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Abstract

Motivation: During the last decade, trajectory inference (TI) methods have emerged as a novel framework to model
cell developmental dynamics, most notably in the area of single-cell transcriptomics. At present, more than 70 TI
methods have been published, and recent benchmarks showed that even state-of-the-art methods only perform well
for certain trajectory types but not others.

Results: In this work, we present TinGa, a new Tl model that is fast and flexible, and that is based on Growing Neural
Graphs. We performed an extensive comparison of TinGa to five state-of-the-art methods for Tl on a set of 250 data-
sets, including both synthetic as well as real datasets. Overall, TinGa improves the state-of-the-art by producing ac-
curate models (comparable to or an improvement on the state-of-the-art) on the whole spectrum of data complexity,
from the simplest linear datasets to the most complex disconnected graphs. In addition, TinGa obtained the fastest
execution times, showing that our method is thus one of the most versatile methods up to date.

Availability and implementation: R scripts for running TinGa, comparing it to top existing methods and generating

the figures of this article are available at https://github.com/Helena-todd/TinGa.
Contact: helena.todorov@irc.vib-ugent.be or yvan.saeys@ugent.be

1 Introduction

Single-cell technologies have recently dramatically reshaped the
landscape of techniques to model and better understand biological
systems. Trajectory inference (TI) methods have recently emerged as
a new category of unsupervised machine learning techniques to in-
terpret single-cell data (Cannoodt et al., 2016). These methods aim
to align cells along developmental trajectories, allowing researchers
to get insight into the biological processes driving dynamic processes
such as cell development and differentiation (Ji and Ji, 2016; Shin
et al., 2015; Trapnell et al., 2014). More than 70 TI methods have
been published up to date, differing in their methodologies, the input
they need from the user and in the type of trajectories that they can
model. Indeed, the first TI tools [Wanderlust, Bendall et al. (2014)
and Monocle, Hill ez al. (2015)] were able to model very simple lin-
ear trajectories. With new tools being generated, the complexity of
the trajectories that could be modelled increased greatly, from
branching [DPT, Haghverdi ez al. (2016) and Wishbone, Setty et al.
(2016)] or cycling [reCAT, Ye et al. (2019)], to more intricate graph
structures [SLICER, Welch et al. (2016)].

Even though a large number of trajectory methods exist, the
spectrum of topologies that can be modelled is unevenly distributed.
A large number of the existing tools allow analysing simple linear
trajectories. However, for more complex graph structures, there are
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only a handful of adequate methods. For the most complex topology
considered in this article, that is trajectories that might consist of
several disconnected components, only three existing methods can
be applied: PAGA (Wolf et al., 2019), StemID (Griin et al., 2016)
and Monocle 3 (Cao et al., 2019). In a recently published paper on
TIL, Saelens et al. (2019) compared 45 of the existing TI methods.
Several interesting findings resulted from this study, including the
strengths and weaknesses of existing tools as well as possible gaps in
the field of TI. A first conclusion from this study was that no exist-
ing method was able to return accurate results for all the 350 data-
sets that were included in the study. Therefore, when facing a new
unknown dataset, researchers need to apply several of the state-of-
the-art methods and then compare their results in order to be able to
gain biological insight into the data. It could be argued that the
methods that can model the most complex trajectories could be
applied in general, since they should also be able to model the sim-
plest trajectories. However, a general observation made by the
authors was that such methods then tend to be biased towards pro-
ducing more complex trajectories in comparison to the ground
truth. Therefore, when facing a new dataset with an unknown struc-
ture, there is still room for new methods that can deal with both sim-
ple and complex topologies in a flexible manner. Ideally, such
methods would also be scalable, and able to run on datasets with
millions of cells in an acceptable runtime.
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2 Materials and methods

2.1 Adaptive topology modelling using Growing Neural
Gas

In this article, we introduce TinGa, a fast and flexible TI method. It
is the first method that applies the Growing Neural Gas algorithm
[GNG, Fritzke (1995)] to infer trajectories. The basic idea behind
this algorithm is to build a (possibly disconnected) graph that aims
to fit a set of data points as well as possible using a graph structure
that is iteratively adapted. The algorithm starts by building a graph
that consists of two nodes, linked by an edge. An iterative procedure
is then applied in which a random cell from the dataset is picked as
input at every iteration and subsequently the graph is adapted to the
data. An algorithmic description of TinGa is given in Algorithm 1.
All nodes have an associated error that is representative of how well
each node covers a certain region of the data space. A new node is
added to the graph every 1 iterations until a maximum number of
nodes is reached. The new nodes are added close to the nodes with a
maximal error, such that the graph grows until it covers the data
homogeneously. The edges in the graph age if they are not stimu-
lated by any input data, and die after they reach a certain age. The
procedure results in a graph whose nodes and edges are representa-
tive of the data density structure.

After obtaining the graph structure using the GNG algorithm,
putative noisy edges are cleared from this structure. The triangle
structures in the graph are simplified by building a minimal span-
ning tree. However, this process can also remove edges that were
representative of the data structure. A second post-processing step is
therefore applied, in which nodes of degree one are identified. We
then test if an edge should be added between pairs of nodes of degree
one, following three rules:

1. the edge should exist in the GNG original result (before a min-
imal spanning tree was computed);

2. adding the new edge should not result in a triangle; and

3. the cell density along the new edge should be comparable to
the mean density across the rest of the graph’s edges (which we
defined as equal or superior to the mean density in the rest of
the graph).

An example of different iterations of the algorithm on a discon-
nected trajectory is shown in Figure 1. The fact that an error is
attributed to every node in the graph helps to keep track of the data
coverage. Nodes with high errors help to localize regions that are
not sufficiently covered, in which new nodes will be added to help
capture the region’s structure. Since the nodes are allowed to move
towards the input that stimulated them, the GNG graph iteratively
evolves to cover the density structure of the dataset. The fact that
edges get removed if they get too old allows the graph to split, and
not linger over empty regions.

2.2 Datasets

For this study, we used 350 datasets that were used in the bench-
marking study described in Saelens et al. (2019), all of which have a
known ground truth trajectory useful for evaluation. A large spec-
trum of topologies is represented in these datasets, from the simplest
linear trajectories to the most complex disconnected trajectories. In
Figure 2, each of the nine possible topology types is represented as a
graph. In bifurcations, a simple linear trajectory bifurcates into two
branches. Converging trajectories are the exact opposite of bifurca-
tions: two distinct branches merge into one. Trees consist of a suc-
cession of different bifurcations. Multi-furcations happen when a
simple linear branch splits into more than two branches. Finally,
some of the datasets are graphs; they can contain cycles or be acyc-
lic, depending on the direction along the branches.

We have split the 350 datasets in two. Table 1 describes the 100
out of 350 datasets that were used for testing TinGa’s robustness to its
parameter setting, and fine-tuning of the max_nodes parameter. We
then used the remaining 250 datasets to compare TinGa to 4 other TI

Algorithm 1: TinGa

1: input the matrix of reduced dimensions d

2: parameters max_iter, age_max, max_nodes, o, f§, ¢, €,, 1

3: procedure Compute a TinGa graph

4: initialise objects that will store information about the
graph.:

1 Nodes — matrix(max,,4.s rows, ncol(d)columns)

AN

Edges < list that will contain the TinGa edges

7:  Nodes error < list that will contain the node associated
errors

8:  Age edges — matrix(max_nodes rows, max_nodes
columns)

9: initialise graph with two cells.:

10:  Nodes[c(1,2),] < .25and .75 quantiles d

11: add edge of age 0 between nodes 1 and 2

12: while (iter < max_iter):

13:  x; < sampleinputcellind

14:  s1,sp < 1st and 2nd closest nodes to x;

15: increase age of all edges emanating from s

16: add distance (x; —s1) to error of s;

17:  Move s; towards x;a factor ¢,

18:  Move s|sneighborstowardsx;a factor ¢,

19:  set age of edge between sjands; to 0

20: if Jedgeof age > age,,,,, then

21: remove it.

22: if 3 node of degree 0 then

23: remove it.

24: ifiter % 4 =0 then

25: if number of nodes < max,, 4., then

26: p < node with maximum error.

27: q < neighbour of p with maximum error.
28: insert a new node r between p and gq.
29: errors of p and g are multiplied by o

30: r gets the mean error of p and ¢

31: p—q edge is removed, p—r and r—q edges are added

32:  decrease error of all nodes by factor f8

33: post-process the graph.:

34:  build a graph from Nodes and Edges

35: apply a minimal spanning tree to the graph
36: identify nodes in the MST of degree 1

37: for each pair of nodes p; and p, of degree 1:
38: if graph C edge pl — p2 then

39: if edge doesn’tresultin a triangle then
40: if cell density along edge is sufficient then
41: add edge between p; and p;.

methods. These 250 datasets contained 9 different types of trajecto-
ries, as can be seen in Table 2. Both the 100 datasets used for param-
eter tuning as well as the 250 datasets used for benchmarking to other
methods contained comparable numbers of real and synthetic data-
sets. The synthetic datasets were generated using four simulators: dyn-
gen (Saelens et al., 2019), which simulates gene regulatory networks,
dyntoy (Saelens ez al., 2019), which builds random gradients of ex-
pression in the reduced space, PROSSTT (Papadopoulos et al., 2019),
which samples the expression from a linear model that depends on
pseudotime and Splatter (Zappia et al., 2017), which simulates non-
linear paths between different expression states. In total, 240 synthetic
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Fig. 1. Different iterations of TinGa applied on a disconnected trajectory. The age
of the graph edges is represented in different shades of blue to highlight edges that
are getting old (in light blue) and are soon to be removed
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Fig. 2. Examples of the possible trajectory topologies. In each graph, the ground
truth trajectory is represented by oriented lines, separated by nodes. The cells are
coloured based on the node to which they are closest

datasets were thus generated using these four simulators. The cells in
each dataset were then post-processed to match a real dataset’s char-
acteristics such as the dropout rate. Combined with 110 real datasets,
this thus resulted in the total number of 350 datasets, split in a set of
100 datasets for parameter tuning and 250 datasets for benchmarking
to other TI methods.

2.3 Single-cell RNA-seq data preprocessing

Real datasets were preprocessed following the standard bioconduc-
tor pipeline which uses both the scran and scater Bioconductor
packages(Amezquita et al., 2020; Lun et al., 2016). The same set-
tings were used as in Saelens et al. (2019), with a filtering that
removed genes that were expressed in less than 5% of the cells and

Table 1. Datasets used for parameter tuning

Trajectory type Real datasets  Synthetic datasets Total datasets

Linear 18 4 22
Cyclic 0 6 6
Bifurcating 6 10 16
Converging 1 N 6
Multi-furcating 1 1

Tree 8 23 31
Acyclic graph 0 3 3
Connected graph 0 7 7
Disconnected graph 4 3 7
Total 38 62 100

Table 2. Datasets used to evaluate the methods

Trajectory type Real datasets  Synthetic datasets Total datasets

Linear 21 26 47
Cyclic 2 21 23
Bifurcating 7 21 28
Converging 0 11 11
Multi-furcating 8 6 14
Tree 11 45 56
Acyclic graph 1 13 14
Connected graph 0 28 28
Disconnected graph 22 7 29
Total 72 178 250

had an average expression lower than 0.02. Cell filtering was
applied based on total counts, total amount of features, mitochon-
drial gene expression and if available, spike-ins, where cells with val-
ues higher than the median = 3 MADs were removed. The most
highly variable genes were selected by modelling the mean-variance
relationship with a curve, and identifying genes that differed from
this curve with a false discovery rate of 5% and a biological compo-
nent (or effect size) higher than 0.5, using the scran R package.

2.4 Benchmarking TinGa to state-of-the-art methods

We compared TinGa to four top TI methods, as identified by the
large-scale benchmarking study by Saelens et al. (2019). These are
Slingshot (Street et al., 2018), PAGA (Wolf ez al., 2019), RacelD/
StemID (Griin et al., 2016) and Monocle 3 (Cao et al., 2019). Since
the dynbenchmark package (Saelens et al., 2019) contained wrap-
pers for most of these methods, metrics for comparison, as well as
110 real and 240 synthetic datasets on which we could compare the
methods, we re-used the same comparison settings. We created one
new wrapper for Monocle 3, a method that was not yet included in
the dynbenchmark package. Four metrics, earlier described in
Saelens et al. (2019), were used to assess the performance of the
method:

* Hamming-Ipsen—Mikhailov (HIM): provides information on the
difference in topology between a method’s result and a gold
standard, by taking into account both the edge lengths and the
similarity in node degrees

* CORRELATION: provides information on the correlation be-
tween the cell ordering in a method’s results compared to a gold
standard, taking the trajectory structure into account by using
geodesic distances.

* F1 BRANCHES: provides information on the difference in
branch assignment between a method’s result and a gold
standard
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* FEATURE IMPORTANCE: provides information on the genes
that are differentially expressed along a method’s result trajec-
tory compared to a gold standard

Finally, we used a last metric, the MEAN SCORE, which is the
geometric mean of the four aforementioned metrics.

2.5 TinGa parameter settings

We used the default parameters of GNG as described in Fritzke
(1995). To test the applicability of each parameter setting, we per-
formed a grid search for each parameter separately by varying the
parameter over a large range of values while keeping the other
parameters at their default value. These parameter values are as
follows:

®  maxi.,: the maximum number of iterations. Default: 10 000. No
grid search was performed on this parameter, as the GNG has
mostly converged after 10 000 iterations.

* ¢, how much the closest node will move towards the input cell.
Default: 0.05. Grid search was performed on values varying
from 0.005 to 1.

* ¢, how much the neighbours of the closest node will move to-
wards the input. Default: 0.001. Grid search was performed on
values varying from 0.0001 to 1.

* J: the iteration at which a new node can be added. Default: 200.
Grid search was performed on values varying from 100 to 500.

* age,.,.: the maximum age of an edge before it is removed.
Default: 200. Grid search was performed on values varying from
100 to 500.

* o: the decay parameter for error when a new node is added.
Default: 0.5. Grid search was performed on values varying from
0.1t00.9.

* [f: the value by which all node errors decrease at every iteration.
Default: 0.99. Grid search was performed on values varying
from 0.2 to 0.999.

®  MaX,,des: the maximum number of nodes allowed in the GNG
graph. Default: 30. Grid search was performed on values varying
from 4 to 30.

We tested every resulting parameter setting on 100 randomly
sampled datasets among the 350 datasets described in Saelens et al.
(2019), which we used as our training set. We then performed paired
t-tests to assess whether the mean score of TinGa over the 100 train-
ing datasets would change significantly due to parameter tuning.
Varying the parameters o, f, 1 and age,,,. did not significantly
change the results of TinGa over these datasets (with a P-value of
0.05). We noticed that setting too high ¢, and ¢, values decreased
the performance of TinGa, and we therefore advise to keep the

TInGa, max_nodes = 30 TInGa, max_nodes = 8

Fig. 3. The trajectories identified by TinGa on a linear dataset. Even though the glo-
bal structure of the data is captured in both examples, a total of 30 nodes seems to
be too high and leads to a noisy trajectory, whereas 8 nodes seem sufficient to return
a clean trajectory

values of these parameters equal to or lower than 0.5 and 0.01 for
the ¢, and ¢, parameters, respectively. We believe that the fact that
GNG nodes should not be allowed to move excessively under the in-
fluence of one cell input makes sense, since this allows the method
to be more robust to outlier cells.

The only parameter whose default value showed sub-optimal
results was the max,,,4,; parameter. The GNG algorithm was origin-
ally designed to learn complex topologies, and the default number
of nodes in the graph was set to a relatively high value (with a max-
imum of 30 nodes). In the context of TI, this number seems inappro-
priate, as allowing too many nodes in the graph can lead to the
appearance of noisy structures, as can be seen in Figure 3. We tested
various values for the max,,,4.s parameter, ranging from 4 to the de-
fault of 30. The results of TinGa on the 100 datasets that we selected
for training with different max,,4,s values can be seen in Figure 4.
We observed that a maximum number of eight nodes was a good
trade-off between performance, as assessed by the mean score in the
figure, and running time. We set the max,,,4,. parameter to eight and
all other TinGa parameters to their default value for the rest of the
study.

All TT methods use low-dimensional data as input. In the case of
TinGa, we reduced the dimensionality of the count matrix of syn-
thetic and real datasets to five dimensions using multi-dimensional
scaling. In order to test the robustness of TinGa’s results to the
choice of the number of dimensions in the lower space, we tested dif-
ferent numbers ranging from 3 to 50, on the same 100 datasets we
had already used for grid search on TinGa’s parameters. The num-
ber of dimensions didn’t have a high impact on TinGa’s results, as
can be seen in Figure 5. To confirm this, we performed paired #-tests
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Fig. 4. Result of the max_nodes parameter tuning. For each max_nodes value, we
represented the mean score over 100 train datasets and the time it took to the
method to run in seconds
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Fig. 5. The mean score of four state-of-the-art methods, TinGa with the default
number of dimensions = 3, and four other settings for this parameter, on 100 train
datasets. The five original methods are represented in colour, the four versions of
TinGa with different numbers of dimensions are in gray
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to assess whether the number of dimensions that we selected would
change the results of TinGa with regards to other methods. The P-
values associated with these tests were all higher than 0.05. TinGa is
therefore robust to the number of dimensions in the data, and we
fixed this number to 5 for the rest of the study. Dimensionality re-
duction was applied as defined by default by the authors for the four
other TI methods that we tested.

3 Results

We compared the performance of TinGa to a set of state-of-the-art
methods for TI, namely PAGA, Slingshot, RacelD/StemID and
Monocle 3. The performance of all five methods was assessed on
250 synthetic and real datasets offering a wide variety of complex-
ities, from linear to disconnected trajectories. For each of these data-
sets, the ground truth trajectory is known, since it was either defined
experimentally for the real datasets, or extracted from simulations
for the synthetic datasets. Therefore, the results of any TI method
can be compared to the ground truth trajectory and scored. We per-
formed a comparison using four metrics that we described in Section
2. We report the results of the methods on the 178 synthetic and 72
real datasets separately.

3.1 Synthetic datasets

TinGa and Slingshot are the methods that found the best cell order-
ing across all synthetic datasets, as shown by the correlation scores
(Fig. 6a). These two methods also found the best cell assignment
across branches (Fig. 6b). However, Monocle 3 performed better
than Slingshot for recovering the topology of the datasets and the

Fig. 7. Methods on the x-axis are ordered by the number of datasets on which they
outperformed the others. The y-axis represents the number of datasets on which
each method had the best mean score across all methods. For each method, bars rep-
resent the different trajectory types for which the method performed best. These
bars are ordered and coloured from most simple (in light yellow) to most complex
trajectory type (in dark red)

features expressed along the trajectory, as can be seen in the box-
plots showing the Feature Importance score and the HIM score in
Figure 6¢ and d, respectively. TinGa, on the other hand, was consist-
ently among the best methods for these four metrics when applied
on the synthetic datasets. The scores of RaceID/StemID were greatly
affected by the fact that it failed to return results on many datasets.
In order to make the comparison of five methods on 250 datasets
possible, we set a maximum memory use of 15 Gb for every method
on every dataset. RaceID/StemID systematically ran out of memory
on datasets containing more than 5000 cells. Figure 6f shows the
time each method took to run on the datasets in function of the
number of cells. All methods returned results in less than 10s on
datasets containing less than 1000 cells, except for RacelD/StemID,
which already needed a few minutes on a dataset of 1000 cells.
TinGa proved to be very scalable on larger datasets, while Slingshot
and PAGA became significantly slower on datasets containing a few
thousands of cells. Overall, the TinGa method obtained the best
scores when compared to the four currently state-of-the-art TI meth-
ods on synthetic datasets, as can be seen in Figure 6e, where the
Mean Score is the geometric mean of the four other metrics
(Correlation, F1 Branches, HIM and Feature_Importance). We per-
formed statistical tests to assess if TinGa’s mean score was signifi-
cantly higher than the mean scores of the four other methods on the
different trajectory types. The P-values associated with these one-
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Fig. 8. (a—¢) The results on 54 datasets with a silver standard and 18 datasets with a
gold standard were represented separately in split violin plots. (a) The correlation
between the cell ordering in a method’s result and the ground truth. (b) The accur-
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tory. (d) The accuracy of the recovered topology compared to the ground truth. (e)
The mean score: mean of the four previous scores. (f) The time every method took
on datasets of differing numbers of cells (from 60 cells to 19 647 cells), in seconds

sided z-tests can be seen in Table 3, which contains P-values associ-
ated with paired #-tests computed on the 178 synthetic datasets.
TinGa consistently performed significantly better than RaceID/
StemID across all trajectory types. It also significantly outperformed
Monocle 3 and PAGA on simpler trajectories such as linear, bifur-
cating, converging and cycles. On the other hand, the mean scores
of TinGa were significantly higher than the mean scores of Slingshot
on more complex trajectories such as trees and acyclic graphs (with
a P-value of 0.05).

For each of the 178 synthetic datasets, we determined which of
the five tested methods performed the best. The results are presented
in Figure 7. TinGa had the best score on 68 out of the 178 datasets.
We also observed that TinGa was the method that performed best
on the greater diversity of synthetic trajectory types. Monocle 3, the
second-best method that outperformed the other methods on 42 syn-
thetic datasets, mainly showed its best performance in two types of
trajectories: trees and graphs. Slingshot, the third-best method that
outperformed the others on 28 synthetic datasets, mainly outper-
formed the other methods on simpler trajectories, from linear to
cycles, while PAGA and RacelD/StemID performed best on trees.
On the other hand, TinGa outperformed the other methods on lin-
ear, bifurcating, cyclic, tree, acyclic and graph trajectories.

3.2 Real datasets

Figure 8 shows violin plots of the scores of the five TI methods we
tested on real datasets. These results were split between datasets
with a silver and a gold standard. Datasets with a gold standard are
datasets for which external information such as cell sorting or cell
mixing were used for validation of the trajectory. In datasets with a
silver standard, the ground truth trajectory was extracted directly
from the expression data, typically by clustering and validation by
experts.
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Fig. 9. The results for the five methods are represented in separate plots along the x-
axis. The y-axis represents the number of datasets on which each method had the
best mean score on real datasets across all methods. These results are split into two
bars, representing the results on real datasets with a silver and a gold standard sep-
arately. For each method, bars represent the different trajectory types for which the
method performed best. These bars are ordered and coloured from most simple (in
light yellow) to most complex trajectory type (in dark red)

In datasets with a silver standard, we observed results that were
comparable to the results previously shown on synthetic datasets.
TinGa, Slingshot, Monocle 3 and PAGA were the methods that had
the best correlation and F1 branches scores, as can be seen in
Figure 8a and b, respectively. As observed previously, Monocle 3
outperformed Slingshot on the feature importance score (Fig. 8c). In
the case of datasets with a silver standard, it not only performed bet-
ter than Slingshot but also TinGa and PAGA on the topology HIM
score (Fig. 8d). Overall, the mean scores of TinGa and Slingshot
were relatively spread from mediocre (0.25) to very good scores
(>0.8) compared to Monocle 3 and PAGA, which returned more
consistently mean scores around 0.55 on the real datasets with a sil-
ver standard. As observed on synthetic datasets, the scores of
RacelD/StemID were greatly affected by the fact that it failed to re-
turn results on the large datasets, due to memory issues.

We compared the time necessary for each method to run
(Fig. 8f). TinGa was the fastest of the five TI tools. It took 11s on
average to run on small datasets and only 21s on average on data-
sets containing more than 10 000 cells. Monocle 3 had very similar
results on small datasets, but it took twice longer than TinGa on our
largest datasets. Moreover, the method crashed on nine datasets.
PAGA took slightly more time to run on large datasets, needing
more than 3 min on average to run on datasets containing more than
10 000 cells. This method did not work on all datasets either: it
crashed on 17 of them. RacelD/StemID was the second slowest
method and already needed a few minutes to run on medium data-
sets. This method systematically crashed on datasets of more than
5000 cells, which represents 69 datasets. Slingshot and TinGa were
the only methods that returned a result for all the 250 real and syn-
thetic datasets on which they were tested. However, Slingshot was
the least scalable of the five methods that we tested, and ran for
more than 2 h when applied to the largest dataset of the study that
contained 19 647 cells. In comparison, TinGa took 23 s on the same
dataset.

All methods performed significantly worse on datasets with a
gold standard compared to silver-standard datasets. Since the valid-
ation of these trajectories does not rely on the data itself but on ex-
ternal measures, it might not reflect the processes in the data exactly
and be more complex to infer. Even though Slingshot and Monocle
3 returned significantly lower correlation and featureimp_wcor
scores than on the real datasets with a silver standard (Fig 8a and c),
these two methods had the highest mean scores on datasets with a
gold standard (Fig. 8e). The mean score of TinGa on these datasets
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was slightly lower than its results on silver and synthetic datasets,
and the mean score of PAGA completely dropped on these datasets,
never reaching a value higher than 0.5. This might in part be
explained by the fact that datasets with a gold standard consisted
mainly of linear and bifurcating trajectories, two trajectory types on
which Slingshot tends to excel, while PAGA can over-estimate these
datasets complexity (see Fig. 9).

The number of real datasets on which each method performed
best are presented in Figure 9, where results on datasets with a silver
and a gold standard are shown separately. TinGa outperformed the
other methods on 18 silver-standard datasets, which ranged from
simple linear to most complex disconnected trajectories. As
observed previously in synthetic datasets, PAGA performed best on
a majority of tree trajectories. Slingshot and Monocle 3 returned the
best results on 16 and 14 real silver-standard datasets, respectively.
These two methods also performed best on a majority of the simple
real datasets with a gold standard, while TinGa performed best on
the only real complex dataset with a gold standard.

We then performed statistical tests on the real datasets to assess
whether TinGa’s mean score was significantly higher than the mean
scores of the four other methods on any trajectory types. Table 4

Table 4. P-values associated with one-sided paired t-tests compar-
ing TinGa to other methods on real datasets

Trajectory type Monocle 3 Slingshot PAGA RacelD/StemID

Linear 0.913 0.986 0 0
Cyclic 0.761 0.811 0.042 0.217
Bifurcating 0.378 0.635 0.119 0.021
Multi-furcating 0.189 0.439 0.143 0
Tree 0.441 0.021 0.716 0
Acyclic graph — — — —
Disconnected graph 0.055 0 0.057 0

real/silver/kidney-distal-convoluted-tubule_mca

TinGa, mean_score = 0.93

shows the results of the one-sided paired #-tests that we performed,
and contains the P-values computed among the real datasets. Since
there was only one real dataset containing an acyclic graph, we could
not compute any statistics on this trajectory type. As observed previ-
ously in synthetic datasets, TinGa consistently performed significantly
better than RaceID/StemID across all trajectory types, except for real
cyclic datasets. Moreover, the mean scores of TinGa were significant-
ly higher than the mean scores of PAGA on both cyclic and linear
datasets, and higher than the scores of Slingshot on the more complex
trees and disconnected graphs (with a P-value of 0.05).

Figure 10 is shown as an example of the trajectories returned by
the different methods on a real linear dataset. On this dataset,
TinGa and Slingshot accurately retrieved a linear trajectory that was
similar to the real trajectory (at the top left of the figure). The cell
ordering was therefore optimally retrieved by these two methods,
while PAGA for instance found a trajectory that diverged greatly
from the ground truth, and reordered the cells in a very different
way. The trajectory identified by Monocle 3 consists of many nodes,
and even though it globally resembles the ground truth, it identified
two noisy micro-structures: a branch and a cycle. In this case, the
mean score of Monocle 3 was therefore impacted by the fact that
the topology it returned was more complex than expected, which
resulted in a low HIM score. It also suffered from the fact that some
cells were assigned to an extra branch and an extra cycle that were
not present in the ground truth trajectory, which resulted in a bad
F1_branches score. RaceID/StemID and PAGA also returned a tra-
jectory that was much more complex than the ground truth.

3.3 Topology bias

In order to further investigate the type of trajectory topology that
TinGa would return compared to other methods, we then focused
on the bias in topology. Saelens ez al. (2019) had already highlighted
the fact that some TI methods such as PAGA, tended to over-
estimate the complexity of a trajectory, while other methods,
amongst which Slingshot, typically under-estimated the complexity

RACE ID, mean_score = 0.3
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Fig. 10. Trajectories found by the different methods on a real dataset with a linear trajectory. The mean score of each method reflects the accuracy with which it inferred the
trajectory compared to the gold standard, which is represented in the top-left figure. TinGa and Slingshot inferred the most accurate trajectories on this dataset
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line tend to return too simple topologies

of a dataset. We assessed the difference in topology between the tra-
jectories returned by the five TI methods tested in this article and the
real data topologies (Fig. 11). Our results confirmed that PAGA,
and also RaceID/StemID returned too complex trajectories when
facing linear or cyclic datasets. We observed the same trend in
Monocle 3, which also tends to reconstruct too complex topologies
on linear or cyclic datasets. We also observe that RaceID/StemID
tends to return extremely complex trajectories compared to ground
truth, irrespective of the real topology in the data. On the other
hand, slingshot and TinGa accurately returned linear topologies
when facing simple datasets. We report however that Slingshot tends
to model cyclic trajectories as linear, an error that TinGa typically
circumvents.

If we then focused on more complex datasets, such as converg-
ing, bifurcating or multi-furcating trajectories, we noticed that
TinGa, PAGA and Slingshot were relatively unbiased towards the
topology complexity. Monocle 3 and RacelD/StemID, on the con-
trary, tended to return overly complex trajectories for these topolo-
gies. Finally, if we focused on the most complex datasets on which
we performed our comparison, we noticed that methods that tended
to find too complex topologies in simple datasets performed more
accurately on complex datasets. PAGA showed no bias in topology
on disconnected graphs and showed only a slight bias in the direc-
tion of more simple topologies when applied to connected or acyclic
graphs. Slingshot, on the other hand, under-estimated the complex-
ity of disconnected, connected, acyclic and tree graphs. We observed
the same trend in TinGa for the two last-mentioned topologies, but
the bias was much less pronounced that the bias observed for
Slingshot. All methods seemed to struggle with finding the right top-
ology for tree datasets.

4 Discussion

So far, every new TI method that was published compared its results
to a maximum of 10 other methods (which were not necessarily
selected among the best ones), on a maximum of 10 datasets. In this
work, we presented an extensive comparison of TinGa to four of the
best existing TI methods to our knowledge on 250 datasets. This
allowed us to clearly establish the relative performance of each
method in a minimally biased setting, since adding more datasets
automatically reduces the possibility that we would over-estimate
the performance of our method. The datasets on which we tested TI
methods were either generated by one of four different simulators or
real single-cell RNA-seq datasets. This allowed us to test different
aspects of the methods. In synthetic datasets, we have the advantage
of having a refined gold standard, with information on every cell’s
state of progression in the trajectory we simulated. Testing the meth-
ods on real datasets is of course essential, but in these datasets, a
gold standard is more difficult to extract, and is usually based on a
grouping of cells into time points or clusters, which is less refined
than the single-cell information obtained in synthetic datasets.

The TinGa method showed a very good performance on average
on all types of trajectories, while we observed that Slingshot per-
formed best on simple trajectory types, and PAGA and Monocle 3
were more prone to reconstructing complex trajectories types.

Slingshot relies on two steps of first clustering the low-
dimensional data and then fitting principal curves through these
clusters. This results in the Slingshot trajectory typically being very
well correlated with the gold-standard trajectory, since it follows the
principal density structures in the data. However, this method also
tends to smooth out the trajectory, possibly removing secondary
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structures such as branches or cycles. PAGA also starts with a clus-
tering step, but the method then significantly differs from Slingshot
since one small graph is then built per cluster. Several steps of refine-
ment then allow linking the subgraphs that need to be linked while
keeping separate the components that should not be merged, which
allows the method to recover disconnected trajectories. This ap-
proach typically leads to more convoluted trajectories. Monocle 3
has a similar approach to PAGA, since it also performs clustering
followed by a step where a principal graph is built for each cluster.
Several refinement steps are then applied in order to produce a clean
final graph, among which merging the subgraphs that should be
linked. From what we observed in Figure 11, the similarities be-
tween PAGA and Monocle 3’s methodologies are reflected in the
way they model simple trajectories, since they both tend to return
more complex trajectories than needed when applied on linear or
cyclic datasets. TinGa models the trajectory as a growing graph that
naturally migrates towards the higher density regions in the data. It
is comparable to Slingshot in the sense that it will approximate a
principal curve’s result on simple trajectories. However, it also
matches the best aspects of PAGA and Monocle 3 since it will eventu-
ally divide into subgraphs if the data are disconnected. From what we
observed, TinGa seems to be a good trade-off between Slingshot,
which is a method that performs optimally on simple trajectory types
such as linear or bifurcating trajectories, and PAGA and Monocle 3,
which perform best on graphs and trees but tend to return too com-
plex topologies when facing simple trajectories. TinGa does not need
the user to specify any topology. We reasoned that the fact that it can
fit any topological structure in a scalable way with the number of
inputs presented a real advantage in the context of TL.

In this setting, we observed that TinGa was a promising TI
method. Its performance is comparable to Slingshot on simple data-
sets, but also accurate on complex trajectories where it performed
equally well and sometimes outperformed the PAGA and Monocle 3
methods. In a field as complex as is TI, we believe that more than one
TI tool should be used at the same time, to increase understanding of
the data. We provide TinGa, a method that is applicable to a wide
range of trajectory types, and can play a role in the inference of com-
plex disconnected trajectories, a problem that very few methods are
able to tackle for now, while still being accurate on simple trajectories.
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