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Abstract: In order to investigate the effect and appropriate dose of prebiotics, this study evaluated
the effect of two levels of xylooligosaccharides (XOS) in cats. Twenty-four healthy adult cats were
divided into three groups: no-XOS control diet with 1% cellulose; low XOS supplementation (LXOS)
with 0.04% XOS and 0.96% cellulose; and high XOS supplementation (HXOS) with 0.40% XOS
and 0.60% cellulose. Both XOS groups increased blood 3-hydroxybutyryl carnitine levels and
decreased hexadecanedioyl carnitine levels. Both XOS treatments displayed an increased bacterial
abundance of Blautia, Clostridium XI, and Collinsella and a decreased abundance of Megasphaera
and Bifidobacterium. LXOS groups increased fecal pH and bacterial abundance of Streptococcus and
Lactobacillus, decreased blood glutaryl carnitine concentration, and Catenibacterium abundance. HXOS
group showed a more distinct microbiome profile and higher species richness, and an increased
bacterial abundance of Subdoligranulum, Ruminococcaceae genus (unassigned genus), Erysipelotrichaceae
genus, and Lachnospiraceae. Correlations between bacterial abundances and blood and fecal parameters
were also observed. In conclusion, XOS could benefit feline gut health by altering microbiota; its effects
dependant on the dose. The higher-dose XOS increased bacterial populations that possibly promoted
intestinal fermentation, while the lower dose altered populations of carbohydrate-metabolic microbiota
and possibly modulated host metabolism. Low-dose prebiotics may become a trend in future studies.
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1. Introduction

Fermentation of prebiotics results in the production of short-chain fatty acids (SCFAs; acetate,
propionate, and butyrate), which are generally believed to be beneficial for the host [1]. Human studies
have demonstrated that prebiotics can potentially prevent a wide variety of conditions such as obesity,
allergy, and inflammatory diseases, amongst others [2–4]. Many studies have already investigated
different types of prebiotics and have demonstrated a variety of beneficial effects of those, including
the improvement of insulin sensitivity in dogs and horses (short-chain fructooligosaccharides) [5,6];
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the amelioration of the immune response in piglets (mannan oligosaccharide) [7]; and the better
performance in poultry (lactulose) [8].

Xylooligosaccharides (XOS) are polymers of the sugar xylose; they are produced from the xylan
fraction in plant fiber [9]. As a class of prebiotics, XOS has been demonstrated to exhibit a great
number of health benefits for humans and rodents [10], such as the improvement of bowel function
and mineral absorption, the regulation of intestinal microbiota, the reduction in colon cancer risk as
well as the enhancement of antioxidant capacity, anti-inflammatory and antimicrobial functions [11,12].
Furthermore, XOS has also been reported to be effective in regulating lipid metabolism, for e.g., reducing
the cholesterol and triglycerides in diabetic rats [13,14], whereas Sheu et al. noted an improvement in
blood glucose and serum lipids in patients with type 2 diabetes mellitus [15]. Studies in adult humans
show that the effective daily dose of XOS is only 1.4 g/day as compared to fructooligosaccharides and
galactooligosaccharides, which have a minimum effective dose of 10.0 g/day [16–18]. This makes it
possible to use lower doses of prebiotics so that side effects (e.g., excessive flatus and borborygmi) and
production costs could be reduced. Moreover, its prominent stability to acid and heat compared to
other indigestible polysaccharides makes it a promising supplement for pet food [19].

Despite a short colon and the lack of a functional caecum as evolutionary adaptations to a strictly
carnivorous diet, considerable microbial fermentation occurs in the hindgut of domestic cats [20].
Microbiota of domestic cats have been demonstrated to be capable of fermenting a broad range of
dietary fibers, including prebiotics [21]. The majority of the information on the benefit of fibers
or prebiotics is, however, extrapolated from human nutrition. Dietary and metabolic interspecies
differences should be considered, as domestic cats, which are obligate carnivores, rely on high protein
(HP)-containing animal tissues to meet their unique nutritional requirements and are metabolically
adapted to lower glucose utilization and higher protein metabolism [22,23]. In order to explore
the effect and appropriate dosage of XOS, this study was established to evaluate the effects of two
XOS supplementation levels in cats. The antioxidant status, fermentation pattern, metabolic profile,
and microbial composition were sequentially determined in 24 healthy spayed adult cats.

2. Results

During the trial, body weight and body condition did not differ among the three groups. All diets
were well tolerated and did not markedly affect food intake.

2.1. Fecal Parameters

The effect of dietary XOS supplementation on fecal parameters (fecal score, pH and fermentation
pattern) is summarised in Figure 1. Compared with the control group, the low XOS supplementation
(LXOS) group had significantly increased fecal pH. There was no significant effect on fecal parameters
between two periods, and no diet x period interaction was observed. Data without significant
differences or trends are summarised in Table S1.
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2.2. Blood Parameters

The effect of XOS supplementation on blood concentration of 3OH-C4, C5DC, and C16DC is
shown in Figure 2. Compared with the control group, both XOS groups significantly increased 3OH-C4
concentration and decreased C16DC concentration; the LXOS group had decreased C5DC concentration
in blood. No period effect and diet x period interaction was observed on blood parameters. There was
no statistical difference or trends in amino acids profiles (Table S1); data without significant differences
or trends in acylcarnitine profiles are summarised in Table S1.
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2.3. Microbiome Profile

A total of 367,082 reads were obtained from the fecal samples in the three groups, with 96,089 reads
from the control group, 128,427 from the LXOS group, and 142,566 from the high XOS supplementation
(HXOS) group. The species richness in HXOS group was significantly higher than that in the control
group; there were also trends in the HXOS group of an increased Shannon index and inverse Simpson
index (Table 1).

Table 1. Impact of XOS supplementation on diversity, richness, and evenness of the fecal microbiome.

Item. Control LXOS HXOS SEM p Value

Shannon index 1.94 1.91 2.23 0.11 0.077
Simpson index 0.78 0.758 0.838 0.03 0.185

Inverse Simpson index 4.86 5.05 6.49 0.583 0.061
Pielou’s evenness 0.499 0.463 0.536 0.023 0.271
Species richness 49.4 a 61.6 ab 64.8 b 4.41 0.022

a,b values within a row with different letters differ (p < 0.05). LXOS: low XOS supplementation group; HXOS: high
XOS supplementation group.

A heat map with a dimensional cluster dendrogram is presented in Figure 3. From the cluster
dendrogram, it is clear that XOS groups did not cluster, indicating a strong animal variability that
bigger than the possible differences induced by the dietary treatment. Nevertheless, cats fed with 0.4%
XOS seem to have a more distinct microbiome profile than cats fed with 0.04% XOS or the control
diet. Cats in the control and LXOS groups seemed to have a similar fecal microbiome profile, as they
clustered more together.
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The relative abundance of the OTUs (operational taxonomic units) is summarized in Table 2.
There were 16 OTUs with a significant difference in the fecal microbiome. Briefly, compared with
the control group, both of XOS groups significantly increased the abundance of the genera Blautia,
Clostridium XI, and Collinsella and decreased the abundance of Megasphaera and Bifidobacterium
(p < 0.05); LXOS group increased the abundance of Streptococcus, Lactobacillus, and decreased the
abundance of Catenibacterium (p < 0.05) while HXOS group increased the abundance of Ruminococcaceae
genus (an unassigned genus that belongs to the family Ruminococcaceae), Erysipelotrichaceae genus,
Subdoligranulum, and Lachnospiraceae genus (p < 0.05).
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Table 2. Relative abundance of the operational taxonomic units (OTUs).

Taxonomy Control LXOS HXOS p Value

Firmicutes
Bacilli; Lactobacillales; Streptococcaceae; Streptococcus 13.468 a 28.510 b 7.561 a <0.001
Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus 7.044 a 16.591 b 11.403 ab <0.001

Clostridia; Clostridiales; Ruminococcaceae; unclassified genus 1.523 a 0.871 a 4.522 b <0.001
Clostridia; Clostridiales; Lachnospiraceae; Blautia 0.396 a 1.077 b 1.870 c <0.001

Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; unclassified genus 1.495 a 2.193 a 4.294 b 0.001
Clostridia; Clostridiales; Ruminococcaceae; Subdoligranulum; 0.240 a 0.398 a 0.771 b 0.001

Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; Catenibacterium 1.669 b 0.587 a 1.178 ab 0.010
Clostridia; Clostridiales; Lachnospiraceae; Blautia 2.024 a 4.051 b 2.085 a 0.029
Clostridia; Clostridiales; Lachnospiraceae; Blautia 6.423 a 12.713 b 9.363 ab 0.038

Clostridia; Clostridiales; Lachnospiraceae; unclassified genus 0.127 a 0.399 ab 0.505 b 0.044
Negativicutes; Selenomonadales; Veillonellaceae; Megasphaera 1.337 b 0.790 a 0.819 a 0.045
Clostridia; Clostridiales; Peptostreptococcaceae; Clostridium XI 2.198 a 3.258 b 3.094 b 0.047

Actinobacteria
Actinobacteria; Coriobacteriales; Coriobacteriaceae; Collinsella 1.705 a 2.556 b 4.348 b <0.001

Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Bifidobacterium 0.506 b 0.177 a 0.241 a <0.001
Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Bifidobacterium 14.403 b 16.259 b 4.466 a 0.006
Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Bifidobacterium 19.854 b 5.829 a 7.224 a 0.011

a,b values within a row with different letters differ (p < 0.05).

To reveal the correlations between microbiota, intestinal fermentation and body metabolism,
a Spearman’s correlation analysis was performed, and the result is presented in Figure 4. Briefly,
Bifidobacterium (OTU 2 and 27) were positively correlated with butyric acid, isobutyrate, isovalerate,
and total branched-chain fatty acids (BCFA), negatively correlated with indol and C5:1; Lactobacillus
(OTU 1, 9 and 18) were positively correlated with butyric acid, indol, C2, C5:1, and Met, negatively
correlated with C4, C5:1, Fen, and Ala; Catenibacterium (OTU19) was positively correlated with Cit and
negatively correlated with C5:1; Blautia (OTU 3 and 12) were positively correlated with indol, butyric
acid, total SCFA, C5:1, and 3OH-C4; Ruminococcaceae genus (OTU 16 and 30) were positively correlated
with butyric acid, isobutyrate, isovalerate, ammonia, total BCFA Orn, Cit and 3OH-C4, negatively
correlated with phenol; Collinsella (OTU 7 and 10) were positively correlated with indol, acetic acid,
isobutyrate, isovalerate, total BCFA, Orn, Cit C0, C5:1 and 3OH-C4; Subdoligranulum (OTU23) was
positively correlated with indol, isobutyrate, isovalerate, total BCFA, C5:1 and 3OH-C4; Lachnospiraceae
genus (OTU 15 and 24) were positively correlated with indol, propionic acid, Orn, Fen, C0, C5:1 and
3OH-C4; Erysipelotrichaceae genus (OTU14) were positively correlated with Orn, Cit and 3OH-C4;
Streptococcus (OTU5) were positively correlated with C5DC; Clostridium XI (OTU4) were positively
correlated with indol, phenol, C5:1 and Fen, negatively correlated with butyric acid.
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3. Discussion

Many studies have investigated the effects of multiple types of prebiotics in cats,
such as fructooligosaccharides (FOS) and galactooligosaccharides, using dosage ranging from
0.5% to 6% [24–31]. However, the present study showed a different effect, depending on the
dose of xylooligosaccharides supplementation. Both XOS treatments influenced the fecal microbiota
populations, but the effect of the higher dose was mainly associated with promoting intestinal
fermentation, whereas the lower dose was mainly associated with enhancing carbohydrate metabolism.

3.1. Both XOS Treatments Influenced Intestinal Metabolism and Microbiome

In this study, both XOS supplemented groups showed a reduction in blood concentrations of
3OH-C4 and C16DC. The metabolite 3OH-C4 may play an important role in insulin resistance and type
2 diabetes mellitus, as shown in mice [32]. Findings in humans suggested that C16DC was deficient in
fibroblasts from patients lacking functional peroxisomes and normal in fibroblasts from patients with a
mitochondrial fatty acid oxidation defect [33]. Despite the lack of previous feline data, the present
study shows a potential for metabolic regulation in cats by XOS supplementation.

Both XOS groups displayed a lower abundance of Megasphaera and Bifidobacterium and a higher
abundance of genera Blautia, Clostridium XI, and Collinsella. The abundance of Bifidobacterium and
Megasphaera are often upregulated in humans or dogs with increased carbohydrate fermentation,
whereas the abundance of Clostridium XI are often downregulated in these cases [29,33,34]. Findings
in this study showed an opposite shift of these bacteria compared to studies in humans or dogs.
However, the role of a single bacterium might differ among the gastrointestinal microenvironments
from various hosts. For instance, Bifidobacterium has been suggested not to be so important for cat
health as for dogs or humans [35]. Blautia belongs to the family of Lachnospiraceae, and herbivores
commonly harbor a higher abundance of Lachnospiraceae than carnivores [36]. On the other hand,
studies demonstrated that Collinsella could modify host bile acids, alter intestinal cholesterol absorption,
decrease glycogenesis, and increase triglyceride synthesis [37,38]. An increased Collinsella abundance
in this study may demonstrate a likely association between XOS supplementation and lipid metabolism.
Notably, positive correlations between Collinsella and several metabolites and fermentation products
were also shown in the present study, indicating a potential for metabolic regulation by microbiota
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induced by prebiotic supplementation. These results suggest that XOS supplementation can influence
the environment and ecosystem in the feline gut, but future studies are warranted to unravel underlying
mechanisms and specify potential implications.

3.2. High XOS Supplementation could Promote Intestinal Fermentation

HXOS group had higher species richness and a more distinct microbiome profile than LXOS
or the control group. Species richness promotes stability of microbiota upon increased dietary fiber
intake [39], which is a positive effect of 0.4% XOS supplementation. Additionally, HXOS group
increased the abundance of unclassified Ruminococcaceae genus, Erysipelotrichaceae, and Subdoligranulum.
Increasing abundance of Erysipelotrichaceae was associated with diet-induced obesity by a high-fat
diet in mice [40,41], yet its fluctuation by prebiotics was previously not yet investigated. The cats in
the present study were lean both at the start and end of the study. Subdoligranulum belongs to the
family Ruminococcaceae, which are common bacteria in the gut that help the host degrade complex
carbohydrate-like prebiotics [42]. Moreover, Subdoligranulum and Ruminococcaceae showed positive
correlations with SCFAs and BCFAs, emphasizing the interaction between XOS, microbiota shifts,
and intestinal fermentation. These results suggested that a 0.4% XOS supplementation could alter
bacterial populations that possibly promote intestinal fermentation.

3.3. Low XOS Supplementation could Enhance Carbohydrate Metabolism

In addition to the reduction of 3OH-C4 and C16DC, the LXOS group also decreased C5DC
concentration in blood, suggesting that dietary 0.04% XOS supplementation could affect host metabolism
in cats [43]. Alterations in these parameters implied that the lower dose XOS might influence
carbohydrate metabolism [32,33]. However, very few studies revealed a relationship between C5DC
and any metabolic factor in cats and humans [44]. LXOS group also increased the abundance of
Streptococcus and Lactobacillus, decreased the abundance of Catenibacterium, suggesting a beneficial
effect on the regulation of intestinal ecosystem and metabolism, as Lactobacillus has been highlighted as
a beneficial gut bacterium [45,46], and Streptococcus plays a prominent role in the primary carbohydrate
metabolism [47]. Catenibacterium is a Gram-positive bacterium from the family Erysipelotrichidae,
which has been associated with metabolic disorders in other hosts [48]. Additionally, correlations
were observed between C5:1 concentration and Lactobacillus and Catenibacterium as well as between
C5DC concentration and Streptococcus, indicating the potential connection between XOS, microbiota,
and metabolism. These results suggested that a 0.04% XOS supplementation could alter microbiota
associated with carbohydrate metabolism and modulate host metabolism.

3.4. Could a Low Dose be Better?

XOS had no negative effect on the fecal scores at both doses in this study. This is in contrast
with some other types of prebiotics that sometimes show an increased fecal moisture content or soft
feces [24–26]. The softer feces could indicate a too intensive fermentation [30], but the present study
showed that even the high dose (0.4%) is safe for use in practice. Often, a decreased fecal pH is
expected with prebiotic supplementation due to the increased production of SCFAs and lactic acid
by carbohydrate fermentation [24]. Interestingly, an increased pH was observed in the LXOS group.
However, there was no significant difference when supplementing XOS at 0.4%, suggesting that the
expected pH reduction may only occur at higher doses.

For the first time, this feline study observed a dose-based variation of prebiotic effects and
also showed significant differences with a dose as low as 0.04%. Increased concentrations (6–9%) of
fermentable fibers have led to diarrhea [49,50], while reduced concentrations (<1%) of fermentable fibers
demonstrated positive effects on modulation of microbial community and body metabolism [51,52].
Notably, supplementation of 0.4% XOS was defined as a ‘high dose’ in this research, whereas
this dosage is substantially lower than in other prebiotic studies. In human clinical trials, health
benefits of XOS have typically been observed at 1–4 g/d, a lower dose than required for prebiotics
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such as fructooligosaccharides and inulin [53]. These results have raised a surprising question and
hypothesis—could a low dose be better? And what is the minimal dose required to have prebiotic
effects without having side-effects in terms of bloating, soft feces, or other effects? This is warranted to
be explored in the future.

4. Materials and Methods

4.1. Animals and Diets

This study was approved by the Ethical Committee of the Faculty of Veterinary Medicine, Ghent
University, Belgium (EC 2015/72), and was in accordance with institutional and national guidelines
for the care and use of laboratory animals. Twenty-four adult domestic shorthair cats (8 males and
16 females, all neutered) with a mean age of 8.3 (standard deviation: ±2.7) years, body weight (BW) of
3.5 (standard deviation: ±0.8) kg, and body condition score (BCS, using a 9-point scale) of 4.8 (standard
deviation: ±0.8) were involved in this study. After an adaptation period of three weeks, the cats were
equally divided into three groups (two treatment diets and one control diet) considering an equal
division of age, gender, and body weight (eight cats per group).

In order to maximize the effects of XOS, a 36% wheat-free extruded non-commercial diet without
additional soluble fiber sources, based on dehydrated poultry meat and corn, was manufactured
(ATM Petfood Co., Longué-Jumelles, France). Cellulose and/or XOS 35P (Longlive Biotechnology Ltd.,
Dezhou, China) were included in order to obtain three different isocaloric and isofibrous diets: LXOS,
with a low concentration of XOS (0.04% XOS and 0.96% cellulose); HXOS, high in XOS (0.40% XOS and
0.60% cellulose) and control, XOS free diet with 1% of cellulose. The dietary ingredients and nutrient
composition are depicted in Table 3.

Table 3. Ingredients and macronutrient composition of control and experimental diets.

Ingredient (%) Control LXOS HXOS

Corn 39.11 39.11 39.11
Dehydrated poultry meat 19.80 19.80 19.80

Corn gluten meal 9.90 9.90 9.90
Poultry Fat 6.93 6.93 6.93

Rice 4.95 4.95 4.95
Soy 4.95 4.95 4.95

Hydrolyzed dehydrated poultry meat 4.95 4.95 4.95
Premix 2.48 2.48 2.48

Fishmeal 2.23 2.23 2.23
Liquid aroma 1.98 1.98 1.98

Yeast 1.24 1.24 1.24
Aroma powder 0.50 0.50 0.50

Cellulose 1.00 0.96 0.60
XOS 0.00 0.040 0.40

Analysis on DM basis (%) Control LXOS HXOS

Crude protein 33.90 32.89 36.22
Crude fat 11.49 11.56 12.14
Crude ash 6.80 6.26 5.90

Crude fiber 1.57 1.42 1.47
Total dietary fiber 10.50 10.93 11.51

Nitrogen free extract 46.24 47.87 44.27

All cats were initially adapted to the control diet (1% cellulose) for three weeks and were fed
individually once a day (at 8:00 AM). The amounts of food were calculated according to their individual
maintenance energy requirement (MER) by using the MER for adult spayed cats (313.6 kJ/kg 0.67) as
a starting point and adapted until a stable body weight was reached according to weekly weighing



Molecules 2020, 25, 5030 9 of 14

and performing BCS of the cats [54]. Freshwater was continuously provided by automatic drinking
fountains and bowls; both were refreshed daily. After the adaptation period, the cats were equally
distributed in three treatment groups (n = 8) and fed once a day their assigned diet according to their
adjusted MER during a period of four weeks. The trial was carried out in two periods (12 cats each
period), considering an equal distribution of the different treatment groups over the two periods.

4.2. Sample Collection

In the last week of the test period, samples were collected. Before feeding, 8 mL of blood was
aseptically drawn from the jugular vein. Immediately after collection, blood samples were transferred
to Vacutainer® tubes (BD Inc., Franklin Lakes, NJ, USA) containing a serum clot activator and lithium
heparin. Serum and plasma were separated by centrifugation (3722× g for 5 min) and frozen (−20 ◦C).
After blood collection, cats were individually housed with an empty litter box until defecation. To train
the cats to use an empty litter box, litter boxes with gradually decreased amounts of litter were provided
during the adaptation period. Fresh fecal samples were collected within 15 min after defecation.
The samples were scored for fecal consistency (1 = watery liquid that can be poured; 2 = soft, unformed
stool that assumes the shape of the recipient; 3 = soft, formed, moist stool; 4 = hard, formed, dry stool;
5 = hard, dry), fecal pH was measured with a portable pH meter (Hanna Instruments Ltd., Temse,
Belgium) and samples were immediately frozen thereafter and stored at −20 ◦C until further analysis
for fermentation markers and microbiome.

4.3. Analytical Methods

Tested diets were subjected to proximate and total dietary fiber analysis (Table 1). Dry matter
(DM) was determined by drying to a constant weight at 103 ◦C, crude protein by calculating from
Kjeldahl nitrogen (ISO 5983-1, 2005); crude fat, by the Soxhlet method (ISO 1443, 1973); crude fiber,
by acid-alkali digestion (ISO 5498, 1981) and crude ash by combustion at 550 ◦C. Nitrogen-free extract
was calculated by deducting crude protein, crude fat, crude fiber, and crude ash on a DM basis from 100.
Total dietary fiber was determined by a commercial enzymatic digestion test kit (Sigma-Aldrich Co.,
St. Louis, MO, USA) and corrected for protein and ash.

Fecal samples were analyzed for SCFAs, branched-chain fatty acids (BCFAs), ammonia, indole
p-cresol, phenol, and microbiota. For the analysis of SCFA and BCFA, samples were thawed, and 1 g of
fecal material was transferred into a centrifuge tube together with 5 mL of water/phosphoric acid/formic
acid (550:10:1, v:v:v). Samples were shaken manually before centrifugation (15 min at 22,000 g and at
4 ◦C, Beckman J2-HS, Palo Alto, CA, USA), after which the supernatant was filtered through glass
wool prior to GC analysis according to Andersen et al., (2014) [54]. Fecal samples for indole, phenol,
and p-cresol analysis (1 g) were ground, homogenized, and spiked with 100 µl of internal standard
(100 µg/mL 5-methylindole). Extraction was performed by adding 15 mL of hexane followed by 10 min
of ultrasonic vibration, 10 min of rotation (130 tpm), and further ultrasonic vibration for 10 min. After
clarification at 4 ◦C, the supernatant was decanted, and the fecal matter was extracted a second time
with 15 mL of hexane and subsequent ultrasonic vibration and rotation. Supernatants were pooled and
centrifuged at 14,000 g for 10 min at 4 ◦C, and 200 µL of this combined supernatant was transferred to
a GC vial for analysis. All chromatographic analyses were performed with a trace gas chromatograph
coupled to a Polaris Q quadrupole ion trap mass spectrometer and a Finnigan MAT A200S autosampler
(Thermo-Finnigan, Austin, TX, USA) according to Rochus et al. (2014) [20]. Ammonia nitrogen was
analyzed by steam distillation according to standard methods (4500-NH3 B; APHA, 1992).

Blood was analyzed for amino acid profiles and acylcarnitines profiles. A single 3.2 mm dried
blood spot (equivalent to 3.1 mL of blood) was placed in a polypropylene microtiter plate (Corning).
Methanolic internal standard solution (100 mL) was added either manually or with a Labsystems
Multi-drop Dispenser. The concentrations of the deuterium-labeled internal standards per litter of
methanol were described by Zytkovicz et al. (2001) [55]. The microtiter plate was gently shaken
during the 20-min extraction of the amino acid and acylcarnitine markers. The methanol extract was
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then manually transferred to a second polypropylene microtiter plate and dried by a hot air blower.
Butanol-HCl (70 mL) was manually placed in each sample well, and the microtiter plate covered with a
thin Teflon sheet under a heavy weight and placed in 65 ◦C forced air oven for 15 min. After the plate
was removed from the oven, the hot air blower removed the butanol-HCl. The butanol-derivatized
samples were reconstituted with 100 mL of acetonitrile and water (80:20 v:v), and each plate was
covered with aluminum foil. The samples were then ready for MS/MS analysis, as described in [55].

For microbiota determination, fecal samples were homogenized, and total bacterial DNA was
extracted according to Becker et al. (2014) [56]. Twenty-five grams (wet weight) of each thawed fecal
sample was placed separately in sterile stomacher bags and homogenized in 225 mL peptone-buffered
saline (PBS) (0.1% w/v bacteriological peptone, 0.85% w/v NaCl). The sludgy homogenate was filtered
on a Büchner funnel to discard large particles such as hair and bones and subsequently divided into
1.5 mL aliquots, which were stored at −80 ◦C. The protocol of Vanhoutte et al. (2004) was used to extract
total bacterial DNA from the fecal samples [57]. DNA size and integrity were assessed on 1% agarose
electrophoresis gels stained with ethidium bromide. DNA concentration and purity were determined
by spectrophotometric measurement at 234 nm, 260 nm, and 280 nm. Subsequently, DNA samples were
sent to the company LGC Genomics (Teddington, UK) for library preparation, sequencing (Illumina
Miseq), and bioinformatic analysis. 16S rRNA gene sequences were obtained from the SILVA database
(Max Planck Institute for Marine Microbiology and Jacobs University, Bremen, Germany), and analysis
of bioinformation was processed as described by Camarinha-Silva et al. (2014) [58].

4.4. Statistical Analysis

The statistical analysis was conducted in R version 4.0.2. Significance was set at α ≤ 0.05, and a
p-value ≤ 0.1 was considered a trend. Data are reported as median and range. To assess the effect of
diet, a linear model was used with diet as an independent variable and the various fecal and blood
parameters as dependent variables. The significance of the dependent variable was assessed with a
likelihood ratio test. When significant, a Tukey Honest Significant Differences test was conducted as a
post-hoc test.

For the microbiome data, Shannon and (inverse) Simpson indexes, Pielou’s evenness, and species
richness were analyzed for microbial diversity. Significant differences in bacterial abundance were
evaluated using the analysis of similarities (ANOSIM). All microbiome data evaluations were performed
by the online platform MicrobiomeAnalyst (McGill University, Montreal, QC, Canada). Additionally,
using SPSS v24.0 software, spearman correlations coefficients were calculated between the fecal
microbiome and fecal fermentation, plasma amino acids, and acylcarnitine profiles. The p-values were
corrected with the false discovery rate method.

5. Conclusions

This study investigated the effect of two doses of XOS supplementation in healthy adult cats.
The major finding was that both two levels of XOS affected the fecal microbiome in cats. Surprisingly,
this study demonstrated a different effect, depending on the supplemented dose. The impact of the
lower-dose XOS was mainly associated with carbohydrate metabolism, while the higher dose was
mainly associated with intestinal fermentation. These findings indicated that supplementation XOS
could benefit the gut health of cats by influencing microbiota and intestinal metabolism, while its
different effects depend on the dosage. Future research is needed to further explore the association
between the effects and doses of the supplementation of XOS as well as other prebiotics. Moreover,
significant effects were observed even with a very low dose of XOS, pointing towards more research
on the low dosage of prebiotics in the future.

Supplementary Materials: The following are available online, Table S1: Supplementary data.
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