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Abstract 1 

Inhibition of mTORC1 (mechanistic target of rapamycin 1) slows ageing, but 2 

mTORC1 supports fundamental processes that include protein synthesis, making it 3 

critical to elucidate how mTORC1 inhibition increases lifespan.  Under stress 4 

conditions, the integrated stress response (ISR) globally suppresses protein 5 

synthesis, resulting in preferential translation of the transcription factor ATF-4.  Here 6 

we show in C. elegans that the ATF-4 transcription program promotes longevity and 7 

that ATF-4 upregulation mediates lifespan extension from mTORC1 inhibition.  ATF-4 8 

activates canonical anti-ageing mechanisms but also increases expression of 9 

transsulfuration enzymes to promote hydrogen sulfide (H2S) production.  ATF-4-10 

induced H2S production mediates longevity and stress resistance from C. elegans 11 

mTORC1 suppression, and ATF4 drives H2S production in mammalian dietary 12 

restriction.  This H2S boost increases protein persulfidation, a protective modification 13 

of redox-reactive cysteines.  Increasing H2S levels, or enhancing mechanisms that 14 

H2S modulates through persulfidation, may represent promising strategies for 15 

mobilising therapeutic benefits of the ISR or mTORC1 inhibition. 16 

  17 
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 3 

Introduction 18 

Over the last three decades, genetic and phenotypic analyses of ageing have 19 

revealed the paradigm that across eukaryotes, lifespan can be extended by inhibition 20 

of mechanisms that promote growth and proliferation 1–7.  Prominent among these is 21 

the kinase complex mTORC1, which coordinates a wide range of growth-related 22 

processes in response to growth factor and nutrient signals 2–4.  mTORC1 activity can 23 

be reduced by dietary restriction (DR), or by pharmacological interventions such as 24 

rapamycin, an mTORC1 inhibitor that increases lifespan from yeast to mice 2,3,6,7.  25 

However, DR is challenging to maintain and not entirely beneficial for health, and while 26 

rapamycin represents an exciting paradigm for anti-ageing pharmacology, mTORC1 27 

suppression has wide-ranging effects on the organism 2,3,6,7.  Rapamycin is used 28 

clinically as an immunosuppressant, and mTORC1 broadly affects metabolism and 29 

supports the synthesis of proteins, nucleic acids, and lipids.  Elucidation of specific 30 

mechanisms through which mTORC1 influences longevity is critical not only for 31 

understanding the biology of ageing and longevity, but also the development of 32 

molecularly targeted anti-ageing therapies that maintain health. 33 

 34 

Because of its short lifespan and amenability to genetics, the nematode C. 35 

elegans has been invaluable for identifying mechanisms that promote longevity.  In C. 36 

elegans, suppression of translation initiation increases both lifespan and stress 37 

resistance 8–13.  Work in C. elegans and Drosophila indicates that lifespan extension 38 

from mTORC1 inhibition is mediated in part through a global reduction in mRNA 39 

translation 14,15.  A mechanistic understanding of how mRNA translation levels affect 40 

longevity will therefore provide mechanistic insights into how mTORC1 inhibition 41 

increases lifespan. 42 
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 4 

 43 

Suppression of new protein synthesis is an important mechanism through 44 

which cells protect themselves under stressful conditions that include nutrient 45 

deprivation, and thermal-, oxidative-, and endoplasmic reticulum (ER) stress 8–13. 46 

Under these conditions, certain protective proteins are translated preferentially.  In the 47 

integrated stress response (ISR), stress conditions induce a broad reduction in cap-48 

dependent mRNA translation by activating kinases that phosphorylate and inhibit the 49 

translation initiation factor subunit eIF-2a 16–18.  This suppression of translation leads 50 

in turn to preferential translation of the activating transcription factor ATF4, which 51 

coordinates various stress defense mechanisms to reestablish homeostasis 16–18.  52 

ATF4 also increases expression of amino acid biosynthesis genes, and in mammalian 53 

cell culture experiments mTORC1 promotes ATF4 translation through its broad 54 

upregulation of protein synthesis 19–21.  This last result seems paradoxical, given that 55 

ATF4 synthesis is increased when translation is suppressed in the ISR, but is logical 56 

given the need to maintain amino acid levels under conditions of high growth activity. 57 

 58 

Here we have investigated whether and how ATF4 and the ISR might influence 59 

longevity.  In C. elegans, we find that ATF4 is essential for longevity arising from 60 

inhibition of protein synthesis and, importantly, is a pro-longevity factor that extends 61 

lifespan when overexpressed on its own.  ATF-4 increases lifespan by enhancing 62 

canonical anti-aging mechanisms, but also transsulfuration enzyme-mediated 63 

hydrogen sulfide (H2S) production.  The anti-aging benefits of mTORC1 suppression 64 

depend upon ATF-4 activation, which in turn increases levels of H2S and protein 65 

persulfidation, an H2S-induced protective modification of redox-reactive cysteine (Cys) 66 

residues.  Dietary restriction (DR) acts through ATF-4 to increase H2S in mammals, 67 
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 5 

suggesting conservation of ATF-4 as a longevity mediator.  The data identify ATF-4 68 

as a pro-longevity factor and suggest that in living animals ATF-4 regulation by 69 

mTORC1 is more complex than currently appreciated.  They also suggest that 70 

increasing H2S levels, or enhancing processes that H2S modulates through 71 

persulfidation, may represent a promising strategy for mobilising specific therapeutic 72 

benefits of the ISR, mTORC1 inhibition or DR. 73 

  74 
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 6 

Results 75 

ATF-4 responds to translation suppression to increase C. elegans lifespan 76 

We investigated whether C. elegans atf-4 is regulated similarly to mammalian 77 

ATF4 at the level of mRNA translation.  In mammals 2-3 small upstream open reading 78 

frames (uORFs) within the ATF4 5’ untranslated region (UTR) occupy the translation 79 

machinery under normal conditions, inhibiting translation of the downstream ATF4 80 

coding region 19,22,23.  By contrast, when eIF-2a phosphorylation impairs translation 81 

initiation, the uORFs are bypassed, and ATF4 is translated preferentially.  The C. 82 

elegans atf-4 ortholog (previously named atf-5) contains two 5’ UTR uORFs (Fig. 1a; 83 

Extended Data Fig. 1a, 1b), deletion of which increases translation of a transgenic 84 

reporter 23, predicting that translation of the atf-4 mRNA will be increased under 85 

conditions of global translation suppression.  86 

 87 

We tested this idea in C. elegans that express green fluorescent protein (GFP) 88 

driven by the atf-4 upstream region, including the uORFs (Patf-4(uORF)::GFP, Fig. 89 

1a, 1b).  Patf-4(uORF)::GFP expression was extremely low under unstressed 90 

conditions, but was increased dramatically by translation suppression or conditions 91 

that elicit the ISR, including ER stress from treatment with tunicamycin (TM) or DTT 92 

(Fig. 1b, Extended Data Fig. 1c, 1d).  By contrast, TM treatment increased atf-4 mRNA 93 

levels only 1.5-fold (Fig. 1d, Extended Data Fig. 1e).  The increase in Patf-94 

4(uORF)::GFP fluorescence arising from ER stress was not prevented when 95 

transcription was blocked by alpha-amanitin (Fig. 1d, 1e), further indicating post-96 

transcriptional regulation, supporting the idea that the endogenous atf-4 locus is 97 

regulated similarly, while the ATF-4 mRNA was expressed at steady levels during 98 

development and ageing (Extended Data Fig. 1f). Ribosomal profiling demonstrated 99 
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 7 

that during development, when overall translation levels are high, ribosome occupancy 100 

was enriched on the endogenous atf-4 uORFs compared to the coding region (Fig. 101 

1f). We conclude that, like mammalian ATF4, C. elegans atf-4 is preferentially 102 

translated upon conditions of reduced protein synthesis (Extended Data Fig. 1g).  103 

 104 

 Our data suggest that in C. elegans, genetic or pharmacologic suppression of 105 

mRNA translation can serve as a proxy method of activating ATF-4 that would bypass 106 

stress induction of the ISR Accordingly, a low dose of the translation elongation 107 

blocker cycloheximide increased Patf-4(uORF)::GFP expression (Fig. 1b, Extended 108 

Data Fig. 1c, 1d).  Because ATF-4 is upregulated by translation suppression, we 109 

hypothesised that it might mediate the accompanying lifespan extension. Lifespan of 110 

C. elegans can be increased by RNA interference (RNAi) to various translation 111 

initiation factors (ifg-1/eIF4G, ife-2/eIF4E, or eif-1A/eIF1AY), as reported previously 8–112 

13, but this extension was abrogated in atf-4(tm4397) loss-of-function mutants (Fig. 1g, 113 

Supplementary Table 1).  Similarly, a low dose of cycloheximide extended the lifespan 114 

of wild type (WT) but not atf-4(tm4397) animals (Fig. 1h, Supplementary Table 1). 115 

Thus, preferential translation of atf-4 is required for lifespan extension from a global 116 

reduction in cytoplasmic protein synthesis. 117 

 118 

ATF-4 mobilises canonical pro-longevity mechanisms 119 

 In C. elegans, a limited number of transcription factors have been identified that 120 

can increase lifespan when overexpressed (including DAF-16/FOXO, HSF-1/HSF1, 121 

and SKN-1/NRF)1,24.  These evolutionarily conserved regulators are generally 122 

associated with enhancement of protective mechanisms such as stress resistance, 123 

protein folding or turnover, and immunity.  To determine whether ATF-4 can actually 124 
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 8 

promote longevity, as opposed to being required generally for health, we investigated 125 

whether an increase in ATF-4 levels might extend lifespan.  Transgenic ATF-4-126 

overexpressing (ATF-4OE) animals exhibited nuclear accumulation of ATF-4 in 127 

neuronal, hypodermal, and other somatic tissues under unstressed conditions (Patf-128 

4::ATF-4(cDNA)::GFP; Extended Data Fig. 2a). TM treatment doubled their ATF-4 129 

protein levels (Extended Data Fig. 2b, Supplementary Data File 1), indicating that this 130 

ATF-4 transgene responds to environmental and physiological conditions.  131 

Importantly, ATF-4 overexpression (OE) increased lifespan by 7-44% across >10 132 

independent trials, which included two experiments without FuDR and analysis of 133 

independent transgenic lines (Fig. 2a, Supplementary Table 1).  ATF-4 OE also 134 

prolonged healthspan (Fig. 2b, Extended Data Fig. 2c Supplementary Table 2).  Thus, 135 

the elevated activity of the ATF-4 transcriptional program is sufficient to extend 136 

lifespan and promote health. 137 

 138 

To identify longevity-promoting mechanisms that are enhanced by ATF-4, we 139 

used RNA sequencing (RNA-seq) to compare gene expression profiles in atf-4 loss-140 

of-function or ATF-4OE animals to WT under non-stressed conditions (Fig. 2c, 141 

Extended Data Fig. 3a-d, Supplementary Table 3).  Only a modest number of genes 142 

were detectably up- or down-regulated by atf-4 loss or OE, respectively (Fig. 2c, 143 

Extended Data Fig. 3c-d).  Notably, ATF-4 OE upregulated several small heat shock 144 

protein (HSP) genes that are also controlled by HSF-1/HSF (heat shock factor) and 145 

DAF-16/FOXO (Fig. 2c), and are typically induced by longevity-assurance pathways 146 

25,26.  Translation of atf-4 was increased within minutes by a heat shock (Extended 147 

Data Fig. 3f, 3g), suggesting that ATF-4 functions in tandem with HSF-1/HSF1, and 148 

each of the ATF-4-upregulated chaperone genes hsp-16.2/HSPB1, sip-1/CRYAA, 149 
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hsp-70/HSPA1L, and hsp-4/BiP was required for lifespan extension from ATF-4 OE 150 

(Fig. 2d; Extended Data Fig. 3e; Supplementary Table 1).  Together, the data suggest 151 

that ATF-4 enhances proteostasis mechanisms that have been linked to longevity. 152 

 153 

Other findings further linked ATF-4 to longevity-associated mechanisms.  ATF-154 

4 OE increased expression of the cytoprotective gene nit-1/Nitrilase (Fig. 2d), a 155 

canonical target of the xenobiotic response regulator SKN-1/NRF 27 , along with 156 

expression of collagen genes that are typically upregulated by SKN-1/NRF in 157 

response to lifespan extension interventions (Fig. 2c) 25.  The 3kb predicted promoter 158 

regions of many ATF-4-upregulated genes included not only the binding consensus 159 

for mammalian ATF4 (-TGATG-) 28,29, but also sites for DAF-16, HSF-1, and SKN-1 160 

(Fig. 2d, Supplementary Table 4, 5).  Furthermore, many genes that were upregulated 161 

by ATF-4 OE had been detected in chromatin IP (ChIP) analyses of these last three 162 

transcription factors (Extended Data Fig. 3h, Supplementary Table 5).  Each of those 163 

transcription factors is critical for lifespan extension arising from suppression of 164 

translation 11,12, and we determined that they are also needed for long life conferred by 165 

ATF-4 OE (Fig. 2e, Supplementary Table 1).  ATF-4 OE also robustly upregulated two 166 

adenine nucleotide translocase genes (ANT; ant-1.3 and ant-1.4, Fig. 2c).  The ANT 167 

complex is important for transport of ATP from the mitochondrial space into the 168 

cytoplasm, as well as for mitophagy 30, and both ant-1.3 and ant-1.4 were required for 169 

ATF-4 OE longevity (Fig. 2f, Supplementary Table 1).  Together, our findings suggest 170 

that while the transcriptional impact of ATF-4 may seem limited in breadth, it 171 

cooperates with other longevity factors to enhance the activity of multiple mechanisms 172 

that protect cellular functions, thereby driving lifespan extension. 173 

 174 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.02.364703doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

ATF-4 increases lifespan through H2S production 175 

To identify ATF-4-regulated genes that are conserved across species and 176 

might be particularly likely to have corresponding roles in humans, we queried our 177 

ATF-4OE vs WT RNA-seq results and compared the top 200 significantly upregulated 178 

C. elegans genes against 152 mammalian genes that are thought to be regulated 179 

directly by ATF4 31.  Seven orthologues of these genes were upregulated by ATF-4 180 

OE in C. elegans (Fig. 3a, Supplementary Table 4), four of which encoded 181 

components of the reverse transsulfuration (hereafter referred to as transsulfuration) 182 

pathway (cth-2/CTH), or associated mechanisms (glt-1/SLC1A2, C02D5.4/GSTO1 183 

and F22F7.7/CHAC1; Fig. 3b, Supplementary Table 4).  The transsulfuration pathway 184 

provides a mechanism for utilising methionine to synthesise cysteine and glutathione 185 

when levels are limiting 32, but the CTH enzyme (cystathionine gamma-lyase, also 186 

known as CGL and CSE) also generates H2S as a direct product.  Underscoring the 187 

potential importance of the H2S-generating enzyme CTH-2 for ATF-4 function, the 188 

levels of its mRNA and protein were each increased by ATF-4 OE (Fig. 3c-e, 189 

Supplementary Data File 2).  190 

 191 

Reduced methionine levels 33 and higher H2S levels 34,35 have been linked to 192 

longevity.  However, we did not detect any differences in the relative abundance of 193 

amino acids between ATF-4oe and WT animals (Supplementary Table 6), suggesting 194 

that ATF-4 is unlikely to influence longevity by altering amino acid levels.  By contrast, 195 

ATF-4 OE consistently increased H2S levels in a cth-2-dependent manner (Fig. 3f, 196 

Extended Data Fig. 4a-e).  The increases in longevity and stress resistance that are 197 

conferred by ATF-4 OE were each fully abolished by cth-2 knockdown (Fig. 3g, 3h, 198 

Supplementary Table 1, 7), suggesting that the increase in H2S production that derived 199 
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 11 

from CTH-2 upregulation is a critical aspect of ATF-4 function.  Given that the ISR 200 

results in preferential translation of ATF-4 22,36, we asked whether ER stress conditions 201 

increase H2S production. We found that treating WT animals with tunicamycin resulted 202 

in higher H2S levels (Fig. 3i), suggesting that increased H2S production is in general a 203 

part of the ISR. Taken together, our results show that the ISR and ATF-4 act at multiple 204 

levels to promote stress resistance and longevity, and that a CTH-2-driven increase 205 

in H2S production is a critical aspect of this program (Fig. 3j).  206 

 207 

 Given that atf-4 is essential for lifespan to be extended in response to reduced 208 

translation rates, we investigated whether atf-4 and its transsulfuration target gene 209 

cth-2 might be generally required for C. elegans lifespan extension.  Although 210 

ATF4/ATF-4 has been implicated in responses to mitochondrial stress or protein 211 

synthesis imbalance 28,29, atf-4 was dispensable for the increases in lifespan or 212 

oxidative stress resistance that follow from developmental impairment of mitochondrial 213 

function (Fig. 4a, Extended Data Fig. 4f, 4e Supplementary Table 1, 8).  The extent of 214 

lifespan extension by reduced insulin/IGF-1 signalling or germ cell proliferation was 215 

decreased by atf-4 mutation but did not depend upon cth-2, perhaps consistent with 216 

other transsulfuration components and H2S producers being implicated in the latter 217 

pathway (Fig. 4b, 4c, Supplementary Table 1) 37.  We conclude that ATF-4 and the 218 

ISR may be indispensable for upregulating H2S production and other longevity-219 

promoting mechanisms specifically when lifespan extension is driven by a reduction 220 

in protein synthesis (Fig. 3j). 221 

 222 

Longevity from mTORC1 suppression is driven by ATF-4, H2S, and protein 223 

persulfidation  224 
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 12 

Because mTORC1 inhibition increases lifespan in part by reducing protein 225 

synthesis 14,15, our findings in Fig. 1 suggest that ATF-4 might be involved.  mTORC1 226 

is required for C. elegans larval development 2, but C. elegans lifespan can be 227 

increased by RNAi knockdown of mTORC1 signalling components during adulthood 228 

or by mutation of raga-1, which encodes one of the RAG GTPases (RAGA-1 and 229 

RAGC-1) that transduce amino acid signals to activate mTORC1 2,3,6,7.  The former 230 

strategy allows mTORC1 activity to be reduced without any associated developmental 231 

effects.  Knockdown of either RAG gene increased Patf-4(uORF)::GFP expression in 232 

living C. elegans, indicating that in C. elegans ATF-4 is preferentially translated when 233 

mTORC1 activity is reduced (Fig. 4d, Supplementary Table 9), as would be predicted 234 

by the decrease in mRNA translation that accompanies mTORC1 inhibition in C. 235 

elegans 13,14.  Importantly, the increases in lifespan extension, stress tolerance, and 236 

healthspan that resulted from loss of either raga-1 or ragc-1 function required atf-4 237 

(Fig. 4e-h, Extended Data Fig. 2c, 4g, Supplementary Table 1-2, 7, 8, 10), indicating 238 

that ATF-4 plays an essential role in the benefits of reducing mTORC1 activity in vivo.   239 

 240 

Having determined that atf-4 is required for mTORC1 suppression to extend 241 

lifespan, we were surprised to find that atf-4 was dispensable for lifespan extension 242 

from rapamycin treatment, even though rapamycin increased ATF-4 translational 243 

reporter expression (Extended Figure 5a-d, Supplementary Table 1, 9). Notably, the 244 

mTOR kinase is present not only in mTORC1, but also within the mTORC2 complex 245 

2,3.  mTORC2 is not as well understood as mTORC1, but it functions in growth 246 

signalling and its activation involves binding to the ribosome, suggesting an 247 

association with translation regulation (Extended Data Fig. 5a) 38.  Rapamycin 248 

mechanistically inhibits mTORC1, but continuous rapamycin treatment depletes the 249 
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mTOR kinase, thereby reducing mTORC2 activity 39.  We therefore investigated the 250 

possible involvement of atf-4 in mTORC2 effects.   251 

 252 

The effects of mTORC2 on C. elegans lifespan are complex, but adulthood 253 

RNAi knockdown of the essential mTORC2 subunit RICT-1 (Rictor) extends lifespan 254 

14,40–42.  Knockdown of rict-1 increased Patf-4(uORF)::GFP expression, suggesting an 255 

effect on translation, and the resulting lifespan extension required atf-4 (Fig. 4i, 256 

Extended Figure 5c, Supplementary Table 1, 9).  Consistent with earlier evidence that 257 

rapamycin impairs both mTORC1 and mTORC2 in C. elegans 14, simultaneous 258 

knockdown of raga-1 (mTORC1) and rict-1 (mTORC2) extended lifespan 259 

independently of atf-4 (Extended Data Fig. 5e, Supplementary Table 1).  Evidently, 260 

simultaneous mTORC1 and mTORC2 inhibition triggers mechanisms that obviate the 261 

requirement for atf-4 that is observed when each mTOR kinase complex is inactivated 262 

separately. 263 

 264 

 We investigated whether mTOR inhibition might extend lifespan through an 265 

ATF-4-mediated increase in H2S production (Fig. 3).  Genetic inhibition of either 266 

mTORC1 or mTORC2 increased H2S levels in an atf-4-dependent manner (Fig. 5a, 267 

5b, Extended Data Fig. 5g, 5h).  Furthermore, the ATF-4 target gene cth-2 was fully 268 

required for the increased heat stress resistance and longevity of animals with 269 

impaired mTORC1 (Fig. 5c, 5d, Supplementary Table 1, 7), suggesting that this H2S 270 

production is essential.  Our findings show that reduced mTOR signalling leads to 271 

preferential translation of ATF-4, which increases cystathionine gamma lyase 272 

expression and H2S to promote stress resilience and healthy ageing.  273 

 274 
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An important consequence of increased H2S levels is an increase in protein 275 

persulfidation (SSH) at cysteine (Cys) thiols (SH) 37,43,44.  Redox modification and 276 

signalling at Cys residues are critical in growth signalling and other fundamental 277 

processes 43,44.  Under oxidising conditions, thiols that are prone to redox-reactivity 278 

can be converted to sulfenic acid (SOH), a modification that can proceed to irreversible 279 

and potentially damaging redox forms (SO2H, SO3H) 43,44.  H2S converts SOH to SSH 280 

(persulfidation), a readily reversible modification that promotes stress resistance by 281 

protecting proteins and their functions 43,44.   282 

 283 

PSSH levels can be visualised with chemoselective probes in a gel-based 284 

assay that reveals individual protein species, or by confocal microscopy 37.  In C. 285 

elegans PSSH levels are decreased by mutation of the cth-2 paralog cth-1, suggesting 286 

that they are dependent upon a background level of H2S produced by the latter  37.  By 287 

contrast, neither atf-4 nor cth-2 mutations globally altered PSSH, consistent with ATF-288 

4-CTH-2 functioning largely as an inducible pathway of H2S production, although cth-289 

2 appeared to be needed for appropriate levels of persulfidation of some individual 290 

proteins and in certain tissues (Fig. 5e, Supplementary Video 1, 2).  PSSH levels were 291 

lower in raga-1 mutants (reduced mTORC1 activity; Fig. 5e), possibly because 292 

mTORC1 inhibition is associated with increased antioxidant activities 14,45 that might 293 

reduce the levels of protein-SOH precursor.  Interestingly, in the raga-1 background 294 

atf-4 mutation dramatically decreased PSSH levels across numerous different proteins 295 

(Fig. 5e), indicating that ATF-4 is a major regulator of protein persulfidation in the 296 

setting of low mTORC1 activity.  Our data suggest that mTORC1 inhibition alters the 297 

overall balance of redox signalling in the organism, with ATF-4-induced H2S 298 

production playing a crucial role in maintaining the levels and extent of PSSH. 299 
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 300 

ATF-4- induced H2S production during mammalian DR  301 

 We investigated whether the ATF4-CTH pathway is involved in dietary 302 

restriction (DR), an intervention that extends lifespan in essentially all eukaryotes.  303 

Both a reduction in mTORC1 activity and an increase in H2S have been implicated in 304 

mediating DR benefits 2,7,35,37,46.  In C. elegans, atf-4 was not required for lifespan to 305 

be extended by a liquid culture food-dilution DR protocol, and was only partially 306 

required for lifespan extension in the genetic DR-related model eat-2 (Fig. 6a, 307 

Supplementary Table 1).  However, transsulfuration pathway genes other than cth-2 308 

are also partially required for eat-2 lifespan extension 35,37, suggesting that in C. 309 

elegans multiple pathways might increase H2S production during DR.   310 

 311 

In mammals, restriction of sulfur-containing amino acids (Met and Cys) acts 312 

through ATF4 and CTH to boost endothelial H2S levels and angiogenesis 47, and 313 

multiple longevity interventions increase CTH mRNA levels 48, suggesting a possible 314 

role for the ATF4-CTH pathway in DR.  Supporting this idea, our bioinformatic analysis 315 

revealed that CTH mRNA levels were increased in various mouse tissues by DR 316 

(32/36 profiles), rapamycin (4/6 profiles), and growth hormone insufficiency (8/8 317 

profiles) (Fig. 6b, Supplementary Table 11).  To examine the role of ATF4 in DR 318 

directly, we subjected 12-week-old control or ATF4 knockdown mice to a week of 319 

either DR or ad libitum (AL) feeding.  ATF4 knockdown resulted in dramatically 320 

decreased levels of both basal and DR-induced H2S production in the liver (Fig. 6c).  321 

Taken together, our data suggest that in mammals ATF4 is a major determinant of 322 

H2S production during DR.  They also predict that ISR/ATF4-induced H2S upregulation 323 
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is likely to be an essential contributor to longevity in the setting of DR, mTOR 324 

suppression, and possibly other longevity interventions (Fig. 6d).  325 

 326 

Discussion 327 

We have determined that C. elegans lifespan can be extended by the ISR 328 

regulator ATF-4 and that ATF-4 enhances longevity and health in part by boosting H2S 329 

production.  Conditions that inhibit mRNA translation, including mTORC1 inhibition, 330 

increase ATF-4 expression and cannot extend lifespan in its absence.  Previous 331 

studies revealed that longevity arising from inhibition of translation initiation depends 332 

upon preferential translation of protective genes 49, and increased transcription of 333 

stress defence genes 11,14.  Our new findings link these mechanisms by revealing that 334 

preferentially translated ATF-4 cooperates with DAF-16/FOXO, HSF-1/HSF, and 335 

SKN-1/NRF to drive protective gene transcription.  The ATF-4-related protein Gcn4 336 

contributes to DR longevity in S. cerevisiae 50, and we have found that ATF4 drives 337 

H2S production in mammalian DR (Fig. 6c), suggesting that ATF-4 mediates an 338 

ancient protective program that promotes longevity.   339 

 340 

Our evidence that reduced mTORC1 activity promotes longevity by increasing 341 

ATF-4 levels contrasts with mammalian evidence that pharmacological mTORC1 342 

inhibition reduces ATF4 translation 19–21.  However, those findings were obtained in 343 

cultured cells that were also exposed to growth factors or had mTORC1 activated 344 

genetically, a very different scenario from adult C. elegans, in which growth has largely 345 

ceased and most tissues are post-mitotic.  Consistent with our C. elegans results, in 346 

mouse liver ATF4 protein levels are increased in long-lived models, including 347 

rapamycin treatment and nutrient restriction 51, and mTORC1 hyperactivation (TSC1 348 
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deletion) decreases CTH expression and prevents DR from increasing CTH mRNA 349 

levels 35.  It will be interesting in the future to determine how mammalian mTORC1 350 

influences ATF4 in vivo under a variety of conditions, including analysis of tissues with 351 

different levels of growth and mTORC1 activity. 352 

 353 

We found that when mTORC1 activity is reduced, ATF-4 exerted its effects in 354 

part by increasing transsulfuration-mediated H2S production, thereby globally 355 

increasing PSSH levels.  This broad shift in posttranslational protein modification could 356 

influence many biological functions, including the activity of redox-regulated signalling 357 

pathways, making it of great interest to elucidate how these modifications influence 358 

the downstream effects of mTORC1 signalling.  Although inhibition of mTORC1 has 359 

received widespread enthusiasm as an anti-ageing strategy, mTORC1 controls 360 

fundamental processes that include protein synthesis, mRNA splicing, autophagy, and 361 

metabolic pathways 2,3,7,52–54. Similarly, although pharmacological inhibition of the ISR 362 

promotes memory and cognition by allowing protein synthesis 18,55, ISR suppression 363 

could reduce levels of H2S, which has been shown to prevent neurodegeneration 56.  364 

In these and other settings targeted mobilisation of beneficial mechanisms that are 365 

activated by ATF-4, including H2S production, might be of promising long-term value.  366 

Consistent with this notion, H2S confers many cardiovascular benefits in mammals, 367 

including a reduction in blood pressure 47,57–59, and patients suffering from vascular 368 

diseases show reduced CTH and H2S levels 60, prompting clinical trials of H2S-369 

releasing agents for cardiovascular conditions (NCT02899364 and NCT02278276).  It 370 

could be of considerable value to examine the potential benefits of ATF4 and H2S in 371 

various settings, including prevention of ageing-related phenotypes and disease.   372 

  373 
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Figure Legends 408 
 409 

 410 

Fig. 1. Preferential translation of ATF-4 is required for longevity under 411 

conditions that reduce global protein synthesis. 412 

a. Diagram of the atf-4 mRNA and the Patf-4(uORF)::GFP reporter. For details see 413 

Extended Data Fig. 1b.  414 

b. Reducing translation with 7.2 mM cycloheximide for 1 hour or 35 µg/ml tunicamycin 415 

for 4 hours increased expression of transgenic Patf-4(uORF)::GFP in L4 stage 416 

animals. Representative pictures are shown, with quantification in Extended Data Fig. 417 

1c. 418 

c. Nonsense mutation in the arginyl-tRNA synthetase rars-1(gc47) increased Patf-419 

4(uORF)::GFP expression compared to WT at the L4 stage. Data are represented as 420 

mean + s.e.m. t-test, unpaired, two-tailed. 421 
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d. Quantification of atf-4 mRNA in L4 stage animals after 4 hours of 35 µg/ml 422 

tunicamycin (TM) treatment either with or without one-hour pre-treatment with 0.7 423 

µg/ml a-amanitin (RNA Pol II inhibitor). Data are represented as mean + s.e.m. Three 424 

independent trials, measured in duplicates. P values are relative to WT (N2) control 425 

determined by one sample t-test, two-tailed, hypothetical mean of 1. 426 

e. The elevated GFP levels of transgenic Patf-4(uORF)::GFP L4 stage animals after 427 

4 hours of 35 µg/ml tunicamycin treatment was blunted by an one hour pre-treatment 428 

with 0.7 µg/ml a-amanitin. Data are represented as mean + s.e.m. N>30, 2 429 

independent trials, One-way ANOVA with post hoc Tukey.  430 

f. Stage-specific ribosome occupancy profiles of endogenous atf-4. Using ribosomal 431 

profiling data 61, we found an enrichment of ribosome occupancy on the endogenous 432 

atf-4 uORFs under unstressed conditions during development, when protein synthesis 433 

is high. Occupancy profiles were generated by assigning counts to atf-4 transcript 434 

based on the number of reads. 435 

g. Adult-specific knockdown of ifg-1 (eukaryotic translation initiation factor eIF4G) 436 

increased the lifespan of WT but not atf-4(tm4397) mutants. 437 

h. Adult-specific treatment with 25 µM eukaryotic translation elongation inhibitor 438 

cycloheximide increased the lifespan of WT, but not of atf-4(tm4397) mutants.  439 

g.-h. For statistics and additional trials see (Supplementary Table 1) 440 

  441 
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 442 

Extended Data Fig. 1. Comparison of C. elegans atf-4 and human ATF4 443 
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The predicted orthologue of mammalian ATF4 was previously named atf-5 in C. 444 

elegans (www.wormbase.org. Sequence name T04C10.4, WBGene00000221). 445 

However, the basic leucine zipper (bZIP) domain of C. elegans ATF-5 shows higher 446 

conservation to mammalian ATF4 than ATF5 (a, b) and the C. elegans atfs-1 is the 447 

functional homologue of mammalian ATF5 62. Thus, we renamed C. elegans atf-5 to 448 

atf-4 and will refer to it as atf-4 (activating transcription factor 4) throughout this study. 449 

a. Alignment of C. elegans ATF-4 (T04C10.4, www.wormbase.org) with the human 450 

ATF4 or ATF5 amino acid sequence shows high conservation, especially in the basic 451 

and the leucine-zipper motif (red boxes). C. elegans ATF-4 (T04C10.4, 208 amino 452 

acids; www.wormbase.org) was aligned with Human ATF5 (282 amino acids, 453 

Q9Y2D1; www.uniprot.org) and Human ATF4 (350 amino acids, P18848; 454 

www.uniprot.org) using T-COFFEE (Version_11.00.d625267). Blue arrow heads 455 

indicate identical amino acids exclusively shared between C. elegans ATF-4 and 456 

human ATF4 (15 in total) and brown arrow heads indicate identical amino acids 457 

exclusively shared between C. elegans ATF-4 and human ATF5 (17 in total). Stars 458 

indicated identical amino acids among C. elegans ATF-4 and human ATF4 and ATF5 459 

(25 in total). The basic motif of C. elegans ATF-4 is more similar to human ATF4 than 460 

ATF5. Stars indicate identical amino acids, single dots indicate that size or hydropathy 461 

is conserved, and double dots indicate that both size and hydropathy are conserved 462 

between the corresponding residues. 463 

b. Diagram of atf-4 mRNA, mutations and RNAi clone, and the Patf-4(uORF)::GFP 464 

transgene. The atf-4 mRNA has an extensive 5’ untranslated translated region (UTR) 465 

of 250 nucleotides containing two upstream Open Reading Frames (uORF), of which 466 

uORF1 translates into a 39 amino acids (aa) peptide and uORF2 in a 14 aa peptide. 467 
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The tm4397 variation is an 806 base pair (bp) deletion that covers part of the uORF1, 468 

the uORF2, the translational start site and the first exon, suggesting that tm4397 is a 469 

putative null allele. Untranslated regions (UTR) are represented as empty boxes, 470 

exons as filled boxes, basic leucine zipper domain (bZIP) in red. 471 

c. Quantification of fluorescence of Patf-4(uORF)::GFP transgenic animals at L4 stage 472 

treated either with 1.8-7.2 mM cycloheximide for 1 hour and/or with 35 µg/ml 473 

tunicamycin for 4 hours. Note that pre-treatment of 7.2 mM cycloheximide for 1 hour 474 

and then with 35 µg/ml tunicamycin (TM) for 4 hours was toxic to the animals resulting 475 

in dead corpses with less GFP fluorescence. Data are represented as mean + s.e.m. 476 

P values n.s. = not significant, **<0.001, and ***<0.0001 are relative to control 477 

treatment (DMSO). One-way ANOVA with post hoc Tukey. 478 

d. In-vivo Patf-4(uORF)::GFP reporter responses upon various drug treatments or 479 

interventions that reduce mRNA translation. Transgenic Patf-4(uORF)::GFP L4 stage 480 

animals were treated either with 20 mM arsenite for 30 min, or 200 mM thapsigargin 481 

for 4 hours, or 100 µM rapamycin for overnight, or 30 min heat shock at 35oC, or 2% 482 

tricaine for 1 hour, or 10 mM dithiothreitol for 4 hours, or 10 mM cycloheximide for 1 483 

hour, or 35 µg/ml tunicamycin. Data are represented as mean + s.e.m. P values 484 

*<0.05, **<0.001, and ***<0.0001 are relative to control treatment. One-way ANOVA 485 

with post hoc Tukey. 486 

e. Quantification of atf-4 mRNA levels after cycloheximide and TM treatment of L4 487 

stage animals. Three independent trials, measured in duplicates. In one trial, hsp-4 488 

mRNA was assessed as a positive control for ER stress. Data are represented as 489 

mean + s.e.m. P values *<0.05 relative to control determined by one-sample t-test, 490 

two-tailed, a hypothetical mean of 1. 491 
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f. Expression levels of atf-4 mRNA plotted as Fragments Per Kilobase of transcript per 492 

Million mapped reads (FPKM) during development and ageing. The atf-4 mRNA 493 

expression levels of untreated WT C. elegans were retrieved using the RNAseq FPKM 494 

Gene Search tool (www.wormbase.org). The boxplots represent the overall 495 

expression pattern and the colour of the individual dots refer to the 32 individual 496 

studies used. 497 

g. Working model for atf-4 preferential translation. Similar to mammalian ATF4, the C. 498 

elegans ATF-4 also has two uORFs. After translating the first uORF, the small 499 

ribosomal subunit will continue scanning along the ATF4 mRNA. Under non-stressed 500 

condition, i.e., when high amounts of the eIF2-GFP bound Met-tRNAiMet are available, 501 

the small ribosomal subunit will readily acquire the eIF2 ternary complex, and the large 502 

ribosomal subunit will associate to translate the second uORF. The second uORF 503 

might be inhibitory similar to mammalian ATF4 and would inhibit the translation of the 504 

atf-4 coding region and the ribosome will disassociate from the atf-4 mRNA after 505 

translating the second uORF. However, under stress or reduced translational 506 

conditions, i.e., low amounts of the eIF2-GFP bound Met-tRNAiMet availability, the 507 

association of the large to the small ribosomal subunit is delayed, whereby the 508 

inhibitory second uORF is skipped and the re-initiation complex starts to translate the 509 

ATF-4 coding region similar as observed with mammalian ATF4. Phosphorylation of 510 

eIF2a subunit inhibits the guanine nucleotide exchange factor eIF2B, which lowers the 511 

exchange of the eIF2-GDP to eIF2-GTP and thereby lowers global mRNA translation 512 

initiation.  513 
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 514 

Figure 2. ATF-4 overexpression is sufficient to increase lifespan. 515 

a. Transgenic animals (wbmEx26 [Patf-4::ATF-4(gDNA)::GFP]) that overexpress ATF-516 

4 (ATF-4oe) live longer compared to their non-transgenic siblings.  517 

b. Pharyngeal pumping rate is similar at day 2 of adulthood between ATF-4 518 

overexpressor (ldIs119 [Patf-4::ATF-4(gDNA)::GFP]) and wild type, but higher in ATF-519 

4 overexpressor at day 10 of adulthood, suggesting an improved healthspan. For the 520 

complete time-course of pharyngeal pumping rate during ageing, see Supplementary 521 

Table 2. P value determined with unpaired two-tailed t-test. 522 

c. MA (log ratio and mean average)-plot of RNA sequencing analysis comparing 523 

ldIs119 ATF-4 overexpressor to abs log FC relative to wild type. In red, highlighted 524 

genes with FDR < 0.1 and log FC > 1 compared to wild type. In black, genes with FDR 525 

> 0.1. Details in Supplementary Table 3. 526 

d. Validation by qRT-PCR of differentially expressed ldIs119 ATF-4 overexpressing 527 

genes using two new independent biological samples (each over 200 C. elegans). 528 
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Data are represented as mean + s.e.m. P values *<0.05 and **<0.001 relative to wild 529 

type determined by one sample t-test, two-tailed, hypothetical mean of 1.  The number 530 

of ATF4 binding sequences (-TGATG-) is indicated (Supplementary Table 4). The 531 

DAF-16 and SKN-1 transcription factor binding sites are based on chromatin 532 

immunoprecipitation ChIP data from www.modencode.org (Supplementary Table 5).  533 

e. The longevity upon ATF-4 overexpression (ldIs119) on control empty vector RNAi 534 

(L4440) is abolished when treated with hsf-1(RNAi), skn-1(RNAi), or daf-16(RNAi). 535 

Data are represented as lifespan means +/- s.e.m.  536 

f. Mitochondrial ATP translocase ant-1.3 is required for ldIs119 ATF-4oe-mediated 537 

longevity.  538 

(a, e, f) For statistical details and additional lifespan trials, see Supplementary Table 539 

1. 540 
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 542 

Extended Data Figure 2. Overexpression of ATF-4 increases healthspan 543 

a. Head (left) and mid-body (right) region shown.  ATF-4::GFP (ldIs119) is displayed 544 

in aquamarine and found predominantly in nuclei (nuclei of head neurons or glia 545 

indicated by arrowheads, intestinal nuclei indicated by chevrons). Yellow puncta are 546 

autofluorescent gut granules. 100 x magnification. Scale bar = 10 µm.  547 

b. Western blot showing ATF-4::GFP levels and corresponding densitometry of day-548 

1-adult transgenic ldIs119 [Patf-4::ATF-4(gDNA)::GFP] either treated with control (ctr) 549 

solvent (DMSO) or 35 µg/mL tunicamycin for 6 hours. Corresponding and additional 550 
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western blots are shown in Supplementary Data File 1. Data are represented as mean 551 

+ s.e.m. P-value is relative to ctr determined by one-sample t-test, two-tailed, a 552 

hypothetical mean of 1. 553 

c. Pharyngeal pumping measurements during the lifespan comparing wild type (N2), 554 

atf-4(tm4397) mutants, and ATF-4 overexpression (ldIs119) either treated with empty 555 

vector control RNAi (L4440) or raga-1(RNAi) on culturing plates that do not contain 556 

FuDR. See Supplementary Table 2 for raw data on pharyngeal pumping rates.  557 
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 559 

Extended Data Figure 3. RNA-sequencing comparison of ATF-4 overexpression 560 

vs wild type. 561 

a. Comparing atf-4 mRNA expression levels of atf-4(tm4397) mutants (atf-4 (-) mutant) 562 

and ATF-4 overexpressor (ldIs119 [Patf-4::ATF-4(gDNA)::GFP]) relative to wild type 563 

(atf-4(+) WT) by qRT-PCR. The atf-4(tm4397) mutants showed zero atf-4 mRNA 564 

expression levels, reconfirming a putative null allele. These samples were used for 565 

RNA sequencing.  Three independent biological replicates of about 20’000 L4 C. 566 
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elegans (see Materials and Methods). P values for both atf-4(tm4397) or ATF-4 567 

overexpressor (ldIs119) are <0.0001 relative to wild type determined by one-sample 568 

t-test, two-tailed, a hypothetical mean of 1. 569 

b. Schematic representation of sample collection for RNA sequencing. See Materials 570 

and methods for details. Three biological replicates comparing wild type (atf-4(+) WT), 571 

atf-4(tm4397) mutants (atf-4 (-) mutant), and ATF-4 overexpressor (ldIs119 [Patf-572 

4::ATF-4(gDNA)::GFP]). More than 20’000 L4 C. elegans were collected per strain 573 

and biological replicate.  574 

c. Hierarchical clustering heatmap of the genes that are most differentially regulated 575 

in either direction when comparing ATF-4 overexpressors (ATF-4OE, ldIs119 [Patf-576 

4::ATF-4(gDNA)::GFP]) to wild type (atf-4(+) WT) and atf-4(tm4397) mutants (atf-4 (-577 

) mutant). As expected, atf-4 is in the top gene set, since comparing ATF-4 578 

overexpression and atf-4 deletion mutant to wild type. The collagen rol-6 is the co-579 

injection marker for the transgenic IdIs119. Independent biological replicates are 580 

indicated as “rep#”. For details and raw data see Supplementary Table 3. 581 

d. MA (log ratio and mean average)-plot of RNA sequencing analysis comparing atf-582 

4(tm4397) mutants (atf-4 (-) mutant) to absolute log fold-change (FC) relative to wild 583 

type (atf-4 (+) WT). In red, highlighted genes with a false discovery rate (FDR) < 0.1 584 

and abs log FC > 1 to wild type. Details in Supplementary Table 3. 585 

e. The longevity upon ATF-4 overexpression (ldIs119) on control empty vector RNAi 586 

(L4440) is blunted by knockdown with sip-1(RNAi), hsp-70(RNAi), hsp-16.2(RNAi), or 587 

hsp-12.3(RNAi). Data are represented as lifespan means +/- s.e.m. P values are 588 

relative to wild type on empty vector RNAi (L4440). For statistical details see 589 

Supplementary Table 1. 590 
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f. Patf-4(uORF)::GFP transgenic C. elegans were placed at 37oC for 0-30 min and the 591 

GFP induction was scored. Bottom panel, 30 min at 37oC, higher magnification. Shown 592 

L4 Patf-4(uORF)::GFP transgenic C. elegans, anterior to the right, ventral side down. 593 

g. Preferential translation of ATF-4 upon heat shock. Transgenic ldIs119 [ATF-4::GFP] 594 

at L4 stage were heat shocked at 37oC for 1 hour, let recover for 4 hours at 25oC or 595 

were kept for 5 hours at 25oC as control, and then harvested for western blotting using 596 

GFP antibodies to determine ATF-4::GFP protein levels. Equal amounts of samples 597 

were run in parallel on a separate blot to assess tubulin levels. 598 

h. Venn diagram showing the overlap of ldIs119 ATF-4oe overexpression-upregulated 599 

genes with genes that were bound directly by SKN-1, DAF-16, and HSF-1 in chromatin 600 

immunoprecipitation ChIP studies. For details and references see Supplementary 601 

Table 5. 602 

  603 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2020. ; https://doi.org/10.1101/2020.11.02.364703doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.02.364703
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

 604 

Figure 3. ATF-4 overexpression increases hydrogen sulfide levels via 605 

cystathionine gamma-lyase required for longevity and stress resistance.  606 

a. Heatmap of ldIs119 ATF-4 overexpressor vs WT and atf-4(tm4397) showing 607 

orthologs of genes that are directly regulated by mammalian ATF4 (Details are in 608 

Materials and Methods, Supplementary Table 4).  Absolute levels of expression were 609 

compared.  Genes indicated in light blue are predicted to be involved in the 610 

transsulfuration pathway shown in Fig. 3b. 611 

b. Schematic of the transsulfuration pathway. Genes in light blue were found to be 612 

upregulated by ATF-4 overexpression (Fig. 3a, Supplementary Table 4).  613 
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c. ATF-4 overexpressor (ldIs119) showed higher cth-2 mRNA levels compared to wild 614 

type (WT) by qRT-PCR. Three independent biological samples in duplicates (each 615 

over 200 L4 C. elegans). Data are represented as mean + s.e.m. P values *<0.05 and 616 

***<0.0001 relative to wild type determined by one-sample t-test, two-tailed, a 617 

hypothetical mean of 1.   618 

d. Quantification of CTH protein levels of ATF-4 overexpressor (ldIs119) compared to 619 

wild type (WT). Six independent biological trials probed in three western blots. Full 620 

blots are shown in Supplementary Data File 2.    621 

e. Western blot probing CTH levels showed higher CTH levels when ATF-4 is 622 

overexpressed (ldIs119), but was abolished by knockdown of atf-4 or cth-2. Biological 623 

repeats and full blots shown in Supplementary Data File 2. NS = non-specific band.  624 

f. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 625 

that ldIs119 ATF-4 overexpressor (ATF-4oe) produced more H2S compared to wild 626 

type (WT) and these higher H2S levels were abolished when cth-2 was knocked down. 627 

Additional biological trials are shown in Extended Data Fig. 4a-e. 628 

g. The heat stress resistance mediated by ldIs119 ATF-4 overexpressor (ATF-4oe) 629 

was suppressed by knockdown of cth-2. For statistical details and additional trials see 630 

Supplementary Table 7. 631 

h. The longevity mediated by ldIs119 ATF-4 overexpressor (ATF-4oe) was 632 

suppressed by knockdown of cth-2. For statistical details and additional lifespan trials 633 

see Supplementary Table 1. 634 

i. Tunicamycin treatment increased hydrogen sulfide production. Wild type L4 worms 635 

were treated with DMSO as a control or 35 µg/ml tunicamycin for 4 hours. Three 636 

independent biological trials are shown. 637 
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j. Model of ATF-4 mediated downstream programs.  638 

  639 
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 640 

Extended Data Figure 4. ATF-4 overexpression increases hydrogen sulfide 641 

levels via cystathionine gamma-lyase. 642 

a. Hydrogen sulfide production capacity assay. 200 µg of total protein lysate either 643 

from wild-type C. elegans (WT), food source OP50 E. coli bacteria, or ldIs119 ATF-4 644 

overexpressor transgenic C. elegans (ATF-4oe) were loaded. Since OP50 E. coli 645 

bacteria protein lysates have the capacity to produce H2S, we washed C. elegans at 646 

least three times or until no bacteria visible in the supernatant. 647 
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b. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 648 

that ldIs119 ATF-4 overexpressor (ATF-4oe) produced more H2S compared to wild 649 

type (WT) in three independent biological trials.  650 

c. Hydrogen sulfide production capacity of 2 µg/ml lysates from wild type (WT), eat-651 

2(ad1116) mutants, and ldIs119 ATF-4 overexpressor transgenic C. elegans (ATF-652 

4oe). H2S levels were quantified as the amount of lead sulfide captured on the paper, 653 

measured by the integrated density of each well area. Data are represented as mean 654 

+ s.e.m. P-values were determined with One-way ANOVA post hoc Tukey.  655 

d. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 656 

that ldIs119 ATF-4 overexpressor (ATF-4OE) produced more H2S compared to wild 657 

type (WT) and these higher H2S levels are abolished when cth-2 was knocked down 658 

in a second biological trial (as in Fig. 3f showing first biological trial). 659 

e. Hydrogen sulfide production capacity assay from whole C. elegans lysates. ATF-660 

4OE (ldIs119) showed higher H2S compared to wild type (WT) and these higher H2S 661 

levels are abolished in cth-2(mg599) mutant background. 662 

f. Loss of atf-4 did not suppress the oxidative stress resistance in 14 mM arsenite of 663 

reduced mitochondrial function mutant clk-1(qm30). 664 

g. Loss of atf-4 did not suppress the oxidative stress resistance in 5 mM arsenite of 665 

reduced mitochondrial function mutant isp-1(qm150), but of reduced TORC1 mutant 666 

raga-1(ok386).  667 

For f-g. For statistical details and additional trials see Supplementary Table 8. 668 
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 670 

Figure 4. ATF-4 is essential for longevity from reduced mTORC1 activity 671 

a. Loss of atf-4 did not suppress the longevity of reduced mitochondrial function mutant 672 

clk-1(qm30). 673 

b. Extending lifespan reducing Insulin/IGF-1 signalling by daf-2(RNAi) treatment 674 

starting from adulthood is partially suppressed by atf-4(tm4397) mutation.  675 

c. The longevity of germ cell proliferation glp-1(e2141) mutants was partially 676 

suppressed by atf-4(tm4397) mutation 677 

d. Inhibition of TORC1 by RNAi of raga-1, ragc-1 or by inhibition of translation via 678 

knockdown of eukaryotic initiation factor eif-1 leads to preferential translation of ATF-679 
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4 using the Patf-4(uORF)::GFP reporter strain. RNAi treatment was started at L4 until 680 

mounted to score GFP intensity using a microscope scope at 40x at day 3 of 681 

adulthood. Scoring described in Materials and Methods. P values determined by Chi2 682 

test. Additional trials also including TORC2 are in Supplementary Table 9. 683 

e. Mutation in raga-1 increases lifespan in an atf-4-dependent manner.  684 

f. Reducing TORC1 signalling by adulthood specific raga-1 RNAi improves healthspan 685 

as assessed as pharyngeal pumping rate in an atf-4-dependent manner.  Data 686 

represented as mean + S.E.M. *** P<0.0001 relative to wild type control of the 687 

corresponding day with One-way ANOVA with post hoc Dunnett’s multiple 688 

comparisons test. Raw data in Supplementary Table 2.  689 

g. Adult-specific knockdown of TORC1 subunit raga-1 extends oxidative stress 690 

resistance in 2 mM t-BOOH in an atf-4-dependent manner. L4 animals were treated 691 

with RNAi, and stress resistance was measured at day 3 of adulthood with the 692 

automated lifespan machine. For additional trials, statistical details, and raw data, see 693 

Supplementary Table 10.  694 

h. Heat stress resistance at 32oC of TORC1 raga-1(ok386) mutants depends on atf-695 

4. For additional trials, statistical details, and raw data, see Supplementary Table 7.  696 

i. Adult-specific knockdown of TORC2 subunit rict-1 extends lifespan in an atf-4-697 

dependent manner. 698 

For a-c, e, i. For statistical details and additional lifespan trials see Supplementary 699 

Table 1. 700 
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 702 

Figure 5.  Longevity from mTOR inhibition upregulates H2S and requires cth-2 703 

a. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 704 

that TORC1 raga-1(ok386) mutants produced more H2S compared to wild type or atf-705 

4(tm4397) mutant in an atf-4-dependent manner. Two additional independent 706 

biological trials are shown in Extended Data Fig. 5f-g. 707 

b. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 708 

that TORC2 rict-1(ft7) mutants produced more H2S compared to wild type or atf-709 

4(tm4397) mutant in an atf-4-dependent manner. An additional independent biological 710 

trial is shown in Extended Data Fig. 5h. 711 

c. Heat stress resistance at 32oC of TORC1 raga-1(ok386) mutants depends on cth-712 

2. For additional trials, statistical details, and raw data, see Supplementary Table 7.  713 

d. Longevity of TORC1 raga-1(ok386) mutants depends on cth-2. For statistical details 714 

and additional lifespan trials see Supplementary Table 1. 715 
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e. Persulfidation levels in wild type (N2), cth-2 (mg599), atf-4 (tm4397), raga-1 (ok386) 716 

and raga-1;atf-4 mutants detected using in-gel dimedone switch method. 488 signal 717 

shows the total protein load. Ratio of Cy5/488 signals was used for the quantification. 718 

~15000 worms were lysed per protein lane. n = 3. Arrows indicate proteins that are 719 

different persulfidated among genotypes.   720 

  721 
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 722 

Extended Data Figure 5. Preferential atf-4 translation and H2S signalling upon 723 

reduced TOR signalling.  724 
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a. Schematic representation of the two TOR complexes (TORC1 and TORC2) and 725 

function adapted from 14. 726 

b. Rapamycin treatment leads to preferential translation of ATF-4 using the Patf-727 

4(uORF)::GFP reporter strain. RNAi treatment was started at L4 until mounted to score 728 

GFP intensity using a microscope scope at 40x at day 3 of adulthood. Scoring 729 

described in Materials and Methods. P values determined by Chi2 test. Additional trials 730 

in Supplementary Table 9. 731 

c. TORC2 mutants rict-1(ft7) showed preferential translation of ATF-4 using the Patf-732 

4(uORF)::GFP reporter strain. Additional trials in Supplementary Table 9. 733 

d. Prolonged rapamycin treatment during adulthood extends lifespan independent of 734 

atf-4 (Supplementary Table 1). 735 

e. Adult-specific knockdown of either TORC1 subunit ragc-1 or TORC2 subunit rict-1 736 

requires atf-4 to increase lifespan, whereas double knockdown of both complexes 737 

increases lifespan independent of atf-4. Complementary to this, longevity through 738 

prolonged rapamycin treatment, which might lead to simultaneous inhibition of TORC1 739 

and TORC2, is independent of atf-4 (Supplementary Table 1).  740 

f-g. Hydrogen sulfide production capacity assay from whole C. elegans lysates 741 

showed that TORC1 raga-1(ok386) mutants produced more H2S compared to wild 742 

type or atf-4(tm4397) mutant in an atf-4-dependent manner. An additional independent 743 

biological trial is shown in Fig. 5a. 744 

h. Hydrogen sulfide production capacity assay from whole C. elegans lysates showed 745 

that TORC2 rict-1(ft7) mutants produced more H2S compared to wild type or atf-746 

4(tm4397) mutant in an atf-4-dependent manner. An additional independent biological 747 

trial is shown in Fig. 5b.   748 
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 749 

Figure 6. Dietary restriction requires ATF4 for H2S induction in mice and 750 

longevity in C. elegans.  751 

a. Knockdown of atf-4 by RNAi partially suppresses the longevity of dietary restriction 752 

model eat-2. We used an RNAi-sensitized background (rrf-3(pk1426); Supplementary 753 

Table 1). 754 

b. CTH mRNA expression levels in long-lived over control mice analysed from publicly 755 

available expression datasets (Supplementary Table 11). Data is grouped and colored 756 

by interventions and represented as mean + s.e.m. The meta data of the samples is 757 

summarised by coloured tiles indicating first the tissue of origin then the sex and then 758 

the age group of the mice in each experiment. Animals sacrificed before 16 weeks of 759 

age were classified as “young”, between 16 to 32 weeks as “middle-aged” and animals 760 
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above 32 weeks as “old”. In case no meta information could be found, it was labelled 761 

as “not specified”. 762 

c. Blot of hydrogen sulfide production assay of dietary restricted livers was higher than 763 

in livers of ad libitum feed mice, which was suppressed by knockdown of ATF4 as 764 

quantified in the right panel.  765 

d. ATF-4 mediates inducible H2S production and longevity from DR and mTORC1 766 

inhibition.  767 
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Data Source File showing full western blots and independent repeats. 769 

 770 
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Supplementary Data File 1. ATF-4 protein levels in gain-of-function transgenic 771 

ldIs119 [ATF-4::GFP] overexpressing animals are mildly induced with 772 

tunicamycin treatment. 773 

The predicted size C. elegans ATF-4 (208 amino acids; www.wormbase.org) is about 774 

25 kDa and for the fusion protein of ATF-4::GFP in ldIs119 transgenic animals is about 775 

55 kDa. 776 

a. Phosphorylation of eIF2alpha was measured in IdIs119 (WT), IdIs119; pek-777 

1(ok275) (pek-1), IdIs119; gcn-2(ok886) (gcn-2) and IdIs119; eif2a(qd338) (eif2a) after 778 

treatment of tunicamycin (35 µg / ml) for six hours at 25°C.  779 

b. GFP antibody blotted against wild type (N2) or IdIs119 [ATF-4::GFP] treated for one 780 

generation with empty vector control L4440, atf-4(RNAi), or gfp(RNAi) in the presence 781 

or absence of tunicamycin.  782 

c-f. GFP antibody blotted against wild type (N2) (or N2 with atf-4(RNAi) in f), IdIs119 783 

(WT), IdIs119; pek-1(ok275) (pek-1), IdIs119; gcn-2(ok886) (gcn-2), or IdIs119; 784 

eif2a(qd338) (eif2a) in the presence or absence of tunicamycin.  785 

For b.-f. Animals of their first day of adulthood were treated either with tunicamycin 786 

(35 µg / ml) for six hours at 25°C or a corresponding amount of DMSO dissolved in 787 

M9. 788 

In all samples an antibody against Tubulin was used as control either if protein sizes 789 

permitted, the membrane was cut and tubulin levels were assessed, or blot after GFP 790 

antibody usage was stripped (in b), or equal amounts of sample was run in parallel on 791 

a separate blot (c.-f.). 792 

  793 
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 794 

Supplementary Data File 2. ATF-4 overexpressor showed higher cystathionine 795 

gamma lyase CTH-2 protein levels  796 
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The predicted size C. elegans CTH-2 (392 amino acids; www.wormbase.org) is about 797 

43 kDa. The Anti-Cystathionase/CTH antibody ab151769 is a recombinant fragment 798 

corresponding to Human Cystathionase/CTH amino acids 194-405. This part is well 799 

conserved (f) 800 

a-e. CTH antibody blotted against wild type (N2) or IdIs119 [ATF-4::GFP] treated for 801 

one generation with empty vector control L4440, atf-4(RNAi), or cth-2(RNAi). 802 

f. Alignment of C. elegans CTH-2 (ZK1127.10; 392 amino acids; www.wormbase.org) 803 

with human CTH (405 amino acids P32929, CGL_HUMAN Cystathionine gamma-804 

lyase ; www.uniprot.org) using T-COFFEE (Version_11.00.d625267). Stars indicated 805 

identical amino acids among C. elegans CTH-2 and human CTH. 806 

  807 
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 808 

Supplementary Video 1: 3D image of persulfidation levels of wild type (N2). 809 

Worms were stained for protein persulfidation using dimedone-switch method and Cy5 810 

signal recorded on epifluorescence microscope. Z-stack images were taken, 811 

deconvoluted and 3D image of PSSH levels generated. 812 

 813 

Supplementary Video 2: 3D image of persulfidation levels of cth-2(mg599) 814 

mutant. Worms were stained for protein persulfidation using dimedone-switch method 815 
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and Cy5 signal recorded on epifluorescence microscope. Z-stack images were taken, 816 

deconvoluted and 3D image of PSSH levels generated. 817 

  818 
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Materials and Methods  819 

Strains  820 

Caenorhabditis elegans strains were maintained on NGM plates and OP50 821 

Escherichia coli bacteria. The wild-type strain was N2 Bristol. Mutant strains used are 822 

described at www.wormbase.org: LGI: eif-2a(qd338); LGII: cth-2(mg599), raga-823 

1(ok386), spe-9(hc88), rrf-3(pk1426 and b26), eat-2(ad1116), rict-1(ft7); LGIII: rars-824 

1(gc47), daf-2(e1368, e1370), glp-1(e2141), clk-1(qm30); LGX: atf-4(tm4397, 825 

tm4212). Transgenic strains: LD1499 [Patf-4(uORF)::GFP::unc-54(3’UTR)] was made 826 

by Chi Yun (1.8kb promoter 5’ of atf-4 including both uORFs into pPD95.75, personal 827 

communication with Chi Yun and David Ron) 63.  828 

 829 

Generation of transgenic lines 830 

Construction of a translational fusion of ATF-4 with GFP. The plasmid pWM48 (Patf-831 

4::ATF-4(gDNA)::GFP::unc-54(3’UTR)) was generated by introducing the 1.8kb 832 

promoter region 5’ of atf-4 and the atf-4 genomic sequence into pAD1. This construct 833 

was used to generate two independent transgenic lines: wbmEx26 [pWM48 (Patf-834 

4::ATF-4(gDNA)::GFP::unc-54(3’UTR), pRF4 (rol-6(su1006))] and wbmEx27 [pWM48 835 

(Patf-4::ATF-4(gDNA)::GFP::unc-54(3’UTR), pRF4 (rol-6(su1006))]. UV irradiation 836 

was used for integration resulting in ldIs119 from wbmEx26 and ldIs120-1 from 837 

wbmEx27, which were outcrossed 8-10x against N2.  838 

 839 

Genomic organisation and alignments 840 

The atf-4 genomic representation was made using Exon‐Intron Graphic Maker 841 

(http://wormweb.org/exonintron) from Nikhil Bhatla. DNA and mRNA sequences were 842 
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from www.wormbase.org (WS258). For human ATF4 GenBank BC008090 mRNA 843 

sequence was used. The uORFs were predicted with ApE- A plasmid Editor 844 

v2.0.50b3. For amino acid alignments T-COFFEE (Version_11.00.d625267) was 845 

used. 846 

 847 

Ribosome profiling analysis  848 

Ribosome profiling sequencing data were downloaded from the NCBI Sequence Read 849 

Archive (S.R.A.) (http://www.ncbi.nlm.nih.gov/sra/) under accession number 850 

SRA055804. Data were analysed as the paper described 61: Data analysis was 851 

performed with the help of Unix-based software tools. First, the quality of raw 852 

sequencing reads was determined by FastQC (Andrews, S. FastQC (Babraham 853 

Bioinformatics, 2010)). Reads were then filtered according to quality via FASTQ for a 854 

mean PHRED quality score above 30 64. Filtered reads were mapped to the worm 855 

reference genome (Wormbase WS275) using B.W.A. (version 0.7.5), and S.A.M. files 856 

were converted into B.A.M. files by SAMtools (version 0.1.19). Coverage data for 857 

specific genes (including 5’UTR, exons and 3’UTR) were calculated by SAMtools.  The 858 

coverage data for each gene were plotted using R 65. 859 

 860 

Knockdown by RNA interference 861 

RNAi clones were from the Vidal and Ahringer RNAi libraries 66,67. RNAi bacteria 862 

cultures were grown overnight in LB with carbenicillin [100 µg/ml] and tetracycline 863 

[12.5 µg/ml], diluted to an OD600 of 1, and induced with 1 mM IPTG and spread onto 864 

NGM plates containing tetracycline [12.5 µg/ml] and ampicillin [50 µg/ml]. For empty 865 

RNAi vector (EV) plasmid pL4440 was used as control.  866 
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 867 

Manual lifespan assays 868 

Adult lifespan was determined either with or without 5-Fluoro-2’deoxyuridine (FUdR) 869 

as described in Ewald and colleagues 68. In brief, about 100 L4 C. elegans per strain 870 

were picked onto NGM plates containing OP50 bacteria. The next day, C. elegans 871 

(day-1-adults) were transferred onto either NGM plates containing 400 µM FUdR and 872 

OP50 bacteria or RNAi bacteria. For cycloheximide-treatment lifespan, day-1-adults 873 

were transferred on NGM OP50 plates either containing the solvent 0.25% dimethyl 874 

sulfoxide (DMSO) alone as a control or cycloheximide (Sigma #C7698) dissolved in 875 

0.25% DMSO.  The rapamycin lifespan and liquid dietary restriction lifespans were 876 

performed as described in 14 and 69, respectively. Animals were classified as dead if 877 

they failed to respond to prodding. Exploded, bagged, burrowed, or animals that left 878 

the agar were excluded from the statistics. The estimates of survival functions were 879 

calculated using the product-limit (Kaplan-Meier) method. The log-rank (Mantel-Cox) 880 

method was used to test the null hypothesis and calculate P values (JMP software 881 

v.9.0.2.). 882 

 883 

Pharyngeal Pumping  884 

Pharyngeal pumping was assessed as described in 25. In brief, pharyngeal pumping 885 

was determined by counting grinder movements in 45 second intervals when the 886 

animals were in the bacterial lawn and feeding.  887 

 888 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Assays 889 
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RNA was isolated with Trizol (TRI REAGENT Sigma), DNAse-treated, and cleaned 890 

over a column (RNA Clean & ConcentratorTM ZYMO Research). First-strand cDNA 891 

was synthesised in duplicate from each sample (Invitogen SuperScript III). SYBR 892 

green was used to perform qRT-PCR (ABI 7900). For each primer set, a standard 893 

curve from genomic DNA accompanied the duplicate cDNA samples. mRNA levels 894 

relative to WT control were determined by normalising to the number of C. elegans 895 

and the geometric mean of three reference genes (cdc-42, pmp-3, and Y45F10D.4). 896 

At least two independent biological replicates were examined for each sample. For 897 

statistical analysis, one-sample t-test, two-tailed, a hypothetical mean of 1 was used 898 

for comparison using Prism 6.0 software (GraphPad). 899 

 900 

RNA sequencing 901 

Three independent biological replicates were prepared by using sodium hypochlorite 902 

to harvest eggs and overnight L1 arrest in M9 buffer with 10 µg/ml cholesterol to 903 

synchronise C. elegans. For each sample, about 20000 C. elegans per strain were 904 

allowed to develop to the L4 stage under normal growth conditions on NGM OP50 905 

plates at 20oC (about 1000 C. elegans per one 10 cm NGM OP50 plate). WT, atf-906 

4(tm4397), and ldIs119 were grown at the same time for each biological replicate. C. 907 

elegans were washed from the culturing NGM plates and washed additional 3 times 908 

with M9 buffer to wash away the OP50 bacteria. RNA was isolated with Trizol (TRI 909 

REAGENT Sigma), DNAse-treated, and cleaned over a column (RNA Clean & 910 

ConcentratorTM ZYMO Research). The RNA was sent to Dana-Farber Cancer Institute 911 

Center for Computational Biology (CCCB, http://cccb.dfci.harvard.edu/rna-sequence). 912 

At the CCCB, the RNA Integrity Number (RIN) was assessed by using the Bioanalyzer 913 
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2100 (Agilent Technologies), and only samples with a high RIN score were used to 914 

prepare cDNA libraries. All nine samples were multiplexed in a single lane. Single read 915 

50 bp RNA-sequencing with poly(A) enrichment was performed using a HiSeq 2000 916 

(Illumina). We aligned the FASTQ output files to the C. elegans WBcel235 reference 917 

genome using STAR 2.4.0j software 70 with an average >80% coverage mapping the 918 

reads to the genome. The differential gene expression analysis was performed using 919 

Bioconductor (http://bioconductor.org) as described in 71. Rsubread 1.16.1 920 

featureCounts was used to quantify the mapped reads in the aligned SAM output files. 921 

Transcripts with <1 count per million reads were discarded. Counts were scaled to 922 

Reads Per Kilobase of transcript per Million mapped reads (RPKM) and deposited as 923 

a final output file in (Supplementary Table 3). To analyse the differential expressed 924 

genes, we compared atf-4(tm4397), and ldIs119 to wild type using Degust 925 

(http://degust.erc.monash.edu) with the following settings: RPKM with minimum 5 926 

counts using edgeR with a false discovery rate (FDR) of 0.1 and an absolute log fold 927 

change (FC) of 1 relative to wild type. Results are displayed in MA-plots. Functional 928 

annotation clustering was performed with DAVID54 using high classification 929 

stringencies.  930 

 931 

Analysis of RNA sequencing comparing with mammalian ATF4 orthologues 932 

The RNA-sequencing data described in the previous section was subjected to 933 

differential expression analysis using the limma package (Smyth, Gordon K. "Limma: 934 

linear models for microarray data." Bioinformatics and computational biology solutions 935 

using R and Bioconductor. Springer, New York, NY, 2005. 397-420) available in the 936 

programming language R (Team, R. Core. "R: A language and environment for 937 
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statistical computing." (2013): 201). The 200 most-upregulated genes that were 938 

identified by comparison of ATF4 OE to WT and passed a Benjamini-Hochberg 939 

adjusted P-value threshold of 0.1 were analysed further. Mammalian ATF4-specific 940 

gene targets were obtained from Quiros et al. 2017 29 and subjected to Ortholist2 to 941 

infer C. elegans orthologs based on a comparative genomic meta-analysis 72. The 942 

intersection of the most-upregulated genes in our ATF4 OE to WT expression analysis 943 

and the orthologs of the mammalian ATF4 targets is depicted as a heatmap showing 944 

all biological replicates (#1-3) 73. The atf-4 mutant samples are shown separately since 945 

the displayed genes were selected based on the comparison between ATF4 OE and 946 

WT  The absolute expression levels are displayed in a blue (low) to white (medium) to 947 

red (high) color gradient, with genes indicated as gene names or sequence names if 948 

the former is not available. Hierarchical clustering was applied to both genes (rows) 949 

and samples (columns). Additional information: GO term enrichment yielded a 950 

significant (P=0.047, Benjamini-Hochberg corrected) enrichment of the membrane raft 951 

compartment (lec-2, lec-4, lec-5) while no significant enrichment for GO biological 952 

process, GO molecular function, KEGG- or REACTOME pathways were found57,58.  953 

 954 

CTH expression levels in mice 955 

Publicly-available expression datasets were analysed to quantify the change of CTH 956 

expression levels in long-lived compared to normal-lived mice. A selected subset of 957 

comparisons displaying CTH upregulation in longevity is depicted in Fig. 6b, while the 958 

full table is provided in Supplementary Table 11. Microarray datasets and platform 959 

information were obtained from GEO (https://www.ncbi.nlm.nih.gov/geo/) followed by 960 

mapping probes to their corresponding genes and sequencing information was 961 
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obtained from SRA (https://www.ncbi.nlm.nih.gov/sra) and processed using Trim 962 

Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and 963 

Salmon 74. Datasets were centred and scaled, and subsequently, the mean fold 964 

change, as well as its standard error, were computed for the CTH gene.  965 

 966 

Manual thermotolerance assays 967 

Day-1-adults were placed on NGM OP50 plates (maximum 20 C. elegans per plate) 968 

and placed at 35oC. Survival was scored every hour. Animals were classified as dead 969 

if they failed to respond to prodding. Exploded animals or animals that moved up on 970 

the side of the plate were censored from the analysis. The estimates of survival 971 

functions were calculated using the product-limit (Kaplan-Meier) method. The log-rank 972 

(Mantel-Cox) method was used to test the null hypothesis and calculate P values (JMP 973 

software v.9.0.2.). 974 

 975 

Automated survival assays using the lifespan machine 976 

Automated survival analysis was conducted using the lifespan machine described by 977 

Stroustrup and colleagues 75. Approximately 500 L4 animals were resuspended in M9 978 

and transferred to NGM plates containing 50 µM 5-Fluoro-2’deoxyuridine (FUdR) 979 

seeded either with OP50 bacteria, or with RNAi bacteria supplemented with 100 μg/ml 980 

carbenicillin, or with heat-killed OP50 bacteria, or with UV-inactivated E. coli strain 981 

NEC937 B (OP50 DuvrA; KanR) containing 100 μg/ml carbenicillin. For oxidative 982 

stress assays, tBOOH was added to 2 mM to the NGM immediately before pouring, 983 

and seeding with heat-killed OP50 bacteria. Animals were kept at 20°C until 984 

measurement. Heat and oxidative stress experiments were performed using regular 985 
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petri dishes sealed with parafilm, while tight-fitting petri dishes (BD Falcon Petri 986 

Dishes, 50x9mm) were used for lifespan experiments. Tight-fitting plates were dried 987 

without lids in a laminar flow hood for 40 minutes before starting the experiment. Air-988 

cooled Epson V800 scanners were utilised for all experiments operating at a scanning 989 

frequency of one scan per 10 - 30 minutes. Temperature probes (Thermoworks, Utah, 990 

U.S.) were used to monitor the temperature on the scanner flatbed and maintain 20°C 991 

constantly. Animals which left the imaging area during the experiment were censored.  992 

Population survival was determined using the statistical software R 65 with the survival 993 

76 and survminer (https://rpkgs.datanovia.com/survminer/) packages. Lifespans were 994 

calculated from the L4 stage (= day 0). For stress survival assays the moment of 995 

exposure was utilised to define the time point zero of each experiment. 996 

 997 

Manual oxidative stress assay (arsenite and tBHP) 998 

The manual oxidative stress assays were performed as described in detail in the bio-999 

protocol 77. 1000 

 1001 

Oxidative stress assay by quantifying movement in arsenite 1002 

C. elegans were collected from NGM plates and washed four times by centrifugation, 1003 

aspirating the supernatant and resuspending in fresh M9 buffer again. After the final 1004 

wash, the supernatant was removed, and 10 µl of the C. elegans suspension pipetted 1005 

into each well of a round-bottom 96-well microplate resulting in approximately 40 - 70 1006 

animals per well. To prevent desiccation, the wells were filled up immediately with 1007 

either 30 µl M9, or 30 µl M9 containing 6.7 mM or 18.7 mM sodium arsenite yielding a 1008 

final arsenite concentration of 0, 5, or 14 mM, respectively. Per C. elegans strain and 1009 
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conditions, we loaded two wells with M9 as control and six wells with either 5 or 14 1010 

mM arsenite as technical replicates. The plate was closed, sealed with Parafilm and 1011 

briefly stirred and then loaded into the wMicrotracker device (NemaMetrix). Data 1012 

acquisition was performed for 50 hours, according to the manufacturer’s instructions. 1013 

The acquired movement dataset was analysed using the statistical programming 1014 

language R. 1015 

 1016 

Hydrogen sulfide capacity assay 1017 

The H2S capacity assay was adapted from Hine and colleagues 35. C. elegans were 1018 

harvested from NGM plates and washed four times by centrifugation and 1019 

resuspension with M9 to remove residual bacteria. Approximately 3000 animals were 1020 

collected as a pellet and mixed with the same volume of 2x passive lysis buffer 1021 

(Promega, E194A) on ice. Three freeze-thaw cycles were performed by freezing the 1022 

samples in liquid nitrogen and thawing them again using a heat block set to 37°C. 1023 

Particles were removed by centrifuging at 12000 g for 10 minutes at 4°C. The pellet 1024 

was discarded, and the supernatant used further. The protein content of each sample 1025 

was determined (BCA protein assay, Thermo scientific, 23225) and the sample 1026 

sequentially diluted with distilled water to the required protein mass range, usually 25 1027 

- 200 µg protein. To produce the lead acetate paper, we submerged chromatography 1028 

paper (Whatman paper 3M (GE Healthcare, 3030-917)) in a 20 mM lead acetate (Lead 1029 

(II) acetate trihydrate (Sigma, 215902-25G)) solution for one minute and then let it dry 1030 

overnight. The fuel mix was prepared freshly by mixing Pyridoxal 5′-phosphate 1031 

hydrate (Sigma, P9255-5G) and L-Cysteine (Sigma, C7352-25G) in Phosphate 1032 

Buffered Saline on ice at final concentrations of 2.5 mM and 25 mM, respectively. A 1033 
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96-well plate was placed on ice, 80 µl of each sample were loaded into each well and 1034 

mixed with 20 µl fuel mix and subsequently covered using the lead acetate paper. The 1035 

assay plate was then incubated at 37°C for 3 hours under a weight of approximately 1036 

1 kg to keep the lead acetate paper firmly in place. For analysis, the exposed lead 1037 

acetate paper was imaged using a photo scanner. 1038 

H2S production capacity in liver homogenates: flash frozen liver was homogenised in 1039 

passive lysis buffer (Promega, PLB E1941) and volume normalised to protein content. 1040 

100 μg of protein was added to a final reaction in 96-well format containing PBS, 1 1041 

mM Pyridoxal 5′-phosphate and 10 mM Cys, covered using the lead acetate paper. 1042 

The assay plate was then incubated at 37°C for 1-2 hours under a weight of 1043 

approximately 1 kg to keep the lead acetate paper firmly in place, with the paper 1044 

incubated until a detectable, but non-saturated signal was seen. Quantification of H2S 1045 

production was performed by measuring the integrated density using ImageJ, 1046 

compared to a well next to it that contained no protein for background. 1047 

 1048 

In-gel persulfidation assay  1049 

Synchronous populations of embryos were obtained by lysing gravid hermaphrodites 1050 

in alkaline bleach as previously described 78. After they were washed free of bleach by 1051 

centrifugation, the embryos were put on standard NGM agar plates seeded with E. coli 1052 

OP50-1, ~4000 embryos/plate. At Day-1 adult stage C. elegans of different strains 1053 

were collected from the NGM plates, 4 plates/strain, into 15 ml falcon tubes using M9 1054 

buffer and washed three times. Worm pellets were frozen in liquid nitrogen and 500 μl 1055 

of glass beads was added in every tube. Samples were put in the bead beater 1056 

(FastPrep-24, MP Biomedicals, California, U.S.A.) for 35 seconds at speed 6.5 m/s, 1057 
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followed by an additional cycle at the same speed for 20 seconds. HEN lysis buffer 1058 

supplemented with 1% protease inhibitor and 20 mM NBF-Cl was added to each tube, 1059 

and centrifuged for 15 min at 13000 rpm at 4°C. Supernatants were collected and 1060 

incubated at 37 °C for 45 min. Samples were then precipitated and protein pellets were 1061 

switch labelled for persulfides and processed as previously described 37. 1062 

 1063 

Persulfidation levels by fluorescence microscopy 1064 

The worms were fixed with 4% paraformaldehyde in Eppendorf tubes, washed with 1065 

PBS, and frozen in liquid nitrogen to freeze-crack the cuticle. Worms were then 1066 

stained, first with 1 mM (final concentration) 4-chloro-7-nitrobenzofurazane for 1 hr at 1067 

37 °C, then washed with PBS/Triton X100 (0.1%) 3 times, and incubated with 10 μM 1068 

(final concentrations) DAz-2:Cy-5 click mix for 1 hr at 37 °C 37. For the negative control 1069 

worms were incubated with 10 μM DAz-2:Cy-5 click mix prepared without DAz-2. After 1070 

overnight washing with PBS, worms were washed with methanol 3 x 10 min, followed 1071 

by an additional washing with PBS. Z-stack images were taken on Olympus IX81 1072 

inverted fluorescence microscope using x 100 oil objective lens; images were then 1073 

deconvoluted and 3D pictures generated using ImageJ software (NIH). 1074 

 1075 

Scoring of transgenic promoter-driven GFP  1076 

For Patf-4(uORF)::GFP, L4 stage transgenic animals were exposed to chemicals by 1077 

top-coating with 500 µl of each reagent (alpha-amanitin (Sigma #A2263), 1078 

cycloheximide (Sigma #C7698), tunicamycin (Sigma #T7765), sodium arsenite 1079 

(Honeywell International #35000)) or control (DMSO or M9 buffer) onto 6 cm NGM 1080 

OP50 plates for 30 min to 4 hours, except that rapamycin (LC laboratories) was added 1081 
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to the NGM agar as described 14,25. Then GFP fluorescent levels were either (1) scored 1082 

or (2) quantified. (1) GFP scoring: Transgenic animals were first inspected with a 1083 

dissecting scope while on still on the plate. GFP intensity was scored in the following 1084 

categories: 0= none or very low GFP usually corresponding to untreated control, 1= 1085 

low, 2= medium, and 3= high GFP fluorescence visible. Animals were either washed 1086 

off chemical treated plates, washed again at least twice, placed on OP50 NGM plates 1087 

and were picked from there and mounted onto slides and GFP fluorescence was 1088 

scored using a Zeiss AxioSKOP2 or a Tritech Research BX-51-F microscope with 1089 

optimised triple-band filter-sets to distinguish autofluorescence from GFP at 40x as 1090 

described 79. GFP was scored as the following: None: no GFP (excluding 1091 

spermatheca), low: either only anterior or only posterior of the animal with weak GFP 1092 

induction, Medium: both anterior and posterior of the animal with GFP but no GFP in 1093 

the middle of the animal. High: GFP throughout the animal. P values were determined 1094 

by Chi2 test. (2) Quantification of GFP fluorescent levels: Animals were washed off 1095 

reagent-containing plates, washed an additional two times, then placed into 24-well 1096 

plates containing 0.06% tetramisole dissolved in M9 buffer to immobilise animals. 1097 

Fluorescent pictures were taken with the same exposure settings (1s) at 10x 1098 

magnification using an Olympus Cellsens Standard Camera on an inverted 1099 

microscope. GFP levels were assessed by drawing a line around the animal, 1100 

measuring mean grey value and using the same area next to it for background using 1101 

ImageJ. The arbitrary fluorescent value corresponds to mean grey value of the animals 1102 

minus the background.   1103 

 1104 

Western blot  1105 
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About 5000 C. elegans (L4 or day-1-adults indicated in figure legends) were sonicated 1106 

in lysis buffer (RIPA buffer (ThermoFisher #89900), 20 mM sodium fluoride (Sigma 1107 

#67414), 2 mM sodium orthovanadate (Sigma #450243), and protease inhibitor 1108 

(Roche #04693116001)) and kept on ice for 15 min before being centrifuged for 10 1109 

min at 15’000 x g. For equal loading, the protein concentration of the supernatant was 1110 

determined with BioRad DC protein assay kit II (#5000116) and standard curve with 1111 

Albumin (Pierce #23210). Samples were treated at 95oC for 5 min, centrifuged for 1 1112 

min at 10’000 x g and 40 µg protein was loaded onto NuPAGE Bis-Tris 10% Protein 1113 

Gels (ThermoFisher #NP0301BOX), and proteins were transferred to nitrocellulose 1114 

membranes (Sigma #GE10600002). Western blot analysis was performed under 1115 

standard conditions with antibodies against Tubulin (1:500, Sigma #T9026), GFP 1116 

(1:1’000, Roche #11814460001), Cystathionase/CTH (1:2000, abcam #ab151769) 1117 

and Phospho-eIF2alpha (Ser51) (1:1’000, CellSignal #9721). HRP-conjugated goat 1118 

anti-mouse (1:2’000, Cell Signaling #7076) and goat anti-rabbit (1:2’000, Cell 1119 

Signaling #7074) secondary antibodies were used to detect the proteins by enhanced 1120 

chemiluminescence (Bio-Rad #1705061). For loading control (i.e., Tubulin) either 1121 

corresponding samples were run in parallel or membrane was cut if the size of Tubulin 1122 

and protein of interest were not overlapping, or the blot was stripped (indicated in 1123 

figure legends). For stripping, membranes were incubated for 5 min in acid buffer (0.2 1124 

M Glycin, 0.5 M NaCl, pH set to 2 with HCl) and afterwards for 10 min in basic buffer 1125 

(0.5 M Tris, pH set to 11 with NaOH) and washed with TBS-T before blocking. 1126 

Quantification of protein levels was determined by densitometry using ImageJ 1127 

software and normalised to loading control (i.e., Tubulin). 1128 

 1129 
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Mouse work 1130 

All mouse experiments were performed with the approval of the Local University 1131 

Institutional Animal Care and Use Committee (IACUC). 8 to 14-week-old male or 1132 

female C57BL/6 mice (The Jackson Laboratory, Bar Harbor, ME) were used for all 1133 

experiments unless otherwise indicated. Except where indicated, animals were 1134 

maintained under standard group housing conditions with ad libitum (AL) access to 1135 

food (Purina 5058) and water, 12-hr light/12-hr dark cycles, temperature between 20 1136 

- 23°C with 30% - 70% relative humidity. AL food intake/g body weight was monitored 1137 

daily for several days and used to calculate calorie restriction (CR) based on initial 1138 

animal weights. Animals were fed daily with fresh food between 6 - 7 PM. Adenoviral-1139 

mediated gene delivery: Knockdown of ATF4 was accomplished by IV injection of IV 1140 

injection of1010 PFUs of an adenovirus-type 5 (dE1/E3) containing the CMV promoter 1141 

driving the expression of a shRNA for silencing of Mouse Atf4, Ad-m-ATF4-shRNA, or 1142 

the negative control virus Ad-CMV Null adenovirus amplified and purified by Vector 1143 

Biolabs (Philadelphia, PA, U.S.A.). 1144 

  1145 
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