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Abstract 

 

Financial distress is a critical social and economic problem that affects innumerable 

businesses the world over. Consequences of such an occurrence can go beyond the 

business owners and stakeholders – as was evident in the 2008 Global Financial 

Crisis (GFC), it can lead to a much larger macroeconomic calamity. Therefore, having 

the power to predict – and hence aid businesses from failing, has the potential to save 

not only the business, but whole economies from collapsing. This research’s academic 

contribution is to advance the field of Financial Distress Prediction (FDP) by tackling 

this issue from multiple angles – each being explored in a separate chapter – including: 

industry-specificity, index development, Islamic banking, variables affecting 

bankruptcy, class imbalance in data-sets, and Large Companies (LCs) vis-à-vis Small 

and Medium Enterprises (SMEs). This was achieved through utilising cutting-edge 

machine learning techniques, such as: Artificial Neural Networks (ANNs), Decision 

Trees (DTs), Random Forests (RFs), and Stochastic Gradient Boosting (SGB); and 

comparing their outcomes with results achieved from using well-established 

benchmark statistical techniques, such as: Multivariate Discriminant Analysis (MDA) 

and Logistic Regression (LR).  

 

Two major databases were used in this thesis to extract more than 60 explanatory 

variables derived from financial statement data pertaining to thousands of existing and 

failed Australian and international companies across various industries in the 

marketplace. The extracted data were used to test for the validity and predictive power 

of the developed statistical models. The results in Chapter 3 empirically showcase that 

industry-specific models are superior to a one-size-fits-all model. The chapter also 

presents the most important variables in predicting financial distress pertaining to each 

industry. The results in Chapter 4 show that all FDP models built using machine 

learning techniques outperform a model built using the traditional LR statistical 

technique. Chapter 5 reveals that FDP models built using a data-set via the Synthetic 

Minority Oversampling Technique (SMOTE) outperform those using a standard data-

set that is imbalanced. Chapter 6 presents a series of novel and user-friendly FDP 

indices that provide a standardised score for companies according to their success or 
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distress potential. Chapter 7 explores the differences between conventional and 

Islamic banking, then proceeds to build FDP models using machine learning 

techniques, each with a different measure of Islamic banks’ financial distress. The aim 

was to present the most important variables in forecasting financial distress relating to 

Islamic banks. Chapter 8 creates FDP models using machine learning techniques on 

data-sets comprised of LCs and SMEs that are listed on the Australian Stock 

Exchange (ASX). These models are then compared with models that were built using 

data that have been SMOTEd, in order to establish the empirically superior FDP 

model, as well as outlining the most important variables in determining the successes 

or failures of SMEs and LCs.  

 

The multifaceted approach used in this dissertation contains many important practical 

contributions, including: aiding lenders in accurately determining the economic viability 

of providing loans to prospective borrowers, offering investors with invaluable insight 

on their existing and/or potential investment, enabling governmental agencies to 

monitor businesses with high chances of bankruptcy, and providing managers and 

decision makers with invaluable insight to be used in conjunction with their expertise, 

in order to install proactive measures to mitigate the chances of falling into financial 

distress.  These benefits have the potential to assist whole economies from falling into 

a recession as a result of increased business failure.  
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Chapter 1: Introduction 
 

Financial distress is a critical indicator of a company’s financial health because it can 

prove to be detrimental if it is not addressed promptly. Consequences of such an 

occurrence can go beyond the business owners and stakeholders – as was evident in 

the 2008 Global Financial Crisis (GFC), it can lead to a much larger macroeconomic 

calamity. Therefore, having the power to predict business failure has the potential to 

save not only the business, but whole economies from collapsing. There are many 

causes of financial distress; some of these causes include reasons that are within the 

company’s control, such as: fraud, managerial ineptness, neglect, and financial 

(Anderson, 2006); and others that are extraneous to the company, including: 

government laws and regulations, economic stability, natural disasters, and political 

turmoils. To allay the chances of falling into financial distress, Financial Distress 

Prediction (FDP) models can be an invaluable asset. 

 

FDP models attempt to predict the financial failure or success of a business based on 

data, usually from publicly available information, such as financial ratios from financial 

statements (Gepp & Kumar, 2012). Such models can provide an early warning signal 

of probable financial distress, as well as showcasing the variables that have the 

strongest effect on determining a company’s financial standing. This can help 

managers, investors, and other stakeholders to make educated decisions and install 

proactive measures to prevent possible insolvency, thus reducing realised incurred 

losses (Jaikengkit, 2004). Due to the models’ wide applicability and important 

implications, the literature is quickly becoming inundated with studies across various 

disciplines, including but not limited to: finance, accounting, statistics, and actuarial 

studies (Cybinski, 2001; Yu, Miche, Séverin, & Lendasse, 2014).  

 

Researchers on this topic have utilised a variety of statistical and machine learning 

techniques – Multivariate Discriminant Analysis (MDA), Logistic Regression (LR), 

Decision Trees (DT), Random Forests (RF), and Stochastic Gradient Boosting (SGB), 

to name a few, in order to find the most accurate model. This thesis explores the 

literature and mechanics pertaining to FDP models, describes the pros and cons of 
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each, employs numerous techniques on a variety of data-sets, and compares the 

generated FDP models’ accuracies. The findings in this thesis will empirically 

showcase which technique(s) have superior predictive power, which variables are the 

most important in the models, and present various methodologies that aim at further 

enhancing the predictive accuracy of FDP models. As per West, Dellana, and Qian 

(2005), when comparing models, even an infinitesimal improvement in percentage 

accuracy can lead to huge savings. Therefore, when an almost negligible improvement 

in prediction accuracy across different models is presented in this thesis, a valid 

conclusion towards the superiority of the technique used can be inferred.  

 

Financial Distress Prediction is known by many names, including: Business Failure 

Prediction (BFP), bankruptcy prediction, Financial Risk Prediction (FRP), Credit Risk 

Modelling (CRM), insolvency prediction, and Credit Default Prediction (CDP). For 

consistency purposes, Financial Distress Prediction, and its acronym FDP, will be 

regularly used in this thesis to refer to the aforementioned synonyms.  

 

According to Gepp and Kumar (2012), some of the gains of utilising FDP models 

include:  

 Allowing banks and lenders to assess a business’s financial distress probability 

before determining whether a loan is suitable, and if so, how much excess and 

premium to charge;  

 

 Governments and watchdog institutions can utilise the models to focus on 

businesses with high financial distress probabilities;  

 

 Existing and potential stockholders can use the FDP models to make informed 

decisions about their investments for best Return on Investment (ROI) 

opportunities;  
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 Enabling potential merger companies and other stakeholders to assess the 

likelihood of a business’s failure or success as an indicator of whether there will 

be sustainable benefits gained from operating or continuing to operate with the 

company at hand. 

 

1.1 Research Questions and Hypotheses 

 

This study will answer each Research Question (RQ) and Hypothesis (H) outlined 

below. These questions were based on an extensive review of the literature relating 

to FDP, which included reviewing 220 journal publications, books, theses, news 

articles, web pages, and conference proceedings. These will be explored in Chapter 

2, as well as in the Literature Review sections of each proceeding chapter. After 

reviewing the literature, it was evident that there was a shortage of FDP studies 

focusing on certain aspects. Therefore, this provided the impetus and motivation to 

dedicate this research towards expanding on the available literature, especially due to 

the fact that there are vast potential contributions to be gained, not only on a local 

scale, but globally. These gaps in the literature helped formulate the research 

questions and hypotheses presented below. The research questions will be addressed 

throughout the thesis; each chapter’s introduction and conclusion section will indicate 

which hypothesis/hypotheses were addressed in that chapter. 

 

RQ1: Do industry-specific models have a greater ability to predict financial distress 

vis-à-vis a one-size-fits-all model? 

 

 Justification: After reviewing the FDP literature, less than 5% mentioned 

industry-specific FDP models, and of those, none were scoped around 

Australian businesses. Hence, the first hypothesis is as follows: 

 

H1: Industry-specific models have a greater ability to predict financial 

distress when compared to a one-size-fits-all industry-wide model. 
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RQ2: Do independent variables differ in predictive importance across the models 

mentioned in RQ1/H1? 

 

 Justification: Through reviewing the literature, it was found that less than 5% 

of studies pertaining to FDP mentioned variable predictive importance by 

industry, and of those, none were scoped around Australia. Hence, the second 

hypothesis is as follows: 

 

H2: Independent variables differ in predictive importance across the 

models mentioned in RQ1/H1. 

 

RQ3: Will using cutting-edge recursive partitioning techniques yield more accurate 

results vis-à-vis traditional statistical techniques? 

 

 Justification: Through reviewing the FDP literature, around 30% of studies 

compared the accuracy of statistical models with recursive partitioning 

techniques, and of those, around 1% were centred around Australia. Hence, 

the third hypothesis is as follows: 

 

H3: Using cutting-edge recursive partitioning techniques will yield 

empirically superior results compared to traditional statistical techniques. 

 

RQ4: Does class imbalance affect detection accuracy of the statistical models, and if 

so, how can it be enhanced? 

 

 Justification: Class imbalance occurs when there is a substantial difference in 

the ratio between the classes in a data-set; therefore, it may have an effect on 

the predictive accuracy of FDP models. Through reviewing the FDP literature, 
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less than 20% of studies were centred around class imbalance. Hence, the 

fourth hypothesis is as follows: 

 

H4: Class imbalance does affect the detection accuracy of FDP models, 

and it can be enhanced by optimising the cut-off points or using SMOTE 

vis-à-vis a model that is built on a standard imbalanced data-set. 

 

RQ5: Does the importance of independent variables vary between FDP models for 

Small and Medium Enterprises (SMEs) vis-à-vis Large Companies (LCs)? 

 

 Justification: Through reviewing the FDP literature, less than 5% of FDP 

studies concentrated on SMEs, and less than 1% concentrated on independent 

variables differences between FDP models for SMEs and large companies. 

Hence, the fifth hypothesis is as follows: 

 

H5: Independent variables’ importance vary between FDP models for 

SMEs vis-à-vis LCs. 

 

RQ6: Are there any benefits for creating an FDP index? 

 

 Justification: Through reviewing the FDP literature, there were no studies that 

presented an FDP index, despite the existence of studies within the literature 

regarding the creation of indices. Therefore, this presents the potential for a 

pioneering study in this area. Hence, the sixth hypothesis is as follows: 

 

H6:  Creating an FDP index is more accurate, informative, and user-

friendly than solely relying on standard FDP models.  
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RQ7: Does varying the measure of banks’ financial distress yield different important 

variables pertaining to Islamic banks? 

 

 Justification: Through reviewing the FDP literature, around 20% of studies 

pertaining to FDP were centred around banks, and of those, around 1% focused 

on Islamic banks. Hence, the seventh hypothesis is as follows: 

 

H7: The most important variables in FDP models for Islamic banks vary 

according to the measure of financial distress used.  

 

1.2 Data 

 

The data for the companies used in this research were extracted from several sources, 

including MorningStar and Capital IQ, which provide readily available archival data. 

According to Shultz, Hoffman, and Reiter-Palmon (2005), using archival data in the 

research has many benefits, including: ease of extraction, global accessibility, 

generally containing large amounts of data over many years, and most importantly, its 

ease of reproducibility and verifiability/falsifiability – key components of empirical tests. 

This enhances data quality by enabling more efficient and effective data extraction, 

cleaning, and analysis before commencing FDP modelling. 

 

MorningStar offers archival data on publicly listed companies in the Australian Stock 

Exchange (ASX) and New Zealand Stock Exchange (NZSE), as well as data on 

approximately half-a-million investment offerings, in addition to real-time international 

market data on millions of commodities, foreign exchange, indices, and numerous 

others (MorningStar, 2015). Data from MorningStar has been extensively used in prior 

research across various fields, some of which are by: Halteh (2015); Halteh, Kumar, 

and Gepp (2018b); Shah (2014); Smith, Ren, and Dong (2011). 
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Capital IQ provides web-based information services that combine information on 

companies worldwide along with a variety of software applications that allow financial 

professionals to analyse company fundamentals, build financial models, screen for 

investment ideas, and execute other financial research tasks (Phillips, 2012). Capital 

IQ has been used in previous studies across various disciplines in the literature, some 

of these include: Feldman and Zoller (2012); Halteh, Kumar, and Gepp (2018a); Kahle 

and Stulz (2013). 

 

1.3 Study Scope and Research Objectives 

 

The sole data analysis methodology for this study is quantitative based. According to 

Kruger (2003), there are many advantages to using quantitative data analysis 

including: ease of replication; more accurate analysis and comparison to existing 

literature; efficient summarisation of huge sources of information; allowance of a wider 

scope of study, involving many subjects; mitigation of personal biases by researchers 

due to objective data, resulting in greater validity, reliability, and accuracy of results. 

  

This research focuses primarily on the Australian marketplace, with the exception of 

Chapter 7 which covers Islamic banking on a global scale. The applicability of this 

research, however, is not at all limited to Australia; on the contrary, the research 

methodologies can be applied to any international setting that has data available. The 

reasons why Australia was chosen are because:  

 Australia is the country of residence of the researcher – this entails having a 

direct and vested interest in investigating FDP in the context of Australia, in 

order to benefit the Australian economy;  

 

 Paucity of FDP literature focusing on Australia – this research makes a 

significant contribution to the limited literature available, and aims to encourage 

future studies to have an Australian-centric approach; 
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 High insolvency rates – Australia is considered one of the largest mixed 

economies in the world, with a GDP of A$1.6 trillion in 2015 and US$1.5 trillion 

in 2018; it has a AAA credit rating and an unemployment rate below 6% (ABC, 

2011; ABS, 2017). At the same time, paradoxically, according to the Australian 

Securities and Investments Commission (ASIC, 2015), around 3,000 

businesses went insolvent in the September quarter of 2015 – that equates to 

almost 1,000 bankrupt businesses per month – that is an increase of 8.3% from 

the June quarter, and an increase of 20% from the September quarter in 2014.  

Four years later, the statistics are slightly more promising, but still far from 

significantly alleviated. In the September quarter of 2018, more than 2,180 

companies went insolvent, an increase of 7.1% from the previous quarter, and 

an increase of 4.6% from the September quarter in 2017 (ASIC, 2018). Refer 

to Figure 1.1 for a visual representation of insolvency figures in Australia for the 

time-period 2014-2018 according to ASIC.  

 

Figure 1. 1 Insolvencies in Australia from June 2014 till September 2018 

 
 

There is sufficient empirical evidence to suggest a sustained large number of business 

bankruptcies in Australia. If this perpetuates, it may lead to a number of negative 

outcomes, including: higher unemployment rates and a potential lowering of the AAA 

credit rating status of the country – which can have a deleterious impact on foreign 
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investment, or as often referred to in the literature – Foreign Direct Investment (FDI). 

According to the Australian Department of Foreign Affairs and Trade and the 

Australian Trade and Investment Commission, foreign investment is an integral 

component of the Australian economy, that helps boost employment, fund hospitals, 

schools, and other government services. Between 2014-2015, FDI contributed to 41% 

of Australia’s goods and services exports, accounted for $2.7 trillion in assets, and 

contributed $286 billion to Australia’s Industry Value Added. In 2017, foreign 

investment contributed $43 billion to the total investment flows of $433 billion, that is, 

approximately 10% (Austrade, 2015; DFAT, 2018). Thus, FDI is critical to Australia’s 

economy, hence, and any kind of instability that may lead to a drop in FDI will have an 

unfavourable effect on the Australian economy.  

 

A real-world example of these dire consequences occurred in the United States of 

America following the 2008 Global Financial Crisis (GFC), which brought about the 

collapse of titans like Lehmann Brothers, AIG, and Enron. In the years that followed, 

the United States’ economy continued to suffer, which eventually led to S&P 

downgrading the USA’s 70-year-long AAA credit rating to AA+, following unsuccessful 

plans to fix the debt crisis (Elliott, Treanor, & Rushe, 2011). After the announcement, 

all three major U.S. indexes – Dow Jones, NASDAQ, and S&P500 – declined between 

five and seven percent in one day, erasing around $2.5 trillion from global equity  

(Bloomberg, 2011). 

 

This study addresses the following research objectives: 

 To discover whether financial distress prediction of businesses can be more 

accurately achieved using industry-specific models vis-à-vis a one-size fits all 

approach (Chapter 3);  

 

 To compare the predictive accuracy of various statistical and machine learning 

models in order to determine which model, or set of models, is/are optimal, and 

identify the inferior models (Chapter 3, Chapter 4, Chapter 5, Chapter 7, 

Chapter 8); 



10 
 

 

 To determine the variables which are most important for each industry-group in 

predicting financial distress and check for variable differences across industries 

(Chapter 3, Chapter 4, Chapter 7, Chapter 8);  

 

 Analyse and compare the differences between conventional and Islamic banks, 

if any, in terms of FDP models and variable differences (Chapter 7);  

 

 To check for differences between large companies vis-à-vis Small and Medium 

Enterprises (SMEs), in terms of FDP models and variable differences (if any), 

and develop an FDP model for SMEs (Chapter 8); 

 

 To check for issues associated with class imbalance and how to remedy them 

(Chapter 4, Chapter 5, Chapter 8); 

 

 To develop an index which can rank companies based on their financial health 

(Chapter 6). 

 

1.4 Thesis Structure 

 

This treatise is structured in the following manner: Chapter 1 introduces the topic of 

FDP, outlines the research questions and hypotheses that will be explored throughout 

the thesis, shows the sources from which the data used in this thesis were extracted, 

and presents the scope of the study and the research objectives; Chapter 2 presents 

an overarching literature survey regarding seminal and contemporary studies centred 

around FDP and the various techniques used by the researchers; Chapter 3 

investigates whether companies’ financial health is best explained by using a one-

size-fits-all, or an industry-specific approach, and whether independent variable 

importance differ amongst industries; Chapter 4 presents an FDP case study on the 

Australian mining industry, through examining whether machine learning techniques 

outperform traditional statistical techniques, as well as presenting a method for dealing 

with class imbalance; Chapter 5 inspects how to deal with a class imbalanced data-
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set through applying Synthetic Minority Oversampling Technique (SMOTE) to create 

a balanced data-set, then testing whether the SMOTEd data-set outperformed the 

original data-set using a variety of techniques; Chapter 6 focuses on constructing a 

novel and user-friendly Financial Distress Prediction Index (FDPI) which ranks 

companies as per their financial health; Chapter 7 briefly examines the differences 

between Islamic and conventional banking, and creates three FDP models to outline 

the most important variables in predicting Islamic banks’ financial distress; and finally, 

Chapter 8 applies SMOTE to imbalanced data-sets comprised of SMEs and LCs, and 

creates FDP models to test for variable differences amongst LCs and SMEs, as well 

as presenting the empirically superior model. Chapter 9 presents overarching 

conclusions of the studies carried out in this thesis, the limitations of the research 

conducted, and prospects for future works.   
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Chapter 2: Literature Review 

 

The first chapter introduced the concept of FDP, outlined the gaps in the literature, the 

motivations behind picking this topic, the potential gains of exploring the area of FDP 

further, and highlighted the research questions and hypotheses to be investigated in 

this dissertation. This chapter provides an overarching survey of the available 

literature, introducing seminal and contemporary research alike. Each subsequent 

chapter will provide a specific literature review dealing with the topic introduced in each 

respective chapter. 

 

In this thesis, when referring to FDP techniques, the meaning refers to the overarching, 

generic algorithms and procedures for dealing with a set of issues, this includes both 

traditional statistical techniques, such as LR and MDA, as well as machine learning 

techniques, such as ANNs and SGB. On the other hand, FDP models, are the 

particular models constructed using any FDP technique based on specific data-sets 

and explanatory variables. For example, researchers might adopt seminal statistical 

techniques, such as LR or MDA, but when applying them in their FDP research, they 

create models based on the aforementioned techniques. Examples of such FDP 

models will be presented throughout this thesis. 

 

Numerous models have been developed over the years that deal with FDP using 

various techniques. They vary in the methodologies they utilise to achieve their results; 

however, their core aims tend to be similar, that is, analysing variables or achieving 

the most possible accurate predictions – refer to Figure 2.1 below for a visual 

comparison of FDP techniques used in prior studies. As is evident in the figure, MDA, 

LR, and ANNs make up the lion’s share of techniques used in the literature. 

Burgeoning machine learning techniques like RFs and SGB are used in fewer studies, 

however, due to their superior performance vis-à-vis traditional statistical techniques, 

they are likely to become more popular in the coming years. The percentages were 

calculated by reviewing 220 peer-reviewed journal articles, books, conference papers, 

and other publications from the literature pertaining to FDP, and subsequently 
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classifying them as per the technique(s) used. The total is more than 100% since some 

studies use multiple techniques in their research. The various studies were extracted 

from different portals, such as: Google Scholar and Bond University’s Online Library. 

The research were selected based on reviewing a wide variety of both seminal and 

contemporary works published in reputable journals, and by following trails within each 

study.   

 

Figure 2. 1 Percentage Comparison of FDP Techniques in the Literature 

 

 

In the literature, the accuracy of a model’s prediction is generally determined by the 

Type I and Type II error rates. Type I error refers to misclassifying a failing business 

as successful, whereas Type II error refers to misclassifying a successful business as 

a failing one. Type I error results in a realised financial loss caused by participation 

with a business that is doomed to fail, for example: losing money or shares invested 

in a potentially failed company. Whereas, Type II error results in a lost opportunity cost 

from participating with a successful business, for example: missed investment gains 

from not investing in a potentially successful company. However, it is important to note 

that the weights of each error type are not necessarily equal, that is, these costs may 
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vary according to the stakeholder or circumstance (Gepp & Kumar, 2012). For 

instance, a risk-averse person might assign a higher weight to Type I errors, as they 

are more concerned with a realised financial loss vis-à-vis missed opportunities; 

whereas, risk-seeking people might assign higher importance to Type II errors, as they 

are more concerned with potential gains from their investments. From a statistical 

analysis point of view, the actual amount is not important, but rather the ratio of the 

two costs. Type I and Type II errors were introduced here as they will be mentioned 

throughout the thesis.  

 

2.1 Univariate Analysis 

 

The prediction of financial distress for businesses has been extensively researched 

ever since the early 1930s, pioneered by FitzPatrick (1932), followed by Winakor and 

Smith (1935) who found that trends in certain financial ratios can lead to bankruptcy.  

These studies were furthered by Beaver (1966) through establishing the first statistical 

model – Univariate Analysis, which used financial ratios individually for FDP. Beaver 

used 30 financial ratios in his research. A classification model was conducted 

separately for each ratio to determine an optimal cut-off point with the goal of 

minimising misclassification. He tested his models on 158 large businesses for the 

time-period 1954-1964, half of which were successful and the other half failed. Beaver 

adopted paired sampling for determining the accuracy of ratios and developing his 

models.  Beaver considered a business to be failed if it had gone into bankruptcy, 

there was an overdrawn bank account, a miss out on preferred stock dividends, or a 

defaulted debt. He established a set of ratios with the greatest predictive power, 

namely: 

 Cash Flow to Total Debt;  

 Net Income to Total Assets; 

 Total Debt to Total Assets; 

 Working Capital to Total Assets; 

 Current Ratio (Current Assets to Current Liabilities); 

 No Credit Interval (Defensive Assets minus Current Liabilities to Fund 

Expenditures for Operations). 
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Beaver’s model had approximately 22% Type I error and 5% Type II error. However, 

this was not time-constant, that is, the amount of error increased as the length of 

prediction increased, which is problematic for long-term predictions. Another issue 

faced by Beaver’s model was that various ratios could result in conflicting predictions, 

and so the models would cease to be feasible (Gepp & Kumar, 2012). 

 

2.2 Multivariate Discriminant Analysis 

 

After Beaver’s univariate analysis, Altman (1968) founded the first multivariate 

statistical approach pertaining to FDP – Multivariate Discriminant Analysis (MDA). 

Altman’s model was designed to address the main issue faced by Beaver’s models, 

that being, different ratios could result in conflicting predictions. Altman devised a 

single weighted score (Z) for each business based on five variables. The variables 

were financial ratios but excluded cash flow ratios as they were not found to be 

statistically significant, hence contrasting Beaver’s model. The ratios used in Altman’s 

(1968) paper are as follows: 

 x1: Working capital divided by total assets,  

 x2: Retained earnings divided by total assets,  

 x3: Earnings before interest and tax divided by total assets,  

 x4: Market value of equity divided by book value of total liabilities,  

 x5: Sales divided by total assets. 

 

The single weighted score (Z) was calculated according to the following equation: 

                  𝑍 =  1.2𝑥1 +  1.4𝑥2 +  3.3𝑥3 +  0.6𝑥4 +  1.0𝑥5            [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1] 

o 𝑍 = Discriminant Score of a Company 

o 𝑥𝑖 = Independent Variables (the five abovementioned financial ratios) 
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Altman (1968) analysed how well financial ratios performed in predicting financial 

distress of manufacturing firms whose assets ranged from $0.7 million to $25.9 million. 

His sample included 66 businesses (33 bankrupted and 33 non-bankrupted). Each 

company’s Z-score was referenced with cut-off scores that determined the financial 

health of the company – this is presented in Figure 2.2. Altman’s model outperformed 

that of Beaver’s, as the short-term accuracy of the model was 95%; however, that 

drops down to 72% when it is predicting bankruptcies two or more years in advance. 

Therefore, the long-term issues persisted, that is, Altman’s model was only viable for 

short-term predictions. 

 

Figure 2. 2 Altman’s Z-score Model 

 

 

 

 

 

 

 

As was shown in Figure 2.1, MDA is one of the most popular techniques in the 

literature for analysing financial distress – this claim was also issued by Perez (2006). 

MDA has been used in many FDP studies, including: Altman, Iwanicz‐Drozdowska, 

Laitinen, and Suvas (2017); Chung, Tan, and Holdsworth (2008); Grice and Ingram 

(2001); Le and Viviani (2018); Lee and Choi (2013). The main benefit of the MDA 

technique for predicting financial distress is its capability to reduce a multidimensional 

problem to a single score with a fairly high level of accuracy, thus overcomes the 

problem identified with the Beaver’s univariate model.  
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However, MDA has a few disadvantages in the form of being subjected to various 

restrictive assumptions. Firstly, MDA requires the decision set that is used for 

differentiating between bankrupt and non-bankrupt businesses be linearly separable. 

Secondly, unless an interaction term is introduced, MDA does not allow a ratio’s signal 

to fluctuate based on its relationship with another ratio, or set of ratios in the model 

(Veal, 2005). Although, in practice, a ratio can signal financial distress if it is below or 

above the normal value. These problems, along with issues such as the multivariate 

assumption of normality, multicollinearity, bias of extreme data points and equal group 

variance-covariance matrix, might confirm that MDA is unfitted to the complex nature, 

interrelationships, and boundaries of financial ratios (Coats & Fant, 1993). It remains, 

however, widely used and a good benchmark (Altman, Iwanicz-Drozdowska, Laitinen, 

& Suvas, 2014). There are other forms of MDA, such as quadratic discriminant 

analysis that can overcome some of the drawbacks mentioned. The form of MDA 

discussed earlier and commonly used is linear discriminant analysis. 

 

Li (2012) examined corporate failures in the United States between 2008-2011. Three 

models were created, namely: Altman’s original Z-Score model, a re-estimated Z-

Score model and a re-estimated model with an added variable. The ratio with the 

highest predictive power was found to be ‘Market Value of Equity/Total Liabilities’. To 

address the failure of the Altman’s (1968) model to include a measure of asset 

volatility, a new variable was added to the re-estimated model, namely: ‘Total Assets 

One Year Prior to Bankruptcy – Total Assets Two Years Prior to Bankruptcy)/Total 

Assets Two Years Prior to Bankruptcy.’ Li’s results indicated that Altman’s original 

model performed with predictive accuracy rates ranging from 80% -94%.  The re-

estimated model accurately predicts 70% of bankrupt firms for one year prior to 

bankruptcy. Using data from two years prior to bankruptcy, the re-estimated model 

accurately predicted 92% of bankrupt companies. The third model’s results were the 

most accurate, correctly classifying 96% of companies. However, all three models 

yielded unencouraging Type II results. The added variable did not add value to the 

model. 
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Chung et al. (2008) applied FDP modelling on firms based in New Zealand using MDA. 

Their results showed that prior to failing, companies had low profitability, higher 

leverage ratios, less liquidity, and lower asset quality. Their findings also showed that 

financial ratios have different predictive abilities for detecting financial distress in New 

Zealand finance companies, and the ratios of failed versus non-failed companies vary 

substantially. Altman et al. (2014) applied Altman’s (1968) Z-score model to 

multinational firms, as well as using additional variables, re-estimation, and using 

another statistical method to test for the effect of classification performance. Their 

results showed that the original Z-score model performed well in an international 

context, the re-estimation of the coefficients using MDA marginally improved 

classification performance, and the use of additional variables generally improved 

classification accuracy of the original model. However, the results vary by country, 

hence implying that a country-specific model will be more accurate – this justifies 

developing Australian-specific models like the ones used in this research.  

   

2.3 Logistic Regression 

  

2.3.1 Standard Logistic Regression 

 

As was shown in Figure 2.1, LR is one of the most popular models for forecasting 

financial distress, some of the prominent studies using LR pertaining to FDP include: 

Chen (2011); Collins and Green (1982); Daniel and Ionuț (2013); Hall (1994); Hua, 

Wang, Xu, Zhang, and Liang (2007); Laitinen and Laitinen (2001); Laitinen and 

Kankaanpaa (1999); Le and Viviani (2018); Min and Lee (2005). 

 

Analogous to MDA, LR devises a score for each company, but unlike MDA, it is not 

affected when assumptions of equal variance-covariance and normality of the 

variables are violated (Altman & Hotchkiss, 2010). Ohlson (1980) pioneered the 

application of LR to forecast business financial distress. Comparable to the Z-Score 

devised by Altman (1968), Ohlson’s O-score can be labelled as a statistical financial 

distress indicator produced from a predefined set of variables.  In his ground-breaking 



19 
 

study, three distinct logistic regression models were produced to predict financial 

distress for one, two, and three years in advance. The variables selected in the study 

comprised standard financial ratios, dummy variables based on comparisons of 

balance sheet numbers, and a variable demonstrating the change in net income over 

the past year. He devised a probabilistic model of bankruptcy, where the logarithm of 

the likelihood of any specific outcome, as reflected by the binary sample space of 

financial health vis-à-vis financial distress, is shown by the following equation:  

                𝑙(𝛽) =  ∑ 𝑙𝑜𝑔𝑃(𝑋𝑖 , 𝛽)

𝑖∈𝑆1

+ ∑ log (1 − 𝑃(𝑋𝑖 , 𝛽))

𝑖∈𝑆2

         [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.2] 

o 𝑋𝑖 = Vector of Predictors for observation i 

o 𝛽 = Vector of Unknown Parameters 

o 𝑃(𝑋𝑖 , 𝛽) = Probability of Bankruptcy for Xi and β 

o 𝑆1 = Set of Bankrupt Companies 

o  𝑆2 = Set of Healthy Companies 

 

To remedy for the problem of selecting appropriate class functions of P, Ohlson 

developed the following logistic function, presented in Equation 2.3 below. 

                                                           𝑃 = 1 + 𝑒(−𝛾𝑖)
−1

                           [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.3] 

 

The implications of the above logistic function are twofold: firstly, 𝑃 is increasing in 𝛾; 

and secondly, 𝛾 = log (
𝑃

1−𝑃
), hence making the model more statistically valid and easily 

interpreted (Ohlson, 1980).  

 

Ohlson’s developed his model using a much bigger sample than that of Altman’s. 

Ohlson’s sample included 2,058 successful businesses and 105 failed businesses. 

Ohlson’s empirical results were not encouraging, for example, his first model yielded 

a Type I error of 63% at the 0.50 cut-off mark. 
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Despite Ohlson’s empirical results being unencouraging, later studies used LR to 

developed FDP models. Collins and Green (1982) compared forecasting results by 

using an LR model, an MDA model, and a linear probability model. Their results 

demonstrate that the logistic model performs better. Hall (1994), created a logistic 

model with nonfinancial variables and the model could differentiate bankrupt 

businesses from non-bankrupt ones with an impressive accuracy rate of 95%. Also, 

various later studies on logistic regression have shown that it is typically marginally 

empirically superior to discriminant analysis in both prediction and classification 

accuracy, for example: Laitinen and Kankaanpaa (1999); Min and Lee (2005).  

In Chen’s (2011) study, LR was found to have better prediction accuracy for long run 

predictions (more than one and a half years) when compared to decision trees – to be 

discussed is Section 2.6.1. Daniel and Ionuț (2013) conducted FDP tests using LR on 

companies in Romania; their results yielded 70% accuracy in predicting bankruptcy 

over a five-year period.  

 

2.3.2 Bayesian Logistic Regression 

 

According to Tsai (2005), statistical inferences are generally based on Maximum 

Likelihood Estimation (MLE). MLE picks the parameters that maximize the likelihood 

of the data. In MLE, parameters are presumed to be unknown but fixed, therefore, can 

be estimated with a degree of confidence. However, in Bayesian statistics, the 

uncertainty about the unknown parameters is quantified by the means of probability in 

order for those parameters to be considered random variables. Bayesian inference is 

the manner of analysing statistical models with the inclusion of prior knowledge about 

the model or its parameters; the root of such inference is the Bayes’ theorem, which 

is presented in Equation 2.4 below: 

 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) × 𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑃(𝑑𝑎𝑡𝑎)
∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟 

[𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4] 
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Bayes’ theorem suggests that an update to the knowledge regarding the distribution 

of an unknown parameter is achievable if its prior information is known. Bayesian 

statistics assumes that there are precise distributions for the unknown parameters. It 

fits the probability model of interest through incorporating prior information relating to 

the unknown parameters and the likelihood function of the observed data to generate 

a posterior probability. Bayesian model is especially beneficial when there is limited 

amount of data available (Tsai, 2005). Bayesian logistic regression is not used in this 

thesis due to the abundance of data available. 

 

Two similar studies, Chaudhuri (2013); He and Trabelsi (2013) used Bayes’ theorom 

to examine the effect of cut-off points, business cycle, and sampling procudure on the 

accuracy of FDP. Four models were created and different cut-off points selected to 

find the optimal FDP model. The study was conducted on U.S. firms. The results show 

that the Hazard logit model had the highest predictive power when ratio of costs is 

equal, however the Bayesian and Rough Bayesian models have higher predictive 

powers when the ratio of cost of Type I error to Type II error is high. This makes the 

Bayesian models a preferable option due to consistency across all of the sampling 

methods. 

 

A recent paper by Shrivastava, Kumar, and Kumar (2018) applied LR and Bayesian 

techniques on a panel data-set comprising 628 Indian companies (341 financially 

healthy, 287 distressed) for the 2006-2015 time-period. 15 variables were used in their 

study. The Bayesian model’s predictive accuracy outperformed that of LR by a 

marginal amount – 98.9% versus 98.6%, both being very accurate models. 

 

2.3.3 Dynamic Panel Data Logistic Regression 

 

Unlike cross-sectional data, where studies are conducted at a particular point in time, 

panel data uses both cross-sectional and time-series data for the study, which is 

arguably a more realistic way of conducting research, especially pertaining to FDP 
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modelling (Bond, 2002). Dynamic panel data tests using lagged dependent variables 

for past periods. The dynamic panel data model is presented Equation 2.5: 

𝛿𝑖𝑡 = 𝛼𝛿𝑖,𝑡−1 + (𝜃𝑖 + 𝜇𝑖𝑡)            |𝛼| < 1;         𝑖 = 1,2,… ,𝑁;         𝑡 = 2,3,… , 𝑇 

 [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.5] 

 𝛿𝑖𝑡 is an observation for individual 𝑖 in period t; 

 𝛿𝑖,𝑡−1 is 𝛿𝑖𝑡 in the previous period; 

 𝜃𝑖  is an unobserved individual-specific, time-invariant effect that allows for 

heterogeneity in the means of 𝛿𝑖𝑡  series amongst individuals; 

 𝜇𝑖𝑡  is a disturbance term.  

 

2.4 Support Vector Machines 

 

Support Vector Machines (SVMs) are supervised learning models used for 

classification and regression analysis. SVMs are based on Statistical Learning Theory 

(Boser, Guyon, & Vapnik, 1992). Basically, the way SVMs function is that input vectors 

are mapped in a nonlinear fashion to a high dimension feature space. SVMs can 

change complex issues into simpler ones that are able to use linear discriminant 

functions, through creating a linear decision surface in the feature space. The SVM 

technique does not concentrate on all of the training data, rather, it concentrates on 

the data points that are extremely difficult to identify, this is because when it identifies 

those points, the others are easily seen. The vectors that are the hardest to identify 

and can be easily misclassified are found close to the hyperplane (in the case of FDP, 

separating healthy and distressed companies) – these are called support vectors. The 

margin is the distance from the closest data points in each particular class to the 

hyperplane. SVMs try to maximise these margins, so that the hyperplane is at an 

identical distance from both groups (healthy and distressed companies). The 

advantage of SVMs is that they combine the strengths of traditional statistical and 

machine learning techniques. SVMs are applied in numerous fields, including: FDP, 

image recognition, and bioinformatics (Le & Viviani, 2018; Min & Lee, 2005). 
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A recent study applying the SVM technique to FDP is by Le and Viviani (2018). They 

compared the FDP accuracy of statistical techniques, namely: LR and MDA; vis-à-vis 

machine learning techniques, namely: SVMs, K-NNs, and ANNs. 31 financial ratios 

were used as variables to model on a data-set consisting of 3000 banks (1562 

operational and 1438 failed) in the United States between 2011-2016. Their results 

indicated that the ANN model had the superior predictive power in determining banks’ 

financial distress with an accuracy of 75.7%. The SVM model performed the worst with 

an accuracy of 71.6%. The difference between the best and the worst models is very 

close (less than four percentage points), thus indicating it was a close call amongst all 

models. 

 

2.5 Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) have been used in many FDP studies, including: 

Ciampi and Gordini (2013); Coats and Fant (1993); Le and Viviani (2018); Lee and 

Choi (2013); Tan (2001). ANNs are computerised techniques that can be trained to 

mimic the cellular connections in the brains of human beings (Hertz, Krogh, & Palmer, 

1991). It is made up of interconnected units that process and evaluate the interactions 

between the units in a complex set of existing data – ANNs can also be used for non-

complex data, but their ability to evaluate complex interactions is what sets them apart. 

ANNs assign weights to the respective inputs to enable the precise deduction of the 

ultimate outcome (Dorsey, Edmister, & Johnson, 1995). This overcomes the issue of 

prespecifying interactions between independent variables, because ANNs will model 

them. 

 

According to Dorsey et al. (1995), there are steps involved in the prediction process 

of ANNs, these include: 

1. Define network typology/structure; 

2. Select input variables and determine learning parameters; 

3. Train network 

4. Optionally test new variables and forecast.  



24 
 

Odom and Sharda (1990) employed the same financial ratios used by Altman (1968) 

and applied ANNs to a sample of 129 firms – 65 bankrupt and 64 non-bankrupt 

businesses. Their training set contained 74 firms (38 bankrupt and 36 non-bankrupt), 

whereas their testing set contained 55 firms (27 bankrupt and 28 non-bankrupt). In 

their study, three-layer feed-forward networks are employed and the results are 

compared to those of MDA. They tested the effects of different levels on the predictive 

ability of ANNs and MDA. Their model correctly identified all bankrupt and existing 

businesses in the training sample, as opposed to 86.8% accuracy by the MDA model. 

As for the performance with holdout samples, ANNs had an accuracy rate of above 

77%, whereas MDA’s accuracy rate was between 59% - 70%. Thus, ANNs were much 

more accurate in both training and test results.  

 

Following Odom and Sharda (1990), a multitude of studies further investigated the use 

of ANNs in FDP. For example, Salchenberger, Cinar, and Lash (1992)  presented an 

ANN approach to predict bankrupt loans and save businesses from financial distress. 

The results found ANNs to be as good as or better than the LR models across three 

different lead times of 6, 12 and 18 months. A paper by Lee and Choi (2013) is one of 

few that talks about industry-specificity pertaining to FDP – they tested their 

hypotheses on 229 Korean companies (91 failed and 138 operating). They used MDA 

and Back-propagation Neural Networks (BNNs) to developed their FDP models on 

construction, retail, and manufacturing industries – refer to Chapter 3 for elaboration 

on BNNs. Their results found that the prediction accuracy is improved for industry-

specific prediction modelling vis-à-vis an industry-wide model for all models, and that 

the BNN models outperformed all MDA models. Their models also indicated the most 

important variables for each industry, and the variables differed amongst industries, 

thus entailing a need to account for industry-specificity when modelling for multi-

industry FDP. Another study by Coats and Fant (1993) examined 282 firms between 

1970-1989. Their results suggested that BNNs outperformed MDA, correctly 

predicting 80% of failed companies with a lead time of up to four years. Ciampi and 

Gordini (2013) applied their financial distress prediction study on 7,000 Italian small 

enterprises. Their results showed an ANN predictive superiority when compared with 

logistic regression and MDA.  
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ANNs have many advantages, including: they do not need the pre-specification of a 

functional form, nor do they require the adoption of restrictive assumptions regarding 

the characteristics of statistical distributions of the variables and errors existing in the 

model; ANNs are able to function with inexact variables as well as with changes to the 

model over time; they have an adaptability feature to the presence of new cases that 

signify changes in the situation. On the other hand, some of the limitations of ANNs 

include: creating oscillating behaviour in the learning stage, the learning stage can be 

very prolonged and tedious, and ANNs may not attain a steady absolute minimum 

cost, but might lock on local minimums without the capability to move to the global 

optimum (Altman, Marco, & Varetto, 1994). 

 

2.6 K-Nearest Neighbours 

 

There are only a handful of studies that deal with business financial distress prediction 

using K-Nearest Neighbours (K-NNs), some of these studies include: Chen et al. 

(2011); Le and Viviani (2018); Park and Han (2002). K-NN is a versatile and simple 

machine learning and data mining technique that is a non-parametric learning method 

that may be applied for regression and classification modelling. The model 

development method is comprised of the K-nearest training instances in the feature 

space – refer to Chapter 5 for an elaboration on the feature space concept. For both 

classification and regression, weighting the contributions of the neighbours is 

essential, in order for the nearer neighbours to contribute more to the average than 

the distant ones. In classification, the output is a class member, however, in 

regression, the output is the property value of the entity (Altman, 1992). 

 

Park and Han (2002) used financial and non-financial ratios and proposed a weighting 

approach on the K-NN algorithm to predict financial distress. Their model 

outperformed the traditional K-NN algorithm through showcasing enhanced modelling 

in FDP, as their results indicated increased classification accuracy and a justification 

to incorporate qualitative criteria alongside the quantitative. 
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Chen et al. (2011) devised a novel model for FDP; in their study, an adaptive fuzzy K-

NN method was applied to FDP. Fuzzy K-NN allocates degrees of membership to 

various classes while considering the distance of its k-nearest neighbours. This means 

that all the instances are assigned a membership value in each class rather than binary 

decision of ‘failed’ or ‘non-failed’. Their model outperformed five counterpart cutting-

edge classifiers in terms of Type I and Type II errors and Area Under the Receiver 

Operating Characteristic (AUROC) criteria. They also pointed out the best 

discriminative ratios pertinent for FDP.  

 

2.7 Recursive Partitioning Techniques 

 

Recursive partitioning refers to a set of machine learning techniques for multivariate 

analysis. They are intelligent, nonparametric classification or regression that evolved 

to lessen or remove the distribution assumptions associated with parametric 

techniques, such as MDA, LR, and others (Breiman, Friedman, Stone, & Olshen, 

1984). These models are more versatile and have a wider scope than traditional 

models, since they can handle nominal variables, outliers, nonlinear relationships, 

interactions, missing values, and qualitative variables, hence making them more 

broadly applicable than traditional parametric techniques (Zhang & Singer, 2010). On 

the downside, there is no formal test for assessing the statistical significance of 

variables (Altman & Hotchkiss, 2010). Some examples of recursive partitioning 

techniques include: Decision Tree (DTs), Random Forest (RFs), and Stochastic 

Gradient Boosting (SGB). These techniques will be elaborated upon in the following 

subsections. Due to their recent invention, relative to parametric models, they are 

naturally less occurrent in the literature, however, they are slowly gaining traction 

because of their superior predictive capabilities (Gepp, 2015). 
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2.7.1 Decision Trees 

 

Decision Trees (DTs) have not been as extensively used in FDP studies vis-à-vis their 

parametric counterparts. Some of the studies that apply DTs to FDP include: Chen 

(2011); Geng, Bose, and Chen (2015); Gepp, Kumar, and Bhattacharya (2010); Hung 

and Chen (2009); Sun and Li (2008).  

 

Decision Trees (DTs) are models that construct a set of tree-based classification rules 

that recursively break down a data-set into smaller and smaller subsets (partitions). 

The tree is generated in a recursive process that splits the data from a higher level to 

a lower level of the tree, ending with leaf nodes that characterise classification groups 

(distressed or successful). When applied to FDP, DTs commonly assign businesses 

to either the successful or distressed group. The splitting at each node is determined 

by comparing an expression that is assessed for each company with a cut-off point. 

There are two main tasks for the algorithms that generate DTs. First, to choose the 

optimal splitting rule at each non-leaf node to differentiate between distressed and 

successful companies, and secondly, to determine the number of nodes in the 

decision tree (Gepp & Kumar, 2012). A sample DT can be seen in Figure 2.3 below. 

 

DTs consist of the following: 

 A root node: Topmost decision node that corresponds to the best predictor 

 Non-leaf nodes (non-leaf nodes project 2 branches leading to 2 distinct nodes) 

 Leaf nodes: Represents a classification or decision 

 Connecting branches: connecting nodes 
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Figure 2. 3 Decision Tree 

 

 

 

A drawback of DTs is that they do not provide precise probabilities of group 

membership, that is, financial distress – except for a whole node (group of 

businesses). However, DTs are beneficial for many reasons, including: invariance to 

monotonic alterations of input variables, handling outliers in the data effectively as well 

as mixed variables, and being able to deal with a data set that contains missing data. 

There are different algorithms that can be used to generate DTs. These algorithms all 

create similar tree structures but selecting the correct algorithm for a particular 

circumstance can have a huge impact on the predictive power of the generated model. 

Popular implementations of decision trees include Classification and Regression 

Trees (CART) and See5 (Gepp et al., 2010). In a 2005 pioneering study, Huarng, Yu, 

and Chen (2005) compared the accuracy of CART and See5; their results showed 

CART to be empirically superior to See5. However, it is crucial to note that the data-

sets encompassed less than 12 businesses and five variables, that is, the sample is 

too small to obtain reliable results. However, Gepp et al. (2010) confirmed that CART 

empirically superior to See5, thus solidifying Huarng et al.’s (2005) claim.  

 

According to Gepp et al. (2010), DTs are empirically found to be superior predictors 

vis-à-vis MDA when it pertains to forecasting companies’ financial distress. Studies 

that solidify this claim include: Chen (2011); Frydman, Altman, and Kao (1985); Kumar 

and Ravi (2007). When comparing DTs to LR, Chen (2011) found that DTs 
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classification approach yields superior FDP accuracy in the short-run (less than one 

year), hence implying that ANNs are better predictors in the short-term. 

 

Chen (2011) applied his study on 100 listed Taiwanese companies – 50 distressed 

vis-à-vis 50 healthy companies – using 37 financial and non-financial ratios that are 

common in the literature. He used Principal Component Analysis (PCA) to extract 

suitable variables – PCA will be explored further in Chapter 6. Three DT classification 

methods were used to create the FDP model; a logistic regression model was also 

developed for comparison purposes. Chen’s FDP model using DTs outperformed his 

LR model by yielded around 97% accuracy for identifying distressed firms in the short-

term (two seasons prior to actual financial distress); however, the LR model marginally 

outperformed the DT model in the long-term (over one and a half years) by almost 

three percentage points (91.7% versus 88.8%). Chen concluded that Artificial 

Intelligence (AI) techniques are superior to traditional statistical techniques in 

predicting financial distress in the short-term. 

 

Geng et al. (2015) employed data mining techniques to construct three main models 

for three time-periods preceding the companies’ financial distress, using DTs, neural 

networks, and Support Vector Machines (SVMs). Their study was based on 107 

Chinese “Special Treatment” companies, that is, implying financial distress, and the 

same number of financially healthy companies, for the time-period 2008-2011. They 

incorporated 31 financial variables in all of their FDP models. Their results showed 

that the neural network model was the most accurate at predicting financial distress, 

closely followed by the DT model. ‘Net Profit Margin of Total Assets, “Return on Total 

Assets”, “Earnings per Share”, and “Cashflow per Share” were the financial indicators 

with the highest predictive capability in pointing out financial distress. 

 

Gepp et al. (2010) provided a classic case of the Occam’s razor philosophical 

principle, that being, the most parsimonious models are better than more complex 

ones. They employed 20 financial variables and applied it on the original data-set used 

by Frydman et al. (1985), comprising 200 businesses, and conducted a cross-
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sectional analysis. They devised DT models using different implementations of DT, 

including: CART, See5, and Recursive Partitioning Analysis (RPA). See5 yielded the 

best in-sample classification capability, but the poorest predictions. CART and RPA 

were the best overall predictors. The three DT models were compared with MDA and 

they outperformed it. Profitability and liquidity ratios were the most important variables 

at predicting financial distress.  

 

Hung and Chen (2009) used 30 financial ratios that are common in the literature on a 

data-set consisting of 56 bankrupt companies and 64 healthy companies, for the time-

period 1997-2001. They proposed an ensemble method of three classifiers, namely: 

DTs, BNNs, and SVMs in an attempt to harness their pooled advantages, all the while 

mitigating the individual disadvantages of each technique. Their selective ensembles 

outperform weighting and voting ensembles for FDP by around 2.5 percentage points. 

 

Sun and Li (2008) incorporated 35 financial ratios and applied them on 198 listed 

Chinese companies, of which 92 are financially distressed and 106 are financially 

healthy, for the time-period 2000-2005. They present a data mining method which 

includes attribute-oriented induction, information gain, and DT. Adopting entropy-

based method, their model achieved a prediction accuracy rate of 95.33%. 

 

2.7.2 Random Forests 

 

Random Forests (RFs) is an ensemble learning method for regression and 

classification that consists of creating many decision trees. In classification, the output 

is the mode of the classifications of the individual trees. In regression, the output is the 

mean from every generated tree. As part of their intrinsic structure, RF predictors lead 

to a dissimilarity measure between the observations. One can also define a RF 

dissimilarity measure between unlabelled data. The idea is to build a RF predictor that 

distinguishes the observed data from suitably created synthetic data. RF has similar 

advantages to single trees, such as: handling mixed variables effectively, invariance 
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to monotonic transformations of input variables, robustness to outlying observations, 

and accommodation to different strategies for dealing with missing data (Chandra, 

Ravi, & Bose, 2009).  

 

Only a handful of studies apply RF to FDP throughout the literature, but it is generally 

found to be highly accurate because of the multiple trees generated. A study by 

Fantazzini and Figini (2009) compared a variant of RF, namely Random Survival 

Forests (RSF) with a standard logistic model. Their findings showed that RF 

outperforms the logit model for the in-sample, but the opposite is true for the out-of-

sample. A pioneering study by Nanni and Lumini (2009) investigated the performance 

of several systems based on ensemble of classifiers for FDP. Their results showed 

that Random Subspace, a method were each stand-alone classifier uses only a subset 

of all features for training and testing, outperformed other ensemble methods.  

 

2.7.3 Stochastic Gradient Boosting 

 

Stochastic Gradient Boosting (SGB) is a dynamic and adaptable data driven tool that 

creates numerous small decision trees in an incremental error–correcting process. 

SGB’s versatility enables it to deal with data contaminated with erroneous target 

labels. Such data are usually extremely problematic for conventional boosting and are 

a challenge to handle using traditional data mining tools; au contraire, SGB is less 

affected by such errors. SGB also has a degree of accuracy that is typically not 

achievable by a single model or ensembles like bagging or conventional boosting. 

SGB has advantages on ANNs of not being sensitive to erroneous data and requires 

minimal data preparation time, imputation of missing values, or pre-processing 

(Mukkamala, Vieira, & Sung, 2008). 

 

As with RF, there are a handful of studies that apply SGB to FDP. Ravi, Kumar, 

Srinivas, and Kasabov (2007) presented a research on predicting financial distress in 

financial engineering . They used an alogirthm to train radial basis function neural 



32 
 

networks in a semi-online fashion. It incoporated online and evolving clustering 

alogirthms and the traditional least squeares estimation. Their results showed that 

their algorithm outperformed other neural netowrk techniques, however, SGB 

outperformed their alogrithm in both data-sets.  Another study by Ravi, Kurniawan, 

Thai, and Kumar (2008) presented an ensemble system with a multi-faceted statistical 

technique constituency to predict financial distress of banks. They adopted a novelty 

method to use SGB for feature selection (selecting the top five predictor variables), 

and then added them to the fuzzy rule based classifier. Their results yielded lower 

Type I and Type II errors vis-à-vis the constituent models in stand-alone mode.  

 

2.8 Hybrid Models 

 

Hybrid models pool various individual statistical techniques in order to maximise their 

advantages, all the while minimising the combined model’s disadvantages. The idea 

is, the advances achieved by certainty and precision in more traditional methods, such 

as: MDA and LR, are not justified by their costs (Kumar & Ravi, 2007).  

 

A study by McKee and Lensberg (2002) presented a hybrid financial diagnosis model 

combining rough sets and genetic programming. Their sample comprised 291 

businesses from the U.S. for the time-period 1991 to 1997 using 11 variables to 

describe the cases. They concluded that the hybrid model reaches a Type I and Type 

II error rates of 20%, that is, average predictive accuracy rate of 80% on the validation 

set, whereas the simple rough-set performs significantly lower on the same data-set 

achieving an average accuracy rate of 67%). 

 

Another study by Ahn, Cho, and Kim (2000) worked on combining neural networks 

and rough sets for business financial distress prediction. They used Korean data for 

the time-period between 1994 and 1997 and compared their results to different 

standard neural network techniques. Their model’s predictive accuracy rates 

exceeded 80% in many instances.  
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Lee, Han, and Kwon (1996) developed hybrid neural network models for predicting 

financial distress on Korean firms. Their results showed that integrating unsupervised 

with supervised learning yields more accurate predictions.  

 

Other studies applying hybrid models to FDP include: Chandra et al.’s (2009) study 

which presented a novelty study to predict the financial distress of 240 dotcom 

companies using hybrid intelligent systems, which included RFs, LR, and CART, to 

name a few. Their results yielded high accuracies for all the techniques, even 

superseding previous studies’ accuracy rates on the same data-set; Tinoco and 

Wilson’s (2013) study which tested 23,218 company-year observations for the time-

period 1980-2011. They combined accounting, market-based, and macroeconomic 

data to predict financial distress. When benchmarked against Altman (1968) Z-score 

model and neural network models, their results were more accurate in terms of both 

Type I and Type II errors. The macroeconomic variables contributed only marginally 

to the overall classification accuracy of the model; and finally, an extensive review 

carried out by Kumar and Ravi (2007) investigated papers cenetred around FDP of 

banks and firms for the time-period 1968-2005. They categorised the research based 

on the techniques used in each study. Their results showed that statistical techniques 

in stand-alone mode are no longer used, and among the stand-alone intelligent 

techniques, ANNs were most ofen adopted. However, they found a trend emerging to 

build hybrid intelligent systems to predict financial distress, and that ensemble 

classifiers outerpform individual techniques. 

 

Refer to Table 2.1 in the following section for a consise summary of the most important 

points of the various statistical and machine learning techniques that were presented 

in this section. 
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2.9 Statistical and Machine Learning Technique Summary 

 

A summary of various statistical and machine learning techniques in the context of 

FDP, along with their relative advantages and disadvantages, is given below in Table 

2.1. 

 

Table 2. 1: Statistical Technique Comparison 

Technique Advantages Disadvantages 

Univariate 
Analysis 

1. Simple to use; 
1. Various ratios results in conflicting predictions 
(Gepp & Kumar, 2012); 

2. High short-term predictive 
accuracy. 

2. Predictive accuracy declines for long-term 
predictions. 

MDA 

1. Extensively used throughout 
literature; 

1. Multicollinearity problem; 

2. Simple to use;  
2. Predictive accuracy declines for long-term 
predictions; 

3. High short-term predictive 
accuracy; 

3. Decision set needs to be linearly separable; 

4. Reduces multidimensional 
problems to an accurate single 
score.  

4. Affected when basic assumptions are violated. 

LR 

1. Less affected than MDA when 
basic assumptions are violated; 

1. Predictive accuracy declines for long-term 
predictions (Altman & Hotchkiss, 2010); 

2. Extensively used throughout 
literature. 

2. It may require more data than MDA to achieve 
reliable results. 

ANNs 

1. They do not need the pre-
specification of a functional form; 

1. The learning stage can be very long; 

2. They are able to function with 
imprecise variables. 

2. A steady absolute minimum cost may not be 
attained, but may lock on local minimums without 
moving to the global optimum. 

K-NNs 
1. No assumptions about the 
concepts’ characteristics to learn 
need to be executed. 

1. It is computationally expensive to find the K-NNs 
when the data-set is large. 

Recursive 
Partitioning: 

DTs, RFs, 
SGB 

1. Eliminates some problems faced 
in parametric techniques, e.g.: 
distribution assumptions with 
variables; 

1. Harder to interpret than parametric techniques, 
DTs excepted; 

2. They can handle qualitative 
variables and are immune to 
outliers and irrelevant variables. 

2. No formal test of variable significance. 

Hybrid 
1. Combines advantages of various 
models & minimises disadvantages. 

1. Can be complex, less user-friendly, and difficult to 
interpret. 
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2.10 Conclusion 

 

This chapter has expanded on the topic of FDP and presented an overarching review 

of the literature pertaining to the topic at hand. More than 200 studies that use 

statistical and machine learning techniques were investigated from their inception to 

contemporary research. There are gaps found in the literature that justify the research 

conducted in this thesis, including: FDP research mostly on non-industry-specific 

basis; machine learning techniques are not used extensively, despite their tendency 

to yield more accurate results vis-à-vis traditional statistical techniques; and scarcity 

of FDP studies centred around Australia. The literature overwhelmingly show that 

machine learning techniques tend to outperform traditional statistical techniques in 

terms of predictive accuracy. This can be explained due to a number of factors, 

including:  

 Traditional statistical techniques generally use a default cut-off of value of 0.5 

when classifying companies as healthy or distressed – this is not always an 

accurate representation of reality, especially when data-sets have a class 

imbalance issue; whereas, machine learning techniques are usually impervious 

to this issue and can provide optimised cut-off points for each model – this will 

be explored in later chapters;  

 

 Predictive accuracy of statistical techniques are generally measured by the 

Type I and Type II errors in the model and/or simple averages of classification 

accuracy – again, in some instances this does not reflect real-life situations, 

therefore other methods of measurement available in machine learning 

techniques can offer a more accurate representation of reality, including the 

Receiver Operating Characteristic (ROC) graph – to be explored in later 

chapters;  

 

 The machine learning techniques’ algorithms are intrinsically far more complex 

than their statistical counterparts, thus enabling them to utilise computing power 

to analyse data in ways that are virtually impossible for the statistical techniques 

to do, for example, RF and SGB techniques can generate thousands of trees 

to find out the most accurate result; and,  
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 The machine learning techniques are generally not constrained by many of the 

restrictive assumptions of the statistical technique, thus rendering them an 

overall more versatile and effective predictive tool. 

 

As explained earlier, the literature survey presented in this chapter is not 

comprehensive, as this thesis is designed to address various topics in separate 

chapters. Therefore, each consecutive chapter will include its own literature review 

section that will be relevant to each chapter’s topic. 
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Chapter 3: Industry-Specificity* 

 

*This chapter is based on a published paper in a peer-reviewed Journal, namely:  

Halteh, K. (2015). Bankruptcy Prediction of Industry-Specific Businesses Using 

Logistic Regression. Journal of Global Academic Institute Business & Economics, 

1(2), 151-163. 

 

This chapter investigates the predictive accuracy of industry-wide and industry-

specific FDP models, outlines the variables that are most important in predicting 

financial distress in each industry, and experiments on varying the cut-off point 

pertaining to the LR models in order to showcase how Type I and Type II errors can 

change in accordance with objective of the user. For example, a lower Type I error 

may be preferred for a risk-averse person, whereas a lower Type II error may be 

preferred by a risk-seeking person. This chapter does not compare the predictive 

accuracies between statistical vis-à-vis machine learning techniques (Hypothesis 3) 

amongst the created models, as this will be done in later chapters.  

 

3.1 Introduction 

 

As mentioned in Chapter 2, only a fraction of the FDP literature is concerned with 

industry-specificity. Aligning with Hypotheses 1 and 2 stated in the Chapter 1, namely:  

H1: Industry-specific models have a greater ability to predict financial 

distress when compared to a one-size-fits-all industry-wide model. 

H2: Independent variables differ in predictive importance across the 

models mentioned in RQ1/H1. 

 

This chapter will investigate the effect industry-specificity poses on FDP modelling. 

There are two main aims to this chapter, namely: to ascertain whether industry-specific 

models – these are FDP models based on segregating the companies as per each 
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industry they subscribe to – can outperform an industry-wide one-size-fits-all model; 

as well as, to investigate whether the variables most useful to FDP models differ by 

industry – this is done by checking the statistical significance or variable importance 

in the developed models. This is done by utilising three techniques to develop 

aforesaid models, namely: LR, MDA, and ANNs.  

 

Many FDP models test their hypotheses by using a specific set of variables, such as 

Altman’s (1968) five financial ratios, or by using the same variables across various 

industries in the economy, that is, paying little or no attention to industry-specificity 

(Gepp & Kumar, 2012). Very few studies paid attention to industry-specificity 

pertaining to FDP modelling, as will be explored later in the Literature Review section. 

This chapter’s findings contribute to the literature by recommending the construction 

of tailored industry-specific models which include variables with the highest predictive 

power for each respective industry. 

 

3.2 Literature Review 

 

As was mentioned in Chapter 2, there are many different techniques that can be 

applied to create FDP models. This chapter surveys the literature pertaining to studies 

that apply FDP modelling with an industry-centric focus. Therefore, in order to limit 

repetition, if the studies mention statistical and/or machine learning techniques whose 

mechanics were already mentioned in Chapter 2, they will be only briefly explained.  

 

It might come intuitively that variables should have varying effects on different 

industries. For example, the balance sheet figure ‘Total Assets’ or ‘Enterprise Value’, 

will generally be significantly higher for a company operating in the mining industry, as 

opposed to, say, a firm in the service or retail industries. Therefore, variables or ratios 

that include ‘Total Assets’ may be more informative about companies’ financial health 

that operate in an asset-intensive industry vis-à-vis companies operating in low-asset 
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industries. Despite this intuition, surprisingly, there is a scarcity in the literature of 

empirical studies that tests for industry-specificity pertaining to FDP.  

 

Most studies concerning FDP modelling have been concentrating on a single industry, 

or, if many industries are involved, no investigation is undertaken to highlight the 

differences between the industries. This presented a clear gap in the literature that this 

study contributes towards. In addition to most of the studies mentioned in Chapter 2, 

what follows are some examples to add to the long list of studies not paying attention 

to industry-specificity. He and Kamath (2005) assessed the efficacy of two successful 

FDP models used by Ohlson (1980) and Shumway (2001) with the aid of a multi- 

industry sample in discerning between healthy and distressed businesses from a 

single industry – the equipment and machinery manufacturing industry. Another study 

by Dewaelheyns and Van Hulle (2006) indicated that models involving financial 

distress variables defined at both subsidiary and at group levels, provide a significantly 

improved fit and classification performance. The studies aforementioned did not 

examine the differences in industries, in terms of prediction accuracy, independent 

variables, and practically working models. Therefore, the difference in FDP accuracy 

of industry-specific models vis-à-vis a one-size-fits-all model is unclear. 

 

Lee and Choi (2013) is a rare study that investigates industry-specificity pertaining to 

FDP. They tested their hypotheses on 229 Korean companies, 91 of which were 

bankrupt, for the time-period 2000-2009. Starting from an initial list of 100 variables, 

they were later cut down as per statistical significance to each industry. Some of the 

variables used included: a set of growth, profitability, productivity, liquidity, and asset 

quality ratios. They used MDA and Back-propagation Neural Networks (BNN) to 

developed their FDP models on construction, retail, and manufacturing industries. 

BNNs are supervised learning models that generally have a single input layer, one or 

more hidden layers, and a single output layer. Every layer of an ANN structure has 

many neurons, and the output units of a layer serve as input units of its following layer. 

BNNs mimic the way human brains learn – the main idea behind BNN training is to 

create the weight of the connection between neurons, so that the squared error sum 

concerning the actual and predicted values is minimised (Lee & Choi, 2013). 
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Lee and Choi (2013) used the t-test method for different means between the groups 

to determine the statistically significant variables for each industry at the 5% level, and 

then only incorporated those variables in their models. Their results indicated that 

there are in fact differences between variables pertaining to each industry, for 

example: for the construction industry – the growth, productivity, and liquidity variables 

were found significant; for the retail industry – the stability and liquidity variables were 

found to be significant; and finally, for the manufacturing industry, the growth, 

productivity, and stability variables were found to be significant. This shows the 

importance of net profit ratio, operating income, and turnover rate of assets in the 

manufacturing and construction industry; whereas, retained earnings, and operating 

cash flow are important in the retail industry.  

 

Lee and Choi’s (2013) results indicated that their BNN models outperformed the MDA 

models across all models, and the prediction accuracy is improved for industry-specific 

prediction modelling vis-à-vis an industry-wide model across all models by a margin 

ranging between 6-12%, thus empirically proving the necessity of industry-specificity. 

 

Given the limited literature available with regards to industry-specificity of FDP models, 

this presented the motivation to further investigate this area. Although industry 

differences were found in Lee and Choi’s (2013) FDP study, however, due to the 

limited data used in their study, location of companies (Korea), limited number of 

industries, and limited number of modelling techniques used, further investigation on 

this area is warranted. To the best of the author’s knowledge, there are no studies 

investigating the effect of industry-specificity in an Australian context. 
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3.3 Data 

 

MorningStar database has been used to collect data on 803 operating and delisted 

companies from a number of different industries in Australia – energy, industrials, 

financial, health, and Information Technology (IT). The financial data collected from 

the Australian companies is used to conduct a cross-sectional study for the time period 

2013-2014. Using a larger data-set than Lee and Choi’s (2013) study, increases the 

validity of the study by improving the chances of representing the population in a fair 

and unbiased manner, and reduce the chances of falling into sampling error by using 

a small set of data. 

 

This research uses all available data from the MorningStar database for ‘failed’ and 

‘successful’ Australian businesses, that is, as per classification by database for 

company status – listed or delisted, respectively. According to the Australian Securities 

Exchange (ASX) – which is MorningStar’s primary source for obtaining Australian 

company data – a company is ‘listed’ if its currently operational, whereas a company 

is ‘delisted’ for a number of reasons, including: insolvency, merger, or take-over – 

hence, collectively implying an element of financial distress leading to delisting of the 

company (MorningStar, 2016).  

 

A dichotomous variable – coded 1 if the company is healthy and 0 if the company is 

distressed, was used to refer as the dependent variable for each company. 18 

variables were used in the study as predictors – refer to Table 3.1 for a complete list 

of the variables used in this study. The variables in this study are standard accounting 

and financial variables that were selected based on use in prior empirical research 

and literature, as per availability of data, and default classification by the database as 

variables that are industry-specific.  
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Table 3. 1 Complete List of Variables 

Variable Description 

TR Total Revenue excluding interest – measured in $ 

EBIT Earnings Before Interest and Tax – measured in $ 

Working Capital Measured In $ 

Retained Earnings Measured In $ 

Total Equity Measured In $ 

NPM Net Profit Margin = Net Profit / Revenue 

ROE Return on Equity = Net Profit After Tax / (Shareholders Equity – Outside Equity Interests) 

ROA Return on Assets = Earnings before interest / (Total Assets Less Outside Equity Interests) 

Enterprise Value Monetary value of the enterprise – measured in $ 

Current Ratio Current Assets / Current Liabilities 

Quick Ratio (Cash + Securities + Accounts Receivable) / Current Liabilities 

Cash per Share Cash / Share 

Gross Gearing Total Debt / Total Equity 

Price/CF Share Price / Gross Cash Flow 

Net Gearing (Total Debt - Cash) / Book Value of Equity 

PER Price per Earnings = Market Value per Share / Earnings per Share 

Debt/CF Gross Debt per Cash Flow 

EV/EBITDA Enterprise Value / Earnings Before Interest, Tax, Deprecation, and Amortisation 

 

Some of the variables presented above did not yield any outcome for companies 

operating in certain industries when extracting data from the database. This is due to 

the fact that there are inherent differences across various industries in the economy, 

for example, a dotcom company may not have physical assets or plants as a mining 

company would. Naturally, this produces different variables that are only pertinent to 

the specific industry the company subscribes to. Table 3.2 presents the variables used 

when constructing each model. The  symbol indicates that the variable presented in 

the first column was used when creating FDP models for its respective industry 

(presented in the first row). Whereas, the  symbol indicates that the variable was not 

used when creating FDP models for its respective industry. 
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Table 3. 2 Ratios Used in All Models 

Variables / Industry Energy Financials Industrials Health IT Industry-Wide 

TR      

EBIT      

Working Capital      

Retained Earnings      

Total Equity      

NPM      

ROE      

ROA      

Enterprise Value      

Current Ratio      

Quick Ratio      

Cash per Share      

Gross Gearing      

Price/CF      

Net Gearing      

PER      

Debt/CF      

EV/EBITDA      

 

3.4 Methodology 

 

Using the SPSS statistical software package, the models were built using all of the 

extracted company data. Three statistical techniques were used to build the models, 

namely: LR, MDA, and ANNs. 18 models were constructed (three for each industry) 

for each of the following industries, using the variables mentioned in Table 3.2. 

 

 Industry-Wide model containing all 803 companies – 15 variables;  

 Energy Sector model containing 148 companies – 17 variables;  

 Financial Sector model containing 166 companies – 16 variables;  

 Industrial Sector model containing 188 companies – 18 variables;  

 Health Sector model containing 149 companies – 17 variables,  

 IT Sector model containing 152 companies – 17 variables.  
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3.4.1 Models Created 

 

Both the industry-wide and industry-specific models were created using the LR, MDA, 

and ANN techniques, as shown below. To limit repetition, the mechanics of each 

technique will not be restated – refer to Chapter 2 for an elaboration on each 

technique. Since the objectives of this chapter are to check whether industry-specific 

models are superior to industry-wide models, and whether variable importance differ 

by industry; the training and testing methods differed amongst techniques when 

constructing the models. This is because no comparison between technique 

superiority is undertaken in this chapter – as this is done in later chapters in the thesis. 

The models constructed had the following properties: 

 LR Models: Standard settings were used when creating all LR models, such 

as, probability for Stepwise: entry = 0.05, removal = 0.1; maximum iterations = 

20; cut-off point = 0.5.  

 MDA Models: Standard settings for classification were used, such as, testing 

method: tenfold cross validation, all groups count equally towards the prior 

probabilities, and covariance matrix was used within groups. 

 ANN Models: Standard settings were used, such as: training the model was 

based on randomly selecting 70% of cases, and testing on the remaining 30%; 

automatic architecture selection: minimum and maximum number of units in 

hidden layer, 1 and 50, respectively; and finally, optimisation algorithm used: 

scaled conjugate gradient.   

 

3.5 Results 

 

This section showcases the results achieved for all the different models constructed, 

for both the industry-wide data-set and industry-specific data-sets using two traditional 

statistical techniques (LR and MDA) and a machine learning technique (ANN). Due to 

the large number of models constructed, the classification tables and figures will only 

be shown for the industry-wide models; however, Table 3.6 in Section 3.5.3 provides 

the empirical results and variable importance of each created model. 
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3.5.1 Industry-Wide Models 

 

3.5.1.1 LR Model 

 

The model initially contained 15 independent variables. Statistical level of significance 

(α) was chosen to be 10%, this is because exit was set at 10%, therefore what remains 

in the model is significant at the 10% level. Only three of the independent variables 

made a unique statistically significant contribution to the model, namely: Working 

Capital, Current Ratio, and Quick Ratio. The results of the model are based on in-

sample testing. The full model containing all predictors was statistically significant, χ² 

(15, N = 803) = 35.62, p < .003, indicating that the model was able to distinguish 

between companies that are listed as distressed or healthy. The model as a whole 

explained between 43% (Cox and Snell R Square) and 59% (Nagelkerke R Squared) 

of the variance in company status. As for classification of cases accuracy, the model’s 

overall correct classification was 61.8%.  

 

Table 3.3 below showcases the classification table for LR. As can be seen, due to a 

default cut-off of 0.5, the model correctly classified 98.6% (1.4% Type II error) of the 

healthy companies, but only correctly classified 4.5% (95.5% Type I error) of the 

distressed companies. As is evident, there is a high level of Type I error, this is due to 

the default cut-off point assigned by the technique (0.5). Experimentation on varying 

the cut-off points will be explored in Section 3.5.4 to check the effect that poses on 

Type I and Type II errors . 

 

Table 3. 3  Classification Results for Industry-Wide Model using LR 

Observed 

Predicted 

Status 
% Correct 

Distressed (0) Healthy (1) 

Step 1 Status Distressed (0) 14 300 4.5 

    Healthy (1) 7 482 98.6 

  Overall %       61.8 



46 
 

3.5.1.2 MDA Model 

 

The Industry-Wide MDA model yielded an unencouraging result for the correctly 

classifying the classes. Table 3.4 shows the cross-validated results of the MDA model. 

49.8% of original grouped cases were correctly classified, and after cross-validation 

that result fell to 47.9%. This model is not better than a coin flip in discerning whether 

a company is failed or successful. The top three independent variables that made a 

unique statistically significant contribution to the model, were: ‘Total Equity’, 

‘Enterprise Value’, and ‘Retained Earnings’. 

 

 

Table 3. 4  Classification Results for Industry-Wide Model using MDA 

Observed 

Predicted 

Status 
% Correct 

Distressed (0) Healthy (1) 

Step 1 Status Distressed (0) 237 77 75.4 

    Healthy (1) 341 148 30.3 

  Overall %       47.9 

 

3.5.1.3 ANN Model 

 

The Industry-Wide ANN model yielded a much better classification result vis-à-vis the 

LR and MDA models. However, as mentioned in the Methodology section, comparison 

between techniques cannot be drawn due to the differences when constructing the 

models. As seen in Table 3.5, 65.3% of cases in the testing group were correctly 

classified. 
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Table 3. 5  Classification Results for Industry-Wide Model using ANN 

Observed 

Predicted 

Status 
% Correct 

Distressed (0) Healthy (1) 

Step 1 Status Distressed (0) 1 80 1.2 

    Healthy (1) 3 155 98.1 

  Overall %       65.3 

 

As for variable importance, the top three variables that had the greatest predictive 

power in shaping this model were ‘Current Ratio’, ‘Total Equity’, and ‘Gross Debt / 

Cash Flow’. Figure 3.1 below shows the ‘Independent Variable Importance Analysis’ 

– they are based on a sensitivity analysis, which calculates the importance of each 

predictor in determining the neural network. 

 

Figure 3. 1 Industry-Wide’s ANN Model Variable Importance 
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3.5.2 Industry-Specific Models 

 

This subsection presents the results for the Industry-Specific models for each of the 

five industries, using LR, MDA, and ANNs. The Energy industry’s results are 

showcased first, followed by the Financials industry, the Health industry, the Industrials 

industry, and finally, the IT industry. As mentioned earlier, the classification tables and 

figures are only presented for the industry-wide models, Table 3.6 will showcase the 

empirical results for all constructed models. 

 

3.5.2.1 Energy  

 

 LR Model: The model initially contained 17 independent variables – refer to the 

Methodology section for list of variables. Six independent variables made a 

statistically significant contribution to the model (Total Revenue, EBIT, Total 

Equity, ROE, Enterprise Value, and Cash per Share). The full model containing 

all predictors was statistically significant, χ² (17, N = 148) = 53.33, p < .001, 

indicating that the model was able to distinguish between companies that are 

listed as failed or successful. The model as a whole explained between 30.3% 

(Cox and Snell R Square) and 41.2% (Nagelkerke R Squared) of the variance 

in company status, and correctly classified 77.7% of cases. 

 MDA Model: The Industry-Specific MDA model for the Energy industry yielded 

a result of 72.2% for the original grouped cases that were correctly classified, 

and after cross-validation that result fell to 66.5%. This result is better than all 

the results out of all the Industry-Wide models. Only one independent variable 

made a unique statistically significant contribution to the model, namely: ‘Cash 

per Share’. 

 ANN Model: The Industry-Specific ANN model for the Energy industry yielded 

an overall classification accuracy result of 82.7%. As for variable importance, 

the top three variables that had the greatest predictive power in shaping this 

model were ‘Cash per Share, ‘PER’, and ‘Share Price/Cash Flow’. Refer to 

Discussion section for rationale of variable importance. 
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3.5.2.2 Financials  

 

 LR Model: The model initially contained 16 independent variables. Three 

independent variables made a unique statistically significant contribution to the 

model (ROA, EV/EBITDA, and Current Ratio). The full model containing all 

predictors was statistically significant, χ² (16, N = 166) = 30.86, p < .02, 

indicating that the model was able to distinguish between companies that are 

listed as failed or successful. The model as a whole explained between 17% 

(Cox and Snell R Square) and 23% (Nagelkerke R Squared) of the variance in 

company status, and correctly classified 66.3% of cases. 

 MDA Model: The Industry-Specific MDA model for the Financials industry 

yielded a result of 54.9% for the original grouped cases that were correctly 

classified, and after cross-validation that result fell to 49.2%. This result is only 

slightly better than the industry-wide MDA model, but it is still largely an 

unencouraging result. Only two independent variables made a unique 

statistically significant contribution to the model, namely: ‘PER’ and ‘Gross 

Gearing’. 

 ANN Model: The Industry-Specific ANN model for the Financials industry 

yielded a classification accuracy average of 63.8%. As for variable importance, 

the top three variables that had the greatest predictive power in shaping this 

model were ‘Gross Debt per Cash Flow’, ‘Cash per Share’, and ‘Current Ratio’. 

Refer to Discussion section for rationale of variable importance. 

 

3.5.2.3 Health  

 

 LR Model: The model contained 17 independent variables. Two independent 

variables made a unique statistically significant contribution to the model (EBIT 

and Quick Ratio). The full model containing all predictors was statistically 

significant, χ² (16, N = 166) = 30.86, p < .01, indicating that the full model 

containing all predictors was statistically significant, χ² (17, N = 149) = 22.8, p 

< .05, indicating that the model was able to distinguish between companies that 

are listed as failed or successful. The model as a whole explained between 
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14.2% (Cox and Snell R Square) and 19.6% (Nagelkerke R Squared) of the 

variance in company status, and correctly classified 69.8% of cases. 

 MDA Model: The Industry-Specific MDA model for the Health industry yielded 

a result of 65.6% for the original grouped cases that were correctly classified, 

and after cross-validation that result fell to 56.4%. This result is slightly better 

than the industry-wide MDA model, but it is still largely an unencouraging result. 

Only two independent variables made a unique statistically significant 

contribution to the model, namely: ‘Cash/Share’ and ‘Current Ratio’. 

 ANN Model: The Industry-Specific ANN model for the Health industry yielded 

a classification accuracy of 75.50%. As for variable importance, the top three 

variables that had the greatest predictive power in shaping this model were 

‘Gross Debt per Cash Flow’, ‘Current Ratio’, and ‘Gross Gearing’. Refer to 

Discussion section for rationale of variable importance. 

 

3.5.2.4 Industrials  

 

 LR Model: The model contained 18 independent variables. One independent 

variable made a unique statistically significant contribution to the model 

(Current Ratio). The full model containing all predictors was statistically 

significant, χ² (18, N = 188) = 21.07, p < .02, indicating that the model was able 

to distinguish between companies that are listed as failed or successful. The 

model as a whole explained between 10.3% (Cox and Snell R Square) and 

14% (Nagelkerke R Squared) of the variance in company status, and correctly 

classified 66% of cases.  

 MDA Model: The Industry-Specific MDA model for the Industrials industry 

yielded a result of 60.2% for the original grouped cases that were correctly 

classified, and after cross-validation that result fell to 53.8%. This result is 

slightly better than the industry-wide MDA model, but it is still largely an 

unencouraging result. Three independent variables made a unique statistically 

significant contribution to the model, namely: ‘Enterprise Value’, ‘PER, and 

‘Cash/Share’. 
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 ANN Model: The Industry-Specific ANN model for the Industrials industry 

yielded an average classification accuracy result of 69.10%. As for variable 

importance, the top three variables that had the greatest predictive power in 

shaping this model were ‘Gross Debt per Cash Flow’, ‘Gross Gearing’, and 

‘Current Ratio’. Refer to Discussion section for rationale of variable importance. 

 

3.5.2.5 IT  

 

 LR Model: The model contained 17 independent variables. Six independent 

variables made a unique statistically significant contribution to the model (Total 

Equity, ROE, Enterprise Value, Gross Gearing, PER, and Debt/CF). The full 

model containing all predictors was statistically significant, χ² (17, N = 152) = 

48.48, p < .001, indicating that the model was able to distinguish between 

companies that are listed as failed or successful. The model as a whole 

explained between 27.3% (Cox and Snell R Square) and 36.5% (Nagelkerke R 

Squared) of the variance in company status, and correctly classified 75% of 

cases. 

 MDA Model: The industry-specific MDA model for the IT industry yielded a 

result of 59.7% for the original grouped cases that were correctly classified, and 

after cross-validation that result fell to 50.3%. This result is slightly better than 

the industry-wide MDA model, but it is still largely an unencouraging result. Only 

one independent variable made a unique statistically significant contribution to 

the model, namely: ‘Enterprise Value’. 

 ANN Model: The Industry-Specific ANN model for the IT industry an average 

classification accuracy result of 58.00%. As for variable importance, the top 

three variables that had the greatest predictive power in shaping this model 

were ‘Gross Gearing’, ‘Cash/Share’, and ‘Current Ratio’. Refer to Discussion 

section for rationale of variable importance. 
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3.5.3 Models and Variables Comparison 

 

Table 3.6 presents the overall classification accuracies of all 18 constructed models, 

as well as the most important variables in determining companies’ financial distress in 

each model. As is evident in Table 3.6, only two out of the 15 (≈13%) industry-specific 

models constructed had slightly worse results than their respective industry-wide 

model using the same technique (the IT and Financials industries using the ANN 

technique – these are highlighted in yellow in Table 3.6). In other words, approximately 

87% of the time, using an industry-specific model is the superior choice. This is an 

important finding to FDP of industry-specificity in general, and to the Australian 

marketplace, in particular. These findings are in concert with Lee and Choi’s (2013) 

findings regarding the superior predictive importance of industry-specific FDP models. 

These findings are more inclusive due to the use of a larger data-set and more 

industries.  

 

As for the variable differences amongst the constructed models, as is evident in Table 

3.6, differences exist. This an important finding since it demonstrates that each 

industry is more so affected by different variables, thus management should keep a 

close eye on the variables that are most important to the industry their company 

operates in. The Discussion section elaborates on the variable differences amongst 

the industries investigated in this chapter. 

  



53 
 

Table 3. 6  Models and Variables Comparison 

Technique Models 
Overall % 

Classification 
Accuracy 

Most Important Variables 

ANN 

Industry-
Wide 

65.30% Current Ratio; Total Equity; Debt/Cash Flow 

Energy 82.70% Cash/Share; PER; Price/CF 

Financials 63.80% Debt/Cash Flow; Cash/Share; Current Ratio 

Health 75.50% Debt/Cash Flow; Current Ratio; Gearing 

Industrials 69.10% Debt/Cash Flow; Gearing; Current Ratio 

IT 58% Gearing; Cash/Share; Current Ratio 

MDA 

Industry-
Wide 

47.90% Total Equity; Enterprise Value; Retained Earnings 

Energy 66.50% Cash/Share 

Financials 49.20% PER; Gross Gearing 

Health 56.40% Cash/Share; Current Ratio 

Industrials 53.80% Enterprise Value; PER; Cash/Share 

IT 50.30% Enterprise Value 

LR 

Industry-
Wide 

61.80% Working Capital; Current Ratio; Quick Ratio 

Energy 77.70% Total Revenue; EBIT; Total Equity 

Financials 66.30% ROA; EV/EBITDA; Current Ratio 

Health 69.80% EBIT; Quick Ratio 

Industrials 66% Current Ratio 

IT 75% Total Equity; ROE; Enterprise Value 

 

3.5.4 Varying Cut-Offs Experimentation 

 

The average classification scores shown in Table 3.6 can be misleading. As was 

shown in Table 3.3, despite the average of the classification accuracy being 61.8%, 

only 14 out of the 314 distressed companies were correctly classified by the model 

(4.5%), whereas 482 out of the 489 healthy companies were correctly classified by the 

model (98.6%). It is clear that model is more biased towards the healthy companies – 

this results in a high Type I error vis-à-vis Type II error. As mentioned in Chapter 2, 

the weighting of the errors can differ amongst users. Therefore, this section 

experiments with varying the cut-off points to check their effects on the Type I and 

Type II errors – the LR models were chosen for the experiments due to the large range 

between Type I and Type II errors. Table 3.7 below presents the original results for all 
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the constructed LR models at the default 0.5 cut-off point. Table 3.8 presents the 

results after the cut-off points were experimentally changed to check their effects on 

the classification accuracies of the models. An elaboration on the meaning of the terms 

used in the table is presented below: 

 

 True Positives (Sensitivity): Percentage of successful firms correctly 

predicted by model as such. 

 True Negatives (Specificity): Percentage of failed firms correctly predicted 

by model as such. 

 Type I Error: =100%- Specificity (percentage of actually failed but predicted 

as successful). 

 Type II Error: =100%- Sensitivity (percentage of actually successful but 

predicted as failed). 

 Positive Predicting Value: Percentage of predicted as successful that are 

actually successful. 

 Negative Predicting Value: Percentage of predicted as failed that are 

actually failed. 

 Sum of Errors: Type I + Type II Error. 

 

Table 3. 7  Logistic Regression Models Comparison with Default Cut-Offs 

Logistic Regression Models Comparison at Default 50% Cut-Off 

Explanatory Output 

Models 

Industry-
Wide 

Industry-Specific 

Energy 
Sector 

Finance 
Sector 

Health 
Sector 

Industrials 
Sector IT Sector 

Sensitivity 4.46% 57.14% 36.92% 19.23% 31.94% 71.01% 

Specificity 98.57% 90.22% 85.15% 95.88% 85.34% 78.31% 

Type I Error 95.54% 42.86% 63.08% 80.77% 68.06% 28.99% 

Type II Error 1.43% 9.78% 14.85% 4.12% 14.66% 21.69% 

Positive Predicting Value 61.64% 77.57% 67.72% 68.89% 69.89% 76.47% 

Negative Predictive Value 66.67% 78.05% 61.54% 71.43% 58.50% 73.13% 

Average of Correct 
Classification 64.12% 77.81% 64.63% 70.16% 64.2% 74.8% 

Sum of Errors 96.97% 52.64% 77.93% 84.89% 82.72% 50.68% 
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Table 3.7 shows the results comparison of all constructed models (one industry-wide 

model and five industry-specific models) using LR using the default cut-off value of 0.5 

for each model. The ‘Sum of Errors’ column shows the total percentage of companies 

that were misclassified by the model. As is evident in Table 3.7, the industry-wide 

combined error rate was 96.97%. None of the models using the industry-specific 

method have a combined error rate that exceeds that of the industry-wide model. This 

shows that the models using industry-specific LR are a more accurate choice. 

 

Table 3. 8  Logistic Regression Models Comparison with New Cut-Offs 

Logistic Regression Models Comparison with Tailored Cut-Off Values (at X%) 

Explanatory Output 

Models 

Industry-
Wide at 

60% 

Industry-Specific 

Energy 
Sector 
at 63% 

Finance 
Sector 
at 57% 

Health 
Sector 
at 66% 

Industrials 
Sector at 

60% 
IT Sector at 

59% 

Specificity 68.79% 76.79% 66.15% 76.92% 73.61% 82.61% 

Sensitivity 45.40% 67.39% 70.30% 64.95% 56.03% 63.86% 

Type I Error 31.21% 23.21% 33.85% 23.08% 26.39% 17.39% 

Type II Error 54.60% 32.61% 29.70% 35.05% 43.97% 36.14% 

Positive Predicting Value 69.38% 82.67% 76.34% 84.00% 77.38% 81.54% 

Negative Predictive Value 44.72% 58.90% 58.90% 54.05% 50.96% 65.52% 

Average of Correct 
Classification 57.05% 70.79% 67.62% 69.03% 64.17% 73.53% 

Sum of Errors 85.81% 55.82% 63.55% 58.13% 70.36% 53.53% 
 

Table 3.8 shows the results comparison of all constructed models (one industry-wide 

model and five industry-specific models) using LR after applying new cut-off values for 

each model – the new cut-off values are presented underneath each model’s name. 

These experimentally new cut-off values were chosen as they reduced the value of 

Type I error, all the while minimising the increase in Type II error. For example, the 

Type I error of the industry-wide model using the default cut-off point was 95.54%, 

whereas after applying the new cut-off point this dropped to 31.21%. The Sum of 

Errors was 96.97% for the industry-wide model using the default cut-off point, however 

this dropped to 85.81% after applying the new cut-off point.  
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This empirical experimentation showcases that varying the cut-off points for each FDP 

model can lead to a superior and more balanced model. Chapters 4, 5, and 8 present 

more robust methods for dealing with class imbalance and cut-off optimisation 

techniques that can present a more fair representation and alter the classification 

accuracy of the models. 

 

3.6 Discussion 

 

It is important to try and understand why each industry yielded different variables that 

are most pertinent for each industry’s FDP model. Understanding the differences has 

the potential to yield to tailor-made industry-specific models with a high predictive 

accuracy. This section attempts to rationalise the reasoning behind those differences. 

Due to a lack of previous studies in this area that are able to provide justifications for 

the variable importance differences amongst industries, the following rationales are 

based on discussions with an expert in accountancy. It is important to note that these 

rationales are up for discussion and further studies should be done to cement those 

claims. The variables explained here are as per the model that yielded the highest 

overall accuracy, as was shown in Table 3.6. 

 Energy Industry Rationale: One reason to explain why ‘Cash per Share’ came 

out as the most important predictive variable for the Australian energy industry 

may be because the choice of capital structure involves considering different 

costs and different risks – firms in the Energy industry are considered less risky 

(as they are assured a steady flow of cash payments from customers), therefore 

have access to higher risk funding (debt financing).   

 Financials Industry Rationale: One reason to explain why ‘ROA’ – a 

profitability ratio that compares income to total assets – came out as the most 

important predictive variable in the Australian financials industry may be 

because if the company is not able to convert its investments in assets into 

profits, it is doomed to fail in such a liquid-driven industry. 

 Health Industry Rationale: One reason to explain why ‘Debt/Cash Flow’ came 

out as the most important predictive variable in the Australian health industry 

may be due to the fact that the Australian healthcare system is largely 
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subsidized and government-funded, therefore a decrease or increase in the 

‘Debt/Cash Flow’ level can have a direct impact on whether the entity will 

succeed or fail.  

 Industrials Industry Rationale: One reason to explain why ‘Gross Debt per 

Cash Flow’, which is one of the most important indicators of cash flows, came 

out as the most important predictive variable in the Australian industrials 

industry may be due to the behemoths that operate within that industry that are 

able to accumulate high levels of debt, therefore, this ratio is indicative of a 

company’s success or failure within this industry.  

 IT Industry Rationale: One reason to explain why ‘Total Equity’, came out as 

the most important predictive variable in the Australian IT industry may be due 

to the fact that IT is an unforgiving volatile and fast-paced industry were 

technological obsolescence is always looming, therefore a company’s equity is 

of utmost importance in determining its success or failure. 

 

3.7 Conclusion 

 

To conclude, this chapter showed how the literature is limited pertaining to the effects 

of industry-specificity on FDP, applied three techniques – two statistical techniques, 

namely: LR and MDA, and a machine learning technique, namely: ANN, on a large 

data sample comprising hundreds of Australian companies operating across five 

different industries. 18 models were created (three for each industry and three for the 

industry-wide model). The results indicate that using industry-specific models will lead 

to an increase in the predictive accuracy vis-à-vis an industry-wide model. Also, the 

most important variables pertaining to each industry were outlined and elaborated 

upon. The FDP models in this chapter have the potential to momentously aid various 

parties in the economy – from shareholders to government agencies; thus, leading to 

the improvement of the economy in general. This chapter has validated Hypotheses 1 

and 2, and contributed is in the form of presenting adequate evidence to prove that 

financial distress in companies can be more accurately predicted by allocating 

companies to their respective industry, as opposed to a one-size-fits-all approach, 

which is still commonly used throughout the literature. 
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Chapter 4: Australian Mining Case Study* 
 

*This chapter is based on a published paper in a peer-reviewed Journal, namely:  

Halteh, K., Kumar, K., & Gepp, A. (2018). Using Cutting-Edge Tree-Based Stochastic 

Models to Predict Credit Risk. Risks, 6(2), 55. doi:10.3390/risks6020055 

 

4.1 Introduction 

 

The previous chapter explored whether industry-specificity has an effect on the 

accuracy of predicting financial distress. The empirical results revealed that they 

actually do, and that the variables affecting financial distress differ by industry.  

 

This chapter builds on the information gained from the previous chapter through 

exploring the Australian mining industry and applying parametric and nonparametric 

statistical models to evaluate which model has the superior predictive capabilities 

pertaining to financial distress. Aligning with Hypotheses 3 and 4 stated in the Chapter 

1, namely: 

H3: Using cutting-edge recursive partitioning techniques will yield 

empirically superior results compared to traditional statistical techniques. 

H4: Class imbalance does affect the detection accuracy of FDP models, 

and it can be enhanced by optimising the cut-off points or using SMOTE 

vis-à-vis a model that is built on a standard imbalanced data-set. 

 

This chapter aims at verifying the aforementioned hypothesis by utilising cutting-edge 

machine learning techniques and comparing them with a standard LR model. Also, 

this chapter presents a method of dealing with an imbalanced data-set – as this was 

the case for the Australian mining industry, and showcases the most important 

variables for determining financial distress for each developed model and the 

predictive accuracy of each model – presented in terms of specificity and sensitivity, 
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as well as the Area Under the Receiver Operating Characteristic Curve (AUROC) 

method – the mechanics of this metric will be discussed in detail in Chapter 5.  

 

The Australian mining industry was chosen for several reasons, including:  

 Mining helped cushion the Australian economy during from the 2008 Global 

Financial Crisis (GFC), as the mining sector was enjoying a boom during that 

period (Shah, 2014);  

 Mining is a major contributor to Australia’s economy, generating around $140 

billion annually, hence making up more than half of the total goods and services 

(Shah, 2014); 

 Mining is an important part of the Australian workforce – during 2007-2012, the 

mining sector set the highest employment growth nationwide, increasing by a 

record-breaking 94.3% to reach almost 270,000 workers, a record high (Shah, 

2014); 

 Mining makes up around 8% of the national GDP, 38% of all foreign direct 

investment, and approximately 60% of all exports (Frydenberg, 2015);  

 Australia is the global leader when it comes to iron ore exports, making up more 

than half of the world’s trade in 2014 (Frydenberg, 2015);  

 Australia is also one of the world’s leading exporters of coal, aluminium, copper, 

uranium, gold, and zinc (Frydenberg, 2015).  

 

During the mining boom in Australia, between 2011-2012, mining contributed towards 

the national economic growth by approximately 66% and towards the GDP by about 

8%. On the downside, however, a report by the National Australia Bank – as was 

shown in Letts (2016) – suggested that the contribution towards the GDP fell to around 

4% in 2016, and is projected to fall to around 1%. Petroleum and mineral mining 

expeditions have also been falling, with a drop of around 8% from 2015. Adding insult 

to injury, tens of thousands of jobs are going to be lost, and investment is going to fall 

by as much as 70% in the coming years as the mining boom draws to an end – refer 

to Figure 4.1 for a visual representation of the Australian mining investment and 

employment for the time-period 2002-2016.  
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Figure 4. 1 Australian Mining Investment & Employment 2002-2016 (Letts, 2016) 

 

 

Given the above statistics, this presents a gloomy future for the mining industry in 

Australia, at least for the short term. This might have dire consequences on not only 

the mining companies which may start declaring bankruptcies, but also on the whole 

economy due to the massive influence the mining sector has on it. This is already 

starting to materialise by an increase in individual bankruptcy rates as a result of a 

decline in the mining sector. Personal bankruptcies increased by around 5% in 2016 

from the previous year, and around 6% in 2017 from the previous year (Butler, 2018). 

Other effects of the end of the mining boom are experienced in the construction and 

real estate industries, in which the value of construction work has been falling, and the 

house prices in western Australia has plummeted drastically near mining towns (Scutt, 

2017; Wahlquist, 2017). 

 

The points presented in the aforementioned paragraphs provide the justification to 

conduct an FDP analysis concentrating on the Australian mining industry to empirically 

determine the model(s) best suited for forecasting financial distress, as well as 

outlining the most important variables that effect a mining company’s financial health. 

As was presented in Chapter 1, FDP modelling provides many advantages not only to 
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decision makers and shareholders, but due to the enormous influence of the mining 

industry, will have far-reaching economic implications. 

 

4.2 Literature Review 

 

Chapter 2 presents a literature survey on the statistical techniques that are used in 

this chapter, namely: LR, DT, RF, and SGB. Therefore, to avoid repetition, this section 

will solely concentrate on the limited studies available in the literature pertaining to the 

FDP of the Australian mining industry. 

 

There are limited FDP studies in the literature concentrating on companies operating 

in the mining industry. This section presents some of these studies that applied FDP 

modelling to mining sectors in Indonesia; as for studies using FDP modelling 

concentrating on Australian mining companies, the studies are extremely rare. 

 

A recent study by Syamni, Majid, and Siregar (2018), applied FDP modelling to 19 

coal mining companies operating in Indonesia between 2013-2015. Their study 

generated five models using a unique technique for each, which will generate scores 

for each model. Following this, a multiple panel regression model is estimated to 

investigate the effects the FDP models have on the stock prices of the coal mining 

companies – refer to Equation 4.1. The scores of the models generated earlier were 

used as predictors to predict the stock prices.   
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𝑙𝑛𝑆𝑃𝑖𝑡 = 𝛼 + 𝛽1𝑂𝑆𝑖𝑡 + 𝛽2𝑍𝑀𝑖𝑡 + 𝛽3𝐺𝑆𝑖𝑡 + 𝛽4𝑆𝑆𝑖𝑡 + 𝛽5𝑍𝑆𝑖𝑡 + 휀𝑖𝑡 

[𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1] 

 lnSP = Natural logarithm of stock prices  

 OS = Ohlson (1980) Score 

 ZM = Modified Altman (1968) Z-Score – removed the fifth variable, different cut-

off points for classification of company’s financial health status   

 GS = Grover and Lavin (2001) Score  

 SS = Springate (1978) Score  

 ZS = Zmijewski (1983) Score  

 ε = Error term  

 i & t = Company i for year t. 

 

Syamni et al. (2018) found that the Grover and Lavin (2001) model identified most of 

the healthy companies, whereas the Ohlson (1980) model identified most of the 

distressed companies. Both models were also found to directly and negatively affect 

stock prices of the coal mining companies, that is, the higher the prediction scores, the 

lower the stock prices. 

 

Another study by Nindita and Indrawati (2014), applied FDP modelling in the form of 

LR using five financial and two nonfinancial variables on 13 publicly listed mining 

companies in Indonesia for the time-period 2008-2010. Their findings indicate that 

Current Ratio, Cash Ratio, and Debt Ratio have a significant and negative effect on 

predicting financial distress, that is, the higher the ratio, the lower probability of 

financial distress; whereas nonfinancial variables were not found to be statistically 

significant.  
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As for Australian studies, a  paper by Ferguson, Clinch, and Kean (2011), applied FDP 

modelling in the form of LR to determine the success or distress to a sample of 85 

single-project gold mining companies following disclosure of a feasibility study for the 

time-period 1990-2007. Their results indicate that nonfinancial information had a direct 

effect on financial distress, whereas the Altman (1968) Z-score financial predictors 

were not useful in explaining financial distress. 

 

The findings by Ferguson et al. (2011) are in direct contradiction to the results in the 

study presented above by Nindita and Indrawati (2014) in terms of predictive effect of 

nonfinancial variables on mining companies. However, there is an important distinction 

between the two studies that must be noted, which may offer an explanation towards 

the disparity in results. Ferguson et al. (2011) defined failure not in terms of a mining 

company’s closure, but in terms of four development projects criteria outlined in their 

paper. Whereas, Nindita and Indrawati (2014) did not focus on projects, but on the 

company’s overall financial status (healthy/distressed). 

 

Another paper by Shah (2014) applied FDP modelling on the Australian mining 

industry during the 2012-2013 time-period. Shah selected 20 independent variables 

made up of standard financial ratios for the FDP modelling. Shah’s data-set consisted 

of 351 and 44 financially healthy and distressed mining companies, respectively. Shah 

used various parametric, nonparametric, and hybrid statistical techniques to create the 

FDP models. Shah’s models are presented below, and the most significant/important 

variables are presented in Table 4.1 below. 

 

 LR model: Six statistically significant variables were found significant at the 5% 

level. The model’s accuracy in predicting financially healthy companies 

(specificity) was an impressive 99.1%, however the accuracy in predicting 

financial distressed companies (sensitivity) was a modest 34.1%.  
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 MDA model: Nine statistically significant variables were found significant at the 

5% level. The model’s specificity was 86.9%, whereas the sensitivity was 

13.1%. 

 ANN model: Two important variables were presented. The testing sample’s 

accuracy results were specificity = 98%, sensitivity = 36.4%. 

 DT model: The DT model was built using the CHAID growing method. The 

model’s accuracy ratings for the testing sample correctly classified all the 

financially healthy companies but none of the distressed ones. The testing 

sample’s accuracy results were specificity = 100%, sensitivity = 0%. 

 Hybrid model 1: Two important variables were presented. The model’s 

specificity was 98.2%, whereas the sensitivity was 29.4%. 

 Hybrid model 2: Two important variables were presented. The model’s 

specificity was 100%, whereas the sensitivity was 18.8% 

 

Table 4. 1 Most Significant/Important Variables in Shah’s (2014) FDP Models 

Significant 
Variables 

Models 

LR MDA ANN DT 
Hybrid 1 
(ANN and LR) 

Hybrid 2 (ANN 
and MDA) 

Depreciation / 
PPE Asset Turnover 

Gross 
Gearing  Root Node: PER 

Price / Gross 
Cash Flow 

Gross Debt / 
Cash Flow Current Ratio 

Price / Gross 
Cash Flow 

Price / 
Book Value 

Price / Gross 
Cash Flow PER 

Price / Gross 
Cash Flow 

Invested Capital 
Turnover 

  
  
  
  
  
  
  

  
  
  
  
  
  
  

  
  
  
  
  
  
  

  
  
  
  
  
  
  

ROA 
Long-term Asset 
Turnover 

ROIC Net Gearing 

  
  
  
  

PPE Turnover 

Price / Book 
Value 

Price / Gross 
Cash Flow 

Quick Ratio 
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The enormous gap between sensitivity and specificity in Shah’s paper is due to the 

class imbalance problem in the data-set used to create the models (351 vis-à-vis 44), 

as well as the default 0.5 cut-off used in the models. Shah did not give attention to 

these important factors, thus resulting mostly in impractical models that predict the 

majority class by default, thus giving a deceiving average accuracy rating (by 

averaging the true positives and negatives). These issues were faced in the data-set 

adopted for this study, but were addressed carefully, as is shown later in this chapter.  

 

4.3 Data 

 

Archival data were extracted from MorningStar database pertaining to the Australian 

mining companies used in the research. The MorningStar database has been used 

previously in the literature across different disciplines, some of these studies include: 

Halteh (2015); Halteh et al. (2018b); Shah (2014); Smith et al. (2011). 

 

This chapter used all available data from the database for listed and delisted mining 

companies. Time-series data were then chosen for the years 2011-2015. The 

company status variable in MorningStar was used to determine the listed or delisted 

status. According to the Australian Securities Exchange (ASX), the source of much of 

the data from MorningStar, an Australian company is ‘listed’ if it is currently 

operational, whereas a company is ‘delisted’ for a number of reasons including 

insolvency, merger, or take-over. All of these collectively imply an element of financial 

distress leading to delisting of the company (MorningStar, 2016). This chapter refers 

to listed companies as healthy, and delisted companies as distressed.  

 

As was the case in Chapter 3, the variables were chosen based upon several factors, 

including standard accounting and financial variables, use in prior empirical research 

and literature, endorsement by theorists, and as per availability of data. It is important 

to note that since this study uses the companies’ actual financial status 

(distressed/healthy), no nonfinancial variables were included in the study – this is due 
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to the findings presented in Nindita and Indrawati’s (2014) study, which found that 

nonfinancial variables were not statistically significant. 

 

The extracted data yielded 632 healthy companies and 118 distressed companies. 

The data were then downloaded to a spreadsheet for cleaning. The initial count was 

590 observations (118 companies multiplied by 5 years) for distressed companies and 

3160 observations (632 companies multiplied by 5 years) for healthy companies, a 

total of 3750 observations incorporating data for 29 explanatory variables.  After 

examining the data, some observations needed to be deleted due to insufficient data. 

Variables that had 50% or more missing data were deleted. Following this removal, 

companies that had 50% or more missing data were also deleted. Such a high 

percentage of missing data were deemed to be insufficient to build a credible model. 

This resulted in omitting ten variables; as for companies’ financial data, the final 

sample contained 19 variables with 3375 observations – 339 observations for 

distressed companies and 3036 for healthy companies. All 29 variables are shown in 

Table 4.2, with the ones omitted being followed by an asterisk. 
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Table 4. 2 Complete List of Variables 

Variable Description 

Net Profit Margin* Net Profit / Revenue 

EBIT Margin* Earnings Before Interest and Tax (EBIT) / Net Revenue 

ROE 

Return on Equity = Net Profit After Tax / (Shareholders Equity – Outside 

Equity Interests) 

ROA 

Return on Assets = Earnings before interest / (Total Assets Less Outside 

Equity Interests) 

ROIC 

Return on Invested Capital = Net Operating Profit Less Adjusted Tax / 

Operating Invested Capital 

NOPLAT Margin* Net Operating Profit Less Adjusted Tax (NOPLAT) / Revenue 

Inventory Turnover* Net Sales / Inventory 

Asset Turnover Operating Revenue / Total Assets 

PPE Turnover 

Revenue / (Property, Plant & Equipment (PPE) – Accumulated 

Depreciation) 

Depreciation/PPE Depreciation / Gross PPE 

Depreciation/Revenue* Depreciation / Revenue 

Working Capital/Revenue* Working Capital / Revenue 

Working Capital Turnover Operating Revenue / Operating Working Capital 

Gross Gearing (Short-Term Debt + Long-Term Debt) / Shareholders Equity 

Financial Leverage Total Debt / Total Equity 

Current Ratio Current Assets / Current Liabilities 

Quick Ratio (Current Assets - Current Inventory) / Current Liabilities 

Gross Debt/CF (Short-Term Debt + Long-Term Debt) / Cash Flow 

Cash per Share Cash Flow / Shares Outstanding 

Invested Capital Turnover Operating Revenue / Operating Invested Capital before Goodwill 

Net Gearing (Short-Term Debt + Long-Term Debt - Cash) / Shareholders Equity 

NTA per Share Net Tangible Assets / Number of Shares on Issue 

BV (Book Value) per Share (Total Shareholder Equity - Preferred Equity) / Total Outstanding Shares 

Receivables/Operating Revenue* Debtors / Operating Revenue 

Inventory/Trading Revenue* Inventory / Trading Revenue 

Creditors/Operating Revenue* Creditors / Operating Revenue 

Sales per Share Total Revenue / Weighted Average of Shares Outstanding 

EV/EBITDA* 

Enterprise Value (EV) / Earnings Before Interest, Tax, Depreciation & 

Amortisation (EBITDA) 

PER Price per Earnings = Market Value of Share / Earnings per Share 

 

*: Cells with a red background/asterisk indicate the variables that were later 

excluded from the model due to missing data – refer to the last paragraph on 

the previous page for explanation. 
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4.4 Methodology 

 

Following the data collection and cleaning (as mentioned in the Data section), a 

dichotomous binary variable was used to refer to the status of each company—coded 

‘1’ if the company is healthy and ‘0’ if the company is distressed. The data were then 

partitioned by randomly selecting 80% healthy and 80% distressed companies for a 

training set used to develop statistical models, with the remaining 20% of the healthy 

and distressed companies being used for testing and evaluating models. Having a 

separate data-set is necessary to obtain representative estimates of real-world 

performance for fair comparisons between models. This process and the resulting 

data-sets are summarised in Table 4.3. 

 

Table 4. 3 Data Overview 

Sample  

Partition 

Number of 

Observations 
Percentage 

Healthy 

Companies 

Distressed  

Companies  
Class Imbalance % 

Train 2,700 80.00% 2,419 281 89.59% Healthy – 10.41% Distressed 

Test 675 20.00% 617 58 91.41% Healthy – 8.59% Distressed 

Total 3,375 100.00% 3036 339 89.96% Healthy – 10.04% Distressed 

 

As is evident in Table 4.3, there is class imbalance in the data-set, meaning that there 

are much more healthy companies than distressed ones. When creating the 

testing/holdout sample, the class imbalance percentage was ensured to be kept very 

similar to that of the training sample to enable a fair representation of the data-set.  

 

The class imbalance is particularly problematic when the difference is extreme, as the 

models will tend to automatically overlook the minority class and predict everything as 

the majority class. In this case, the overall results will appear good overall, but they 

will be unusable as all predictions are the same. 
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The model building methods that are used in the study are logistic regression (as a 

well-established benchmark), decision trees, random forests, and stochastic gradient 

boosting. In line with Hypothesis 3 presented in Chapter 1, the results of the state-of-

the-art recursive partitioning models are expected to outperform the parametric logistic 

regression model. This would provide confirmatory evidence from a larger data-set of 

similar results in the limited existing literature. 

 

The following subsections outline the methodologies used in the study and expand 

upon the three aforementioned models, as well as the optimised cut-off value 

approach used to deal with the class imbalance problem in this data-set. With the 

exception of the optimised cut-off value approach – which will be discussed below in 

Section 4.4.5, the mechanics of the techniques used will not be discussed, as they 

were previously mentioned in Chapter 2. 

 

4.4.1 Logistic Regression Model 

 

The logistic regression model was estimated with all 19 variables used as covariates 

to explain the companies’ status (healthy or distressed). SPSS statistical software was 

used to develop the model, but as the model is deterministic, the same results would 

be obtained using other software packages. 

 

4.4.2 Decision Tree Model 

 

Classification and Regression Trees (CART) using Salford Predictive Modeller (SPM) 

have been used to generate the FDP tree. All 19 variables were selected as predictors 

in the model. The Gini splitting rule was used because of its popularity and widespread 

use. The minimum data points in a non-leaf node was set to 10 to avoid the tree 

becoming too large. This setting assists in avoiding over-fitting, that is, looking for 

patterns in very small subsamples that are likely not to generalise to future data.  
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4.4.3 Random Forests Model 

 

SPM has again been used and all 19 variables were used as predictors. There are two 

main parameters to set for a RF model: the number of trees to be generated, and the 

number of variables to be considered at each node. A model was developed for each 

of 200, 500, and 1000 trees to empirically determine the best choice for this parameter. 

The number of variables considered at each node was set to the square root of the 

total number of predictors: √19 ≈ 4.36 ≈ 4. The square root heuristic was chosen as 

it has been recommended by and used in prior literature, including: Bhattacharyya, 

Jha, Tharakunnel, and Westland (2011); Gepp (2015); Whiting, Hansen, McDonald, 

Albrecht, and Albrecht (2012). 

 

4.4.4 Stochastic Gradient Boosting Model 

 

Once again, SPM has been used and all 19 variables were used as predictors. Models 

were developed based on 200, 500, and 1000 trees, to empirically determine the best 

choice for this parameter. As mentioned in the literature review, SGB relies on 

incremental improvements and therefore, it is important that no individual tree is too 

complex (large). Consequently, individual trees are kept small by setting the maximum 

nodes per tree to six (a standard setting) with a minimum number of data points of ten 

in each node. The criterion to determine the optimal number of trees, that is, how much 

incremental improvement to perform, was chosen based on the default of cross 

entropy.  

 

4.4.5 Cut-Off Values for Classification 

 

All four models can estimate the probability of being healthy (1). Often, a default value 

of 0.5 is used such that if a company has a value greater than 0.5 it will be classified 

as healthy, else as distressed. However, this is commonly unsuitable when there is a 

substantial class imbalance, as will be demonstrated in this case in the Results 
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section. Consequently, the cut-off values are empirically optimised using the train 

sample. This approach involves experimentally and empirically determining the 

optimal cut-off value for each constructed model. Since cut-off values are optimised 

based on the same training data used to construct models, the existence of any 

sample selection bias will be common to both processes, hence not worrying (Gepp, 

2015). Because of this, and for consistency with prior research in the field, cut-off 

values have been empirically optimised in this chapter – this approach has been used 

successfully in the literature, studies include: Bayley and Taylor (2007); Beneish 

(1997); Gepp (2015); Perols (2011).  

 

Since this optimisation will be completed for each model, it is possible that the cut-off 

values will vary between the models. The cut-off value must be between zero and one, 

as they are the limits of any probability figure. The optimised cut-off value is chosen 

as the value that produces the most balanced accuracy on the train sample. The most 

balanced is defined by minimising the difference between prediction accuracy for 

healthy companies and prediction accuracy for distressed companies. It is important 

to highlight that the cut-off values were optimised exclusively on the train sample, so 

that model evaluation on the test sample still represents performance on data that is 

completely new to the model. 

 

4.5 Results 

 

The following subsections explore and analyse, in detail, the results achieved and 

performances of the various models used in the study. Specificity represents the 

accuracy at classifying healthy companies, while sensitivity represents the accuracy 

at classifying distressed companies. 

 

 

 



72 
 

4.5.1 Logistic Regression Model 

 

As shown in Table 4.4 below, the default logistic regression model yielded an average 

accuracy of 91.1% on the test sample. However, as mentioned in the Methodology 

section above, this model is not practically useful because of the class imbalance. 

When using the default 0.5 cut-off value, the model predicts almost all the companies 

as healthy (1), which results in a mirage of high predictive accuracy. Even though their 

overall accuracy is high, the model is useless because it cannot successfully predict 

distressed companies: 0.7% on the training data and 0% on the testing data.  

 

Table 4. 4 LR Classification Table at Default 0.5 Cut-Off Value 

Classification Table 

Observed 

Predicted 

Training Testing 

Status 

% Correct 

Status 
% Correct 

Distressed Healthy Distressed Healthy 

Step 1 

Status 
Distressed (0) 2 279 0.7 0 58 0 

Healthy (1) 2 2417 99.9 2 615 99.7 

Overall %     89.6     91.1 

 

To remedy this class imbalance problem, the cut-off values in the training sample were 

empirically optimised to give the most accurate balanced rates, as explained in the 

Methodology section (Section 4.4.5). Results for both the training and testing samples 

are shown in Tables 4.5A and 4.5B, respectively. As shown in Table 4.5C, the overall 

model’s accuracy dropped to an average of 56.71%. However, the accuracy is now 

more balanced between distressed (0) and healthy (1) companies. Therefore, this 

model is of more practical use and its assessment is more indicative of a logistic 

regression model. As for the variable importance, ‘PER’, ‘Sales per Share’, and ‘Gross 

Debt / Cash Flow’ were found to be the most statistically significant variables, all 

having p-values less than 10%. 
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Table 4. 5A Optimised LR – Train Sample 

Train Sample 

Class Cases Misclassified % Error 

Distressed (0) 281 111 39.50% 

Healthy (1) 2419 1,422 58.78% 

 

Table 4. 5B Optimised LR – Test Sample 

Test Sample 

Class Cases Misclassified % Error 

Distressed (0) 58 16 27.59% 

Healthy (1) 617 364 59.00% 

 

Table 4. 5C Model Accuracy (Test Sample) with Optimised Cut-Off Values 

Accuracy at Predicting Healthy Companies (Specificity) 41.00% 

Accuracy at Predicting Distressed Companies (Sensitivity) 72.41% 

Simple Average 56.71% 

 

4.5.2 Decision Tree Model 

 

The empirical optimisation of the cut-off value on the training sample resulted in a cut-

off value of 0.9. As shown in Table 4.6C, the decision tree yielded an average accuracy 

of 71.72% on the test sample. This is already a better outcome vis-à-vis LR, both for 

the specificity and sensitivity measures. This is consistent with existing literature that 

recursive partitioning models outperform traditional models. More detailed results for 

the train and test samples are shown in Tables 4.6A and 4.6B, respectively. As for the 

variable importance, ‘Invested Capital Turnover’, ‘Book Value per Share’, and ‘NTA 

per Share’ were found to be the most important variables for predicting financial 

distress in this model. 
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 Table 4. 6A Optimised DT – Train Sample 

Train Sample 

Class Cases Misclassified % Error 

Distressed (0) 281 66 23.49% 

Healthy (1) 2419 788 32.58% 

 

Table 4. 6B Optimised DT – Test Sample 

Test Sample 

Class Cases Misclassified % Error 

Distressed (0) 58 14 24.14% 

Healthy (1) 617 200 32.41% 

 

Table 4. 6C Model Accuracy (Test Sample) 

Accuracy at Predicting Healthy Companies (Specificity) 67.59% 

Accuracy at Predicting Distressed Companies (Sensitivity) 75.86% 

Simple Average 71.72% 

 

4.5.3 Random Forests Model 

 

Experimentation was conducted on generating 200, 500, and 1000 trees. Using 1000 

trees yielded the most accurate results, which have been reported below. The 

empirical optimisation of the cut-off value on the training sample resulted in a value of 

0.47, which was close to the default 0.5, and so the default cut-off value. Results for 

both the training and testing samples are shown in Tables 4.7A and 4.7B, respectively. 

As shown in Table 4.7C, the RF model yielded an average accuracy of 72.26% on the 

test data. However, compared to a single decision tree, this model is better at 

predicting distressed companies, but slightly worse at predicting healthy companies. 

As for variable importance, ‘Invested Capital Turnover, ‘Book Value per Share’, and 

‘NTA per Share’ were found to be the most important variables for predicting financial 

distress in this model. 
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Table 4. 7A Optimised RF – Train Sample 

Train Sample 

Class Cases Misclassified % Error 

Distressed (0) 281 81 23.49% 

Healthy (1) 2419 806 32.58% 

 

Table 4. 7B Optimised RF – Test Sample 

Test Sample 

Class Cases Misclassified % Error 

Distressed (0) 58 13 22.41% 

Healthy (1) 617 204 33.06% 

 

Table 4. 7C RF Model Accuracy (Test Sample)  

Accuracy at Predicting Healthy Companies (Specificity) 66.94% 

Accuracy at Predicting Distressed Companies (Sensitivity) 77.59% 

Simple Average 72.26% 

 

4.5.4 Stochastic Gradient Boosting Model 

 

Experimentation was conducted across 200, 500, and 1000 trees – the model with 

1000 trees yielded the most accurate results. The empirical optimisation of the cut-off 

value on the training sample resulted in a value of 0.91, which was close to the 0.9 

mark, hence 0.9 was chosen. Both the training and testing samples results are shown 

in Tables 4.8A and 4.8B, respectively. As shown in Table 4.8C, stochastic gradient 

boosting yielded an average accuracy of 73.70% on the test data. On average, and 

as per the specificity score, this model outperforms all other models in the study. 

However, DT and RF yielded slightly better sensitivity accuracy. As for the variable 

importance, ‘Property, Plant, & Equipment (PPE) turnover’, ‘invested capital turnover’, 

and ‘PER’ were found to be the most important variables for predicting financial 

distress in this model.  
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Table 4. 8A Optimised SGB – Train Sample 

Train Sample 

Class Cases Misclassified % Error 

Distressed (0) 281 49 17.44% 

Healthy (1) 2419 596 24.64% 

 

Table 4. 8B Optimised SGB – Test Sample 

Test Sample 

Class Cases Misclassified % Error 

Distressed (0) 58 15 25.86% 

Healthy (1) 617 165 26.74% 

 

Table 4. 8C SGB Model Accuracy (Test Sample)  

Accuracy at Predicting Healthy Companies (Specificity) 73.26% 

Accuracy at Predicting Distressed Companies (Sensitivity) 74.14% 

Simple Average 73.70% 

 

4.5.5 Model Comparison 

 

Table 4.9 summarises the performance of all four models. The rightmost column of 

the table represents the AUROC – a measure that is widely used in the literature, 

studies include: Burez and Van den Poel (2009); Chawla (2009); Chawla, Bowyer, 

Hall, and Kegelmeyer (2002); Duda, Hart, and Stork (2001).The AUROC measure was 

added in order to solidify the findings as to which model has the highest predictive 

accuracy. The closer the percentage is to 100%, the more accurate the model is in 

classifying the distressed and healthy companies. The presented percentages 

represent the AUROC for the test samples. 
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Table 4. 9 Model Comparison Table using Test Data 

Model Overall Model Accuracy Most Important Variables AUROC % 

Logistic Regression 

Specificity: 41.00% 

Sensitivity: 72.41% 

Average: 56.71% 

PER, 

Sales per Share, 

Gross Debt / CF 

59.00% 

Decision Tree 

Specificity: 67.59% 

Sensitivity: 75.86% 

Average: 71.72% 

Invested Capital Turnover, 

BV per Share, 

NTA per Share 

74.00% 

Random Forest 

Specificity: 66.94% 

Sensitivity: 77.59% 

Average: 72.26% 

Invested Capital Turnover, 

BV per Share, 

NTA per Share 

78.99% 

Stochastic Gradient Boosting 

Specificity: 73.26% 

Sensitivity: 74.14% 

Average: 73.70% 

PPE Turnover, 

Invested Capital Turnover, 

PER 

88.98% 

 

 

As can be seen in Table 4.9, all of the machine learning techniques outperform the LR 

technique in terms of predictive accuracy. The SGB model outperformed all others as 

per the Overall Model Accuracy and the AUROC criteria. This empirically 

demonstrates the predictive superiority of machine learning models vis-à-vis the 

traditional parametric LR model, thus verifying Hypothesis 3, and that SGB is the most 

accuracy machine learning model compared with DT and RF. 

 

 

As for the most important variables affecting the financial standing of a company, 

‘Invested capital turnover’ is of utmost importance when trying to work out the level of 

financial distress, because it constantly appeared in all three non-parametric recursive 

partitioning models. This ratio measures the revenue generated from working capital 

investments. This enables the company to realise the tie between invested capital to 

fund normal operations, and the amount of sales created through these operations. It 

is meaningful that said variable is important to mining companies, since, the higher the 

capital turnover, the more efficient the company is at using current assets and liabilities 

to sustain its revenues. Inversely, a low capital turnover may lead to bad debts and 

obsolescence of inventory (Kenton, 2019). Therefore, due to the inventory-intensive 

nature of mining companies, it is crucial that mining company executives maintain a 

high capital turnover ratio in order to prevent their companies from failing. The results 
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are in concert with findings found in the FDP of mining sector literature, such as Nindita 

and Indrawati (2014); Shah (2014); that is, the statistical significance of cash and debt 

ratios to mining companies.  

 

4.6 Conclusion 

 

To conclude, this chapter has showcased a real-world problem that needs to be 

addressed, that is, a high number of business failures in Australia in general, and an 

impending financial distress of mining companies, in particular. FDP can be utilised to 

forecast impending distress to enable the decision makers to take the preventive 

measures to hold-off financial distress or mitigate its effect. LR and recursive 

partitioning models were employed to test for the most accurate model at predicting 

financial distress. These models are not exclusive to the mining industry; they can be 

used in any industry worldwide.  

 

The results indicated that ‘Invested Capital Turnover’ was the variable most occurring 

amongst the recursive partitioning models. In terms of the best model overall, SGB 

yielded the most accurate results in predicting financial distress in the Australian 

mining industry, as per the AUROC and averages of the sensitivity and specificity 

criteria. However, the random forests model yielded the best results at predicting the 

distressed companies (sensitivity). All in all, the analysis has shown that tree-based 

models are more accurate, versatile and have a wider scope than traditional models, 

such as logistic regression – this verifies Hypotheses 3 and 4 presented in Chapter 1. 

 

The main takeaway from this chapter is that modern models, such as the recursive 

partitioning models, can offer substantial accuracy improvements and should be 

considered in future research and in practice, especially in conjunction with qualitative 

measures and managerial decision-making. The models analysed in this chapter can 

be algorithmically automated to input new data as soon as they become available, for 

example through interim or annual reports, thus saving time to reconstruct the models 
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manually and ensuring up-to-date models. It is imperative to address the class 

imbalance problem; in this chapter, ‘empirically optimised cut-off scores’ were used. 

There are other approaches in the literature to handle class imbalance that can change 

the overall data set, such as the Synthetic Minority Oversampling Technique 

(SMOTE), which is investigated in Chapter 5. 
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Chapter 5: Class Imbalance: Synthetic Minority Oversampling Technique (SMOTE) 

in the Context of FDP 

 

Aligning with Hypothesis 4 stated in the Chapter 1, namely: 

H4: Class imbalance does affect the detection accuracy of FDP models, 

and it can be enhanced by optimising the cut-off points or using SMOTE 

vis-à-vis a model that is built on a standard imbalanced data-set. 

 

This chapter will verify the aforementioned hypothesis by applying the SMOTE 

technique to an imbalanced data-set.5.1 Introduction 

 

As mentioned in the Conclusion section of the previous chapter, another approach to 

dealing with class imbalance – other than the ‘empirically optimised cut-off scores’ 

method – is Synthetic Minority Oversampling Technique (SMOTE), which is 

investigated in this chapter. Class imbalance is present when there is a substantial 

difference in the ratio between the classes in a data-set, for example, a large number 

of healthy companies, vis-à-vis a small number of distress companies.   

 

The presence of class imbalance is problematic, as it can lead to suboptimal and/or 

deceptive prediction accuracy levels in traditional data driven models. This is due to 

the algorithms that are used to construct the models being biased towards the majority 

class, hence resulting in a mirage of high predictive accuracy. For example, a data-

set containing 90% healthy companies and 10% distressed companies, will yield to a 

deceptive predictive accuracy result of 90% if the model simply classifies all 

companies as healthy. For further reading on this topic, refer to Chapter 4 for an 

application of a LR model on an imbalanced data-set, that yielded a fallaciously high 

predictive accuracy result. The class imbalance prevalence can be found across many 

fields, some of these include: FDP studies, including: Kim, Kang, and Kim (2015); 

Zhou (2013); fraud detection studies, including: Gepp (2015); Perols (2011); Provost 

and Fawcett (2001); detection of oil spills in satellite radar imaging, such as in the 

research by Kubat, Holte, and Matwin (1998); diagnosis of rare medical conditions, as 
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was shown by Murphy and Aha (1994); and lastly, monitoring of helicopter gearbox 

failure, as was shown by Japkowicz, Myers, and Gluck (1995). 

 

The evaluation of the predictive accuracy of statistical and machine learning models 

generally occurs through inspecting the confusion matrix table, which presents the 

number and percentages of cases correctly and incorrectly identified in the developed 

model. However, if one simply looks at the overall percentage accuracy of the 

developed model, that will lead to a deceptive result if the data-set was imbalanced; 

hence, rendering this approach only reflective of true model performance when the 

classes are balanced and when the weights of the errors are equal. For example, a 

mammography test contains around 98% normal pixels vis-à-vis 2% abnormal ones 

(Woods et al., 1993). Creating a model that solely predicts the majority class will yield 

a high prima facie result of 98% predictive accuracy; however, as explained earlier, 

this result is illusory. This happens due to not emphasising the presence of the minority 

class. Therefore, only looking at the overall percentage accuracy of the model is not 

prudent (Chawla et al., 2002). A better single measure is the Receiver Operating 

Characteristic (ROC) curve, which visualises all possible thresholds, that is, the true 

positive and false positive error rates (Type I and Type II errors). It is plotted with the 

sensitivity on the y-axis, and the specificity on the x-axis. The Area Under the Curve 

(AUC) is a performance measure for the ROC, often referred to as Area Under 

Receiver Operating Characteristics (AUROC), and is widely-used across various 

disciplines in the literature, studies include: Burez and Van den Poel (2009); Chawla 

(2009); Chawla et al. (2002); Duda et al. (2001). 

 

Figure 5.1 below shows an ROC graph in which the AUC is 1, that is, a perfect model 

in its distinguishing ability to separate between classes – in the area of FDP, those 

classes would be healthy and distressed businesses. As is clear, the red line runs 

along the y-axis, then veers to the right at the ‘1’ mark, then runs parallel to the x-axis, 

thus encompassing the total AUC, yielding an AUROC score of 1. 
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Figure 5. 1 ROC Graph Representing a Perfect Model 

 

Figure 5.2, on the other hand, showcases a model that has no discernment or 

distinguishing ability between classes, thus yielding an AUROC score of 0.5. The 

graph runs diagonally from the 0 mark and cuts the graph in half, thus encompassing 

50% of the total AUC.  

 

Figure 5. 2 ROC Graph Representing an Undiscerning Model 

 

Therefore, the aim is to have the ROC graph look as much like the one showcased in 

Figure 5.1, although, in reality, errors are always present, but the idea is to try and 

have a model with the least amount of error, which is presented both graphically – by 

a line that steeps vertically upwards and as close as possible to the y-axis, veers to 

the right as it approaches the ‘1’ mark, and then runs parallel to the x-axis. Empirically, 

the aim is to have the AUROC score that is close to 1. When comparing models, the 

model with the higher AUROC score is superior. 
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This chapter has introduced the concept of class imbalance, then proceeds to survey 

the literature on the various methods of dealing of class imbalance problem, followed 

by presenting various FDP models created using an imbalanced data-set comprised 

of companies operating in the Australian mining industry, and then compares those 

results with results achieved after applying SMOTE to the same data-set, followed by 

concluding remarks. This chapter’s contribution is in the form of creating and 

comparing various machine learning FDP models built using a standard data-set and 

a data-set that has been SMOTEd. This furthers the understanding of the class 

imbalance pertaining to FDP through an empirical analysis of SMOTE on machine 

learning techniques. The presumed resilience of said techniques towards data-sets 

that are imbalanced is also checked. Therefore, this chapter verifies Hypothesis 4 

presented in Chapter 2.  

 

5.2 Literature Review 

 

This section presents other techniques that can deal with the class imbalance problem, 

some of these include:  

 Empirical cut-off optimisation – as was shown in Chapter 4 

 Random resampling of the original data-set 

 Bagging 

 Boosting  

 Synthetic Minority Oversampling Technique (SMOTE) 

 

In classification models, a default value of 0.5 is used as a cut-off value of classifying 

the predicted variable, whereby a predicted value equal to or greater than 0.5 will result 

in a classification of (1) – in the case of FDP analysis in this thesis, that is reflective of 

successful/operating/non-distressed companies (1). On the other hand, a predicted 

value less than 0.5 will result in a classification of (0), that is, financially distressed 
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companies. This is suitable so long as there is no substantial difference between the 

(1’s) and (0’s) in the data-set, that is no class imbalance problem.  

 

As mentioned earlier, there are many methods to deal with the class imbalance 

problem. One approach is the empirical optimisation of the cut-off values. In brief, the 

cut-off value is determined as the value that optimises a chosen accuracy metric on 

the training sample – an example metric is a weighted average of Type I and Type II 

errors. This approach has been used successfully used in the literature, studies 

include: Bayley and Taylor (2007); Beneish (1997); Gepp (2015); Halteh et al. (2018b); 

Perols (2011) – for more on this topic, refer to Chapter 4. 

 

Another approach to the class imbalance problem is through random resampling of 

the original data-set, by either under-sampling the majority class or over-sampling the 

minority class – this is often referred to as bootstrapping (Tibshirani & Efron, 1993). 

This results in a more balanced data-set, therefore standard statistical techniques can 

then be used. Some of the studies incorporating these techniques include: Drummond 

and Holte (2003); Japkowicz (2000); Ling and Li (1998).  Under-sampling is a method 

whose purpose is to balance the classes in a data-set by randomly eliminating from 

the majority class. The main problem with under-sampling is loss of invaluable data 

that would have been included in the model. As for over-sampling, similar to under-

sampling, it attempts to balance the class distribution, but this is done through 

replicating data from the minority class. The main problem with over-sampling is the 

non-value-adding repetitiveness of data which may lead to over-fitting (Galar, 

Fernandez, Barrenechea, Bustince, & Herrera, 2012).  

 

Another approach is bagging – which was pioneered by Breiman (1996). Bagging 

combines bootstrapping and aggregating, hence the name bagging. It is a hybrid 

ensemble method which is usually applied to classification cases in order to enhance 

the classification accuracy through combining single classifications. Bagging trains 

various classifiers on bootstrapped copies of the original training data-set – this results 

in achieving diversity with the resampling procedure through the use of different data-
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set. When predicting new cases, each training data is created a classification tree and 

the majority vote (mode) or weighted vote is utilised to deduce the class (Galar et al., 

2012). Models constructed using the bagging technique generally outperform those 

built using sample random sampling (Hakim, Sartono, & Saefuddin, 2017). The RF 

technique is an example of bagging that uses DTs. 

 

Another approach is boosting, formally known as ARCing (Adaptive Resampling and 

Combining). Boosting was pioneered by Schapire (1990) – he showed how a weak 

learner – which is marginally superior to random guessing – can be turned into a strong 

learner. Boosting is an ensemble method that aims at minimising variants due to the 

average refractive effect of the ensemble. The classification power of decision trees is 

“boosted” through applying the classification function repeatedly and combining, 

including weights, the results in order to minimise the classification error. Dissimilar to 

bagging that builds models which are independent of one another, boosting is 

repetitive since the inaccurate predictions from the existing model are provided higher 

probability of being selected in the data that will be used to grow the successive tree. 

Therefore, the classification accuracy is improved through repetition, hence is immune 

to the problem of reduced performance on holdout data. Boosting has the advantage 

of being simpler than bagging by using simpler classifiers, that is, small trees. The 

SGB technique is an example of boosting (Gepp, 2015; Sutton, 2005).  

 

5.2.1 SMOTE 

 

Since SMOTE is going to be used in this chapter, this subsection thoroughly 

investigates SMOTE’s mechanics and its advantages vis-à-vis other class imbalance 

approaches, like the ones mentioned earlier. This provides the justification to use 

SMOTE in this study. 

 

Chawla et al. (2002) presented a breakthrough study that coined SMOTE. They 

argued that although in an imbalanced data-set, under-sampling the majority class 
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may be used as a method to increase sensitivity of the classifier towards the minority 

class. However, combining under-sampling of the majority class with over-sampling of 

the minority class leads to an improved classifier performance, as per the ROC curve. 

The over-sampling involves the creation of synthetic data, which can mitigate the effect 

of over-fitting – this will be explained in the following paragraphs. 

 

Given a positive training document, its k-nearest-neighbours among other positive 

training documents are first identified. Let 𝛽𝑖
⃗⃗  ⃗ be the feature vector of document 𝛼𝑖, and 

𝛽𝑚
⃗⃗ ⃗⃗  ⃗ be the feature vector of one of the k-nearest-neighbours of 𝛼𝑖. The feature vector 

of a synthetic document is created by (𝛽𝑖
⃗⃗  ⃗ + 𝜇(𝛽𝑚

⃗⃗ ⃗⃗  ⃗ − 𝛽𝑖
⃗⃗  ⃗)) where μ is a random value 

between 0 and 1 (Sun, Lim, & Liu, 2009). 

 

This method requires the decision region of the minority (rare) class to become more 

general. In other words, the main merit of SMOTE is to generate new rare class 

instances by interpolating between numerous rare class instances that lie together. 

Therefore, the problem of over-fitting can be eliminated, as no non-value-adding or 

repetitive data will be created. This causes the decision boundaries for the rare class 

to spread further into the prevalent class space (Lin, Chang, & Hsu, 2013). 

 

The mechanics of SMOTE are as follows: 

1. Every data point is plotted, 

2. The feature vector and its nearest neighbours are identified, 

3. The difference between the two data points is calculated, 

4. The difference between the two data points is multiplied by a random number 

between 0 and 1, 

5. A new point on the line segment is identified by adding a random number to the 

feature vector, and then 

6. The process is repeated for identified feature vectors. 
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Figure 5.3 below shows a two-dimensional illustration of a feature space, that is points 

in a data-set. Each dot in the feature space represents a point in the data-set. The 

blue points represent the majority class, whereas the orange points within the 

rectangle represent the minority class. Figure 5.4 represents a zoomed-in view of said 

minority class and showcases how SMOTE synthesises data. First, the SMOTE 

algorithm identifies the feature vector and its nearest neighbours, this is illustrated with 

the orange arrows. After this, the linear distance between the two points is calculated 

– the feature vectors in the feature space, which is represented by the white dotted 

lines. The algorithm then multiplies this distance by a random number between 0 and 

1, then plots a new data point on the line with the achieved result (green points). The 

feature vector for this new point (green arrow) is the new synthetic data point. This 

process is repeated as many times as required to obtain a new synthesised training 

sample. 

 

Figure 5. 3 Two-Dimensional Illustration of Points in a Data-Set (Feature Space) 
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Figure 5. 4 A Zoomed-In View of the Minority Class Showcased in Figure 5.3 with 

Synthetic Data Points Synthetically Generated in the Feature Space 

 

 

5.3 Data 

 

The same explanatory variables that were used in Chapter 4 were used in this study. 

Table 5.1 presents the 19 variables used. The data collected for the companies within 

the Australian mining sector were extracted from the official portal of MorningStar. 

Time-series data were then chosen for the years 2011-2015. The outcome was 632 

healthy companies and 118 distressed companies. The data were then downloaded 

to a spreadsheet for cleaning. The initial count was 590 rows (118 companies 

multiplied by 5 years) for distressed companies and 3160 rows (632 companies 

multiplied by 5 years) for healthy companies, a total of 3750 rows incorporating data 

for 29 explanatory variables – 10 were later omitted due to insufficient data. The data 

cleaning process entailed using a criterion that deletes company information that had 

50% or more missing data. This resulted in the final sample containing 19 variables 

with 3375 rows; 339 rows for distressed companies and 3036 for healthy companies. 

The companies count was reduced to 631 for healthy companies and 117 for 

distressed companies. Refer to Table 5.2 for a breakdown of the data used in this 

study. 
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Table 5. 1 List of Variables Used in Study 

Variable Description 

ROE 

Return on Equity = Net Profit After Tax / (Shareholders Equity – Outside 

Equity Interests) 

ROA 

Return on Assets = Earnings before interest / (Total Assets Less Outside 

Equity Interests) 

ROIC 

Return on Invested Capital = Net Operating Profit Less Adjusted Tax / 

Operating Invested Capital 

Asset Turnover Operating Revenue / Total Assets 

PPE Turnover Revenue / (Property, Plant & Equipment – Accumulated Depreciation) 

Depreciation/PPE Depreciation / Gross Property, Plant & Equipment 

Working Capital 

Turnover Operating Revenue / Operating Working Capital 

Gross Gearing (Short-Term Debt + Long-Term Debt) / Shareholders Equity 

Financial Leverage Total Debt / Total Equity 

Current Ratio Current Assets / Current Liabilities 

Quick Ratio (Current Assets - Current Inventory) / Current Liabilities 

Gross Debt/Cash 

Flow (Short-Term Debt + Long-Term Debt) / Gross Cash Flow 

Cash per Share Cash Flow / Shares Outstanding 

Invested Capital 

Turnover Operating Revenue / Operating Invested Capital before Goodwill 

Net Gearing (Short-Term Debt + Long-Term Debt - Cash) / Shareholders Equity 

NTA per Share Net Tangible Assets / Number of Shares on Issue 

Book Value per 

Share (Total Shareholder Equity - Preferred Equity) / Total Outstanding Shares 

Sales per Share Total Revenue / Weighted Average of Shares Outstanding 

PER Price per Earnings = Market Value of Share / Earnings per Share 

 

Following this, a dichotomous binary variable was used to refer to the status of each 

company – coded ‘1’ if the company is healthy and ‘0’ if the company is distressed. 

For creating the training sample, the data were split in half by randomly selecting 50% 

of the observations (3035 ÷ 2 = 1688 rows for training sample). The other half of the 

observations were used to construct the testing/holdout sample. When creating both 

the training and testing samples, it is imperative to retain ratio of percentage imbalance 

in the original observations, as otherwise the generated model will not have a fair 

representation of the original data – this process and the resulting data sets are 

summarised in Table 5.2. 
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Table 5. 2 Data Overview 

Sample  

Partition 
Number of Observations Percentage 

Number of 

Observations 

of Healthy  

Companies 

Number of 

Observations 

of Distressed  

Companies 

Class Imbalance % 

Train 1,688 50.00% 1,512 176 
89.57% Healthy – 

10.43% Distressed 

Test/Holdout 1,687 50.00% 1,524 163 
90.34% Healthy – 

9.66% Distressed 

Total 3,375 100.00% 3036 339 
89.96% Healthy – 

10.04% Distressed 

 

As is evident in Table 5.2, there is an issue of class imbalance in the data-set, meaning 

that there are much more healthy companies than there is distressed – 89.96% to 

10.04%, respectively. As shown in the Train row, half of the observations were split to 

generate the training sample, and the class imbalance ratio was kept very similar to 

that of the original data-set’s. This is also true for the testing sample, as shown in the 

Test row. Therefore, using this data-set will be a good representation of the class 

imbalance problem since the difference between healthy and distressed companies is 

extreme. 

 

5.4 Methodology 

 

There are three subsections in the Methodology section. The first subsection presents 

the evaluation methods used in this study for assessing detection accuracy of the 

created models. The second subsection explains the data-sets used in this study and 

how the training and testing samples were constructed. The third subsection 

showcases the models that were created for this study using the following techniques: 

DT, treebag, RF, and SGB. With the exception of treebag, the mechanics of the 

aforementioned techniques were already presented in Chapter 2. Therefore, to limit 

repetition only the mechanics of the treebag technique is presented in this chapter. 
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5.4.1 Evaluation Methods 

 

The evaluation methods used in this chapter incorporates both visual – as per the 

ROC graph, and empirical – as per the AUROC score, sensitivity and sensitivity 

aspects. Combining both aspects reinforces the validity of the results. These 

evaluation methods are used for all constructed models. As mentioned earlier in this 

chapter, the justification for using these methods is due to the fact that if one simply 

observes the overall model’s accuracy, one can never know whether the model is 

considering a 50-50 split or otherwise. Since the holdout sample has a class imbalance 

of 90.34%, if the model simply classifies all companies as healthy, it will yield a default 

accuracy of 90.34%. This is a high result at face value, but a deceptive one 

nonetheless, as it does not take the distressed companies into consideration.  

 

5.4.2 Data-sets 

 

Two data-sets were used in this study’s analysis, the original and the SMOTEd data-

sets, as shown: 

 Original Data-set: As explained the Data section above, the original data-set 

was split evenly to create training and holdout samples. This training sample is 

then tested on the holdout to create the models pertaining to the original data-

set – refer to Table 5.3 for samples used in this study. Since the holdout sample 

contains real-life data, it is also used as the holdout sample for the SMOTEd 

data-set. This ensures unbiasedness when testing for the effectiveness of 

SMOTE – this is because if the SMOTEd data-set was split and the same 

processes performed as in the case of original data-set, the SMOTEd test 

sample will comprise fictitious/synthetic data. Therefore, testing all of the 

SMOTEd data-set on a holdout sample containing real-life data increases the 

validity of the results achieved in this study. 
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 SMOTEd Data-set: The same training sample from the original set was used 

to create the SMOTEd data-set. The parameters for creating the SMOTEd data-

set are as follows: Let k be the over-sampling ratio, where one synthetic positive 

training example is generated from each of the its k-nearest-neighbours of a 

positive training example. The rare event needed to be oversampled, therefore 

k was set to 1 – this oversamples the rare events by 100% (doubles them). As 

for the majority class, it needed be undersampled. Let j be the under-sampling 

ratio – therefore j was set to 2 – this undersamples the negative target by twice 

the amount oversampled, through randomly removing observations from the 

negative target (successful companies) – as was explained in the Literature 

Review section. After SMOTEing, results yielded a SMOTEd data-set with 704 

observations – 352 distressed (50%) and 352 healthy companies (50%), thus 

eliminating the class imbalance problem that existed in the original data-set. 

The SMOTEing process has oversampled the healthy companies from 176 to 

352 (100% increase) and has undersampled the distressed companies from 

1,688 to 352 (randomly removed 1,336 observations). The SMOTEd data-set 

is more than two times smaller (≈40%) of the size of the original training data-

set. Table 5.3 for below presents the two samples used in this study. All of this 

SMOTEd data-set is used to train the various models constructed in this 

chapter, and is tested on the holdout sample from the original data containing 

1,687 observations, as was shown in Table 5.2. 

 

Table 5. 3 Original and SMOTEd Samples 

Data-set 
Sample 

Partition 
Number of 

Observations 
Percentage 

Train (2 Options) 
Original 1,688 50% 

SMOTEd 704 100% 

Holdout Sample for All Models Total 1,687 100% 
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5.4.3 Created Models 

 

This subsection explains the models built for this study. Two software packages were 

used to aid with the analysis, namely: ‘Salford Predictive Modeler’ and ‘R’ software 

package. ‘R’ is a programming language commonly used for statistical and machine 

learning modelling. It provides both empirical and graphical outcomes that aids 

statisticians in their analyses (R, 2019). The ‘R’ software package has been used in 

many studies across various disciplines throughout the literature, some of these 

include: Calenge (2006); Knezevic, Streibig, and Ritz (2007); Noguchi, Gel, Brunner, 

and Konietschke (2012). Whereas, ‘Salford Predictive Modeler’ is a platform that is 

used for developing both statistical and cutting-edge tree-based models that can deal 

with complex data – this software has been used previously in the literature (Gepp & 

Kumar, 2012; Gepp et al., 2010). ‘R’ was used to develop the treebag model, whereas 

‘Salford Predictive Modeler’ was used to develop the DT, RF, and SGB models. To 

minimise repetition, the mechanics of these techniques will not be presented, refer to 

Chapter 2 for in-depth analysis of the aforementioned techniques. 

 

5.4.3.1 Decision Tree Models 
 

Two models were created using the DT technique, one using the original data-set and 

the other using the SMOTEd data-set. Building the DT models had the following 

properties – all are commonly used metrics: 

 Testing method to determine optimal size was based on random selection of 

50% of the cases; 

 The parameters influencing the selection of the best tree were based on 

commonly used criteria:  

o a) standard error rule: minimum cost tree regardless of size,  

o b) variable importance formula: all surrogates count equally;  

 The splitting method for the classification trees was the popular Gini criterion. 
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5.4.3.2 Treebag Models 

 

Treebag is R language denoting an ensemble of machine learning algorithms for 

creating a bagging framework that can be used for classification or regression 

modelling. In brief, it is a recursive partitioning technique that constructs many 

individual tree models from disconnected subsections of training data, then builds an 

aggregated and superior model (Brownlee, 2016). The model was trained using the 

“caret” package on the training sample using the commonly used fivefold cross 

validation. Whether the company is healthy or distressed, was set as the response 

variable, whereas everything else were set as predictors. 

 

Two models were created using treebag – one using the original data-set, and the 

other using the SMOTEd data-set. 

 

5.4.3.3 Random Forests Models 

 

Two models were constructed using the RF technique. The same training process in 

terms of data-sets was used. Construction of the data-sets had the properties shown 

below – they are all commonly used criteria. The other parameters influencing the 

model were kept as per default criteria. 

 Number of trees built: 1,000  

 Number of predictors: Square root (√19 ≈ 4) 

 Testing method was based on the random selection of 50% of the cases 
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5.4.3.4 Stochastic Gradient Boosting Models 

 

As with the aforementioned models, two models were built using the SGB technique. 

The same training process in terms of data-sets was used. Testing of the data-sets 

had the properties shown below – they are all commonly used criteria. The other 

parameters influencing the model were kept as per default criteria. 

 Number of trees built: 1,000  

 Testing method was based on the random selection of 50% of the cases 

 Maximum nodes per tree: 6  

 Criterion for selection optimal number of trees for model: AUROC 

 

5.5 Results 

 

This section presents the results in this study for the four techniques used after they 

have been tested on the holdout sample containing 704 observations, as was shown 

in Table 5.3. The results are in terms of ROC graphs, AUROC scores, as well as 

sensitivity and specificity scores for the recursive partitioning models. Refer to the 

Appendices section (Appendix 1) for the raw R-code and data summary. 

 

5.5.1 Decision Tree Models 

 

5.5.1.1 AUROC Results 
 

The AUROC scores of the models using DT are as follows: 

 Original: The treebag model using the original data-set yielded an AUROC 

result of 0.5794. 
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 SMOTEd: The treebag model using the SMOTEd data-set yielded an AUROC 

result of 0.6179 – hence the superior model. 

 

5.5.1.2 ROC Results 
 

As for the ROC graphs, as is evident in Figures 5.5 and 5.6, the model’s line (blue) of 

the model using the SMOTEd data-set, runs closer to the Y-axis, thus encompassing 

a larger area beneath it. If the visual representation is not clear, then refer to the 

AUROC score. 

 

Figure 5. 5 ROC of Original Model  Figure 5. 6 ROC of SMOTEd Model 

 

 

5.5.2 Treebag Models 

 

5.5.2.1 AUROC Results 
 

The AUROC scores of the models using treebag are as follows: 

 Original: The treebag model using the original data-set yielded an AUROC 

result of 0.5736. 
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 SMOTEd: The treebag model using the SMOTEd data-set yielded an AUROC 

result of 0.6388 – hence the superior model. 

 

What is remarkable here, is that a data-set that is not only much smaller than the 

original one, but also contains synthesised or fictitious data, was able to outperform 

the predictive accuracy of a model that is much larger and contains real data. This 

seems to be at odds with generic statistical rules which state that the larger the sample 

size is, the more accurate the representation of the population is, but since class 

imbalance exists, the results are sensible. 

 

5.5.2.2 ROC Results 
 

As for the ROC graphs, Figures 5.7 and 5.8 below present the ROC graphs for the 

original and SMOTEd models, respectively. The black lines represent the models’ 

predictive performance. The grey lines are there just for illustrative purposes of a 

model with no discerning or distinguishing capabilities between the classes. As 

explained in the Introduction section, the closer the model’s line (the black line in this 

example) runs to the Y-axis, and then veers right parallel to the X-axis, the more area 

it encompasses – thus indicating a model with superior predictive power.  As is evident 

in the graphs, the black line of the SMOTEd model, runs closer to the Y-axis, thus 

encompassing a larger area beneath it, which is reflected in the higher AUROC score 

of the SMOTEd Model vis-à-vis the Original Model. 
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Figure 5. 7 ROC of Original      Figure 5. 8 ROC of SMOTEd 

 

 

 

 

 

 

 

 

These results visually verify that applying SMOTE to an imbalanced data-set yields a 

higher predictive accuracy, tested using a treebag model.  

 

5.5.3 Random Forests Models 

 

5.5.3.1 AUROC Results 
 

The AUROC scores of the models using RF are as follows: 

 Original: The treebag model using the original data-set yielded an AUROC 

result of 0.7045 – hence is slightly the superior model (0.89% greater than the 

SMOTEd model stated below). 

 SMOTEd: The treebag model using the SMOTEd data-set yielded an AUROC 

result of 0.6983. 
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5.5.3.2 ROC Results 
 

As for the ROC graphs, the model’s lines in Figures 5.9 and 5.10, look very similar in 

terms of area encompassed under the curve, therefore, it is prudent to check the 

AUROC score to make an empirical determination to as which is the superior model. 

The AUROC score of the SMOTEd Model was 0.6983 vis-à-vis the 0.7045 for the 

Original Model. These AUROC scores are very similar, as they are only about 0.89% 

apart. So, despite, the Original Model having an ever so slightly higher AUROC score, 

both model’s detection accuracies are essentially the same. 

 

Figure 5. 9 ROC of Original    Figure 5. 10 ROC of SMOTEd 

 

 

5.5.4 Random Forests Models 

 

5.5.4.1 AUROC Results 
 

The AUROC scores of the models using SGB are as follows: 

 Original: The treebag model using the original data-set yielded an AUROC 

result of 0.6730. 
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 SMOTEd: The treebag model using the SMOTEd data-set yielded an AUROC 

result of 0.7103. 

 

5.5.4.2 ROC Results 
 

As for the ROC graphs, as is evident in Figures 5.11 and 5.12, the model’s line (blue) 

of the SMOTEd model, runs closer to the Y-axis, thus encompassing a larger area 

beneath it. 

 

Figure 5. 11 ROC of Original    Figure 5. 12 ROC of SMOTEd 

 

 

5.5.5 Model Comparison 

 

This subsection presents the models’ AUROC, specificity, and sensitivity in a tabulated 

fashion. The tables presented below allow for convenient comparisons to be made in 

order to deduce whether using SMOTE yielded empirically superior models vis-à-vis 

models created using the original data-set. 
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Table 5.4 below shows the simple averages of the sensitivity and specificity scores for 

all of the models created. As is evident, all the models using the SMOTEd data-set 

have outperformed the models using the original data-set. 

 

Table 5. 4 Models’ Specificity & Sensitivity Average Result Comparison  

Data/Model DT Treebag RF SGB 

Original Data 57.15% 57.36%  63.81% 50.00% 

SMOTEd Data 61.54% 63.88%  64.10% 63.80% 

 

Table 5.5 below shows all of the models’ AUROC scores.  As is evident, the models 

using the SMOTEd data-set have yielded a higher AUROC score for all the data-sets, 

except for the RF model, which is only 0.89% greater, thus essentially the same score. 

Again, this empirically proves SMOTE’s superiority vis-à-vis the original data-set. 

 

Table 5. 5 Models AUROC Result Comparison  

Data/Model DT Treebag RF SGB 

Original Data 0.5794 0.5736 0.7045 0.6730 

SMOTEd Data 0.6179 0.6388 0.6983 0.7103 

 

These results clearly indicate that building models using the SMOTEd data-set yields 

empirically superior results to those using real data. This is showcased in two areas, 

firstly, both the AUROC, and the specificity and sensitivity averages, yielded higher 

scores for the models using the SMOTEd data-set (except for the RF model, as they 

are almost the same); and secondly, the increase in accuracy across the various 

models conform more so with the literature when using the SMOTEd data-set as 

opposed to real data. This is in terms of the predictive accuracy of tree ensembles 

over single tree techniques (RFs/SGB>treebag>DTs). As is clear in Table 5.5, all tree 

ensemble models using the SMOTEd data-set outperformed the models using the 

original data-set, as measured by the AUROC criterion. The results also show that 

even with the recursive partitioning models’ resilience to class imbalance, using a 

SMOTEd data-set yields more accurate detection accuracy scores. This is an 
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important finding that contributes towards the literature through recommending the use 

of SMOTE even when using machine learning techniques due to empirically superior 

results, as was shown in this chapter. 

 

5.6 Conclusion 

 

This chapter presented the application of Synthetic Minority Oversampling Technique 

(SMOTE) to an imbalanced data-set comprising 748 Australian mining – 631 of which 

are financially healthy and 117 are distressed. Four machine learning tree-based 

techniques were used to create the models for this study. For comparison purposes, 

the models were trained on two data-sets, the original imbalanced data-set and a 

balanced SMOTEd data-set, in order to empirically deduce the detection accuracy of 

SMOTE. A holdout sample using real-life data were used to test the accuracy of the 

aforementioned trained models using both data-sets. The results indicated that despite 

the SMOTEd data-set being around 80% smaller than the original, it resulted in 

superior detection accuracy. This was measured by AUROC, specificity, and 

sensitivity results. The AUROC results showed the superiority of SMOTE for the DT 

and SGB models, as for RF, the scores were almost identical pre and post SMOTE. 

This study has showcased that using SMOTE is not only easier to handle due to the 

smaller data-set, but is also empirically superior to the original class imbalanced data-

set. This research has contributed towards the literature by investigating the detection 

accuracy of SMOTE using a multi-approach system and recommending the use of 

SMOTE even when using machine learning techniques due to empirically superior 

results. This chapter has verified Hypothesis 4. 
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Chapter 6: Financial Distress Prediction Index (FDPI) 
 

Aligning with Hypothesis 6 stated in the Chapter 1, namely: 

H6:  Creating an FDP index is more accurate, informative, and user-

friendly than solely relying on standard FDP models.  

 

This chapter will verify the aforementioned hypothesis by creating FDP indices and 

comparing them to a standard FDP model constructed using LR. 

6.1 Introduction 

 

Indices provide a quick and user-friendly way of relaying relevant information to the 

user.  Developing indices is increasingly becoming a popular method of relaying 

information in a quick and effective manner that is easily interpreted by the general 

public (Nardo et al., 2005). Rating mechanisms are usually used to rank or rate the 

performance of companies, countries, sports teams, and medicines, to name a few. 

The Council on Foreign Relations (2015) outlines the most internationally well-known 

indices pertaining to companies’ financial ratings, namely: Moody’s, S&P, and Fitch – 

they are known as the Big Three and encompass around 95% of the global credit 

ratings’ market share.  

 

The advantages of using an index to make decisions relating to companies include: 

 Enables ease of interpretation, understandability, and user friendliness; 

 

 Enables banks and lenders to easily assess a company’s financial distress 

probability before determining whether a loan is suitable, and if so, how much 

interest to charge; 
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 Allows governments and watchdog institutions to utilise the models to focus on 

companies with high financial distress probabilities; 

 

 Allows existing and potential stockholders to use the indexes to make more 

informed investment decisions for best Return on Investment (ROI) 

opportunities; 

 

 Provides conciseness through reducing the number of variables, that is, a 

solitary index can showcase the ranking of the desired data-set, which paves 

the way for prompt decision making processes and easy comparisons; 

 

 Enables other stakeholders and potential merger companies to assess the 

likelihood of a company’s failure or success, as an indicator of whether there 

will be sustainable benefits gained from continuous operation with the company 

at hand (Gepp & Kumar, 2012; Krishnan, 2010).  

 

One might query why a Financial Distress Prediction Index (FDPI) is needed when 

you can already view the ratings from one of the Big Three rating agencies? Some of 

the disadvantages of relying solely on these ratings include:  

 Lack of rating information for many companies – the rating agencies do not 

provide ratings for all companies worldwide;  

 

 Subscription costs – credit rating agencies get paid either by the entity that 

requests the rating and/or by the subscribers wishing to view the ratings; 
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 No intra-rating information provided – the agencies group the companies into 

different categories, such as: AAA, AA, and AA+, but do not provide a ranking 

for the companies within each category; 

 

 Not to be used for investment – the rating agencies confess that their ratings 

reflect their opinion and not to be used as recommendations for investing or 

divesting (Moody's, 2009; The Telegraph, 2012).  

 

Another valid question regarding the use of FDPI is why not only use FDP modelling 

(as was used throughout this thesis) to gain information about the prospective 

company? Some of the disadvantages of relying solely on FDP modelling include:  

 Classification and cut-off point problem – as seen in previous chapters, cut-off 

points were varied experimentally to decide optimal cut-off point, which can be 

a tedious task. However, the cut-off point does not have to be decided when 

creating an index; 

 

 Matching problem – there tends to be subjectivity when selecting samples for 

the model – for example, the problem with determining which successful and 

bankrupt companies to add or omit from the sample. However, the index is built 

on all companies; 

 

 Class imbalance problems – validity of the results is in question when the data-

set has a big difference in the ratio between successful and distressed 

companies, since the accuracy of the model will be misleading due to solely 

classifying by the majority class. This is not an issue in an index, as ranking is 

done on a case-by-case basis. 
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FDPI amalgamates the concepts of index construction and FDP modelling – in the 

sense that it can be used as a tool to gain a prompt indication of a company’s financial 

health. This concept pools the advantages of both approaches, hence increasing the 

validity of the results achieved. This chapter presents the construction of the indices, 

then compares the superior index with the LR model to ascertain which is more in line 

with commonly used performance metrics, namely: market capitalisation and share 

price. Even though shares can be split, thus affecting price; share price is still 

commonly considered a performance metric as it is indicative of a company's financial 

health – generally, a positive correlation exists between share price and company 

performance (Murphy, 2018). Similarly, market capitalisation is indicative of company 

size, the higher its value, the more established the company is. On their own, these 

metrics do not provide a holistic perspective of company performance, since they offer 

a myopic perspective; whereas the index uses many variables, therefore the results 

are more robust and comprehensive. This chapter’s methodology can be applied to 

any field across any industry. The premise is that the FDPI index provides a ranking 

of companies that is more consistent with common performance metrics vis-à-vis the 

LR model.  

 

6.2 Literature Review 

 

This section covers some key techniques used for constructing indices, such as 

Principal Component Analysis (PCA) and Factor Analysis, including three different 

approaches of presenting the indices. The literature pertaining to FDP was presented 

in Chapter 2.  

 

The PCA technique transforms numerous variables in a data-set into a reduced set of 

uncorrelated/orthogonal factors, known as the principal components. These principal 

components account for the lion’s share of the variance amongst the set of original 

variables used. Every component is a linearly-weighted amalgamation of the original 

variables; the weights for every component are shown by the eigenvectors in the 

correlation matrix, or the covariance matrix, should the data be standardised. Every 
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principal component’s variance is characterised by the eigenvalue of the matching 

eigenvector. The order of these principal components places the component which 

accounts for the largest amount of variation in the original variables on top. The second 

component is totally uncorrelated with the first one and accounts for the maximum 

variation that is not accounted to by the first component; this pattern is followed for 

each component (Krishnan, 2010). 

 

PCA was pioneered by Pearson (1901), this was followed by Hotelling (1933). Future 

studies include that of Pomeroy, Pollnac, Katon, and Predo (1997), which applied PCA 

on a survey of 200 houses in the Philippines. The subjects were asked to score ten 

indicators on a scale from 1-15, to present their opinions on recent community-based 

coastal resource management projects in their communities. Their results yielded 3 

principal components – the first component dealt with the behaviour or community 

members, whereas the second component dealt with fisheries resource, and the third 

component was in relation to the well-being of the household. Their principal 

components explained 66% of the total variance in the model. Further details and 

various applications of PCA can be seen in Jolliffe (1990). 

 

Factor analysis, also known as ‘spectral decomposition,’ reduces the number of 

variables used in the model, all the while, capturing most of the information based 

upon eigenvalues of the covariance matrix. Its major advantage is reducing the 

number of original variables in the models to a set of factors with no problem of 

multicollinearity. This technique has been vastly used in the literature pertaining to 

indicators or constructing indices (Dialga, 2017; Helmes, Goffin, & Chrisjohn, 1998; 

Pasimeni, 2013).  

 

Factor analysis incorporates PCA and principal factors analysis – PCA being an 

estimate to the principal factor analysis, especially if the components are rotated. The 

common rotational approaches are: quartimax, varimax, and equamax. The aim in 

adopting a rotational approach is to achieve a clear pattern of loadings for variables, 

high for some and low for others, in order to help with interpretation. The notion of 
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factor loadings refers to the correlations between the factors and the variables. 

Varimax rotation is a variance-maximizing approach aiming at maximising the variance 

of the factor. The main difference between PCA and factor analysis, is that in PCA it 

is assumed that all variability in a variable must be used in the analysis, whereas in 

factor analysis, the variability is only used in a variable that is common with the other 

variables (Krishnan, 2010). 

 

There are many different types of indices and index-construction methods in the 

literature, they vary in the way they portray their scores, but their core aim is similar – 

to relay a clear and user-friendly message to the viewer, which enables efficient and 

effective decision making. Abeyasekera (2005) presents various multivariate 

approaches found in the literature, mainly using PCA, to construct indices. These 

approaches are advantageous in a number of ways, including: presenting a complex 

model in a simple manner, enabling graphical representations, and explores patterns 

across the variables. Nardo et al. (2005) also provides an invaluable repository on 

several methods used to construct indices, of which three will be explored in this 

chapter, namely: the Factor Weighted Index (FWI) approach, the Weighted Factor 

Loading Index (WFLI) approach, and finally, the Non-Standardised Index (NSI) 

approach. 

 

The first approach, the Factor Weighted Index (FWI), is constructed using both the 

original data from each of the variables and the percentage values of the variance 

explained by each factor in the model using PCA. The data under each variable for 

each factor is summed to form an aggregated factor. After this, the variance 

percentage contributions that the first factor contributes towards the model after 

rotation is divided by the overall percentage explained to yield a weighted score. This 

weighted score is multiplied by the aggregated factor found earlier, which results in a 

weighted first factor. This process is done for all factors in the model. Finally, these 

weighted factors are summed and then numerically sorted to create the index 

(Abeyasekera, 2005; Nardo et al., 2005; Pomeroy et al., 1997). 
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The second approach, the Weighted Factor Loading Index (WFLI), is a more complex 

index-construction method, it involves the following steps: after performing PCA on the 

data-set, the user checks the variables that make up each factor from the Component 

Score Coefficient Matrix based on their higher loadings. The score associated with 

each variable is divided by the total score of the variables that make up each factor, 

thus resulting in a weighted value for each variable. Subsequently, these weighted 

values are multiplied by the actual values of their respective variables. Following this, 

the results are aggregated and then multiplied by the weighted variance percentage 

contribution of each factor. Finally, the results are summed and then numerically 

sorted to create the index (Nardo et al., 2005). 

 

Lastly, the Non-Standardised Index (NSI) approach, uses PCA on the data-set. 

Following this, the percentage of variance explained by each factor is divided by the 

total variance explained by the model. That is then multiplied by each factor score, 

and is finally aggregated. This yields a single score for each data point which are used 

to create the NSI (Nardo et al., 2005).   

 

The index-construction approaches can be standardised, that is, having a score for 

each case in the data-set ranging from 0 to 100 to be more presentable and easily 

understood. The Standardised Index (SI) is used extensively in the literature, some of 

the studies include: Antony and Rao (2007); Hightower (1978); Krishnan (2010); 

Sekhar, Indrayan, and Gupta (1991). Further details of the aforementioned index-

construction approaches are provided in Methodology section. 

 

As is evident, there are different methods of constructing and presenting indices, 

however, there are no studies that have combined the concepts of indices and FDP 

modelling. This research spearheads this initiative in the hope of encouraging further 

research to be done in this area in the future. 
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6.3 Data 

 

The data-set used in the study was extracted from the Capital IQ database. Financial 

data were collected for 779 mining companies listed on the Australian Stock Exchange 

(ASX) for the financial year of 2015. The study incorporated 27 explanatory variables 

– refer to Table 6.1 for a comprehensive and explanatory list of the variables used in 

the study. The variables were comprised of standard accounting and financial 

information, chosen based upon several factors, including use in the literature and as 

per availability of data. 
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Table 6. 1 Variables Used in this Chapter 

Variable Description 

ln Total Assets Natural Logarithm value of Total Assets 

ln Current Liabilities Natural Logarithm value of Current Liabilities 

ln Current Assets Natural Logarithm value of Current Assets 

ln Cash & Equivalents Natural Logarithm of Cash and Equivalents 

Net Working Capital Net Working Capital 

ln Market Capitalisation Natural Logarithm value of Market Capitalisation 

Cash per Share Cash / Share 

Net Income Net Income – measured in $ (millions) 

Operating Income Operating Income – measured in $ (millions) 

Gross Profit Gross Profit – measured in $ (millions) 

Retained Earnings Retained Earnings – measured in $ (millions) 

Accounts Receivable Accounts Receivables – measured in $ (millions) 

Inventory Inventory – measured in $ (millions) 

Long-Term Debt Long-Term Debt – measured in $ (millions) 

Current Ratio Current Assets / Current Liabilities 

Quick Ratio (Total Cash & Short-Term Inventory + Accounts Receivables) / Current Liabilities 

ROA Return on Assets = Income / Total Assets 

ROC Return on Capital = Income / Average Total Capital 

ROE Return on Equity = Earnings from operations / Average Total Equity 

ROIC Return on Investment Capital = (Net Income - Tot Dividends Paid) / Capital 

SGA Margin 
Selling, General, & Administration Expenses Margin =  

(SGA Expense/Total Revenue) 

Total Assets Turnover Total Revenue / Average Total Assets 

Fixed Assets Turnover Total Revenue / Average Net Property, Plant & Equipment 

Accounts Receivables 

Turnover 
Total Revenue / Average Accounts Receivables 

TD/TC Total Debt / Total Capital 

TL/TA Total Liabilities / Total Assets 

Altman Z-Score 
Z = 1.2*(Working Capital/TA) + 1.4*(Retained Earnings/TA) + 3.3*(EBIT/TA) + 

0.6*(Market Value of Equity/Book Value of TL) + 1.0*(Sales/TA) 
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6.4 Methodology 

 

Before developing the index, it is prudent to check the Kaiser-Meyer-Olkin (KMO) – a 

measure of sampling adequacy – that is used to check for multicollinearity in the data-

set, in order to determine the suitability of carrying out a factor analysis. The sampling 

adequacy forecasts whether the data is likely to factor properly based on correlations 

and partial correlations. If the variables do have common factors, the partial correlation 

coefficients should be marginal in relation to the total correlation coefficient. The 

maximum score for the KMO statistic is 1.  Following this, a test of the strength of the 

relationship among variables was executed using the Bartlett (1954) test of sphericity. 

This test tests the null hypothesis that the variables in the population correlation matrix 

are not correlated with the alternative that they are correlated.  

 

In this study, factor analysis was executed by including all 27 variables and financial 

data for the 779 companies. Factor analysis was chosen to lessen the number of 

dimensions and provide a concise set of factors with no problem of multicollinearity. 

Principal Component Analysis (PCA) was chosen as the extraction method and 

Varimax with Kaiser Normalisation as the rotation method, since this is a prevalent 

method with success in the literature. The commonly used Kaiser’s criterion, or the 

eigenvalue rule, retains only the factors with an eigenvalue of 1.0 or more. 

 

A graphical method, known as the Cattell (1966) scree test – shown later in Figure 6.1 

– was produced to showcase the plots of each of the eigenvalues of the factors. The 

user can visually inspect the plot to pinpoint where the smooth decrease of 

eigenvalues seems to plateau. After this point, what is found is only ‘factorial scree,’ 

that is, debris that accumulates on the lower part of a rocky slope. This means that the 

marginal value from additional factors is minimal and is likely outweighed by the 

negative of the additional complexity. 
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After conducting factor analysis, the factor scores for each factor were tabulated. 

Following this, constructing the FDP index was initiated. Each approach outlined 

above is discussed in more detail in separate sections below. 

 

6.4.1 Factor Weighted Index 

 

The FWI was constructed using the original data from the variables after the 

performing factor analysis. All the variables in each corresponding factor were 

aggregated to form factors for each company in the data-set. Following this, the 

percentage contributions of each factor towards the model were multiplied by the 

preceding sums to produce weighted scores for each company – this was done for all 

eight factors. After this, the weighted scores for each company under each factor were 

aggregated to produce a single aggregate score for each company. For ease of 

interpretation, the scores from each company were then standardised to provide a 

score falling between the 0 to 100 range. See Equations 6.1-6.4 below. 

 

                                                          𝑤𝑖 =
𝑣𝑖

∑𝑣
                                         [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.1] 

o 𝑤𝑖 = Weight of ith factor 

o 𝑣𝑖 = Percentage value of variance explained by ith factor 

o 𝑣 = Total variance explained in the model  

 

                                                          𝐹𝑖 = (∑𝑥𝑖). 𝑤𝑖                                 [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.2] 

o 𝐹𝑖  = Weighted factor 

o 𝑥𝑖 = Variables pertaining to its respective factor 
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                                                       𝐹𝑊𝐼 = ∑𝐹𝑖                                     [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.3] 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝐹𝑊𝐼 =  
𝐹𝑊𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑎𝑠𝑒 − 𝑀𝑖𝑛 𝐹𝑊𝐼

𝑀𝑎𝑥 𝐹𝑊𝐼 − 𝑀𝑖𝑛 𝐹𝑊𝐼
∗ 100 

[Equation 6.4] 

o 𝑀𝑖𝑛 𝐹𝑊𝐼 = Minimum FWI value  

o 𝑀𝑎𝑥 𝐹𝑊𝐼 = Maximum FWI value 

 

6.4.2 Weighted Factor Loading Index  

 

The WFLI was constructed by firstly inspecting the percentage contribution of each 

factor towards the model, as shown in the Total Variance Explained Table, under the 

% of Variance – this is illustrated in Table 6.3 in the Results section. Each factor’s 

variance contribution percentage was divided by the total variance of the factors to 

achieve a percentage contribution out of 100 for each factor. Subsequently, the 

Component Score Coefficient Matrix was inspected – this is shown in Table 6.7 in the 

Results section. This table shows the contribution score of each variable towards its 

associated factor. Firstly, the scores of the variables that make up each factor were 

summed to create an aggregate score for each factor.  

 

After this, each variable’s individual score was divided by the aggregate score for its 

associated factor to yield a weighted score, that is, a percentage contribution of each 

variable towards the factor. Following this, the weighted score of each variable was 

multiplied by the actual data for each company to yield a weighted value of each 

variable to each factor. Then, these weighted values were aggregated to achieve a 

sum of the weighted variables for each factor. This sum for each company was then 

multiplied by the percentage contribution of each factor, as explained earlier; which 

yielded a weighted score for each company for each factor. Subsequently, these 
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values for each factor were summed to yield a final score for each company. Finally, 

the scores were standardised to perform an index for companies with a range of 0 to 

100. See equations 6.5-6.8 below. 

 

                                                          𝜑𝑖 =
𝛾𝑖

∑𝛾
                                         [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.5] 

o 𝜑𝑖 = Weight of ith factor 

o 𝛾𝑖 = Score of ith variable 

o 𝛾 = Total score of variables  

 

                                                  𝜃𝑖 = ∑𝜑𝑖 . 𝑥𝑗                                     [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.6] 

o 𝜃𝑖  = Weighted factor 

o 𝑥𝑗 = Variable pertaining to its respective factor 

 

                                           𝑊𝐹𝐿𝐼 = ∑𝜃𝑖 . 𝑣𝑖                                 [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.7] 

o 𝑣𝑖 = Percentage value of variance explained by ith factor 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑊𝐹𝐿𝐼 =  
𝑊𝐹𝐿𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑎𝑠𝑒 − 𝑀𝑖𝑛 𝑊𝐹𝐿𝐼

𝑀𝑎𝑥 𝑊𝐹𝐿𝐼 − 𝑀𝑖𝑛 𝑊𝐹𝐿𝐼
∗ 100 

[Equation 6.8] 

o 𝑀𝑖𝑛 𝑊𝐹𝐿𝐼 = Minimum WFLI value  

o 𝑀𝑎𝑥 𝑊𝐹𝐿𝐼 = Maximum WFLI value 
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6.4.3 Non-Standardised and Standardised Indices 

 

The first step is estimating the component scores by adopting the Non-Standardised 

Index (NSI) method used by Krishnan (2010). Equation 6.9 shows the methodology 

for computing the NSI. The percentage of variance explained by each factor was 

divided by the total variance explained by the model, then multiplied by each factor 

score before being summed. This yields a single score for each company which 

holistically generates an NSI. 

 

𝑁𝑆𝐼 = (
𝑉1

𝑉𝑡
∗ 𝐹1) + (

𝑉2

𝑉𝑡
∗ 𝐹2) + ⋯ (

𝑉𝑖

𝑉𝑡
∗ 𝐹𝑖)              [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.9] 

o 𝑉𝑖  = Proportion of variance explained by ith factor 

o 𝑉𝑡  = Total variance explained by the model 

o 𝐹𝑖 = Factor score of ith factor 

 

To convert this NSI to a Standardised Index (SI), the methodology used by Krishnan 

(2010) was adopted. Equation 6.10 shows this study’s methodology for computing the 

SI. The minimum and maximum values within the generated NSI were retrieved. Next, 

the minimum value from the NSI is deducted from the component score for each 

company within the NSI, then divided by the maximum minus the minimum values, 

before multiplying by 100 to achieve the SI that ranges from 0 to 100. The results are 

then ordered from largest to smallest – with companies having the highest scores 

being the least financially distressed, and companies with the lowest scores being the 

most financially distressed. 

 

𝑆𝐼 =  
𝑁𝑆𝐼 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑎𝑠𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑁𝑆𝐼

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑁𝑆𝐼 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑁𝑆𝐼
∗ 100       [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.10] 

 

o 𝑀𝑖𝑛 𝑁𝑆𝐼 = Minimum NSI value  

o 𝑀𝑎𝑥 𝑁𝑆𝐼 = Maximum NSI value 
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6.4.4 Index Comparison 

 

As a means to compare and contrast the performance of the optimal index, a well-

established technique, namely, Logistic Regression (LR), was used, to test whether 

the results achieved when creating the FDPI are similar to that in FDP. Model and 

index construction were done on a training data-set comprising randomly chosen 80% 

of the data with the remaining 20% being used for testing. The results from the LR 

model produce probability scores for each company. These scores can then be used 

for other purposes – in this case for ranking. The scores were tabulated and organised 

from largest to smallest, with the highest score indicating the company with the least 

financial distress, and inversely, the companies with the lowest scores are the most 

financially distressed. 

 

6.5 Results 

 

6.5.1 Pre-Index Validation Checks 

 

As shown in Table 6.2, KMO result was 0.73. According to Antony and Rao (2007), a 

value of 0.9 is considered marvellous, 0.80, meritorious; 0.70, middling; 0.60, 

mediocre; 0.50, miserable. Therefore, the score lies between the meritorious and 

marvellous rankings, which indicates the suitability of using factor analysis for the 

study. The result of Bartlett’s Test of Sphericity shows a significance level of 0.00, thus 

indicating that the null hypothesis can be rejected as it is less than the level of 

significance of 0.05. Therefore, it was certain that the correlation matrix is not an 

identity matrix, or the relationship strength amongst the variables is strong, as is 

essential by factor analysis to be effective. All in all, the aforementioned diagnostic 

tests validate that factor analysis is fitting for this analysis. 
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Table 6. 2 KMO and Bartlett’s Test 

KMO and Bartlett's Test 
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.733561131 

Bartlett's Test of Sphericity 

Approx. Chi-Square 21477.86683 

df 351 

Sig. 0.00 

 

The scree plot – presented in Figure 6.1 below – shows a downward sloping curve 

with the eigenvalues on the Y-axis and factor numbers on the X-axis. The point where 

the slope of the curve is levelling-off indicates the most efficient number of factors that 

should be generated by the model. As is clear in the graph, the decision as to where 

the line plateaus is not clear-cut and can be subjective. Therefore, the scree plot 

should be used in conjunction with the empirical results showcased in Table 6.3 under 

the “Rotation Sums of Squares Loadings” section, which indicate that the optimal 

number of factors in the models is eight, explaining 81.32% of variation in the data. 

 

Figure 6. 1 SPSS Factor Analysis Scree Plot  
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Table 6.3 below presents the contribution that each of the eight factors provides 

towards the total variance explained by the model – this is shown in the ‘Rotation of 

Sums of Squared Loadings’ section. The overall variance explained by the model 

equals 81.328%. 

 

Table 6. 3 Total Variance Explained – Extraction Method: PCA 

Total Variance Explained 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% Total 
% of 

Variance 
Cumulative 

% Total 
% of 

Variance 
Cumulative 

% 

1 7.345 27.204 27.204 7.345 27.204 27.204 5.821 21.559 21.559 

2 4.636 17.172 44.377 4.636 17.172 44.377 4.647 17.213 38.772 

3 3.100 11.482 55.859 3.100 11.482 55.859 3.660 13.554 52.326 

4 2.028 7.513 63.371 2.028 7.513 63.371 2.193 8.123 60.448 

5 1.430 5.295 68.666 1.430 5.295 68.666 1.882 6.970 67.419 

6 1.304 4.829 73.495 1.304 4.829 73.495 1.444 5.350 72.768 

7 1.114 4.127 77.623 1.114 4.127 77.623 1.302 4.822 77.590 

8 1.000 3.705 81.328 1.000 3.705 81.328 1.009 3.738 81.328 

9 0.998 3.695 85.023             

10 0.708 2.624 87.647             

11 0.664 2.458 90.105             

12 0.576 2.133 92.238             

13 0.479 1.772 94.011             

14 0.378 1.399 95.410             

15 0.311 1.153 96.563             

16 0.239 0.887 97.450             

17 0.157 0.580 98.030             

18 0.121 0.449 98.479             

19 0.114 0.421 98.900             

20 0.072 0.265 99.166             

21 0.064 0.238 99.404             

22 0.062 0.230 99.634             

23 0.052 0.191 99.825             

24 0.029 0.106 99.932             

25 0.008 0.030 99.962             

26 0.008 0.029 99.991             

27 0.002 0.009 100.000             

 

The results of PCA using varimax rotation are presented in Table 6.4. As shown in the 

table, each variable contributes a certain loading towards the overall model. The group 
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of variables that offer strong loadings towards the factor, be it positive or negative, 

have been highlighted. These loadings are correlation coefficients of each variable 

with the factor, therefore range from -1 to +1. The eight factors in the model were 

subsequently named according to the variables they are comprised of; they are shown 

in Table 6.5. For example, Factor 1 (F1) was dubbed the ‘Balance Sheet and Income 

Statement’ factor – this is due to the variables that it represents being found in the 

aforementioned financial statements. 

 

Table 6. 4 Rotated Component Matrix with PCA Extraction and Varimax Rotation 

Rotated Component Matrix 

  

Component 

1 2 3 4 5 6 7 8 

Operating Income 0.991               

Retained Earnings 0.978               

Gross Profit 0.978               

Accounts Receivables 0.923 0.206             

Inventory 0.890 0.262       0.263     

Long-Term Debt 0.854 0.285       0.263     

Net Income 0.524 -0.441 0.112     -0.223 0.260   

ln Current Assets 0.149 0.901 0.173 0.164     0.115   

ln Market Capitalisation 0.205 0.875 0.101           

ln Total Assets 0.170 0.851 0.385           

ln Cash & Equivalents 0.139 0.835 0.169 0.228 -0.103       

ln Current Liabilities 0.165 0.819   -0.324 0.152   0.161   

Return on Capital   0.181 0.945           

Return on Investment Capital   0.147 0.942           

Return on Assets %   0.217 0.898           

Return on Equity     0.754   -0.179       

Quick Ratio       0.984         

Current Ratio       0.983         

Total Liabilities / Total Assets     -0.390   0.797       

Total Debt / Total Capital         0.795   -0.105   

Altman Z-Score     0.287 0.174 -0.709       

Net Working Capital -0.112 0.177       -0.882     

Cash per Share 0.349 0.414       0.672     

Accounts Receivables Turnover   0.263         0.734   

Total Assets Turnover   0.423 0.115       0.671   

Fixed Assets Turnover             0.374   

Selling & Admin. Expenses Margin               0.996 
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Table 6. 5 Factor Names  

Factor Name 

F1 Balance Sheet and Income Statement 

F2 Monetary Figures 

F3 Investment Ratios 

F4 Liquidity Ratios 

F5 Credit Default Ratios 

F6 Efficiency Ratios 

F7 Revenue Ratios 

F8 Short-term Ratio 

 

6.5.2 Factor Weighted Index Construction 

 

Table 6.6 presents the ranking of the top ten and bottom ten companies according to 

the standardised FWI. Laneway Resources Limited was the topmost ranked company 

with an index value of 100, whereas Atlas Iron Limited was the lowest ranked company 

with an index value of 0. 
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Table 6. 6 Top 10 and Bottom 10 Mining Companies according to the FWI 

Index Value Australian Mining Company Name 

100 1. Laneway Resources Limited (ASX: LNY) 

52.14 2. G8 Communications Limited (ASX: G8C) 

5.51 3. 4DS Memory Limited (ASX: 4DS) 

2.19 4. BHP Billiton Limited (ASX: BHP) 

1.20 5. Dourado Resources Limited 

1.00 6. China Waste Corporation Limited (ASX: CWC) 

0.85 7. Rio Tinto Limited (ASX: RIO) 

0.60 8. Corizon Limited (ASX: CIZ) 

0.58 9. Genesis Resources Limited (ASX: GES) 

0.44 10. Pawnee Energy Limited 

0.05 770. Sundance Energy Australia Limited (ASX: SEA) 

0.05 771. Energy Resources of Australia Limited (ASX: ERA) 

0.05 772. Aurelia Metals Limited (ASX: AMI) 

0.05 773. Silver Lake Resources Limited (ASX: SLR) 

0.05 774. Coal of Africa Limited (ASX: CZA) 

0.05 775. Resolute Mining Limited (ASX: RSG) 

0.04 776. Wollongong Coal Limited (ASX: WLC) 

0.03 777. Paladin Energy Limited (ASX: PDN) 

0.03 778. Mount Gibson Iron Limited (ASX: MGX) 

0 779. Atlas Iron Limited (ASX: AGO) 

 

6.5.3 Weighted Factor Loading Index Construction 

 

Table 6.7 presents the component score coefficient matrix which showcases all the 

variables and their respective component score. The scores highlighted with the same 

colour correspond to the variable(s) that make up each respective factor. 

 

Table 6.8 presents the ranking of the top ten and bottom ten companies according to 

the standardised WFLI. Laneway Resources Limited was the topmost ranked 

company with an index value of 100, whereas Atlas Iron Limited was the lowest ranked 

company with an index value of 0. 
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Table 6. 7 Component Score Coefficient Matrix  

Component Score Coefficient Matrix 

  

Component 

1 2 3 4 5 6 7 8 

Ln of TA -0.015 0.191 0.052 -0.040 0.020 -0.042 -0.103 0.014 

Ln of CL -0.015 0.190 -0.028 -0.126 0.047 -0.043 0.011 0.048 

Ln of CA -0.019 0.219 -0.048 0.083 -0.029 -0.056 -0.003 -0.044 

Ln of Cash & Equivalent  -0.021 0.204 -0.050 0.108 -0.048 -0.022 -0.008 -0.051 

Net Work Cap 0.046 0.098 -0.032 0.020 0.004 -0.659 -0.119 0.015 

Ln of Market Cap -0.011 0.220 -0.056 -0.012 -0.035 -0.037 -0.064 0.028 

Cash/Share -0.014 0.067 -0.015 0.024 0.013 0.456 -0.010 0.010 

Net Income 0.151 -0.188 0.061 0.050 -0.001 -0.189 0.270 -0.033 

Operating Income 0.188 -0.060 0.010 0.008 -0.003 -0.031 0.040 -0.005 

Gross Profit 0.194 -0.029 -0.005 0.006 -0.007 -0.141 -0.008 -0.001 

Retained Earnings 0.182 -0.039 0.000 0.001 -0.007 -0.028 -0.005 -0.004 

Acc Rev 0.172 0.003 -0.015 0.002 -0.004 -0.101 -0.017 0.006 

Inventory 0.137 0.017 -0.012 -0.015 -0.001 0.107 -0.057 0.007 

Long-Term Debt 0.128 0.030 -0.012 -0.017 0.008 0.109 -0.095 0.009 

Current Ratio = CA/CL 0.002 0.011 -0.024 0.464 0.045 -0.012 0.028 0.027 

Quick Ratio = (Tot Cash and Short 
term Inv + Acc Rec) / TCL 

0.001 0.011 -0.025 0.464 0.046 -0.009 0.028 0.028 

Return On Assets % (EBIT * (1-
.375)/ Avg TA 

-0.004 -0.035 0.279 -0.014 0.085 0.005 0.009 0.020 

Return On Capital % (EBIT * (1-
.375)/ Avg Tot Capital) 

-0.004 -0.046 0.298 -0.020 0.082 0.012 -0.013 0.009 

Return On Equity % (Earnings from 
Cont Operations/ AVG Tot Equity) 

-0.002 -0.052 0.230 -0.035 0.002 0.024 -0.007 -0.018 

Return on Investment Capital % 
(Net Income - Tot Dividends Paid)/ 
Tot Capital 

-0.004 -0.052 0.302 -0.014 0.089 0.014 -0.032 -0.017 

Selling, Gerneral, & Admin 
Expenses Margin % (SG&A 
Expense/Tot Revenue) 

0.002 0.004 -0.005 0.026 -0.014 -0.007 -0.004 0.989 

TA Turnover = TR/ Avg TA -0.012 0.027 -0.015 0.000 0.008 -0.035 0.506 0.010 

FA Turnover = TR / Avg Net PP&E 0.002 -0.068 -0.012 0.022 -0.034 0.052 0.332 -0.016 

Acc Rec Turnover = TR / Avg Acc 
Rec 

-0.018 -0.018 -0.030 0.028 -0.017 0.030 0.588 0.025 

Tot Debt / Tot Cap % -0.003 -0.017 0.148 0.068 0.511 -0.003 -0.131 -0.050 

TL/TA % -0.002 0.017 -0.022 0.056 0.424 -0.011 0.033 0.016 

Altman Z-Score 0.001 0.026 -0.018 0.013 -0.379 -0.019 -0.052 -0.013 
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Table 6. 8 Top 10 and Bottom 10 Mining Companies according to the WFLI 

Index Value Australian Mining Company Name 

100 1. Laneway Resources Limited (ASX: LNY) 

52.11 2. G8 Communications Limited (ASX: G8C) 

6.65 3. Hexagon Resources Limited (ASX:HXG) 

5.47 4. 4DS Memory Limited (ASX: 4DS) 

3.58 5. IPB Petroleum Limited (ASX:IPB) 

2.92 6. Bulletin Resources Limited (ASX: BNR) 

2.07 7. Breaker Resources NL (ASX: BRB) 

1.16 8. Dourado Resources Limited 

0.95 9. China Waster Corporation Limited (ASX: CWC) 

0.58 10. Mount Burgess Mining NL (ASX: MTB) 

0.01 770. Coal of Africa Limited (ASX: CZA) 

0.01 771. Callabonna Resources Limited 

0.01 772. Wollongong Coal Limited (ASX: WLC) 

0.01 773. Star Striker Limited (ASX: SRT) 

0.01 774. Cougar Metals NL (ASX: CGM) 

0.01 775. LWP Technologies Limited (ASX: LWP) 

0.01 776. Paladin Energy Limited (ASX: PDN) 

0.01 777. Gulf Manganese Corporation Limited (ASX: GMC) 

0.01 778. Mount Gibson Iron Limited (ASX: MGX) 

0 779. Atlas Iron Limited (ASX: AGO) 

 

6.5.4 Standardised Index Construction 

 

When constructing the NSI, the percentage variance explained by each factor was 

multiplied by the factor score for each company, which was then divided by the total 

variance explained by the model (81.328%). The results were then summed for all the 

companies in the sample. Subsequently, as was explained in the Methodology section, 

the values for each company were standardised using the formula shown in Equation 

6.10. This index was dubbed the K-Index – presented in Table 6.9 below. Table 6.9 

shows the standardised K-Index values for the top 10 and bottom 10 companies 

according to the index, as shown BHP Limited and Rio Tinto Limited are on top of the 

list indicating they have the least financial distress, whereas Image Resources NL and 

Magnis Resources Limited are at the bottom, indicating they are the most financially 

distress companies. 



125 
 

Table 6. 9 Top 10 and Bottom 10 Mining Companies according to the K-Index 

K-Index Value Australian Mining Company Name 

100 1. BHP Billiton Limited (ASX: BHP) 

68.9132 2. Rio Tinto Limited (ASX: RIO) 

39.80434 3. Resource Mining Corp. Ltd. (ASX: RMI) 

35.19202 4. Fortescue Metals Group Limited (ASX: FMG) 

33.73464 5. Neon Capital Limited (ASX: NEN) 

32.19876 6. WorleyParsons Limited (ASX: WOR) 

30.18073 7. Molopo Energy Limited (ASX: MPO) 

28.74564 8. Laneway Resources Limited (ASX: LNY) 

27.87678 9. Woodside Petroleum Ltd. (ASX:WPL) 

27.24218 10. Northern Star Resources Limited (ASX: NST) 

5.304597 770. Castillo Copper Limited (ASX: CCZ) 

4.522382 771. Capital Mining Limited (ASX: CMY) 

4.241543 772. Estrella Resources Limited (ASX: ESR) 

4.038806 773. Image Resources NL (ASX: IMA) 

3.738755 774. Magnis Resources Limited (ASX: MNS) 

3.712362 775. Mount Ridley Mines Limited (ASX: MRD) 

3.697516 776. Oro Verde Limited (ASX: OVL) 

1.997241 777. Genesis Minerals Limited (ASX: GMD) 

0.371579 778. Lithium Australia NL (ASX: LIT) 

0 779. Empire Resources Limited (ASX: ERL) 

 

6.5.5 Comparison to Performance Metrics 

 

To check whether the results of the created indices aligned with commonly used 

metrics for determining financial standing of companies, namely: “ordinary shares 

market capitalisation” and “share price,” a comparison of the ranking of companies in 

the indices with their respective ordinary shares market capitalisation and share price 

figures was carried out. The K-Index was found to be the one that is in parallel the 

most with the aforementioned metrics. Due to this, analyses were carried out solely 

on the K-Index. Table 6.10 showcases the top five mining companies with the highest 

share price, and Table 6.11 presents the top five companies with the highest ordinary 

shares market capitalisation. As shown in Table 6.10, the top five mining companies 

with the highest share price all fall in the top ten companies in the K-Index. This is also 

true for Table 6.11 – the top five mining companies with the highest ordinary shares 
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market capitalisation all fall in the top ten companies in the K-Index. Therefore, having 

the K-Index results align with both of the abovementioned figures empirically 

substantiates the validity of the FDPI in general, and the K-Index in particular.  

 

Table 6. 10 Share Price for Top 5 Companies in the Australian Mining Industry 

Australian Mining Company Name Share Price ($) 
2.      Rio Tinto Limited (ASX: RIO) 53.75 

9.      Woodside Petroleum Ltd. (ASX: WPL) 34.23 

1.      BHP Billiton Limited (ASX: BHP) 27.05 

6.      WorleyParsons Limited (ASX: WOR) 10.41 

10.   Northern Star Resources Limited (ASX: NST) 2.21 

 

Table 6. 11 Ordinary Shares Market Capitalisation for Top 5 Companies in the 

Australian Mining Industry 

Australian Mining Company Name 
Ordinary Shares Market Capitalisation 
($million) 

1.      BHP Billiton Limited (ASX: BHP) 143,942.7764 

2.      Rio Tinto Limited (ASX: RIO) 98,203.6967 

9.      Woodside Petroleum Ltd. (ASX: WPL) 28,202.46179 

4.      Fortescue Metals Group Limited (ASX: FMG) 5,947.35447 

6.      WorleyParsons Limited (ASX: WOR) 2,576.79267 

 

6.5.6 K-Index Comparison to a Logistic Regression Model 

 

As mentioned earlier, an FDP model was created for comparative purposes with the 

K-Index. The results from using LR yielded 24.10% Type I error and 21.74% Type II 

error for the holdout sample. This provides a model with an average predictive 

accuracy rate of about 77%. The probability scores for the top ten companies are 

shown in Table 6.12; despite it being a relatively accurate model, only three out of the 

top-ten companies are found in the top-ten section of the K-Index. Also, as is evident 

in the same table, the difference between each company is not even measurable in 

some cases, such as BHP and WPL, thus making it near-impossible and impractical 

to make informed and affirmed decisions about the financial ranking of each company. 
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Hence, these results show that solely relying on the LR FDP model is not sufficient to 

gain a clear understanding of company ranking. This indicates a legitimate need for 

an index such as the one developed in this study.  

 

Table 6. 12 Top 10 Probability Scores using Logistic Regression  

Australian Mining Company Name Probability Score  
BHP Billiton Limited (ASX: BHP) 1  

Woodside Petroleum Ltd. (ASX:WPL) 1  

New Hope Corporation Limited (ASX:NHC) 1  

Catalyst Metals Ltd (ASX: CYL) 1  

Broken Hill Prospecting Limited (ASX: BPL) 1  

OZ Minerals Limited (ASX: OZL) 0.999984  

Beacon Minerals Limited (ASX: BCN) 0.998615  

Tribune Resources Limited (ASX: TBR) 0.997757  

Rio Tinto Limited (ASX: RIO) 0.997162  

Emu NL (ASX: EMU) 0.996859  

 

6.6 Conclusion 

 

This chapter presented various methods to develop FDP indices. It also presented a 

novel, user-friendly, standardised index pertaining to companies’ financial distress. 

This chapter also explained why the novel developed index outperforms popular 

repositories, such as the Big Three credit agencies, commonly-used single value 

metrics, and the Logistic Regression (LR) model. Factor analysis was used to concise 

the number of variables in the original data-set and subsequently generate the index 

according to the weighted score of each component. This was tested on the Australian 

mining sector, by using financial data from 779 companies to develop an index that 

best describes the financial position of listed Australian mining companies. Three 

indices were created and the SI index was found to be the optimal through comparing 

the ranking of companies in the index vis-à-vis established performance metrics – this 

industry-specific FDPI was coined the K-Index. Subsequently, an LR model was 

created to showcase the downfalls of relying solely on FDP, as well as the ease of 

using the K-Index as opposed to FDP. This chapter has verified Hypothesis 6. 
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Chapter 7: Islamic Banking* 
 

* This chapter is based on a published paper in a peer-reviewed Journal, namely:  

Halteh, K., Kumar, K., & Gepp, A. (2018). Financial distress prediction of Islamic banks 

using tree-based stochastic techniques. Managerial Finance. doi: 

https://doi.org/10.1108/MF-12-2016-0372  

 

Aligning with Hypothesis 7 stated in the Chapter 1, namely: 

H7: The most important variables in FDP models for Islamic banks vary 

according to the measure of financial distress used.  

 

This chapter will verify the aforementioned hypothesis by applying the creating FDP 

models using a data-set comprised of international Islamic banks and then comparing 

the most important variables in the constructed FDP models for each measure of 

financial distress used. 

 

This chapter highlights some key differences and similarities between Islamic and 

conventional banks, surveys the literature on the topic, presents a methodology that 

identifies the most important predictors pertaining to Islamic banks’ financial distress, 

and discusses key findings before providing the concluding remarks. Unlike other 

chapters in this thesis, which conduct FDP analyses based on the classification 

method, this chapter conducts regression analyses. Three measures are employed 

for assigning financial distress scores for each Islamic bank in the data-set; these 

scores are subsequently used in the regression analyses to present the most 

important variables in predicting Islamic banks’ financial distress according to each 

measure – the Literature Review section introduces these measures, whereas the 

Methodology section presents how they were applied to this study.  

 

https://doi.org/10.1108/MF-12-2016-0372
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7.1 Introduction 

 

The banking industry is extremely crucial not only to local economies, but to the global 

economy as well, so much so, that when multinational behemoths, such as, Citigroup 

and Lehman Brothers, experienced extreme financial difficulties mainly due to holding 

huge derivative portfolios in subprime mortgages, essentially meaning that the 

borrowers had weak credit-ratings, that is, their capability to repay the loan is dubious. 

This eventually led to Lehman Brothers going bankrupt, and Citigroup receiving a 

multi-hundred billion dollar bailout from the United States’ government in order to 

rescue it from insolvency (Wilchins & Stempel, 2008). This, in effect, was the catalyst 

that led to a domino effect, resulting in plummeting consumer confidence worldwide, 

thus leading to a stock market crash. In Australia, stimulus packages were announced 

to try and resuscitate the fragile economy and increase consumer confidence (Davies, 

2017).  

 

As is evident, the banking system is directly proportional to the condition of the 

economy, therefore, for an economy to develop sustainably, an effective banking 

system needs to be in place (Jan & Marimuthu, 2015b). Measures of sustainability 

include:  

 The internationally recognised CAMELS rating system, which ranks banks with 

respect to six variables, as the acronym suggests, namely: Capital adequacy, 

Asset quality, Management, Earnings, Liquidity, and Sensitivity – this rating 

system allows managers to assess performance and allow for informed 

decision making; 

 The Financial Stability Board, which is an international body that was 

established post the GFC, to monitor and make recommendations to  financial 

institutions globally (Jan & Marimuthu, 2015b);  

 The Basel Accords deliver recommendations on banking regulations pertaining 

to different types of risk – refer to the Discussion section for further elaboration 

on the Basel Accords. 
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Islamic banks dominate the banking market share in predominantly Muslim nations, 

especially in the Middle East region with 80% market share vis-à-vis 20% in the rest 

of the world. Their presence has also expanded on a global scale and they can be 

found in more than 50 countries (Hanif, 2011). Figure 7.1 below shows the banking 

penetration and participation asset market share for Islamic banks. The graph clearly 

shows that the countries with the highest market share of Islamic banks are Middle 

Eastern nations with predominantly Muslim population, while banking penetration is 

higher amongst nations with a greater number of conventional banks. 

 

Figure 7. 1 Banking Penetration and Participation Asset Market Share – 
Source: (EY, 2016) 

 

 

 

Shariah-compliant financial assets are predicted to reach $3 trillion in the next decade 

– an increase from approximately $2 trillion in the year 2016, as well as sales of Islamic 

bonds, called sukuk, increased by 24% to $44 billion in 2016 (Liau, 2017). According 

to Standard & Poor's (2014), Islamic banking asset-growth has been overtaking 

conventional banks for a number of years – as shown in Figure 7.2 below. This 
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demonstrates the importance for expanding the currently limited literature available on 

Islamic banks, and even more so, financial distress prediction pertaining to Islamic 

banks. Applying FDP modelling to banks can showcase important variables that have 

a direct effect on a banks’ financial distress levels. Another use for applying FDP to 

banks is that it enables the banks to assess a person’s/firm’s financial distress 

probability before determining whether a loan is suitable, and if so, how much excess 

and premium to charge – in the case of Islamic banks, a murabaha contract, where 

the bank purchases a good then on-sells it to the buyer at a premium price (Beck, 

Demirgüç-Kunt, & Merrouche, 2013). 

 

Figure 7. 2 Asset Growth Comparison: Islamic and Conventional Banks –  

Source: Standard & Poor's (2014) 

 

 

In theory, Islamic banks differ substantially from conventional banks, most notably 

through the absence of interest charges, as it is considered usury (riba) – which is 

religiously forbidden (haram). This is in accordance with Shariah law’s dicta that 

forbids charging interests; speculation (gharar); and funding of illicit products – such 

as: pork, weaponry, and alcohol; as well as, requiring prices to be placed on goods 

and services only. Islamic finance also requires transactions to be backed by a a 

pecuniary transaction involving a tangible asset, this is due to the concept of risk/profit-
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loss sharing (mudaraba and musharaka) – for both assets and liabilities – inherent in 

Islamic finance. Mudaraba are partnership loans between the bank and the borrowers, 

where profits are shared, but the bank bears the losses. Under Musharaka, the bank 

is one of many investors, and both the profits and losses are shared amongst all 

investors. Therefore, the key differences here between Islamic and conventional 

banks are the nature of interests and the risk and reward aspects. In terms of interest, 

conventional banks can offer fixed and predetermined interests to consumers; in terms 

of risk and reward, the bank bears all the risk and reward after servicing the 

consumers. On the other hand, in the case of Islamic banks – due to muskaraka and 

mudaraba – the both risk and reward are shared by the bank and the consumers 

(Hanif, 2011). 

 

In practice, however, these striking differences are not very apparent, as the products 

are similar to those of conventional banks, but executed differently. For instance, 

interest rates and discounts are replaced with fees and conditional payment plans 

(Beck et al., 2013). An example of this apparent difference but practical similarity can 

be shown in the following scenario of buying a car from a conventional bank vis-à-vis 

an Islamic bank:  

 

 Conventional bank: 

The customers do not have the funds in full to pay for the vehicle, therefore, they 

approach a conventional bank asking for a loan to buy the car. The loan is granted on 

either a fixed or variable interest rate outlined by the bank. Repayments are done 

accordingly to pay-off the principal and interest amounts over a designated time 

period. Let’s assume the interest rate was 10% over a period of one year, and the loan 

is $10,000. Assuming all else being equal, the amount to be repaid is $11,000 over 

the course of one year. 
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 Islamic bank: 

The customers approach the Islamic bank for funds to pay for the car. Since, there 

needs to be an actual transaction with a tangible asset involved, the bank offers to 

purchase the car, and then resells it to the consumers at a premium. So, the bank 

pays $10,000 for the dealership and purchases the car, then offers to resell it to the 

consumers at $11,000 to be repaid over the course of one year. 

 

This simple example goes to show that despite fundamental theoretical differences in 

the methods of conducting financial transactions between Islamic and conventional 

banks, the practical implications are very similar.  This notion of theoretical 

dissimilarity, but practical similarity, is presented in various studies in the literature that 

outline other similarities, such as: the Islamic banks’ method of calculating the 

premium price is by pegging it to the interest rates of conventional banks, and that the 

risk/profit-loss sharing only plays a small role in Islamic banks (Beck et al., 2013; 

Chong & Liu, 2009; Khan, 2010).  

 

Given the aforementioned similarities and differences between conventional and 

Islamic banks, and due to the limited literature available on the topic of FDP of Islamic 

banks. This presents a gap in the literature that this study contributes towards, through 

utilising machine learning techniques to create FDP models that present the most 

important predictors of Islamic banks’ financial distress. This aids bank managers in 

their strategic and financial decision-making processes to detect early sings of 

financial distress, and hence implement preventive measures. This chapter verifies 

Hypothesis 7, presented in Chapter 1. 
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7.2 Literature Review 

 

Despite there being a large number of papers that use statistical models to predict 

financial distress of companies, only a fraction deal with the banking industry, and of 

those, merely a handful pertain to Islamic banking. This section explores some of the 

literature pertaining to the prediction of financial distress of the banking industry in 

general, and Islamic banking in particular. 

 

Furthering his work in the seminal paper of 1968, Altman (2000) devised a model 

specifically for predicting financial distress of service firms. He retained the same 

financial variables, which he deemed having the strongest predictive power, as was 

presented in his 1968 paper, with the sole exception of excluding the fifth variable 

(Sales/Total Assets) – for an elaboration on the equation used in Altman’s (1968) 

paper, refer to Chapter 2. This exclusion was done in order to mitigate the industry 

effect, which is likely to occur when such an industry-sensitive value is incorporated. 

Altman’s model accuracy was around 90% one year prior to failure, and up to 70% five 

years prior to failure. His new model is as follows: 

     𝑍 =  6.56𝑥1 +  3.26𝑥2 +  6.72𝑥3 +  1.05𝑥4                  [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7.1] 

 

This model was used in later research, some of these studies include: Jan and 

Marimuthu (2015b); Jan, Marimuthu, Shad, Zahid, and Jan (2019); Kyriazopoulos 

Georgios (2014); Mamo (2011); Sharma (2013).  

 

In Kyriazopoulos Georgios’s (2014) study, the financial distress of six Greek banks 

was predicted using data from 2001-2009. His research outlined that the reason for 

failure was mainly due to direct burrowing from the financial market. In Sharma’s 

(2013) study, an application of Altman’s (2000) model was conducted on 36 Indian 

banks. Sharma’s model achieved an FDP accuracy level of 70%. In Mamo’s (2011) 

study, an application of Altman’s (2000) was conducted on a model containing data 
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pertaining to 43 Kenyan banks. Mamo’s model yielded an accuracy level of 90% in 

identifying non-distressed banks, and 80% pertaining to financially distressed banks. 

In Jan and Marimuthu’s (2015b) study, they used financial distress as a proxy to argue 

for Islamic banks’ sustainability. They applied Altman’s (2000) model on Islamic banks 

from the top five Islamic banking countries. Their aims were threefold: examining 

financial distress, finding performance indicators that affect the banks’ financial health, 

and perform a comparative analysis on said performance indicators. Their results 

indicate that the performance indicators in Islamic banking were declining with an 

average of 79% across liquidity, profitability, insolvency, and productivity. And finally, 

a recent study by Jan et al. (2019) applied Altman’s (2000) model on a data-set 

comprising 14 Islamic and 14 conventional banks in Malaysia for the economic-

postapocalyptic time-period of 2009-2013. Their results indicated that six out of the 14 

conventional banks were in distress, compared to ten out of the 14 Islamic banks – 

which is contradictory to other research that claim superior resilience of Islamic banks 

vis-à-vis conventional banks. The profitability ratio (Retained Earnings/Total Assets) 

was found to be the most important variable in predicting banks’ financial distress.  

 

Kumar and Ravi (2007) presented an invaluable comprehensive review of studies 

between 1968-2005, which used both parametric and nonparametric techniques to 

predict financial distress of firms and banks. His review showed that, while the majority 

of papers used various financial ratios, there were a few that still used Altman’s (1968) 

original variables. The standard statistical techniques were outperformed by the 

nonparametric techniques, such as: ANNs and DTs. The paper ends by 

recommending extra research to be done on machine learning methods, as well as, 

the use of ensemble and hybrid techniques, as they have the superior predictive 

capabilities, as well as pooling the advantages and mitigating the drawbacks of 

individual models.  

 

Both Olson and Zoubi’s (2008) and Beck et al.’s (2013) studies investigated the key 

differences between Islamic and conventional banks. Olson and Zoubi’s (2008) study 

was centred around banks operating in the Gulf Cooperation Council (GCC). They 

used 26 variables for their study, and developed logit, ANN, and K-NN models. 
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conforming with the FDP literature, the nonparametric techniques – the ANN and K-

NN models, outperformed the logit model. The models were able to differentiate 

Islamic vis-à-vis conventional banks in the out-of-sample tests with a success 

percentage rate of 92%. In Beck et al.’s (2013) study, they used a sample of 88 Islamic 

and 422 conventional banks across 22 countries, for the 1995-2009 time period. They 

also use another sample of 209 listed banks to check the effect the GFC had on the 

stock market condition of both types of banks. Their results indicated that there are no 

major differences in business orientation, and although Islamic banks are less efficient 

and cost-effective, they have higher intermediation ratios, asset quality and are better 

capitalised, which led them to outperform conventional banks during the GFC. Two 

ratios were used to achieve a standardised (z) score for each bank – the formula and 

ratios are presented in Equation 7.2 below: 

 

               𝑧 =
(𝑅𝑂𝐴 + 𝐶𝐴𝑅)

𝜎(𝑅𝑂𝐴)
                       [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7.2] 

o 𝑧: Indicates the distance from insolvency, combining accounting measures of 

profitability, leverage, and volatility.  

o 𝜎: Standard Deviation 

o 𝑅𝑂𝐴: (Return on Assets) = Profits/Total Assets 

o 𝐶𝐴𝑅: (Capital Asset Ratio) = Total Equity/Total Assets 

 

Al-Shayea, El-Refae, and El-Itter (2010) used ANNs to predict financial distress of 

Spanish banks using a sample of 66 banks, of which 37 were insolvent. Nine variables 

were used in the study, comprising various financial statements ratios. They 

developed two ANN models using different supervised and unsupervised learning 

algorithms. Their results indicated that their models were able to learn patterns that 

led to financial distress of the banks, yielding a predictive accuracy rate between 92%-

94%. 
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Al Zaabi (2011) presented a study on applying Altman’s (2000) Z-score model on 

Islamic banks in the United Arab Emirates (UAE) for the 2004-2007 time period. He 

measured the banks’ Z-score for the three years prior to his publication, and then 

compared it with the then current Z-score of the banks, in order to establish an FDP 

model. Banks with a Z-score of less than 1.1 were deemed to be financially stressed, 

above 1.6 were financially healthy, and between 1.1 and 1.6 were uncertain. His 

results indicated that the Islamic banks in the UAE are overwhelmingly financially 

healthy 

 

Anwar and Mikami (2011) developed multiple models to predict the mudaraba time-

deposit return in Islamic banks, including: ANN, LR, and a generalised autoregressive 

conditional heteroskedasticity model. They used ten years’ worth of data and six 

macroeconomic variables. Their results indicated that ANN outperformed the other 

models in predicting the average rate of return of one-month mudaraba time deposit.  

 

A recent study by Le and Viviani (2018) compared the FDP accuracy of statistical 

techniques, namely: LR and MDA; vis-à-vis machine learning techniques, namely: 

SVMs, ANNs, and K-NNs. They incorporated 31 financial ratios to be tested on a data-

set consisting of 3000 banks in the United States – 1562 operating and 1438 failed, 

for the time-period 2011-2016. Their results indicated that ANNs were the superior 

model with a predictive accuracy of 75.7%, followed by K-NNs (74.1%), LR (73.9), 

MDA (72%), and finally SVM (71.6%). In terms of variable importance, all 31 ratios 

were found to be statistically significant, but ratio groups such as: operation efficiency, 

profitability, and liquidity ratios were found to be the most important – these groups 

include ratios such as: Impaired Loans divided by Gross Loans, Capital Ratio, 

Operation Income divided by Average Assets, ROA, and others. 

 

As is evident, there are various studies in the literature regarding banks’ financial 

distress, however, there are no studies that have combined three measures of 

financial distress to determine the most important variables in determining Islamic 

banks’ financial distress. This research spearheads this initiative in the hope of 

encouraging further research to be done in this area in the future. 
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7.3 Data 

 

This research extracted financial data for the year 2014 using a data-set of 101 Islamic 

banks that operate on a global scale. Due to difficulty and limited availability of 

extracting failed Islamic banks’ data, this study used three measures – outlined later 

in the Methodology section, that assigns scores to each Islamic bank, which is used 

to determine the financial distress level of the each bank.  The number of independent 

variables used is 18 – comprising financial ratios, actual figures, margins, and rates, 

as shown in Table 7.1. 

 

As explained in the Introduction section, Islamic banks may refer to certain financial 

terms by Arabic terms, such as mudaraba and musharaka pertaining to assets and 

liabilities. However, in this study’s data-set, the Islamic banks referred to their 

financials by standard English terms in their statement. This is why the variables used 

in this study are not referred to by Arabic terms. The data for the companies used in 

the research were extracted from the Capital IQ database, which, as mentioned in 

Chapter 1, is a web-based data repository that provides ubiquitous financial 

information and company data (Phillips, 2012). Capital IQ has been used various 

interdisciplinary research, including: Feldman and Zoller (2012); Halteh et al. (2018a); 

Kahle and Stulz (2013). 
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Table 7. 1 Variables used in this study 

Variable Description 

Total Assets (TA) Actual Balance Sheet Figure 

Dividends / Shares 

The Number of Dividends that the Shareholders Receive 

on a Per-Share Basis 

ROE (Return on Equity) 

Net Income / (Shareholders’ Equity - Outside Equity 

Interests) 

ROA (Return on Assets)  

Earnings Before Interest / (Total Assets - Outside Equity 

Interests) 

Operating Income / TA Financial Ratio 

Working Capital / TA Financial Ratio 

Retained Earnings / TA Financial Ratio 

Earnings Before Income & Tax (EBIT) 

/ TA 

Financial Ratio 

Market Value of Equity/Total 

Liabilities (MVE / TL) 

Financial Ratio 

Revenue / TA Financial Ratio 

Debt Ratio Total Liabilities / Total Assets 

Current Ratio Current Assets / Current Liabilities 

ROR (Return on Revenue) Net Income / Total Revenue 

Asset Turnover Total Revenue / Total Assets 

Efficiency Ratio Total Expenses / Total Revenue 

Total Equity / Total Assets Financial Ratio 

Equity Ratio Total Equity / Total Assets 

Total Debt / Total Equity Financial Ratio 

 

7.4 Methodology 

 

Three measures, namely: Altman Z-Score, Altman Z-Score for Service Firms, and the 

Standardised Profits, were utilised to extract a score that is used to measure each 

bank’s financial distress. The software package ‘Salford Predictive Modeler’ was used 

to develop and test the models built using three machine learning techniques, namely: 

DTs, RFs, and SGB. This software package has been used previously in the literature 

(Gepp & Kumar, 2012; Gepp et al., 2010). The aforementioned techniques were 

chosen to construct models due to previous research presenting the empirical 

superiority of said techniques vis-à-vis traditional statistical techniques, such as MDA 

and LR – some of these studies include: Berg (2007); Gepp and Kumar (2012); Gepp 
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et al. (2010); Kumar and Ravi (2007). Additionally, these techniques do not make any 

distributional assumptions, which is prudent in this case because of the limited 

literature pertaining to Islamic banking. The techniques used and the way they were 

developed will be further explained in the following subsections. 

 

Three regression analyses were conducted. Each one of the measures stated above 

were used as a continuous dependent variable in each technique. This yielded three 

models for each of the three techniques used, that is, nine models altogether. The 

results of each model were subsequently compared and contrasted with one another 

in order to deduce the most important predictors at identifying Islamic banks’ financial 

distress. Since this study only focuses on variable importance, there is no need for a 

test/holdout sample.  

 

The independent variables are based on data for the year 2014, whereas the 

dependent variables (for all three measures), use 2015 data. That is, one-year lagged 

independent variables have been used. The dependent variable changed based on 

the measure used, that is, Altman Z-Score, Altman Z-Score for Service Firms, or the 

Standardised Profits measure. For each of the measures of financial distress, and 

using the 18 variables each time, the models were built using the techniques 

mentioned above. The identification of important variables that affect Islamic banks’ 

financial distress enables various stakeholders, including shareholders and 

government bodies, as well as regulatory influences, such as the Basel Accords, to 

monitor those variables and install measures to prevent possible distress – these 

implications will be discussed in detail in the Discussion section later on in the chapter. 
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As mentioned above, three measures of financial distress were used in this study. The 

rationales behind choosing said measures are explained below: 

 

 Firstly, the “Altman (1968) Z-Score” measure has been chosen because of its 

extensive use in the FDP literature. Five ratios were used to achieve a Z-score 

for each bank using data from the year 2015; the five ratios used were outlined 

in Chapter 2. However, the results for each Islamic bank were not classified as 

per Altman (1968) classification, as this research has conducted a regression 

analysis, not a classification/logistic binary analysis.  

 

 Secondly, the “Altman Z-Score for Service Firms” measure has been chosen – 

which was discussed earlier in the Literature Review section. This measure was 

chosen since this study is concerned with Islamic banks – a service industry, 

and so this approach is arguable more appropriate and accurate. This measure 

has been applied by various researchers to the banking industries in a number 

of countries worldwide, including Greece, India, and Kenya, and they have 

achieved high FDP accuracy rates (Jan & Marimuthu, 2015a; Kyriazopoulos 

Georgios, 2014; Mamo, 2011; Sharma, 2013). Four ratios were used to achieve 

a Z-score for each bank using data for the year 2015. 

 

 Thirdly, the “Standardized Profits” measure that was utilised by Beck et al. 

(2013). This measure was chosen as it is a novel approach that can be applied 

to FDP of banks, both conventional and Islamic. As discussed in the Literature 

Review section, their model measures a standardised ‘𝑧’ score, which is 

indicative of bank stability. This includes accounting measures of profitability, 

volatility, and leverage.  

 

The techniques presented below provide information that are specific in constructing 

the models presented in this chapter. For an elaboration of the mechanics of each 

technique, refer to Chapter 2. 
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7.4.1 Decision Tree Model 

 

In this research, regression trees have been used with the standard Gini criterion to 

determine the best splitting rule at each point. All 18 variables were used as predictors 

(independent variables), and the target variable (dependent variable) was selected as 

one of Altman Z-Score, Altman Z-Score for service firms, or the Standardised Profits 

measure, to achieve results for all three models. The standard V-fold cross validation 

using 10 folds was used for the testing component of the model. This helps to ensure 

that the model is not over-trained, meaning that it can detect patterns that appear in 

the data-set given, but will not generalise well to new data. 

 

7.4.2 Random Forests Model 

 

The same variables were used as for DTs.  Testing of the model was based on out-

of-bag data, which is also used for testing and avoiding over-training to increase the 

generalisability of the findings. The number of variables considered at each node was 

set to the square root of the total number of predictors: √18 ≈ 4.24 ≈ 4. Different 

numbers of trees were tested (200, 500, and 1000), but 500 trees were determined to 

be sufficient. 

 

7.4.3 Stochastic Gradient Boosting Model 

 

The standard V-fold cross validation using 10 folds was used for the testing component 

of the model. Individual trees were kept small by setting the maximum nodes per tree 

to six (a standard setting) with a minimum number of data points of ten in each node. 

The criterion to determine the optimal number of trees, that is, how much incremental 

improvement to perform, was chosen based on the default of cross entropy. Different 

numbers of trees were tested, but for similar reasons as stated previously, 200 

stochastic random boosting trees were finally determined to be sufficient. 
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7.5 Results 

  

The models for each of the three definitions of financial distress are analysed 

separately below. Table 7.2 at the end of this section, provides a summary of the most 

important variables in each model, according to both technique and definition of 

financial distress. A sample DT is shown for each measure. For RF and SGB, a similar 

visualisation is unattainable because they are an ensemble of many trees, which is 

one of their disadvantages, but they are likely to be more accurate and better at 

handling inaccuracies in the data. 

 

7.5.1 Altman Z-Score Measure 

 

For the DT model, the results yielded ‘Working Capital/Total Assets’ as the root node, 

the most important variable, followed by ROA as the next non-leaf node, leading 

through connecting branches to multiple consecutive non-leaf nodes and finally ending 

with leaf nodes – refer to Figure 7.3 for an illustration. The ratio of Working Capital to 

Total Assets was also the most important variable in both the RF and SGB models. 

Current Ratio appeared as the second most important variable using DT and RFs, 

whereas the Debt Ratio was the second most important variable using SGB – refer to 

Table 7.2 for more detail. 
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 Figure 7. 3 Decision Tree Model using Altman’s Z-Score as the measure of Financial Distress
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7.5.2 Altman Z-Score for Service Firms Measure 

 

Figure 7.4 provides an illustration of the single DT model for Altman’s Z-Score for 

Service Firms measure. Again, ‘Working Capital/Total Assets’ shows up as the most 

important variable in FDP. RF and SGB models confirmed this as the most important 

variable. The second most important variable was Current Ratio for both DT and RF, 

whereas it appeared as the third most important using SGB. Refer to Table 7.2 for 

more information. 

 

Figure 7. 4  Altman Z-Score for Service Firms Decision Tree 
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7.5.3 Standardised Profits Measure 

 

A decision tree with ‘ROR’ as the root node was developed for this measure. See 

Figure 7.5 for illustration. ‘ROR’ is the most important variable in this model, but RF 

found Total Debt/Total Equity. SGB agreed with the single tree that ROR is the most 

important variable. Total Debt/Total Equity and Retained Earnings/Total Assets are 

clearly also important across all models. Refer to Table 7.2 for more detail. 

 

Figure 7. 5 Standardised Profits Decision Tree 
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Table 7. 2  Model Comparison Table 

 

Table 7.2 shows the most predictive variables achieved for each model constructed 

using the three tree-based techniques. ‘Working Capital divided by Total Assets’ is the 

most important variable in determining Islamic banks’ financial distress using the 

Altman Z-Score and the Altman Z-Score for Service Firms measures across all 

techniques. As for the Standardised Profits measure, ‘Return on Revenue’ is the most 

 
Measure Model Most Significant Variables (in order of significance) 

 
 
 
 
 

Altman Z-Score 

Decision Tree 
(CART) 

1. Working Capital/Total Assets 
2. Current Ratio  
3. Debt Ratio 
4. Retained Earnings/Total Assets 

Random     
Forest 

1. Working Capital/Total Assets 
2. Current Ratio 
3. Total Assets  
4. Equity Ratio 

Stochastic 
Gradient 
Boosting 

(TREENET) 

1. Working Capital/Total Assets 
2. Debt Ratio 
3. Retained Earnings/Total Assets 
4. Market Value of Equity/Total Liabilities 

 
 
 
 

Altman Z-Score 
for Service Firms 

Decision Tree 
(CART) 

1. Working Capital/Total Assets 
2. Current Ratio 
3. Debt Ratio 
4. Total Assets 

Random    
Forest 

1. Working Capital/Total Assets 
2. Current Ratio 
3. Total Assets 
4. Equity Ratio 

Stochastic 
Gradient 
Boosting 

(TREENET) 

1. Working Capital/Total Assets 
2. Debt Ratio 
3. Current Ratio 
4. Retained Earnings 

 
 
 
 

Standardised 
Profits 

Decision Tree 
(CART) 

1. ROR 
2. Total Debt/Total Equity 
3. Market Value of Equity/Total Liabilities 
4. Retained Earnings/Total Assets 

Random    
Forest 

1. Total Debt/Total Equity 
2. ROR 
3. Total Revenue/Total Assets 
4. Retained Earnings/Total Assets 

Stochastic 
Gradient 
Boosting 

(TREENET) 

1. ROR 
2. Retained Earnings/Total Assets 
3. ROA 
4. Market Value of Equity/Total Liabilities 
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important variable for both the DT and SGB techniques. ‘Total Debt divided by Total 

Equity’ is the most important variable using RF – for further analysis of the results 

tabulated above, refer to the Discussion section below.   

 

7.6 Discussion 

  

As was evident in the Results section, there are significant variable differences 

between the measures used, especially between the Altman (1968) and the Beck et 

al. (2013) approaches. The results above showcase the similarities between the 

Altman (1968) Z-Score measure and the Altman Z-Score for Service Firms measure, 

as they have ‘Working Capital/Total Assets’ as the most predictive variable. The 

Current and Debt Ratios appear frequently as the next most predictive variables. As 

for the Standardised Profits measure, ‘ROR’ (Return on Revenue) = Net Income/Total 

Revenue, was the most important predictive variable, using the DT and SGB 

techniques, and the second most predictive using RFs. These results contribute to the 

literature and further the understanding of Islamic banks financial distress. The results 

are meaningful since the banks are service firms, and the results achieved 

comprehensively deal with the capital/monetary aspects of the bank. This explanation 

is in concert with previous Islamic banking literature, including: Jan and Marimuthu 

(2015a, 2015b); Jan et al. (2019), as well as the Basel Accords (explained below), that 

recommends focusing on the capital risks of the banks.  

 

By using lagged variables to predict the future state of Islamic banks, this gives rise to 

the potential of implementing proactive measurements by senior management to 

deviate the bank from the road to bankruptcy. It can also provide governmental 

watchdog institutions an alert to notify the bank of the impending dangers ahead 

should they perpetuate the status quo. Managers will benefit from the findings in this 

study by having a clear picture of what to look for when assessing their bank’s financial 

distress levels. Other stakeholders like investors also benefit as they can make 

informed decisions about whether to stay with the bank or go elsewhere due to a 

forecasted danger the following year. 
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Moving on to regulatory implications, the Basel Accords play a key role in reforming 

the banks’ operations. The Basel Accords are three sets of banking regulations (Basel 

I, II and III) set by the Basel Committee on Bank Supervision (BCBS). They provide 

recommendations on banking regulations in regard to capital risk, market risk, and 

operational risk. The function of the accords is to make sure that financial institutions 

have sufficient capital on hand to meet obligations and withstand unforeseen losses. 

Basel I was issued in 1988 and it focuses on the capital adequacy risk of financial 

institutions – international banks should have a risk weight of 8% or less. Basel II is an 

updated version of the original accord; it coined the 3 pillars: minimum capital 

requirements, supervisory review of an institution's capital adequacy and internal 

assessment process, and effective use of disclosure (Federal Reserve, 2003). Basel 

III was established in the wake of the GFC, it is a continuation of the three pillars, as 

well as extra requirements and safeguards (Bank for International Settlements, 2016).  

 

Even though, as Beck et al. (2013) found, Islamic banks are better capitalised, hence 

can withstand unforeseen losses better vis-à-vis conventional banks, by using lagged 

variables (identified earlier in this chapter and in the predictive models) in conjunction 

with the Basel Accords, management can determine whether the company is in the 

‘danger zone’ or whether their risk is marginal. This will enhance the longevity of banks 

in the marketplace. 

 

7.7 Conclusion 

 

This study has focused on cutting-edge financial distress prediction models and 

applied them to Islamic banks. These models can be used to forecast impending risks 

to enable the decision makers to take the preventive measures to hold-off such risks 

or mitigate their effect. Recursive partitioning techniques were employed to test for the 

most accurate measure in predicting financial distress. The results indicated that there 

is a need for a specific financial distress mechanism for Islamic banks, as variables 

that are indicative of a bank’s status differ between the old Altman (1968) standard 

and novel approaches. ‘Working Capital/Total Assets’ was the most predictive variable 
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for forecasting financial distress in Islamic banks using all three models used in this 

study across both measures: Altman Z-Score and Altman Z-Score for Service Firms. 

As for the Standardised Profits measures, ‘Return on Revenue’ was the most 

influential variable. Therefore, the aforementioned two variables can be used in 

conjunction with the recommendations made by the Basel Accords, when making 

decisions pertaining to FDP of Islamic banks. This presents an opportunity for future 

research to investigate the differences in the results achieved, which will contribute 

towards further understanding of variables affecting Islamic banks’ financial status. 

This chapter has verified Hypothesis 7. 
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Chapter 8: FDP of Large Companies and Small & Medium Enterprises 
 

Aligning with Hypotheses 4 and 5 stated in the Chapter 1, namely: 

H4: Class imbalance does affect the detection accuracy of FDP models, 

and it can be enhanced by optimising the cut-off points or using SMOTE 

vis-à-vis a model that is built on a standard imbalanced data-set. 

H5: Independent variables’ importance vary between FDP models for 

SMEs vis-à-vis LCs. 

 

This chapter will verify the aforementioned hypotheses by applying the SMOTE 

technique to imbalanced data-sets comprised of SMEs and LCs, and investigating the 

differences in independent variable importance between them.Introduction 

 

Small and Medium Enterprises (SMEs) make up the majority of businesses on a global 

scale, employ many more people vis-à-vis Large Companies (LCs), and are 

considered to be the main drivers of economic growth by entrepreneurs. These factors 

enable SMEs to be a mighty force in the fight against poverty worldwide – which 

explains why they are widely viewed as the cornerstone of businesses globally, and 

have led governments around the world to encourage SME development, be it through 

grants, subsidies, and/or limiting red tape (Gupta, Gregoriou, & Healy, 2015; Koshy & 

Prasad, 2007). 

 

In Australia, SMEs account for around 56% of the total Gross Domestic Product (GDP) 

– around 577 billion dollars; constitute around a whopping 99.8% of all businesses – 

thus leaving only around 0.2% for; and employ around 7.3 million people – that makes 

up around 68% of all employees in the country (ASBFEO, 2016). The prevalence of 

SMEs can vary by industry – for example, industries such as: health care, professional 

services, accommodation and food services, real estate, construction, forestry, fishing, 

and agriculture are predominantly run by SMEs; whereas, gas, electricity, water, 

telecommunications, transport, manufacturing, and mining are mainly run by LCs 

(ASBFEO, 2016).  
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A worrying statistic, however, indicates that 44 Australian small businesses close 

doors every day (Cornish & Landy, 2013). Survival rates of businesses seem to 

increase with size – starting with about 56% for sole proprietorships, and ending with 

83% for companies employing more than 200 people, tested over a four-year period, 

from 2011-2015 (ASBFEO, 2016). Given the predominance of SMEs, these statistics 

are troubling for the Australian economy. This presents an opportunity to develop FDP 

models that will aid in understanding the variables affecting business failure for both 

SMEs and LCs. 

 

The definition of what makes up an SME differs from country to country, or region to 

region, and is even often nonbinding – such as in Australia, thus making it difficult and 

subjective to ascertain which definition to use when conducting studies. For example, 

according to the Australian Bureau of Statistics (ABS), a business is classified as a 

“non-employing business,” if it is a sole proprietorship or partnership without any 

employees; a “micro business,” if it has less than five employees; a “small business,” 

if it has at least 5, but less than 20 employees; a “medium business,” if it has at least 

20, but less than 200 employees; and a “large business,” if it has 200 or more 

employees ABS (2001). However, according to the Australian Securities and 

Investments Commission (ASIC), for a company to be classified as a “large proprietary 

company,” it must satisfy two of the following three criteria:  

1. The consolidated annual revenue of the company is $25 million or more,  

2. The annual consolidated gross assets the company owns is $12.5 million or 

more, and/or  

3. The company employs 50 or more employees (ASIC, 2014). 

 

This chapter outlines the inherent differences between SMEs and LCs and the 

statistics relating to a large number of small business failures in Australia. The chapter 

proceeds to survey the literature on the various studies that have developed FDP 

models pertaining to SMEs. After this, the data-set used in this study is presented – 

comprising Australian LCs and SMEs. Similar to Chapter 5, the data-set used in this 

study has a class imbalance problem. To remedy this, the same methodology used in 
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Chapter 5 was used again here due to its empirical substantiation, that is, using 

SMOTE and creating FDP models using machine learning techniques. Following this, 

the results of the aforementioned models are presented, followed by concluding 

remarks. This chapter’s contribution is in the form of using SMOTE and applying and 

comparing various machine learning techniques to create FDP models pertaining to 

Australian LCs and SMEs – this has not been done before to the best of the author’s 

knowledge. This furthers the understanding of variables affecting the financial health 

of SMEs and LCs, and offers invaluable insight to decision makers to install proactive 

measures to alleviate possible bankruptcies. 

 

8.2 Literature Review 

 

The literature is inundated with studies that deal with FDP of LCs, many of which are 

based on Altman’s (1968) seminal paper. The papers tend to use historical data to 

predict financial distress of firms (Gupta et al., 2015). Only a fraction of the FDP studies 

are applied to SMEs. This may be because the definition of what constitutes an SME 

varies across different countries or regions, or due to the fact that it is much easier to 

obtain data pertaining to LCs, as they tend to be more publicly listed in comparison 

with SMEs. Being a publicly listed company entails providing public access to their 

archival data, and such data tends to be readily available across many databases. On 

the other hand, SMEs – especially micro and small companies – tend to be privately 

owned, hence are under no obligation to disclose their financial statements, which in 

turn, makes it much more difficult to retrieve the required data to perform an FDP study 

(Edmister, 1972). 

 

As mentioned above, the definition of SMEs can be regional and nonbinding, which 

has led researchers to use different definitions for their studies. For example, Freel 

(2000); Spithoven, Vanhaverbeke, and Roijakkers (2013) used the European 

Commission and the Organisation for Economic Cooperation and Development’s 

(OECD) definition of SMEs for splitting their data-set, that is, by using a 250-employee 

cut-off; whereas, Narula (2004); Van de Vrande, De Jong, Vanhaverbeke, and De 
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Rochemont (2009) used a 500-employee cut-off; while, Bianchi, Campodall'Orto, 

Frattini, and Vercesi (2010) used a 50-employee cut-off. 

 

The seminal paper that spearheaded the application of FDP modelling on an SME 

data-set was by Edmister (1972). His study incorporated 19 financial ratios as 

predictors. Those variables were selected as they were supported by theorists or 

found to be significant in previous empirical research. and employed MDA on data-

sets that were based on restrictive assumptions, ranging from 42-562 small 

businesses. His results yielded a discriminant function with seven variables that can 

be used to infer whether a business is going to be fail or not with 93% accuracy. 

 

Altman and Sabato (2007) applied LR techniques on a sample of SMEs in the United 

States. Their findings indicate that their FDP model outperforms generic credit scoring 

models, and it leads to lower capital requirements for banks. However, they 

acknowledge that their model’s performance could be improved by addition of 

qualitative data.  

 

Altman, Sabato, and Wilson (2010) heeded Altman and Sabato’s (2007) 

recommendation regarding qualitative data and incorporated both nonfinancial, 

regulatory compliance, and event data when developed FDP models using a sample 

of 5.8 million unlisted SMEs in the UK, of which over 66,000 failed between 2000-

2007. Their findings showed a 13% improvement in their model’s performance when 

qualitative information are added alongside traditional financial ratios.  

 

Spithoven et al. (2013) used a sample consisting of 792 SMEs and 175 LCs in their 

study. They considered a company to be an SME if it had fewer than 250 employees. 

They used independent variables that consist of control, open innovation – breadth, 

and open innovation – intensity, in their study. They investigated how open innovation 

affects the innovative performance of SMEs vis-à-vis LCs. Their findings indicate that 

SMEs are more dependent on open innovation compared to LCs, and are more 
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effective in using different open innovation practices concurrently when they present 

new products to the marketplace. Intellectual property protection mechanism drives 

revenues from new products in, however, in the case of LCs, they gain from search 

strategies. 

 

Camacho‐Miñano, Segovia‐Vargas, and Pascual‐Ezama (2015) used Artificial 

Intelligence (AI) techniques, namely: rough set and PART methods (rule-learning 

algorithm based on partial DTs) to model for FDP of SMEs in Spain. Their sample 

included 235 bankrupt companies. They started with an initial set of 23 variables but 

they were later reduced to nine. The objective of the study was to identify the 

characteristics of bankrupt firms. The AI models’ results indicated that there are five 

important FDP variables, namely: Sector, Size, Number of Shareholdings, Return on 

Assets, and Liquidity. 

 

Keasey, Pindado, and Rodrigues (2015) used a sample of 18,580 firms from five 

European countries for the time-period 1999-2006. 74.4% of the companies were 

healthy and 25.6% were distressed. They considered a firm to be distressed if it had 

two consecutive years of having an Earnings Before Interest, Tax, Depreciation, and 

Amortisation (EBITDA) value less than financial expenses, (Net Worth / Total Debt) 

being less than 1, and if the company’s net worth falls between the two periods. The 

used five variables in their study. The study’s objective was to identify the most 

important FDP variables. They showed that the expected costs of financial distress, 

can be estimated by an innovative model that allows for an interaction between the 

possibility of financial distress and its costs when it happens. Their results indicated 

that forecasted financial distress costs depend on the likelihood of financial distress 

and on the variables that effect the period of time and costs incurred during the 

bankruptcy process. Particularly, financial costs are lesser where the capability to use 

tangible assets as collateral and short-term debt is larger; they are larger the more the 

use of long-term secured debt. Also, the effect of these variables can be controlled by 

the firm’s ownership and bankruptcy laws. 
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Gupta et al. (2015) used a sample consisting of 8,162 distressed and 385,733 healthy 

companies in the United Kingdom for the time-period 2000-2009. 20 financial and 

nonfinancial variables used to predict a firm’s failure hazard. They estimate separate 

hazard models for each sub-category of SMEs, and compare their accuracy with an 

SMEs hazard model that include all three sub-categories. They test their hypotheses 

using discrete-time duration dependent hazard rate modelling techniques, which 

control for both survival time and macro-economic circumstances. Their results 

present the differences in the financial distress attributes of micro firms and SMEs, 

and showcase that there is no need to segregate small and medium firms when 

creating FDP models, since almost all explanatory variables affect the failure hazard 

of SMEs, small, and medium firms. 

 

Calabrese, Andreeva, and Ansell (2019) used 92 predictors and extracted data 

pertaining to 27,533 companies in London from an anonymous database for their 

study. They used the European definition of what constitutes an SME (less than 250 

employees and annual turnover below 50 million euros). They studied the effects of 

incorporating the interdependence among SME bankruptcies into a risk analysis 

framework using data prior to the GFC. Their findings indicate that the 

interdependence or contagion component defined based upon spatial and 

demographic characteristics is significant, and it enhances the ability to predict 

defaults of non-start-ups in London.  

 

As is evident in the literature survey presented above, there are many studies applying 

FDP to SMEs. However, there are no studies that combine SMOTE with FDP 

modelling pertaining to Australian SMEs and LCs. This presents an opportunity to fill 

an existing gap in the literature. Therefore, this chapter contributes towards this gap 

by applying four machine learning techniques on ASX and SMOTEd data-sets, in order 

to create FDP models pertaining to Australian LCs and SMEs. The results of the 

models using the aforementioned data-sets will be compared to ascertain the most 

effective model at predicting financial distress of SMEs and LCs. To add, the most 

important variables that directly affect SME and LC financial distress will be presented 

and discussed. 
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8.3 Data 

 

In order to develop FDP models for LCs and SMEs, this study adopts ASIC’s definition 

of businesses – as was outlined earlier in the Introduction section. This is because 

ABS’s definition purely focuses on the number of employees in a business, and this is 

a myopic and simplistic category to classify by. Whereas, ASIC’s definition is more 

holistic and provides extra dimensions that is more in-touch with real-world situations. 

Therefore, classifying businesses as SMEs will be according to whether they satisfy 

any two of the following three criteria: less than 50 employees, less than $12.5 million 

in assets, and/or less than $25 million in annual revenue. Hence, this definition of 

SMEs will encompass micro, small, and medium businesses. Businesses that do not 

meet two of the three criteria are classified as large. 

 

The Capital IQ database was used to extract financial data for all companies listed on 

the Australian Stock Exchange (ASX) as at 28th of May, 2018 – their latest financial 

statements were used (30th of June, 2017). After classifying the companies as per 

ASIC’s criteria and cleaning the data, the final data-set pertaining to healthy (listed) 

companies was as follows: 1,233 SMEs and 260 LCs. Some of the companies in the 

data-set had missing information – the literature presents a number of ways for dealing 

with this issue, including: deletion, replacement with mean, replacement with mean for 

a given class, replacement with median for a given class, replacement with mode, to 

name a few. Due to the presence of outliers in the data-set, replacing the missing 

values with median for the given class was chosen, as the median is immune to 

outliers (Kantardzic, 2011). This methodology has been previously used across 

various disciplines in the literature, including: Gromski et al. (2014); Kaiser (2014). 

 

Capital IQ was also used to collect data pertaining to delisted (distressed) ASX 

companies from 1/7/2016 – 30/5/2018. Financial data were extracted for the latest 

annual financial statement prior to delisting, for example, if a company delisted on the 

3rd of July, 2018, the financial statement for the 2017 financial year (as at 30th of June, 

2017) was used. After classifying the companies as per ASIC’s criteria and cleaning 
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the data, the final distressed companies’ data-set was as follows: 42 SMEs and 32 

LCs. Some companies in the data-set had missing information, so, as with the listed 

companies above, replacement of missing values by the median was conducted. 

 

The data for both SMEs and LCs are imbalanced in terms of healthy and distressed 

companies, that is, the ratio of healthy companies vastly outweighs that of distressed 

companies – refer to Table 8.1 below for a breakdown of the data-sets. As is evident 

in Table 8.1, there is an issue of class imbalance for both the SME and LC data-sets, 

meaning that there are much more healthy companies than there are distressed – for 

SMEs: 96.71% to 3.29%, respectively; for LCs: 89.04% to 10.96%, respectively.  

 

Table 8. 1 Final Data-Set 

Companies Healthy Distressed Total Class Imbalance 

SMEs 1,233 42 1,275 96.71% Listed – 3.29% Delisted 

Large 260 32 292 89.04% Listed – 10.96% Delisted 

Total 1,493 74 1,567 95.28% Listed – 4.72% Delisted 

 

The 24 variables selected for the study are given in Table 8.2. The variables used in 

this research were chosen in line with prior studies dealing with the SMEs, including: 

Altman et al. (2010); Camacho‐Miñano et al. (2015); Gepp (2015); Gupta et al. (2015); 

Keasey et al. (2015); Spithoven et al. (2013). 

 

 

 

 

 

 

 

 



159 
 

Table 8. 2 Variables used in the study 

Variable Description 

ln TA Natural Logarithm value of Total Assets (TA) 

ln TR Natural Logarithm value of Total Revenue (TR) 

ln Employees Natural Logarithm value of Total Employees 

ROE Return on Equity = Net Income/ (Shareholders’ Equity - Outside Equity Interests) 

ROA Return on Assets = Earnings Before Interest (EBIT) / Total Assets Less Outside equity interests 

ROC Return on Capital = Earnings Before Interest and Tax (EBIT) * (1-0.375) / Average Total Capital 

Gross Margin Gross Profit / Total Revenue 

ROCE Return on Capital Employed = EBIT / (Total Assets - Current Liabilities) 

SG&A Margin Selling, General, and Administration Costs / Net Sales 

TD/TE Total Debt (TD) / Total Equity (TE) * 100 

TD/TC Total Debt (TD) / Total Capital (TC) * 100 

TL/TA Total Liabilities (TL) / Total Assets (TA) 

Cash/CL Cash / Current Liabilities 

Cash/TA Cash / Total Assets 

CA/TA Current Assets / Total Assets 

NWC/TA Net Working Capital / Total Assets  

NI/TA Net Income / Total Assets 

EBITDA/TA Earnings Before Interest, Tax, Depreciation, & Amortisation / Total Assets 

RE/TA Retained Earnings / Total Assets 

CFO/CL Cash from Operations / Current Liabilities 

Current Ratio Current Assets / Current Liabilities 

Quick Ratio (Current Assets - Current Inventory) / Current Liabilities 

Asset Turnover Total Revenue / Total Assets 

Altman Z-Score Z = 1.2x1 + 1.4x2 + 3.3x3 + 0.6x4 + 1.0x5 – refer to Chapter 2 for variables   

 

Following this, a dichotomous binary variable was used to refer to the status of each 

company – coded ‘1’ if the company is listed (healthy) and ‘0’ if the company is delisted 

(distressed). For example, when creating the SMEs training sample, the data were 

split in half by randomly selecting 50% of the observations (1,275 ÷ 2 = 638). The other 

half of the observations were used to construct the holdout validation sample. Same 

process was repeated for the LCs. When creating both the training and testing 

samples for both data-sets, it is was ensured that the class imbalance ratio did not 

vary significantly from the overall data-set, as otherwise the generated model will not 

have a fair representation of the original data – this process and the results sets are 

summarised in Table 8.3.  
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Table 8. 3 Original Training and Testing Data-Sets for SMEs and LCs 

Companies Training Holdout Total 
Class Imbalance 

for Training 
Samples 

Class Imbalance for 
Holdout Samples 

SMEs 
638  

(613 Healthy –  
25 Distressed) 

637 
(620 Healthy –  
17 Distressed) 

1,275 
96.08% Healthy –  
3.92% Distressed 

97.33% Healthy –  
2.67% Distressed 

Large 
146 

(130 Healthy –  
16 Distressed) 

146 
(130 Healthy –  
16 Distressed) 

292 
89.04% Healthy –  
10.96% Distressed 

89.04% Healthy –  
10.96% Distressed 

 

8.4 Methodology 

 

There are two subsections within the Methodology section. The first subsection 

explains the data-sets used in this study and how the training and testing samples 

were constructed. The second subsection showcases the models that were created 

for this study using the following techniques: DT, treebag, RF, and SGB. The 

evaluation methods used in this study for assessing detection accuracy of the created 

models incorporates both visual (as per the ROC graph) and empirical (as per the 

AUROC score) aspects. Combining both aspects reinforces the validity of the results.  

8.4.1 Data-sets 

 

Four data-sets were used in this study’s analysis, the original and the SMOTEd data-

sets for both LCs and SMEs, as shown: 

 

8.4.1.1 Original SME and LC Data-sets 
 

As explained the Data section above, the original data-sets of both SMEs and LCs 

were split evenly to create training and holdout samples for each. These training 

samples of each data-set are then tested on their respective holdout sample to create 

the models pertaining to the original data-sets – which will be explored later in this 

section. Since the holdout samples for both LCs and SMEs contain real-life data, they 

will also be used to as the holdout samples for the SMOTEd data-sets.  
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8.4.1.2 SMOTEd Data-set for SMEs 
 

The same process and parameters that were used in Chapter 5 for creating the 

SMOTEd data-sets were used in this chapter.  After SMOTEing the SMEs original 

training data-set, the results yielded a SMOTEd data-set with 100 observations – 50 

healthy and 50 distressed observations, thus eliminating the prevailing class 

imbalance problem that existed in the original SMEs data-set. The SMOTEing process 

has oversampled the healthy companies by doubling their amount from 25 to 50, and 

has undersampled the distressed companies from 638 to 50 (removed 588 

observations). The SMOTEd data-set is more than six times smaller than the original 

data-set – refer to Table 8.4. This balanced SMOTEd data-set is used to train the 

various models constructed in this chapter, before being tested on the holdout sample 

from the original data – as shown in Table 8.5. 

 

Table 8. 4 Original versus SMOTEd Data for SMEs 

Data-set Number of Companies Class Imbalance % 

Original 638 96.08% Healthy – 3.92% Distressed 

SMOTEd 100 50.00% Healthy – 50% Distressed 
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Table 8. 5 Training and Holdout Samples for SMEs 

Data-set Sample Partition Number of Observations Percentage 

Train (2 Options) 
Original 638 50% 

SMOTEd 100 100% 

Holdout Sample for  

All SME Models 
 637 50% 

 

8.4.1.3 SMOTEd Data-set for LCs 

 

After SMOTEing the LCs original data-set, the results yielded a SMOTEd data-set with 

64 observations – 32 healthy and 32 distressed observations, thus also eliminating the 

prevailing class imbalance problem that existed in the original LCs data-set. The 

SMOTEing process has oversampled the healthy companies by doubling their amount 

from 32 to 64, and undersampled the distressed companies from 146 to 32 (removed 

114 observations). The SMOTEd data-set is less than half the size of the original 

training data-set – refer to Table 8.6 for a comparison of the original and SMOTEd 

data-sets for LCs. This balanced SMOTEd data-set is used to train the various models 

constructed in this chapter, and is then tested on the holdout sample from the original 

data – as shown in Table 8.7. 

 

Table 8. 6 Original versus SMOTEd Data for LCs 

Data-set Number of Companies Class Imbalance % 

Original 146 89.04% Listed – 10.96% Delisted 

SMOTEd 64 50.00% Listed – 50% Delisted 
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Table 8. 7 Training and Holdout Samples for LCs 

Data-set Sample Partition Number of Observations Percentage 

Train (2 Options) 
Original 146 50% 

SMOTEd 64 100% 

Holdout Sample for  

All LC Models 
 146 50% 

 

 

8.4.2 Models Constructed 

 

This subsection explains the models built for this study. Two software packages were 

used to aid with the analysis, namely: ‘Salford Predictive Modeler’ and ‘R’ software 

package. ‘R’ was used to develop the treebag models, whereas ‘Salford Predictive 

Modeler’ was used to develop the DT, RF, and SGB models. To minimise repetition, 

the mechanics of these techniques will not be presented, refer to Chapter 2 for in-

depth analysis of the DT, RF, and SGB techniques, and to Chapter 5 for an analysis 

of the treebag technique. 

 

8.4.2.1 Decision Tree Models 
 

Four models were created using DTs – two for the SMEs, one using the original data-

set, and the other using the SMOTEd data-set; and the other two for the LCs, again, 

one for each data-set. Building the DT models had following properties – all are 

commonly used metrics: 
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 Testing method to determine optimal size was based on the commonly used 

tenfold cross validation  

 The parameters influencing the selection of the best tree were based on 

commonly used criteria:  

o Standard error rule: Minimum cost tree regardless of size,  

o Variable importance formula: All surrogates count equally  

 The splitting method for the classification trees was the popular Gini criterion. 

  

The SME models were then tested on the SMEs holdout sample. Similarly, the LC 

models were tested on the LCs holdout sample. 

 

8.4.2.2 Treebag Models 
 

The models for both SMEs and LCs were trained using the “caret” package on the 

training samples using the commonly used tenfold cross validation. Whether the 

company is healthy or distressed was set as the response variable, whereas all of the 

variables shown in Table 8.2 were set as predictors. Standard parameters were used 

when developing the treebag model. 

 

As mentioned earlier, to check how the treebag models performed, the ROC and 

AUROC measures were used to provide both visual and empirical results. Four 

models were created using treebag – two for the SMEs, one using the original data-

set, and the other using the SMOTEd data-set; and the other two for the LCs, again, 

one for each data-set. The SME models were then tested on the SMEs holdout 

sample. Similarly, the LC models were tested on the LCs holdout sample. 
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8.4.2.3 Random Forests Models 
 

Four models were created using RFs – two for the SMEs, one using the original data-

set, and the other using the SMOTEd data-set; and the other two for the LCs, again, 

one for each data-set. Building the RF models had following properties – all are 

commonly used metrics. 

 Testing method was based on the commonly used out of bag method  

 Number of trees built: 1,000  

 Number of predictors: Square root (√24 ≈ 5)  

 

The SME models were then tested on the SMEs holdout sample. Similarly, the LC 

models were tested on the LCs holdout sample. 

 

8.4.2.4 Stochastic Gradient Boosting Models 
 

As with all the other models, four models were created using SGB – two for the SMEs, 

one using the original data-set, and the other using the SMOTEd data-set; and the 

other two for the LCs, again, one for each data-set. Building the SGB models had 

following properties – all are commonly used metrics. 

 Testing method was based on the popular tenfold cross validation  

 Number of trees built: 1000  

 Maximum nodes per tree: 6  

 Criterion for determining optimal number of trees for model: AUROC 

 

The SME models were then tested on the SMEs holdout sample. Similarly, the LC 

models were tested on the LCs holdout sample. 
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8.5 Results 

 

This section presents the results in this study for both SMEs and LCs using the four 

aforesaid techniques after they have been tested on their respective holdout samples 

– SMEs holdout sample size: 637 observations; LCs holdout sample size: 146 

observations. Refer to the Appendices section (Appendix 2 and Appendix 3) for the 

raw R-code and data summary. 

 

8.5.1 Treebag Models 

 

8.5.1.1 AUROC Results 
 

 SMEs: The treebag model using the original data-set yielded an AUROC result 

of 0.76. On the other hand, the treebag model using the SMOTEd data-set 

yielded an AUROC result of 0.82. 

 LCs: The treebag model using the original data-set yielded an AUROC result 

of 0.89.  On the other hand, the treebag model using the SMOTEd data-set 

yielded an AUROC score of 0.89.  

 

What is notable in these results, is that the models using the SMOTEd data-sets 

outperformed the models using the original data-sets for both SMEs and LCs.  

 

8.5.1.2 ROC Results 
 

The black lines in the figures below represent the models’ predictive performance. The 

grey lines are there purely for illustrative purposes showcasing a hypothetical model 

with no distinguishing capabilities between the classes. Refer to Chapter 5 for an 

explanation of the mechanics of interpreting the ROC graphs. The results are as 

follows: 
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 SMEs: Figures 8.1 and 8.2 below present the ROC graphs for both the original 

and SMOTEd models. As is evident when comparing both graphs, the black 

line of the SMOTEd model runs closer to the Y-axis, thus encompassing a 

larger area beneath it, which is reflected in the higher AUROC score of the 

SMOTEd Model vis-à-vis the Original Model. 

 

Figure 8. 1 Original SMEs Treebag   Figure 8. 2 SMOTEd SMEs Treebag       

ROC        ROC  

 

 LCs: Figures 8.3 and 8.4 below present the ROC graphs for both the original 

and SMOTEd models. As is evident when comparing both graphs, the black 

lines of the both models look very similar. This is reflected in the same AUROC 

score of either model, thus indicating no empirical superiority of SMOTE here. 

However, due to the much smaller data-set, using the SMOTEd model is 

preferable as it is much easier to deal with. 
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Figure 8. 3 Original LCs Treebag ROC         Figure 8. 4 SMOTEd LCs Treebag ROC

 

8.5.2 Decision Tree Models 

 

8.5.2.1 AUROC Results 
 

 SMEs: The DT model using the original data-set yielded an AUROC result of 

0.76. On the other hand, the DT model using the SMOTEd data-set yielded an 

AUROC result of 0.78. 

 LCs: The DT model using the original data-set yielded an AUROC result of 

0.76.  On the other hand, the DT model using the SMOTEd data-set yielded an 

AUROC result of 0.86. 

 

8.5.2.2 ROC Results 
 

 SMEs: Figures 8.5 and 8.6 below present the ROC graphs for both the original 

and SMOTEd models. As is evident when comparing both graphs, the blue line 

of the SMOTEd model runs closer to the Y-axis, thus encompassing a larger 

area beneath it, which is reflected in the higher AUROC score of the SMOTEd 

Model vis-à-vis the Original Model. 
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Figure 8. 5 Original SMEs DT ROC          Figure 8. 6 SMOTEd SMEs DT ROC 

 

 LCs: Figures 8.7 and 8.8 below present the ROC graphs for both the original 

and SMOTEd models. As is evident when comparing both graphs, the blue line 

of the SMOTEd model runs closer to the Y-axis, thus encompassing a larger 

area beneath it, which is reflected in the higher AUROC score of the SMOTEd 

Model vis-à-vis the Original Model. 

 

Figure 8. 7 Original LCs DT ROC               Figure 8. 8 SMOTEd LCs DT ROC 
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8.5.3 Random Forests Models 

 

8.5.3.1 AUROC Results 
 

 SMEs: The RF model using the original data-set yielded an AUROC result of 

0.89. On the other hand, the RF model using the SMOTEd data-set yielded an 

AUROC result of 0.9. 

 LCs: The RF model using the original data-set yielded an AUROC result of 

0.88.  On the other hand, the RF model using the SMOTEd data-set yielded an 

AUROC result of 0.9. 

 

8.5.3.2 ROC Results 
 

 SMEs: Figures 8.9 and 8.10 below present the ROC graphs for both the original 

and SMOTEd models. As is evident when comparing both graphs, the blue lines 

of the both models look very similar. Therefore, it is imperative to check the 

AUROC score in order determine which model is empirically superior. As 

presented above, the model using SMOTEd data is empirically superior. 

 

Figure 8. 9 Original SMEs RF ROC                  Figure 8. 10 SMOTEd SMEs RF ROC 
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 LCs: Figures 8.11 and 8.12 below present the ROC graphs for both the original 

and SMOTEd models. Similar to the SMEs models, the blue lines of the both 

models look very similar. Therefore, after referring to the AUROC score, it is 

clear that the model using SMOTEd data is empirically superior. 

 

Figure 8. 11 Original LCs RF ROC                     Figure 8. 12 SMOTEd LCs RF ROC 

 

 

8.5.4 Stochastic Gradient Boosting Models 

 

8.5.4.1 AUROC Results 
 

 SMEs: The SGB model using the original data-set yielded an AUROC result of 

0.86. On the other hand, the SGB model using the SMOTEd data-set yielded 

an AUROC result of 0.9. 

 LCs: The SGB model using the original data-set yielded an AUROC result of 

0.89.  On the other hand, the SGB model using the SMOTEd data-set yielded 

an AUROC result of 0.91. 
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8.5.4.2 ROC Results 
 

 SMEs: Figures 8.13 and 8.14 below present the ROC graphs for both the 

original and SMOTEd models. As is evident when comparing both graphs, the 

blue line of the SMOTEd model runs closer to the Y-axis, thus encompassing 

a larger area beneath it, which is reflected in the higher AUROC score of the 

SMOTEd Model vis-à-vis the Original Model. 

 

Figure 8. 13 Original SMEs SGB ROC          Figure 8. 14 SMOTEd SMEs SGB ROC 

 

 

 LCs: Figures 8.15 and 8.16 below present the ROC graphs for both the original 

and SMOTEd models. Similar to the SMEs models, the blue lines of the both 

models look very similar. Therefore, after referring to the AUROC score, it is 

clear that the model using SMOTEd data is empirically superior. 
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 Figure 8. 15 Original LCs SGB ROC               Figure 8. 16 SMOTEd LCs SGB ROC 

 

 

 

 

 

 

 

8.5.5 Model Comparison   

 

The following subsection presents the AUROC results and the most important 

variables in detection of financial distress for both SMEs and LCs in a tabulated fashion 

for ease of comparison. The top five variables, in order of importance, are presented 

for each developed model. 

 

8.5.5.1 SMEs 
 

Table 8. 8 SMEs Most Important Variables using Original Data 

Model AUC IMPORTANT VARIABLES 

DT 0.76 (1) QR; (2) Cash/CL; (3) CR; (4) TL/TA; (5) Cash/TA 

Treebag 0.76 (1) CR; (2) ROA; (3) QR; (4) ROC; (5) ROE 

RF 0.89 (1) Cash/TA; (2) CA/TA; (3) TL/TA; (4) LnTA; (5) QR 

SGB 0.86 (1) QR; (2) CR; (3) Cash/CL; (4) EBITDA/TA; (5) RE/TA 
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Table 8. 9 SMEs AUROC Results Using SMOTEd Data 

Model AUC IMPORTANT VARIABLES 

DT 0.78 (1) ROC; (2) ROA; (3) ROE; (4) ROCE; (5) Cash/TA 

Treebag 0.82 (1) ROC; (2) ROA; (3) ROE; (4) Cash/TA; (5) LnTA 

RF 0.9 (1) Cash/TA; (2) ROC; (3) ROE; (4) ROA; (5) QR 

SGB 0.9 (1) ROC; (2) Cash/TA; (3) TL/TA; (4) LnTA; (5) RE/TA 

 

As is evident in Tables 8.8 and 8.9, the AUROC scores of the models using SMOTEd 

data are higher than those using original data. This indicates that using SMOTE 

provides empirically superior results. The increase in accuracy across the various 

models conform with the literature – in terms of the predictive accuracy of 

DT<treebag<RF/SGB. The DT uses builds a single tree, whereas treebag, RF, and 

SGB build an ensemble of trees, therefore, the accuracy in such models tend to 

outweigh DT. 

 

As for the most important variables in detecting financial distress, the results from both 

data-sets showcase liquidity-driven variables, as shown: 

 Original: In the models using original data, variables such as Quick Ratio (QR), 

Current Ratio (CR), Cash divided by Total Assets (CASH/TA), and Cash divided 

by Current Liabilities (CASH/CL) appear frequently across the models. 

  SMOTEd: As for the models using SMOTEd data, there is a little more 

consistency of variables across the models. Variables such as Return on 

Capital (ROC), Cash divided by Total Assets (CASH/TA), Return on Equity 

(ROE), and Return on Assets (ROA) appear frequently across the models. 

 

The SME models present an important finding to showcase that SMEs are liquidity 

driven, unlike large corporations, since they cannot access debt as easily, so liquidity 

is key to their success.  
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8.5.5.2 LCs 

 

Table 8. 10 LCs Most Important Variables Using Original Data 

Model AUC Important Variables 

DT 0.76 (1) ROE; (2) ROCE; (3) NI/TA; (4) ROA; (5) CFO/CL 

Treebag 0.89 (1) LnEmp; (2) TL/TA; (3) CA/TA; (4) Cash/CL; (5) Cash/TA  

RF 0.88 (1) ROE; (2) ROCE; (3) ROA; (4) LnEmp; (5) NI/TA 

SGB 0.89 (1) LnEmp; (2) ROE; (3) CA/TA; (4) Asset Turnover; (5) CR 

 

Table 8. 11 LCs AUROC Results Using SMOTEd Data 

Model AUC Important Variables 

DT 0.86 (1) LnEmp; (2) TL/TA; (3) CA/TA; (4) Cash/CL; (5) Cash/TA 

Treebag 0.89 (1) LnEmp; (2) NI/TA; (3) ROE; (4) CA/TA; (5) Altman Z-Score  

RF 0.9 (1) LnEmp; (2) Gross Margin; (3) CA/TA; (4) NI/TA; (5) EBITDA/TA 

SGB 0.91 (1) LnEmp; (2) Gross Margin; (3) EBITDA/TA; (4) ROE; (5) NI/TA 

 

As is evident in Tables 8.10 and 8.11, the AUROC scores of the models using 

SMOTEd data are higher than those using original data, expect for the treebag models 

which yielded similar scores. This indicates that using SMOTE provides empirically 

superior results. The increase in accuracy across the various models conform with the 

literature – in terms of the predictive accuracy of tree ensembles over single tree 

techniques. 

 

As for the most important variables in detecting financial distress, the results from both 

data-sets showcase variables that are asset and employment-driven, as shown: 

 Original: In the models using original data, variables such as Return on Equity 

(ROE), Return on Capital Enterprise (ROCE), Net Income divided by Total 

Assets (NI/TA), and the natural logarithm of employees (LnEMP) appear 

frequently across the models. 

 SMOTEd: In the models using SMOTEd data, there is a little more consistency 

of variables across the models. Variables such as the natural logarithm of 

employees (LnEMP), Gross Margin, Current Assets divided by Total Assets 
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(CA/TA), and Earnings Before Interest, Tax, Depreciation, and Amortisation 

divided by Total Assets (EBITDA/TA) appear frequently across the models. 

 

The LC models present important findings, namely: LCs are more asset-driven than 

SMEs, and the number of employees a company has is an important determinant of a 

company’s financial health, that is, the more the employees, the more likely the 

company is financially healthy. This is in concert with the ASBFEO (2016) statistics 

presented in the Introduction section regarding the survival rates of companies, as well 

as the studies presented in the Literature Review section. 

 

8.6 Conclusion 

 

In this chapter, FDP models were created using data pertaining to SMEs and LCs that 

are listed on the ASX. Another set of FDP models were created on data that was 

SMOTEd. Both visual (as per the ROC graph) and empirical (as per the AUROC 

scores) results were presented for all the models created in this study. The empirical 

AUROC results – which takes into consideration specificity and sensitivity – indicated 

that the models using SMOTE outperformed the models using the original data, with 

the SGB model being the superior model. These results cement Chapter 5’s findings 

in terms of superiority of SMOTE pertaining to FDP modelling.  

 

In terms of variable importance, this chapter’s findings indicate that variables affecting 

financial distress differ substantially for SMEs and LCs, as was shown by the variable 

importance analysis. Most notably, SMEs are liquidity-driven, with the most important 

variable that appeared frequently across all models being ‘Return on Capital’. A 

rationale to explain the liquidity-driven nature of SMEs is that it is much harder for 

SMEs to access funds from creditors due to the limited collateral on offer – hence, 

creditors can be more cautious providing a loan to SMEs. Therefore, if an SME is 

presenting low liquidity ratios, that ought to raise red flags (indicative of possible 

financial distress).  
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On the other hand, LCs are more employee and asset-driven, with the most important 

variable that appeared frequently across all models being ‘natural logarithm of 

employees.’ One rationale to explain the asset-driven nature of LCs is due to the 

company size, that is, generally, the bigger the company is, the more employees it has 

and the more assets it acquires. Therefore, this opens the doors for easy access to 

creditors, lobbying power, and influence on stakeholders. These factors can explain 

the positive correlation between LC financial health, employment numbers, and high 

asset ratios. Therefore, if an LC is presenting low asset ratios or has low employment 

figures, that ought to raise red flags (indicative of possible financial distress).  

 

This study is a novel way of combining SMOTE with machine learning techniques to 

create FDP models pertaining to SMEs and LCs, in order to present the most accurate 

models, and present the most important variables in determining their financial 

distress. The results indicated that the ‘Return on Capital’ variable was the most 

important variable in determining the success or failure of a SME; as for LCs, the 

number of employees was directly proportional with a firm’s success or failure. The 

findings present a need for distinctly separate FDP models to be created when 

modelling for SMEs or LCs. This chapter has verified Hypotheses 4 and 5. 
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Chapter 9: Conclusions, Study Limitations, & Future Works 
 

This thesis has explored and tackled the issue of Financial Distress Prediction (FDP) 

from numerous angles. This was done by firstly introducing the concept of FDP, the 

research questions and hypotheses – as was outlined in Chapter 1. Following this, an 

extensive review of the literature was conducted – as was shown primarily in Chapter 

2, but also in each subsequent chapter, as per each chapter’s specific topic. Later 

chapters utilised various traditional and machine learning statistical techniques were 

utilised to create models that were used to:  

 Test the efficacy of industry-specificity vis-à-vis a one-size-fits-all model on FDP 

– this was done by creating separate industry-specific models through 

segregating companies in the Australian marketplace as per each industry they 

subscribe to. After this, various techniques were utilised to create FDP models 

for each industry. The results indicated the superiority of industry-specific 

models vis-à-vis industry-wide models. Also, results indicated that variable 

importance differ per industry – refer to Chapter 3; 

 

 Outline the empirically superior FDP model when applied to the Australian 

mining industry, as well as, presenting the most important variables that 

showcased a mining company’s success or failure – this was done through 

creating four models, each using a different modelling technique, namely: LR, 

DT, RF, and SGB. Since the data-set was imbalanced, the models’ cut-off 

points were optimised – refer to Chapter 4; 

 

 Apply the Synthetic Minority Oversampling Technique (SMOTE) to remedy for 

the class imbalance problem – this was done by comparing the empirical 

predictive accuracy of a model using a standard data-set suffering from class 

imbalance vis-à-vis a model developed using a data-set that has been 

SMOTEd. The predictive accuracies of both approaches were compared using 

machine learning models, namely: DT, treebag, RF, and SGB. The results 

conclusively established the superiority of the SMOTE technique – refer to 

Chapter 5; 
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 Explore the differences in FDP between Large Companies (LCs) versus Small 

and Medium Enterprises (SMEs) – since both data-sets suffered from the class 

imbalance problem, SMOTE was used in the same manner it was used in 

Chapter 5. Four techniques were used: DT, treebag, RF, and SGB. The results 

indicated a superior predictive accuracy for the models that used the SMOTEd 

data-set, as well as outlining the different variables with the highest predictive 

power for both SMEs and LCs – refer to Chapter 8; 

 

 Apply FDP modelling to Islamic banking, as well as outline the differences and 

similarities vis-à-vis conventional banking – this was done through using three 

different measures of financial distress/success pertaining to Islamic banks, 

namely: Altman Z-Score, Altman Z-Score for Service Firms, and the 

Standardised Profits, to measure the banks’ financial distress. DT, RF, and 

SGB techniques were used to build the models for each measure. The results 

indicated that ‘Working Capital/Total Assets’ was the most predictive variable 

for predicting financial distress in Islamic banks using all three models, for both 

the Altman Z-Score and Altman Z-Score for Service Firms methods. On the 

other hand, the Standardised Profits method, yielded ‘Return on Revenue’ as 

the most important variable – refer to Chapter 7; 

 

 Develop FDP indices – a novel method of presenting the financial health of 

companies was presented – this was done by using factor analysis and 

Principal Component Analysis (PCA). Following this, Factor Weighted Index 

(FWI), Weighted Factor Loading Index (WFLI), and a Standardised Index (SI) 

approaches were used to create three indices. The SI was the optimal choice, 

as demonstrated by a comparison with a standard LR model, and an evaluation 

with established performance metrics, namely: share price and ordinary shares 

market capitalisation. A particular index for the Australian mining companies 

was created and dubbed the ‘K-Index’. The K-Index showcased the top 10 and 

bottom 10 mining companies. – refer to Chapter 6.  
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9.1 Contributions 

 

This dissertation shows that there are real-world problems that need to be addressed, 

namely: high business failure rates in Australia, and a lack of FDP research focusing 

on the Australian marketplace. This research has investigated past literature to 

demonstrate how FDP models may aid in addressing the aforementioned problems, 

unravelled gaps in the literature that fail to show: the differences amongst different 

industries, variable differences amongst SMEs and large companies, and the benefits 

of creating an FDP index.  

 

This thesis explored statistical and machine learning techniques, including: MDA, LR, 

DT, RF, and SGB. These techniques were used to create models that contributed to 

the literature through showcasing that differences exist in terms of FDP modelling 

amongst SMEs and LCs; hence it is important to analyse SMEs/LCs separately.  

Differences also exist across various industries; thus, using industry-specific models 

vis-à-vis an industry-wide model yields empirically superior business failure 

predictions. The research also empirically showcased the predictive pre-eminence of 

machine learning techniques when compared with traditional statistical techniques – 

this was done by creating models using data from sectors that are rarely studied, such 

as various industries in the Australian marketplace and Islamic banks. To add, this 

treatise added to the limited literature available on Islamic banking by applying FDP 

modelling and outlining the most important variables in identifying an Islamic bank’s 

success or failure. Finally, a novel concept of creating FDP indices was introduced, 

which pools the benefits of both, the empirical findings of FDP modelling and the user-

friendliness of indices. 

 

Although this research was primarily focused on the Australian marketplace, the 

methodologies presented can be applied to companies operating in any industry on a 

global scale, that is, the implications and applicability of this study is not confined to 

Australia. Thus, this research has the potential to greatly benefit various stakeholders, 

from investors to governmental agencies, which, if applied alongside competent 
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managerial decisions, may lead reduced business failure, which will, in-effect, have a 

positive consequence on the global economy. This can be done by monitoring and 

assigning red flags to certain variables that have been shown to have a direct effect 

on companies operating in particular industries – thus leading to managerial reactive 

measures to act accordingly.  

 

Limitations do exist, therefore one of the main objectives of future work is to find ways 

to eliminate them, or at least alleviate their effects on the results. The next sections 

outline some of the limitations of this research, followed by some of the prospects for 

future works.  

 

9.2 Study Limitations 

 

 Scope of Study: With the exception of Chapter 7, the thesis was largely 

centred around Australian data. The models which were developed in Australia 

may not be applicable to other countries or regions, as each country is unique 

in terms of its laws, accounting standards, and micro and macroeconomics. The 

methods used can be theoretically applied on a global scale, however, using 

international data would widen the scope of the study.  

  

 Solely Conducting Quantitative Research: This thesis has solely been 

quantitative-based. Although there are many advantages for the quantitative 

method, limitations do exist. The limitations regarding this point are generic to 

the quantitative method, hence do not necessarily reflect the research 

conducted in this study. Some of these limitations include: the possibility of 

presenting a myopic perspective due to: the results solely offering numerical 

explanations, lack of thorough narrative and elaborate accounts of human 

perception, and an unconscious bias when presenting results that might not 

accurately showcase real-life occurrences (Kruger, 2003).  
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 Use of Archival Data: Even though utmost diligence was carried out when 

obtaining data for the studies, databases may sometimes output data that is 

erroneous, missing, static (not interactive/dynamic), is not enough for a 

comprehensive analysis, or corrupted when extracted or downloaded on to a 

spreadsheet. To add, according to Shultz et al. (2005), limitations to archival 

data include: appropriateness of the data, detection of errors can be extremely 

difficult, and the lure of dustbowl empiricism (collection of data and creation of 

empirical observations, as opposed to producing a theoretical framework).  

Therefore, in order to capture the full picture, employing qualitative aspects, 

such as, regulatory measures, stakeholders’ pressures, board members 

influence, could offer a more comprehensive perspective towards FDP – see 

Future Works section below. 

 

 Rationale of Variable Importance: As mentioned in Chapter 3’s Discussion 

section, due to a lack of studies offering insight as to why the variables that 

were deemed important by the industry-specific FDP models are in fact a crucial 

determinant of company financial distress, the rationales were provided by after 

discussing them with an expert in accountancy. This method is not watertight, 

therefore, further studies should be undertaken to provide a more valid 

justification for the differences amongst variables pertaining to different 

industries. 

 

 Use of Delisted Companies: Delisted companies were regarded as financially 

distressed in this thesis; this is not necessarily always the case. Some 

databases include merged, withdrawn, suspended, or acquired companies 

under the delisted category. Therefore, this might result in unreliable results. 

 

 Private Company Data: This was especially relevant for Chapter 8, since 

many SMEs are private companies, hence, are not mandated by law to 

surrender their financials. Therefore, the data used was not exhaustive and a 

huge chunk of the marketplace was overlooked, as access to private company 

data is extremely difficult. Refer to the Future Works section below for possible 

data-gathering options. 
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9.3 Future Works 

 

There are a number of areas that could be explored in the future to help cement the 

claims presented in this dissertation, some of these areas include:  

 Focus on Family Businesses: Family businesses are generally privately-

owned, and in Australia, they account for 70% of all businesses; of those, 64% 

are small businesses (Clark, Eaton, Meek, Pye, & Tuhin, 2012; FBA, 2014). As 

was presented in the thesis, on average, 44 small businesses close doors every 

day (Cornish & Landy, 2013), therefore, this presents a legitimate cause of 

concern for the Australian economy. Given that the findings in this thesis 

empirically showed that there are differences amongst industries (Chapter 3) 

and company size (Chapter 8), it can be hypothesised that FDP modelling 

tailored to family businesses will yield better models and more accurate results. 

 

 Fraud, Neglect, and Disaster Variables: The leading causes of business 

failure can be classified according to financial, economic, neglect, disaster, or 

fraud aspects (Anderson, 2006; Gepp, 2015). This thesis researched the 

financial component of business failure; this presents room to investigate the 

effects fraud, neglect, and disaster have on FDP. This can be done by 

quantifying the aforementioned components, in order to use them as predictors 

in FDP modelling.  

 

 Cross-Regional/International: As mentioned earlier, this thesis mainly 

focused on Australian companies’ data. It would be interesting to apply the 

statistical techniques and FDP models on international data. 

  

 Bayesian Model: Many studies show that Bayesian models’ accuracy 

supersedes other statistical techniques, including: Chaudhuri (2013); 

Shrivastava et al. (2018); Tsai (2005).  This presents an opportunity to 

investigate in the future.  
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 Dynamic Panel Logistic Modelling: There are no studies applying dynamic 

panel logistic modelling to FDP thus far, this provides a pioneering research 

opportunity which may be investigated in future studies.  

 

 Qualitative and Corporate Governance (CG) Variables: Adding qualitative 

variables adds another dimension to the study – examples include: ratio of 

males versus females in a company, role of females in a company, and board 

members decisions. CG is the set of rules, processes, and practices that direct 

and control companies. In Australia, following the collapse of major 

corporations such as HIH, Ansett, and OneTel, there has been an increasing 

concern about the quality of corporate governance. In 2002, the Horwath CG 

Report was introduced which provided an objective analysis of the governance 

structures in Australia’s top 250 listed companies by market capitalisation. The 

rankings are based on information about the board and its principal committees 

that is found in the companies’ annual reports and disclosures. The index is 

calculated similarly for all companies, irrespective of size. The report provides 

companies’ rankings and a five-star-scale analysis of how well the company’s 

CG standards are – one-star indicating CG structures are lacking in several 

areas, whereas five-stars indicated outstanding CG practices (Psaros & 

Seamer, 2002). The report also found that 30% of the companies had inferior 

CG structures. It pointed out the significance of having independent directors in 

the board as it will lead to better CG practices. In 2008, an updated version was 

released, namely the WHK Horwath Corporate Governance Report, this 

included five-star-scales, ranking information, and comparisons for the top 250 

listed companies for the past three years, that is, 2006-2008 (Horwath, 2008). 

Previous studies have used the Horwath Report as an indicator for a company’s 

CG standards (Beekes & Brown, 2006; Lama, 2012). Inclusion of a CG index 

may aid the research by adding a new dimension to financial distress prediction.  

 

 SMEs: Since many SMEs are private companies, they are not lawfully obliged 

to make their financials public. To overcome this, one option may be to ask 

them for a confidential or incognito raw data; another option may be surveying 

SMEs and collecting information. This will serve as an extension to the research 
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conducted on SMEs in Chapter 8, which will, in-effect, widen the scope of the 

research and increase its credibility. 

 

 Macroeconomic Variables: It might be intuitive that poor economic conditions 

might increase the rate of bankrupt firms. For the economy to thrive there needs 

to be a healthy rate of demand and supply, therefore when people’s spending 

concentrate on necessities, not materialistic goods, firms will start incurring 

losses, which may lead to bankruptcy. Therefore, including macroeconomic 

variables may aid the research by providing a wider scope when forecasting 

financial distress. Duffie, Saita, and Wang (2007) solidifies this claim, as one of 

the factors their model was significantly dependent on was the state of the 

economy. Some of the macroeconomic variables the research will incorporate 

are: percentage change in annual GDP, interest rates, aggregate default rates, 

and unemployment rates. 
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Appendices 
 

Appendix 1: Chapter 5’s R Report 

 

library(caret) 

## Loading required package: lattice 

## Loading required package: ggplot2 

library(pROC) 

## Type 'citation("pROC")' for a citation. 

##  
## Attaching package: 'pROC' 

## The following objects are masked from 'package:stats': 
##  
##     cov, smooth, var 

library(DMwR) 

## Loading required package: grid 

setwd("C:/Users/Khaled/Downloads") 
mydata <- read.csv("CRAll.csv",header=TRUE) 
summary(mydata) 

##                         Company.Name      Status            ROE            
##  Rift Valley Resources Limited:   6   Min.   :0.0000   Min.   :-3
95.8600   
##  3D Resources Limited         :   5   1st Qu.:1.0000   1st Qu.:  
-0.5300   
##  A1 Consolidated Gold Limited :   5   Median :1.0000   Median :  
-0.1700   
##  ABM Resources NL             :   5   Mean   :0.8996   Mean   :  
-0.8621   
##  Accent Resources N.L.        :   5   3rd Qu.:1.0000   3rd Qu.:  
-0.0500   
##  Activex Limited              :   5   Max.   :1.0000   Max.   : 2
49.6800   
##  (Other)                      :3344                                        
##       ROA                 ROIC           Asset.Turnover     
##  Min.   :-2127.290   Min.   :-8826.290   Min.   : -0.5400   
##  1st Qu.:   -0.480   1st Qu.:   -1.620   1st Qu.:  0.0000   
##  Median :   -0.170   Median :   -0.310   Median :  0.0000   
##  Mean   :   -1.654   Mean   :   -7.876   Mean   :  0.3108   
##  3rd Qu.:   -0.060   3rd Qu.:   -0.090   3rd Qu.:  0.0000   
##  Max.   :   49.140   Max.   : 1118.220   Max.   :673.9000   
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##                                                             
##   PPE.Turnover      Depreciation.PP.E Working.Cap.Turnover 
##  Min.   :  -0.460   Min.   :-1.8000   Min.   :-1239.890    
##  1st Qu.:   0.000   1st Qu.: 0.0300   1st Qu.:    0.000    
##  Median :   0.000   Median : 0.0900   Median :    0.000    
##  Mean   :   2.392   Mean   : 0.1342   Mean   :   -1.319    
##  3rd Qu.:   0.590   3rd Qu.: 0.1600   3rd Qu.:    0.000    
##  Max.   :1569.090   Max.   :11.2100   Max.   :  615.300    
##                                                            
##  Gross.Gearing..D.E. Financial.Leverage Current.Ratio     
##  Min.   :-60.1900    Min.   :-155.580   Min.   :   0.00   
##  1st Qu.:  0.0000    1st Qu.:   1.030   1st Qu.:   1.26   
##  Median :  0.0000    Median :   1.080   Median :   3.59   
##  Mean   :  0.1125    Mean   :   1.313   Mean   :  14.23   
##  3rd Qu.:  0.0300    3rd Qu.:   1.320   3rd Qu.:  10.21   
##  Max.   : 74.4600    Max.   :  78.410   Max.   :7073.96   
##                                                           
##   Quick.Ratio      Gross.Debt.CF       Cash.per.Share.... 
##  Min.   :   0.00   Min.   :-353.0900   Min.   :  0.0000   
##  1st Qu.:   0.99   1st Qu.:  -0.0350   1st Qu.:  0.0000   
##  Median :   3.46   Median :   0.0000   Median :  0.0100   
##  Mean   :  14.13   Mean   :  -0.0029   Mean   :  0.3667   
##  3rd Qu.:  10.16   3rd Qu.:   0.0000   3rd Qu.:  0.0400   
##  Max.   :7073.96   Max.   : 512.5700   Max.   :616.3700   
##                                                           
##  Invested.Capital.Turnover  Net.Gearing       NTA.per.Share.... 
##  Min.   :-0.2900           Min.   :-57.3200   Min.   :  -4.30   
##  1st Qu.: 0.0000           1st Qu.: -0.5000   1st Qu.:   0.01   
##  Median : 0.0000           Median : -0.1700   Median :   0.06   
##  Mean   : 0.2704           Mean   : -0.2406   Mean   :   1.25   
##  3rd Qu.: 0.1800           3rd Qu.: -0.0200   3rd Qu.:   0.15   
##  Max.   :36.3500           Max.   : 61.9000   Max.   :1388.35   
##                                                                 
##  BV.per.Share....   Sales.per.Share....      PER           
##  Min.   :  -4.300   Min.   :  0.0000    Min.   :-721.740   
##  1st Qu.:   0.020   1st Qu.:  0.0000    1st Qu.:  -8.035   
##  Median :   0.060   Median :  0.0000    Median :  -3.000   
##  Mean   :   1.289   Mean   :  0.4184    Mean   :  -5.788   
##  3rd Qu.:   0.160   3rd Qu.:  0.0000    3rd Qu.:  -0.850   
##  Max.   :1396.100   Max.   :108.7200    Max.   : 725.000   
##  

str(mydata) 

## 'data.frame':    3375 obs. of  21 variables: 
##  $ Company.Name             : Factor w/ 747 levels "3D Resources 
Limited",..: 19 19 19 19 19 58 58 58 58 58 ... 
##  $ Status                   : int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ ROE                      : num  0.06 0.02 0.02 0.09 0.04 -0.44 
-0.56 -0.54 -0.46 -1.8 ... 
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##  $ ROA                      : num  0.03 0.02 0.02 0.04 0.02 -0.42 
-0.52 -0.48 -0.43 -1.53 ... 
##  $ ROIC                     : num  0.08 0.04 0.04 0.1 0.07 -4.4 -
3.66 -1.12 -0.74 -19.8 ... 
##  $ Asset.Turnover           : num  0.62 0.328 0.328 -0.54 -0.48 .
.. 
##  $ PPE.Turnover             : num  1.29 2.31 2.31 -0.46 -0.43 ... 
##  $ Depreciation.PP.E        : num  0 0.136 0.136 -1.8 -1.53 ... 
##  $ Working.Cap.Turnover     : num  50.71 -1.17 -1.17 -0.27 -0.25 
... 
##  $ Gross.Gearing..D.E.      : num  0.55 0.117 0.117 -0.13 -0.11 .
.. 
##  $ Financial.Leverage       : num  2.33 1.35 1.35 -4.17 -2.68 ... 
##  $ Current.Ratio            : num  1.28 1.3 1.14 1.49 1.53 ... 
##  $ Quick.Ratio              : num  0.8 0.82 0.7 0.94 0.87 ... 
##  $ Gross.Debt.CF            : num  7.24 4.27 3.75 3.1 3.46 0 0 0 
0 0 ... 
##  $ Cash.per.Share....       : num  1.79 1.68 1.5 1.88 2 0.05 0.03 
0.01 0.01 0.01 ... 
##  $ Invested.Capital.Turnover: num  1.41 1.47 1.55 1.64 1.7 0.09 0 
0 0 0 ... 
##  $ Net.Gearing              : num  0.43 0.42 0.51 0.47 0.51 -0.89 
-0.84 -0.5 -0.34 -0.91 ... 
##  $ NTA.per.Share....        : num  7.49 6.88 7.07 6.34 5.73 0.05 
0.04 0.03 0.02 0.01 ... 
##  $ BV.per.Share....         : num  12.8 11.9 11.1 12.3 12.6 ... 
##  $ Sales.per.Share....      : num  23.1 21.4 24.1 25.1 24.5 ... 
##  $ PER                      : num  13.3 31.9 44.8 16.6 25 ... 

mydata <- mydata[,-1] # remove company name 
print(table(mydata$Status)) 

##  
##    0    1  
##  339 3036 

print(prop.table(table(mydata$Status))) 

##  
##         0         1  
## 0.1004444 0.8995556 

set.seed(1234) 
splitIndex <- createDataPartition(mydata$Status, p = .50, list = FAL
SE, times = 1) 
trainSplit <- mydata[ splitIndex,] 
testSplit <- mydata[-splitIndex,] 
ctrl <- trainControl(method = "cv", number = 5) 
 
train <- trainSplit 
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tbmodel1 <- train(factor(Status) ~ ., data = trainSplit, method = "t
reebag", trControl = ctrl) 

## Loading required package: ipred 

## Loading required package: plyr 

##  
## Attaching package: 'plyr' 

## The following object is masked from 'package:DMwR': 
##  
##     join 

## Loading required package: e1071 

predictors <- names(trainSplit)[names(trainSplit) != 'Status'] 
pred1 <- predict(tbmodel1$finalModel, testSplit[,predictors]) 
 
mean(testSplit$Status == as.numeric(pred1)-1) 

## [1] 0.902786 

auc <- roc(testSplit$Status, as.numeric(pred1)-1) 
print(auc) 

##  
## Call: 
## roc.default(response = testSplit$Status, predictor = as.numeric(p
red1) -     1) 
##  
## Data: as.numeric(pred1) - 1 in 163 controls (testSplit$Status 0) 
< 1524 cases (testSplit$Status 1). 
## Area under the curve: 0.5736 

plot.roc(testSplit$Status,as.numeric(pred1)-1) 

trainsplit1 <- train 
trainsplit1$Status <- as.factor(trainsplit1$Status) 
smotedata <- SMOTE(Status ~ ., trainsplit1, perc.over = 100, perc.un
der=200) 
smotedata$Status <- as.numeric(smotedata$Status) - 1 
print(prop.table(table(smotedata$Status))) 

##  
##   0   1  
## 0.5 0.5 

tbmodel2 <- train(factor(Status) ~ ., data = smotedata, method = "tr
eebag", trControl = ctrl) 
 
pred2 <- predict(tbmodel2$finalModel, testSplit[,predictors]) 
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auc <- roc(testSplit$Status, as.numeric(pred2)-1) 
 
print(auc) 

##  
## Call: 
## roc.default(response = testSplit$Status, predictor = as.numeric(p
red2) -     1) 
##  
## Data: as.numeric(pred2) - 1 in 163 controls (testSplit$Status 0) 
< 1524 cases (testSplit$Status 1). 
## Area under the curve: 0.6388 

mean(testSplit$Status == as.numeric(pred2)-1) 

## [1] 0.6988737 

plot.roc(testSplit$Status,as.numeric(pred2)-1) 
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Appendix 2: Chapter 8’s SMEs’ R Report 

 

library(caret) 

## Loading required package: lattice 

## Loading required package: ggplot2 

library(pROC) 

## Type 'citation("pROC")' for a citation. 

##  
## Attaching package: 'pROC' 

## The following objects are masked from 'package:stats': 
##  
##     cov, smooth, var 

library(DMwR) 

## Loading required package: grid 

setwd("C:/Users/Khaled/Downloads") 
mydata <- read.csv("SMEs3.csv",header=TRUE) 
summary(mydata) 

##     Excel.Company.ID Listed.Delisted       ROA            
##  IQ46235974 :  23    Min.   :0.0000   Min.   :-25.00445   
##  IQ108954538:   2    1st Qu.:1.0000   1st Qu.: -0.36585   
##  IQ327168517:   2    Median :1.0000   Median : -0.13134   
##  IQ4481685  :   2    Mean   :0.9671   Mean   : -0.34989   
##  IQ100315307:   1    3rd Qu.:1.0000   3rd Qu.: -0.03917   
##  IQ100718430:   1    Max.   :1.0000   Max.   :  0.46402   
##  (Other)    :1244                                         
##       ROC                 ROE              Gross.Margin     
##  Min.   :-67.73667   Min.   :-127.15055   Min.   :-2.9293   
##  1st Qu.: -0.40436   1st Qu.:  -0.80402   1st Qu.: 0.0000   
##  Median : -0.13444   Median :  -0.24126   Median : 0.3817   
##  Mean   : -0.56746   Mean   :  -1.03846   Mean   : 0.3902   
##  3rd Qu.: -0.04563   3rd Qu.:  -0.07771   3rd Qu.: 1.0000   
##  Max.   :  0.55729   Max.   :   4.71552   Max.   : 1.0000   
##                                                             
##       ROCE              SGA.Margin           TD.TE          
##  Min.   :-305.58210   Min.   :     0.0   Min.   : 0.00000   
##  1st Qu.:  -0.79900   1st Qu.:     0.0   1st Qu.: 0.00000   
##  Median :  -0.29117   Median :     0.7   Median : 0.00000   
##  Mean   :  -1.39875   Mean   :   798.5   Mean   : 0.32646   
##  3rd Qu.:  -0.05297   3rd Qu.:     8.2   3rd Qu.: 0.02255   
##  Max.   :   6.93899   Max.   :349750.3   Max.   :51.35897   
##                                                             
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##      TD.TC          Asset.Turnover     Current.Ratio      
##  Min.   : 0.00000   Min.   : 0.00000   Min.   :   0.000   
##  1st Qu.: 0.00000   1st Qu.: 0.00000   1st Qu.:   1.094   
##  Median : 0.00000   Median : 0.01319   Median :   3.197   
##  Mean   : 0.23639   Mean   : 0.22897   Mean   :  11.199   
##  3rd Qu.: 0.06177   3rd Qu.: 0.16807   3rd Qu.:   8.729   
##  Max.   :34.60248   Max.   :25.09792   Max.   :1099.079   
##                                                           
##   Quick.Ratio            CFO.CL            Altman.Z         
##  Min.   :  -0.0011   Min.   :-99.2811   Min.   :-6550.182   
##  1st Qu.:   0.8475   1st Qu.: -4.1902   1st Qu.:   -0.076   
##  Median :   2.9002   Median : -1.4553   Median :    0.000   
##  Mean   :  10.6448   Mean   : -2.9311   Mean   :  -10.131   
##  3rd Qu.:   8.2271   3rd Qu.: -0.2749   3rd Qu.:    7.733   
##  Max.   :1098.9893   Max.   :152.6471   Max.   :  288.969   
##                                                             
##   ln.Employees         ln.TR              ln.TA            CA.TA        
##  Min.   :-1.8891   Min.   :-11.5129   Min.   :-4.699   Min.   :0.
0000   
##  1st Qu.: 0.0000   1st Qu.: -1.9384   1st Qu.: 1.224   1st Qu.:0.
1689   
##  Median : 0.0000   Median :  0.0000   Median : 2.180   Median :0.
4417   
##  Mean   : 0.2141   Mean   : -0.5975   Mean   : 2.138   Mean   :0.
4944   
##  3rd Qu.: 0.0000   3rd Qu.:  0.7021   3rd Qu.: 3.059   3rd Qu.:0.
8485   
##  Max.   : 6.9078   Max.   :  5.3863   Max.   : 7.759   Max.   :1.
0000   
##                                                                         
##     Cash.TA           Cash.CL              NWC.TA          
##  Min.   :0.00000   Min.   :   0.0000   Min.   :-77.42895   
##  1st Qu.:0.09101   1st Qu.:   0.5085   1st Qu.: -0.09290   
##  Median :0.26765   Median :   2.3096   Median : -0.02111   
##  Mean   :0.37214   Mean   :  10.0496   Mean   : -0.28710   
##  3rd Qu.:0.63867   3rd Qu.:   7.6186   3rd Qu.:  0.00487   
##  Max.   :1.00000   Max.   :1090.9000   Max.   :  0.99875   
##                                                            
##      NI.TA               TL.TA             EBITDA.TA         
##  Min.   :-107.4446   Min.   :  0.00000   Min.   :-107.4037   
##  1st Qu.:  -0.7298   1st Qu.:  0.05024   1st Qu.:  -0.4183   
##  Median :  -0.2262   Median :  0.15134   Median :  -0.1242   
##  Mean   :  -0.9650   Mean   :  1.05712   Mean   :   0.0484   
##  3rd Qu.:  -0.0511   3rd Qu.:  0.41213   3rd Qu.:  -0.0107   
##  Max.   :  23.5216   Max.   :127.91209   Max.   : 708.7017   
##                                                              
##      RE.TA           
##  Min.   :-8178.618   
##  1st Qu.:   -6.639   
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##  Median :   -2.143   
##  Mean   :  -26.101   
##  3rd Qu.:   -0.646   
##  Max.   :    0.953   
##  

mydata <- mydata[,-1] # remove company name 
print(table(mydata$Listed.Delisted)) 

##  
##    0    1  
##   42 1233 

str(mydata) 

## 'data.frame':    1275 obs. of  25 variables: 
##  $ Listed.Delisted: int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ ROA            : num  -0.151 -0.211 -0.461 -0.131 -0.151 ... 
##  $ ROC            : num  -0.159 -0.327 -0.492 -0.134 -0.158 ... 
##  $ ROE            : num  -0.254 -0.526 -0.84 -0.241 -0.284 ... 
##  $ Gross.Margin   : num  1 1 1 1 1 1 1 1 0 1 ... 
##  $ ROCE           : num  -0.254 -0.526 -0.84 0 -0.284 ... 
##  $ SGA.Margin     : num  84261 112264 40101 5559 9858 ... 
##  $ TD.TE          : num  0 0.0102 0 0 0 ... 
##  $ TD.TC          : num  0 0.0101 0 0 0 ... 
##  $ Asset.Turnover : num  0 0 0.00001 0 0.00002 0.00043 0.00097 0.
00001 0.00003 0.00001 ... 
##  $ Current.Ratio  : num  20.3898 0.0476 13.5801 12.238 7.8093 ... 
##  $ Quick.Ratio    : num  20.2753 0.0438 13.3504 12.238 7.7131 ... 
##  $ CFO.CL         : num  -3.782 -0.364 -10.94 -3.786 -6.238 ... 
##  $ Altman.Z       : num  21.356 -31.175 11.499 -0.357 33.114 ... 
##  $ ln.Employees   : num  0 0 0 0 0 0 0 0 0 0 ... 
##  $ ln.TR          : num  -11.5 -11.5 -10.8 -10.8 -10.4 ... 
##  $ ln.TA          : num  1.829 0.587 1.383 -0.811 0.445 ... 
##  $ CA.TA          : num  0.7613 0.0201 0.2966 0.7576 0.2912 ... 
##  $ Cash.TA        : num  0.7399 0.0123 0.2852 0.5373 0.2835 ... 
##  $ Cash.CL        : num  19.8183 0.0293 13.0558 8.6773 7.6017 ... 
##  $ NWC.TA         : num  -0.016 -0.4081 -0.0104 0.1584 -0.0296 ..
. 
##  $ NI.TA          : num  -0.137 -0.317 -0.411 -0.232 -0.24 ... 
##  $ TL.TA          : num  0.0374 0.4217 0.0218 0.0619 0.0373 ... 
##  $ EBITDA.TA      : num  -0.135 -0.312 0 -0.263 -0.24 ... 
##  $ RE.TA          : num  -0.422 -23.66 -15.237 -0.232 -6.038 ... 

print(prop.table(table(mydata$Listed.Delisted))) 

##  
##          0          1  
## 0.03294118 0.96705882 
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set.seed(1234) 
splitIndex <- createDataPartition(mydata$Listed.Delisted, p = .50, l
ist = FALSE, times = 1) 
trainSplit <- mydata[ splitIndex,] 
testSplit <- mydata[-splitIndex,] 
ctrl <- trainControl(method = "cv", number = 10) 
write.csv(trainSplit, "C:/Users/Khaled/Downloads/SMEsTrain.csv",row.
names = FALSE) 
write.csv(testSplit, "C:/Users/Khaled/Downloads/SMEsTest.csv",row.na
mes = FALSE) 
print(prop.table(table(trainSplit$Listed.Delisted))) 

##  
##          0          1  
## 0.03918495 0.96081505 

print(prop.table(table(testSplit$Listed.Delisted))) 

##  
##         0         1  
## 0.0266876 0.9733124 

train <- trainSplit 
 
tbmodel1 <- train(factor(Listed.Delisted) ~ ., data = trainSplit, me
thod = "treebag", trControl = ctrl) 

## Loading required package: ipred 

## Loading required package: plyr 

##  
## Attaching package: 'plyr' 

## The following object is masked from 'package:DMwR': 
##  
##     join 

## Loading required package: e1071 

predictors <- names(trainSplit)[names(trainSplit) != 'Listed.Deliste
d'] 
pred1 <- predict(tbmodel1$finalModel, testSplit[,predictors]) 
 
mean(testSplit$Listed.Delisted == as.numeric(pred1)-1) 

## [1] 0.978022 

auc <- roc(testSplit$Listed.Delisted, as.numeric(pred1)-1) 
print(auc) 

##  
## Call: 
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## roc.default(response = testSplit$Listed.Delisted, predictor = as.
numeric(pred1) -     1) 
##  
## Data: as.numeric(pred1) - 1 in 17 controls (testSplit$Listed.Deli
sted 0) < 620 cases (testSplit$Listed.Delisted 1). 
## Area under the curve: 0.75 

plot.roc(testSplit$Listed.Delisted,as.numeric(pred1)-1) 

 

trainsplit1 <- train 
trainsplit1$Listed.Delisted <- as.factor(trainsplit1$Listed.Delisted
) 
smotedata <- SMOTE(Listed.Delisted ~ ., trainsplit1, perc.over = 100
, perc.under=200) 
smotedata$Listed.Delisted <- as.numeric(smotedata$Listed.Delisted) - 
1 
print(prop.table(table(smotedata$Listed.Delisted))) 

##  
##   0   1  
## 0.5 0.5 

tbmodel2 <- train(factor(Listed.Delisted) ~ ., data = smotedata, met
hod = "treebag", trControl = ctrl) 
 
pred2 <- predict(tbmodel2$finalModel, testSplit[,predictors]) 
 
auc <- roc(testSplit$Listed.Delisted, as.numeric(pred2)-1) 
 
print(auc) 

##  
## Call: 
## roc.default(response = testSplit$Listed.Delisted, predictor = as.
numeric(pred2) -     1) 
##  
## Data: as.numeric(pred2) - 1 in 17 controls (testSplit$Listed.Deli
sted 0) < 620 cases (testSplit$Listed.Delisted 1). 
## Area under the curve: 0.82 

mean(testSplit$Listed.Delisted == as.numeric(pred2)-1) 

## [1] 0.7095761 

plot.roc(testSplit$Listed.Delisted,as.numeric(pred2)-1) 
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Appendix 3: Chapter 8’s LCs’ R Report 

 

library(caret) 

## Loading required package: lattice 

## Loading required package: ggplot2 

library(pROC) 

## Type 'citation("pROC")' for a citation. 

##  
## Attaching package: 'pROC' 

## The following objects are masked from 'package:stats': 
##  
##     cov, smooth, var 

library(DMwR) 

## Loading required package: grid 

setwd("C:/Users/Khaled/Downloads") 
mydata <- read.csv("Large3.csv",header=TRUE) 
summary(mydata) 

##     Excel.Company.ID Listed.Delisted       ROA            
##  IQ126981528:  2     Min.   :0.0000   Min.   :-0.663018   
##  IQ7652776  :  2     1st Qu.:1.0000   1st Qu.: 0.005697   
##  IQ875280   :  2     Median :1.0000   Median : 0.040017   
##  IQ100656194:  1     Mean   :0.8904   Mean   : 0.038488   
##  IQ10525123 :  1     3rd Qu.:1.0000   3rd Qu.: 0.073088   
##  IQ105597   :  1     Max.   :1.0000   Max.   : 0.478332   
##  (Other)    :283                                          
##       ROC                ROE             Gross.Margin     
##  Min.   :-0.91922   Min.   :-19.43217   Min.   :-0.3622   
##  1st Qu.: 0.00000   1st Qu.:  0.00000   1st Qu.: 0.1692   
##  Median : 0.05227   Median :  0.09272   Median : 0.3424   
##  Mean   : 0.05281   Mean   :  0.45530   Mean   : 0.3765   
##  3rd Qu.: 0.10272   3rd Qu.:  0.15909   3rd Qu.: 0.5617   
##  Max.   : 0.60028   Max.   :136.06926   Max.   : 1.0000   
##                                                           
##       ROCE             SGA.Margin          TD.TE          
##  Min.   :-19.39802   Min.   :0.00000   Min.   : 0.00000   
##  1st Qu.:  0.00000   1st Qu.:0.03871   1st Qu.: 0.02089   
##  Median :  0.09186   Median :0.14606   Median : 0.28873   
##  Mean   :  0.97543   Mean   :0.19761   Mean   : 0.61942   
##  3rd Qu.:  0.15610   3rd Qu.:0.30652   3rd Qu.: 0.58236   
##  Max.   :288.00000   Max.   :1.04301   Max.   :27.09083   
##                                                           
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##      TD.TC          Asset.Turnover   Current.Ratio      Quick.Rat
io      
##  Min.   : 0.00000   Min.   :0.0000   Min.   : 0.0000   Min.   : 0
.0000   
##  1st Qu.: 0.02382   1st Qu.:0.3316   1st Qu.: 0.8871   1st Qu.: 0
.5255   
##  Median : 0.22777   Median :0.6712   Median : 1.3855   Median : 0
.9044   
##  Mean   : 0.48984   Mean   :0.9003   Mean   : 2.0252   Mean   : 1
.5391   
##  3rd Qu.: 0.38695   3rd Qu.:1.1808   3rd Qu.: 2.0544   3rd Qu.: 1
.4378   
##  Max.   :27.20878   Max.   :4.7202   Max.   :82.7306   Max.   :70
.6010   
##                                                                          
##      CFO.CL            Altman.Z         ln.Employees        ln.TR        
##  Min.   :-1.64592   Min.   :-20.5550   Min.   : 0.000   Min.   :-
1.027   
##  1st Qu.: 0.02895   1st Qu.:  0.6132   1st Qu.: 5.407   1st Qu.: 
4.868   
##  Median : 0.36223   Median :  2.4212   Median : 6.702   Median : 
5.949   
##  Mean   : 0.52248   Mean   :  3.4673   Mean   : 6.589   Mean   : 
6.186   
##  3rd Qu.: 0.76652   3rd Qu.:  3.8528   3rd Qu.: 8.213   3rd Qu.: 
7.469   
##  Max.   : 9.51479   Max.   :101.2057   Max.   :12.315   Max.   :1
6.353   
##                                                                          
##      ln.TA            CA.TA           Cash.TA           Cash.CL        
##  Min.   : 2.609   Min.   :0.0000   Min.   :0.00000   Min.   : 0.0
000   
##  1st Qu.: 5.111   1st Qu.:0.1765   1st Qu.:0.02766   1st Qu.: 0.1
135   
##  Median : 6.330   Median :0.3136   Median :0.06940   Median : 0.2
991   
##  Mean   : 6.638   Mean   :0.3663   Mean   :0.12966   Mean   : 0.7
768   
##  3rd Qu.: 8.121   3rd Qu.:0.5348   3rd Qu.:0.17753   3rd Qu.: 0.8
103   
##  Max.   :17.217   Max.   :0.9920   Max.   :0.90669   Max.   :18.4
638   
##                                                                        
##      NWC.TA             NI.TA              TL.TA          EBITDA.
TA        
##  Min.   :-0.58114   Min.   :-2.36858   Min.   :0.0000   Min.   :-
0.80035   
##  1st Qu.:-0.03112   1st Qu.: 0.00000   1st Qu.:0.3340   1st Qu.: 
0.02567   
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##  Median : 0.00000   Median : 0.03625   Median :0.4701   Median : 
0.09657   
##  Mean   : 0.03827   Mean   : 0.00132   Mean   :0.4997   Mean   : 
0.09696   
##  3rd Qu.: 0.11001   3rd Qu.: 0.08123   3rd Qu.:0.6139   3rd Qu.: 
0.15325   
##  Max.   : 0.82794   Max.   : 0.52555   Max.   :3.6174   Max.   : 
0.80271   
##                                                                            
##      RE.TA           
##  Min.   :-13.40457   
##  1st Qu.: -0.09439   
##  Median :  0.03753   
##  Mean   : -0.16925   
##  3rd Qu.:  0.18263   
##  Max.   :  0.66780   
##  

mydata <- mydata[,-1] # remove company name 
print(table(mydata$Listed.Delisted)) 

##  
##   0   1  
##  32 260 

str(mydata) 

## 'data.frame':    292 obs. of  25 variables: 
##  $ Listed.Delisted: int  1 1 1 1 1 1 1 1 1 1 ... 
##  $ ROA            : num  0.0602 0.0711 0.0475 0.0133 0.0598 ... 
##  $ ROC            : num  0.1109 0.0851 0.0747 0.0144 0.0683 ... 
##  $ ROE            : num  -0.186 0.148 0.187 0.126 0.137 ... 
##  $ Gross.Margin   : num  0.471 0.196 0.323 0.576 0.288 ... 
##  $ ROCE           : num  -0.182 0.148 0.187 0.119 0.137 ... 
##  $ SGA.Margin     : num  0.1801 0.0564 0.0689 0.0581 0.0432 ... 
##  $ TD.TE          : num  0.277 0.344 1.266 0.267 0.519 ... 
##  $ TD.TC          : num  0.217 0.256 0.559 0.211 0.342 ... 
##  $ Asset.Turnover : num  0.576 0.813 0.709 0.197 0.834 ... 
##  $ Current.Ratio  : num  0.32 2.318 0.785 4.892 1.801 ... 
##  $ Quick.Ratio    : num  0.295 1.426 0.696 3.653 0.744 ... 
##  $ CFO.CL         : num  0.401 1.095 0.376 1.817 0.509 ... 
##  $ Altman.Z       : num  2.244 4.584 1.128 0.491 2.231 ... 
##  $ ln.Employees   : num  5.49 7.34 9.3 6.37 6.11 ... 
##  $ ln.TR          : num  3.96 7.35 8.54 5.34 5.31 ... 
##  $ ln.TA          : num  4.42 7.61 8.88 7.13 5.52 ... 
##  $ CA.TA          : num  0.141 0.236 0.263 0.234 0.307 ... 
##  $ Cash.TA        : num  0.0396 0.0286 0.1909 0.1618 0.0138 ... 
##  $ Cash.CL        : num  0.0899 0.2812 0.5692 3.3766 0.0811 ... 
##  $ NWC.TA         : num  -0.339 0.1057 -0.2189 0.0247 0.1799 ... 
##  $ NI.TA          : num  -0.0853 0.0904 0.0533 0.065 0.0742 ... 
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##  $ TL.TA          : num  0.587 0.38 0.723 0.276 0.423 ... 
##  $ EBITDA.TA      : num  0.112 0.1485 0.1407 0.0676 0.1985 ... 
##  $ RE.TA          : num  -0.0593 0.2537 -0.0342 -0.6092 0.3025 ..
. 

print(prop.table(table(mydata$Listed.Delisted))) 

##  
##        0        1  
## 0.109589 0.890411 

set.seed(1234) 
splitIndex <- createDataPartition(mydata$Listed.Delisted, p = .50, l
ist = FALSE, times = 1) 
trainSplit <- mydata[ splitIndex,] 
testSplit <- mydata[-splitIndex,] 
ctrl <- trainControl(method = "cv", number = 10) 
write.csv(trainSplit, "C:/Users/Khaled/Downloads/LargeTrain.csv",row
.names = FALSE) 
write.csv(testSplit, "C:/Users/Khaled/Downloads/LargeTest.csv",row.n
ames = FALSE) 
print(prop.table(table(trainSplit$Listed.Delisted))) 

##  
##        0        1  
## 0.109589 0.890411 

print(prop.table(table(testSplit$Listed.Delisted))) 

##  
##        0        1  
## 0.109589 0.890411 

train <- trainSplit 
 
tbmodel1 <- train(factor(Listed.Delisted) ~ ., data = trainSplit, me
thod = "treebag", trControl = ctrl) 

## Loading required package: ipred 

## Loading required package: plyr 

##  
## Attaching package: 'plyr' 

## The following object is masked from 'package:DMwR': 
##  
##     join 

## Loading required package: e1071 

predictors <- names(trainSplit)[names(trainSplit) != 'Listed.Deliste
d'] 
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pred1 <- predict(tbmodel1$finalModel, testSplit[,predictors]) 
 
mean(testSplit$Listed.Delisted == as.numeric(pred1)-1) 

## [1] 0.9178082 

auc <- roc(testSplit$Listed.Delisted, as.numeric(pred1)-1) 
print(auc) 

##  
## Call: 
## roc.default(response = testSplit$Listed.Delisted, predictor = as.
numeric(pred1) -     1) 
##  
## Data: as.numeric(pred1) - 1 in 16 controls (testSplit$Listed.Deli
sted 0) < 130 cases (testSplit$Listed.Delisted 1). 
## Area under the curve: 0.89 

plot.roc(testSplit$Listed.Delisted,as.numeric(pred1)-1) 

 

trainsplit1 <- train 
trainsplit1$Listed.Delisted <- as.factor(trainsplit1$Listed.Delisted
) 
smotedata <- SMOTE(Listed.Delisted ~ ., trainsplit1, perc.over = 100
, perc.under=200) 
smotedata$Listed.Delisted <- as.numeric(smotedata$Listed.Delisted) - 
1 
print(prop.table(table(smotedata$Listed.Delisted))) 

##  
##   0   1  
## 0.5 0.5 

tbmodel2 <- train(factor(Listed.Delisted) ~ ., data = smotedata, met
hod = "treebag", trControl = ctrl) 
 
pred2 <- predict(tbmodel2$finalModel, testSplit[,predictors]) 
 
auc <- roc(testSplit$Listed.Delisted, as.numeric(pred2)-1) 
 
print(auc) 

##  
## Call: 
## roc.default(response = testSplit$Listed.Delisted, predictor = as.
numeric(pred2) -     1) 
##  
## Data: as.numeric(pred2) - 1 in 16 controls (testSplit$Listed.Deli
sted 0) < 130 cases (testSplit$Listed.Delisted 1). 
## Area under the curve: 0.89 
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mean(testSplit$Listed.Delisted == as.numeric(pred2)-1) 

## [1] 0.9041096 

plot.roc(testSplit$Listed.Delisted,as.numeric(pred2)-1) 

 

cbind(Actual=testSplit$Listed.Delisted,Model1=(as.numeric(pred1)-1),
model2=(as.numeric(pred2)-1)) 

 

 

 

 


