
TRANS·FOR·MERS

FOR HY·PHEN·A·TION

A review of Seq2seq transformers in the context of Dutch Hyphenation, and other insights

Short biography

 François REMY // @FremyCompany

 Speech Recognition Team

Internet and Data Science Lab

University of Ghent

 Interested in structured data extraction

and question answering

Motivation for this work

 Language Model trained on a large text corpus

Many words of unknown pronunciation

Guessing their pronunciation is known as grapheme-to-phoneme

 In case of Dutch, transfer learning from hyphenation sounds plausible

Motivation for this work

 Language Model trained on a large text corpus

Many words, more than is reasonable to have in a dictionary

 Have to split them in smaller chunks called token

 Techniques in use today don’t care about splitting a syllable in two

Byte Pair Encoding

 Start with words as a sequence of letter

Merge the 2 letters that are the most often found near each other

 Repeat until you have merged N times, N ~ your vocab size

Motivation for this work

 Transformers-based models are popular

 But very few people seem to train them from scratch

 Hence it’s difficult to have a good intuition on how they’re working

 Learning experience

Existing hyphenation tools

 TeX and OpenOffice: Liang’s TeX82

 Find patterns leading to hyphenation in stages

What character-patterns usually lead to hyphens?

What character-patterns usually prevent hyphens?

Repeat 6 times with patterns of increasing size, and less tolerance for imprecisions

Works best for languages that don’t form compounds, like French or English

Good precision (>95%) and usually-acceptable recall (>90%)

Side note on Morphessor

Morphessor

 Python program using Viterbi and Recursive Search to find split trees for strings

But is based on a “semantic” search rather than a pronunciation approach

Doesn’t model letter sequence as well, not suitable for the task at hand

 Ex: “Vriend-en” vs “Vrien-den”

Introduction of Transformers models

 An encoder stack

Maps each input in a sequence

into an embedding representation

 A decoder stack

Generates a sequence output by

output by combining the
previously-generated embeddings

 (Can perform Beam search)

Introduction of Transformers models

 Each input unit

 attends to every other input,

creates a complex representation

for itself

 Each output unit

 attends to every input and every

previously-generated output

Introduction of Transformers models

 State of the art performance

 In translation

 In language modelling

 In differential equation solving!

G2P Seq2Seq: Letters as input

https://github.com/cmusphinx/g2p-seq2seqWER: 20% Relative Improvement vs Baseline

Dataset extracted from WikiWoordenboek

 Around 350K words with audio

(good quality)

 Around 40k words with IPA representation

(but of lesser quality)

 Around 400k words with hyphenation

(very good quality!)

TRAINING INSIGHTS

Get the most out of your transformer model training time

Positional encoding isn’t ideal

 Transformers don’t rely on an order between tokens, the tokens

embed their position in themselves

 This can cause the decoder to “skip” or “rewind back” accidentally

Especially at lengths which haven’t been seen much during the training, and

longer lengths in general

Dealing with positional encoding

 If possible, keep input and output length identical

 This will help the decoder be stricter on the positional encoding match

Transformers are data-hungry

 Needs to be bucketized by word length to avoid loops or omissions

near the end of long words, but this splits the dataset even further

 Usage of data augmentation to produce new possible long words, in order to

increase the dataset set (up to 8 million words)

Upside: much better results on test set thanks to more data points

Downside: learns bias in data augmentation that are detrimental: we have now

moved the problem to good and well-proportioned data augmentations

Dutch compounds: tussen-s

Transformer decoders work start-to-end

 In some context, you might want to reverse the order in which you

want the transformer to guess your output sequence.

 For instance, in the case of word hyphenation, it might be better to reverse

the sequence and feed the transformer the letters starting from the last one,

instead of starting from the first one.

Transformer models are slow

 For hyphenation, using a complex transformer model is overkill

 Nowadays, it’s better to ship with a large hyphenation dictionary, and treat

unseen words using a simpler Tex82 or decision tree, rather than use a

complex transformer model

 Transformer models can however be used to generate data to train the trees.

DATA AUGMENTATION

FOR HYPHENATION

A quick review of other techniques used to expand the transformer training set

Semi-supervised data augmentation

 To improve the quality of the model, we used a dictionary of words

to be hyphenated, and tried to detect compounds in them for

which both sides already had a known hyphenation

 To ensure that the splits obtained this way are not accidental, we used words

obtained from a large news corpus, with at least 33 occurrences in the

corpus;

 Two types of word2vec embeddings have been computed on the corpus

(small window to capture syntactic properties & large window to capture
semantic properties) and a compound split was only validated if there was

evidence the split matched reasonably well on both sides.

Using embeddings to validate word splits

 Verkeersprobleem : verkeer[s]-probleem ?

 Sem_Sim SemanticEmbeddings.Similarity(Verkeer, Verkeersprobleem)

 Syn_Sim SyntacticEmbeddings.Similarity(Verkeersprobleem, Probleem)

 GetSplitScore(Sem_Sim, Syn_Sim) > Threshold

DISTILLATION OF TRANSFORMER

INTO RULE-BASED MODEL

As mentioned before, transformer models are too slow in practice, but they can be distilled

Distillation: Recursive Decision Trees

 Decision tree input:

 Letters around the considered hyphenation boundary

All letters before and after

Only close letters

Causal

 Embedding of the word to hyphenate (if known)

 How long since the last hyphen was inserted

Makes the decision trees recursive like an LSTM

Generate a forest by training on cross-validation folds

Using embeddings in Decision Trees

 Embeddings are not very useful for decision trees that can look

backward and forward far enough

 They are however very useful for “causal” models, which only know which

letters have been processed so far (but cannot look at letters at the future).

Combining causal models with embeddings and non-causal models improves

the chances of finding hyphenations at word boundaries, thanks to the

embedding “understanding” of the word at hand.

CONCLUSION

Ending remarks twitter.com/FremyCompany

