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Abstract 

Remote sensing is a domain that tends to use satellite images for classification and Land 

Use/Cover (LULC) mapping. For this purpose, classification algorithms are used, which are 

numerous and diverse, and it is necessary to establish decision criteria when choosing the 

algorithm. Ultimately, the main decision criterion will be the accuracy obtained in classification 

because the accuracy of classification may differ from one algorithm to another, even within 

the same algorithm, according to its variables. But there are other equally important criteria: it 

depends on the nature of the task, the quantity and types of data available, the type of response 

expected, the time and computational resources available, the depth of our knowledge about the 

algorithms. 

The methodology of each part of the work was described and the criteria for comparison were 

established. In this research, with the same training data, the same validation data, the same 

application context (7 classes), and the same image data (Sentinel-2), we tested 15 iterations 

with the Random Forest classification algorithm, with different tree number decision values, 

and 3 iterations with vegetation and soil indexes, for the production of the LULC map of the 

Bragança region (northeast Portugal). Finally, we evaluate the accuracy of the classification, 

before and after the post-classification tasks (generalization, fragmentation and removal of 

isolated pixels). 

The results obtained show that a classification with an nb-trees = 1000, including vegetation 

and soil indices, and after post-classification tasks, provided excellent precision results 

(Coefficient Kappa = 0.93, Overall accuracy = 96%, and marginal errors of omission & 

commission below 4%). 
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Resumo 

A teledetecção é um domínio que tende a utilizar imagens de satélite para classificação e 

mapeamento de Uso/Cobertura da Terra (LULC). Para este fim, são utilizados algoritmos de 

classificação, que são numerosos e diversos, sendo necessário estabelecer critérios de decisão 

ao escolher o algoritmo. Em última análise, o principal critério de decisão será a precisão obtida 

na classificação, porque a precisão da classificação pode diferir de um algoritmo para outro, 

mesmo dentro do mesmo algoritmo, de acordo com as suas variáveis. Mas existem outros 

critérios igualmente importantes: depende da natureza da tarefa, da quantidade e tipos de dados 

disponíveis, do tipo de resposta esperada, do tempo e dos recursos computacionais disponíveis, 

da profundidade dos nossos conhecimentos sobre os algoritmos. 

A metodologia de cada parte do trabalho foi descrita e os critérios de comparação foram 

estabelecidos. Nesta investigação, com os mesmos dados de formação, os mesmos dados de 

validação, o mesmo contexto de aplicação (7 classes), e os mesmos dados de imagem (Sentinel-

2), testámos 15 iterações com o algoritmo de classificação Random Forest, com diferentes 

valores de decisão de número de árvores, e 3 iterações com índices de vegetação e solo, para a 

produção do mapa LULC da região de Bragança (nordeste de Portugal). Finalmente, avaliámos 

a exactidão da classificação, antes e depois das tarefas de pós-classificação (generalização, 

fragmentação e remoção de pixels isolados). 

Os resultados obtidos mostram que uma classificação com um nb-trees = 1000, incluindo 

índices de vegetação e solo, e após tarefas de pós-classificação, forneceu excelentes resultados 

de precisão (Coeficiente Kappa = 0.93, Precisão geral =96%, e erros marginais de omissão & 

comissão abaixo de 4%). 
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1 Context and objectives 

1.1 Context 

Remote sensing measures the Earth and its features deprived of making physical contact, the 

data can be gathered from entire continents over a long time period, so the possibility of tracking 

the Earth changing. By using specialized aircrafts and sophisticated satellites to gather DATA 

with remote sensing methods. 

The modern era of Earth remote sensing from satellites began in 1978. Three very important 

new satellite systems were launched in space in that year (Cracknell, 2018), and since then the 

focus has shifted to the improvement achieved. For instance, (1) a small satellite design 

approach was followed by various companies and space agencies throughout the world (Kramer 

& Cracknell, 2008), (2) the small size satellites achievement has positively affected the cost 

and the time needed thus a short development times and cost efficiency (Xue et al., 2008), (3) 

the improvement of satellite output quality, that can be accurate for measurements that can be 

indicated with a precision only a few meters, and within centimetre’s(Pelton & Camacho-Lara, 

2013). 

Land use & land cover are two distinct terminologies which are frequently used mutually 

(DIMYATI et al., 1996). Land cover indicates the physical characteristics of the land surface 

such as the distribution of vegetation, water, soil and other physical characteristics of the Earth, 

including those created exclusively by human activities, for instance settlements. On the other 

hand, land use refers to the approach in which land has been used by man, for his habitation, 

but usually with a focus on the functional role of land for his economic activities (Rawat & 

Kumar, 2015)  

In terms of teledetection, Land Use and Land Cover (LULC) map which represent the spatial 

information, is an ending of classification performed on satellite images data (Sentinel for 

instance) using classifiers dedicated to create classes based on pixels. There are plenty of 

classifiers and each one should be selected with criteria because they can provide better or 

worse accuracy. Even each classifier (Algorithm), its accuracy depends on properties and 

indexes that can be added. In this research, we focused on the production of the LULC map of 

the Bragança region (northeast of Portugal) by Sentinel-2 satellite image classification, using 

the Random Forest (RF) classification algorithm. Seven classes were considered. Several 
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iterations were tested, with different tree number decision values, with or without vegetation 

indexes and soil indexes. 

Remote sensing community focusing on image classification has been attracted by remote 

sensing owing to the accuracy of results acquired, its important role in detecting, mapping, 

understanding, and predicting changes in the environment (Rose et al., 2015). Early applications 

mainly assessed land use and cover change, such as estimation of forest cover losses (Tyukavina 

et al., 2015) and mapping carbon stocks in the amazon (Asner et al., 2010), to identify critical 

migrant bird breeding habitat (Goetz et al., 2010) and assess the influence of light pollution on 

seabirds (Rodrigues et al., 2011), detect abandoned cropland (Löw et al., 2015) More recently, 

remote sensing has been used, for example, to Assess the Ecosystem Service Potential of Urban 

Rivers (Beißler & Hack, 2019), in prediction of soil erosion (Jazouli et al., 2019) mapping the 

proliferation of aquaculture ponds (Al Sayah et al., 2020), moreover the assessment of 

groundwater use in irrigated agriculture (Nhamo et al., 2020), evaluating the ecological quality 

of a mining area for management goals (Zhu et al., 2020). 

Thus, LULC mapping plays a key role in studying and analysing the overall changed scenario. 

Currently, data availability on such changes is crucial, for providing critical contribution to 

decision-making of environmental planning and ecological management for future (Zhou et al., 

2008). 

1.2 Objectives 

Objective 1: To evaluate the criteria to be taken into account when choosing a satellite image 

for the production of LULC maps of the Bragança region using Random Forest classifier 

(machine learning). 

Objective 2: finding the optimum number of trees in order to have a precise classification. 

Objective 3: analysing the effect (accuracy) of post-classification using GIS tools (ArcGIS) 

Objective 4: assess the contribution of integrating vegetation and soil indices on the 

classification accuracy 
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2 Bibliographical Review 

2.1 Remote sensing & GIS overview 

2.1.1 Introduction 

Earth has only been observed as a blue sphere in the middle of Space by privileged people: 

astronauts who have travelled to the Moon. Apollo 8 was the initial crewed spacecraft to 

successfully orbit the Moon and return to Earth in late 1968. The Apollo 8 crew were the first 

to benefit of witnessing and photographing an Earthrise (Loff, 2018) (Figure 1) . Fortunately, 

we can all have this vision of Earth today thanks to remote sensing satellites. But then how can 

the term "Remote Sensing", "Teledection" be defined? Remote sensing can be broadly defined 

as the collection and interpretation of data about an object, an area or an event without being in 

physical contact along with the object, this set of techniques make it possible, through the 

acquisition of images, to acquire information about the Earth's surface (including the 

atmosphere and the oceans), without any direct contact with it. RS encompasses the entire 

process of capturing and recording to process and analyse the information, in order to apply this 

latter. 

 

Figure 1: The view of the rising Earth by the Apollo 8 astronauts in December 1968 (Loff, 

2018) 

 

2.1.2 Definition & history 

Remote sensing is a set of techniques which differ from each other by the type of vector 

(airplane, satellite or space shuttle, ground based sensors) (D Rudd et al., 2017), the acquisition 

mode (analogue or digital, active or passive), the spatial resolution, the spectral range used and 

the observed area. The remote sensing data correspond to measurements integrated on a spatial 

https://www.nasa.gov/multimedia/imagegallery/image_feature_1249.html
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scale (pixel) of certain characteristics of the surface brightness (Levin, 2017), apparent 

temperature (Venter et al., 2020), backscatter coefficient (Belenguer-Plomer et al., 2019). This 

is another type of data that should be calibrated and transformed into useful variables for 

models: Determination of the Ground Albedo (Wu et al., 2018), downscaling both sea-

temperature (Minnett et al., 2019) and land-temperature (Y. Yang et al., 2017) , 3D estimation 

of surface biomass (Wallace et al., 2017), primary production (Gómez-Giráldez et al., 2019), 

etc.) 

The photograph in the visible part of the electromagnetic wavelength was the primary form of 

remote sensing but technological progresses have made it possible to acquire information in 

further wavelengths, including near infrared, thermal infrared and microwaves (Merlin et al., 

2010). Collection of information over a large number of wavelength bands is called 

multispectral (Landgrebe, 2005) or hyperspectral (Govender et al., 2007) data. The 

development and deployment of manned and unmanned aerial vehicle have improved remote 

sensing data collection and provides an inexpensive way to obtain information on large areas 

(Rango et al., 2009). However, the capacities offered by the observations provide development 

and the widespread use of this type of technology in a systematic way. 

The field scope can be developed by examining its history, in order to trace the evolution of its 

concepts (Table 1). 

Remote sensing, as it is understood today, made its debut in 1946-1950 period with the launch 

of the first V-2 rockets (Figure 2) acquired from Germany after second world war at high 

altitude from White Sands, New Mexico (United States). These V-2 rockets contained a small 

integrated cameras and sensors installed that offered a large-scale geographic view of the Earth 

showing an area of approximately 800.000 sq. Miles (Figure 3) (Edgington, 2012).  

From that moment, various projects and missions with other rockets, ballistic missiles and 

satellites took photos of the Earth. Although the quality of the first photos of the space was not 

good, it revealed the real potential associated to this technique. Systematic Earth observation 

has started in 1960 with the launch of TIROS-I (Schnapf, 1985), the first meteorological 

satellite equipped with a low spatial resolution television, which allows meteorologists to 

distinguish between clouds, water, ice and snow (Fiolek, 2011) . The series of satellites TIROS, 

known since 1970 as NOAA (National Oceanic and Atmospheric Administration), are still 

active NOAA-20 called JPSS-1 is; for now; the last satellite placed in orbit on 2017, and the 
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next one in the series, JPSS-2, is scheduled to launch in the first quarter of 2022 (NASA’s 

Scientific, 2020). 

The encouraging future that awaited Remote Sensing is definitely confirmed with the first space 

programs of the 1960s (Mercury, Gemini and Apollo lunar mission)(Lowman, 1999). In the 

orbits described by Apollo 9 around the Earth and before landing on the Moon, the first 

controlled experiment was carried out of multi spectral photography to study the natural 

resources of the Earth's surface (Sharp, 2018). 

Table 1: Milestones in the history of remote sensing 

Year Invention Author 

1839 Beginning of practice of photography Daguerre, Talbot and 

Niepce 

1940 From photo produce topographic map French 

1858 Photography from balloons Gaspard Felix 

Tournachon 

1909 Photography from airplane Wilbur Wright 

1910’s World War I: aerial reconnaissance British Royal Air Force 

1960-

1970 

Satellite era: First use of term remote sensing  

NASA TIROS: weather satellite 

Skylab remote sensing observation from space CORONA 

1972 Launch of Landsat 1 NASA 

1970-

1980 

Rapid advances in digital image processing - 

1980-

1990 

Launch of new generation of Landsat sensor NASA 

1986 SPOT French Earth observation satellite French centre National 

d’Etudes Spatial (CNES) 

1980’s Development of hyperspectral sensors - 

1990’s Global remote sensing system, LIDAR - 

1990’s First Commercial satellite IKONOS Space Imaging 

 

 

Figure 2: The first V-2 rocket launched (Hollingham, n.d.) 
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Figure 3: V-2 Rocket-eye view from 100 Km up, July 26 1948, Source: Photo Courtesy of the 

Applied Physics Laboratory at Johns Hopkins University. 

 

2.1.3 Process of remote sensing 

Figure 4 shows the requirements needed for remote sensing process. Details are given below:  

 

Figure 4: spectral signature of soil, water and vegetation at different wavelengths. (Khan et 

al., 2018) 

 

A- Energy source or illumination:  this is the first requirement in the field of remote sensing. 

The source (i.e. sun) provides electromagnetic energy to the object of interest (crops, 

forests, buildings ...) 

B- The Atmosphere: from its source to the Earth’s surface, the radiation is in contact and 

interaction with the atmosphere passing through it. This interaction can take place 

another time as energy returns to the sensor from the target. 

C- Target: once the energy reaches the target through the atmosphere. The radiation 

interacts; based on several properties; with the targeted surfaces. 

D- Sensor: the sensor on board a satellite collects and records EM radiation reflected from 

the Earth's surface and the atmosphere. 

E- Transmission, Reception, & Processing: The radiation received by the sensor is 

transmitted in electronic form, to a host station in order to process the data in an image 

(paper / digital). 
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F- Interpretation & Analysis: at this level, the image received and processed is interpreted. 

The operation is done in visually / digitally or electronically way in order to extract 

information about the defined target. 

G- Application: the last step in the remote sensing process is to apply data extracted from 

the imagery in order to better understand it. Extract other more detailed information that 

serves to solve certain problems in the study area. 

2.1.4 Sensors in remote sensing 

Remote sensors are mechanical devices that have the role of collecting information in the form 

of energy (EMR or other), usually in storable form. All remote sensors record in selected 

wavelength bands, variation in the amount of energy either reflected or emitted by various 

materials on the surface of the Earth. Remote sensing data is characterised in terms of spatial, 

spectral, temporal and radiometric resolutions. 

The spatial resolution, also known as ground resolution, specifies the pixel size of images 

covering the Earth's surface (Figure 5). The detail that can be discerned in an image depends 

on the sensor’s spatial resolution used. It is a function of the ability to detect the smallest 

element. A sensor’s spatial resolution depends mainly on its Instantaneous Field of View 

(IFOV). As shown in Figure 5, the IFOV is defined as the visible cone of the sensor (A) that 

determines the area of the surface "visible" at a given altitude & a specific time (B). The size 

of this area is obtained by multiplying the IFOV by the distance from the surface to the sensor 

(C) (P.K. Mani, 2014) 

However, the spatial resolution of a satellite image plays an essential role in the cartographic 

process. This property is decisive and varies according to the needs of the cartographer. 

Depending on the work to be carried out, the spatial resolution will be different. Indeed, the 

identification of urban structures, for example, requires images with very high spatial 

resolution, while a mapping of land use patterns can be satisfied with a spatial resolution of 

more than 20 meters. 

To more illustrate, the Figure 6 shows the quality of the view by changing the resolution.  
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Figure 5: the explanatory elements of spatial resolution. Visibility of the sensor(A), area seen 

from a given altitude at a given time (B), altitude (C) (left) and the Illustration of the 

geometrical instantaneous field of view reconstructed by projection from a pixel in the image 

plane (right). 

 

 

Figure 6: Camp Randal Stadium, University of Wisconsin, viewed at different resolutions 

(image: Institute for Environmental Studies, University of Wisconsin ) 

 

The Spectral resolution is the wavelength width of the bands recorded. A sensor’s spectral 

resolution identifies the number and the position of spectral bands inside the electromagnetic 

spectrum that a sensor can gather reflected radiation. Hence, a sensor should at the same time 

be sensitive to a large portion of the electromagnetic spectrum and captures many bands within 

that portion. The higher the number of small bands captured, greater is the spectral resolution 

showing detailed distinction. That means each individual element is in state of reflecting or 

emitting electromagnetic energy in a unique way, this differentiates elements in the scene. 

Multispectral images record energy over several separate wavelength ranges at various spectral 

resolutions. allowing the extraction of extra information that a human eye fails to capture with 

its receptors for red, green and blue. Multispectral imaging was originally developed for space-

based imaging applications. 
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The simplest form of spectral resolution is a sensor with one band only, which senses visible 

light. For instance, an image from that sensor, with only one band, is compared to an aircraft 

white & black image. In case the sensor has in the visible region of EM spectrum three spectral 

band, this indicates the possibility of capturing the same data captured by human eyes. 

The temporal resolution is a measure of the frequency with which a sensor returns to the same 

part of the Earth’s emplacement imaging the exact same area at the same view angle (Yao, 

2009). However, some areas of the surface may be observed more frequently since there is an 

overlap between adjacent orbits and these areas of overlap become larger and larger as they 

approach the poles with increasing latitude. The frequency is going to differ from numerous 

times per day, for a characteristic weather satellite, to 820 times a year for a moderate ground 

resolution satellite. 

The radiometric resolution describes the information contained in an image. Each time an 

image is token by a sensor, its sensitivity to the electromagnetic energy’s intensity regulates the 

radiometric resolution (Muhammad Zulkarnain). The radiometric resolution of a remote 

sensing system describes its ability to recognize small differences in electromagnetic energy. It 

is a measure of how many grey levels are measured between pure black -no reflectance- and 

pure white. The finer is the radiometric resolution, more sensitive to small differences in the 

intensity of the energy received the sensor is. The radiometric resolution is measured in bits and 

is used to encode values in binary format: 1𝑏𝑖𝑡 = 21 = 2 grey levels;  2𝑏𝑖𝑡 = 22 = 4; …; a 

sensor using 8 bits to record data will have 28 = 256 available intensity levels (ranging from 0 

to 255), or Digital Numbers (DN). The higher the number of bits the higher the radiometric 

resolution. 

2.1.5 Examples of some Earth observation sensors 

Landsat was the first satellite to monitor the Earth, launched in 1972. All Landsat satellites 

cross the equator in the morning to take advantage of optimal lighting conditions. Landsat1, 2 

and 3 were placed at an altitude of 900 km with a repeatability of 18 days while the other 

satellites (Landsat 4 to Landsat 5) were placed at an altitude of 700 km with a repeatability of 

16 days. From 1982, by creating the Landsat 4, there was an improvement, better spatial and 

radiometric resolution, a larger number of bands, spectral bands that are narrower. The Table 2 

below summarizes the spectral domains of the different bands of the Landsat-8 with their 

resolution. Landsat 8 imagery captures data with a radiometric resolution of 12-bits.  
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Table 2: Sensitivity and Resolution Used on Landsat-8,  

Bands Spectral Sensitivity 

(µm) 

Nominal Spectral 

Location 

Ground 

Resolution(m) 

Band 1 0.43 - 0.45 µm Visible 30 x 30 

Band 2 0.450 - 0.51 µm Visible 30 x 30 

Band 3 0.53 - 0.59 µm Visible 30 x 30 

Band 4 0.64 - 0.67 Red 30 x 30 

Band 5 0.85 - 0.88 Near-Infrared 30 x 30 

Band 6 1.57 - 1.65 SWIR 1 30 x 30 

Band 7 2.11 - 2.29 SWIR 2 30 x 30 

Band 8 (Panchromatic) 0.50 - 0.68 False colour 15 x 15 

Band 9 1.36 - 1.38 Cirrus 30 x 30 

 

The Spot (Systeme Probatoire d’Observation de la Terre) is a series of Earth observation 

satellites have been designed and launched by the French National Centre for Space Studies 

(CNES) in collaboration with Sweden and Belgium for the acquisition of remote sensing data 

for commercial purposes. All the SPOT satellites are placed at an altitude of 830 km with a 

repeatability of 26 days, equipped with sensors that develops with each launch, offering spatial 

resolution reaching 5m. The Table 3 below summarizes the spectral domains of the different 

bands of the SPOT-4 with their resolution. The pixel depth of SPOT- 6 /-7 is 12 bit, an 

improvement over previous versions (SPOT- 4 /-5) which was 8 bit. 

Table 3: Sensitivity and Resolution Used on SPOT-4-5-6-7 

Sensor Electromagnetic spectrum Pixel size Spectral bands 

SPOT 6-7 Panchromatic 1.5m 0.45 - 0.75 µm 

 B1 : blue 6 m 0.45 – 0.53 µm 

 B2 : green 6 m 0.53 – 0.59 µm 

 B3 : red 6 m 0.63 – 0.70µm 

 B4 : near infrared 6 m 0.76 – 0.89µm 

SPOT 5 Panchromatic 2.5 m or 5 m 0.48 - 0.71 µm 

 B1 : green 10 m 0.50 - 0.59 µm 

 B2 : red 10 m 0.61 - 0.68 µm 

 B3 : near infrared 10 m 0.78 - 0.89 µm 

 B4 : short wave infrared (SWIR) 20 m 1.58 - 1.75 µm 

SPOT 4 Monospectral 10 m 0.61 - 0.68 µm 

 B1 : green 20 m 0.50 - 0.59 µm 

 B2 : red 20 m 0.61 - 0.68 µm 

 B3 : near infrared 20 m 0.78 - 0.89 µm 

 B4 : short wave infrared (SWIR) 20 m 1.58 - 1.75 µm 

 



24 

 

The Sentinel are a series of Earth observation missions developed by European Space Agency 

(ESA), on behalf of the joint ESA/European Commission initiative GMES (Global Monitoring 

for Environment and Security). The objective of Sentinel program is to substitute the existing 

elder Earth observation missions to avoid interruptions in progress studies. Every mission will 

concentrate on a varied aspect of Earth surveillance; Oceanic, Atmospheric, and Land 

monitoring (Missions - Sentinel Online.). Each Sentinel mission is based on a constellation of 

two satellites to fulfil and revisit the coverage requirements for each mission, providing robust 

datasets. All the Sentinel (except Sentinel-4) satellites are placed at an altitude between of 786-

830 km which gives an orbit cycle range between 10-29 days, as already mentioned, each 

mission got two satellites. Thus, the repeatability is the half of orbit cycle period. Sentinel-4 is 

placed in about 35786km above the Earth equator, its orbital period is equal to the Earth's 

rotational period. 

The Sentinel-2 instrument acquires measurements at 12 bits. These measurements are converted 

to reflectance and stored as 16 bit integers in the S2 product (Radiometric - Resolutions - 

Sentinel-2 MSI - User Guides - Sentinel Online). Sentinel-2 is considered as the newest mission 

for Earth observation by the ESA. It has obtained a great attention in research due to its open 

access and global coverage. A varied range of studies have been made with Sentinel-2 , such as 

soil moisture mapping (El Hajj et al., 2017), urban surface water bodies mapping (X. Yang et 

al., 2017), forest stress monitoring (Eitel et al., 2011), and ground biomass quantifying. The 

Table 4 below summarizes the spectral domains of the different bands. 

 

Table 4: Spectral Sensitivity and Ground Resolution Used on Sentinel-2 (A and B) 

Bands Spectral Sensitivity (µm) Nominal Spectral 

Location 

Ground 

Resolution (m) Sentinel-2A Sentinel-2B 

Band 1 0.432 - 0.453 0.432 - 0.453 Coastal aerosol 60 x 60 

Band 2 0.459 - 0.525 0.459 - 0.525 Blue 10 x 10 

Band 3 0.542 - 0.578 0.541 - 0.577 Green 10 x 10 

Band 4 0.649 - 0.680 0.649 - 0.680  Red 10 x 10 

Band 5 0.697 - 0.712 0.696 - 0.712 Vegetation red edge  20 x 20 

Band 6 0.733 - 0.748 0.732 - 0.747 Vegetation red edge  20 x 20 

Band 7 0.773 - 0.793 0.770 - 0.790  NIR 20 x 20 

Band 8 0.780 - 0.886 0.780 - 0.886 Narrow NIR 10 x 10 

Band 8A 0.854 - 0.875 0.853 - 0.875 Water vapour 20 x 20 

Band 9 0.935 - 0.955 0.933 - 0.954 SWIR 60 x 60 

Band 10 1.358 - 1.389 1.362 - 1.392 SWIR – Cirrus 60 x 60 

Band 11 1.568 - 1.659 1.563 - 1.657 SWIR 20 x 20 

Band 12 2.115 - 2.290 2.093 - 2.278 SWIR 20 x 20 
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2.1.6 Discussion on the choice of sensor 

Before acquiring an image in order to perform a classification, the following question must be 

asked first "What are the criteria to be taken into account when choosing a satellite image?" 

knowing that there are a multitude of images available.  

For our study we chose Sentinel-2 as the sensor which provides the images, the first motif is its 

spectral response, (here we make a comparison between Sentinel-2 (MSI) and Landsat 8 (OLI) 

bands). The MSI sensor (Table 4) captures images in the visible (VIS), near-infrared (NIR), 

and shortwave infrared (SWIR) spectral regions through 4 spectral bands of 10 m, 7 bands of 

20 m, and 3 bands of 60 m, and concerning the Landsat sensor (Table 2), it captures images in 

the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) spectral regions, through 

9 spectral bands of 30 m spatial resolution and an additional panchromatic band of 15 m. from 

(Figure 7) we can see that, Both sensors are offering 4 matching bands (NIR, R, G and B) 

respectively 8, 4, 3 and 2 for MSI and 5, 4, 3 and 2 for OLI. but the sentinel offers 3 other bands 

more 5,6 and 7 which are dedicated to capture the vegetation ramp, which is extremely useful 

for vegetation studies. 

Secondly, the choice of sensor is related to temporal resolution (TS), Landsat has a TS of 16 

days, whereas, with the availability of both Sentinel-2A and Sentinel-2B, temporal resolution 

is increased to five days, increasing the chance of acquisition of cloud-free images. 

Finally, because they are provided at no cost to the European user. In addition, the European 

Space Agency's (ESA) provides the SNAP software (and Sen2cor for Correction of 

Atmospheric Effects), also free of charge, which was used in the processing of the Sentinel-2 

images. 

 

Figure 7:Spectral response of Sentinel-2 and Landsat 8 (Spectral Characteristics Viewer | 

Landsat Missions) 
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2.1.7 Classification algorithms 

This section delineates the supervised image classification techniques that are used recently. 

The Maximum likelihood classifier is one of the most popular supervised classification 

techniques used with remote sensing image data. This method is based on the probability value 

that a pixel is belonging to a specific group (Thakur & Maheshwari, 2017). The basic theory 

assumes that the input bands have normal distributions and that the probabilities are equivalent 

for entire classes. However, this technique needs large computational time, but it’s highly 

efficient when it comes to classifying the satellite images, especially the multi-spectral images. 

The maximum likelihood classification has a number of advantages including: 

 Take several variables (bands and band transformations) into consideration. 

 Take into account the variability of the classes using the covariance matrix. 

This classification also has drawbacks, namely: 

 An important equation which takes a long time to calculate. The latter increases with 

the number of input bands. 

 Maximum likelihood strongly depends on a normal distribution of the data in each input 

band. 

 Tends to outclass signatures with relatively large values in the covariance matrix. If 

there is a large distribution of pixels in a sample site, the covariance matrix for that 

signature contains large values. 

The Support Vector Machine (SVM) is a supervised machine learning technique that can be 

used for both regression and classification problems. It creates a hyperplane in 

multidimensional space to split dataset into separated classes in the correct possible way (Figure 

8). The objective of an SVM is to select the most optimal plan (hyperplane) which separates 

data into representative classes, the hyperplane for which the margin (the distance between the 

hyperplane and the nearest data point from either set) is maximum (Figure 8). The approach in 

which an SVM admits the optimal hyperplane is Calculating the Margin; gap between the 

support vectors and the plane; and choosing the plan which enlarges the gap between classes 

(Support Vector Machines Tutorial - Learn to Implement SVM in Python, 2017). SVMs are able 

to handle problems where classes are not linearly separable by transforming the data using a 

kernel function such as the radial basis function (RBF) kernel. 



27 

 

 

Figure 8: Hyperplane (decision plane that splits and classifies data), Support vectors (the 

nearest data points to the hyperplane), Margin (the distance between the hyperplane & the 

closest data point from either set) 

 

The SVM algorithm is very effective in solving different problems. It has several advantages 

such as: 

 The mathematical foundations on which it is based are very solid. 

 The nonlinear classification problem is brought back to the linear one by projecting it 

into a new large space. 

 SVM is more efficient in large spaces. 

 The kernel trick is the real strength of SVM. With proper kernel function, we can solve 

any complex problem. 

 It adapts relatively well to large data. 

Disadvantages: 

 SVM does not work very well, when the set of target classes overlap. 

 In cases where the number of features for each data point exceeds the number of training 

data samples, the SVM will underperform. 

 Choosing the best kernel function is not easy. 

 Long training time for large data sets. 

The Mahalanobis distance (MD) is a technique based on the distance between two points in 

multivariate space. In a regular Euclidean space, (Annex II) variables (e.g. x, y, z) are 

represented by axes drawn at right angles to each other; The distance between any two points 

can be measured with a ruler. For uncorrelated variables, the Euclidean distance equals the MD. 

However, if two or more variables are correlated, the axes are no longer at right angles, and the 

measurements become impossible with a ruler. The MD method takes into account the 
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statistical criteria (Figure 9), and tends to classify signatures with relatively large values in the 

covariance matrix. It’s a slow technique in term of computing. 

 

Figure 9: The difference between Euclidean distance (left) and Mahalanobis distance (right) is 

shown.  

 

The three lines (circles and ellipses) (Figure 9, left) correspond to distances of 1, 2, and 3, from 

the origin, respectively. The Mahalanobis distance (on the right) also accounts for the 

covariance structure (correlation of the variables) of the data (Varmuza & Filzmoser, 2016). 

 

The Mahalanobis distance classification has a number of advantages, including: 

 takes into account the correlations of the different variables of the classes 

 useful in cases where statistical criteria must be taken into account.  

 treat class groups that have a non-hyperspherical shape  

The Mahalanobis distance classification is not totally perfect, it has a number of drawbacks, 

namely: 

 Tends to outclass signatures with relatively large values. Because when there is a large 

dispersion of pixels in a sample, the covariance matrix of that signature contains large 

values. 

 takes tame to calculate. 

The Random Forest (RF) classifier is an ensemble learning method used for classification and 

regression. Developed by (Breiman, 2001), the method construct a collection of decision trees 

(Figure 10) with controlled variation. Each decision tree in the ensemble is constructed using a 

sample with replacement from the training data. 
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Firstly, each tree is constructed using a random bootstrapped sample of the training data. 

Secondly, rather than testing all features for the best split, a random subset of variables is tested 

at each split in each tree. To have a less subjective outcome to any random fluctuation in the 

training data, the randomness in the construction of the trees should be introduced (Diesing & 

Stephens, 2015). The prediction is made for unobserved data by taking a majority vote of the 

individual trees. The samples not part of the bootstrapped sample for each tree, referred to as 

‘out-of-bag’ (OOB) samples, are used to create a cross-validated prediction error for the forest. 

The random Forest package in R was used for the implementation (Liaw & Wiener, 2002). 

 

Figure 10: Random Forest decision tree. 

 

Advantages: 

 Random forest can solve both type of problems that is classification and regression and 

does a decent estimation at both fronts. 

 One of benefits of Random Forest which exists me most is, the power of handle large 

data sets with higher dimensionality. 

 It can automatically balance data sets when a class is more infrequent than other classes 

in the data. 

 It has an effective method for estimating missing data and maintains accuracy when 

large proportion of the data are missing. 

 It has methods for balancing errors in data sets where classes are imbalanced. 

 The capability of the above can be extended to unlabelled data, leading to unsupervised 

clustering, data views and outlier detection. 

The main limitations of random forest are: 
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 A large number of trees can make the algorithm too slow and ineffective for real-time 

predictions. 

 Random forest is a predictive modelling tool and not a descriptive tool. 

 Need to choose the number of trees 

2.1.8 Discussion of the algorithm choice 

In the following study we will use Random Forest Classifier (RFC) as a classification algorithm, 

which is commonly used because of its effectiveness. The choice is made according to several 

previous studies, which show the efficiency of this algorithm in terms of precision. For instance, 

(Sabat-Tomala et al., 2020) achieved better overall accuracy (OA) for the RFC (67.7%) than 

for the nearest neighbour method (62.3%). According to (Hastie et al., 2009), the chosen 

classifier achieves only 4.88% misclassification error. We also found that some articles admit 

that the RFC is a faster image classifier compared to other algorithms used in the same data set 

(Sabat-Tomala et al., 2020). 

Random forest obtains a class prediction from each tree, and then ranks all predictions using 

the majority vote. The accuracy of the classification depends on the number of trees, with 

(Hastie et al., 2009) stating that the number 250 is the value from which the classification 

stabilises. However, it is suggested to verify the effect of the variation in the number of trees 

on the precision of the classification and, at the same time, the processing time. 

2.1.9 Comparison of Random Forest performance 

The comparison criteria are those that allow an evaluation of the performance of this machine 

learning algorithm from the results obtained. They allow to study the behaviour of RF according 

to number of trees, utilization of indices, processing a generalization and according the thematic 

classes of the image.  

The quality of the results provided at each iteration is evaluated by estimating the accuracy of 

the resulting image. Indeed, the precision of the classifications results is the main criterion of 

comparison, because the essential objective is to know the parameters to be chosen beforehand 

using RF classifier for the improvement of the final results precision. It is calculated with 

respect to ground truth data. 

The result of the comparison between the classification made by RF and ground truth data is 

generally presented in the form of a table called the confusion matrix. 
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There are several types of accuracy in terms of classification results evaluation depending on 

the interpretation made of the calculated confusion matrix 

 Global indices:  

 Kappa coefficient (Equation 1): is used to judge the quality of the multi-class 

classification 

 Overall Accuracy (OA) (Equation 2): is the average of the percentages of good 

classification 

 Marginal indices: 

 Producer Accuracy (PA) (Equation 3): is the proportion in percentage of the pixels 

of a class effectively classified related to classes made by true data. 

 User Accuracy (UA) (Equation 4): is the percentage proportion of the pixels 

effectively well classified related to classes made by classifier. 

 Commission errors (Equation 5): how many test pixels were incorrectly classified 

as a class. 

 Omission errors (Equation 6): incorrect classified pixels. 

here is the calculation equation of each precision measures:  

Equation 1: KAPPA Coefficient 

KAPPA Coefficient =
Overall Accuracy −  Estimated Chance Agreement

1 −  Estimated Chance Agreement
 

 

Equation 2: Overall Accuracy 

Overall Accuracy =
Number of Correctly Classified Samples

Number of Total Samples
 

 

Equation 3: Producer Accuracy 

Producer Accuracy =
Number of Correctly Classified Samples in Class 

Number of Samples from Reference Data in Class
 

 

Equation 4: User Accuracy 

 (4) =
Number of Correctly Classified Samples in Class

Number of Samples Classified to that Class
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Equation 5: Commission error 

(5) = 1 − (4) 

 

Equation 6: Omission error 

(6) = 1 − (3) 

 

The Kappa coefficient (K) developed by (Cohen, 1960) is a measure of concordance (indicated 

by the diagonal elements of the confusion matrix) minus the possibility of concordance 

(indicated by the product of marginal rows and columns); the Kappa coefficient takes into 

account all the cells of the confusion matrix, not just the diagonals of the matrix. (Landis & 

Koch, 1977) explain the strength of agreement according to the values of kappa obtained (Table 

5). 

 

Table 5: Rating criteria of Kappa statistics.(Landis & Koch, 1977) 

Strength of agreement Kappa statistics 

Poor <0.00 

Slight 0.00 - 0.20 

Fair 0,80 0.21 - 0.40 

Moderate 0.41 - 0.60 

Substantial 0.61 - 0.80 

Almost perfect 0.81 - 1.00 

 

A comparative study was carried out by (Fung & LeDrew, 1988) on a set of methods for 

evaluating classifications accuracy. Several authors concluded that the Kappa coefficient was 

the most appropriate for a correct description of the accuracy of the classifications. (Rosenfield 

& Fitzpatrick-Lins, 1986) also recommend the Kappa coefficient (Equation 1) as a measure of 

accuracy for the precision of classification. The Kappa coefficient will therefore be used in this 

study to calculate the precision of our classifications. 

2.1.10 Geographic information systems GIS 

Geographic Information Systems (GIS) is a multidisciplinary and spatial analysis environment. 

They offer tools for entering and managing information in digital form, tools for analysis, 

modelling and cartographic representation. 



33 

 

Thematic mapping is one of the scientific fields at the origin of GIS, which has always favoured 

the description and analysis of the spatial dimension. The operation of a GIS is based on the 

storage of information in the form of thematic layers that can be linked to each other by their 

geographical location. It has several fields of application, in particular environment, 

demography, public health, as well as the study of environmental impacts, etc. 

2.2 Role of Remote sensing in supporting resource management 

2.2.1 Importance of remote sensing 

Remote sensing is a modern monitoring tool, capable of providing managers with reliable data 

on even the most remote and inaccessible regions, with great flexibility at the desirable date 

and time. Given the facilities it offers managers, remote sensing is increasingly replacing 

traditional management methods, which are time and resource demanding, such as a satellite 

image, which can replace a hundred of aerial photographs. Remote sensing finds its applications 

in various fields: geology, hydrology, oceanography, forestry, etc. 

2.2.2 Land use/ Land cover (LULC) mapping 

The mapping of LULC serves as a basic inventory of soil resources. Remote sensing offers an 

efficient means of acquiring and presenting LULC data both regionally and locally. The land 

use /land cover mapping serves to obtain an inventory of soil resources for monitoring and 

management. Remote sensing (RS) is a practical and economical tool to obtain a perspective of 

LULC. RS data permits to observe changes in the phenology (growth) of plants during the 

growing seasons. The multisource image which allows the integration of two data sources has 

the advantage of increasing the information content (J. Zhang, 2010). 

2.2.3 Forest 

In forestry, remote sensing plays a very important role in monitoring of forest health 

disturbances. Indeed, using sensors optics capable of measuring not only the amount of 

radiation reflected in the visible but also in the near infrared which is very sensitive to plant 

health, we can easily detect stress in forests. It also offers managers the possibility of identifying 

and / or delimiting the various types of stands, an operation that would be painful, long and 

expensive with the classical methods of land surveys. Depending on the detail sought, we set 

the resolution and the appropriate spectral characteristics. Alongside these applications, remote 

sensing plays a key role in monitoring changes in wooded areas and illegal logging, especially 

in the most remote and inaccessible areas and far from forester surveillance. It would be enough 
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to acquire previous and recent images of the region in question, process them and analyse them 

in order to compare and deduce the differences in the extent of logging and forest losses. 

2.2.4 Agriculture 

Economic profitability with low ecological impacts is the goal of all agricultural producers, 

large scale managers and regional agricultural organisations. Identifying and mapping crops is 

important because the food production is fundamental. These maps are used to forecast grain 

supplies (production prediction), collect production statistics, maintain crop rotation records, 

map soil production, identify factors that influence crop health, assess storm & drought damage 

and monitor agricultural activities. 

The spectral reflectance of a field varies according to the phenological (growth) stage, the type 

of plants and their state of health. Microwaves are sensitive to the alignment, structure and 

amount of water present in plants and soil. Thus, achieving a more accurate classification. 

Results of the interpretation of remote sensing data can be integrated into a GIS and crop 

management system, and can also be combined with ancillary data to provide information on 

management practices. 
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3 Methodology and Materials 

3.1 Study Area Presentation 

3.1.1 Geography 

The District of Bragança is an administrative division of Portugal, located in the northeast 

corner of the country (Figure 11), covering 6,600 km2 which represent 7.4% of the national 

continental land mass. 

 

 

 

Figure 11: Location of study area “Bragança” 

 

3.1.2 Climate characteristics 

The climate of Bragança is classified as Csb according to the Köppen classification, temperate 

with warm dry summer. In the period 1981-2010, the average maximum temperature in January 

for Bragança was around 8.5 °C while in July it was around 28.5 °C (IPMA, 2020).  
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The January minimum temperature hovers around the freezing point (0.3 °C). And winter 

temperatures can fall to as low as -11.6 °C. The annual mean temperature is around 13 °C. The 

average of total rainfall was around 800 mm per year in the period 1981-2010 (IPMA, 2020). 

The year of 2005 was particularly dry in Portugal and Bragança suffered from water shortages 

and devastating forest fires in the rural areas (International Forest Fire News (IFFN), 2006). 

We present here the ombrothermic diagram of Bragança from the period 1981-2010 (Figure 12) 

using temperature values from the meteorological station of Bragança (IPMA, 2020) and 

precipitation values from meteorological station of Vinhais in Bragança  (Portuguese 

Environment Agency, n.d.). 

 

Figure 12: Ombrothermic diagram of Bragança of the period 1981-2010 

 

To conclude, the inland north-eastern Portugal has a hot summers and cold long winters, hence 

continental features, and the diurnal temperature variation can reach 20 °C ( according to the 

Figure 12 above). 

3.1.3 Landscape characteristics 

The study area of the district of Bragança is characterized by a high climatic and landscape 

diversity (Castro & Fernandez-Nuñez, 2014). The region is consisted of a heterogeneous 

patchwork of land covers and land uses that are juxtaposed. We found: Shrublands, 

Agriculture (annual crops; permanent crops), Woodland (broadleaves; coniferous), 

Grasslands, Urban area and Water bodies. It should be noted that from 1958 to 2005 the 

study landscape went through relevant modifications increasing the patch size for the most 

combustible land classes (shrublands and forests) (Azevedo, César, Castro 2011),  
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Shrublands: Shrubs is one of the categories existing in terrestrial land of study area even it is 

the most dominant type. These are plants not able to reach more than 5m height. The dominance 

of shrubs in this area is due in first place to the management plan of lands, also due to the 

mountainous relief of the region, and even with a slight contribution we can add agriculture 

abandonment effect (Azevedo et al., 2011). 

Agriculture: according to Azevedo et al (2011), this cover class is considered in the second 

rank in terms of dominance. This is areas dedicated to agriculture, of which we particularly 

specify two main types of soil exploration in the purpose of plant production, the annual crop 

(e.g. cereal, horticulture), and the permanent crops (e.g. vineyards, olive groves, almond groves, 

orchards). 

Woodland: the forest is an important class in the region of Bragança the reasons for the 

dominance of this class are the same as shrublands class. This class is defined as “Areas covered 

by trees with a canopy of at least 10%” (Land Cover and Land Use, Landscape (LUCAS) (Lan)).  

A forest category is defined by its composition (i.e. type of trees that forms this forest) 

Broadleaved Woodland: these are areas with broadleaf species, mainly oak trees, potentially 

grazed by small ruminants, so this class is called grazing forest. 

Coniferous woodland: this class refers to areas with conifers (mainly pine). It is an un-grazed 

land, which means that ruminant animals show no preference for this land cover category. 

Grasslands: this class is a terrestrial ecosystem predominantly covered by communities of 

grassland, grass-like plants and forbs. Grassland zone is deemed as natural permanent pasture 

for cattle, or origin of cutting hay or silage. 

Artificial Land (urban): areas characterized by an artificial cover which comprises the entire 

construction made by anthropological actions. The residences, sport, leisure facilities and 

industrial or commercial sites are the main manifestations of these surfaces. 

Water areas: patches that constitute inland areas with water accumulation.  

3.2 Digital processing methodology 

3.2.1 Digital processing flowchart 

This section presents the methodology adopted for digital processing. We summarise in the 

following flowchart the different steps to be taken to meet the objectives set. 
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Figure 13: Processing flowchart 
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3.2.2 Material and data 

This chapter is devoted to the presentation of the data used, to the application of the RF 

algorithm with several value of tree numbers and the integration of indices, to data obtained 

and the criteria used in the comparison of iterations. The satellite images used are those of the 

European Space Agency (Sentinel-2) Level-C (Table 6). The products consist of image data, 

delivered as ZIP-compressed, and the associated metadata, all capsuled within a “SAFE” file 

container. The multispectral Sentinel-2 Level-C bands used were those listed in the Table 7. 

Table 6:Satellite data with the date of acquisition and cloud cover percentage 

Satellite Zone path Acquisition 

date 

Cloud cover (%) 

Sentinel-2B 30TTL 20190805 0.0 

Sentinel-2A 29TPG 20190803 0.0583 

Sentinel-2B 29TQG 20190719 0.0016 

Sentinel-2B 29TPF 20190719 0.2546 

 

Table 7: Multispectral Sentinel  

Multispectral band Central wavelength Spatial resolution (m) 

B2 Blue, 490 nm 10 

B3 Green, 560 nm 10 

B4 Red edge, 705 nm 10 

B5 Red edge, 749 nm 20 

B6 Red edge, 783 nm 20 

B7 Near-Infrared, 842 nm 20 

B8 Near-Infrared, 842 nm 10 

B8b Near-Infrared, 865 nm 20 

B11 Short-wave IR, 1610 nm 20 

B12 Short-wave IR, 2190 nm 20 

 

We applied the Random forest algorithm, whose performance varies according to the number 

of trees used, as well as the incorporation of indices (vegetation, soils). Our comparative study 

is carried out in a context of type of cover. For training data (TD) and validation data (VD) 

we choose 7 clusters of homogeneous pixels based on the Sentinel-2 RGB colour composition, 

aided by the high-resolution images of Google Earth and the ShapeFile of the official Land Use 

and Land Cover Map of 2018 (COS2018) provided by Direção-Geral do Território in Portugal 

(Dgterritorio). The TD has been selected so that it is the basis on which the algorithm classifies 

the data. Its size is 69044.2 pixels distributed as follows: 40470, 1697, 1693, 705, 386.4, 492.8 
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and 23600 respectively for water, Annual crops, Broadleaves, Conifers, Grasslands, Shrublands 

and Permanent crops. The VD was chosen for the entire study area to validate the classification. 

Its size is 89679 pixels distributed as follows: 60240, 1294, 6628, 926, 407, 19340 and 844 

respectively for water, Annual crops, Broadleaves, Conifers, Grasslands, Shrublands and 

Permanent crops. 

 

The software used was the European Space Agency's (ESA) open-source SNAP and Sen2cor 

for Correction of Atmospheric Effects, both designed for the exploitation of Earth observation 

data. ArcGIS software was also used, for processing vector data and geodatabases. In this study, 

this software is used for the vectorization of the map and for the analysis of raster data, post 

classification, obtaining confusion matrices, etc. We used Microsoft Office tools for result 

analysis, data processing, chart and report production and word processing. 

3.2.3 The pre-processing methodology 

“Sen2cor SNAP” is a Level-2A processor that has as main objective to correct Sentinel-2 Level-

1C Top of the Atmosphere (TOA) products in Level-2A Bottom-Of-Atmosphere (BOA) 

reflectance products, eliminating, or at least reducing, the effects of light dispersion caused by 

components of the atmosphere (water vapour, aerosols, among others). This process of 

atmospheric correction is part of the pre-processing, which precedes the classification of 

images. 

Image resampling is necessary to equalise the spatial resolution of the 13 bands (see Table 7). 

The multi-size mosaic tool is applied, resulting in a series of 10x10 pixel size images. 

Mosaicking allows the integration of several images of the same scene, which partially overlap, 

to obtain a full representation of the study area; in our case 4 images are brought together to 

cover the entire study area. The mosaic process also allows the transformation of the original 

WGS 84 geographical coordinates into projected coordinates, in this case for the UTM Zone 

29 WGS84 coordinate system. 

A subset of the image is created based on the Region of Interest (often abbreviated ROI), 

which corresponds to the official administrative boundaries of the Bragança district (ShapeFile 

polygon) provided by government authorities (Direção-Geral do Território). 
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3.2.4 The classification methodology 

The classification of satellite images is a complex process which can be affected by several 

factors, in our case we adopt the random forest algorithm approach, so the parameters that can 

be modified are RF decision tree and the insertion vegetation & soil indices. There are three 

steps to the classification process: 

 Establishment of training data. 

 The classification of each of the pixels according to the TD. 

 Verification of results with validation data. 

Class determination 

Visually analysing the satellite image and with the help of COS2018 ShapeFile, we identified 

7 thematic classes with interest, according to the objectives described above (Table 8). 

 

Table 8: LULC classes (Dgterritorio)  

classes constituents 

Shrublands Matos 

Agriculture AC Annual crops (cereals, horticulture, …) 

PC Permanent crops (olive groves, orchards, vineyards, …) 

Woodland: Broadleaves cork oak, holm oak, chestnut, eucalyptus, … 

Coniferous maritime pine, stone pine, …  

Grasslands Spontaneous pastures, improved pastures 

Artificial Land Industry, Trade, Infrastructure, Transport, … 

Water Areas  water courses, lakes and reservoirs, … 

 

Choice of training data 

The careful choice of training data is very important in order to achieve a successful 

classification. A sufficient number of training samples and their representativeness are essential 

criteria for the image classification, for this purpose we have chosen samples throughout our 

study area to minimise the slopes effect on the classification accuracy, since the area is 

mountainous. The training areas will be used to define the signatures of each of the thematic 

classes. 

Application of the Random Forest algorithm 

The classification has the following requirements: 

 The same thematic classes are adopted in the different iterations. 
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 Similar training data are maintained for all iterations. 

 The same validation data is used for the different iteration. We specify here that this 

validation data is independent of the training one. 

 The colours assigned to each of the thematic classes are the same for the different 

classified images, to ensure reliable visual analysis. 

Steps of application: In the main SNAP toolbox, we choose Random Forest Classifier, by 

clicking on RASTER then Classification then supervised classification: 

 ProductSet- Reader operator 

At the ProductSet- Reader operator level, we add the satellite image: 

 Random Forest Classifier operator 

In the random forest classifier operator section, we select the training vectors, and the bands to 

be used (Table 7), according to the purpose of the classification. 

 At this section we also decide the number of trees on which we base the classification: 

 write operator 

In write operator we define the name of the output and its directory. 

Application of RF algorithm for number of decision trees purpose: 

Considering the 7 classes of training data already selected, the algorithm separates the data into 

7 proposed classes. Throughout this part of work, we did 15 iterations. The numbers used in 

each iteration are: 10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900 and 1000, 

it should be noted that the maximum nb-trees we have been able to perform is 1000, due to time 

constraint, so we can admit the following assumption "with nb-trees not used in our study 

(>1000), the results can be superior to those obtained". The decision on the optimal number of 

trees to be included in the classification was based on the assessment of the quality of 

interpretation through the analysis of confusion matrices. 

Application of RF algorithm for Indices purpose: 

We make 3 iterations: 1st iteration: with Soil Indices, 2nd Iteration: Vegetation indices and 3rd 

iteration: with Soil & Vegetation indices 

1st iteration (with Soil Indices): on the menu bar we click on Raster then band math, filling in 

according to the corresponding equations for the 3 soil indices desired to be integrated into the 
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classification, the Brightness Index (BI) algorithm, representing the average of the brightness 

of a satellite image (Equation 7), the Redness Index (RI) algorithm, developed to identify soil 

colour variations (Equation 8) - Pouget et al.(1990) and the Colour Index (CI) algorithm, 

developed to differentiate soils in the field (Equation 9) - Pouget et al.(1990).  

 

Equation 7: Brightness index 

𝐵𝐼 = √
𝐵4 ∙ 𝐵4 + 𝐵3 ∙ 𝐵3

2
 

 

Equation 8: Redness index 

𝑅𝐼 =
𝐵4 ∙ 𝐵4

𝐵3 ∙ 𝐵3 ∙ 𝐵3
 

 

Equation 9: Colouration index 

𝐶𝐼 =
𝐵4 − 𝐵3

𝐵4 + 𝐵3
 

2nd Iteration: Vegetation indices: For this iteration we go to Optical section on the main menu, 

then we choose Thematic land processing, after we click on biophysical processor, there the 

calculation is carried out automatically of the 4 selected vegetation indices, automatically 

calculated, the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) (Equation 

10), the Leaf Area Index (LAI) (Equation 11), the Fraction of vegetation cover (FCOVER), and 

the Chlorophyll content in the leaf (Cab). 

 

Equation 10: Fraction of Absorbed Photosynthetically Active Radiation (Begue et al., 1991; 

Fensholt et al., 2004) 

𝐹𝐴𝑃𝐴𝑅 =
((PARi − PARcr) − ((PARtr(1 − αs))PARi)

PARi
 

where PARi is incoming Photosynthetically Active Radiation (PAR), PARcr is reflected PAR 

from the canopy and αs is the soil albedo (derived over bare soil). PARtr is the transmittance 

of PAR through the canopy  

 

Equation 11: Leaf Area Index  (Saito et al., 2001) 

𝐿𝐴𝐼 = 0.57𝑒
2.33 

𝐵8−𝐵4
𝐵8+𝐵4̅̅̅̅  
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Equation 12: Fraction of vegetation cover 

𝐹𝐶𝑂𝑉𝐸𝑅 =
NDVI − NDVIs

NDVIv − NDVIs
 

Where NDVIv and NDVIs are difficult to obtain, but the estimation can be summarized as the 

maximum and minimum NDVI in a study area (Gutman & Ignatov, 1998) 

3rd Iteration: integrate vegetation and soil indices into the classification process. 

3.3 Post classification: 

Post-classification generalization was applied to the resulting image using a Majority filter 

where each pixel is replaced by the most frequent value of the surrounding pixels. Therefore, 

we used the Boundary clean tool to smooth out boundaries between zones without changing 

the integrity of classes. Finally, we used the Nibble tool to replace certain small groups of pixels 

after applying a mask which assigns each pixel a unique identification. 

3.4 Accuracy assessment 

By comparing the classification results with the ground truth already set by validation data, we 

can assess the proportion of pixels that are actually well classified, as well as those that are 

misclassified. The proportion of well-classified pixels gives an idea of the accuracy of the 

classification and that of misclassified pixels an idea of the classification error. 

The analysis of these Accuracies (Equation 1,Equation 2,Equation 3,Equation 4,Equation 5 and 

Equation 6) is enough to make a good evaluation of RF Classification results quality. The results 

exactitude is the fundamental criterion in a study aiming to evaluate and compare several 

iterations, because the accuracies permit to make: 

 Comparison between number of trees and deduce the most appropriate value to use in 

the classification, 

 Assessment of indices effect, either vegetation or soil one, on the classification quality, 

 Evaluation of the effect of post-classification generalization on the final classification. 

The execution time of the classification, in our case, is only the time to make the classification, 

without taking into account the preparation time of the entries or the time for processing the 

results. The assessment of the overall duration of a classification operation can sometimes be 

subjective depending on the experience of the user. 

The following study is done on Intel(R) Core(TM) i7 CPU M 640 @ 2.80GHz 2.8 GHz. 
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4 Results and discussion 

The comparison of the performance of the iterations made by the Random forest classification 

algorithm requires an evaluation of the behaviour of each of them with respect to the main 

influencing parameters. Depending on the different applications carried out, we retain the 

following essential criteria to conduct this practical comparison. It's about: 

 Global precision in the discrimination of each type of class; 

 Behaviour in relation to the statistical parameters (means and variances) of the classes; 

 Calculation time taken by each iteration to classify the image. 

The first 15 iterations will focus on the comparison of number of trees and their effect on the 

classification accuracy. Concerning the 2nd group of iterations (3 iterations) it is about 

comparing the effects of the soil and vegetation indices on the classification. 

4.1 Comparative analysis of classification accuracy for each number of trees iteration 

4.1.1 Global Indices: 

Nb  

trees 

Kappa 

 

10 0.82 

50 0.84 

100 0.84 

150 0.85 

200 0.85 

250 0.86 

300 0.87 

350 0.87 

400 0.86 

500 0.87 

600 0.86 

700 0.87 

800 0.87 

900 0.87 

1000 0.88 

Figure 14: kappa index of agreement (nb-trees analyse) 
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Nb 

trees 

OA 

 

10 90.91 

50 91.73 

100 91.63 

150 92.28 

200 92.33 

250 92.70 

300 93.32 

350 93.32 

400 93.03 

500 93.34 

600 92.89 

700 93.45 

800 93.40 

900 93.44 

1000 94.18 

Figure 15: Overall Accuracy (nb-trees analyse) 

 

According to the two graphs (Figure 14 and Figure 15) which represent respectively the kappa 

index and the overall accuracy of each classification, it can be seen that the iteration with a 

number of trees of 1000 is considered as the best and most accurate one. It is also clear that 

precision tends to increase with the increase in the number of decision trees. 

4.1.2 Marginal indices 

In order to establish a comparative analysis, the confusion matrices are used to record the 

classification accuracy of each class according to each number of trees used in classification. 

The Figure 16 represents the preliminary data "precision of the producer" of this analysis. 

Nb 

trees 

Producers 

accuracy 

 

10 90.91 

50 91.73 

100 91.63 

150 92.28 

200 92.33 

250 92.70 

300 93.32 

350 93.32 

400 93.03 

500 93.34 

600 92.89 

700 93.45 

800 93.40 

900 93.44 

1000 94.18 

Figure 16: Producer Accuracy (nb-trees analyse) 
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Nb-

trees 

O 

&C 

errors 

 

10 9.09 

50 8.27 

100 8.37 

150 7.72 

200 7.67 

250 7.30 

300 6.68 

350 6.68 

400 6.97 

500 6.66 

600 7.11 

700 6.55 

800 6.60 

900 6.56 

1000 5.82 

Figure 17: Omission & commission error (nb-trees analyse) 

 

From the graphs of the Figure 16 and Figure 17, we can see that with a number of trees of 1000, 

the RF Classifier assigns over 94% of the image pixels to their true LULC class. 

As shown in the omission & commission index graph, if the number of trees in the analysis 

increases, the percentage of image pixels assigned to incorrect classes is lower. For a number 

of trees of 1000, the classification makes the minimum error (less than 6%). 

Accuracy According to each Class 

 

Table 9: Producer Accuracy of Random Forest  

classes 10 50 100 150 200 250 300 350 400 500 600 700 800 900 1000 

Annual Crops 96 97 98 98 98 98 98 99 98 98 99 98 98 98 99 

Broadleaves 96 97 97 96 97 97 98 96 97 97 97 96 97 97 98 

Conifers 76 76 76 76 76 76 76 78 76 76 76 76 76 76 75 

Grassland 88 89 89 89 89 89 90 90 89 88 88 89 89 89 88 

Perm. Crops 37 49 46 50 48 47 47 47 47 47 44 47 48 45 48 

Shrublands 64 66 66 69 69 71 74 74 73 74 72 75 69 75 78 

Water 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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Figure 18: the dispersion of the classification precision for each class (nb-trees analyse) 

 

The graph in the Figure 18 present the classification accuracy dispersion in terms of  number 

of trees in each ROI image class. We cannot conclude the number that affect the classification 

the most, but by zooming we can note that the 1000 approach has a tendency to well affect the 

classification for each class. 

Analysing the Table 9, we can notice that we obtain a satisfactory accuracies for some classes 

before reaching nb-trees=1000 (perm. crops at nb-trees=50, grassland at nb-trees=10), but if we 

consider the whole column we can state that 1000 has gathered the highest accuracies for all 

classes. 

The Permanent Crops, Shrublands, Conifers and Grassland classes, obtained less agreement for 

classification. This misclassification is due to incorrect assignment of pixels belonging to one 

class to another class.  

The class with the lowest concordance was the Permanent Crops class (<55%), as a result of 

the diversity of this class, which includes vineyards, chestnut and almond trees, olive groves, 

which are very different in the remote sensing images. But in this case, this lack of agreement 

is due to the soil factor, which is predominant, especially in young plantations of fruit orchards 

and olive groves, and even in vineyards. In such cases temporary crops can be confused with 

permanent crops or even with pastures, especially in summer when the soil is also devoid of 

green vegetation. 

We can also relate this confusion to the species themselves. For instance, the Juniperus 

oxycedrus, is is considerably present in our study area (Costa et al., 1993) and this specie is 
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considered to be both a conifer (H. W. Zhang & Chan, 2015) and a shrubland  (Juniperus 

Oxycedrus - Trees and Shrubs) 

4.1.3 Descriptive statistics: 

For each iteration accuracy, the parameters calculated are presented in (Table 10). By observing 

the box and whisker figure (Figure 19), we can get an idea of the central tendency of the 

precision values of each classification iteration, the box length gives an idea on the variability 

for each number of trees value. We notice that the length of 1000, 900,700, 500 and 350 boxes 

are small, which explains a small variation of the values, but in term of symmetry we can say 

that 1000 has a less skewed data. Hence, the latter presents high precision values compared to 

the other box and whiskers. 

 

Table 10: Descriptive statistics for all the precision observations of each iteration (nb-trees 

analyse) 

nb tree N Maximum Minimum Mean standard deviation Variance 

10 7 99.972 37.055 79.591 22.779 518.904 

50 7 99.983 49.169 82.073 19.128 365.873 

100 7 99.983 48.456 81.718 19.885 395.409 

150 7 99.977 43.943 82.654 18.616 346.556 

200 7 99.980 46.200 82.333 19.229 369.773 

250 7 99.987 49.525 82.638 19.125 365.753 

300 7 99.977 46.675 83.079 19.359 374.790 

350 7 99.980 46.675 83.391 19.044 362.685 

400 7 99.982 47.268 82.815 18.991 360.645 

500 7 99.982 45.368 82.878 19.017 361.629 

600 7 99.982 47.268 82.284 20.133 405.353 

700 7 99.978 46.437 82.984 18.942 358.789 

800 7 99.982 47.506 82.333 19.229 369.773 

900 7 99.985 46.793 82.698 19.390 375.984 

1000 7 99.985 46.556 83.639 18.477 341.391 
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Figure 19: the box and whisker of different observations of producer precision (nb-trees 

analyse) 

 

4.1.4 Analysis of variance: 

The studied variable "Producer Accuracy" is given as a percentage which requires an arcsine 

transformation (Equation 13) (Data Analysis in the Geosciences), then we perform one-way 

analysis of variance (ANOVA) so we get the Table 11 

Equation 13: arcsine transformation for one-way analysis of variance 

𝐴𝑅𝐶 sin(√𝑃𝐴) 

We notice that the value of the significance for the of the LULC classes and the number of trees 

factors are lower than the 5% threshold, so we reject H0, and we conclude that the difference 

is significant whether between the LULC classes or between classifications with different 

number of trees. 

 

Table 11: Significant test of inter & intra factor 

Source of 

Variation 

Sum of 

Squares 

df Mean Sum 

of Squares 

(MSS) 

F Significance 

Classes 7.132886484 6 1.188814414 2716.246493 6.14E-94 

Nb-trees 0.015444248 14 0.001103161 2.520541439 0.004758171 
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4.1.5 Execution velocity 

 

Figure 20: Execution time of different iterations (nb-trees analyse) 

 

The graph of Figure 20 shows that the execution time is related to the number of trees chosen. 

As the number is large the execution time is longer. 

4.1.6 Conclusion 

By making an overview of the results obtained from the 15 iteration, the classification with a 

nb-trees=1000 is considered as the best in terms of precision, either for global Indices (Kappa 

index, Overall accuracy) or Marginal Indices (Producer accuracy, User Accuracy, Omission & 

commission errors). We present in Figure 21 the LULC map for the district of Bragança, 

obtained through the classifier Random forest with nb-trees=1000. 
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Figure 21: LULC classification of Bragança with nb-trees=1000 

 

4.2 Comparative analysis of classification data for indices effect: 

Once we had researched the effect of the number of decision trees on the classification process, 

we decided to see if we could further improve the classification result by integrating soil and 

vegetation indices, with constant decision trees (nb-trees=1000) 
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4.2.1 Global Indices 

iteration Kappa 

% 

 

without 

indices 

0.883 

soil indices 0.908 

Vegetation 

indices 

0.885 

Both 

Indices 

0.899 

Figure 22: kappa index of agreement (Indices analyse) 

 

iteration Overall 

accuracy 

 

without 

indices 

94.178 

soil indices 95.421 

Vegetation 

indices 

94.397 

Both 

Indices 

95.014 

Figure 23: Overall Accuracy (Indices analyse) 

 

According to the Figure 22 which presents the kappa index of each iteration made, we notice 

that the classification with the soil indices is the most precise (more than 0.9) compared to the 

other iterations. And also the overall accuracy, represented in the Figure 23, shows that it is the 

most precise iteration (more than 95%). 

The 2 figures above reveal that the use of vegetation and soil indices improves the quality of 

the classification, however, the soil indices are more efficient. 

according to (Macintyre et al., 2020) the classification is related to the season of the satellite 

images, therefore we can strongly link the clear response of the soil indices to the season, 

especially in summer the soil is deprived of the green layer which promotes soil indices role. 
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4.2.2 Marginal indices: 

 

iteration Producer 

 

without 

indices 

94.178 

soil indices 95.421 

Vegetation 

indices 

94.397 

Both 

Indices 

95.014 

Figure 24: Producer Accuracy (Indices analyse) 

 

iteration O&C 

error 

 

without 

indices 

5.822 

soil indices 4.579 

Vegetation 

indices 

5.603 

Both 

Indices 

4.986 

 

Figure 25: Omission & Commission error (Indices analyse) 

 

From the producer's perspective (Figure 24), it should be noted that with the inclusion of soil 

indices the RF Classifier allocates more than 95% of the pixels to its correct class. In general, 

the integration of indices, both vegetation and soil, helps the classifier to assign pixels to its 

true class. 

According to Figure 25, the iteration with soil indices is still the best, because only 4.5% of the 

pixels that are incorrectly classified. 
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Accuracy according to each class 

Table 12: preliminary data for the classification results (Indices analyse) 

Classes Without 

Indices 

With Soil 

Indices 

With 

Vegetation 

Indices 

With Both 

Indices 

Annual Crops 99 98 99 99 

Broadleaves 98 97 95 95 

Conifers 75 75 73 73 

Grassland 88 90 80 87 

Permanent Crops 48 51 52 49 

Shrublands 78 83 79 82 

Water 100 100 99 99 

 

 

Figure 26: dispersion of accuracy of classification by land use classes (Index inclusion 

analysis) 

 

As presented (Table 13, Figure 27) the indices have, in one way or another, an effect on the 

classification. For the permanent crop, the precision is improved with 4% by integrating the 

vegetation indices, on the other side, the classification of the Grassland and Shrublands classes 

has become more accurate by using the soil indices with 2% and 3% respectively. On the other 

hand, there is a deterioration for the Grasslands Accuracy using the vegetation indices, which 

is supported by (Baret et al., 2006), indicating an under-representation of grass and broadleaf 

surfaces where LAI / FAPAR measurements have been performed. 
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4.2.3 Descriptive statistics 

Table 13:Descriptive statistics for all the precision observations of each iteration (Indices 

analyse) 

use of indices N Maximum Minimum Mean Standard 

deviation 

Variance 

Without indices 7 99.9834 48.4561 83.6387 18.4768 341.3908 

Soil Indices 7 99.9801 51.4252 84.9860 17.3043 299.4398 

Vegetation Indices 7 99.9884 52.1378 82.9727 17.1052 292.5884 

Both Indices 7 99.9834 49.8812 84.1424 17.9267 321.3657 

 

 

Figure 27: the box and whisker of different observations of producer precision ( Indices 

analyse) 

 

As shown in (Figure 27), the 4 boxes have the same length, which means the resemblance of 

the 4 iterations in terms of values variation. Also we can see the fact that half of the calculated 

AP have an accuracy greater than 88% (this is the case of without indices, soil indices and both 

indices) 
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4.2.4 Execution velocity 

 

Figure 28: Execution time of different iterations (Indices analyse) 

 

The Figure 28 shows that the time to perform the classification with the indices is longer, 

especially if we combine the 2 indices. 

4.2.5 Conclusion 

After having finalized this part of work we can conclude the effect of including all the Indices. 

It was found that the classification using LAI, FAPAR and FCOVER brought less improvement 

in terms of accuracy compared to soil indices (BI, CI and RI). This can be explained by the 

sensitivity of vegetation indices to soils (Viña et al., 2011). According to these authors, 

vegetation indices can be affected by soil background reflectance, which reduces their 

contribution to the LULC classification. 
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Figure 29: LULC classification of Bragança district with Soil Indices 

 

4.3 Post-Classification 

The best classification result obtained was used to evaluate possible losses of precision caused 

by post-classification tasks. 

4.3.1 Global Indices: 

iteration Kappa 

 

before post-

classification 

0.908 

after post-

classification 

0.927 

Figure 30: kappa index of agreement (post-classification analyse) 
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iteration Overall 

accuracy 

 

before post-

classification 

95.421 

after post-

classification 

96.375 

Figure 31: Overall Accuracy (post-classification analyse) 

 

From the figures (Figure 30 and Figure 31) below we observe an improvement in the Kappa 

Index is from 0.908 to 0.927 and in the overall accuracy, from 95.421 to 96.375. Consequently, 

in this case, post-classification tasks contributed positively to the accuracy of the classification 

obtained. 

4.3.2 Marginal Indices: 

iteration Producer 

 

before post-

classification 

95.421 

after post-

classification 

96.375 

Figure 32: Producer Accuracy (post-classification analyse) 
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iteration O&C error  

 

before post-

classification 

4.579 

after post-

classification 

3.625 

Figure 33: Omission & Commission error (post-classification analyse) 

 

According to Figure 32 and Figure 33, almost 1% of the pixels not well classified before, 

became well placed in their correct classes by performing the post-classification tasks. 

Accuracy according to each class 

 

Table 14: preliminary data for data analysis (post-classification analyse) 

classes Before post-classification After post-classification 

Annual Crops 97.824 99.767 

BroadLeaves 97.255 97.617 

Conifers 74.893 73.712 

Grassland 90.074 89.826 

Permanent Crops 51.425 55.344 

Shrublands 83.450 87.477 

Water 99.980 99.992 

 

 

Figure 34: the dispersion of the classification precision for each class (post-classification 

analyse) 
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The effect of the post-classification on the classes is mainly existing at the level of the following 

classes: AC, PC, Shrubs with an improvement of 2%, 4% and 4% respectively. On the other 

hand, the precision has decreased for Grassland with 0.3%. 

This increase or decrease in terms of precision is generally explained by the size of each cluster. 

for instance, the grassland class is divided into small cluster size which explains its elimination 

at the time of generalizations, and the same for the class AC, PC and Shrubs. The generalization 

has eliminated all type of noise in the middle of the clusters dedicated to these 3 classes. 

 

4.3.3 Descriptive statistics: 

Table 15: Descriptive statistics for all the precision observations of each iteration (post-

classification analyse) 

POST-

CLASSIFICATION 

N Maximum Minimum Mean Standard 

deviation 

Variance 

Before post-

classification 

7 99.980 51.425 84.986 17.304 299.440 

After post-

classification 

7 99.992 55.344 86.248 16.469 271.233 

 

 

Figure 35: the box and whisker of different observations of producer precision (post-

classification analyse) 

 

By observing the box and whisker (Figure 35), we can admit that the post classification has an 

effect on the classification in terms of precision. For instance, the values are less skewed, and 

the variance is lower. 
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4.3.4 Conclusion 

After performing a generalization to the classification, we got an improvement in terms of 

accuracy, the map below shows the classification pf Bragança, with (nb-trees=1000, soil indices 

and generalization process) (Figure 36). 

 

Figure 36: LULC classification of Bragança district with post-classification processing  
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5 General conclusion: 

This project allowed us to approach the world of remote sensing, to understand the use of 

SNAP, and also to understand how LULC maps are developed from Sentinel-2 satellite images. 

At the end of this study on the evaluation and the comparison of the performances and the 

behaviour of Random Forest Classifier related to the variations of some important parameters 

in the classification of images especially (nb-trees, indices and generalization). 

Furthermore, the comparison of the results of the study of iterations and their application made 

it possible to identify the most efficient methods. 

the evaluation of the global indices: "kappa coefficient" and "Overall accuracy". according to 

the three application contexts (nb-trees, indices and generalization), revealed that the iteration 

with a nb-trees = 1000 is more suited to the classification of Sentinel-2 image data, this 

classification is considered as the most robust in terms of precision giving good results 

compared to other iterations with other nb-trees. And for the fact of integrating indices in the 

classification, it makes the classification precise especially for the soil indices. Concerning the 

generalization, it improved the classification to be more accurate than a classification with 1000 

as nb-trees or a classification with indices. 

Here is the final map of Bragança region, by adding the urban class (Dgterritorio) which is 

predefined since the demographic growth is very low.(Bragança · Population). 
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Figure 37: Final LULC map of Bragança district 

 

We conclude that the classification of Sentinel-2 images with Random Forest Classifier on 

SNAP software will be more robust by: 

 increasing the nb-trees 

 integrating vegetation / soil indices 

 applying generalization to eliminate intruder pixels. 

The main limitations during this project are as follows: 

 although SNAP is very easy to use, but occasionally it bugs before starting iteration. 

 Processing times are relatively long 

 The study area is very large which makes it difficult to assess the classifications made 

Finally, for a possible similar study, we recommend: 

 Test other satellite images covering other areas to further compare the results 

 Use other classification algorithms in the comparison. 

 Test other satellite images season in the comparison. 

 Test RF with a number of trees Superior to 1000 
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Annexes 

Annex I: types of remote sensors 

 

 

Annex II: Geometrical view of Euclidean plane and Euclidean space, left(two dimensional 

Euclidean plane), right (three dimensional Euclidean space) 
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Annex III: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=1000 

prdt_1000 True0 True1 True2 True3 True4 True5 True6 Ground 

truth 

UA CA 

AC 1270 0 0 0 261 140 0 1671 76 24 

BL 0 6479 226 26 0 0 0 6731 96 4 

CONIF 0 56 703 0 0 2941 10 3710 19 81 

G 0 8 0 353 37 0 0 398 89 11 

PC 8 88 0 24 408 218 0 746 55 45 

SHRUB 9 0 0 0 136 15013 0 15158 99 1 

WATER 0 0 3 0 0 1029 60218 61250 98 2 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 99 98 75 88 48 78 100 94   

OA 1 2 25 12 52 22 0    

Overalll 

accuracy 

94 

 
index 

Kappa 

0.88 

 
       

 

Annex IV: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=900 

pred_900 True0 True1 True2 True3 True4 True5 True6  UA CA 

AC 1259 0 0 0 290 141 0 1690 74 26 

BL 0 6399 222 25 0 0 0 6646 96 4 

CONIF 0 40 707 0 0 3810 9 4566 15 85 

G 0 7 0 357 44 0 0 408 88 13 

PC 23 185 0 21 382 252 0 863 44 56 

SHRUB 5 0 0 0 126 14461 2 14594 99 1 

WATER 0 0 3 0 0 677 60217 60897 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 89 45 75 100    

OA 2 3 24 11 55 25 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        

 

Annex V: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=800 

predict800 True0 True1 True2 True3 True4 True5 True6  UA CA 

AC 1259 0 0 0 280 135 0 1674 75 25 

BL 0 6418 221 25 0 0 0 6664 96 4 

CONIF 0 39 709 0 0 4047 12 4807 15 85 

G 0 10 0 356 38 0 0 404 88 12 

PC 23 164 0 22 389 247 0 845 46 54 

SHRUB 5 0 0 0 135 14401 0 14541 99 1 

WATER 0 0 2 0 0 511 60216 60729 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 88 46 74 100    

OA 2 3 24 12 54 26 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        
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Annex VI: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=700 

predict700 True0 True1 True2 True3 True4 True5 True6  UA CA 

AC 1261 0 0 0 287 149 0 1697 74 26 

BL 0 6372 219 22 0 0 0 6613 96 4 

CONIF 0 39 710 0 0 4079 14 4842 15 85 

G 0 6 0 359 38 0 0 403 89 11 

PC 21 214 0 22 393 265 0 915 43 57 

SHRUB 5 0 0 0 124 14486 0 14615 99 1 

WATER 0 0 3 0 0 362 60214 60579 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 96 76 89 47 75 100    

OA 2 4 24 11 53 25 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        

 

Annex VII: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=600 

pre_600 True0 True1 True2 True3 True4 True5 True6  UA CA 

AC 1271 0 0 0 300 144 0 1715 74 26 

BL 0 6410 217 24 2 0 0 6653 96 4 

CONIF 0 49 712 0 0 5021 14 5796 12 88 

G 0 7 0 355 32 0 0 394 90 10 

PC 12 165 0 24 370 202 0 773 48 52 

SHRUB 4 0 0 0 138 13957 0 14099 99 1 

WATER 0 0 3 0 0 17 60214 60234 100 0 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 99 97 76 88 44 72 100    

OA 1 3 24 12 56 28 0    

Overalll 

accuracy 

93 index 

Kappa 

0.86        

 

Annex VIII: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=500 

predict500 True0 True1 True2 True3 True4 True5 True6 Ground 

truth 

UA CA 

AC 1260 0 0 0 279 143 0 1682 75 25 

BL 0 6435 219 26 0 0 0 6680 96 4 

CONIF 0 56 711 0 0 4056 9 4832 15 85 

G 0 11 0 355 34 0 0 400 89 11 

PC 21 129 0 22 394 178 0 744 53 47 

SHRUB 6 0 0 0 135 14321 0 14462 99 1 

WATER 0 0 2 0 0 643 60219 60864 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 88 47 74 100 89664  0 

OA 2 3 24 12 53 26 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        
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Annex IX: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=400 

Pret_400 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1261 0 0 0 282 145 0 1688 75 25 

BL 0 6423 220 24 0 0 0 6667 96 4 

CONIF 0 42 712 0 0 4133 11 4898 15 85 

G 0 8 0 357 42 0 0 407 88 12 

PC 23 158 0 22 398 241 0 842 47 53 

SHRUB 3 0 0 0 120 14047 0 14170 99 1 

WATER 0 0 0 0 0 775 60217 60992 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 89 47 73 100 89664  0 

OA 2 3 24 11 53 27 0    

Overalll 

accuracy 

93 index 

Kappa 

0.86        

 

Annex X: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=350 

Predict_350 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1273 0 0 0 276 136 0 1685 76 24 

BL 0 6364 203 20 0 0 0 6587 97 3 

CONIF 0 50 729 0 0 4128 12 4919 15 85 

G 0 5 0 362 42 0 0 409 89 11 

PC 8 212 0 21 393 247 0 881 45 55 

SHRUB 6 0 0 0 131 14341 0 14478 99 1 

WATER 0 0 0 0 0 489 60216 60705 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 99 96 78 90 47 74 100 89664  0 

OA 1 4 22 10 53 26 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        

 

Annex XI: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=300 

prdict_300 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1257 0 0 0 276 141 0 1674 75 25 

BL 0 6518 221 21 0 0 0 6760 96 4 

CONIF 0 54 708 0 0 3769 9 4540 16 84 

G 0 7 0 361 44 0 0 412 88 12 

PC 24 52 0 21 392 192 0 681 58 42 

SHRUB 6 0 0 0 130 14216 0 14352 99 1 

WATER 0 0 3 0 0 1023 60219 61245 98 2 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 98 76 90 47 74 100   0 

OA 2 2 24 10 53 26 0    

Overalll 

accuracy 

93 index 

Kappa 

0.87        
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Annex XII: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=250 

prdict_250 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1257 0 0 0 277 139 0 1673 25 75 

BL 0 6417 219 21 0 0 0 6657 4 96 

CONIF 0 44 711 0 0 4628 11 5394 87 13 

G 0 10 0 360 41 0 0 411 12 88 

PC 25 160 0 22 398 241 0 846 53 47 

SHRUB 5 0 0 0 126 13762 0 13893 1 99 

WATER 0 0 2 0 0 571 60217 60790 1 99 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 89 47 71 100 89664  0 

OA 2 3 24 11 53 29 0    

Overalll 

accuracy 

93 index 

Kappa 

0.86        

 

Annex XIII: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=200 

prdict_200 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1260 0 0 0 287 145 0 1692 74 26 

BL 0 6416 218 23 0 0 0 6657 96 4 

CONIF 0 69 710 0 0 5005 11 5795 12 88 

G 0 5 0 357 35 0 0 397 90 10 

PC 22 141 0 23 400 175 0 761 53 47 

SHRUB 5 0 0 0 120 13426 0 13551 99 1 

WATER 0 0 4 0 0 590 60217 60811 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 89 48 69 100 89664  0 

OA 2 3 24 11 52 31 0    

Overalll 

accuracy 

92 index 

Kappa 

0.85        

 

Annex XIV: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=150 

predict150 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1258 0 0 0 306 151 0 1715 73 27 

BL 0 6392 217 20 0 0 0 6629 96 4 

CONIF 0 73 712 0 0 4546 8 5339 13 87 

G 0 10 0 360 39 0 0 409 88 12 

PC 24 156 0 23 417 176 0 796 52 48 

SHRUB 5 0 0 0 80 13384 0 13469 99 1 

WATER 0 0 3 0 0 1084 60220 61307 98 2 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 96 76 89 50 69 100 89664  0 

OA 2 4 24 11 50 31 0    

Overalll 

accuracy 

92 index 

Kappa 

0.85        
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Annex XV: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=100 

prdict_100 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1256 0 0 0 290 138 0 1684 75 25 

BL 0 6401 223 22 0 0 0 6646 96 4 

CONIF 0 57 709 0 0 5879 13 6658 11 89 

G 0 9 0 359 39 0 0 407 88 12 

PC 26 164 0 22 391 169 0 772 51 49 

SHRUB 5 0 0 0 122 12829 0 12956 99 1 

WATER 0 0 0 0 0 326 60215 60541 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 98 97 76 89 46 66 100 89664  0 

OA 2 3 24 11 54 34 0    

Overalll 

accuracy 

92 index 

Kappa 

0.84        

 

Annex XVI: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=50 

prdict_50 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1247 0 0 0 262 139 0 1648 76 24 

BL 0 6460 228 22 0 0 0 6710 96 4 

CONIF 0 61 704 0 0 5644 10 6419 11 89 

G 0 8 0 359 40 0 0 407 88 12 

PC 36 102 0 22 414 141 0 715 58 42 

SHRUB 4 0 0 0 126 12848 0 12978 99 1 

WATER 0 0 0 0 0 569 60218 60787 99 1 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 97 97 76 89 49 66 100 89664   

OA 3 3 24 11 51 34 0    

Overalll 

accuracy 

92 index 

Kappa 

0.84        

 

Annex XVII: confusion matrix of Bragança Classification with Sentinel-2 Image, nb=10 

prdict_10 True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1238 0 0 0 309 149 0 1696 73 27 

BL 0 6384 220 26 2 0 0 6632 96 4 

CONIF 0 44 710 0 0 6699 7 7460 10 90 

G 0 5 0 354 23 0 0 382 93 7 

PC 39 198 0 23 312 186 0 758 41 59 

SHRUB 10 0 0 0 196 12305 10 12521 98 2 

WATER 0 0 2 0 0 2 60211 60215 100 0 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 96 96 76 88 37 64 100 89664   

OA 4 4 24 12 63 36 0    

Overalll 

accuracy 

91 index 

Kappa 

0.82        
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Annex XVIII: confusion matrix of Bragança with Sentinel-2 Image, (Soil Indices) 

pred_soil True0 True1 True2 True3 True4 True5 True6 G-truth UA CA 

AC 1259 0 0 0 155 139 0 1553 80.88 18.93 

BL 0 6449 234 18 0 0 0 6701 95.87 3.76 

CONIF 0 50 698 0 0 2060 7 2815 24.76 75.20 

G 0 10 0 363 35 0 0 408 90.20 11.03 

PC 22 122 0 22 433 628 0 1227 39.28 64.71 

SHRUB 6 0 0 0 219 16140 5 16370 114.59 1.41 

WATER 0 0 0 0 0 374 60216 60590 99.38 0.62 

Total 1287 6631 932 403 842 19341 60228 89664 98.37 4.58 

PA 97.82 97.26 74.89 90.07 51.43 83.45 99.98 95.42   

OA 2.18 2.74 25.11 9.93 48.57 16.55 0.02 4.58   

Overalll 

accuracy 

95 index 

Kappa 

0.91        

 

Annex XIX: confusion matrix of Bragança with Sentinel-2 Image (Vegetation Indices) 

pred-veg True0 True1 True2 True3 True4 True5 True6 Gtruth UA CA 

AC 1278 0 0 0 221 123 0 1622 77.44 21.21 

BL 0 6310 244 53 2 0 0 6609 97.20 4.52 

CONIF 0 29 688 0 0 496 1 1214 57.41 43.33 

G 0 3 0 326 32 0 0 361 101.94 9.70 

PC 0 289 0 24 439 1140 3 1895 25.44 76.83 

SHRUB 9 0 0 0 148 15378 3 15538 120.72 1.03 

WATER 0 0 0 0 0 2204 60221 62425 96.46 3.53 

Total 1287 6631 932 403 842 19341 60228 89664  5.60 

PA 99.30 95.16 73.82 80.89 52.14 79.51 99.99    

OA 0.70 4.84 26.18 19.11 47.86 20.49 0.01    

Overalll 

accuracy 

94 index 

Kappa 

0.89        

 

Annex XX: confusion matrix of Bragança with Sentinel-2 Image, both indices 

pred-

both 

True0 True1 True2 True3 True4 True5 True6 Ground 

truth 

UA CA 

AC 1285 0 0 0 114 131 0 1530 83.99 16.01 

BL 0 6337 245 23 4 0 0 6609 95.88 4.12 

CONIF 0 42 687 0 0 1168 3 1900 36.16 63.84 

G 0 17 0 354 34 0 0 405 87.41 12.59 

PC 0 235 0 26 420 867 1 1549 27.11 72.89 

SHRUB 2 0 0 0 270 15892 6 16170 98.28 1.72 

WATER 0 0 0 0 0 1283 60218 61501 97.91 2.09 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 99.84 95.57 73.71 87.84 49.88 82.17 99.98    

OA 0.16 4.43 26.29 12.16 50.12 17.83 0.02    

Overalll 

accuracy 

95 index 

Kappa 

0.90        
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Annex XXI: confusion matrix of Bragança with Sentinel-2 Image, post-classification 

pred-

post 

True0 True1 True2 True3 True4 True5 True6  UA CA 

AC 1284 0 0 0 103 122 0 1509 85.09 14.91 

BL 0 6473 245 18 0 0 0 6736 96.10 3.90 

CONIF 0 26 687 0 0 1544 0 2257 30.44 69.56 

G 0 0 0 362 17 0 0 379 95.51 4.49 

PC 0 132 0 23 466 441 0 1062 43.88 56.12 

SHRUB 3 0 0 0 256 16919 5 17183 98.46 1.54 

WATER 0 0 0 0 0 315 60223 60538 99.48 0.52 

Total 1287 6631 932 403 842 19341 60228 89664   

PA 99.77 97.62 73.71 89.83 55.34 87.48 99.99    

OA 0.23 2.38 26.29 10.17 44.66 12.52 0.01    

Overalll 

accuracy 

96 index 

Kappa 

0.93        

 

Annex XXII: LULC classification of Bragança with nb-trees=10 

 

 



80 

 

Annex XXIII: LULC classification of Bragança with nb-trees=50 

 

 

Annex XXIV: LULC classification of Bragança with nb-trees=100 
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Annex XXV: LULC classification of Bragança with nb-trees=150 

 

 

Annex XXVI: LULC classification of Bragança with nb-trees=200 
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Annex XXVII: LULC classification of Bragança with nb-trees=250 

 

 

Annex XXVIII: LULC classification of Bragança with nb-trees=300 
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Annex XXIX:LULC classification of Bragança with nb-trees=350 

 

 

Annex XXX:LULC classification of Bragança with nb-trees=400 
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Annex XXXI:LULC classification of Bragança with nb-trees=500 

 

 

Annex XXXII:LULC classification of Bragança with nb-trees=600 
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Annex XXXIII:LULC classification of Bragança with nb-trees=700 

 

 

Annex XXXIV:LULC classification of Bragança with nb-trees=800 
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Annex XXXV:LULC classification of Bragança with nb-trees=900 

 

 

Annex XXXVI: LULC classification of Bragança with vegetation& Soil Indices 
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Annex XXXVII: LULC classification of Bragança with Vegetation Indices 

 


