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Abstract: Skew-symmetric distributions are a popular family of flexible distributions that
conveniently model non-normal features such as skewness, kurtosis and multimodality.
Unfortunately, their frequentist inference poses several difficulties, which may be adequately
addressed by means of a Bayesian approach. This paper reviews the main prior distributions proposed
for the parameters of skew-symmetric distributions, with special emphasis on the skew-normal and
the skew- t distributions which are the most prominent skew-symmetric models. The paper focuses
on the univariate case in the absence of covariates, but more general models are also discussed.
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1. Introduction

The need to model skewed data led to the development of many skewed distributions which are
obtained by adding to a symmetric distribution a parameter that controls skewness [1]. Arguably, the
best known example is the skew-normal distribution introduced by Azzalini (1985) [2]. Its probability
density function (pdf) is

sn(x; µ, σ, λ) =
2
σ

φ

(
x− µ

σ

)
Φ
(

λ
x− µ

σ

)
, x ∈ R, (1)

where µ ∈ R is the location parameter, σ ∈ R+ the scale parameter, both inherited from the standard
normal distribution with pdf denoted by φ and (cumulative distribution function) cdf Φ , and λ ∈ R
is called the skewness parameter given that density (1) is asymmetric for λ 6= 0 and reduces to the
standard normal pdf for λ = 0. Several extensions and generalizations followed, see [3], a very general
and highly popular being the skew-symmetric distributions of Wang et al. (2004) [4] with pdf
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where f is the symmetric density to be skewed and Π : R×R→ [0, 1] is a so-called skewing function
satisfying Π(z, λ) + Π(−z, λ) = 1 ∀z, λ ∈ R and Π(z, 0) = 1/2 ∀z ∈ R . The most widely used
subfamily of skew-symmetric distributions has densities of the form

s f ;G(x; µ, σ, λ) =
2
σ

f
(

x− µ

σ

)
G
(

λ
x− µ

σ

)
, x ∈ R, (2)

where G is any symmetric, univariate, absolutely continuous cumulative distribution function. In
(2), µ ∈ R is a location, σ ∈ R+ a scale and λ ∈ R a skewness parameter. The function G might be
replaced by a function w (·) satisfying 0 ≤ w (−x) = 1− w (x) ≤ 1, as done in [4,5]. Different skew
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models might then be obtained by different choices for f and G , as for example the pdf and the cdf of
the power exponential distribution [6], the Student t distribution [5] and the logistic distribution [7].

The skew-normal distribution admits several stochastic representations, of which a very simple is
given as follows [8]: let U and V be independent, standard normal variables, then

Zλ =
λ√

1 + λ2
|U|+ 1√

1 + λ2
V (3)

has the standard skew-normal distribution SN(λ) = SN (0, 1, λ) . This representation models
departures from normality, allows for simple generation of random numbers and the calculation
of odd moments. Despite its numerous appealing probabilistic properties [3], the skew-normal
distribution suffers from serious inferential problems, as remarked already by Azzalini (1985). In the
first place, the method of moments might lead to complex estimates of the parameters. In the second
place, when µ = 0, σ = 1 and all observations are positive (negative) the likelihood function will be
monotonically increasing (decreasing) in λ , thus making the maximum likelihood estimate (MLE)
of λ (minus) infinite. In the third place, the MLE is quite unstable even in the presence of negative
and positive observations. In the fourth place, skew-normal data offer little help in discriminating
between different values of the shape parameter λ : very different values of λ might correspond to
very similar skew-normal densities. In the fifth place, the sampling distribution of the MLE does not
allow for analytically tractable standard errors and confidence intervals. In the sixth place, if all three
parameters are assumed to be unknown, the profile likelihood function for λ has a stationary point
at λ = 0, regardless of the observed sample, and the Fisher information matrix is singular when λ

approaches zero.
The latter problem, also known as the singularity problem, is very serious and has motivated an

active line of research both for multivariate and semiparametric generalizations of the skew-normal
distribution. It has been discussed in various papers such as [9–15]. Different parameterizations have
been proposed by, among others, [2,11,13,16]. While most authors were pointing at some special status
for the normal distribution as symmetric base distribution, Ref. [12] showed that this singularity
can occur for very general symmetric densities f and provided a full characterization, in a general
multivariate context, of the singularity problem, showing that it is due to unfortunate mismatches
between the symmetric density f and the skewing function Π(·, ·) . It is to be noted that in the context
of models (2) singularity occurs only when f is normal, irrespective of the choice of function G .
However, even the proposed solutions of reparameterization do not remove all problems as remarked
by Azzalini and Capitanio (1999) [9]: “there are cases where the likelihood shape and the MLE are problematic.
We are not referring here to difficulties with numerical maximization, but to the intrinsic properties of the
likelihood function, not removable by change of parameterization. In case of this sort, the behaviour of the MLE
appears quite unsatisfactory, and an alternative estimation method is called for”.

These difficulties arise from the shape of the likelihood function, which can be modified by
appropriate weighting functions [17]. The most natural and best known approach to weight the
likelihood function is the Bayesian one, where the prior distribution plays the role of the weight
function. The Bayesian approach might adequately address both point estimation and hypothesis
testing of the skewness parameter λ . Most papers in this area focused on objective priors for the
skew-normal distribution, whereas only a few of them dealt with its multivariate or semiparametric
generalizations. Bayesian inference and prior elicitation of λ for skew-symmetric distributions are
challenging since λ not only controls symmetry but also spread, modes and tail behaviour. This paper
is not meant to be a comprehensive review of this very active research topic, but rather a handy source
for interested readers to the Bayesian analysis of skew-symmetric distributions. The paper is structured
as follows. Section 2 recalls some basic concepts regarding the default choices for the prior distribution.
Sections 3 and 4 review the prior distributions for the parameters indexing the skew-normal and
some other skew-symmetric models, respectively, while Section 5 reviews some of the literature on
generalizations of the univariate skew-symmetric model. Final comments are provided in Section 6.
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2. Default Prior Choices in Bayesian Statistics

The Bayesian approach to quantify uncertainty in statistical inference can be broken down into
three steps [18]. The first step consists in choosing a joint probability distribution for observable and
unobservable quantities, consistently with the available knowledge about the underlying scientific
problem and the data collection process. The second step is to condition on the observed data, which
is carried out by means of several computational techniques. The third step is assessing the model’s
fit and interpreting the implications of the resulting posterior distribution. In this section we focus
on the first step and review the most common default choices for the prior distribution. We use the
following notation in the sequel: θ is our parameter of interest, π(θ) is the prior distribution, π(θ|t) is
the posterior distribution given data information t , p(t|θ) is the data likelihood, p(t, θ) = p(t|θ)π(θ)

is the joint distribution of t and θ , and p(t) is the marginal distribution of t . With this notation in
hand, we of course have that the posterior equals

π(θ|t) = π(θ)p(t|θ)
p(t)

.

2.1. Jeffreys Priors

In Bayesian analysis there are situations in which the available prior information is too vague to be
formalized into a probability distribution, too controversial to be acceptable in scientific communities
or too complicated to allow for a reliable statistical analysis. Hence the need for priors with minimal
effect on the posterior distribution, so that “the chosen prior would let the data speak for themselves”
[19]. Reference analysis aims at an “objective” Bayesian solution to statistical inference in the same
way as conventional statistical methods, where solutions only depend on model assumptions and
observed data.

One of the earliest non-informative (objective) priors is the uniform prior for the Binomial
proportion [20,21]. Unfortunately, this prior suffers from its lack of invariance under one-to-one
reparameterization. Jeffreys’ prior is a non-informative prior which is invariant under one-to-one
reparameterization and is proportional to the positive square root of the Fisher information associated
with the parameter of interest. For regular models where asymptotic normality holds, the Jeffreys prior
enjoys some optimality properties in the absence of nuisance parameters, but suffers from serious
difficulties in the presence of nuisance parameters. As a first example, in the Neyman–Scott problem it
leads to a strong inconsistency in Bayes estimation of the error variance [22]. As a second example,
when estimating the product of two independent normal means, a circular symmetric prior was found
to be superior to Jeffreys’ prior [23]. As a third example, Jeffreys himself supported the use of another
prior for location-scale models.

2.2. Reference Priors

Intuitively, a reference prior for some real-valued parameter θ is a prior of the form π(θ) =

π(θ|T,P) which maximizes the missing information about θ within the class P of prior distributions
compatible with the available prior knowledge T [19]. More formally, let D be a set of observations,
generated by some random mechanism p(D|θ) that only depends on a real-valued parameter θ ∈ Θ .
Furthermore, let t = t(D) ∈ T be any sufficient statistic (which may be the complete data set D ). In
Shannon’s general information theory the amount of information Iθ [T, π(θ)] , which may be expected
to be provided by D or equivalently by t(D) about θ , is

Iθ [T, π(θ)] =
∫
T

∫
Θ

p(t, θ) log
p(t, θ)

p(t)π(θ)
dθdt = Et

[∫
Θ

π(θ|t) log
π(θ|t)
π(θ)

dθ

]
, (4)

which is the expected Kullback–Leibler divergence of the prior from the posterior (here Et indicates
that the expectation is taken on the t -part). The functional Iθ [T, π(θ)] is concave, non-negative
and invariant under one-to-one transformations of θ . Lindley (1956) [24] and Bernardo (1979) [19]
defined the reference prior as the prior maximizing (4). There are some situations where we need the
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asymptotic maximization of the above expectation, since for a fixed n , its maximization might lead
to a discrete prior with finitely many jumps, which is hardly compatible with the concept of diffuse
prior [25]. Ref. [19] proved that, in the absence of any nuisance parameter, Jeffreys’ prior yields the
necessary maximization.

2.3. Matching Priors

Matching priors allow for posterior probability statements which have an interpretation as
confidence statements in the sampling model. Matching priors aim at achieving a compromise between
Bayesian and frequentist inference based on some order of approximation, thus providing default
priors for routine use in Bayesian inference and possibly more palatable to frequentist statisticians.
The concept of matching prior appears to have been proposed first by Lindley (1958) [26] and several
matching priors have been proposed since, such as for example quantile matching priors, matching
priors for distribution functions, highest probability density matching priors and matching priors
associated with likelihood ratio statistics [27].

In this subsection we illustrate the approach to matching priors introduced by Welch and Peers in
the seminal paper [28]. Suppose that Y1, · · · , Yn are i.i.d. random variables with pdf f (Y|θ) , where θ

is real-valued. In addition, assume all the regularity conditions which allow to expand the posterior
around the MLE θ̂n . Furthermore, for 0 < α < 1, let θπ

1−α(Y1, · · · , Yn) ≡ θπ
1−α denote the (1− α) -th

asymptotic posterior quantile of θ based on the prior π , that is

Pπ [θ ≤ θπ
1−α|Y1, · · · , Yn] = 1− α + Op(n−r)

for some r > 0. If r = 1, π is called a first-order matching prior and if r = 3/2 the prior π will be
a second-order probability matching prior. For instance, the Jeffreys prior is a first-order probability
matching prior in the absence of nuisance parameters. We illustrate this appealing property with
an example from [29]. Suppose that Y1, · · · , Yn are i.i.d. with pdf N(θ, 1) and that π(θ) = 1 with
−∞ < θ < ∞ . Then the posterior density π(θ|Y1, · · · , Yn) stems from the N(Yn, n−1) . By considering
z1−α as the 100(1− α)% quantile of the N(0, 1) distribution, we have

P[
√

n(θ − Ȳn) ≤ z1−α|Y1, · · · , Yn] = 1− α = P[
√

n(Ȳn − θ) ≥ −z1−α|θ].

Therefore, the one-sided credible interval Ȳn + z1−α/
√

n for θ has exact frequentist coverage
probability (1 − α) . This exact matching does not always exist. However, if Y1, · · · , Yn are i.i.d.
random variables then

θ̂n|θ
a∼ N

(
θ, I−1/n

)
where I is the expected Fisher information and a∼ means asymptotically equivalent in distribution.
Using the delta method we have

g(θ̂n)|θ
a∼ N

[
g(θ), (g′(θ))2I−1/n

]
.

Therefore, if g′(θ) = I1/2(θ) , then g(θ) =
∫

θ I
1/2(t)dt and

√
n
[
g(θ̂n)− g(θ)

]∣∣ θ is asymptotically
N(0, 1) . In the absence of nuisance parameters, a first-order matching prior for θ is a solution of the
differential equation

d
dθ

[
π(θ)I−1/2(θ)

]
= 0,

so that the Jeffreys prior is the unique first-order matching prior, but it does not always hold for the
second-order matching probability [27].

To obtain the second-order matching prior we need an asymptotic expansion of the posterior
distribution function up to O(n−1) and the differential equation given by Mukerjee and Dey (1993) [30]
and Mukerjee and Ghosh (1997) [31], that is

1
3

d
dθ

[
(π(θ)I−2(θ)g3(θ)

]
+

d2

dθ2

[
(π(θ)I−1(θ)

]
= 0 (5)
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where g3(θ) = −E
[

d3 log f (Y1|θ)
dθ3

∣∣∣ θ
]

. Jeffreys’ prior is the unique second-order matching prior if it

satisfies (5), as it happens for the location-scale families: for πJ(θ) = I1/2(θ) , (5) converts to

1
3

d
dθ

[I−3/2(θ)g3(θ)] +
d2

dθ2 I
−1/2(θ) = 0

which requires
1
3
I−3/2(θ)g3(θ) +

d
dθ

I−1/2(θ)

to be constant for all values of θ . We refer the reader to [29] for more details on cases where, in the
absence of nuisance parameters, there is not a second-order probability matching prior, and where,
in the presence of nuisance parameters, there are first- and second-order matching priors and where
there is not a second-order matching prior.

3. Prior Choices for the Skew-Normal Distribution

This section reviews the prior distributions proposed for Bayesian inference on the parameters of
the skew-normal distribution: the reference prior by Liseo and Loperfido (2006) [32], the matching
prior by Cabras et al. (2012) [33] and the informative prior by Canale and Scarpa (2013) [34].

3.1. The Reference Prior

Liseo and Loperfido (2006) [32] first proposed a default prior for the shape parameter of the
location-scale-free (standard) skew-normal model sn(z; λ) = 2φ(z)Φ(λz), z ∈ R . The associated
Jeffreys prior is

πJ(λ) ∝ I1/2(λ) where I(λ) =
∫ ∞

−∞
2z2φ(z)

φ2(λz)
Φ(λz)

dz.

This prior is proper, symmetric about λ = 0, decreasing in |λ| and its tails are of order O(λ−3/2) .
This prior is therefore suitable for testing the hypothesis of symmetry, which might be formalized in
the skew-normal framework as H0 : λ = 0 versus H1 : λ 6= 0. The same authors investigated the
frequentist performances of this prior with simulated data, concluding that the Bayesian approach
might be beneficial in easing some inferential difficulties of the frequentist approach for the standard
skew-normal distribution.

Ref. [32] also considered a default Bayes analysis for the general scalar case (1), where λ

is the parameter of interest and the location parameter µ and the scale parameter σ are the
nuisance parameters. They are assumed to be independent of λ and to have a normal-inverse
gamma distribution:

µ|σ ∼ N
(

µ0,
σ2

τ

)
with µ0 ∈ R, τ > 0, σ−2 ∼ Gamma(α, β)

where Gamma(α, β) is a Gamma distribution with parameters α, β > 0. The default prior
π(µ, σ) ∝ σ−1 is a limiting case and is the conditional reference prior for (µ, σ) given
λ . These assumptions allow for a closed-form expression of the marginal likelihood for λ .
The proposed method has been successfully applied to the infamous “frontier” dataset (see
http://azzalini.stat.unipd.it/SN/frontier.dat), where the maximum likelihood estimate of the
skewness parameter λ is infinite.

Bayes and Branco (2007) [35] highlighted the advantages of the Bayesian approach and proposed
two priors. They considered the stochastic representation (3) of the skew-normal distribution and,
following the Bayes–Laplace rule, chose the uniform distribution on the interval [−1, 1] as a prior for
λ/
√

1− λ2 , thus leading to a t(0, 0.5, 2) distribution as prior for λ , where t(a, b, c) denotes the Student
t distribution centered in a ∈ R with scale b > 0 and c > 0 degrees of freedom, which is a non-vague
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and non-subjective prior. They further proposed the tractable approximation t(0, π2/4, 1/2) for the
Jeffreys prior from [32]. They motivated it by the following approximation (see [36]):

1
π

φ(x)√
Φ(x)(1−Φ(x))

≈ 1√
2π(π/2)

exp
(
−2x2

π2

)
.

3.2. The Matching Prior

Cabras et al. (2012) [33] proposed another approach towards Bayesian inference about the shape
parameter of the skew-normal distribution. It is based on a pseudo-likelihood function and a matching
prior distribution for the shape parameter when location and scale parameters are unknown. First,
they derive the marginal likelihood

Lm(λ) =
∫ ∞

0

∫ +∞

−∞

L(λ, η)

σ
dµdσ, (6)

where L(λ, η) = ∏n
i=1 sn(yi; η, λ) is the skew-normal likelihood function, η = (µ, σ) is the nuisance

parameter and σ−1 is the right-invariant Haar measure on the location-scale group of transformations,
whose action on the parameter space leaves λ unchanged. By considering the fact that the marginal
likelihood (6) can be approximated by the modified profile likelihood Lmp(λ) of [37] since Lm(λ) =

Lmp(λ)(1 + O(n−1)) (see [38]) and by invoking results about the use of pseudo-likelihood functions
in Bayesian analysis, the matching prior π(λ) is simply proportional to the square root of the inverse
of the asymptotic variance of the MLE of λ . Based on Ventura et al. (2009) [39], the matching prior for
λ corresponding to (6) is

π(λ) ∝ Iλλ.η(λ, η̂λ)
1/2, (7)

where η̂λ is the constrained MLE of η for a given λ and Iλλ.η(λ, η) = Iλλ(λ, η) −
Iλη(λ, η)Iηη(λ, η)−1 Iηλ(λ, η) is the partial information with Iλλ(λ, η) , Iλη(λ, η) , Iηη(λ, η) and
Iηλ(λ, η) blocks of the expected Fisher information

I(λ, η) =

[
Iλλ(λ, η) Iλη(λ, η)

Iηλ(λ, η) Iηη(λ, η)

]
.

For the interested reader we provide the detailed quantities of this matrix:

Iλλ(λ, η) = a2, Iλµ(λ, η) =
1
σ

(
b

A3/2 − λa1

)
, Iλσ(λ, η) = −λa2

σ
, Iµµ(λ, η) =

(1 + λ2a0)

σ2 ,

Iµσ(λ, η) =
1
σ2

[
bλ(1 + 2λ2)

A3/2 + λ2a1

]
, Iσσ(λ, η) =

2 + λ2a2

σ2 ,

where b =
√

2
π , A = 1 + λ2 , and ai = E

[
Zi
(

φ(λZ)
Φ(λZ)

)2
]

, i = 0, 1, 2, with Z following the standard

skew-normal with parameter λ . However, the prior (7) might be data dependent because of the
presence of η̂λ . A prior for λ which does not suffer from this problem is proportional to√√√√ a2 A2[π(1 + a0λ4) + λ2(π(1 + a0)− 4)] + 2

√
2πa1λA3/2 − πa2

1λ2 A3 − 2

πA3[2 + λ2(2a0 + a2) + λ4(a0a2 − a2
1)]− 2(λ + 2λ3)2 − 2

√
(2π)a1λ3

√
A(1 + 3λ2 + 2λ4)

.

This prior is proper, symmetric at the origin and with tails of order O(λ−3/2) . It also
compensates for the possible monotonicity of the modified profile likelihood (6) and possesses good
frequentist properties.



Symmetry 2020, 12, 491 7 of 14

3.3. The Informative Priors of Canale and Scarpa (2013)

Canale and Scarpa (2013) [34] discuss two informative priors for the skewness parameter of the
skew-normal distribution. Their study is motivated by an interesting data set on marks referring
to first-year undergraduate students for the program in Economics at the University of Padua.
The skew-normal model is implemented on students’ grades in the first mandatory class of Statistics.
Making inference on the grades of the previous years shows that the distribution of Statistics grades
is skewed to the right around a certain mean, which explains why they need informative priors for
their endeavour.

The first prior is the normal density with hyperparameters reflecting prior beliefs about the
expectation and variance of λ in order to center the prior on a particular guess for λ . The resulting
posterior belongs to the family of unified skew-normal (SUN) distributions, introduced in [40].
The explicit expressions for the mean and the variance of the posterior are not very tractable but
they allow for a simple interpretation. The second informative prior is itself a skew-normal, motivated
by the distribution of grades of university examinations [41]. The skew-normal prior includes location
and scale hyperparameters as well as a skewness hyperparameter reflecting the beliefs on the direction
of skewness. The posterior distribution also belongs to the class of SUN distributions. The authors set
the location hyperparameter of the skew-normal prior equal to zero in order to have a rough prior
information only on the skewness side of the distribution of the data: considering negative or positive
values for the skewness hyperparameter puts more prior mass on the positive or negative semi-axis. In
both cases the resulting posteriors are intractable, but the SUN parametrization eases efficient sampling
methods for posterior computation via Markov Chain Monte Carlo (MCMC). For both prior choices
for λ , they have specified an independent normal inverse gamma distribution for the location and
scale parameters. To perform the related Bayesian inference, the authors have presented an algorithm
to simulate the full conditional distribution of the skewness parameter λ given the location and scale
parameter. This algorithm uses a Gibbs sampler for the stochastic representation of the SUN model.
To get the posterior, the authors introduced normal latent variables, say η1, . . . , ηn . Conditionally on
these latent variables, the generic i -th observation will be normally distributed with a specific mean
and variance. This way of constructing the Gibbs sampler leads to conjugacy for the location and scale
parameters. For the detailed computations we refer the reader to [34]. This sampling method is useful
in MCMC methods to approximate the posterior distribution.

We also wish to mention that generally the MCMC method in Bayesian statistics bears a particular
importance in model selection. Suppose we have a set of models reflecting competing hypotheses
about the underlying data set, where each model is characterized by a specific vector of parameters of
interest. From the Bayesian viewpoint, these models are compared pairwise through their Bayes factor
which is the ratio of relative marginal likelihoods. Obviously, finding the marginal likelihood is often
not feasible in particular analytically. We refer the reader to [42] and references therein for estimation
methods of the marginal likelihood, specifically in general non-nested models.

4. Prior Choices for Other Skew-Symmetric Distributions

There exists a wide literature on the Bayesian analysis of skew-symmetric distributions different
form the skew-normal. Azzalini (1986) [6] and Naranjo et al. (2012) [43] provided a Bayesian analysis of
a skewed exponential power distribution. This family includes the symmetric exponential distribution
as well as the skew-normal distribution, and provides flexible distributions with lighter and heavier
tails. Interestingly, this family of densities can fit each tail separately. Hossianzadeh and Zare (2016) [44]
estimated the parameter of the discrete skewed Laplace distribution by an empirical Bayesian analysis
and compared it with the maximum likelihood approach. In what follows, we will first consider the
popular skew- t distribution and then focus on two general approaches for skew-symmetric densities.

4.1. Jeffreys’ Prior for Skew-t Distributions

Skew- t distributions are the best-known alternatives to skew-normal ones, due to their flexibility:
they can model any level of skewness and excess kurtosis. However, they pose some further inferential
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problems, which we illustrate in the simpler case of the Student t distribution with known location
and scale parameters. Ref. [45] discussed that the likelihood function approaches infinity when the
degrees of freedom go to zero, and showed that the supremum of the likelihood function may be
achieved when the degrees of freedom go to infinity. There have been several frequentist attempts
to solve the inferential problems of the skew- t distribution with all parameters unknown. Sartori
(2006) [46] used the modified score function, which requires the degrees of freedom to be fixed.
Azzalini and Genton (2008) [10] proposed a deviance approach which is only partially satisfactory,
since its implementation might not be straightforward. We illustrate the problem with the univariate
skew- t distribution. The deviance approach replaces the boundary maximum likelihood estimate
of (λ, υ) by the smallest vector (λ0, υ0) for which the null hypothesis H0 : (λ, υ) = (λ0, υ0) is not
rejected. The deviance approach assumes that such smallest vector exists but neither theoretical results
nor simulation studies support this assumption. For these reasons we cannot exclude the existence
of samples admitting two vectors (λa, υa) and (λb, υb) satisfying λa > λb and υa < υb for which
the hypotheses H0 : (λ, υ) = (λa, υa) and H0 : (λ, υ) = (λb, υb) are not rejected, while no vector
(λ0, υ0)exists satisfying (λ0, υ0) < (λa, υa) , (λ0, υ0) < (λb, υb) and for which the null hypothesis
H0 : (λ, υ) = (λ0, υ0) is not rejected. We reckon that this situation is likely to happen, given that
when either of the parameters λor υ is large the shape of the skew- tdensity function remains almost
unchanged if one parameter is substantially increased while the other is substantially decreased.

Given these shortcomings, Branco, Genton and Liseo (2012) [47] studied Bayesian analysis for
various forms of skew- t distributions. Denoting by ν > 0 the degrees of freedom parameter, they first
considered skew- t densities of the form

2t(z|ν)T(λz|ν), z ∈ R,

where t(·|ν) and T(·|ν) are the pdf and the cdf of a Student t distribution with ν degrees of freedom.
The corresponding Jeffreys prior for the skewness parameter λ when ν is known and finite is

πJ(λ|ν) ∝

√∫ ∞

−∞
z2t(z|ν) t2(λz|ν)

T(λz|ν) dz.

It is proper, symmetric about zero and with tails of order O(λ−3/2) . The same authors further
investigated the case of the skew- t distribution of [5] with pdf

2t(z|ν)T
(

λz
√

ν + 1
ν + z2

∣∣∣∣∣ ν + 1

)
, z ∈ R.

The corresponding Jeffreys prior for λ for known and finite ν is

πJ(λ|ν) ∝

√√√√∫ ∞

0

z2t(z|ν)t2(λz|ν)
(ν + z2)T

(
λz
√

ν+1
ν+z2

∣∣∣ ν + 1
) [

1− T
(

λz
√

ν+1
ν+z2

∣∣∣ ν + 1
)]dz.

Again, this prior is proper, symmetric about zero and the tails are of order O(λ−3/2) .

4.2. Jeffreys Prior for General Skew-Symmetric Models

Rubio and Liseo (2014) [48] investigated the Jeffreys prior for the skewness parameter of a general
class of scalar skew-symmetric models. The Jeffreys prior cannot be used for some skew-symmetric
models at λ = 0 because of the singularity of the Fisher information at this point; see the Introduction
for details about this issue. They showed that under mild conditions, including knowledge of location
and scale parameters, the Jeffreys prior of the skewness parameter λ in the skew-symmetric model
is proper, symmetric about zero and tails are of order of O(|λ|−3/2) . They used these results to
construct the independence Jeffreys prior for the model including the location and scale parameters:
it is the product of the Jeffreys prior of each parameter, under the assumption that the remaining
parameters are held fixed. The same authors also provided sufficient conditions for the existence of



Symmetry 2020, 12, 491 9 of 14

the posterior distribution and briefly discussed the existence of a proper independence Jeffreys prior
for the skew-logistic model described in [7] and gave a Student t approximation to that prior.

The approach in [48] might be sketched as follows. The Fisher information for the shape parameter
in (2) is

I(λ) =
∫ ∞

−∞
2z2 f (z)

g2(λz)
G(λz)

dz =
∫ +∞

0
2z2 f (z) [πh(λz)]2 dz

where

h(z) =
1
π

g(z)√
G(z) [1− G(z)]

(8)

and therefore in this case the Jeffreys prior for λ is πJ(λ) ∝
√

I(λ) . The first step for approximating
the function h(z) in (8) is to see that the transformed random variable Z = G−1(X) ∼ h(z) , where
the random variable X ∼ Beta(1/2, 1/2) and G is a cumulative distribution function of an absolutely
continuous symmetric random variable, that is G(−z) = 1− G(z) for all z ∈ R . The corresponding
cumulative distribution function H is

H(z) =
2
π

arcsin
[√

G(z)
]

.

An approximation of h in terms of g might then be achieved by choosing the scale parameter σ

such that
h(z) ≈ 1

σ
g
( z

σ

)
.

The quality of this approximation depends on the thickness of the tails of g . The authors illustrate
this point by considering the case of g(z) having a Student t distribution with ν degrees of freedom
and comparing the approximations using quantiles. Alternatively, σ might be chosen to minimize
the Kullback-Leibler divergence between h(z) and g(z/σ)/σ . Ref. [32] approximated the Jeffreys
prior using the parameterization δ = λ/

√
1 + λ2 . They also proposed to use the symmetric Beta prior

Beta(τ, τ) for β = (δ− 1) /2, thus leading to the Student t prior for λ

πJ(λ) =
Γ(2τ)

22τ−1Γ(τ)Γ(τ)(1 + λ2)τ+1/2

which reduces to the Cauchy distribution for τ = 0.5, see [32].

4.3. Distance-Based Priors

As already mentioned, the shape parameter λ does not only impact the skewness in
skew-symmetric models, but also the mean, the variance, the modes and the kurtosis. Dette et al.
(2018) [49] dealt with this issue by assigning a prior distribution on the perturbation effect of the
skewness parameter, quantified by the Total Variation distance between the symmetric density f
and its skew-symmetric counterpart 2 f (x)G [λw(x)] , where w is an odd function, rather than on
the skewness parameter itself. The rationale behind this choice is that such a distance is more easily
interpretable than the parameter λ , and hence informative as well as non-informative priors can
more readily be found for the effect of λ than for λ itself. The Total Variation distance between two
probability measures µ(·) and ν(·) on R is

dTV(µ, ν) = sup
A⊂R
|µ(A)− ν(A)|,

that is, the maximum difference between the probabilities assigned to the same event by the two
measures. It is bounded between zero and one, 0 ≤ dTV(µ, ν) ≤ 1. The Total Variation distance
between f and 2 f (x)G [λw(x)] is given by

dTV( f , G|λ) = 1
2

∫
R
|2G [λw(x)]− 1| f (x)dx.
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The symmetry of G implies that dTV( f , G|λ) is not a one-to-one function of the parameter λ :
dTV( f , G|λ) = dTV( f , G| − λ) . It is therefore convenient to use MTV(λ) = sign(λ)dTV( f , G|λ)
as a measure of perturbation, due to its appealing properties: MTV(0) = 0, the largest/smallest
value of MTV(λ) is ±0.5 (attained when λ → ±∞ ) so that MTV(λ) ∈ (−1/2, 1/2) , and MTV(λ)

is invariant under affine transformations. Moreover, MTV(λ) = 0.5
[
1− 2S f ;G(0; λ)

]
, where S f ;G is

the cdf associated with s f ;G , which means that MTV(λ) is a re-scaling of the difference between the
mass cumulated on either side of the origin for a fixed choice of f and G by the distribution S f ;G . In
summary, MTV(λ) quantifies the impact of the parameter λ on the relocation of the probability mass
on either side of the symmetry center of f .

The proposed measure MTV allows to build both informative and non-informative priors for
the perturbation parameter λ in skew-symmetric models. Since MTV ∈ (−1/2, 1/2) is an injective
function of λ any prior option for λ induces a proper prior. Ref. [49] proposed, for MTV(λ) , Beta
priors with support on the interval (−1/2, 1/2) and with density

1
Beta(α, β)

(
u +

1
2

)α−1 (1
2
− u

)β−1
,

where Beta(α, β) is a beta function with hyperparameters α, β > 0. This induces on λ the proper prior
with pdf

π(λ|α, β) =
1

Beta(α, β)

(
MTV(λ) +

1
2

)α−1 (1
2
−MTV(λ)

)β−1 d
dλ

MTV(λ).

Priors of this type are called Beta Total Variation priors and are denoted by BTV(α, β) ; they are flexible,
interpretable and lead to tractable posterior distributions. The behaviour of the prior BTV(α, β) is
well illustrated by the special case BTV(1, 1) , that is a uniform prior giving equal probability mass
to any pair of subintervals of equal length belonging to the support. If g is a bounded pdf and∫ 1

0 w(x) f (x)dx < ∞ , then BTV(1, 1) is well-defined for all λ and is given by

πTV(λ|1, 1) = 2
∫ ∞

0
w(x) f (x)g [(λw(x)] dx. (9)

Since (9) does not have a closed-form, the authors proposed to approximate it by a Cauchy distribution
centered at the origin and with scale parameter equal to 0.92. A Monte Carlo study showed that the
proposed non-informative prior induces a posterior distribution with good frequentist properties and
similar to those of the Jeffreys prior.

4.4. Prior Choices in the Presence of Kurtosis Parameters

Rubio and Steel (2015) [50] have proposed a general strategy for constructing weakly informative
priors for kurtosis parameters by assigning a uniform prior to a bounded measure of kurtosis applied
to the symmetric baseline density f (·|δ) in which δ is the tail parameter and is a one-to-one function
of the kurtosis. This methodology, used in [51], induces a proper prior on δ that can be interpreted as
weakly non-informative prior, in that it assigns a flat prior on a function that incorporates the influence
of the parameter δ on the shape of the density. This prior can be coupled with the Jeffreys prior for the
skewness parameter in order to produce a joint prior for (δ, λ) in skew-symmetric models by using
p(λ, δ) = p(λ|δ)p(δ) where

p(λ|δ) ∝

√∫ ∞

0

x2 f (x|δ)g(λx)2

G(λx)[1− G(λx)]
dx.

For each value of δ the tails are of order O(|λ|−3/2) . A simulation study showed that this prior
produces a posterior density with good frequentist properties.
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5. Overview on Related Topics

So far this paper has focussed on the univariate case without covariates. This section briefly
reviews some of the literature on more general settings related to skew-symmetric distributions.

Ref. [52] proposed a general population Monte Carlo algorithm in order to conduct a full Bayesian
analysis of the multivariate skew-normal distribution, also in the presence of constrained parameters.
Since the prior distribution approximates the actual reference prior for the shape parameter vector,
this approach can be considered as a weakly informative prior. In addition, a generalization to the
matrix variate regression model with skew-normal error is also provided.

Ref. [53] carried out a Bayesian analysis of a p -variate skew- t distribution by providing a new
parameterization, considering a set of non-informative priors and a sampler designed to obtain the
posterior model based on the parameters. The methodology can be extended to multivariate regression
models with skewed errors and also stochastic frontier models.

Ref. [54] investigated the time series of electricity spot prices, which exhibit heavy tails and
skewness. The authors conducted Bayesian inference on the multivariate skew- t distribution by
putting a normal prior on the multi-dimensional skewness parameter.

Ref. [51] proposed a general non-informative structure for regression models with skew-symmetric
errors, showed that under some mild conditions the resulting posterior distribution is proper and
extended the results to the cases where the response variables are censored. The authors also
investigated accelerated failure time models, which are relevant in survival analysis. Different prior
distributions have been implemented on the skewness parameter of the skew-normal model including
a Jeffreys prior, a matching prior, an informative prior and a uniform, noninformative prior on the
parameter δ = λ/

√
1 + λ2 , leading to the proper prior

π(λ) ∝
1

(1 + λ2)3/2 .

Ref. [55] used finite mixtures of skewed distributions to model flow cytometry data, in order to
describe their skewness, kurtosis and heterogeneity. The authors developed Bayesian inference based
on data augmentation and MCMC sampling using the aforementioned model. Data augmentation
in this case is based on stochastic representation of the skew-normal distribution in terms of a
random-effects model with truncated normal random effects. Finite mixtures of skew-normals provide
a Gibbs sampling scheme that can be drawn from standard densities only. The same MCMC scheme is
extended to mixtures of skew- t distributions by considering the skew- t distribution as a scale mixture
of skew-normals.

Ref. [56] proposed a new class of distributions by introducing a skewness parameter in
multivariate elliptically symmetric densities. This class of densities contains many standard families
such as skew- t and skew-normal distributions. They condition on some unobserved variables
commonly used in regression modelling and model stock market returns, security options or risky
financial assets subject to shocks. Within the Bayesian realm, they show inter alia that there exist
posterior distributions and moments for regression coefficients derived under improper priors.

Linear mixed models (LMM) are commonly used to analyze repeated measure data since they
allow for flexible modelling of within-subject correlations. Mostly LMM for continuous responses
assume that the random effects and the within-subjects errors are normally distributed, which can
be unrealistic. Ref. [57] considered the less restrictive assumption of skew-normality and Bayesian
inference based on prior distributions very similar to non-informative ones. They illustrated the
proposed approach with the Framingham cholesterol data, obtained from a well-known long-term
study aimed at investigating the relationship between various risk factors and diseases and to
characterize the natural history of chronic circulatory diseases.

6. Discussion

In this paper we have provided an overview on the various proposals of Bayesian inference
within skew-symmetric models. We hope that the reader will consider it as a helpful tool and source
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of information on this research domain. We refer the interested reader to the simulation study and
real data analysis of the recent paper [49] for a performance comparison between several of the above
described prior proposals. Digging further into performance comparisons is a promising research task
in order to get a more complete picture on which prior to ideally use in which situation when dealing
with skew-symmetric distributions.

A referee remarked that in the general case the posterior distribution is multimodal and it
is therefore necessary to impose some conditions ensuring unimodality. Log-concavity implies
unimodality and it is preserved under convolution, marginalization, affine transformations and
conditioning. For example, the assumption that the joint distribution of the parameter and the
observations is log-concave implies that the posterior distribution is log-concave, too. We illustrate
this point with a simple example. Assume that we sampled just one observation from a standard
skew-normal distribution and that our prior distribution on the shape parameter is standard normal:
f (z|λ) = 2φ (z)Φ (λz) and π (λ) = φ (λ) . The joint distribution of the observation and the parameter
is then f (z, λ) = 2φ (z) φ (λ)Φ (λz) . A little calculation shows that f (z, λ) is log-concave. Hence,
without further calculation, we know that f (λ|z) is log-concave and hence unimodal, too. MAP
estimates are then uniquely defined and can be easily derived by noticing that the posterior distribution
is skew-normal: π (λ|z) = 2φ (λ)Φ (λz) . Ref. [58] provides a thorough review of the literature
on log-concavity, both in the univariate and in the multivariate case. Would the assumption of
log-concavity be too restrictive, one could resort to other multivariate generalizations of unimodality,
as for example block-unimodality, which already appeared in the Bayesian literature ([59]).
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