently associated to the cognitive 

activity (e.g. Fink 2006; Sauseng et al., 2005). 

 

EEG and eye tracking usability research in cartography is not very common and one important 

methodological critique is that despite the dynamic reality of human cognition, the data collection methods 

used to understand cognitive procedures have been static and taken place in laboratory or an artificial 

environment that potentially restricts participants’ behaviors. This traditional approach is advantegeous in 

terms of experimental control, however, lacks the real-world dimensionality and relevance of the findings. 

Nonetheless, emerging field of mobile cognition suggests significant added value to user experiments and 

the spatial memory abilities explained in this dissertation can be tested in real life conditions if technical 
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and methodological requirements are met. The simultaneous recording and integration of mobile EEG and 

eye-tracking data can be utilized to obtain the actual timing of engagement with real-world stimuli 

(Ladouce, Donaldson, Dudchenko & Ietswaart, 2017). For example, a portable eye tracking and EEG 

headset can possibly be used to study the spatial memory abilities of map users in situ, e.g. in a car while 

using navigation maps or in an indoor way finding scenario using the landmarks and signs. Another 

example is using mobile EEG on the bike to study the attentional state of cyclists. Zink et al. (2016) collected 

data during an outdoor cycling condition in comparison to a fixed bike conditions and reported a decrease 

in P300 amplitude for the outdoor cycling, which suggests a reduced attention, hence can be attributed to 

an increased cognitive load due to being in a real-life scenario. This type of research can indeed benefit to 

understand the inner state of cyclists, how they perceive the danger and how their attention can be 

improved and so forth. However, there is no scientific publication reporting such integration in a real-

world environment, yet in cartography where EEG is integrated with other user testing methods to explore 

cognitive processes of map users. The major reason for not having sufficient literature on this subject is the 

methodological and technical challenges of the co-registration of eye tracking and EEG systems in a mobile 

environment. The first issue is the optimization of the signal/noise ratio and more noise is simply inevitable 

in a mobile setting. Another critical concern is the definition of AoIs, which are essential to quantify the 

gaze dynamics across meaningful parts of the dynamic visual scene or environment, because AoIs would 

constantly be influenced by the displacement of the participants. The correct timing of events of interest 

requires much more complex algorithms compared to time-locking handled in laboratory settings. 

Moreover, mobile EEG systems use dry electrodes that decrease data quality and cause discomfort for the 

participants (Ladouce et al., 2017). 

 

Our research was exploratory and limited to the resources in the neuro-lab, nonetheless, the spatial 

resolution of the EEG recording system can be enhanced to assure better data quality such as using 32, 64 

or 128 electrodes EEG devices. Furthermore, the current analysis could be improved by separating the 

alpha band in lower and upper alpha to study the cognitive load or another interesting approach is to 

compute the frequency within the alpha band in which a participant shows the highest power (e.g. 10.5Hz) 

and center the alpha powerband around this number (e.g. plus/minus 2 Hz). The fact that the average 

power were calculated over an interval of 7 seconds might have been a missed opportunity to find effects 

we were looking for. To overcome this issue, one might consider calculating the alpha power every 2 

seconds and relate these different intervals to specific map learning behavior.  

 

On the other hand, the temporal accuracy of the EEG can improved in order to explore event-related 

potentials (ERP) or eye fixation related potentials EFRP as explained in Chapter 3.  Focusing on the EEG 

activity that is time-locked to an event provides insights that are more precise and in this context, ERP-

based study holds a great potential to further dig into the differences between novices and experts, and to 

study this with attentional paradigms making use of ERP components. For instance, how novice and expert 

map users differ in drawing roads (in color red) or water/lakes (in color blue) first? Which brain activity is 

originated from saccadic movements and which from the fixations -that are visual processing related-? We 

can sort EEG data based on saccadic and fixation related components, then match ERPs at desired fixations 

and explore if there are similar patterns for different participants. This would help to answer our main 
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research question in more depth: ‘Do search strategies of map-related information differ for experts and 

novices?’ Consequently, it can be concluded that the EEG data is overwhelming and the possibilities are 

endless if experiment is designed well.  

 

This research can also be followed up with an fMRI study specifically to find out which tasks use similar 

brain regions even though the tasks themselves seem to be very different or which tasks use different brain 

regions even though the tasks seem to be very similar (see Lobben et al, 2005). In this context, for instance, 

we can investigate: 

 how (i) task difficulty, (ii) map complexity, (ii) number of objects, (iv) the use of visual variables 

to remember affect the spatial cognition, e.g. which regions engage during the retrieval of linear 

or areal features or features depicted with color red? so on.  

 how spatial relationships are constructed during the map learning procedure on “digital 2D static 

topographic maps” or “screenshots of Google’s road maps” and compare it with what would 

happen while interacting e.g. “3D dynamic visualizations from Google earth” 

Additionally, one can make use of hippocampal place cells that are grid cells in entorhinal cortex and they 

are efficient neural mechanism for encoding knowledge about the world, not only for spatial location but 

also for more abstract cognitive information. Human fMRI studies have observed grid-like signals that 

encode locations during mental imagery, features of abstract visual stimuli and eye position during 2D 

visual search (please read Kim & Maguire, 2019 for more detail). “If grid cells are indeed involved in abstract 

cognitive mapping, the ‘space’ might not be limited to simple 2D physical space on which most grid cell research has 

to date been conducted, because cognitive tasks can involve more than two features or attributes. Grid cells should 

also be able to efficiently encode 3D and higher dimensional space (unless the high dimensional cognitive problem can 

be projected into low dimensional space, e.g. context-dependent encoding” (Kim & Maguire, 2019, p1). 

 

Within the scope of the thesis, we focused on digital 2D static maps. Although there can be quite some 

design challenges for new digital ways of representing geographical informations (e.g. 3D maps, 

GoogleStreetView, Augmented/Virtual Reality applications), there lies cartographic rules, mainly the 

symbolization and the manipulation of the visual variables which are used to construct the core 

information of maps, in the foundation of producing of either 2D or 3D cartographic representations. 

Moreover, the visual variables that were first listed by Bertin have been continuously amended by others 

with the advances in technology (e.g. perspective, transparency). In terms of spatial cognition and usability, 

2D maps are still good and not outdated; hence, there is room to optimise their user experience. Previous 

studies evaluating the usability of 2D versus 3D representations are inconclusive (e.g. Lei et al., 2014; 

Popelka and Doležalová, 2015) and the advantages and disadvantages of both types of the representations 

have been reported depending on different modes of use and user contexts, therefore, task dependent. It 

may be possible to improve their usability by combining the advantages of each. For example, for 3D 

representations, cartographers can reduce the number of buildings to only important ones; for 2D maps, 

important landmarks should be included to help the users locate and orient themselves. The design and 

evaluation of representations that combine 2D and 3D features is a potentially interesting issue for further 

study (Liao et al., 2017). 
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Chapter 8: 

 General Conclusion 
 

 

 
 

 

 

“I don't know the future.  

I didn't come here to tell you how this is going to end.  

I came here to tell you how this is going to begin.” 

 

Neo, Matrix, 1999 
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Expertise plays a role equally important to maplikeness in map learning. To recall the locations and 

configurations of spatial objects from the memory usually requires experience with cartographic products 

in which topographic and topological information are represented by graphic symbols (Dickmann et al., 

2016). Visual variables (i.e. position, size, shape, value, color hue, orientation, and texture), on the other 

hand, has a great impact on visual attention and perception depending on their property (i.e. selective, 

associative, ordered or quantitative) (Wolfe, 2000). In cartography, empirical studies focusing on map 

design and spatial cognition are increasing, however, only a number of them devoted to the exploration of 

cartographic elements (e.g. visual variables) which are the keys in cognitive map formation. Hence, we 

cannot yet formulate the cognitive map construction precisely and nevertheless, sketch maps, considering 

their complexity, can be utilized as one of the sources to assess the processes of cognitive map production. 

 

While studying, a map-reader first perceptually divides the map into a number of spatial chunks. In this 

context, the structuring map elements, such as roads, hydrographic features or gridlines, initiates chunking 

process, thus, helps regionalizing the map and assists learning of map elements and their spatial relations. 

These structuring elements represent the spatial information of the map content in a hierarchically 

structured fashion and form fundamental units of cognitive maps, therefore, facilitate the perception and 

recognition of object locations (Edler et al., 2014).  

 

The memory task in the first experiment required recalling the main structural elements of a screen map 

without any time constraints. This retrieval act involved WM-LTM transitions, such as retrieval of spatial 

information stored in WM through LTM or strategies for constructing hierarchy among map elements. Our 

findings (see Chapter 2) showed that the majority of participants drew hydrographic objects first. While 

experts drew roads first, novices focused more on hydrographic objects such as rivers and water bodies. 

The settlements and land-cover elements (i.e. forests) were drawn third and fourth, respectively, for both 

user groups. The fact that both experts and novices drew linear objects (hydrography and roads) first can 

be explained by the hierarchical structures of schemas in LTM in a way that the participants start drawing 

their sketch maps with the main linear structures and continue with other landmarks.  

 

We regarded visual variables such as location, shape, size and color as though they were equally important 

for the drawing order which can be influenced by the use of visual variables Based on the scoring the size 

and shape of the objects depicted on sketch maps, the biggest difference between experts and novices was 

observed for settlements, favoring experts. A possible explanation could be that the depiction of settlements 

requires higher-level generalization knowledge. Since individual buildings come together to form a 

settlement or village, aggregation is needed to define a group of buildings as a settlement. Although not 

statistically significant, novices depicted the map elements slightly better using corresponding colors and 

the greatest difference between two groups was in hydrology (Figure 2.11). This result can be related to 

missing map elements on the sketch maps or to the fact that some experts did not prefer to use color. 

According to our findings, drawing a map element in the correct location was more difficult than describing 

its shape, size, and color.  
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To the best of our knowledge, in map design, important objects or the ones to emphasize are shown in red, 

and blue is a good color for backgrounds. This feature could be the reason why the experts drew the red 

linear objects (roads) first. On the other hand, having drawn the hydrographic elements first, novices might 

have found areal objects as important or interesting and thus as memorable as linear objects. We can infer 

that size is as important as color for the retrieval of an object. It is suggested that experts and novices use 

different strategies in spatial orientation, however, the common characteristic of the first drawn elements 

by all participants was that they both contained linear objects.  

 

Based on the assessment of sketch maps considering the aggregated analysis of presence & location, shape, 

size, and color of drawn elements, we concluded that neither expertise, nor gender differences were 

influential on the retrieval of spatial information. Although our results present that experts and novices do 

not differ in terms of the amount of information they recall, the learning/recalling strategies of experts and 

novices may differ. The drawing order results could be evidence that they might use different approaches.  

 

Eye tracking metrics provided valuable insight on how mental representations are formed. In this context, 

average fixation duration and the number of fixations per second revealed that there was no significant 

difference between the expert and novice groups. On the other hand, most participants paid less attention 

(late first fixation and less dwell time) to the relatively small linear (i.e. roads) and areal features (i.e. land 

cover) within the specified AoIs. The larger objects and the objects located in the upper middle of the screen 

caught a participant’s attention earlier than the others did.  However, when comparing the presence and 

accuracy scores of drawn elements, both groups mostly drew small roads on their sketch maps but not 

land-cover features. We could infer from this result that the linear features were easier to learn and 

remember, although the viewer did not pay much attention and as users tend to focus on polygon objects, 

they scan through linear objects (see Chapter 2, 6).   

 

While eye tracking metrics and sketch maps analysis in the first experiment demonstrated that the 

differences between experts and novices were not significant, the EEG alpha power analysis contradicted 

those results. As the greater alpha power is associated with lower cognitive load, the results indicated that 

experts spent considerably less cognitive load on this memory task compared to novices. However, novices 

and experts showed no significant difference in FAA scores. Nevertheless, 70% of experts had negative 

scores on this metric, which reflects greater relative right activation, suggesting withdrawal-related 

motivation. Although the average FAA scores were negative for novices, 57% of them exhibited larger left-

hemispheric activation, which is an indicator of approach-oriented motivation and positive affective states 

(see Chapter 2).  

 

In the first experiment, we used simple and exploratory measurements for cognitive load extraction (e.g. 

average fixation duration, number of fixations per second, FAA, average alpha power). However, the map 

design and the level of complexity of maps might have an impact on cognitive load and even influence 

how difficult a particular task can be. Therefore, the second experiment was designed in a more complex 

way of addressing in-depth investigation of cognitive load of expert and novice participants within varying 

task difficulties regarding to the retrieval of the main structuring map elements in restricted trial periods  
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In this context, easy tasks involved Block 1 (all map elements) and Block 2 (roads & hydography); moderate 

tasks Block 3 (roads and green areas) and Block 4 (green areas and hydrography); easy tasks, Block 5 (green 

areas), Block  6 (hydrography) and Block 7 (roads) (see Chapter 4).  

 

Our findings demonstrated that experts had longer reaction times (significantly longer for moderate and 

hard tasks), but higher success rates. This result is in line with the outcome of the first experiment 

confirming that experts allocated more time in studying the map stimulus. The reason for that might be 

that experts were a bit more ambitious and driven to accomplish the task compared to novices, and saved 

an extra time to review or verify their response before submitting it. Novices were observed to have longer 

fixation durations, mostly lower number of fixations per second and higher saccade velocity (except for 

hard tasks) which indicate a higher cognitive load for novices. Additionally, the saccade amplitudes of 

novices were longer. In longer saccades (i.e. larger amplitude), the search goes all across the image and is 

thus less organized. Experts exhibiting shorter saccades means a more targeted search from one focal point 

to the next, which are close to each other in the map, therefore, a less chaotic search pattern. The shorter 

fixations of experts also show that they needed less time to interpret what they saw. Although not 

significant, experts demonstrated higher theta power (except for easy tasks) which can be associated with 

a higher cognitive load. Qualitative analysis of the eye movements (i.e. through 10 randomly selected focus 

maps) indicated that both groups showed similar attentional behavior in terms of the map area covered 

and the map elements on which they focused. For instance, both experts and novices generally paid most 

attention to the green areas that are large and isolated (see Chapter 5). Based on the above findings, it is 

difficult to favor one user group in terms of their performance while retrieving the map-related 

information. The map-learning and recalling strategies of experts and novices and their approach to the 

task might not be similar, however, the overall performances of them did not differ much. 

 

We alternatively grouped the participants in the second experiment as good learners (GL) and relatively 

poor learners (RPL) based on their success rates, and we observed that good learners exhibited significantly 

higher theta ERS considering their overall performance. Although the cognitive load of these groups did 

not differ based on the task difficulty within the frame of this research, classifying participants based on 

their spatial memory performances provided different insights on map user’ cognitive processes. Similar 

to what was found by Havelková and Gołębiowska (2020), unsuccessful participants differed in the general 

problem-solving approach, in a way that they tended to choose fast, less cautious strategies and lacked 

motivation. Subsequently, we further analyzed the influence of the map design characteristics that play an 

important role in users’ cognitive load and learning performance considering expert vs. novices and GL vs. 

RPL classifications. The qualitative analysis of the randomly selected 10 focus/heat maps considering the 

map elements receiving the highest number of fixations provided a general overview of the participants’ 

attentional behavior towards the map elements of interest and the similarities related to their map learning 

strategies (see Chapter 5.3.2). However, for measurable results, drawing AoIs (area of interest) around key 

elements of maps (i.e. green areas, water bodies, major rivers and roads, road junctions) is a more precise 

way to analyze the attention distribution of the participants. Our preliminary findings showed that on the 

one side, there was no trend in terms of the differences occurred regarding to the blocks, therefore, the 

fixation durations within the (relevant) AoIs did not depend on the task difficulty. On the other side, the 
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task demands (e.g. the tasks in Block 7 require the retrieval of the main roads) affect the attentional behavior 

of participants. Nevertheless, experts exhibited longer fixation durations (except for Block 3) compared to 

novices did, while GL always demonstrated lower fixation durations than the RPL did. This outcome 

shows that GL experienced lesser cognitive load than the rest. 

 

The shorter the time to first fixation, the earlier the attention is drawn to that AoI and we did not observe 

a trend for time to first fixation neither between experts and novices nor between GL and RPL. While it 

took experts the shortest time to fixate on the relevant AoIs, RPLs spent the longest time to fixate on map 

elements of interest. This finding shows that experts were the fastest of all to gaze at the map objects of 

interest (see Figure 6.10c). According to AoI analysis of the selected map stimulus, we can infer that the 

eyes tend to focus on the polygon objects while they scan through linear objects. On the other hand, the 

differences in terms of the map elements covered within selected AoIs are much more visible between GL 

and RPL compared to those between experts and novices (Figure 6.12c, d). 

 

Our results showed that EEG can be employed as a complementary technique to get a detailed insight 

about user actions and behaviors and reveal the information that we did not observe with eye tracking. 

Therefore, triangulating EEG and ET data seems useful to be able draw conclusions on user’s behavior and 

also shows that the data require more investigation. 

 

In our experiments, we used Google Maps, which is designed for everyone (i.e. regardless of the users’ 

individual differences of spatial cognition) as stimuli in our experiments, and we found no significant 

difference between experts and novices in terms of the cognitive load that these maps caused. It is 

important to mention that if the quality of the cartographic design fulfills its purpose of the design, it has a 

positive effect on users’ experience. Therefore, our findings confirm Google Maps were designed in a 

simple manner for general audience. 

 

The more we know about the limitations and capabilities of visual perception and cognition of different 

map users, the higher the possibilities to design cartographic products in a more efficient, understandable 

and effective way. When integrated with other qualitative and quantitative user testing methods, EEG 

indeed suggests a valuable contribution to the understanding of the cognitive processes of individuals. 
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SUMMARY 
 

 

Understanding how our brain copes with complex visual information is a challenge for both cognitive 

psychology and cartography. If we pursue to design better and usable maps, we require building a better 

knowledge on the cognitive processes of map users. This thesis aims to contribute to the understanding of 

the cognitive processes of a group of map users in learning, acquiring and remembering information 

presented via digital 2D static maps.  

 

To be able to gain insight into the users’ behaviors while they interact with maps, eye tracking (ET) and 

electroencephalogram (EEG) are enabled as synchronized data collection methods due to them being non-

invasive and capturing direct responses of cognitive activities. Therefore, the preliminary goal of the 

research is to evaluate the use of ET and EEG for cartographic usability and spatial cognition research 

considering the technical and methodological aspects of this synchronization, also the limitations, 

possibilities and the contribution of EEG in the domain of cartography. The technical concerns refer to (i) 

the synchronization of ET and EEG recording systems, their accuracy and quality, and (ii) numerous 

processing steps (i.e. preprocessing, the alignment of the collected ET and EEG data, removal of non-

cerebral activities from EEG data, segmentation and re-referencing). The methodological issues are situated 

in many aspects of the experimental design and its set-up, which includes identifying the research goals, 

participants, task and stimuli, psychological measures to use, evaluation methods and possible analyses of 

the collected data. These issues are pinpointed with respect to the existing literature, knowledge obtained 

from domain experts and hands-on experience in the neuro-lab. 

 

The fundamental object of the thesis is to investigate on the traditional expert-novice paradigm as expertise 

being one of the individual characteristics that influences the users’ performance on map-learning tasks. 

Since maps are widely used by both experts and novices, to study their differences in spatial cognition 

enables us to determine how to use this input to enhance the map design leveraging the map users’ 

cognitive abilities. Therefore, our main research questions are: ‘Do map learning strategies of experts and 

novices differ? How does the cognitive load vary between expert and novices?’ In this context, we 

conducted two mixed-methods user experiments focusing on the cognitive strategies of a group of expert 

and novice map users and investigated their spatial memory capabilities through cognitive load 

measurements.  

 

First experiment had a simple design and an exploratory characteristic, since we would initially assure that 

the eye tracking and EEG synchronization is of sufficient quality to explore users’ cognitive behaviors 

towards map stimuli. Accordingly, it consisted of single trials and participants were instructed to study the 

main structuring elements of a map stimulus (i.e. roads, settlements, hydrography, and green areas) 

without any time constraints in order to draw a sketch map afterwards. On the one hand, the performance 

of the participants was assessed based on the order with which the objects were drawn on the digital sketch 

maps and the influence of a subset of visual variables (i.e. presence & location, size, shape, color). On the 
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other hand, trial durations and eye tracking statistics such as the average duration of fixations, and number 

of fixations per seconds were compared. Moreover, selected AoIs, which represent the main structuring 

elements of the map stimulus, were explored to gain a deeper insight on visual behavior of map users. 

Based on the evaluation of the drawing order, we observed that experts and males drew roads first 

whereas; novices and females focused more on hydrographic object. According to the assessment of drawn 

elements, no significant differences emerged between neither experts and novices, nor females and males 

for the retrieval of spatial information presented on 2D maps with a simple design and content. The 

differences in trial durations between novices and experts were not statistically significant while both 

studying and drawing. Similarly, no significant difference occurred between female and male participants 

for either studying or drawing. Eye tracking metrics also supported these findings. For average duration 

of fixation, there was found no significant difference between experts and novices, as well as between 

females and males. Similarly, no significant differences were found for the mean number of fixation. 

Furthermore, based on results of time to first fixation, dwell time, fixation count, the number of fixations 

per second, average fixation duration for selected AoIs, the larger AoIs were gazed at earliest and the dwell 

times for such objects were much longer compared to those for other AoIs. The linear features were easier 

to learn and remember, although the viewer did not pay much attention. Longer average fixation durations 

for a specific AoI indicated that the chances were higher to remember that object. The objects that were 

absent on the sketch map received the shortest fixation durations during the study phase. However, longer 

fixation durations may also indicate participants’ difficulty to recognize the information in the map 

stimulus. Regarding to the EEG Frontal Alpha Asymmetry calculations, both user groups showed greater 

relative right frontal activation, which is in association with the less attentional, and focus performance. 

The difference between experts and novices was not significant, similar to the eye tracking results. On the 

contrary, alpha power averaged across all electrodes demonstrated that the novices exhibited significantly 

lower alpha power, indicating a higher cognitive load. 

 

On the contrary, in Experiment 2, a complex and more structured approach was followed as a result of 

learning from the previous experiment and collaborating with the domain experts. This experiment 

contained a larger number of stimuli were used to study the effect of task difficulty (i.e. easy, moderate, 

hard) on the retrieval of map-related information. Next to the reaction time and success rate, we used 

fixation and saccade related eye tracking metrics (i.e., average fixation duration, the number of fixations 

per second, saccade amplitude and saccade velocity), and the event-related changes in EEG power spectral 

density (PSD) for alpha and theta frequency bands to identify the cognitive load. While fixation metrics 

and the qualitative analysis of the randomly selected focus/heat maps summarizing the participants’ 

fixation behaviors indicated no statistically significant difference between experts and novices, saccade 

metrics proved the otherwise. EEG power spectrum analysis, on the other side, suggested an increase in 

theta power (i.e. event-related synchronization) and a decrease in alpha power (except moderate tasks) (i.e. 

event-related desynchronization) at all difficulty levels of the task for both experts and novices, which is 

an indicator of cognitive load. Although no significant difference emerged between two groups, we found 

a significant difference in their overall performances when the participants were classified as good and 

relatively bad learners. Triangulating EEG results with the recorded eye tracking data and the qualitative 



167 

 

analysis of randomly selected focus maps indeed provided a detailed insight on the differences of the 

individuals’ cognitive processes during this spatial memory task.  

 

The qualitative analysis with the 10 randomly selected focus/heat maps provided a general overview of the 

participants’ attentional behavior towards the map elements of interest and the similarities related to their 

map learning strategies. However, for measurable results, we selected one map stimulus and drew AoIs 

around key elements of maps (i.e. green areas, water bodies, major rivers and roads, road junctions) to 

analyze the attention distribution of the participants using average fixation duration, time to first fixation 

and the number of map objects covered within AoIs. Although the results are preliminary, we found out 

that the eye scans through linear objects and fixates/focuses on the polygon objects. The location of the map 

elements is more influential on the participants’ gaze behavior compared to its size. The fixation durations 

within the (relevant) AoIs did not depend on the task difficulty. Additionally, our analysis showed that the 

GL experienced the least cognitive and this finding supports the evaluation of the participants by 

classifying them as “good learners and bad learners” during the usability tests of maps designed for general 

users with basic map learning tasks. In order to increase the understandability and usability of cartographic 

products, the results of this research can be used as guiding experiences in production processes where 

design methods that minimize the factors that negatively affect user perception (e.g. exaggeration, 

reduction of emphasis, utilizing the visualization elements to increase visual extraction such as grids). 
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SAMENVATTING 
 
Begrijpen hoe onze hersenen omgaan met complexe visuele informatie is een uitdaging voor zowel de 

cognitieve psychologie als de cartografie. Als we ernaar streven om betere en bruikbare kaarten te 

ontwerpen, moeten we een betere kennis van de cognitieve processen van kaartgebruikers opbouwen. 

Deze thesis heeft als doel bij te dragen aan het begrijpen van de cognitieve processen van kaartgebruikers 

bij het leren, verwerven en onthouden van informatie die wordt gepresenteerd via digitale 2D statische 

kaarten.  

 

Om inzicht te krijgen in het gedrag van de gebruikers tijdens de interactie met kaarten, worden eye tracking 

(ET) en electroencephalogram (EEG) ingeschakeld als gesynchroniseerde dataverzamelingsmethoden 

omdat ze niet-invasief zijn en directe responsen van cognitieve activiteiten vastleggen. Daarom is het 

voorlopige doel van het onderzoek om het gebruik van ET en EEG voor cartografisch bruikbaarheids- en 

ruimtelijk cognitieonderzoek te evalueren, rekening houdend met de technische en methodologische 

aspecten van deze synchronisatie, alsook met de beperkingen, mogelijkheden en de bijdrage van EEG in 

het domein van de cartografie. De technische aspecten hebben betrekking op (i) de synchronisatie van ET 

en EEG opnamesystemen, hun nauwkeurigheid en kwaliteit, en (ii) talrijke verwerkingsstappen (d.w.z. 

voorbewerking, de uitlijning van de verzamelde ET en EEG gegevens, het verwijderen van niet-cerebrale 

activiteiten uit EEG gegevens, segmentatie en re-referencing). De methodologische kwesties situeren zich 

in vele aspecten van het experimentele ontwerp en de opzet ervan, waaronder de identificatie van de 

onderzoeksdoelstellingen, de deelnemers, de taak en de stimuli, de te gebruiken psychologische 

maatregelen, de evaluatiemethodes en de mogelijke analyses van de verzamelde gegevens. Deze 

vraagstukken worden in kaart gebracht ten opzichte van de bestaande literatuur, de kennis van 

domeinexperts en praktijkervaring in het neuro-lab. 

 

Het fundamentele doel van het proefschrift is het onderzoeken van het traditionele expert-

noviceparadigma als expertise die een van de individuele kenmerken is die de prestaties van de gebruikers 

op het gebied van kaartleertaken beïnvloedt. Aangezien kaarten veel gebruikt worden door zowel experts 

als nieuwkomers, kunnen we, om hun verschillen in ruimtelijke cognitie te bestuderen, bepalen hoe we 

deze input kunnen gebruiken om het kaartontwerp te verbeteren door gebruik te maken van de cognitieve 

vaardigheden van de gebruikers van de kaart. Daarom zijn onze belangrijkste onderzoeksvragen: 

Verschillen kaartleerstrategieën van experts en beginnelingen? Hoe varieert de cognitieve belasting tussen 

expert en beginner? In deze context voerden we twee mixed-methods gebruikersexperimenten uit gericht 

op de cognitieve strategieën van deskundige en beginnende kaartgebruikers en onderzochten we hun 

ruimtelijke geheugencapaciteiten door middel van cognitieve belastingsmetingen.  

 

Het eerste experiment had een eenvoudig ontwerp en een verkennend kenmerk, aangezien we in eerste 

instantie zouden verzekeren dat de eye tracking en EEG-synchronisatie van voldoende kwaliteit is om het 

cognitieve gedrag van de gebruikers te verkennen in de richting van kaartstimuli. Het bestond dan ook uit 

enkelvoudige proeven en de deelnemers kregen de opdracht om de belangrijkste structurerende elementen 

van een kaartstimulans (d.w.z. wegen, nederzettingen, hydrografie en groene gebieden) te bestuderen 

zonder enige tijdsdruk om daarna een schetskaart te tekenen. Enerzijds werd de prestatie van de 

deelnemers beoordeeld op basis van de volgorde waarin de objecten op de digitale schetskaarten zijn 

getekend en de invloed van visuele variabelen (bijv. aanwezigheid & locatie, grootte, vorm, kleur). 

Anderzijds werden de proefduur en de statistieken van de eyetracking, zoals de gemiddelde duur van de 
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fixaties, en het aantal fixaties per seconde, vergeleken. Bovendien werden geselecteerde AoI's (Area of 

Interests), die de belangrijkste structurerende elementen van de kaartstimulans vertegenwoordigen, 

onderzocht om een dieper inzicht te krijgen in het visuele gedrag van kaartgebruikers. Op basis van de 

evaluatie van de tekenvolgorde constateerden we dat experts en mannen eerst wegen trokken, terwijl 

novicen en vrouwen zich meer richtten op hydrografische objecten. Volgens de beoordeling van de 

getekende elementen zijn er geen significante verschillen tussen experts en novicen, noch tussen vrouwen 

en mannen voor het ophalen van ruimtelijke informatie die op 2D-kaarten met een eenvoudig ontwerp en 

inhoud wordt gepresenteerd. De verschillen in proefduur tussen beginnelingen en experts waren niet 

statistisch significant tijdens het bestuderen en tekenen. Evenzo was er geen significant verschil tussen 

vrouwelijke en mannelijke deelnemers voor zowel studeren als tekenen. Eye tracking metrieken 

ondersteunden ook deze bevindingen. Voor de gemiddelde duur van de fixatie werd er geen significant 

verschil gevonden tussen experts en novicen, evenals tussen vrouwen en mannen. Ook werden er geen 

significante verschillen gevonden voor het gemiddelde aantal fixaties. Bovendien werden op basis van de 

resultaten van de tijd tot de eerste fixatie, de verblijftijd, het aantal fixaties per seconde, de gemiddelde 

fixatieduur voor geselecteerde AoI's, de grotere AoI's op zijn vroegst bekeken en de verblijftijden voor 

dergelijke objecten waren veel langer vergeleken met die voor andere AoI's. De lineaire kenmerken waren 

gemakkelijker te leren en te onthouden, hoewel de kijker er niet veel aandacht aan besteedde. De langere 

gemiddelde fixatieduur van een specifiek AoI gaf aan dat de kans groter was dat het object zich zou 

herinneren. De objecten die afwezig waren op de schetskaart kregen de kortste fixatieduur tijdens de 

studiefase. Een langere fixatieduur kan echter ook wijzen op de moeilijkheid van de deelnemers om de 

informatie in de kaartprikkel te herkennen. Wat betreft de EEG Frontal Alpha Asymmetry berekeningen, 

toonden beide gebruikersgroepen een grotere relatieve rechter frontale activering, wat in verband staat met 

de minder aandachts- en focus prestatie. Het verschil tussen experts en beginners was niet significant, 

vergelijkbaar met de eyetracking resultaten. Integendeel, het gemiddelde alfavermogen over alle 

elektroden toonde aan dat de nieuwelingen significant minder alfavermogen vertoonden, wat duidt op een 

hogere cognitieve belasting. 

 

Integendeel, in Experiment 2 werd een complexe en meer gestructureerde aanpak gevolgd als gevolg van 

het vorige experiment en de samenwerking met de domeinexperts. Dit experiment bevatte een groter 

aantal stimuli die werden gebruikt om het effect van taakmoeilijkheden (d.w.z. gemakkelijk, gematigd, 

moeilijk) op het terugvinden van kaartgerelateerde informatie te bestuderen. Naast de reactietijd en het 

succespercentage, gebruikten we fixatie en saccade gerelateerde eye tracking metrieken (dat wil zeggen, 

gemiddelde fixatieduur, het aantal fixaties per seconde, saccade amplitude en saccade snelheid), en de 

gebeurtenis-gerelateerde veranderingen in EEG-vermogen spectrale dichtheid (PSD) voor alfa en theta 

frequentiebanden om de cognitieve belasting te identificeren. Terwijl de fixatiemetingen en de kwalitatieve 

analyse van de willekeurig geselecteerde focus/warmtekaarten die het fixatiegedrag van de deelnemers 

samenvatten geen statistisch significant verschil tussen experts en beginners aangaven, bewees de saccade-

metriek het tegendeel. EEG power spectrum analyse, aan de andere kant, suggereerde een toename in theta 

vermogen (d.w.z. gebeurtenis-gerelateerde synchronisatie) en een afname in alfa vermogen (met 

uitzondering van gematigde taken) (d.w.z. gebeurtenis-gerelateerde desynchronisatie) op alle 

moeilijkheidsgraden van de taak voor zowel deskundigen als nieuwelingen, wat een indicator is voor 

cognitieve belasting. Hoewel er geen significant verschil tussen twee groepen naar voren kwam, vonden 

we een significant verschil in hun algemene prestaties toen de deelnemers werden geclassificeerd als goede 

en relatief slechte leerlingen. De EEG-resultaten kruisend met de geregistreerde eyetrackinggegevens en 

de kwalitatieve analyse van willekeurig gekozen focuskaarten gaven inderdaad een gedetailleerd inzicht 

in de verschillen in de cognitieve processen van de individuen tijdens deze ruimtelijke geheugentaak.  
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De kwalitatieve analyse met de 10 willekeurig gekozen focus/warmtekaarten gaf een algemeen overzicht 

van het aandachtige gedrag van de deelnemers ten aanzien van de kaartelementen die van belang zijn en 

de overeenkomsten met hun kaartleerstrategieën. Voor meetbare resultaten selecteerden we echter één 

kaartstimulans en tekenden we AoI's rond de belangrijke kaartelementen (d.w.z. groene gebieden, 

waterlichamen, grote rivieren en wegen, wegenknooppunten) om de aandachtsverdeling van de 

deelnemers te analyseren met behulp van de gemiddelde fixatietijd, de tijd tot de eerste fixatie en het aantal 

kaartobjecten dat binnen AoI's aan bod komt. Hoewel de resultaten voorlopig zijn, kwamen we erachter 

dat het oog de lineaire objecten scant en fixaties/focussen op de veelhoekige objecten scant. De locatie van 

de kaartelementen heeft meer invloed op het kijkgedrag van de deelnemers in vergelijking met hun grootte. 

De fixatieduur binnen de (relevante) AoI's was niet afhankelijk van de moeilijkheidsgraad van de taak. 

Bovendien toonde onze analyse aan dat de GL de minst cognitieve ervaring had en deze bevinding 

ondersteunt de evaluatie van de deelnemers door hen te classificeren als "goede en slechte leerlingen" 

tijdens de bruikbaarheidstests van kaarten ontworpen voor algemene gebruikers met basiskaartleertaken. 

Om de begrijpelijkheid en bruikbaarheid van cartografische producten te vergroten, kunnen de resultaten 

van dit onderzoek worden gebruikt als leidraad voor ervaringen in productieprocessen waarbij 

ontwerpmethoden worden gebruikt die de factoren die de gebruikersperceptie negatief beïnvloeden, 

minimaliseren (bijv. overdrijving, accentvermindering, gebruik van visualisatie-elementen om de visuele 

extractie te vergroten, zoals rasters). 
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ÖZET 
 
Beynimizin karmaşık görsel bilgilerle nasıl başa çıktığını anlamak hem bilişsel psikoloji, hem de bilişsel 

kartografya için bir zorluktur. Daha iyi ve kullanılabilir haritalar tasarlamayı hedefliyorsak, harita 

kullanıcılarının bilişsel süreçleri hakkında daha iyi bilgi sahibi olmamız gerekir. Bu tez, harita 

kullanıcılarının iki boyutlu (2B) sayısal statik haritalar aracılığıyla sunulan içeriği öğrenme, bilgi çıkarımı 

yapma ve hatırlamadaki bilişsel süreçlerinin anlaşılmasına katkıda bulunmayı amaçlamaktadır.  

 

Kullanıcıların haritalarla etkileşim halindeyken sergilediği davranışlara ilişkin içgörü elde etmek amacıyla, 

invazif olmayan ve bilişsel aktiviteyi doğrudan ölçmeyi sağlayan göz izleme (eye tracking) ve 

elektroensefalogram (EEG), senkronize veri toplama yöntemleri olarak kullanılmıştır. Bu nedenle, 

araştırmanın öncül amacı, bu senkronizasyonun teknik ve metodolojik unsurlarına ilişkin kısıt ve 

imkanlarını dikkate alarak, kartografik kullanılabilirlik (usability) ve mekansal biliş araştırmaları özelinde 

sunduğu olanakları değerlendirmek ve ayrıca EEG'nin geomatik ve kartografya disiplinlerine potansiyel 

katkısını ortaya koymaktır. Teknik unsurlar, (i) göz izleme ve EEG kayıt sistemlerinin senkronizasyonu, 

doğruluğu ve veri kalitesi ile (ii) çok sayıda veri işleme adımlarından  oluşur (örn. ön işleme, toplanan göz 

izleme ve EEG verilerinin çakıştırılması (offline synchronization), serebral olmayan EEG aktivitelerin 

ayıklanması, segmentasyon, yeniden referanslama). Metodolojik unsurlar ise araştırma hedefleri, 

katılımcılar, görev ve uyaranlar, analizlerde kullanılacak psikolojik ölçme metrikleri ve toplanan verilerle 

gerçekleştirilecek olası analizlerin saptanması gibi konuları içermek üzere, deneysel tasarım ve kurulum 

ilkeleri etrafında toplanmıştır. Tez kapsamında bu konular, mevcut literatür, alanında uzman kişilerden 

edinilen bilgiler ve deneylerin gerçekleştirildiği nöro-laboratuvardaki deneyimler göz önünde 

bulundurularak ele alınmıştır. 

 

Doktora çalışmasının temel amacı, harita kullanıcılarının harita öğrenme (map learning) performanslarını 

etkileyen bireysel özelliklerden biri olan uzmanlığın etkisini geleneksel uzman-acemi paradigması 

çerçevesinde araştırmaktır. Haritalar, günümüzde hem uzmanlar, hem de uzman olmayanlar tarafından 

yaygın olarak kullanıldığından, harita kullanıcılarının mekansal bilişteki (spatial cognition) farklılıklarını 

incelemek, bu girdinin onların bilişsel yeteneklerinden yararlanarak harita tasarımını geliştirmek için nasıl 

kullanılacağını belirlenmesine öncü olur. Bu nedenle, temel araştırma soruları: “Uzman ve uzman olmayan 

kullanıcıların harita öğrenme stratejileri farklı mıdır? Bilişsel yük (cognitive load), bu kullanıcılar arasında 

nasıl farklılık gösterir?” Bu bağlamda, uzman ve uzman olmayan harita kullanıcılarının bilişsel 

stratejilerini tespit etmeye yönelik, iki tane karma yöntemli kullanıcı deneyi (mixed-methods user 

experiment) gerçekleştirilmiş ve bilişsel yük ölçümleri aracılığıyla harita kullanıcılarının mekansal bellek 

(spatial memory) yetenekleri araştırılmıştır. 

 

Başlangıçta göz izleme ve EEG senkronizasyonunun, kullanıcıların harita uyaranlarına yönelik bilişsel 

davranışlarını saptamak için yeterli kalitede olduğu şartını sağlamak amacıyla, ilk deney basit bir tasarıma 

fakat keşifsel (exploratory) bir özelliğe sahiptir. Buna göre, ilk deney tek bir harita öğrenme görevinden 

(single trials) oluşmakta ve bu kapsamda katılımcılara daha sonradan dijital ortamda taslak (eskiz) 

haritasını (sketch map) çizmek üzere, herhangi bir zaman kısıtlaması olmadan basitleştirilmiş bir 

topografik harita uyaranının temel yapı elemanlarını (yollar, yerleşim bölgeleri, hidrografik objeler ve yeşil 

alanlar) ezberlemeleri talimatı verilmiştir. Bir yandan, katılımcıların performansı harita nesnelerinin taslak 

haritadaki çizim sırasına ve görsel değişkenlerin (örn. konum, boyut, şekil, renk) ifade edilişine göre 

değerlendirilirken, diğer yandan katılımcıların deney tamamlama süreleri ile ortalama sabitleme süresi 
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(average fixation duration) ve saniyedeki sabitleme sayısı (number of fixations per second) gibi göz izleme 

istatistikleri karşılaştırılmıştır. Ayrıca, harita kullanıcılarının görsel davranışları hakkında daha detaylı bir 

fikir edinmek amacıyla, haritanın temel yapı elemanlarını temsilen seçilen AoI’ler (ilgi alanları) 

incelenmiştir. Çizim sırasının değerlendirmesine göre, uzmanların ve erkeklerin önce yol nesnelerini; 

uzman olmayanların ve kadınların ise önce hidrografik nesneleri çizdikleri görülmüştür. Taslak haritalar 

üzerine çizilmiş nesnelerin değerlendirmesine göre, basit bir tasarım ve içeriğe sahip 2B haritalarda 

sunulan mekansal bilgilerin hatırlanması görevinde, ne uzman ve uzman olmayanlar, ne de kadın ve erkek 

katılımcılar arasında performans açısından anlamlı bir fark ortaya çıkmıştır. Aynı durum, harita içeriğini 

ezberleme ve taslak haritaların çizimini kapsayan deney sürelerindeki farklılıklar için de geçerlidir. Göz 

izleme metrikleri de bu bulguları desteklemekte; ne ortalama sabitleme süresi, ne de ortalama sabitleme 

sayısı için uzman ve uzman olmayanlar ile kadın ve erkek katılımcılar arasında anlamlı bir fark 

bulunmaktadır. Ayrıca, ilk sabitleme süresi, bakma süresi (dwell time), sabitleme sayısı, saniye başına 

sabitleme sayısı, seçilen AoI'ler için ortalama sabitleme süresi sonuçlarına dayanarak, katılımcılar öncelikle 

alansal olarak büyük AoI'lere dikkatlerini yöneltmişlerdir ve bu nesneler için bakma sürelerinin çok daha 

uzun olduğu saptanmıştır. Katılımcıların fazla dikkat harcamadan çizgisel detayları öğrenmesi ve 

hatırlaması daha kolay olmuştur. Belirli bir AoI’ye olan ortalama sabitleme süresinin uzaması, o nesneyi 

hatırlama şansının da artması şeklinde yorumlanabilir. Taslak haritalarda bulunmayan nesneler, harita 

içeriğini ezberleme aşamasında da en kısa sabitleme sürelerini almıştır. Ancak, daha uzun sabitleme 

süreleri, katılımcıların harita uyaranın içerdiği bilgileri tanıma güçlüğü ile de ilişkilendirilebilir. EEG 

frontal alfa asimetrisi (FAA) hesaplamaları, hem uzman, hem de uzman olmayan harita kullanıcılarının 

daha büyük göreceli sağ frontal aktivasyon sergilediklerine işaret etmektedir; sağ frontal aktivasyon düşük 

dikkat ve odak performansı ile ilişkilendirilmektedir. Göz izleme sonuçlarına benzer şekilde, FAA 

sonuçları da bu iki grup arasındaki farkın anlamlı olmadığını göstermesine karşın; tüm elektrotlar 

üzerinden hesaplanan ortalama alfa gücünün, uzman olmayanlarda önemli ölçüde daha düşük olması, 

harita öğrenme görevinini uzman olmayanlarda daha yüksek bir bilişsel yüke yol açtığı şeklinde 

yorumlanmıştır. 

 

İkinci deneyde, önceki deneyden edinilen deneyimler ve deneysel psikoloji uzmanlarıyla işbirliği 

sonucunda, ilk deneye göre daha karmaşık ve yapılandırılmış bir yaklaşım izlenmiştir. Bu deney 

kapsamında görev zorluğunun (e.g. kolay, orta, zor) harita içeriğinin hatırlanması üzerindeki etkisini 

incelemek amacıyla çok sayıda uyaran kullanmıştır. Bilişsel yükü tanımlamak için reaksiyon süresi ve 

başarı oranlarının yanı sıra, sabitleme ve sekme (saccade) ile ilişkili göz izleme metrikleri (i.e. ortalama 

sabitleme süresi, saniyedeki sabitleme sayısı, sekme genliği ve sekme hızı) ve EEG’de görülen olaya bağlı 

değişiminin alfa ve teta bantları için hesaplanan güç spektral yoğunluğu (PSD) kullanılmıştır. Sabitleme 

metrikleri ve katılımcıların sabitleme göz hareketlerini özetleyen ve rastgele seçilen odak/ısı haritalarının 

(focus/heat maps) nitel analiz sonuçları, uzman ve olmayan katılımcılar arasında istatistiksel olarak anlamlı 

bir fark göstermemekle birlikte, sekme metrikleri aksini göstermektedir. Öte yandan, EEG güç spektrumu 

analizleri, her iki grup için de tüm görev zorluk seviyelerinde, tetada artışa (yani olayla ilgili 

senkronizasyon) ve alfada ise (orta düzey görevler hariç) azalmaya (yani olayla ilgili senkronizasyonun 

azaltılması) işaret etmektedir. Uzman ve olmayan grup arasında anlamlı bir fark görülmezken, katılımcılar 

iyi öğrenenler (good learners) ve görece kötü öğrenenler (relatively poor learners) olarak 

sınıflandırıldığında bu iki grubun genel performansları arasında anlamlı bir farka rastlanmıştır. EEG 

sonuçlarını, göz izleme metrikleri ve odak/ısı haritalarının analiz sonuçları ile birleştirilerek aslında bu 

mekansal bellek görevi sırasında bireylerin bilişsel süreçlerinin farklılıkları hakkında ayrıntılı bir içgörü 

elde edilmiştir.  

 

Rastgele seçilen 10 adet odak/ısı haritası ile yapılan nitel analiz, katılımcıların ilgilenilen harita öğelerine 

karşı dikkate yönelik davranışlarına ve harita öğrenme stratejileriyle ilgili benzerliklere sadece genel bir 



175 

 

bakış sağlamıştır. Ölçülebilir sonuçlar için, seçilen bir harita uyaranına ait temel yapı elemanları (i.e. yeşil 

alanlar, su kütleleri, büyük nehirler ve yollar ve yol kavşakları) etrafına AoI'ler çizilmiş ve bu AoI’lere 

ilişkin ortalama sabitleme süresi, ilk sabitleme süresi ve AoI'lerde kapsanan harita nesnesi sayısı 

metriklerinden yararlanılarak katılımcıların dikkat dağılımını analiz edilmiştir. Elde edilen birincil 

sonuçlara göre, gözün çizgisel objeleri taradığı ve alansal objelere sabitlendiğii/odaklandığı, harita 

objelerinin konumunun, katılımcıların algısı üzerindeki etkisinin, objelerin boyutuna oranla daha fazla 

olduğu saptanmıştır. Görevle ilgili AoI’lere olan sabitleme sürelerinin görev zorluğuna bağlı olmadığı 

gözlenmiştir. Ayrıca yapılan analizlerde iyi öğrenenler grubunun en az bilişsel yükü sergilediği 

görülmüştür; bu durum, temel harita öğrenme görevleriyle genel kullanıcılar için tasarlanmış haritaların 

kullanılabilirlik testleri sırasında katılımcıların “iyi öğrenenler ve kötü öğrenenler” şeklinde 

sınıflandırılarak değerlendirilmesini desteklemektedir. Bu araştırmanın sonuçları; kartografik ürünlerin 

anlaşılabilirliğini ve kullanılabilirliğini artırmak için kullanıcı algısını olumsuz etkileyen faktörlerin en aza 

indirgenmesini sağlayan tasarım yöntemlerinin (abartma, vurguyu azaltma, grid/kareler ağı gibi görsel 

çıkarımını artırmaya yönelik görselleştirme öğelerinden yararlanılması gibi) uygulandığı üretim 

süreçlerinde yol gösterici deneyimler olarak kullanılabilir.  
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ANNEX 1: 

Orientation Script for Experiment 1 & 2 
 

INTRODUCTION 

 

First, thank you for participating in this study. 

 

My name is Merve Keskin. I will be here throughout the study. If you need clarification regarding to  

any steps of the experiment, you can ask me.  

 

The purpose of this study is to verify which regions in the brain are activated when end users  

perform different types of tasks on digital 2D static maps. In this test, you are considered as an end user. 

 

During the experiment, your brain activity and eye movements will be registered.  

 

Your brain activity will be measured using an EEG cap, which will be placed on your head. To do so: 

 

i. Your skull will be measured to ensure a proper placement of the EEG cap. 

ii. After you wear the cap, an electro-gel will be syringed to each electrodes on the cap to  

ensure proper signal acquisition. 

 

Your eye movements will be captured using an eye tracker, which is mounted underneath your screen.  

The eye tracker will be calibrated in the beginning and in the middle of the test, to take into account 

the specific characteristics of each user.  

 

I would like to emphasize that it is not your performance that is evaluated, but your eye movements  

and brain activity while performing tasks. You do not need to rush or try to complete the tasks as fast as 

possible. 

 

After the test, I will ask you to fill out a questionnaire, which helps me to understand your background.  

In addition, your data will be processed anonymously.  

 

As a final remark, I ask each user to read this document and sign it. This document is an authorization to 

record your data - in this case, the eye movements and brain signals - and use it for this study.   

        

 

Please press space bar to continue. 
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ANNEX 2:  

Instructions for Experiment 1 & 2 
 

Experiment 1 - INSTRUCTIONS  

 

Memory Task consists of two parts. 

 

PART I 

You will see a map on the screen like the one below. You are asked to remember the general structure 

of this map, so you that can draw in the second part. You are not asked to memorize and  

remember everything to the smallest detail, but the structural elements such as forests, rivers,  

roads, villages, railways, etc. 

 

 
 

Once you think that you have studied the map enough, you may hit the space bar. The map will  

disappear from the screen and then you can start the second part of the test. 

 

PART II 

After the map disappears, a blank drawing screen (in MS Paint) will appear. There you will be able to  

draw what you remember related to the structural elements on the map presented to you previously. 

 

Once you think you are finished with MS Paint, please do not close the MS Paint window and press  

F11 to continue. 
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Experiment 2 - INTRODUCTION 

 

The experiment consists of 7 question blocks; each including 50 trials. In the beginning of each block,  

you will perform a training task where you will first see a map similar to the one below and have 10  

seconds to study it. 

 

 
Second, a question related to some main structuring map elements (i.e. roads, green areas and 

 hydrography) will appear on the screen for 3 seconds. 

 

Third, you will be directed to a response screen with 4 graphical options (named as a, b, c, d) featuring  

the relevant main structuring map elements. One of the options will correspond to the map you just  

studied. You will have to find the correct option and remember the corresponding letter (i.e. a, b, c, d) to 

it. Once you find the correct option, you have to press space bar immediately. 

 

Pressing space bar will direct you to a second response screen where you will see only letters. Here,  

you should click on the letter which you kept in your memory to complete the task. 

 

After completing the training task, you will continue to the main task where you will answer the  

same question for the following 50 map stimuli in the block. 

 

Please press space bar to continue with the training task. 
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ANNEX 3: Task Structure of Experiment 2 
 

 

 
Which of the following sketches is similar  

to the map you studied? 
 

a.      b.  

 

c.    d.  
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ANNEX 4: 

Python Script for organizing EEG and ET data 

 
import os 

 

''' 

Created on 1-jun.-2017 

 

@author: Kristien 

''' 

 

#--------------VARIABLES---------------------- 

dir_org="data_org" 

dir_filter="data_filter" 

dir_res="data_res" 

dir_rawET="_rawET" 

dir_eegEvents="_eegEvents" 

list_events = ['train_vi_easy', 'train_vi_mod_1', 'train_vi_mod_2', 'train_vi_mod_3', 'train_vi_hard_1', 

'train_vi_hard_2', 'train_vi_hard_3', 'cross', '1_ist6 Page 1','2_ist2 Page 1','3_istanbul3 Page 1','4_la3 Page 1', 

'5_la4 Page 1', '6_la5 Page 1', '7_la2 Page 1', '8_am2 Page 1', '9_cr1 Page 1', '10_li1 Page 1', '11_lo1 Page 1', 

'12_nc1 Page 1', '13_pa1 Page 1', '14_am1_v2 Page 1', '15_lv1 Page 1', '16_sd1 Page 1', '17_fr1 Page 1', '18_mi1 

Page 1', '19_mic1 Page 1', '20_ad Page 1', '21_an Page 1', '22_bu Page 1', '23_bue Page 1', '24_chi2_2 Page 1', 

'25_egy Page 1', '26_hn Page 1','27_in Page 1','28_in2 Page 1','29_it Page 1','30_ka Page 1','31_ko Page 

1','32_mb Page 1','33_my Page 1','34_pal Page 1','35_pi Page 1','36_pl Page 1','37_pl2 Page 1','38_sa Page 

1','39_ser Page 1','40_tas1 Page 1','41_tw Page 1','ve Page 1','43_bi Page 1','44_da Page 1','45_mu Page 

1','46_per Page 1','47_ph Page 1','48_pin Page 1','49_vin Page 1','50_xi Page 1'] 

 

 

#--------------FUNCTIONS---------------------- 

### perform conversions 

### convert rawET data 

def processRawET(f_et): 

    print("FT: convert rawET") 

    print (f_et) 

    notHeader= False 

    message='' 

    syncEventNr = 100 

    lastStimulus='' 

    stimulusNr=0 

     

    f_et_data= open(dir_filter+dir_rawET+'/'+f_et, 'r') 

     

    f_w_et_data = open(dir_res+dir_rawET+'/'+f_et, 'w') 
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    for f_et_l in f_et_data: 

        f_et_l_split=f_et_l.split("\t")        

        if notHeader: 

            #process data 

            #if it is a message 

            if(f_et_l_split[1]=="MSG"): 

                for e in list_events: 

                    if e in f_et_l_split[3]: 

                        syncEventNr +=1 

                        message = ("# Message: SYNC %s" %(syncEventNr)) 

                        print(message) 

                        print(f_et_l_split[3]) 

                        f_w_et_data.write("%s\t%s\t%s\t%s\n" 

%(f_et_l_split[0],f_et_l_split[1],f_et_l_split[2],message)) 

 

            #if it is data 

            elif(f_et_l_split[1]=="SMP"): 

                if(syncEventNr>100): #only record data after first stimulus has started 

                    #print first columns - no change 

                    f_w_et_data.write("%s\t%s\t%s\t" %(f_et_l_split[0],f_et_l_split[1],f_et_l_split[2])) 

                     

                    #convert each new stimulus to number 

                    if(lastStimulus != f_et_l_split[3]): 

                        stimulusNr+=1 

                        lastStimulus=f_et_l_split[3] 

                    f_w_et_data.write("%s\t" %(stimulusNr)) 

                     

                    

                    #write next columns, no change 

                    for i in range(4, 18): 

                        f_w_et_data.write("%s\t" %(f_et_l_split[i])) 

                    

                    #convert AOI data - L and R - to number - 0,0 

                    f_w_et_data.write("0\t0\t") 

                     

                     

                    #write next columns, no change 

                    for i in range(20, len(f_et_l_split)-3): 

                        f_w_et_data.write("%s\t" %(f_et_l_split[i])) 

                     

                    etEvent=f_et_l_split[len(f_et_l_split)-1].strip('\n').strip('\r') 

                    #alter last column -  ET events to number 

                    if(etEvent== "Blink"): 

                        f_w_et_data.write("0\t0")   

                    elif(etEvent== "Saccade"): 

                        f_w_et_data.write("1\t1") 

                    elif(etEvent== "Fixation"): 
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                        f_w_et_data.write("2\t2")    

                    else: 

                        f_w_et_data.write("3\t3")    

                         

                         

                    f_w_et_data.write("\n" ) 

                 

            #error handling in case no SMP or MSG messages are found 

            else: 

                print("ERROR: no SMP or MSG type: "+ f_et_l_split[1]) 

         

        #comments before actual data 

        elif (f_et_l[0]=='#'): 

            print("COMMENTS BEFORE DATA "+ f_et_l) 

        #first line - header 

        else: 

            #process header 

            f_w_et_data.write(f_et_l) 

            notHeader=True 

             

    f_et_data.close() 

    f_w_et_data.flush() 

    f_w_et_data.close() 

 

### convert eegEvents 

def processEegEvents(f_eeg): 

    #print("FT: convert eegEvents") 

    #print (f_eeg) 

    notHeader= 0 

    syncEventNr_eeg = 100 

    timeSec=0 

     

    #in case of txt data 

    f_eeg_data= open(dir_org+dir_eegEvents+'/'+f_eeg, 'r')  

     

    f_w_eeg_data = open(dir_res+dir_eegEvents+'/'+f_eeg, 'w') 

     

    #write new header 

    f_w_eeg_data.write("latency\ttype\tposition\n") 

     

    for f_eeg_l in f_eeg_data: 

        print(f_eeg_l) 

        f_eeg_l=f_eeg_l.replace("  ","\t") 

        f_eeg_l_split=f_eeg_l.split("\t") 

 

        #process data 

        if notHeader>1: 

            #print(f_eeg_l_split[3]) 
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            for e in list_events: 

                    if e in f_eeg_l_split[3]: 

                        syncEventNr_eeg +=1 

                        if ("ns" in f_eeg_l_split[0]): 

                            timeSec=f_eeg_l_split[0].strip(" ns") 

                        elif ("sec" in f_eeg_l_split[0]): 

                            timeSec=f_eeg_l_split[0].strip(" sec") 

                        elif ("min" in f_eeg_l_split[0]): 

                            timeMin=f_eeg_l_split[0].strip(" min") 

                            timeSec=float(timeMin)*60 

                             

                        line="%s\t%s\t%s\n" %(timeSec,syncEventNr_eeg,syncEventNr_eeg) 

                        #/print(line) 

                        f_w_eeg_data.write(line) 

 

        #skip header (2 lines) 

        else: 

            notHeader+=1 

             

    f_eeg_data.close() 

 

#--------------MAIN CODE---------------------- 

 

print("START SCRIPT") 

#read all files in folder containing original raw et data 

for f_et in os.listdir(dir_filter+dir_rawET): 

    processRawET(f_et) 

     

 

#read all files in folder containing original eegEvent files 

for f_eeg in os.listdir(dir_org+dir_eegEvents): 

    processEegEvents(f_eeg) 

     

print("END SCRIPT") 

print("-------------------------------") 
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ANNEX 5:  

Python Script for filtering fixations and saccades 
 

import os 

 

''' 

Created on 17 Nov 2017 

 

@author: Kristien Ooms 

 

conditions: 

The eye data that has to be filtered out is: 

  

- saccade size <20 deg (and also remove the corresponding following fixation) 

- fixation duration: 50-1000 ms.  (keeping  the fixation duration only between 50-1000ms and remove other 

values, and also the corresponding preceding saccade. 

 

distance: 70 cm 

 

''' 

from numpy import integer 

from cmath import sqrt, atan 

from math import * 

 

 

#--------------VARIABLES---------------------- 

dir_org="data_org" 

dir_filter="data_filter" 

dir_rawET="_rawET" 

 

screenSizePixY=1050 

screenSizeCmY=30 

viewingDistCm=70 

minFixDurMs=50 

maxFixDurMS=1000 

minSacSizeDeg=20 

minSacSizePix=viewingDistCm*tan(radians(minSacSizeDeg))*(screenSizePixY/screenSizeCmY) 

 

#--------------FUNCTIONS---------------------- 

### perform conversions 

### convert rawET data 

def filterRawET(f_et): 

    #print("FT: filter rawET") 

    #print (f_et) 
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    etEvent_prev='' 

    et_R_Raw_X='' 

    et_R_Raw_Y='' 

    firstColumn='' 

    et_R_Raw_X_first='' 

    et_R_Raw_Y_first='' 

    firstColumn_first='' 

    et_data_currentEvent=[] 

    et_data_list5events=[] 

    et_list5_flags=[] 

    flagCurrentEvent=True 

    flagNextEvent=True 

     

     

    f_et_data= open(dir_org+dir_rawET+'/'+f_et, 'r') 

     

    f_w_et_data = open(dir_filter+dir_rawET+'/'+f_et, 'w') 

     

    for f_et_l in f_et_data: 

        f_et_l_split=f_et_l.strip('\n').strip('\r').split("\t") 

        # print(f_et_l_split)      

                 

        if f_et_l[0]=='#' :  

           print("COMMENTS BEFORE DATA: "+ f_et_l) 

         

        elif f_et_l_split[0]=='Time': 

            # print("HEADER: "+ f_et_l) 

            f_w_et_data.write(f_et_l) 

 

        else: 

            etEvent=f_et_l_split[len(f_et_l_split)-1]              

             

             

            if(etEvent==etEvent_prev): 

                # print("same event") 

                et_data_currentEvent.append(f_et_l_split) 

                 

                 

            else: 

                #print("new event") 

                 

                if(etEvent_prev=="Fixation"): 

                    #print("event: %s - prev event: %s" %(etEvent,etEvent_prev)) 

                    #print("starttime: %s - endtime: %s" %(firstColumn_first,et_t_prev)) 

                    #print("CHECK: fixation duration: 50-1000 ms.  (keeping  the fixation duration only between 

50-1000ms and remove other values, and also the corresponding preceding saccade." ) 
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                    fixTimeStart=et_data_currentEvent[0][0] #time first element current event 

                    fixTimeEnd=et_data_currentEvent[-1][0] # time last element current event 

                    fixDuration= (float(fixTimeEnd) - float(fixTimeStart))/1000 

                    #print("CHECK: %s - %s = %s" %( fixTimeEnd,fixTimeStart,fixDuration)) 

 

                     

                    if(fixDuration < 50 or fixDuration>1000): 

                        flagCurrentEvent=False 

                        #check event type before fixation 

                        if(len(et_data_list5events)>1): #there is data available in the list 

                            prev2Event=et_data_list5events[-1][0][-1] #last event, first row, last coloumn 

                            #print(prev2Event) 

                            if(prev2Event=='MSG'): 

                                print("MSG - do nothing") #if the event before the fixation is a message: do nothing: start 

of new stimulus 

                            elif(prev2Event=='Saccade'): 

                                et_list5_flags[-1]=False #if the event before this fixation is a saccade: not to be printed 

                            elif(len(et_data_list5events)>2): #Blink or - 

                                prev3Event=et_data_list5events[-2][0][-1] #last event, first row, last coloumn 

                                if(prev3Event=='MSG'): 

                                    print("MSG - do nothing") #if the event before the fixation is a message: do nothing: 

start of new stimulus 

                                elif(prev3Event=='Saccade'): 

                                    et_list5_flags[-2]=False #if the event before this fixation is a saccade: not to be printed 

                                elif(len(et_data_list5events)>3): #Blink or - 

                                    prev4Event=et_data_list5events[-3][0][-1] #last event, first row, last coloumn 

                                    if(prev4Event=='MSG'): 

                                        print("MSG - do nothing") #if the event before the fixation is a message: do nothing: 

start of new stimulus 

                                    elif(prev4Event=='Saccade'): 

                                        et_list5_flags[-3]=False #if the event before this fixation is a saccade: not to be printed 

                                    else: 

                                        print("ERROR - NO PREVIOUS SACCADE prev5Event???") 

                             

                             

                         

                elif (etEvent_prev=="Saccade"): 

                    #print("event: %s - prev event: %s" %(etEvent,etEvent_prev)) 

                    #print("start xy: (%s,%s) - end xy: (%s,%s)" %( et_R_Raw_X_first, 

et_R_Raw_Y_first,et_x_prev,et_y_prev)) 

                    #print("CHECK: saccade size >20 deg (or %s pix) (and also remove the corresponding following 

fixation)" %(minSacSizePix) ) 

                     

                    sacStartX=float(et_data_currentEvent[0][4]) #X position of start saccade, first line in list (pixels) 

                    sacStartY=float(et_data_currentEvent[0][5]) #Y position of start saccade, first line in list (pixels) 

                    sacEndX=float(et_data_currentEvent[-1][4]) #X position of end saccade, last line in list (pixels) 

                    sacEndY=float(et_data_currentEvent[-1][5]) #Y position of end saccade, last line in list (pixels) 
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                    sacDistPix=sqrt((sacStartX-sacEndX)*(sacStartX-sacEndX)+(sacStartY-sacEndY)*(sacStartY-

sacEndY)) 

                    #print("CHECK: (%s,%s) - (%s,%s)) = %s (pix)" %( 

sacStartX,sacStartY,sacEndX,sacEndY,sacDistPix)) 

                    if(sacDistPix>minSacSizePix): 

                        flagCurrentEvent=False 

                        flagNextEvent=False      

                else: 

                    print("event: %s - prev event: %s" %(etEvent,etEvent_prev)) 

                          

                 

                etEvent_prev=etEvent 

 

                #add data current event to list with events - and whether is should be printed (flag) 

                et_data_list5events.append(et_data_currentEvent) 

                et_list5_flags.append(flagCurrentEvent) 

                 

                #empty list current event  

                et_data_currentEvent=[] 

                if(etEvent=='Fixation'): 

                    flagCurrentEvent=flagNextEvent   

                    flagNextEvent=True 

                elif(etEvent=='MSG'): 

                    flagCurrentEvent=True 

                    flagNextEvent=True 

                else: 

                    flagCurrentEvent=True  

                     

                #write first line of data of new current event 

                et_data_currentEvent.append(f_et_l_split) 

                 

                 

                #if there are more than 5 events in the list, write and remove last if flag is true                   

                if(len(et_data_list5events)>5): 

                    printData=et_data_list5events.pop(0) 

                    flagPrintData=et_list5_flags.pop(0) 

                    #print('PRINT DATA--') 

                    #print(flagPrintData) 

                    if(flagPrintData): 

                        for l in printData: 

                            #print(l) 

                            for element in l: 

                                f_w_et_data.write("%s\t" %(str(element))) 

                            f_w_et_data.write("\n" ) 

                                 

 

            

         



191 

 

    for i in range(len(et_data_list5events)): 

        printData=et_data_list5events.pop(0) 

        flagPrintData=et_list5_flags.pop(0) 

        #print('PRINT DATA') 

        if(flagPrintData): 

            for l in printData: 

                #print(l) 

                for element in l: 

                    f_w_et_data.write("%s\t" %(str(element))) 

                    f_w_et_data.write("\n" ) 

                     

    f_w_et_data.flush() 

    f_w_et_data.close() 

#--------------MAIN CODE---------------------- 

 

#print("START SCRIPT") 

#read all files in folder containing original raw et data 

for f_et in os.listdir(dir_org+dir_rawET): 

    filterRawET(f_et) 

     

 

 

     

print("END SCRIPT") 

print("-------------------------------") 
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ANNEX 6:  

User characteristics of the recruited participants in Experiment 2 
 

% 

Q1: Please choose the highest 

level of education you have 

completed 

Q2: How often do you use 

Google maps? 

Q3: On a scale of 1-5, with 5 

being "strongly agree" and & 

being "strongly disagree" 

please answer:  Do you think 

Google maps is easy to use? 

Q4: What do you think about 

the experiment? 

  N  N  N  N 

Experts (N=17) PhD 1 everyday 10 5 13 Positive 11 

 MSc 16 
once/twice a 

week 
6 4 4 Neutral 2 

   once a month 1 3<= 0 Negative 4 

         

Novices (N=21) MSc 11 everyday 8 5 8 Positive 5 

  BSc 8 
once/twice a 

week 
11 4 11 Neutral 10 

  High School 2 once a month 2 3 1 Negative 6 

     2 1   
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