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Abstract 

Vertebrate mammals express a protein called Ki-67 which is most widely known as a 

clinically useful marker of highly proliferative cells. Previous studies of human cells 

indicated that acute depletion of Ki-67 can elicit a delay at the G1/S boundary of the cell 

cycle, dependent on induction of the checkpoint protein p21. Consistent with those 

observations, we show here that acute Ki-67 depletion causes hallmarks of DNA damage, 

and the damage occurs even in the absence of checkpoint signaling. This damage is not 

observed in cells traversing S phase but is instead robustly detected in mitotic cells. The 

C-terminal chromatin binding domain of Ki-67 is necessary and sufficient to protect cells 

from this damage. We also observe synergistic effects when Ki-67 and p53 are 

simultaneously depleted, resulting in increased levels of chromosome bridges at 

anaphase, followed by the appearance of micronuclei. Therefore, these studies identify 

the C-terminus of Ki-67 as an important module for genome stability. 

 

Introduction 

Mammalian proliferation antigen Ki-67 has well-established clinical significance 

because of its utility as a marker for aggressive tumor cells (reviewed in (1)). Ki-67 is 

rapidly degraded during the G1 phase of the cell cycle, so quiescent or slowly growing 

cells that have long G1 phases generally have low levels of Ki-67 (2). In contrast, rapidly 

growing cells, including tumor cells that lack checkpoint controls, often have short G1 

phases and thereby display high steady-state Ki-67 levels (3). High Ki-67 protein levels 

are correlated with the severity of many types of tumors, and are a strongly predictive of 

poor outcomes in meta-analyses of clinical cancer data (4-7). As we describe below, Ki-
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67 is critical for maintaining several aspects of chromosome structural integrity. 

Therefore, molecular exploration of these functions is crucial to understanding how Ki-67 

contributes to tumor biology.  

Clues regarding the multiple functions of Ki-67 come from its dramatic relocalization 

across the cell cycle (1, 8, 9). In interphase cells, Ki-67 is localized to the nucleolus and 

is required for efficient localization of heterochromatin to the nucleolar periphery (10-12). 

Depletion of Ki-67 also alters the focal accumulation of the heterochromatic histone 

modification H3K9me3 (11) and the modification and localization of nucleolus-associated 

inactive X chromosomes (13). After interphase, Ki-67 localization dramatically changes 

when it becomes heavily phosphorylated by CDK1 during mitotic entry (14, 15). Ki-67 

coats mitotic chromosomes, serving as a fundamental component of the 

perichromosomal layer (PCL; (10, 16); reviewed in (1, 17, 18)). The PCL is the mitotic 

repository of the abundant ribonucleoprotein complexes that inhabit the nucleolus during 

interphase (18, 19). Without Ki-67, the PCL is absent, dispersing these components (10, 

16), causing imbalanced inheritance of nucleolar material in daughter cells (10). During 

mitosis, Ki-67 has additional key functions: it is required for maintenance of spatially 

separated chromosome arms (20, 21) and also for the clustering of chromosomes prior 

to nuclear envelope reformation, thereby preventing retention of cytoplasmic material 

when nuclei reassemble after mitosis (22). Tethered to chromatin, the long and highly 

charged Ki-67 protein serves as an electrostatic repellant that prevents chromosome 

arms from clumping (20, 21). This pathway is distinct from the contribution of condensin 

proteins to mitotic chromosome structure, because co-depletion of both Ki-67 and 

condensin results in synergistic loss of nearly all mitotic chromosome structure (23). In 
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sum, Ki-67 shapes chromosome architecture in both interphase and mitotic cells.  

In our previous studies, we had observed that acute depletion of Ki-67 causes a delay 

in cell cycle progression at the G1/S transition of the cell cycle in checkpoint-proficient 

cells (13). This delay is accompanied by induction of the cyclin-dependent kinase inhibitor 

p21, which is required for the delay (13). p21 is a transcriptional target of the tumor 

suppressor protein p53 (24, 25), a critical activator of the transcriptional response to DNA 

damage. These observations led us to test whether Ki-67 protects cells from DNA 

damage, and whether p53 has a role. We show here that acute depletion of Ki-67 results 

in DNA damage as evidenced by increased levels of modified histone gH2AX and focal 

accumulation of repair signalling protein 53BP1. This damage accumulates during mitotic 

progression in both in cells that display a checkpoint response to Ki-67 depletion and in 

cells that do not, indicating that the role of Ki-67 in genome stability is independent of a 

transcriptional response to damage. We demonstrate that the C-terminal chromatin 

binding domain of Ki-67 is necessary and sufficient to protect cells from this damage. 

These data define a novel type of genome protection molecule, and indicate that this 

activity is distinct from Ki-67’s role in maintaining distinct chromosome arm structures, 

which requires additional parts of the protein to provide sufficient electrostatic repulsion 

(20). We also show that loss of Ki-67 causes greater defects in the absence of tumor 

suppressor protein p53, including a large increase in the numbers of anaphase bridges 

that appear during the first mitosis after acute Ki-67 depletion. Subsequently, cells lacking 

Ki-67 and p53 frequently display micronuclei that lose lamin A protein from their periphery 

over time, a hallmark of membrane disruption associated with genome rearrangements 

(26, 27). In sum, these data indicate that Ki-67 physically protects chromosomes from 
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damage during mitosis.   

 

Results 

Ki-67 protects cells from DNA damage regardless of G1/S checkpoint status. To 

test whether acute depletion of Ki-67 causes DNA damage, we first analyzed cells by 

immunofluorescence using antibodies that recognize gH2AX, a phosphorylated histone 

isoform that is a classical marker of DNA strand breaks (28). We initially analyzed hTERT-

RPE1 cells, a diploid, checkpoint-profiecient human cell line, which display a p21-

dependent transcriptional program in response to Ki-67 depletion (13). Using the same 

si-RNA duplex we had validated previously in RPE-1 cells (13), we tested acute depletion 

of Ki-67 in an asynchronous cell population, thereby sampling all cell cycle positions. We 

observed that depletion of Ki-67 significantly increased the gH2AX signals (Fig. 1A), and 

that the magnitude of this effect was amplified in the presence of the DNA strand-breaking 

reagent phleomycin (Fig. 1B; (29)). These data suggested that DNA damage occurs upon 

acute depletion of Ki-67. 

 Our previous studies showed that upon acute depletion of Ki-67, RPE-1 cells 

display a transient cell cycle delay at the G1/S boundary, accompanied by p21-dependent 

down-regulation of many S phase-related transcripts (13). Therefore, we considered the 

possibility that the transcriptional response to Ki-67 depletion was indirectly causing DNA 

damage. To test this idea, we analyzed a cell line that lacks this transcriptional response, 

colon cancer HCT116 cells. Specifically, we used a derivative of this well-studied line in 

which homozygous in-frame insertions encode Ki-67 tagged with a fluorescent mClover 
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protein and an auxin-inducible degron (21), which allows rapid depletion of detectable Ki-

67 upon addition of auxin (indole acetic acid, IAA). We confirmed that these HCT116-Ki-

67-mAC cells, (henceforth HCT116 for brevity), unlike RPE-1 cells but similar to virally-

transformed HeLa cells, do not induce p21 mRNA levels in response to Ki-67 depletion 

(Fig. S1A). Furthermore, RNA-seq analysis of HCT116 cells detected an extremely limited 

genome-wide transcriptional response to acute Ki-67 depletion (Supplemental Figure 

S1B-D; Supplemental Table 1). Nevertheless, after 24 hours of auxin-mediated depletion 

of Ki-67, gH2AX signals were significantly increased in these cells  (Fig. 1C-D). Together, 

these data indicate that Ki-67 has a role in genome stability in multiple cell types.  

These data also suggested that the contribution of Ki-67 to genomic stability is 

independent of the p21-mediated transcriptional response. To test this directly, we co-

depleted p21 and Ki-67. We observed that depletion of p21 did not significantly change 

the levels of gH2AX generated either in the absense or presence of Ki-67, even when the 

assay was sensitized by the presence of phleomycin (Supplemental Figure S2A-C). 

These data are consistent with our finding that the damage caused by depletion of Ki-67 

does not depend on checkpoint signaling (Figure 1). We therefore hypothesized that Ki-

67 has a direct role in protecting the genome from damage.  

53BP1 foci are formed upon depletion of Ki-67. Our discovery of DNA damage 

upon Ki-67 depletion was surprising because a previous study discounted the possibility 

of a contribution to DNA protection by Ki-67, because no 53BP1 foci were detected in  

cells lacking Ki-67 (10). 53BP1 forms large foci at sites of DNA damage and is 

instrumental in regulating the choices between homologous recombination and end-

joining repair pathways (30-33). Because of our observation of robust gH2AX signals, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2020. ; https://doi.org/10.1101/2020.10.16.342352doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.16.342352
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

re-examined whether Ki-67 depletion results in 53BP1 focus formation. Indeed, we find 

that it does (Fig. 1D-E), consistent with Ki-67 having an important role in genome 

protection. These 53BP1 foci were frequently overlapping gH2AX foci, consistent with the 

documented direct recruitment of 53BP1 by gH2AX (34). 53BP1 was not detected in 

mitotic cells regardless of the amount of DNA damage (Supplemental Figure S2D), 

consistent with previous experiments demonstrating that 53BP1 foci are not present in 

mitotic cells (35, 36).  

Ki-67 protects chromosomes during mitosis. In Figure 1, asynchronous 

populations were analyzed, so that cells across all points of the cell cycle had experienced 

the absence of Ki-67. We next sought to determine whether the role of Ki-67 in protection 

of chromosomes from damage might be important at specific times during the cell cycle. 

We first tested whether damage occurred during S phase. To do this, we pulse-labeled 

asynchronous HCT116 cell cultures with the modified deoxynucleotide EdU for twenty 

minutes prior to fixation and click-chemistry staining to detect cells that synthesized DNA 

during the pulse. The control population that was untreated with auxin did not display 

strong gH2AX signals, either in the EdU-positive subpopulation that had been in S phase, 

nor in the mitotic subpopulation that displayed chromosome condensation (Fig. 2A). In 

the IAA-treated population, we observed that the S phase subpopulation also lacked 

strong gH2AX signals. In contrast, the mitotic auxin-treated cells displayed robust gH2AX 

staining (Fig. 2B). These data suggested that mitosis is a particularly important time for 

genome protection by Ki-67.	

 To test this more directly, we synchronized HCT116 cells at the G2/M phase border 

with the CDK1 inhibitor RO-3306 (37), depleted Ki-67 using auxin, and then measured 
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damage upon release. In cells depleted of Ki-67, but not in control untreated cells, 

damage increased within minutes, concurrent with progression through mitosis (Figure 

3). These data suggested that Ki-67 has a particularly important role in genome protection 

during mitosis. Furthermore, the rapid appearance of damage in these synchronized cell 

experiments suggest that this damage is unlikely to result from indirect transcriptional 

effects, consistent with the limited transcriptional effects of Ki-67 depletion in HCT116 

cells (Supplemental Fig. S1). Together, these data supported the idea that Ki-67 has a 

direct role in protecting chromosomes.  

The C-terminal chromatin-binding domain of Ki-67 is necessary and sufficient 

for protecting chromosomes. To determine whether specific domains of Ki-67 protect 

chromosomes from damage, we used HCT116-Ki-67-mAC cells to estabish an assay for 

Ki-67 transgenes. We transiently transfected plasmids encoding various GFP-tagged Ki-

67 fragments (15) into asynchronous cell populations. Twelve hours later, we added auxin 

(IAA) and continued incubation for 24 hours to degrade endogenous Ki-67 and allow 

accumulation of damage, and then measured gH2AX and GFP signals by FACS and 

immunofluorescence analyses. We first confirmed that in untransfected cells, low levels 

of gH2AX staining (right hand side of the graph, percentage indicated above) were 

detected in more than 90% of the cells in the absence of auxin treatment (-IAA; Figure 

4A). Conversely, high levels of damage were observed upon auxin treatment, with fewer 

than 10% of cells displaying gH2AX levels similar to the untreated population (+IAA, 

Figure 4A). We also noted that GFP signals were greatly decreased by auxin treatment, 

indicating efficient degron-mediated destruction of the endogenous mClover-tagged Ki-

67 protein (Figure 4A). We then analyzed transfected cells treated with IAA. In empty 
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vector (EGFP)-transfected cells, most cells displayed high GFP levels, but few 

undamaged cells were observed (Figure 4B). In contrast, transfection of a wild-type Ki-

67 transgene also increased GFP levels but prevented most cells from displaying high 

levels of damage (Fig. 4B). Therefore, this assay was able to detect chromosome 

protection by Ki-67 transgenes. We then tested a series of deletion constructs (Fig. 4C), 

and observed that all constructs encoding the C-terminal chromatin-binding domain 

protected cells from elevated gH2AX levels, and all constructs that lack this domain did 

not (Fig. 4D-E). We note that in these experiments, transgenes provided the expected 

protein localization (15): during the critical mitotic period, Ki-67 derivatives containing the 

C-terminal chromatin-binding domain robustly coat the chromosomes, and those that lack 

this domain do not (Supplemental Figure S3). We conclude that the C-terminus of Ki-67, 

which is the chromosome binding domain (15, 20, 38), is necessary and sufficient for 

genome protection. 

Synergies upon co-depletion of p53. In contrast to the effects of p21 depletion (13) 

(Figure S2), we observed a dramatic loss of viability in hTERT-RPE1 cells when Ki-67 

and p53 were depleted simultaneously (Fig. 5A-B). We also observed synergy with p53 

depletion in HCT116 cells, although in ths case reduced proliferation rather than lethality 

was observed (Fig. 5C). Furthermore, co-depletion of Ki-67 and p53 caused robust 

damage during synchronous progression through mitosis (Figure 5D-F), resulting in 

greater gH2AX phosphorylation signals than observed upon depletion of either protein 

alone (Figures 5D and 1D). To determine whether the same domain of Ki-67 protects 

cells in the absence of p53, we repeated the previous transgene complementation assay 

in HCT116 cells treated with si-p53 (Supplemental Figure S4). Again, the C-terminal LR 
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domain was necessary and sufficient for protection, wtih the magnitude of the gH2AX 

signals greater in the absence of p53 (Supplemental Figure S4). We confirmed the 

synergistic damage phenotypes using a second siRNA that targets p53 (Supplemental 

Figure S5A-D). Together, these data indicated that the genomic damage caused by the 

lack of the Ki-67 C-terminal domain is magnified in the absence of p53. 

In addition to greater levels of gH2AX, we observed that co-depletion of Ki-67 and p53 

increased the production of structures resembling anaphase bridges (DNA stretched 

between both segregating chromosome masses) (Figure 6A-B). Anaphase bridges arise 

from telomeric fusions or from misrepair of DNA damage, and are increased upon 

exposure to a wide variety of genotoxic agents (39). Observation of anaphase bridges is 

significant because they contribute to aneuploidy, a very frequent feature of human 

tumors (40). We observed other anaphase defects with a variety of appearances, in some 

cases including separated DNA masses resembling lagging chromosomes 

(Supplemental Figure S5E). We quantified the appearance of anaphase defects in RO-

3306-synchronized mitoses in HCT116 cells, either with or without IAA-driven Ki-67 

degradation, and either with or without p53 depletion. We observed that anaphase defects 

were by far most abundant in doubly-depleted cells (Fig. 6A), and that they began to 

appear after 60 minutes post release, around the time of sister chromosome separation 

at anaphase (Fig. 5E-F, 6B). These observations suggested that significant genome 

instability is triggered upon co-depletion of Ki-67 and p53.  

Indeed, in addition to anaphase defects, microscopic examination indicated additional 

abnormal nuclear morphologies upon co-depletion of Ki-67 and p53. After the 

synchronized cells passed through mitosis in the absence of both Ki-67 and p53, these 
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included grossly altered nuclear morphologies and strongly DAPI-stained puncta (Fig. 5F, 

120 minute time point). The doubly-depleted cells also displayed small DAPI-stained 

bodies that appeared to be micronuclei (Fig. 6C-J). Previous studies have shown that 

anaphase DNA bridges can lead to formation of micronuclei (39, 41), which are small 

bodies containing single chromosomes or chromosome fragements enclosed within 

nuclear envelope-derived membranes (42). To confirm that these are micronuclei, we 

showed that these stained with antibodies recognizing LAP2a (Fig. 6D-E, 6H-J), a protein 

constitutively found in micronuclei (27). We also observed that after 24 hours of auxin 

treatment, the micronuclei contained lamin A/C protein around their membrane, but that 

after 48 hours these levels were greatly reduced (Fig. 6F-G). Such loss of lamin is 

characteristic of micronuclear envelope degradation (26, 27), a process by which DNA in 

micronuclei loses nuclear membrane integrity and becomes exposed to inappropriate 

action of DNA recombination and replication enzymes leading to genome 

rearrangements. These data reinforce the importance of Ki-67 in genome stability, and 

suggest that anaphase bridges formed during the first mitosis after Ki-67 loss later 

become micronuclei. Similar genomic instability cascades are well-documented in the 

formation of anuploid cells (43). 

Recent studies have indicated that defects in DNA replication or broken chromosome 

bridges formed during interphase can result in aberrant DNA synthesis during subsequent 

mitoses, on a path towards high levels of genome instability (44, 45). We did not detect 

DNA synthesis in Ki-67-depleted mitotic cells (Figure 2). However, given our findings 

regarding p53 (Figure 5), we also tested for DNA synthesis in mitotic cells after acute co-

depletion of Ki-67 and p53. We labeled cells with EdU to detect DNA synthesis and also 
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stained for LAP2a to enhance detection of micronuclei (Figure 6H-J). We observed 

frequent EdU labeling of interphase cells in this asynchronous population, with a similar 

percentage of EdU-positive micronuclei. In contrast, no EdU-positive mitotic cells were 

detected (Fig. 6I). These data suggest that unscheduled DNA synthesis during mitosis is 

not a prominent outcome of Ki-67 depletion, either with or without co-depletion of p53. 

These data also re-enforce our conclusion that mitosis is the critical period for genome 

protection by Ki-67.   

Distinct effects of acute p53 depletion versus a pre-existing gene deletion. 

Several recent studies have shown that the presence of p53 can dramatically alter the 

outcome of synthetic lethality screens (46-48). These and other studies have provided 

lists of genes that are synthetically lethal with p53, and we note that the MKI67 gene 

encoding Ki-67 has not been found among these. We therefore wondered whether loss 

of Ki-67 in cells that already lack p53 would be cause similarly severe phenotypes. To 

test this idea, we depleted Ki-67 in a derivative of hTERT-RPE-1 cells in which both TP53 

alleles encoding p53 were deleted via CRISPR (49). As expected, treatment of these cells 

with si-p53 had no effect. Notably, the p53-null version of RPE-1 cells were not killed by 

depletion of Ki-67 (Fig. 7A-B). Furthermore, unlike the wild-type RPE-1 cells, these p53-/- 

cells did not display increased levels of DNA damage upon depletion of Ki-67, as 

measured via either immunofluorescence or FACS analyses (Fig. 7C). Therefore, the 

genetic environment can strongly affect the results of Ki-67 depletion. We hypothesize 

that during the serial passaging of the p53-/- cells in the course of selection and screening, 

there has been adaptation that overrides the genome instability that would otherwise be 

caused by loss of Ki-67.  
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Discussion 

Acute depletion of Ki-67 causes DNA damage that originates during mitosis.  

The role of Ki-67 in genome protection was most evident in mitotic cells (Figure 2), 

and was evident in the first mitosis after rapid depletion of the protein in the preceding G2 

phase (Figure 3). These data suggest that the damage observed in interphase cells 

originated during mitosis, and that the triggering events are not left over from unrepaired 

breaks or errors in a previous S phase. Rather, the rapid appearance of damage during 

progression through mitosis after acute depletion of Ki-67 (Figure 3) leads us to favor the 

idea that Ki-67 directly protects mitotic chromosomes. In this view, the appearance of 

gH2AX is one more aspect of defective chromatin maintenance upon Ki-67 depletion, 

consistent with previously described structural deformations of heterochromatin (11), loss 

of association and modification of heterochromatin at the nucleolar periphery (10-13), and 

reduced transcriptional silencing of pericentromeric alpha-satellite repeats (50).  

We observed gH2AX and 53BP1 foci in interphase cells upon acute depletion of Ki-67 

(Fig. 1). These data suggest that DNA damage explains why checkpoint-proficient 

hTERT-RPE1 cells acutely depleted of Ki-67 trigger p21-dependent cell cycle delays and 

transcriptional responses (13). We note that damage was observed in both hTERT-RPE1 

cells that induce p21 in response to Ki-67 depletion, and in HCT116 cells that do not 

display this response (Fig. 1). Therefore, the observed DNA damage is not dependent on 

the checkpoint-mediated transcriptional signature observed in Ki-67-depleted hTERT-

RPE1 cells (13). Consistent with this conclusion, we observed that HCT116 cells display 
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significantly altered levels of very few mRNAs upon Ki-67 depletion (Supplemental Figure 

S1).  

The C-terminus of Ki-67 protects chromosomes from damage. Ki-67 is a very 

large protein (over 3000 amino acids), and previous studies have characterized several 

functional subdomains (Fig. 4C; reviewed in (1)). At the N-terminus is a phosphopeptide-

binding FHA domain that interacts with the proteins NIFK and Hklp2 (51, 52). These 

proteins have been implicated in cancer progression (53) and spindle function (54), 

respectively, although how these activities may be related to Ki-67 function is not fully 

clear. Ki-67 also contains a distinct form of a Protein Phosphatase 1 (PP1)-binding site 

that is also found in the mitotic exit regulatory protein RepoMan (10); this binding site 

contributes to efficient removal of mitotic phosphorylation from Ki-67 (14). The majority of 

Ki-67 is composed of an internally repeated set of sixteen ~100 amino domains that 

contain a site for mitotic CDK1 phosphorylation (14, 55). Finally, at the C-terminus is a 

leucine-arginine rich “LR” domain (56) that binds DNA in vitro (38) and is required for 

chromosome binding in cells (15, 20). We show that this C-terminal LR domain is 

necessary and sufficient for protecting chromosomes from damage during mitosis, either 

in the presence or absence of p53. This suggests that proteins interacting with Ki-67 

domains other than the LR are unlikely to have direct roles in mitotic genome protection. 

Additionally, these results suggest that the high degree of electrostatic charge across the 

Ki-67 protein, which is important for maintaining the rod-like shape of individual 

chromosome arms during mitosis (20, 21) is not required for protection from damage. It 

remains to be determined whether the Ki-67 C-terminus protects chromosomes from 
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damage during mitosis via steric occlusion of enzymes that can inappropriately break 

DNA strands, or instead physically stabilizes chromosomes in another manner.  

What is the functional contribution of p53? p53 is a transcription factor that 

activates broad responses to DNA damage and other stresses (25, 57). Notably, p53 is 

mutated in more than half of human cancers (58), and impairing genes that are 

synthetically lethal with mutated p53 (59) is considered an important path towards 

therapeutic targets (60). Although most functional contributions of p53 include its activity 

as a transcription factor, it is clear that the lack of induction of p21 cannot alone account 

for the Ki-67/p53 synergy, because co-depletion of Ki-67 and p21 in hTERT-RPE1 cells 

results in loss of G1 checkpoint activation but not synthetic lethality (13). Therefore, a 

transcriptional role for p53 would have to be p21-independent. However, the rapid kinetics 

of the appearance of damage leads us to favor a more direct role for p53 in sensing and 

responding to defects caused by Ki-67 depletion.  

Which p53 functions may be most relevant to our observations? We note that 

chromosome missegregation elevates p53 levels, and that p53 limits proliferation of 

anuploid cells, contributing to p53’s role as a tumor suppressor (61). Therefore, one 

possibility is that p53’s role in monitoring chromosome segregation contributes to our 

observations. For example, depletion of Ki-67 could result in defective chromosome-

kinetochore attachements. In the presence of p53, poor attachments may be recognized 

and fixed, but in its absence, the observed anaphase bridges may result. Alternatively, 

DNA strand breaks caused by Ki-67 depletion could be catastrophic in the absence of 

p53. Kinetochore problems and DNA strand breaks could be interrelated, but whether 

one or the other is the initiating event remains to be explored.  
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It is clear that the requirement for Ki-67 to protect cells is much reduced in cells with 

a CRISPR-engineered p53 deletion (Fig. 7) compared to cells experiencing acute 

depletion of p53 (Fig. 5). These data suggest that cells adapt to the p53 deletion in a 

manner that compensates for loss of Ki-67. We hypothesize that this is achieved via 

altered gene expression and are testing this idea now. We also hypothesize that such 

adaptation mechanisms could explain apparently contradictory genetic studies in the 

mouse system, where expression of Ki-67 appears to be non-essential for organismal 

development (11). Another possibility is that not all of the functions of Ki-67 may be shared 

between humans and mice.  

In conclusion, these studies add to the growing list of important mitotic functions for 

the human Ki-67 protein. Specifically, we show that the C-terminal chromosome-binding 

domain of Ki-67 protects human cell DNA from damage during mitotic progression. Ki-67 

also is the keystone of the mitotic perichromosomal layer (PCL) (10), ensures that mitotic 

chromosomal arms maintain physical separation (20, 21), and promotes chromosome 

clustering during mitotic exit, thereby preventing retention of cytoplasmic contents in 

reforming nuclei (22). It will be of great interest to determine whether these mitotic 

activities are related to Ki-67’s contributions to the organization and silencing of 

interphase heterochromatin (10-13).  
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Materials and Methods 

 

Cell Culture  
hTERT-RPE-1 cells were the same isolate previously studied in the laboratory 

(13), originally obtained from Judith Sharp and Michael Blower (62). These were cultured 
in DMEM/F12 1:1 ham (Gibco) cat# 11320082 10% FBS (Avantor seradigm, VWR), and 
1% penicillin/streptomycin. hTERT-RPE-1 cells with the p53 gene deleted were a kind gift 
from Daniel Durocher (49) via Sharon Cantor, UMMS. HCT116-Ki-67-mAC-AID cells 
were a kind gift from Masatoshi Takagi (21) and were cultured in DMEM (Gibco) 
cat#11995065, with 10% FBS and 100 units/ml penicillin + 100 µg/ml streptomycin. Cells 
were incubated in 37 °C, 5% CO2, and 95% humidity. 

 
Antibodies, siRNAs and PCR primers are listed in Supplemental Table 2.  
 
Cell synchronization: Cells were seeded in 6-well plates containing glass 

coverslips and grown for 48 hours. Cells were first treated according to a double thymidine 
block protocol (63) involving two sequential rounds of treatment with 2 mM thymidine in 
complete culture medium for 18hr, followed by washing with phosphate-buffered saline 
(PBS) and release into drug-free media for 8 hours. Cells were then treated with 10 µM 
CDK1 inhibitor RO-3306 (Sigma-Aldrich cat. #SML0569, (37, 64)) for 18 hours. For some 
samples, 0.5 mM indole acetic acid (IAA, Sigma-Aldrich cat. #I5148, (21)) was added for 
the last 6 hours of RO-3306 treatment to induce degradation of Ki-67 (21). To release 
cells from the RO-3306 block, they were washed three times with PBS, given fresh drug-
free media, and then harvested at the indicated time points. 

 
Assay for Ki-67 transgene function: Cells were seeded in 60 mm culture dishes, 

grown for 48 hours, and then transfected with plasmids as indicated. After 12 hours, some 
cells were treated with 0.5 mM 3-indole acidic acid (IAA) for 24 hours, and then at 36 
hours post-transfection all cells were washed with PBS, harvested by trypsinization, and 
fixed in 70% ethanol in rotating tubes for 20 minutes. Cells were blocked for 1 hour at 40C 
using 1% bovine serum albumin (BSA) in PBS + 0.1% Triton X-100, then primary 
antibodies (1 ml diluted 1:1000 in blocking buffer) were added for incubation overnight in 
1.5 ml microfuge tubes on a rotator at 40C. Cells were then washed 3 times with PBS + 
0.1% Triton X-100, collecting cells by centrifugation for 1 minute at 2000 x g and removing 
the supernatant by aspiration. Secondary fluorescent antibodies (1:2000 in blocking 
buffer) were incubated for 1 hour in a tube rotator in room temperature. Cells were washed 
3 times with PBS + 0.1% Triton X-100, labelled with 1 µM DAPI diluted in PBS, and 
washed twice with PBS + 1% BSA + 0.1% Triton X-100 prior to analysis by flow cytometry. 
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Flow cytometry: Labeled cells were filtered through 37µm nylon mesh to enrich 
for single cells and analyzed in in the UMMS flow cytometry core on a BD LSR II flow 
cytometer, using wavelengths of 405 nm for DAPI, 488 nm for mClover-tagged Ki-67, and 
647 nm for Alexa Fluor 647-labeled secondary antibodies (for gH2AX). 10,000 cells were 
analyzed for each sample. FCS files were obtained and analyzed using Flowjo 10.6.2. 

AMNIS FACS was performed using a Flowsight image cytometer (Luminex) with a 
20x AT 0.6 NA objective with 1um pixel size. Images were analyzed using Ideas 6.0 
software. 

 
 Transfection: Plasmids encoding GFP-tagged Ki-67 transgenes were a kind gift 

from Masatoshi Takagi (15). DNA was purified for transfection using Zymopure midiprep 
kits (Zymo Research). Plasmid transfections were accomplished using Lipofectamine 
2000 (Invitrogen, Inc). 12 hours after plasmid transfections, HCT116 cells were either 
untreated or treated for 24 hours with 0.5 mM IAA, and then analyzed by flow cytometry 
or immunofluorescence.  

siRNA transfections were performed using Lipofectamine RNAiMAX (Invitrogen) 
as recommended by the manufacturer. siRNA duplexes were purchased from Ambion 
(Life Technologies). si-Ki-67 was used at a concentration of 20 µM, si-p21 was used at 
40 µM, and siRNAs targeting p53 were used at 80 µM. Concentrations of the silencing 
control siRNA (“scr”) were matched with the experimental duplex for each experiment. 
hTERT-RPE1 and HCT116 cells were analyzed 72 hours after siRNA transfections, with 
phleomycin treatments for the last 5 hours where indicated.  

 
Immunofluorescence studies: Cells were seeded in tissue culture-treated 6-well 

plates for 48 hours, then transfected with siRNAs. In some HCT116 experiments, cells 
were treated with 500 µM indole acetic acid (IAA) for 24 hours prior to harvest to deplete 
Ki-67. 72 hours after transfection, cells were washed twice with PBS, and fixed in 4% 
paraformaldehyde diluted in PBS for 10 minutes at room temperature. Cells were then 
washed twice with PBS, treated with ice-cold methanol for 20 minutes at -20oC, and 
blocked for 1 hour at 4oC in PBS + 1% BSA + 0.1% Triton X-100. Antibodies were diluted 
in the same blocking buffer, added to fixed cells overnight at 4oC. Cells were then washed 
three times, 5 minutes each with PBS. Secondary fluorescent antibodies were diluted 
1:1000 in the same blocking buffer and then added to cells and incubated for 1 hour at 
room temperature in a dark container. Cells were washed three times with PBS for 5 
minutes each, then counterstained with 1 µM DAPI for 1 minute. Cells were washed twice 
with PBS, and the coverslips were mounted on using Prolong gold antifade (Invitrogen 
cat. #P36934). Nuclei were marked as regions of interest and average signal intensities 
were measured using Zeiss Zen Blue software for each analyzed nucleus. IF intensity 
measurement statistics were analyzed using GraphPad Prism.  

 
Visualization of EdU-labeled nascent DNA: HCT116 cells were grown on glass 

coverslips in DMEM medium as described above. 5-Ethynyl-2-deoxyuridine (EdU, Sigma 
cat. T511285-5MG) was added to the culture medium at 10 μM for 30 min. After labeling, 
cells were washed three times with PBS. Cells were fixed in 4% formaldehyde for 20 min. 
Cells were then rinsed twice with PBS + 0.1 % Triton X-100 and then incubated for 30 
min in 100 mM Tris-HCl, pH 8.5, 1 mM CuSO4, 100 mM ascorbic acid, and 50 mM MB-
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Fluor 595 azide (Click Chemistry Tools, cat. 1169-5) for click-chemistry labeling (13, 65). 
After staining, the cells on coverslips were washed three times with PBS + 0.5% Triton X-
100 for 5 min each. Cells were then counterstained with DAPI, mounted onto microscope 
slides, and imaged by fluorescence microscopy as described above. 

 

            RNA isolation and real-time quantitative PCR: Total RNA was isolated from 
cells at 72h post-transfection using Qiazol (Qiagen) following the manufacturer's 
instructions and purified using an RNeasy kit (Qiagen). One microgram of RNA was 
subjected to reverse transcription with SuperScript II reverse transcriptase (Invitrogen). 
qPCR reactions were performed on an Applied Biosystems StepOnePlus machine (Life 
Technologies), using Fast Sybr mix (Kapa Biosystems). The program used was as 
follows: hold at 98°C for 30 s followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. All 
the signals were normalized to that of beta-actin (loading control) and the 2−ΔΔCT analysis 
method was used for quantification (Life Technologies). Primer sequences were designed 
by use of Primer3Plus software. All oligonucleotides for qPCR are listed in Supplemental 
Table 2. 
 

RNA-seq: For each biological replicate sample, 1 x 106 HCT116 cells were seeded 
into each of three 35 mm dishes, grown for 2 days and then untreated or treated with 0.5 
mM IAA for 24 hours. Media was removed, 0.7 ml Qiazol (Qiagen) was added to each 
dish and the lysate was collected into Qiashredder tubes (Qiagen) and centrifuged at 
12,000 x g for 30 seconds for homogenization. Total RNA was extracted using RNeasy 
kits (Qiagen) as recommended by the manufacturer. Total RNA concentrations were 
measured using Qubit reagents (Invitrogen). mRNA was enriched on oligo-dT beads, and 
reverse transcribed and sequenced using a PE150 protocol with Illumina reagents at the 
Novogene corporation. 
 

Paired-end reads were aligned to human primary genome hg38, with star_2.5.3a (66), 
annotated with GENCODE GRCh38.p12 annotation release 29 (67).  Aligned exon 
fragments with mapping quality higher than 20 were counted toward gene expression with 
featureCounts_1.5.2 (68). Differential expression (DE) analysis was performed with  
DESeq2_1.20.0 (69). Within DE analysis, 'ashr' was used to create log2 Fold Change 
(LFC) shrinkage for each comparison (70). Significant DE genes (DEGs) were identified 
with the criteria FDR < 0.05.  
 
Parameters:  

Genome: hg38.primary.fa 
GTF: gencode.v29.primary_assembly.annotation.gtf 
Star parameters: 

STAR --runThreadN {threads} \ 
        --genomeDir {input.index} \ 
        --sjdbGTFfile {input.gtf} \ 
        --readFilesCommand zcat \ 
        --readFilesIn {params.reads} \ 
        --outFileNamePrefix mapped_reads/{wildcards.sample}. \ 
        --outFilterType BySJout \ 
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        --outMultimapperOrder Random \ 
        --outFilterMultimapNmax 200 \ 
        --alignSJoverhangMin 8 \ 
        --alignSJDBoverhangMin 3 \ 
        --outFilterMismatchNmax 999 \ 
        --outFilterMismatchNoverReadLmax 0.05 \ 
        --alignIntronMin 20 \ 
        --alignIntronMax 1000000 \ 
        --alignMatesGapMax 1000000 \ 
        --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 
        --outSAMstrandField None \ 
        --outSAMtype BAM Unsorted \ 

 

 

  Imaging: Images were acquired using a Zeiss LSM700 confocal microscope 
equipped with laser lines of 405/488/594/647nm and suitable emission filters. A Plan-
Apochromat 63x/1.40 Oil DIC m27 objective was used. For analysis of 53BP1 foci, a Zeiss 
Axio-observer Epifluorescence microscope with mounted Axiocam 506 monochrome 
camera and automated stage was used. Data were analyzed using Zeiss Zen blue 
software. 

 
Proliferation Assay: Five thousand cells were seeded into 96-well plates in 200 

µl of complete culture medium and transfected with siRNAs as described above. For each 
time point starting at 24 hours after transfection, fresh culture media with a 1:100 dilution 
of Alamar blue (Bio-Rad cat. #BUF012A) was then added to the cells for 3 hours. Viable 
cells reduce resazurin (Alamar blue) to resorufin which was measured by absorbance at 
600 nm. Absorbances were measured using a Glomax (Promega) plate reader every 24 
hours for 5 days. 

 

Figure Legends 

Figure 1. gH2AX and 53BP1 staining in Ki-67-depleted cells. Scale bars are 5 µm and 

magnifications are the same within each panel. (A) hTERT-RPE1 cells were treated with 

si-scr or si-Ki-67 as indicated for 72 hours. DNA was stained with DAPI (grey), and Ki-67 

(green) and gH2AX (red) were detected by immunofluorescence (IF). (B) hTERT-RPE1 

cells were treated as in (A), in the presence or absence of the indicated amounts of 

phleomycin. gH2AX signals from 50 cells of each population are graphed, with mean 

values indicated by a black line. Ki-67 depletion significantly increased gH2AX signals for 
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all doses of phleomycin (p < 0.0001, Welch’s t-test). (C) HCT116 Ki-67-mAC cells 

(hereafter called HCT116 cells) were either untreated (-IAA) or treated with indole acetic 

acid (+IAA) for 24 hours to deplete Ki-67, and analyzed as in panel (A), except that Ki-67 

was detected via fluorescence of the mClover tag. (D) Quantitation of gH2AX in HCT116 

cells, as in panel (B). Ki-67 depletion significantly increased gH2AX signals at all doses 

of phleomycin (p < 0.0001, Welch’s t-test). (E) HCT116 cells were treated as indicated 

and prepared for IF with antibodies recognizing 53BP1 (red). Green channel fluorescence 

detected mClover-tagged Ki-67. (F) 53BP1 foci were counted in thirty cells in each 

population from the experiment in panel (E).  

 

Figure 2. Ki-67 depletion causes damage in mitotic cells. (A) HCT116 cells were 

treated or untreated with IAA for five hours as indicated, and pulse-labeled with EdU (red) 

thirty minutes prior to fixation for IF detection of gH2AX (green). Mitotic cells in these 

asynchronous populations are indicated separately. Scale bar is 5 µm. (B) EdU signals 

in thirty cells of each of the indicated populations were quantified. “S phase” cells 

displayed visible EdU signals, “mitotic” cells were those that displayed condensed 

chromosomes. (C) The gH2AX signals in the same cells analyzed in panel B are 

displayed.  

 

Figure 3. Damage occurs during mitotic progression in Ki-67-depleted cells. (A) 

Scheme for cell synchronization. (B) gH2AX signal intensity was measured in thirty cells 

in each of the control (-IAA) and auxin-treated (+IAA) populations from the indicated time 
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points after release from RO-3306 arrest. (C-D) IF analysis of individual cells from the 

indicated time points in the (C) -IAA and (D) +IAA experiments. DAPI (grey), gH2AX (red) 

and Ki-67-mClover (green) are shown. Panels on the right show FACS analysis of the 

DNA content of DAPI-stained cells treated in the same manner as cells analyzed by IF. 

Scale bars are 5 µm, with the same magnification used for the 0-60-minute time points. 

The fields displaying cells from the 120-minute time point are slightly larger to capture two 

cells. 

 

Figure 4. The C-terminal domain of Ki-67 protects cells from damage. (A) 2D FACS 

analysis of the HCT116-Ki-67-mAC cells, with GFP channel intensity on the y-axis and 

gH2AX signal intensity on the x-axis. Untransfected cells were either untreated (-IAA) or 

treated with auxin (+IAA). IAA treatment resulted in degradation of Ki-67-mClover, 

causing the loss of cells with low gH2AX signal intensity as well as fluorescence in the 

GFP channel. The percentages of cells with low gH2AX signal intensity (to the left of the 

vertical black line) are shown at the upper left corner. (B) Control experiments. Cells were 

transfected with the indicated constructs, treated with IAA, and analyzed by 2D FACS as 

above. Transfection of the empty vector (pEGFP-C1) restored GFP fluorescence to the 

majority of cells, but most cells displayed elevated gH2AX signal intensity. In contrast, 

transfection of a plasmid encoding GFP fused to a full-length Ki-67 cDNA resulted in most 

cells having reduced gH2AX signal intensity. (C) Schematic of transfected constructs. The 

FHA domain, the protein phosphatase 1-binding domain (PP1), the internal repeats 

(triangles) and the C-terminal chromatin-binding “LR” domain (green) are indicated. (D) 

2D FACS analysis of cells transfected with the indicated constructs. Constructs that 
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resulted in the majority of cells displaying low gH2AX signal intensity (“protected”) are 

tabulated in panel (C). (E) Summary of data from biological replicate experiments. 

Treatments yielding a majority of “protected” cells are colored in green.  

 

Figure 5. Synergistic effects of co-depletion of Ki-67 and p53. Experiments in this 

figure were performed using si-p53 (s606), companion experiments using the alternative 

si-p53 (s607) are shown in Figure S3. (A) Crystal violet staining of hTERT-RPE1 cells 

treated with the indicated siRNAs. (B) Proliferation of hTERT-RPE1 cells treated with the 

indicated siRNAs measured with Alamar Blue. Data from 8 replicate populations are 

shown. (C) Proliferation of HCT116 cells treated with the indicated siRNAs, measured as 

in panel B. (D) As in Figure 3B, gH2AX was analyzed in RO-3306-synchronized HCT116 

cells, except here cells were also treated with si-p53. (E-F) IF images of cells treated as 

in panel (D). As in Figure 3C-D, the fields of the 120-minute images are of slightly different 

size than the others. Scale bars are 5 µm. 

 

Figure 6. Co-depletion of Ki-67 and p53 results increases the frequency of 

anaphase defects and micronuclei. (A) Quantitation of defects (bridges and lagging 

chromosomes) in RO-3306-synchronized HCT116 cells. Note that cells entering 

anaphase were first observed at the 60-minute time point (Fig. 5E-F). (B) Examples of 

anaphase defects from RO-3306-synchronized HCT116 cells treated with IAA + si-p53, 

from the 60-minute point. Additional images are shown in Supplemental Figure S5E. (C) 

Quantitation of micronuclei in HCT116 cells 24 or 48 hours after the indicated treatments. 
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(D) IF analysis Lap2a in si-p53-treated cells for the indicated times after IAA treatment. 

(E) Quantitation comparing Lap2a staining from panel D. (F) As in panel D, IF analysis 

Lamin A in +IAA si-p53 cells. (G) Quantitation of Lamin A staining from panel F. (H-J) 

HCT116 cells were treated with si-p53 for 72 hours, IAA for the final 24 hours and then 

labeled with EdU for 20 minutes prior to fixation. K. Quantitation of the EdU intensities of 

cells illustrated in panels H-J. Interphase cells, micronuclei observed in interphase cells 

and mitotic cells were quantified as separate classes. Interphase cells that were not 

pulsed with EdU were quantified as a negative control for background fluorescent signals. 

Field sizes are the same within panels and for panels H and I. Scale bars are 5 µm. 

 

Figure 7. hTERT-RPE1 p53
-/-

 cells do not display growth and DNA damage 

phenotypes upon Ki-67 depletion. (A) Growth curves of p53-/- hTERT-RPE1 cells 

treated as indicated, analyzed as in Figure 5B. (B) Validation of Ki-67 depletion by siRNAs 

in wt and p53-/- hTERT-RPE1 cells. (C) Measurements of gH2AX staining intensity based 

on IF. Indicated cells were treated with phleomycin to exacerbate damage phenotypes as 

in Figure 1B.  

  

Supplemental Figures 

Supplemental Figure S1. Effects of Ki-67 depletion on steady-state mRNA levels. 

A. qRT-PCR analysis of MKI67 (round symbols) and CDKN1A (square symbols) 

mRNAs, encoding Ki-67 and p21, respectively. The indicated cell lines were transfected 

with the indicated siRNAs. As previously reported, depletion of Ki-67 induced p21 mRNA 
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in RPE-1 but not HeLa cells (13), and we show here that HCT116 cells also lack this 

checkpoint response. Ki-67 mRNA levels confirm the expected effect of the Ki-67-

targeted siRNAs. In each case, actin-normalized mRNA levels are reported for triplicate 

technical measurements from 3 independent biological replicate experiments.  

B. Images of cells used for the RNA-seq experiment, either untreated (-IAA) or auxin-

treated (+IAA). The GFP channel detects the mClover-tagged Ki-67 protein. Scale bar 50 

µm. 

C. Volcano plot of RNA-seq data for HCT116-Ki-67-mAC cells treated or untreated 

with auxin (IAA) to deplete Ki-67. The twelve genes indicated by the red spots are listed 

in panel D. Note that the greatest log2 fold change value for any gene is 0.62.  

D. List of the twelve genes significantly altered (adjusted p-value < 0.05, out of 34826 

genes measured) upon IAA-mediated degradation of Ki-67 in HCT166 cells. Left to right, 

the log2 Fold Change, Standard error of the log2 fold change, p-value, adjusted p-value, 

and raw Transcripts Per Million (TPM) values for the biological replicate experiments are 

presented. See Supplemental Table 1 for detailed analysis of the RNA-seq data. 

 

Supplemental Figure S2. Characterization of p21 depletion phenotypes and 53BP1 

foci. (A) RT-PCR validation of si-p21-mediated depletion of p21 mRNA levels in hTERT-

RPE1 cells. Triplicate measures of three samples for each condition were analyzed. (B) 

Depletion of p21 does not exacerbate damage caused by Ki-67 depletion. hTERT-RPE1 

cells were treated with the indicated siRNAs and analyzed as in Figure 1B in the absence 

of phleomycin. (C) As in panel B, except cells were treated in the presence of 100 µg/ml 

phleomycin. Depletion of p21 did not significantly affect gH2AX levels (Welch’s t test, p = 
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0.30 and 0.27 in panels B and C, respectively). (D) IAA-treated HCT116 cells were 

prepared for IF with antibodies recognizing gH2AX and 53BP1. Note the cell in metaphase 

at the center of the image, which displays gH2AX but not 53BP1 staining.  

 

Supplemental Figure S3. Mitotic localization of transgenes. HCT116 cells were 

transfected with constructs encoding the indicated Ki-67 transgenes (see Figure 4C for 

diagram). 12 hours after transfection, endogenous Ki-67 was degraded by addition of 0.5 

mM IAA, and cells were analyzed 24 hours later. The GFP-tagged transgene was 

visualized along with DAPI-stained DNA. Cells expressing full-length, wild-type Ki-67-

GFP and the empty vector encoding eGFP are shown on the upper left. The rest of the 

left-hand column are constructs that did not protect cells from DNA damage. On the right 

are cells expressing transgenes that did protect from damage. All of the latter class 

contain the chromosome-binding C-terminal domain, and this imaging confirms the 

expected mitotic localization on chromosomes. 

 

Supplemental Figure S4. Domain analysis of Ki-67 in cells depleted of p53. Cells 

were analyzed as in Figure 4, except here cells were also treated with si-p53 (s606). 

Panel A shows the effect of auxin-mediated Ki-67 depletion in the absence of plasmid 

transfection. Panel B shows complementation by wild-type Ki-67. Panel C and D show 

FACS analysis and quantitation as in Figure 4. Note that the magnitude of gH2AX signals 

(x-axis) in these samples is greater than observed in Figure 4, indicative of the increased 
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damage caused upon co-depletion of p53 and Ki-67. Nevertheless, the C-terminal domain 

of Ki-67 still protects from this damage.  

 

Supplemental Figure S5. Confirmation of synergistic phenotypes with a second si-

p53 reagent (s607). (A) HCT116 cells were treated as indicated and gH2AX levels were 

analyzed as in Fig. 1D. (B) gH2AX levels in RO3306-synchronized HCT116 were 

analyzed as in Figure 5D, except that si-p53 s607 was used here rather than s606. (C) 

Validation of si-p53 (s606) depletion of p53 mRNA levels in HCT116 cells. (D) Validation 

of si-p53 (s607) depletion of p53 mRNA levels in HCT116 cells. Triplicate measures of 

three samples for each condition were analyzed. (E) Images of additional anaphase 

defects as in Figure 6B. All images are from HCT116 cells treated with IAA + si-p53. Cells 

were all from 60 minutes after release from RO-3306, except the bottom image, which is 

from 70 minutes after release. Scale bars are 5 µm. 

 

Supplemental Table 1. RNA-seq analysis of HCT116 cells with and without auxin-

mediated depletion of Ki-67.  

 

Supplemental Table 2. Antibodies, siRNAs and PCR primers used.  
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