
Analyzing coding behaviour of novice programmers in
different instructional settings: Creating vs. Debugging

1st Tom Neutens
Ghent University

IDLab, Department of Information Technology, Ghent University
Ghent, Belgium

Tom.Neutens@UGent.be

2nd Francis wyffels
Ghent University

IDLab, Department of Information Technology, Ghent University
Ghent, Belgium

Francis.wyffels@UGent.be

Abstract—Many methods exist for teaching programming in a physical
computing context. However, it is not clear what the advantages and dis-
advantages of these methods are in practice. Our research compares two
methods for integrating programming in a primary robotics workshop.
Both methods use a custom-designed programming environment based on
Google Blockly. Moreover, one method lets learners create their programs
from scratch while the second method requires the learners to fix faulty
programs. We compared the differences between the integration methods
by analyzing programming environment logging data and linked it to
the results on a programming knowledge test. Our results show that the
learners in the create group spend more time solving the programming
assignment and are more often distracted by code blocks they don’t
need. The learners in the debug group require less time. However,
they perform a disproportionate amount of code changes and apply the
“tinkering” strategy more often. Nevertheless, the drawbacks of the create
method, the learners in this group did show significantly higher scores
on our programming knowledge test.

Index Terms—k-12, graphical programming, debugging, code analysis,
physical computing

I. INTRODUCTION

Primary school robotics covers a wide range of interrelated
topics. One of these topics is computer programming. Integrating
programming into a robotics course can be done in a variety of
ways. This paper investigates how two different integration methods
affect learning by analyzing how learners interact with the coding
environment.

Similar to language learning, learning programming is split into
reading and writing skills. Consequently, many proposed teaching
techniques focus either on reading, writing, or a combination of
both. Many introductory programming courses mostly expect learners
to write code, also known as code generation [1]. This teaching
technique is often chosen since it is similar to what programmers do
in real life. Mimicking real life should provide an authentic learning
environment [2]. However, multiple studies have shown that this
method has drawbacks. In [1], they have shown that students often
had difficulties in finding a solution to the problems presented to
them when having to generate code. Additionally, they showed that
learners taught using the code generation method scored lower on a
statements knowledge test than students who were taught using code
completion problems. Moreover, in [3], it was shown that teaching
programming using the generation method required more time and
triggered more questions from the learners than the part-complete
solution method they describe. The part-complete solution method
provides the learners with an incomplete program and requires them
to add an element. One specific code completion strategy often
used when teaching programming is making learners debug faulty
programs [4]. Finding errors in your program and correcting them is
an essential skill programmers have to learn. The authors of [5] have
shown that teaching programming through debugging can lead to

more success when learners create their own programs and possibly
helps sustain learners’ motivation. Additionally, In [6], they argue
that acquiring debugging skills increases a programmer’s confidence.
Moreover, studies have shown that teaching programming using this
technique has a positive effect on problem-solving skills in general
and facilitates the transfer of these skills to other domains [7].
However, others have shown that teaching programming through
debugging can result in learners applying the “tinkering ” strategy
for solving the problems [8].

II. RESEARCH QUESTIONS

Our main research objective is to try and confirm the advantages
and drawbacks of each of the methods in a realistic classroom setting
using logging data from our programming environment and the results
on a programming test. For clarity, we limited the analysis in this
paper to four different dimensions for which we formulated specific
research questions:

• Do the learners in the create group require more time to get to
a solution than the ones in the debug group?

• Are the learners in the create group more distracted by the open
problem context than the ones in the debug group?

• Do the learners in the debug group show more tinkering behavior
than the ones in the create group?

• Do the learners in the create group score lower on a program-
ming test than the ones in the debug group?

III. METHOD

To compare the integration of programming using either the create
or debug methods, we created two identical robotics workshops for
which only the programming assignments were changed. We took
the educational context in which teachers in the region of Flanders
(Belgium) work today as a reference for our experiment. Using this
context as a reference, we identified constraints enforced by both
practice and policy that the instructional design had to meet. The first
major constraint in primary school is time. A governmental policy
defines ten topics primary schools have to teach [9]. From these
ten topics, one focuses on science. Within the science topic, only a
limited number of educational goals focus on technical systems and
processes. Consequently, in practice, teachers look for content that
covers a wide range of educational goals within a limited time. The
second constraint teachers often face is their limited set of resources.
Most of the budget provided by the government is used to pay
teacher salaries [10]. This leaves little resources to invest in teaching
materials, especially for subjects that represent only a small part of
the curriculum. The third and final constraint we identified is teacher
content knowledge. Primary school teachers have minimal knowledge
about more complex STEM topics since they were not educated to



teach them. Consequently, teachers often depend on external partners
to help them bring more complex content into the classroom. We took
these constraints into account when creating our instructional design.

A. Experimental group

Since STEM education is getting a more prevalent role in primary
education in Flanders, our experiment focuses on the last two years of
primary school. The learners who participated in our experiment were
between the ages of ten and twelve. They were randomly selected
from 10 different primary schools in Flanders. Since we selected
a random sample from Flemish primary education, our experimental
group reflects the underlying cultural and gender distributions present
in primary education. Our results show our final group had 53%
girls and 46% boys 1% preferred not to identify their gender. About
70% of participants indicated speaking mostly Flemish at home while
about 20% sporadically or never speaks Flemish at home. These
distributions match the ones for all of the primary schools provided
by the Flemish government 1.

B. Instructional design

We used the constraints described above to create an authentic
learning path containing multiple different learning experiences. The
learning path consists of three workshop sessions of about 150
minutes, resulting in 7 hours and 30 minutes of learning. The
workshops took place in the classroom of the students. The teachers
of the classes were always present to help where possible and to
help. However, the workshops themselves were given by either a
researcher or a supporting teacher who was part of the research
team. Using an expert teacher reflects how STEM is often integrated
into primary school today. Since primary school teachers lack the
necessary content knowledge, they often rely on external partners
to fulfill some parts of the curriculum. When selecting content
for the educational design, we took into account the governmental
educational goals and aimed to match the content with a selection
of these goals. After careful consideration, we created a physical
computing learning path that seamlessly integrates the governmental
educational goals with technical systems and processes. To test our
hypotheses, we created two variations of the learning path in which
we change the way the learners program the physical system. The first
variation focuses on creating programs from scratch allowing learners
to build their program step by step. This learning path incrementally
introduces new programming concepts by explaining them using an
example and asking the students to solve one or more exercises using
that concept. The exercises require the learners to write a program
from scratch trying to achieve the functionality we requested. The
second variation uses a learning approach that focuses on changing
and fixing programs. In this setup, similar to the create workshop, the
learners first get a short explanation of a specific coding concept using
an example. After each concept is introduced, the learners perform
one or more exercises on that concept. In the exercises, they get a
faulty or incomplete program and have to change the program to reach
their goal. To keep the focus on a specific concept, the learners only
have to either change one block in the program or add one block to the
program. Moreover, during the first session, the learners are instructed
to write down the answers to the following questions: (1) What should
the program do? (2) What does the program do now? (3) At what
point in the program does it go wrong? (4) How can we fix the
error? These questions provide a strategy for tackling the problems
facilitating the learning process. In the second and third session we

1https://onderwijs.vlaanderen.be/nl/nl/onderwijsstatistieken/statistisch-
jaarboek/statistisch-jaarboek-van-het-vlaams-onderwijs-2018-2019

did not explicitly ask the learners to answer these questions enabling
them to choose the solution strategy they wanted.

Figure 1 shows an overview of the learning path with the variations
labeled as create and debug. All building and programming activities
were done in groups of two. We paired up the students for multiple
reasons. Firstly, a robotics workshop requires a lot of hardware,
including a robot kit with mechanical and electrical components as
well as a laptop. Classrooms simply don’t have the physical space to
provide each learner with a full setup. Secondly, previous research
suggests pair programming is advantageous for the learning process.
In [11], the authors have shown that learning to program in pairs
did not affect achievement and confidence among groups but did
make girls more productive and confident. Moreover, the authors
of [12] have shown that programming in pairs exposes learners to
different ideas, reduced their frustrations, and helped them form social
connections. Additionally, as explained in [13], programming in pairs
improves pass rates and retention. Because literature shows working
in pairs has mostly benefits and limited shortcomings, we found it
appropriate for our experiment.

Each workshop session contains at least one hour of programming
exercises. The content of these exercises is different between the
debug and create workshops. A detailed list of the exercises for
each track is also shown in Figure 1. In addition to the coding
sessions, the workshop contains two CSUnplugged activities [14].
These familiarize the students with a computational concept which
they are going to need during the exercises that follow. The first
Unplugged activity familiarizes the learners with the concept of
programming by making them write a program that lets their teacher
make a sandwich. The second activity introduces the concept of
conditional statements by making the students perform a certain act
when the condition shown on the blackboard is true for them. Even
though the debug and create workshops use different exercises, their
objectives are the same. An overview of the learning objectives is
shown in the following list.

• Session 1
1) The learners know that a program is a sequence of instruc-

tions that are accurate and in the right order;
2) The learners write, change, run, upload code;
3) The learners know how to connect the microcontroller;
4) The learners print text to the lcd-screen;
5) The learners know the difference between setup and loop;
6) The learners correctly use the wait-block;
7) The learners use counting loops;
8) The learners control LEDs and the buzzer;
9) The learners convert microseconds into seconds;

• Session 2
1) The learners construct a two-wheeled riding robot:

a) The learners connect the structural parts;
b) The learners connect the battery using a rubber band;
c) The learners connect the motors using a screwdriver;

2) The learners use the DC-motor block;
3) The learners run their program inside the simulator;
4) The learners use a wait-block to add time-based behavior;
5) The learners make their robot drive into different shapes;

• Session 3
1) The learners connect a sonar distance sensor to their robot;
2) The learners understand the function of a sensor;
3) The learners evaluate conditionals and perform different;
4) The learners use an if statement with the condition to read

the distance from a sonar sensor;



5) The learners program their robot to act on sensor input;
6) The learners understand the effect of the real world on the

programming process;

To reach these learning goals, we created a custom set of teaching
tools specifically designed for our workshop. These teaching tools
include: (1) A custom-designed Arduino-based microcontroller board
for robotics in education. The main features of the board include:
An LCD-screen, 9 LED-lights, a buzzer, five buttons, and a built-in
motor driver to control different types of motors. The board enables
learners to connect and control the components of a basic robot
easily. (2) A custom robotics kit, designed to be inexpensive and
easy to produce in a maker lab. It includes two inexpensive DC-
motors with wheels, a set of laser-cut parts to construct a frame, a
sonar sensor, and a set of standard screws. (3) A tailor-made open-
source graphical programming environment based on Google Blockly
2, which includes a robotic simulator and debugger. Figure 2 shows a
screen-shot of the environment. It has the standard elements like the
Google Blockly toolbox and workspace but extends on it in different
ways. The most important extension is the simulator view. This view
provides the learners with a simulated environment in which they
can test their code. All the tools are open source and designed to be
inexpensive so they can be used in all schools, even with a limited
budget for STEM education.

Since we designed the programming environment ourselves we
were able to create logs of all interactions the learners had with it.
Each time a learner clicks one of the buttons or makes a change
to the code, a log entry is saved to a database. All log entries are
timestamped and contain metadata about the event that occurred. This
metadata includes a session-id generated when the environment is
started, the state of the simulation, and information about the event
itself. For a code change event, this information contains the current
program on the screen. For other events, this information includes an
identifier of the event type.

C. Metrics

Using the logging data, we performed an analysis of how the
interaction patterns differ between the create and debug workshop. To
extract relevant information from our dataset, we selected indicators
based on the advantages and disadvantages of both methods described
in the literature. As described in the introduction, the create method
gives the learners a more open environment increasing cognitive load.
This can result in difficulties finding a solution, and more time needed
to get to a correct solution [1]. The debug method should provide a
more clearly defined goal and require less time to get to a solution
[3]. However, the debug method can lead to a solution strategy
called “Tinkering”, where the learners change random elements of the
program and execute it to see what it does unit they find a solution.
This strategy can be a valid learning experience. However, it limits
the acquisition of a deeper understanding of the program [4], [8]. To
detect differences in an effort to get to a solution, we analysed the
time learners spent solving the programming problems during the
session. In our data log, each code change is timestamped, so we
can easily calculate how much time the learners needed to solve the
problem. To assess if the create method impeded learning by offering
too many options, we analyzed if the learners used programming
blocks which are not required for solving the problem they are
working on. To identify the level of ”tinkering” the learners use,
we calculated the ratio between the number of code executions and

2https://developers.google.com/blockly

the number of code edits. Frequent runs and minor edits have been
used by others to identify tinkering [4].

To quantify the learning effect, the students in both groups filled
out a small programming test with four programming questions.
The questions were multiple-choice, showing the learners a small
program and asking what it does. The questions only contained
programming concepts the learners had to use during the workshop
sessions. Literature suggests that teaching programming using the
code generation technique can lead to lower scores on a statements
knowledge test compared to using code completion strategies [1].
When working in a block-based programming environment like
Scratch, the code completion strategy is similar to the debugging
strategy. The completion strategy requires learners to add missing
elements to the code. The debugging strategy adds to this by also
requiring them to make changes to an existing code block.

IV. RESULTS

Our workshops resulted in a dataset with 363793 entries for the
create workshop and 203615 entries for the debug workshop. This
data includes a lot of information that was not relevant for this
paper. For example, when blocks in the workspace were moved or
when programs were opened or saved. We eliminated all unneeded
events from the dataset and only kept the events for when a code
change occurred, or the program was run. This resulted in a final
dataset with 57349 entries for the create group and 39516 for the
debug group. The create dataset contains 4948 run events and 52401
code change events while the debug dataset has 5682 and 33834 run
and code change events, respectively. Each event has a timestamp,
which we can use to identify if it came from a debug or create
workshop. Additionally, each event is tagged using a unique session
number. This session number is generated each time the environment
was started. Consequently, this number corresponds to one learner
during a specific workshop session, identifying all interactions that
a specific learner had with the environment during one workshop
session. First, we compared the time learners in each group needed
to solve the programming problems during the different sessions.
To get an accurate image of how much time the learners needed, we
converted the code edit log-items to a list of time differences between
the events. Since we only want to register active programming
time, we had to filter this list of time differences to exclude long
intervals without code edits. During these intervals, the learners were
performing some other aspect of the workshop, like building their
robot or connecting sensors. We chose a threshold of two minutes
for excluding time differences. If the difference between two log
events is greater than two minutes, we assume there was no active
programming between these events. Consequently, we exclude this
time difference from our total time spent programming. After filtering
these time differences, we added all time differences for each session
and created a normalized distribution of the number of sessions with
a specific duration. This distribution can be seen in Figure 3. In
each session in the create group, an average of 1974 seconds was
spent programming. In the debug group, this was only 1659 seconds.
Figure 3 seems to confirm that learners in the create group spend
more time programming than the ones in the debug group. Comparing
the distribution of the two groups using a z-test shows a significant
difference (p < 0.05).

The results in the paragraph above confirm that the learners in the
create group spend more time solving the programming challenges.
However, does the extra time spent mean that the learners were
distracted by code blocks they don’t need? To check this, we analysed
the number of times each type of block was added in both the create



Fig. 1: Graphical overview of the instructional design for the intervention. In the center, a high-level description of each session is given.
Above and below a list of programming exercises for the create and debug group are given respectively.

Fig. 2: Overview of the custom programming environment. (1) The
toolbox repository with all the blocks that can be used. (2) The
workspace area, this is where programs are constructed. (3) The
microcontroller board simulation. (4) A simulation of a riding robot
similar to the one they build during the sessions. (5) Controls for
saving, restoring and uploading the code to the microcontroller board

and debug workshops. As shown in figure 1, the three workshop
sessions have specific challenges. Consequently, only a subset of
the available code-blocks is required during each session. For each
workshop session, we identified the blocks the learners had to use
and grouped them together into a set. We labeled this set as the
undistracting block set. All other blocks available in the toolbox were
grouped together in the distracting set. This grouping resulted in two
sets of blocks for each workshop session (six sets in total). Most
of the blocks available to the learners were included in the analysis
however, some blocks were omitted since they were required in all
sessions. The blocks that were omitted were terminal blocks like a
number or a string. A list of the blocks that were analysed is shown
in table I. For each logged session in our database, we counted how
many blocks were in the respective distracting and undistracting sets.
By calculating the ratio between the number of items in the distracted
set and the sum of the items in the undistracting and distracting sets
we get a metric for how distracted the learners were during that

session. Using this metric, we calculated the distraction score for
each session in both the create and debug workshops. The create
group had an average distraction score of 16.6 percent, while the
debug group had an average distraction score of 11.8 percent. Figure
4 shows the distribution of the distraction scores over the different
sessions. Even though the means of the distribution would suggest
that the learners in the create group were more distracted than the
ones in the debug group, the difference between the distributions is
not statistically significant. This shows that when learners in both
have to add new blocks, they are equally distracted by other blocks
in the toolbox they don’t need. However, the number of blocks that
was added by the debug group is low compared to the create group.
The learners in the create group added a total of 8065 code blocks
to their programs, while the learners in the debug group only added
478 blocks to their programs. This difference is not unexpected since
the learners in the debug group get a significant part of the code at
the start of each exercise. Moreover, the learners in the create group
have to add all their code. With each block they add, they can be
distracted by other blocks in the toolbox. Consequently, since the
learners in the create group added more blocks they also added more
blocks they did not need compared to the debug group.

Alternative to adding new blocks, learners also have to change
values in existing blocks. If the learners in both the create and debug
groups were perfect students, we would expect the learners in the
create group to perform more value changes than the learners in the
debug group. When creating code from scratch the learners have
to add all the blocks themselves. These blocks have default values.
To get to a correct solution, the values for each added block have
to be changed. Moreover, the learners in the debug group get an
incorrect solution which requires only one code edit to get to a correct
solution. This code edit can either be the addition of a code block
or a value change. Investigating the log data reveals that the create
group performs an average of 3739 value changes per session while
the debug group performs an average of 3208 value changes per
session. Figure 5 shows the normalized distribution of the number
of sessions had a certain amount of value edits for both groups.
Comparing these distributions using a z-test reveals that there is no



Fig. 3: The normalized distribution of how many sessions spent a specific amount of time programming. The programming time is grouped
in bins of two minutes.

TABLE I: The blocks analysed in the distraction analysis.

Block name Function
DC-motor Sets the speed of a dc-motor on a channel
If-then-else A selection statement based on a condition
Count Indexed loop from start to end with a step
While Loop with stop condition
Dwenguino-lcd Prints a piece of text on a specified location on the

screen
Clear-lcd Removes all text from the lcd-screen
Delay Waits for a number of miliseconds
Sonar Measures the distance to the nearest object
Servo Sets a servo motor on a channel to an angle
Tone on pin Plays a tone on the buzzer
No tone on pin Stops the tone on the buzzer
LED on/off Turns a specific led on or off
LEDs on/off Turns all 8 LEDs of the microcontroller on or off in

one command

Fig. 4: The normalized distribution of the distraction score over all
sessions for both the create and debug groups.

significant difference between the distributions (p = 0.0954). This
shows that the number of extra value edits the learners in the create
group have to perform are offset by the value edits required by the
learners in the debug group for identifying the bug in the program
and fixing it. This unexpected number of code edits in the debug
group indicates that the learners in this group more often resort to
the strategy of “tinkering”.

To identify how much of the learners in each group used tinkering,
we extracted the number of code edits and code executions from each
session. To quantify the amount of tinkering, we calculated the ratio
between the number of runs and the number of code edits. A higher

Fig. 5: The normalized distribution of the number of sessions with a
specific number of value edits for both the create and debug group.

TABLE II: Scores on the programming test for the create and debug
groups. (The groups are of different size because some test result were
removed because they were incorrectly administered by the teacher.)

Metric Create (N = 83) Debug (N = 128)
Average score 1.99 1.63
p-value 0.029
t-statistic 2.198

amount of runs compared to code edits indicates more tinkering while
more code edits and fewer runs indicates less tinkering [4]. The create
group had an average tinkering ratio of 10.35 percent, while the
average tinkering ratio for the debug group was 18.34 percent. Figure
6 shows the distribution of the number of sessions that had a specific
tinkering ratio. Using a z-test to compare the distributions reveals a
significant difference between the groups (p < 0.001). Consequently,
the learners in the debug group seem to use more tinkering strategies
to solve the problems.

To assess if there is a difference in learning performance between
the two groups, all learners completed a test with four programming
questions after the workshop. The results of these tests, shown in
table II, reveal a significant difference between the two groups. The
learners in the create group score significantly higher than the ones
in the debug group. This shows that the learners in the create group
gained a better understanding of the coding concepts they used.



Fig. 6: The normalized distribution of the number of sessions with a
specific tinkering ratio for both the create and debug groups.

V. DISCUSSION AND CONCLUSIONS

Our research aimed to identify the advantages and disadvantages
of different methods for integrating programming into a robotics
workshop. Based on previous research, we selected two methods for
integrating programming as well as four criteria to assess our work-
shop. These criteria are time spent solving programming problems,
distraction by the open programming context, amount of tinkering,
and learning performance. We have confirmed that the create group
needs more time to solve the programming problems and adds
significantly more blocks to their programs [1]–[3]. Consequently,
since the learners in both groups are equally distracted by blocks
they don’t need, the create group is more distracted when counting
the absolute amount of distractions. Nevertheless, the debug group
scores significantly lower on our programming test. This is likely the
result of learners in the debug group resorting to the tinkering strategy
for solving problems. This is similar to what others have observed
when teaching programming to preservice teachers [15]. Based on
these results we recommend the create method when integrating pro-
gramming into an introductory primary physical computing workshop
for absolute beginners. The create method requires more time, which
results in the learners being distracted more often. However, the need
to create code from scratch requires them to get a better understanding
of how the different code blocks work, resulting in higher learning
performance. Additionally, the debug method facilitates the use of
the tinkering strategy which has been shown to result in a lower
understanding of programming concepts [8].

We have to point out that our results are valid for our specific
context. Our workshop was performed with learners who had no or
very limited prior experience with programming. These learners have
to acquire the factual and procedural knowledge of programming
during this first workshop. We can imagine that learners with a little
programming experience would perform better when presented with
the debug challenges. This knowledge would allow thew to solve
the debugging problems in a more targeted way since they have
more knowledge about the context. However, in our group the debug
exercises enable the students to avoid the acquisition of factual and
procedural knowledge by just trying to change blocks and see what
works without understanding what the blocks represent.

Our work brought together two techniques for teaching program-
ming in a physical computing context and quantified their differences
using programming log data. We linked these logging results to
scores on a programming test to get a better understanding of the
advantages and disadvantages of both integration methods leading

deeper insights into both methods. Future work should investigate
the value of other integration techniques for programming as well as
apply the techniques from this paper in other contexts to see if they
have different outcomes.

REFERENCES

[1] J. J. Van Merriënboer and M. B. De Croock, “Strategies for computer-
based programming instruction: Program completion vs. program gen-
eration,” Journal of Educational Computing Research, vol. 8, no. 3, pp.
365–394, 1992.

[2] D. W. Shaffer and M. Resnick, “” thick” authenticity: New media and
authentic learning,” Journal of interactive learning research, vol. 10,
no. 2, pp. 195–216, 1999.

[3] S. Garner, “A quantitative study of a software tool that supports a part-
complete solution method on learning outcomes,” Journal of Information
Technology Education: Research, vol. 8, no. 1, pp. 285–310, 2009.

[4] Z. Liu, R. Zhi, A. Hicks, and T. Barnes, “Understanding problem
solving behavior of 6–8 graders in a debugging game,” Computer Science
Education, vol. 27, no. 1, pp. 1–29, 2017.

[5] M. J. Lee, F. Bahmani, I. Kwan, J. LaFerte, P. Charters, A. Horvath,
F. Luor, J. Cao, C. Law, M. Beswetherick et al., “Principles of a
debugging-first puzzle game for computing education,” in Visual Lan-
guages and Human-Centric Computing (VL/HCC), 2014 IEEE Sympo-
sium on. IEEE, 2014, pp. 57–64.

[6] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns
of debugging among novice computer science students,” in Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in
computer science education, 2005, pp. 84–88.

[7] D. Klahr and S. M. Carver, “Cognitive objectives in a logo debugging
curriculum: Instruction, learning, and transfer,” Cognitive Psychology,
vol. 20, no. 3, pp. 362–404, 1988.

[8] L. Murphy, G. Lewandowski, R. McCauley, B. Simon, L. Thomas, and
C. Zander, “Debugging: the good, the bad, and the quirky–a qualitative
analysis of novices’ strategies,” ACM SIGCSE Bulletin, vol. 40, no. 1,
pp. 163–167, 2008.

[9] O. Vlaanderen, “Onderwijsdoelen basisonderwijs vlaanderen,”
1997, 1997 (accessed 2019-12-09). [Online]. Available: https:
//onderwijsdoelen.be/resultaten?intro=basisonderwijs

[10] ——, “Onderwijsbegroting,” 2019, 2019 (accessed 2019-12-09).
[Online]. Available: statistiekvlaanderen.be/nl/onderwijsbegroting

[11] B. Zhong, Q. Wang, and J. Chen, “The impact of social factors on
pair programming in a primary school,” Computers in Human Behavior,
vol. 64, pp. 423–431, 2016.

[12] M. Celepkolu and K. E. Boyer, “Thematic analysis of students’ reflec-
tions on pair programming in cs1,” in Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, 2018, pp. 771–
776.

[13] C. McDowell, B. Hanks, and L. Werner, “Experimenting with pair
programming in the classroom,” in Proceedings of the 8th annual
conference on Innovation and technology in computer science education,
2003, pp. 60–64.

[14] T. Bell, J. Alexander, I. Freeman, and M. Grimley, “Computer science
unplugged: School students doing real computing without computers,”
The New Zealand Journal of Applied Computing and Information
Technology, vol. 13, no. 1, pp. 20–29, 2009.

[15] C. Kim, J. Yuan, L. Vasconcelos, M. Shin, and R. B. Hill, “Debugging
during block-based programming,” Instructional Science, vol. 46, no. 5,
pp. 767–787, 2018.

https://onderwijsdoelen.be/resultaten?intro=basisonderwijs
https://onderwijsdoelen.be/resultaten?intro=basisonderwijs
statistiekvlaanderen.be/nl/onderwijsbegroting

	Introduction
	Research questions
	Method
	Experimental group
	Instructional design
	Metrics

	Results
	Discussion and Conclusions
	References

