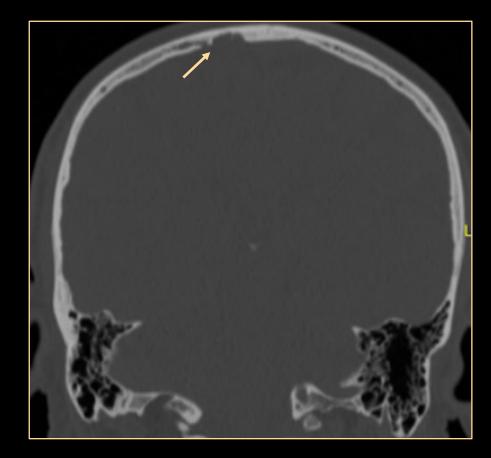


Imaging of skull lesions

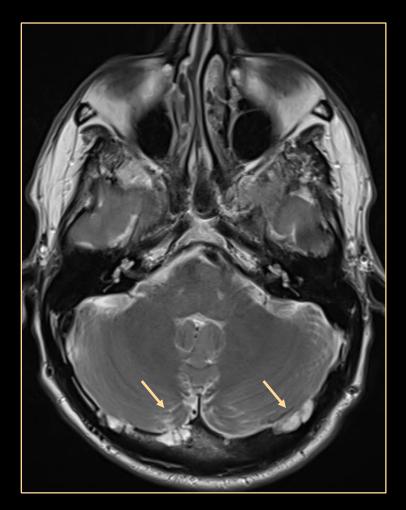
The usual and unusual

43rd ESNR Annual meeting

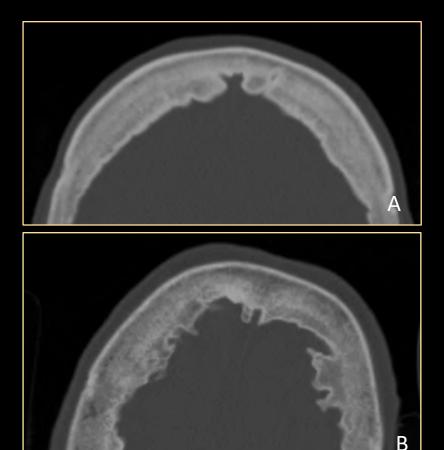

Dr. Nick Van de Voorde¹ Prof. Dr. F. Vanhoenacker^{1,2,3} Dr. S. Dekeyzer¹

1. Antwerp University Hospital 2. Ghent University 3. AZ Sint-Maarten, Mechelen

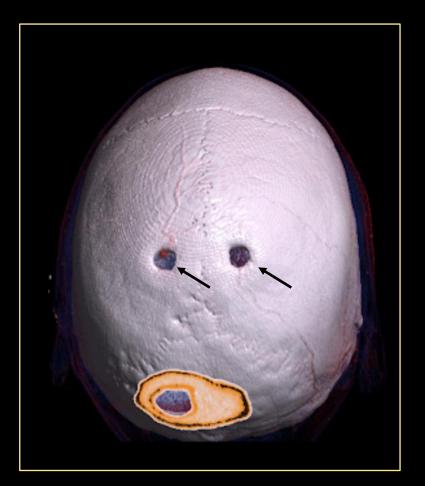
Content


- Pseudolesions
- Usual calvarial lesions: Sclerotic 🖙 Lytic
- Unusual calvarial lesions: Sclerotic 🗇 Lytic
- Take home messages

- Arachnoid Granulations
- Cerebrospinal fluid protrusions
- Subarachnoid space → Venous sinus
- Very common / M = F
- DDx: Venous lakes
 - → Venous protrusions in bone
 → enhancement! ⇔ AG
- Location
 - 1. Transverse sinus
 - 2. Superior sagittal sinus


An osteolytic focus (arrow) in the inner table near the superior sagittal sinus is a typical presentation of an arachnoid granulation.

- Arachnoid Granulations
- Cerebrospinal fluid protrusions
- Subarachnoid space → Venous sinus
- Very common / M = F
- DDx: Venous lakes
 - → Venous protrusions in bone
 → enhancement! ⇔ AG
- Location
 - 1. Transverse sinus
 - 2. Superior sagittal sinus


Multiple arachnoid granulations (arrows) in the internal table of the occipital bone.

- Hyperostosis frontalis interna
- New bone forming at internal table
- 5-12% in general population
- Etiology unknown
- Common in postmenopauzal women

Although mostly bifrontal with smooth borders (A), Hyperostosis Frontalis Interna can present as sharp and irregular (B).

- Parietal foramina
- Congenital
- Thinning of diploe
- Non-progressive
- Unusual: 1 in 50.000
- DDx: Bilateral parietal thinning Acquired, mainly due to osteoporosis

- Osteoma
- Well defined, pedunculated or nodular bone lesion
- Female > male
- Location
 - ✓ external table
 - ✓ frontal > temporal > occipital bone
 - √sinuses
- Imaging
 - CT: Well-delineated focal area of sclerosis at the external table
 - MRI: Low T1- and variable T2-signal

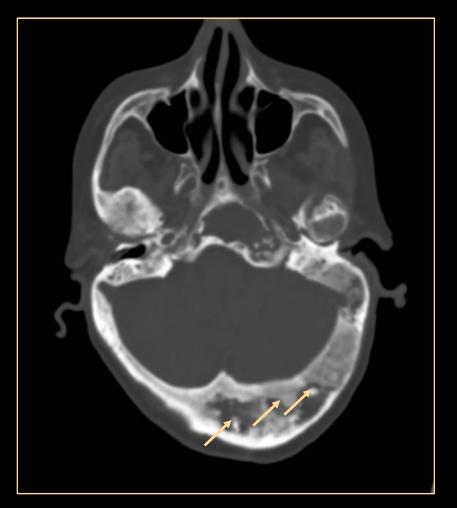
Typical osteoma morphology composed of compact bone, seamlessly blending in with the external table.

- Osteoma
- Well defined, pedunculated or nodular bone lesion
- Female > male
- Location
 - ✓ external table
 - ✓ frontal > temporal > occipital bone
 - √sinuses
- Imaging
 - CT: Sclerotic lesion at the sinuses
 - MRI: Low T1- and variable T2-signal

- Osteoma
- Well defined, pedunculated or nodular bone lesion
- Female > male
- Location
 - ✓ external table
 - ✓ frontal or temporal bone
 - ✓ Sinuses
- Gardner syndrome
 - Multiple osteomas
 - Gastro-intestinal polyps
 - Soft tissue tumors

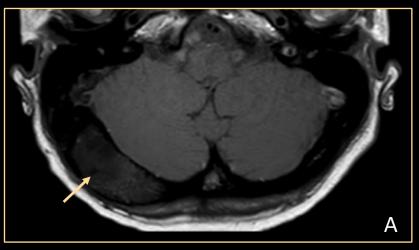
Multiple osteomas scattered around the calvarium in a patient with Gardner syndrome.

- Fibrous Dysplasia
- Expanding fibrous tissue in bone
- Age: 75% < 30-years old
- Painless facial asymmetry
- Location: rib > skull > mandible
 - Monostotic FD (80%): Skull in 20% involved
 - Polyostotic FD (20%): Skull in 50% involved
 - Asymmetric
 - Orbital & paranasal sinus
 - Sphenoid bone

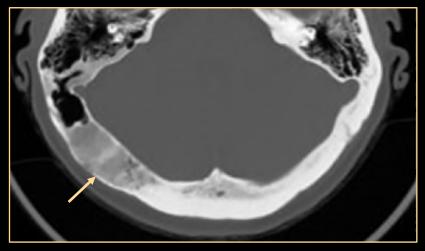


Typical presentation of FD with a ground glass matrix, located in the periorbital and perisinusal region.

- Fibrous Dysplasia
- Plain film: expansile bone lesion
- CT: different imaging patterns
 - Ground glass
 - Sclerotic
 - Cystic areas
- MRI: Variable
 - Sclerotic = T1- and T2-hypointense
 - Cystic = T2-hyperintense
 - Enhancement = subtle to vivid


- Fibrous Dysplasia
- Plain film: expansile bone lesion
- CT: different imaging patterns
 - Ground glass
 - Sclerotic
 - Cystic areas
- MRI: Variable
 - Sclerotic = T1- and T2-hypointense
 - Cystic = T2-hyperintense
 - Enhancement = subtle to vivid

- Fibrous Dysplasia
- Plain film: expansile bone lesion
- CT: different imaging patterns
 - Ground glass
 - Sclerotic
 - Cystic areas
- MRI: Variable
 - Sclerotic = T1- and T2-hypointense
 - Cystic = T2-hyperintense
 - Enhancement = subtle to vivid


- Fibrous Dysplasia
- Plain film: expansile bone lesion
- CT: different imaging patterns
 - Ground glass
 - Sclerotic
 - Cystic areas
- MRI: Variable
 - Sclerotic = T1- and T2-hypointense
 - Cystic = T2-hyperintense
 - Enhancement = subtle to vivid
 - → MRI may cause more confusion!
 - → When in doubt, CT correlation mandatory

T1 WI before (A) and after (B) Gd administration: FD (arrows) may enhance vividly and mimic a malignant lesion.


- Fibrous Dysplasia
- Plain film: expansile bone lesion
- CT: different imaging patterns
 - Ground glass
 - Sclerotic
 - Cystic areas
- MRI: Variable
 - Sclerotic = T1- and T2-hypointense
 - Cystic = T2-hyperintense
 - Enhancement = subtle to vivid
 - → MRI may cause more confusion!
 - → When in doubt, CT correlation mandatory

CT correlation shows a typical groundglass bone pattern in keeping with Fibrous Dysplasia.

- Meningioma-en-plaque (MEP)
- Consists of proliferating meningeal cells
- 2% of all meningiomas
- Location: fronto-zygomatic sutures
- Symptoms
 - ophtalmoplegia
 - proptosis
 - headache
- Imaging
 - CT: hyperostotic / spiculated bone

A patient presented with left sided exophthalmos. CT shows a sclerotic lesion at the left greater sphenoid wing with spiculated borders.

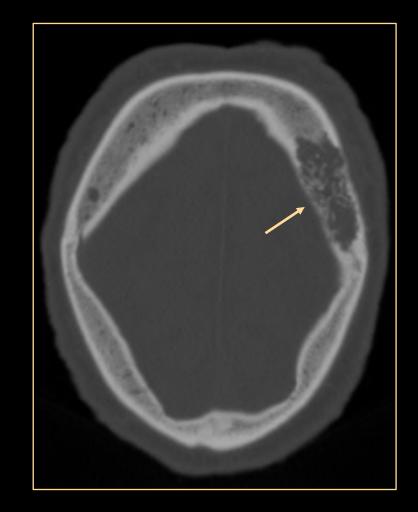
PART 2: The Usual Sclerotic calvarial lesions

- Meningioma-en-plaque (MEP)
- Proliferating meningeal cells
- 2% of all meningiomas
- Location: fronto-zygomatic sutures
- Imaging:
 - MRI: intra-osseous: →T1-/T2-hypo extra-osseous: →T1-isointense to muscle →T2-hyperintense Gd+ : dural enhancement

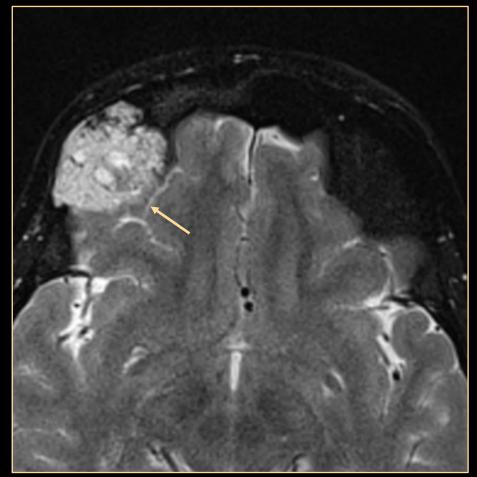


The signal of the intra-osseous component is low on both T1- and T2-WI (arrows in A and B), but shows an extra-osseous component with high T2 (arrow in A).

PART 2: The Usual Sclerotic calvarial lesions

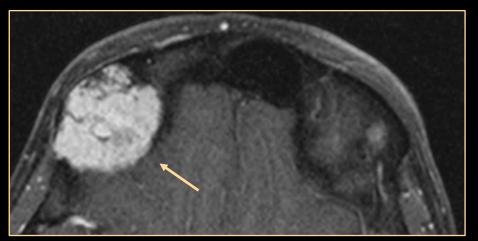

- Meningioma-en-plaque (MEP)
- Proliferating meningeal cells
- 2% of all meningiomas
- Location: fronto-zygomatic sutures
- Imaging:
 - MRI: intra-osseous: →T1-/T2-hypo extra-osseous: →T1-isointense to muscle →T2-hyperintense Gd+ : dural enhancement

T1-WI image after contrast inection: The extra-osseous component shows peripheral enancement and continuity with the dura (arrow) of the left fossa media.


PART 2: The Usual Lytic calvarial lesions

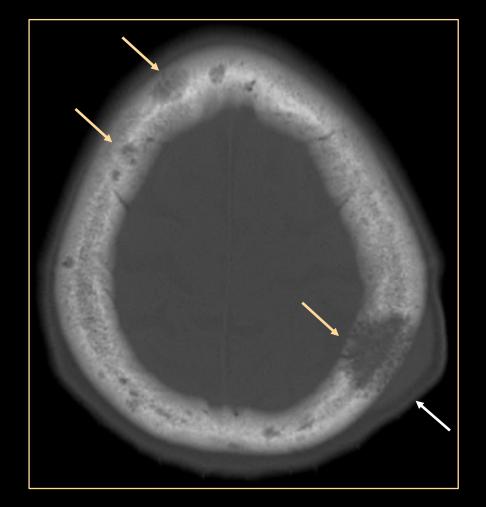
- Intra-osseous hemangioma*
- Slow growing venous malformation
- Age: fifth decade (M:V = 3:2)
- 10% of benign skull lesions
- Location: spine > calvarium
- Imaging
 - Plain film: sunburst sign
 - CT: intradiploic lytic lesion with radiating trabecular thickening

A lytic lesion (arrow) interspersed with trabeculae depicting the septations in between the vascular channels, with a typical spoke wheel appearance.


- Intra-osseous hemangioma
- Slow growing venous malformation
- Age: fifth decade (M:V = 3:2)
- 10% of benign skull lesions
- Location: spine > calvarium
- MRI
 - T1: iso- to hyperintense
 - T2: hyperintense = 'bunch of grapes'
 - Gd+: diffuse enhancement

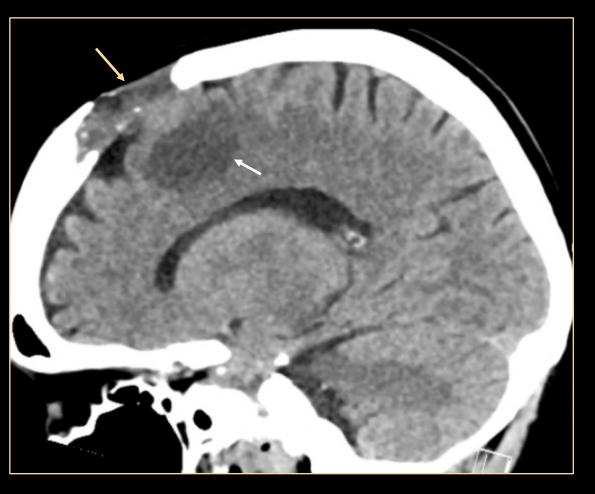
PART 2: The Usual Lytic calvarial lesions

- Intra-osseous hemangioma
- Slow growing venous malformation
- Age: fifth decade (M/V = 3:2)
- 10% of benign skull lesions
- Location: spine > calvarium
- MRI
 - T1: iso- to hyperintense
 - T2: hyperintense = 'bunch of grapes'
 - Gd+: diffuse enhancement



Fat suppressed T1-WI shows the venous malformation (arrow) is isointense to brain parenchyma and enhances vividly after contrast injection.

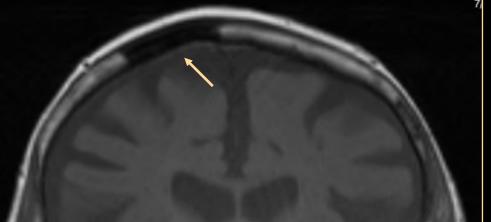
PART 2: The Usual Lytic Calvarial lesions


- Multiple Myeloma (Kahler)
- Proliferation of plasmacells in bone
- Most common bone (marrow) tumor
- Age: 5-8th decade
- Imaging
 - Plain film: punched out lesions
 - CT: multiple lytic foci
 - MRI: T1 hypointense T2: hyperintense
 - Enhancement: homo-/ heterogenous; Ring

Multiple lytic lesions in the in the calvarium (arrows). In the left parietal bone a lesion shows an extra-osseous soft tissue extension (arrow).

PART 2: The Usual Lytic Calvarial lesions

- Metastases: Lytic
- Most common malignant bone tumor
- Age: 5th decade
- Most common primary
 - Lytic
 - Breast > Lung (multiple)
 - Renal > Thyroid (solitary)
- Imaging
 - CT: soft tissue mass w/ bone lysis
 - MRI: T1 iso- or hypointense
 - Enhancement: homogenous, heterogenous or ring



Metastatic Breast cancer: A lytic lesion in the frontal bone (arrow) with intracranial extension and cerebral edema (arrow).

PART 3: The Unusual Sclerotic calvarial lesions

- Metastases: Sclerotic
- Age: 6-7th decade
- Most common primary
 - Sclerotic: prostate
- Imaging
 - CT: expansile sclerotic lesion
 - MRI: T1- and T2-hypointense
 - Enhancement: enhancement or peripheral rim enhancement

Metastatic prostate cancer: Sclerotic skull lesions are hyperdense on CT and markedly hypointense on T1-WI.

- Paget's Disease of Bone
- Osteitis deformans
- Abnormal bone turnover
- Age: 2% over 55y
- Location: pelvis > femur > skull
- Asymptomatic, bone pain
- Imaging: three consecutive phases
 - 1. Lytic phase
 - 2. Mixed phase
 - 3. Sclerotic phase

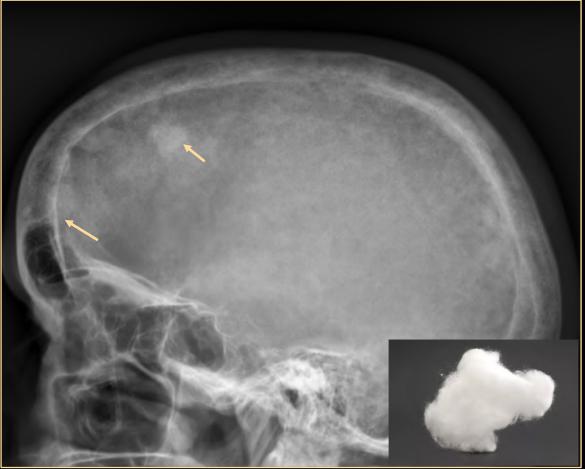
The Usual

PART 3: The Unusual Sclerotic calvarial lesions

- Paget's Disease of Bone
- Lytic phase: bone resorption
 - Osteoclastic overactivity
 - Plain film/CT Focal sharply delineated lucent zone 'Osteoporosis circumscripta'
 - MRI
 - T1: lower signal than bone, iso to muscleT2: high signalGd+: enhancement due to hypervascularity
 - Scintigraphy Increased uptake

A patient with a focal osteoporotic lesions (arrows). Note the sharp border of the frontal bone lesion illustrating 'osteoporosis circumscripta' (arrow).

The Usual


The Unusual

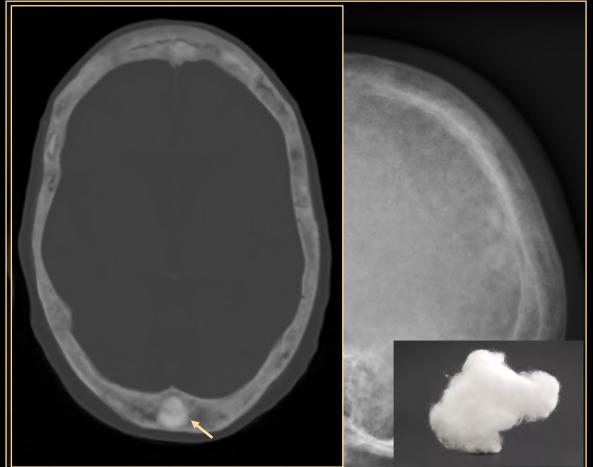
Take home message

PART 3: The Unusual Sclerotic calvarial lesions

- Paget's Disease of Bone
- Mixed phase: bone formation
 - Osteoclastic overactivity
 - Plain film/CT
 Focal nodular areas of thick bone
 'Cotton wool'
 Cortical thickening
 Coarse trabecular pattern
 - MRI

Preserved fatty marrow signal

The Usual

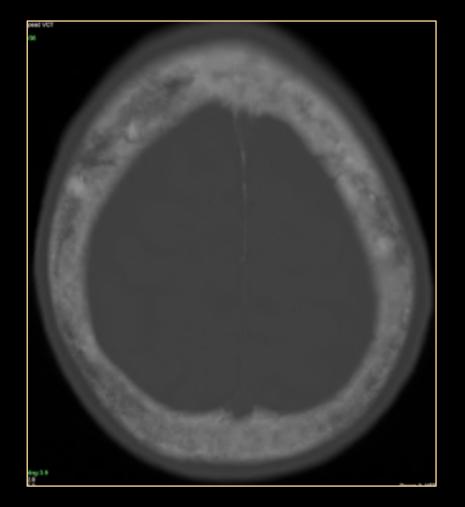

The Unusual

Take home message

PART 3: The Unusual Sclerotic calvarial lesions

- Paget's Disease of Bone
- Mixed phase: bone formation
 - Osteoclastic overactivity
 - Plain film/CT
 Focal nodular areas of thickened 'Cotton wool'
 Cortical thickening
 Coarse trabecular pattern
 - MRI

Preserved fatty marrow signal


Lateral radiography of the skull depicts a typical 'cotton wool' appearance of Paget's Disease. CT correlation in a different patient (arrow).

The Usual

The Unusual

Take home message

- Paget's Disease of Bone
- Sclerotic phase: mineral deposition
 - Plain film/CT Bone thickening and sclerosis
 - MRI Hypointense signal on all sequences
 - Scintigraphy False negative, no uptake

PART 3: The Unusual Lytic calvarial lesions

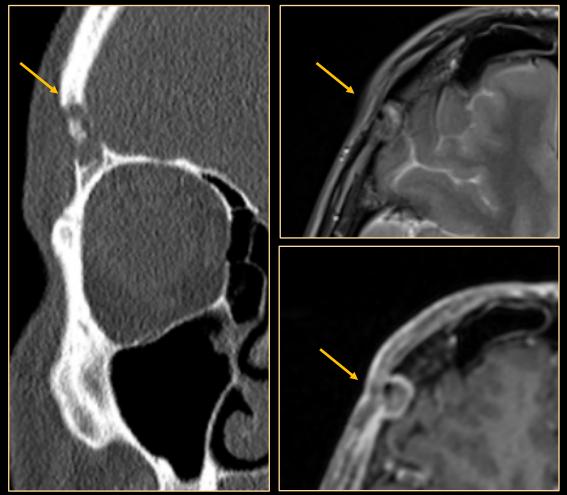
- Eosinophilic granuloma
- Unifocal Langerhans Cell Histiocytosis
- Age: young (boys)
- Location: skull affected in 50%
- Symptoms: focal pain, swelling
- Imaging
 - Plain film: punched out lesions
 - CT: 'Beveled edges'
 - MRI:
 - T1: hypo Isointense
 - T2: slightly hyperintense
 - Gd+: enhancement

CT depicts two lesions with larger osteolysis of the external table as compared to the internal table, creating the 'beveled edge' appearance. Beveled needle for comparison.

PART 3: The Unusual Lytic calvarial lesions

- Eosinophilic granuloma
- Unifocal Langerhans Cell Histiocytos
- Age: young (boys)
- Location: skull affected in 50%
- Symptoms: focal pain, swelling
- Imaging
 - Plain film: punched out lesions
 - CT: 'Beveled edges'
 - MRI:
 - T1: hypo-isointense
 - T2: slightly hyperintense
 - Gd+: enhancement

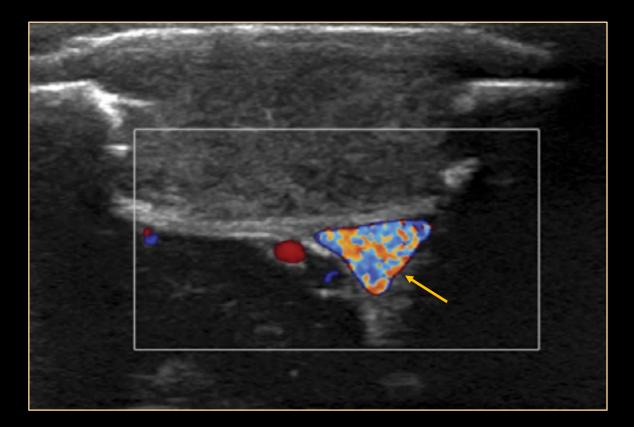
CT depicts two lesions with larger osteolysis of the external table as compared to the internal table, creating the 'beveled edge' appearance.


The Usual

The Unusual

Take home message

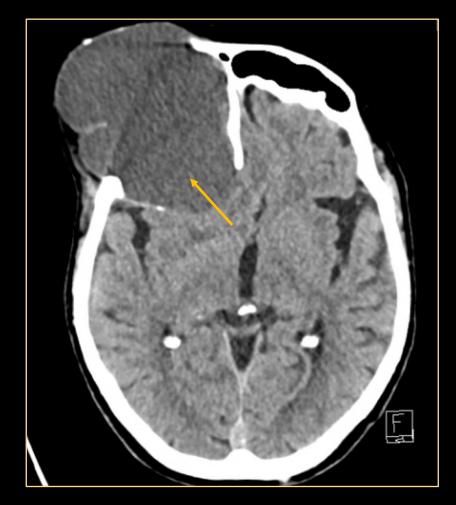
PART 3: The Unusual Lytic calvarial lesions


- Eosinophilic granuloma
- Age: young (boys)
- Skull affected in 50%
- Focal pain, swelling
- Imaging:
 - Plain film: punched-out lesions
 - CT: 'Button sequestrum'
 - MRI:
 - T1: hypo Isointense
 - T2: slightly hyperintense
 - C+: enhancement

Another typical appearance is the 'button seaquestrum' sign, where a fragment of bone is surrounded by osteolysis (arrows).

PART 3: The Unusual Lytic calvarial lesions

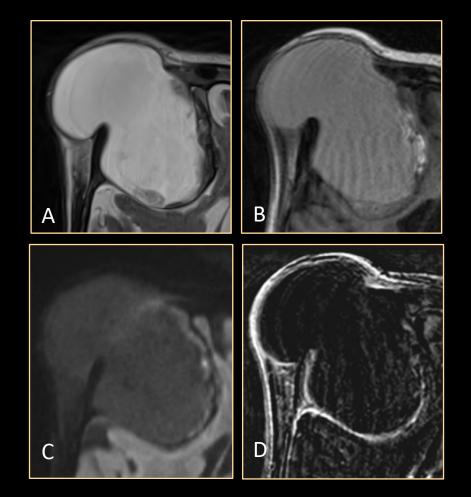
- Eosinophilic granuloma
- Most common: young boys
- Skull affected in 50%
- Focal pain, swelling
- Imaging
 - Plain film: punched out lesions
 - CT: 'Beveled edges'
 - MRI
 - Ultrasound: evaluating soft tissue component


US shows a hypoechoic lesion within the skull. Note the superior sagittal sinus (arrow). Ref: F. Vanhoenacker F. J. Ultrason 2018.

PART 3: The Unusual Lytic calvarial lesions

- Epidermoid cyst
- Cholesterol and keratin
- Age: 20-50y
- Location: frontal & parietal bone
- CT
 - Intra-diploic cystic lytic lesion
 - Smooth sclerotic lesion
 - Bone remodelling
- MRI
 - T1 & T2: fluid signal
 - DWI : restricted diffusion
 - Gd+ : no or discrete peripheral enhancement

PART 3: The Unusual Lytic calvarial lesions


- Mucocoele
- Benign epithelial lined cyst
- Giant mucocoele causes erosion of bone
- Location: 90% frontal & ethmoid sinus
- Imaging:
 - CT: hypodense content + erosion of bone
 - MRI
 - T1: variable depending on content: protein = high T1-signal
 - T2: always high signal
 - DWI: no restricted diffusion
 - Gd+: peripheral, rim enhancement

CT shows a large hypodense mass with frontal bone erosion a nd extra- and intracranial extension. Ref: F.Bosmans JBSR 2020.

PART 3: The Unusual Lytic calvarial lesions

- Mucocoele
- Benign epithelial lined cyst
- Giant mucocoele causes erosion of bone
- Location: 90% frontal & ethmoid sinus
- Imaging:
 - CT: hypodense content + erosion of bone
 - MRI
 - T1: variable depending on content: protein = High T1-signal
 - T2: always high signal
 - DWI: no restricted diffusion
 - Gd+: periferal, rim enhancement

MRI shows: (A) high T2-signal; (B) moderately high T1-signal; (C) no restricted diffusion; (D) faint rim enhancement. Ref: F.Bosmans JBSR 2020.

Take Home Messages

Calvarial Pseudo- Lesions	Usual Sclerotic Calvarial Lesions	Usual Lytic Calvarial Lesion	Unusual Sclerotic Calvarial Lesions	Unusual Lytic Calvarial Lesions
Arachnoid Granulations	Osteoma	Metastases	Paget's disease	Eosinophilic granuloma
Venous lacunae	Meningioma-en- plaque	Multiple Myeloma	Sclerotic metastases	Epidermoid cyst
Hyperostosis Frontalis Interna Hyperostosis cranii Ex Vacuo	Fibrous dysplasia	Intra-osseous hemangioma		Giant mucocoele

Take Home Messages

- Age: Young: EG FD
- Location: Sutures: MEP
- Symptoms: Pain: EG
- Number: Solitary: MEP / IOH

Old: M+, Paget Paranasal, sphenoid: FD Painless: Most other Multiple: M+ / EG

- Specific imaging features:
 - Cotton wool = Paget
 - Expansile ground glass lesion = Fibrous Dysplasia
 - Beveled edges, punched out lesions = Eosinophilic Granuloma
 - Bunch of grapes = Venous malformation
 - Cystic bone lesion with restricted diffusion = Epidermoid cyst

Suggested literature

- 1. Bosmans F, Vanhoenacker F. Giant Frontal Paranasal Mucocele: Case Report and Review of the Literature. Journal of the Belgian Society of Radiology. 2020; 104(1): 48, 1–5. DOI: https://doi.org/10.5334/jbsr.2117
- Vanhoenacker, F., Verlooy, J., & De Praeter, M. (2018). Spontaneous resolution of unifocal Langerhans cell histiocytosis of the skull : potential role of ultrasound in detection and imaging follow-up. *journal of ultrasonography*, *18*(74), 265–270. https://doi.org/10.15557/JoU.2018.0038
- Winn N, Lalam R, Cassar-Pullicino V. Imaging of Paget's disease of bone. Wiener Medizinische Wochenschrift [Internet]. 2017;167(1–2):9– 17. 2. She R, Szakacs J. Hyperostosis frontalis interna: case report and review of literature. Ann Clin Lab Sci [Internet]. 2004 [cited 2019 Apr 17];34(2):206–8.
- 4. Ugga L, Cuocolo R, Cocozza S, Ponsiglione A, Stanzione A, Chianca V, et al. Spectrum of lytic lesions of the skull: a pictorial essay. Insights Imaging [Internet]. 2018 Oct 19 [cited 2019 Apr 25];9(5):845–56.
- Gomez CK, Schiffman SR, Bhatt AA. Radiological review of skull lesions. Insights Imaging [Internet]. 2018 Oct [cited 2019 Apr 18];9(5):857– 82.
- 6. Egilmez H. CT and MR Imaging in a Large Series of Patients with Craniofacial Fibrous Dysplasia. Polish J Radiol [Internet]. 2015;80:232–40.
- 7. Kushchayeva YS, Kushchayev S V, Glushko TY, Tella SH, Teytelboym OM, Collins MT, et al. Fibrous dysplasia for radiologists: beyond ground glass bone matrix. Insights Imaging [Internet]. 2018 Dec [cited 2019 Apr 13];9(6):1035–56.
- 8. Bhargava P, Maki JH. "Cotton Wool" Appearance of Paget's Disease. N Engl J Med [Internet]. 2010 Aug 5 [cited 2019 May 20];363(6):e9.