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Abstract—Assessing students’ code is a challenging and time intensive
task for teachers. Facilitating this process is essential to stimulate teachers
to teach programming in their classroom. In this paper we describe
a new technique to autonomously assess program functionality for
different programs in a physical computing context. Using a qualitative
analysis on different scenarios, we show that our method can be used
to group programs with similar functionality and distinguish programs
with different functionality. Our approach will facilitate code assessment
for teachers and is a first step toward a more intelligent way to evaluate
how children learn programming.

Index Terms—Automated assessment, programming courses, program
embedding

I. INTRODUCTION

Programming is becoming an increasingly important part of the
curriculum in primary and secondary education. Consequently, teach-
ers are challenged to find appropriate exercises for their group of
learners. Many of these exercises can be found online on websites
like code.org or Blockly maze. The learners can work through these
exercises independently with limited interaction from the teacher.
Teachers like these types of exercises because, even with little or
no programming experience, they can guide the students through
the learning path. In contrast, teachers often avoid more open
programming contexts and environments where students are free to
experiment because they lack confidence in their ability to guide and
assess the exercises. In this paper, we give the first steps towards
an automated assessment method that provides teachers with more
powerful tools to guide and evaluate the programming process.

An assessment tool should be about more than checking if the
solution to a specific exercise is correct; it should provide the
teacher with valuable insights into the taught process of each stu-
dent. It should enable a teacher to answer questions like: Which
programming constructs are/aren’t well understood? Through which
intermediate solutions do different students get to a solution? Which
misconceptions do learners have when solving specific programming
questions? Which students write more compact/more verbose code?
To autonomously answer these questions based on the students’ code,
we need a way to analyze the functional and structural information
embedded in the programs. In this paper, we present a new method
for extracting functional information from programs within a physical
computing context. Our approach is based on unsupervised learning
techniques, which make it applicable to all programs within our
programming context without requiring the system to be retrained. To
show the value of our technique, we perform a qualitative assessment
of different scenarios.

II. RELATED WORK

Others have tried to create automated methods for assessing
programs. One of the methods used is test-driven learning in which

unit tests are defined for the different exercises the learners have
to complete. As demonstrated by existing assessment systems like
JavaBrat, WebCat, and Marmoset [1]–[3], well designed test-driven
learning can be a great help for teachers when assessing programming
assignments. However, creating these tests is often labor intensive and
consequently practically infeasible to set up if the group of learners
is small [4]. Additionally, it only provides high-level information
about the performance of learners on specific criteria but gives limited
insight into how students solve certain problems or the misconcep-
tions they have. Another shortcoming of test-driven learning is that
it is only applicable within a context where the assignments are
well defined, and the outcome is fixed. However, many programming
activities are open-ended and allow for learners to experiment while
creating their application. To deal with the shortcomings of test-driven
learning, others have proposed methods for identifying program
functionality without the use of unit tests. Most of these methods
use machine learning techniques to embed the program functionality
into a vector space. In this vector space nearby points represent
similar programs. In [5], they identify program function and structure
by creating a list of Hoare triples for each program. These Hoare
triples represent the state before a part of the program is executed,
the part of the program that is executed and the state after the
code has been executed. They use a technique inspired by non-
linear auto-encoders to represent a program as a linear transformation
between states and use the embedding for feedback propagation.
Additionally, they show composability, which means the predicted
end-state of a composed program is similar to the predicted end-
state after first predicting the state after component one and then
using this as input for component two. Which means the embedded
programs combine in the same way as real programs do. The main
drawback of this technique is that it only works within the context
of a specific exercise and requires a significant amount of data to
determine the embedding. Additionally, since the method combines
functional and structural information, it makes it less intuitive to
reason about how programs relate in the embedded space. Others
have extracted functional information from programs using control
flow and data flow features [6]. Control flow features identify the path
through the code during execution while data flow features identify
how the state of the program changes. They show promising results
for declarative programs in identifying differences between different
implementations of the same algorithm. However, the algorithm is
limited to declarative programs without physical output. Moreover,
they do not account for time behaviour which is essential in other
programming contexts like physical computing. Another method for
extracting functional information from programs was proposed in [7].
In this paper, the authors use visual program output to identify its
functionality. This functional dataset is then labeled by assigning
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it to one of the predefined milestones and knowledge stages. This
dataset of images and labels is then used to train a deep convolutional
neural network which can then be used to classify programs into
milestones and knowledge stages. The method reports accuracies of
0.562 and 0.649 for the identification of milestones and knowledge
steps, respectively. Other techniques for embedding program code
have been proposed [8], [9] however, these techniques focus on
embedding the program structure based on the code itself or its
abstract syntax tree. This can be used to identify programs with
similar structure or even predict function names. However, it provides
limited information about the functionality of the program.

III. CONTEXT

We developed our code analysis technique within a physical
computing context. Physical computing is often used to teach novices
about programming since it adds a tangible component to the learning
process. Several learning tools exist within this context [10]–[12]. We
have developed our own set of physical computing tools which we
use during multiple courses and workshops. These tools include a
graphical programming environment based on Arduino1 and Google
Blockly2. Additionally, we use a custom micro-controller board based
on the Arduino Leonardo, which is specifically designed to be used in
a classroom allowing children to create a simple robot while having
limited knowledge about electronics.

Analyzing program functionality within this context poses some
challenges which are less relevant in other contexts: (1) Time based
behavior. The functionality of these systems heavily relies on time.
Imagine a system for a traffic light with the following pattern: 20
seconds red, 3 seconds orange, and 17 seconds green. This system
functions correctly; however, if we change the timings to for example:
0.5 seconds red, 50 seconds orange and 9 seconds green, this system
is flawed. Consequently, including this time behavior in our analysis
is essential. (2) Open assignments. Physical systems are often used
in more open learning contexts in which learners can create their
own system. Consequently, our technique should be able to capture
program functionality for many different programs. (3) Slow data
collection. Since learners are working with physical systems a lot of
time is spent building and debugging the hardware; consequently, the
collection of programming data takes a lot more time. This limitation
requires us to design a system which can perform an analysis based
on a limited amount of data.

IV. DATA

The programs we analyze are written for our microcontroller
platform using our graphical programming interface based on Google
Blockly. This means that all the programs use the Arduino based
setup-loop structure, which is represented by the setup-loop block
in our environment. The setup code is mainly used to initialize the
environment and is usually short. The loop code contains the main
body of the program, which interacts with the world by reading inputs
from the real world and processing them to specific outputs that act
upon this real world. The analysis in this paper limits itself to only
a subset of possible inputs and outputs of the board since during
most of our workshops, only these inputs and outputs were used.
Currently we limited the inputs to the distance read from a sonar
sensor (value between -400 and 400) and the state of five buttons
(1 or 0). Note that a negative sonar distance can only occur in the
real world when the sensor cannot read the distance; in that case the

1https://www.arduino.cc/
2https://developers.google.com/blockly/

TABLE I: Possible outputs to our system with the corresponding
value ranges.

Input Value range
LED 1 to 9 state [0; 1]
LCD-screen text All combinations of 26 characters

with length 16
DC-motor 1 and 2 speed [−255; 255]

Servo motor angle [0; 180]
Buzzer frequency [20; 20000]

value -1 is returned. However, in our simulated environment we can
simulate negative distances which is useful since it provides more
information about how the program reacts to different inputs. Table I
show an overview of the different outputs of our system. The inputs
and outputs can be combined into infinitely many programs using
different programming constructs which include: conditions, loops,
variables, and time delays.

We collected a dataset of these programs by logging the inter-
actions learners had with our programming environment during ten
workshops. Each workshop had three sessions in which learners com-
pleted different programming tasks: Programming different poems on
the LCD screen, making a two-wheeled robot ride different patterns
on the floor and using distance sensor input to make the robot interact
with its environment. To map out the coding path, we logged the code
each time the learner changed an aspect of the code.

V. METHOD

To transform our programs into a functional vector representation,
we drew our inspiration from Fourier analysis. Fourier analysis is
generally used to convert a time-based signal (like an audio signal)
into a linear combination of different base frequencies (individual
notes). Since we are working with microcontroller programs, time
is an essential factor determining functionality. Additionally, we
observe that all microcontroller programs contain a certain fixed
functionality defined by the code in the setup (DC component) and
a periodically varying component determined by the code in the
loop function (AC components). The setup function initializes the
state of the microcontroller to a fixed value. The loop function will
change the state of the board with some periodic repetition. This
observation leads us to identify program functionality by transforming
the variation of state in time to a set of base state frequencies defining
the programs’ function.

Transforming a program to functional vector representation re-
quires multiple steps. Figure 1 gives an overview of the different steps
needed to go from program to vector. First, the code is executed by a
simulator. This simulator executes the code in a fictional environment
in which all inputs are generated using a periodic sinusoidal function.
For example, the sonar sensor measurement changes periodically
between -400 and 400 over 2 seconds. These periodic changes make
sure all inputs of the program get triggered regularly. The program
is executed for p = 30000 code steps, which guarantees that all
programs in our dataset traverse the loop code at least once. All
instructions except the wait instruction take one code step. The wait
instruction takes as many code steps as the number of milliseconds
it pauses the program. Every q = 33 steps, the state of the board
is saved. Table I shows an overview of the state which has to be
saved. The different elements are saved in a different way depending
on their value range. LEDs are saved by a 1 or a 0 if they are
on or off respectively. The values for the dc-motors, servo-motor
and buzzer are each grouped, and normalized. The grouping makes
sure similar speeds, angles, or frequencies get the same value while



the normalization brings their weight to the same level as that
of the LEDs. Normalisation makes sure different state components
equally contribute to the total signal. For the LCD-screen we make
a histogram with the occurrences of each letter on the screen. These
numbers are then normalized according to the maximum number of
occurrences. This results in a total state vector of r = 39 elements.
Each time this vector is saved, it is added as a new row to a state
matrix resulting in a bp/qc×r matrix. This matrix is then vectorised
according to column-first order resulting in a vector s of length
n = bp/qc r.

Code

Simulator
Frequency

analyzer
PCA

Functional vector

State in time Frequency

vector

Fig. 1: The vectorisation pipeline which transforms the code into a
functional vector.

H2 =
1√
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (1)

To convert our state-time vector into base frequencies, we use
a Hadamard transform [13]. The Hadamard transform is a linear
transformation based on the 2-D Fourier transform. We opted for
the Hadamard transform because our time state vector is not a
continuous function but a combination of different square waves.
Since the Hadamard transform has square basis functions, it is better
suited for our application than the Fourier transform. Additionally,
the Hadamard transform is easier to compute since its values are not
complex numbers. An example of the second-order Hadamard matrix
is shown in equation 1. We use the H9 matrix (512×512) and apply
it sequentially to our state-time vector s resulting in a frequency
distribution vector f with the same length N .

To reduce the dimension of the frequency vector, we apply prin-
cipal component analysis (PCA) which results in a vector in a 15-
dimensional vector. Note that applying PCA directly to the time series
since the Independence condition is not satisfied for time series data.
The resulting vector can now be used as a functional identifier of our
program. In the following sections, we visualize these vectors and
provide a qualitative analysis of the accuracy of the representation.

VI. EVALUATION

Since we are working in an open problem context labeling our
dataset based on program functionality is very labor intensive and
practically infeasible. As a result, we evaluate our method by defining
a set of scenarios designed to test the requirements that our system
should fulfill. These requirements are: (1) Programs with similar
functionality should have similar functional vectors. (2) Programs that
react on the same input (ex. the sonar distance) but with different
actions should be distinguishable. (3) Functional composability, a
linear combination of the functional vectors of two programs should
be similar to the functional vector of the combined programs. For
example, a combination of the functional vector of a program which
blinks an LED and the functional vector of a program which shows

Fig. 2: This plot validates the vectorization of the DC component
of a program. The clusters map to a program with a specific dc
component, for example turning on an led at the start of the program
and leaving in on the entire time like in Figure 3. A different dc
component is put in a different cluster.

Fig. 3: An example program with a single DC component.

some text on the screen should be similar to the functional vector
of the program which blinks an LED while showing the text on
the screen. After validating these requirements, we analyze a subset
of our dataset by selecting programs from the drive in a square
assignment.

To evaluate the requirements, we defined five different scenarios.
These scenarios include only a few programs and demonstrate the
properties of our technique. To visualize the scenarios, we clustered
them into two-dimensional space using t-sne [14]. In the t-sne plots,
one color represents one program. Note that the same programs are
not visualized on exactly the same point in the plot often resulting
in small clusters containing the same program.

To verify requirement one, we used two scenarios. Figures 2 and
4 show the t-sne plots for each of the scenarios. The plot in Figure
2 shows five clusters. Each of these clusters contains a program with
the same dc component. An example of one of these programs is
shown in Figure 3. This clearly demonstrates that programs without
cyclical components are separable. Figure 4 shows the visualisation of
different programs which are time shifted versions of the the program
shown in Figure 5. The plot demonstrates that smaller time shifts
result in clusters that are nearby.

To verify requirement two, we used the scenario shown in Figure
6. Figure 6 demonstrates that our technique can separate programs
that react to the sonar sensor input. Figure 7 shows one of the
programs which are clustered. The other programs are variations on
this program constructed by flipping the greater than sing or flipping
the do and else statements. We also validated this requirement using
button inputs. However, we were not able to include the results due
to space constraints.

To assess requirement 3, we calculated the correlation between the
sum of two programs in the embedded space and the embedding of
the combined programs. In Figure 8 the calculation of the correlation
is visualized. The correlation of 0.92 shows a strong relationship
between the two terms in the embedded space indicating program
composability. Note that the correlation of the first program in the
sum with the combined program is only -0.53 and the correlation



Fig. 4: This plot validates the similarity between similar programs.
The program in Figure 5 shows the base program, the other programs
used for clustering are created by time shifting this program by: 300
forward (orange cluster), 100 forward (pink cluster), 100 backwards
(blue cluster), 300 backwards (green cluster). The bottom cluster
represents the original program and the central cluster the empty
program. This demonstrates that smaller time shifts in the program
result in smaller differences in correlation between vectors in the
embedded space.

Fig. 5: The base program which is time shifted and clustered in Figure
4

Fig. 6: The clustering plot shows similar programs which react
differently to the same input. The clusters on the far left and far
right contain variations on the program shown in Figure 7. The right
cluster (orange and pink) contains two correct solutions to the stop
at wall problem. The left most program (green and red) contains the
incorrect programs. The center program contains the empty program
and the brown clusters contain time delayed variations of the correct
solution.

Fig. 7: The stop at a wall program: this program makes a riding
robot stop at a wall if the distance is small. We vary this program by
changing the greater than sign to less than and swapping the content
of the do and else statements. This results in two correct solutions
and two incorrect solutions.

between the second program in the sum and the combined program
is only 0.37. The lower correlations between the terms and the final
program strengthens the composability argument.

Finally, to assess the performance of the clustering on a realistic
exercise, we generated a small dataset based on the solutions we
found in the data we collected. The goal of the exercise is first to
put your name on the LCD-screen and then let a riding robot ride
in a square pattern on the floor. The dataset contains the following
programs: 1) Putting different names on the LCD-screen. 2) Making
one motor turn. 3) The correct motor commands but without delay.
4) The correct motor commands with the first delay but without the
second. 5) The correct solution making the robot take a short turn
(one motor on positive speed, the other on negative speed) 6) The
correct solution making the robot take a long turn (one motor on 0,
the other on positive speed). Figure 9 shows the clustering results and
the programs in the clusters. These clusters are grouped in the image
depending on the functionality of the programs in the clusters. Group
1 (c1) contains programs which only put text on the LCD-screen. All
the other clustered programs in the dataset also print one of these
pieces of text to the screen but combine it with other functions. Group
2 (c2) only contains null programs without functionality. Group 3
(c3) contains all correct programs in the dataset, which make the
robot take a short turn. Group 4 (c4) contains the correct program
without delays, which is a common misconception when learners
first solve this assignment. The group has programs for the two
different names which are printed on the LCD-screen. Group 5 and
6 (c5 and c6) contains both the correct program without the final
delay (again a common misconception) and the program which only
lets the robot drive straight. It might seem strange that these two
types of programs are clustered together, however if the delay at the
end of the program is omitted, the two last motor commands are
only executed for a short period before returning to the initial motor
settings. This is functionally the same as just setting the two motors.
The programs are split over two clusters because they print a different
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Fig. 8: This equation shows the correlation between the sum of the embedding of two programs and the embedding of the combined program.
The correlation between program 1 and program 3 equals -0.53 and the correlation between program 2 and 3 equals 0.37.

name on the LCD-screen. The other programs in the plot which are
not in a group are correct solutions that let the riding robot take a
large turn with different names printed on the screen. We can see
that most of these programs are nearby indicating they have similar
functionality. However, since there are some outliers, we decided not
to group them explicitly. A video of the clustering results is available
at http://bit.ly/SIGCSE2020TN.

VII. EDUCATIONAL USE

Our technique provides a new method for identifying and visual-
izing microcontroller program functionality. Additionally, we believe
that our technique can lead to valuable applications in education.
Literature has shown that teachers find it challenging to teach
programming and physical computing [15]. The first step to help
them to overcome these challenges is teacher training. However,
teacher training programs are often time constrained resulting in
strongly scaffoled learning [16]. This empowers teachers to teach a
specific assignment but limits their ability to adapt their teaching to
specific student needs and makes them shy away from open problem
contexts. Our technique can help teachers to better understand the
way their students learn while also giving them a novel way to
assess programming exercises. Unsupervised functional analysis can
be used for many different application. One application is identifying
misconceptions in programming exercises. Common misconceptions
like Group 4 in Figure 9 will usually lead to functionally similar
programs. These programs will be visually clustered together. When
teachers identify clusters which contain similar incorrect solutions
of different students this can be identified as a misconception.
Our technique can also be used to analyze functional correctness.
Currently, functional correctness is usually assessed either visually or
by writing functional tests, however, both are labour intensive. Visual
inspection requires the teacher to execute every program of every
student which is feasible for small groups but becomes impossible
for larger ones. Writing functional tests for multiple exercises takes a
significant amount of time. For small groups writing tests is not worth
the effort. However, for large groups, writing tests can be beneficial.
Our technique provides a middle ground, it facilitates the individual
assessment by clustering correct solutions close to each other making
it easier to identify the learners who correctly solved a problem.
Additionally, our technique can be applied in open problem contexts
where writing predefined functional tests is difficult or impossible.
Finally, the technique does not require the initial time investment
to write functional tests. Longer term, our technique can be used
to create a tool which independently assesses students’ performance
enabling methods for automated feedback.

VIII. FUTURE WORK

We explained a technique for unsupervised functional analysis of
graphical microcontroller programs and shown its value in education
using a qualitative assessment. These first results are useful; however,
many possible improvements remain. A first step would be to do a
quantitative analysis of our technique by comparing our clustering
results to another evaluation technique. Next, testing within a real
classroom setting is essential to establish its value for teachers
and students. Finally, the technique can be combined with other
information like code structure to autonomously generate a deeper
understanding of the learning process. Once this understanding can
be established, the final step is to use it to autonomously generate
personalized feedback to each student.
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