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Introduction to the Special Issue, Graham Dutfield and Katerina Sideri. 

 

Modern-day healthcare is becoming increasingly information intensive including at the 

personal level. The genomic data made available by the Human Genome Project gave this trend 

a great deal of impetus as did the more recent emergence of big data analytics alongside 

unprecedented computing power including artificial intelligence, enabling the generation of 

useful health-relevant information out of vast genomic and other datasets. Digitally recorded 

and annotated genetic and other molecular information acquired from large numbers of people, 

especially when combined with other information (lifestyle, family, personal electronic health 

history records etc.) coming from a wide range of sources, can provide not only a massive 

volume of health related data for analysis, but also diversity in kinds of information we can 

derive, from responsiveness to drugs, to likelihood of contracting particular diseases, and ways 

to prevent or reduce risk of certain diseases later in life. It is not just healthcare in the broad 

sense that is moving onto computer screens; medicine is becoming digital as much as it is 

chemical, especially when treatment concerns itself more and more with disease prediction, 

diagnosis, prognosis, and monitoring of sickness, health and treatment effects and side-effects, 

and of course with personalisation. According to one recent article on the subject, “the patient 

is an enormous repository of information that needs to be harvested as a partnership not only 

in clinical care but in discovery… The ability to stratify the phenotypic expression of wellness 

and disease will ultimately lead to better validation of human therapeutic targets for drug 

discovery” (D Ausiello, quoted in Elenco et al 2015). 

 

Personalised medicine is one aspect, perhaps the most important, of the efforts currently being 

made by biomedical scientists and industry to enhance targeting of disease to achieve better 

health outcomes for more people. Personalised medicine deals with the tailoring of treatments 

in a way that responds to the variability of human beings, and to the fact that single diseases 

may really be families of sub-diseases. It implies individualisation of medical attention but 

whereas it does involve the testing of people for certain biomarkers conveying diagnostic or 

therapy-related information, those biomarkers are typically ones shared with other people. It is 

not a passing trend, but is reshaping the field of medicine.  

 

Ideally, science policies would translate scientific research into technological innovation that 

benefits society. However, available medicines in many therapeutic areas are actually not very 

good even if they are very effective for some people. According to a recent study not one of 

the ten bestselling drugs in the United States helps the majority of patients who are given them. 

In fact, they benefit only ‘between 1 in 25 and 1 in 4 of the people who take them. For some 

drugs, such as statins – routinely used to lower cholesterol – as few as 1 in 50 may benefit’ 

(Schork 2015). In a 2001 article on pharmacogenetics, the authors found efficacy rates of major 

medicines in several areas to be very low: a 25 percent efficacy rate in oncology, 30 percent in 

Alzheimer’s, 47 percent for hepatitis C virus, and 48 percent in osteoporosis to give a few 

examples (Spear, Heath-Chiozzi and Huff 2001). In addition, adverse drug reactions can cause 

deaths. Doubtless, some of these figures have improved in the years since then. For example, 

there are now medicines that can cure hepatitis C virus.  

 

Thus, pharmaceutical companies’ record of delivering truly innovative products in recent years 

is disappointing. In an influential article published in Nature Reviews Drug Discovery 
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(Scannell, Blanckley, Boldon and Warrington 2012),1 the authors find that the decline actually 

began around 1950, whether or not it was perceived at the time. The authors posit that from 

that year onwards the number of medicines approved per billion dollars spent on research and 

development has on average halved every nine or so years. The fall is quite modest during the 

1950s but then steepens from 1960. They call this phenomenon Eroom’s Law (which is the 

famous and much more optimistic Moore’s Law written backwards). 

 

There is unlikely to be a single reason for this. However, the traditional innovation model based 

on the idea of strong intellectual property (IP) rights whose main function is to exclude 

competitors is seen by many critics as one factor. Given that data-driven medicine requires the 

mining of data of various types and from a wide range of sources, both public and private, 

weakness in the current IP-based innovation models seem likely if anything to become more 

serious. Why? Because IP rights inhibits sharing and collaboration at a time when these have 

never been more essential.  Moreover, universities, patients and users participate in data driven 

innovation, which makes the picture more complicated. Moreover, exclusion and control sit 

uncomfortably with patients’ and users’ altruistic motives and universities’ public mission. 

Unsurprisingly, the boundary between the open and the proprietary is passionately debated and 

constantly in flux: more open here, increasingly proprietary there, but with a tendency to be 

more of the latter and less of the former.  

 

Openness in innovation is many times suggested as the solution. To some extent it is already 

being applied. As the Human Genome Project was coming to an end it became clearer than 

ever that much would be gained both scientifically and therapeutically from studying the 

genetic variability within the human species. One key unit of such variability was at the tiny 

level of the individual nucleotide base. Such variations shared by reasonably large numbers of 

people, and forming 90 percent of the genetic variability of our species, are called single 

nucleotide polymorphisms (SNPs). In 1999, a group of companies and research organisations 

together with the Wellcome Trust, then the world’s largest medical charity, established the 

SNP Consortium. Its aim was to identify all of the common SNPs, of which there are now 

believed to be around 10 million, and map them onto the human genome. From the private 

sector, Glaxo Wellcome (as it was then called) took the initiative in starting such an endeavour 

but after meeting the Wellcome Trust and some other companies during 1998, it was decided 

that the ideal approach would be to establish a consortium. Funding came from the Trust and 

several large pharmaceutical company members and IBM and Motorola. In 2001 their shared 

data on SNPs was publicly released.  

 

A similar pooling of public data was undertaken by the International HapMap Consortium, 

which comprised an international group of funders, government agencies and universities from 

the United States, the UK, Canada, China, Japan, Nigeria, as well as the SNP Consortium plus 

two biotech firms, Illumina and ParAllele Bioscience (The International HapMap Consortium, 

2003). It has turned out that many SNPs throughout the genome are inherited together as 

‘blocks’. A haplotype is the arrangement of SNPs on each of these blocks. Given that the 

number of haplotypes is far lower than the quantity of SNPs, generating such a map offered an 

extremely convenient short cut in studying human genetic variability. The HapMap Project, 

the first phase of which was completed in 2005 (Goldstein and GL Cavalleri 2005), and the 

final one in 2009, required users to agree to a license that undertook them not to reduce access 

to the data or to pass data on to non-licensees.2  

                                                            
1 The rest of this subsection draws on this article. 
2 For criticisms of the HapMap licensing policy, see Hope (2008), 308-9. 
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Such collaborative approaches and licensing schemes are not a rejection of intellectual property 

rights per se. Indeed, intellectual property protection may be necessary for ‘open source’ 

collaborative models to work. They do emphasize and seek to encourage collaboration of the 

kind that aggressive assertion of patent and other intellectual property claims would certainly 

preclude. The use of intellectual property rights is the best available sanction against those who 

acquire data and then seek legal protection covering elements of the received data and who 

may not be bound by any license. But of course the hope is that litigation is the last resort. This 

has been the case in software development, where open source collaborative models and 

licensing were first tried out with great success.3 In fact, while the SNP Consortium’s 

intellectual property procedures were for patent applications to be filed for any inventions 

arising, the point of doing so was not to claim monopoly protection but to record their priority 

dates so as to block patenting by others (Holden 2002). Currently the Structural Genomics 

Consortium, a charitable international partnership of non-profit foundations corporations has a 

policy of sharing freely and filing no patents on its discoveries. 

 

Openness sound like a straightforward concept. However, its meaning remains elusive. On the 

one extreme we see such terms as “Open Data,” “Open Software” and “Open Access”. These 

present openness as a way to enhance transparency and collaboration (Benkler 2016), and 

preserve integrity and creativity.4 On the other extreme, we see proprietary regimes, with 

“closed” data and legal rights such as patents being fundamental (the dominant pharmaceutical 

innovation model). However, commentators increasingly recognise that, for one thing, there 

are shades of openness. “Open innovation”, a concept coined by Henry Chesbrough (2003), 

has been embraced by many in the pharmaceutical industry but while it does indeed involve 

sharing of knowledge, expertise and materials, it hardly deviates from the industry’s patent-

dependent business models. Even open source depends on copyright rules (Dusollier 2007). 

For another, the “closed” and “open” dynamically interweave (Hilgartner 2012). The latter 

relationship is the focus of the contributions of the special issue. Openness in this framework 

is not only a technical problem to be solved but also has a social, cultural, and moral facet.5  

 

The question remains: how well do we strike the right balance in terms of promoting socially-

optimal innovation? And how would one determine the ideal place to strike such a balance 

along the spectrum between closed innovation at one end and fully open at the other end? We 

hope this special issue will at the very least contribute to enhanced understanding of how these 

questions might best be resolved. Let us now turn to the contributions. 

 

Regulatory rules and court decisions are one place where the balance between the open and 

closed is negotiated, but as we will see they are not the only ‘spaces’ where this happens. 

Recent decisions by the US Supreme Court placed genes and diagnostic methods outside the 

realm of patent protection proclaiming them non-eligible subject matter that cannot be the 

subject of private property. In Europe the balance continues to be struck in favour of more 

expanded eligibility in this area. On the other hand, the latter jurisdiction continues to have 

                                                            
3 For an excellent and highly detailed discussion on the applicability of open source to biotechnology including 

reviews of several ongoing open source biotechnology initiatives, see Hope (2008). 
4 European Commission, (2014) “Consultation on ‘Science 2.0’: Science in Transition,” Accessed November 

21, 2017 http://ec.europa.eu/research/consultations/science-2.0/consultation_en.htm. 
5 Nuffield Council on Bioethics (2015) “The Collection, Linking and Use of Data in Biomedical Research and 

Health Care: Ethical Issues.” Accessed November 25, 2017 http://nuffieldbioethics.org/wp-

content/uploads/Biological_and_health_data_web.pdf; Michael A. Peters. “Open Science, Philosophy and Peer 

Review.” Educational Philosophy and Theory (2014) 46 (3): 215–19. 

http://ec.europa.eu/research/consultations/science-2.0/consultation_en.htm
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broader exclusions in other areas of biomedicine as well as a ban on the patentability of 

inventions whose commercial use would be immoral and contrary to ordre public. However, 

as our contributors discuss, extending legal rights to one type of scientific research product that 

we preclude from others affects how societies innovate. Shubha Ghosh explains that denying 

patents may influence the shift of commercial activity from genes to genetic data mining. In 

this sense, court decisions influence politics and the future development of industry in indirect 

ways. Katerina Sideri argues that these decisions reflect policy choices and a particular 

understanding of the proper role of the state in regulating the marketplace and knowledge 

production in the emerging information economy. In their respective contributions, both 

authors claim that these decisions essentially endorse practices of data processing which 

constitute a new type of public domain necessary for fueling the development of the new data-

mining and analytics tools and the next generation of data intensive therapeutics in the field of 

data driven medicine. These technologies learn from data to predict the future behavior of 

individuals in order to drive better decisions. 

 

Outside of the courts, and perhaps more significantly, the relationship between ‘open’ and 

‘closed’ in innovation depends on social norms and values (Botsrom, 2017). In this sense, 

openness often invites the notion of participation, which is infused with the ideas of social 

solidarity and altruism, a far cry from the idea of impersonal exchanges in vast global markets 

that property rights imply. Thus, the social meaning of openness is negotiated in the context of 

clinical applications of revolutionary technologies such as cell-free foetal DNA prenatal 

testing, which simplifies testing for abnormalities in the foetus. Naomi Hawkins discusses the 

rapid development and widespread adoption of the technology in the clinic around the world, 

and employs qualitative analysis of interview material with users of technologies to question 

the extent to which and the reasons for failure to comply with patent law. This approach 

resonates well with Shobita Parthasarathy’s contribution advocating the expansion of 

qualitative research on patents and intellectual property related to innovation. There is urgent 

need for policy makers to go beyond economic analysis so as to come to grips with the broader 

implications of intellectual property for social and political orders. In fact, Shobita 

Parthasarathy argues that this qualitative research can help governments produce patent 

decisions and policies that are both more socially beneficial and politically legitimate. 

 

To turn to other legal and policy developments in Europe that go beyond patents, Timo 

Minssen, Rajam Neethu and Marcel Bogers discuss openness in the context of initiatives with 

respect to transparency of clinical trial data and note the potential tensions with the General 

Data Protection Regulation (GDPR) in the EU.  For the GDPR the question of openness is 

viewed through the angle of user control of data in the era of big data analytics, but the policy 

goals behind transparency of clinical trial data seem to be quite different: the focus is on 

promoting science and open innovation that will benefit society at large and is based on the 

understanding that data sharing and open innovation go hand-in-glove. Highligting the tensions 

between these two levels of openness is imporatnt and links to the more theoretical discussion 

of Barbara Prainsack’s paper, the last contributor of the special issue. Barbara Prainsack 

elegantly summarizes the theoretical nuances of the notion of openness in the context of 

Personalised and Precision Medicine. Her argument is that different theorizations pose 

different goals for public policy. She identifies three ways to theorize openness: the 

‘ontological,’ the ‘pluralistic’ and the ‘emancipatory’. The ‘ontological sense’ relates to 

openness at the level of the person,  the ‘pluralistic sense’ brings to the foreground the plurality 

of perspectives and values, while  the ‘emancipatory sense,’ poses questions with regard to  

concentrations of power of corporate actors dominating the field  of innovation in data driven 
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medicine. Depending on the choice of theoretical approach the focus of key goals for public 

policy shifts.  

 

In short, the special issue seeks to discuss the notion of openness in data driven medicine and 

contributors are social scientists who contribute to this debate by looking into the questions 

economists cannot answer. All contributors write in the fields of law, political science and 

Science and Technology Studies.  
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