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ABSTRACT 
 
 
The development of quantum computers over the past few years is one of the most 

significant advancements in the history of quantum computing. D-Wave quantum 

computer has been available for more than eight years. IBM has made its quantum 

computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA 

have been heavily investing in the development of quantum computers and their 

applications. The quantum computer seems to be no longer just for physicists and 

computer scientists, but also for information system researchers. This paper 

introduces the basic concepts of quantum computing and describes well-known 

quantum applications for non-physicists. The current status of the developments in 

quantum computing is also presented. 

 

Keywords: Quantum computer, Quantum gate, QKD, Shor, Grover 

 

 

INTRODUCTION 
 
Quantum computers seem to have a significant impact on business. Various 

quantum algorithms were developed since quantum computing was proposed in the 

1980s (Benioff, 1980; Coles et al., 2018; Feynman, 1982; Montanaro, 2016). The 

most well-known quantum algorithms are Glover’s database search algorithm and 

Shor’s integer factoring algorithm. Both quantum algorithms are known to 

outperform the algorithms for classical computers significantly and also be used for 

cracking the encryption systems (e.g., AES, RSA, ECC), which have globally used 

on the Internet (e.g., online shopping sites.)  Governments have been increasing the 

funding for quantum computing research and development not only for the 

advancement of computing technology but also for their national security. However, 

after the Canadian company D-wave unveiled a commercial annealer-based 
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quantum computer in 2012, quantum computing has attracted much more 

increasing attention from enterprises (“D-Wave: Quantum Computing 

Applications,” 2019; Robert Hackett, 2019).  

JPMorgan Chase and Goldman Sacks have been evaluating algorithms and 

applications that may utilize the power of quantum computing. Their research teams 

have found that quantum computing could significantly reduce the time of option-

pricing and risk-assessment calculations (Sara Castellanos, 2019). ExxonMobil has 

explored practical applications in the area of energy and chemical manufacturing, 

such as optimizing a country’s power grid, developing more predictable 

environmental modeling, and discovering new materials. Daimler Mercedes-Benz 

has been using a quantum computer to develop a new battery for electric vehicles. 

Volkswagen has investigated the use of quantum computers to find a solution for 

the optimization of traffic flows in Beijing, China.  

IBM, which owns 53-qubit gate-based quantum computers, has been collaborating 

with more than 100 organizations, including the companies mentioned above, 

across industries and made their 5-qubit and 20-qubit quantum computers available 

via their cloud service called “IBM Q Experience” (IBM, n.d.). More than 200 third 

party research papers on practical applications have been published with IBM 

quantum computers. This cloud service provides a graphical user interface in a 

browser to build quantum circuits on IBM’s simulators or real quantum computers 

by dragging and dropping the icons, which represent quantum logic gates (e.g., 

NOT gate), on the lines connected to inputs and outputs. Also, the quantum circuits 

can be built and run remotely by using Python with the Qiskit library installed on 

the user’s desktop computer. In January 2019, IBM unveiled the first commercial 

general-purpose 20-qubit gate-based quantum computer called “IBM Q System 

one” (“IBM Unveils World’s First Integrated Quantum Computing System for 

Commercial Use - Jan. 8, 2019,” 2019). This system enables a company to operate 

a gate-based quantum computer on its premises.  

The commercial annealing-based quantum computer D-Wave 2000Q has about 

2000 qubits (Gibney, 2017). The quantum-annealing-based quantum computer is 

not a universal computer but designed to solve optimization problems. NASA uses 

2000Q to explore the potential for quantum computers to solve their optimization 

problems for applications such as air traffic control, mission planning and 

scheduling, machine autonomy, fault diagnosis, and robust system design (National 

Aeronautics and Space Administration, 2015).  

D-Wave has announced its 5000-qubit system, which will be released in mid-2020,  

has been sold to Los Alamos National Laboratory (Wheatley, n.d.). 

In 2019, Google announced its quantum computer with 53 qubits needed only 200 

seconds to perform a highly technical and specialized computation that would have 

taken a state-of-art classical supercomputer approximately10,000 years (Arute et 

al., 2019). Google claimed their quantum computer had demonstrated “quantum 
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supremacy,” where we could perform tasks with controlled quantum systems going 

beyond what could be achieved with ordinary digital computers (Preskill, 2012). 

However, IBM claimed that Google’s quantum computer did not reach quantum 

supremacy because the same task could be done with an ideal algorithm on a 

classical computer in 2.5 days (Pednault, Gunnels, Maslov, & Gambetta, 2019).    

Intel, Rigetti, and IonQ also have been developing a quantum computer in their 

laboratories (Gomes, 2018). Microsoft has released the quantum development kit 

(QDK) and the quantum programming toolkit Q# for Visual Studio (“Quantum 

Development Kit | Microsoft,” 2019), which allows users to simulate quantum 

circuits on a classical computer. Microsoft also started Azure Quantum, which 

provides Internet cloud access to their quantum computer simulators and the real 

quantum hardware supplied by Honeywell, IonQ, and QCI.  Similarly, Amazon 

started a quantum computing service via AWS, called Amazon Braket, where users 

can remotely use the quantum computer hardware of the partners: D-wave, IonQ, 

and Rigetti.  

Although everyone in business may not need a quantum computer for their tasks, 

many business applications can be improved by quantum computing, as mentioned 

above ((Bo) Ewald, 2019; Chalmers Brown, 2018; Cusumano, 2018; “D-Wave: 

Quantum Computing Applications,” 2019; Robert Hackett, 2019). It seems that the 

time has come for researchers who are not necessarily physicists to design new 

business applications for quantum computers and communications.   

This paper introduces the basic concepts of quantum computing, particularly for a 

general-purpose gate-based quantum computer, and describes the well-researched 

applications of quantum computing for non-experts. The next section provides the 

fundamentals of quantum computing. Section 3 describes three applications:  

Glover’s quantum search algorithm, Shor’s quantum integer factoring algorithm, 

and Quantum key distribution protocol.  In section 4, a brief survey of the current 

status and research challenges in quantum computing is presented. 

 

 

PRINCIPLES OF QUANTUM COMPUTING 
 

Qubit 

 

Computation is a process of manipulating the states of a physical system to solve a 

problem. Quantum computing uses a microscopic object (e.g., electron, photon, 

ion) as the medium to store and transfer digital information. One-bit information 

(i.e., zero or one) can be encoded using two orthogonal states of a microscopic 

object. This quantum two-state system is called a quantum bit (or qubit).  A 

quantum computer solves a problem by setting qubits in initial states and then 

manipulating the states so that an expected result appears on the qubits.  In order to 
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design such a quantum circuit, quantum mechanics is used to describe the states 

since those microscopic objects do not follow the rules of classical physics.  The 

state of a qubit can be written as a vector |𝜓⟩.  

where 𝛼  and 𝛽  are complex numbers ℂ , called probability amplitude, and 

satisfy |𝛼|2 + |β|2 = 1. |𝛼|2 is the probability of getting the state |0⟩ as the result 

of the measurement on the qubit |𝜓⟩ while |𝛽⟩2 is the probability of getting |1⟩.  
“|  ⟩” is a standard notation for specifying states in quantum mechanics, called 

column vector or ket vector in the Dirac notation.  The orthonormal basis |0⟩ and 

|1⟩ can be written as 

|0⟩ = [1,0]T, |1⟩ = [0,1]T (2) 
 
Quantum states combine through the tensor product. For instance, two qubits state 

can be written as |𝜓1⟩ ⊗ |𝜓2⟩, where “⊗” indicates a tensor product, or more 

compactly |𝜓1⟩|𝜓2⟩ or |𝜓1𝜓2⟩.  For example, 

 

 
where |𝜓𝑖⟩ = 𝛼|0⟩ + 𝛽|1⟩ = 𝛼[1,0]𝑇 + 𝛽[0, 1]𝑇 = [𝛼, 𝛽]𝑇 = [𝜓𝑖,0, 𝜓𝑖,1]

𝑇 . 
 
Thus, an n-qubit state can be represented by a column vector with 2𝑛 elements. 

 

Superposition State  
 
Superposition State is an essential ingredient of quantum computing. In this section, 

a photon is used as an example of a qubit for the sake of ease. The polarization (i.e., 

the geometric orientation of the photon) represents one-bit information.  

A horizontally polarized photon represents classical bit 0, and a vertically polarized 

photon represents bit 1. In Figure 1, photons are fired at the emitter and going 

through the Filter-V, which allows only vertically polarized photons to go through. 

We assume only a single photon goes into Polarization Beam Splitter (PBS) at a 

time to make the example simpler. PBS transmits vertically polarized photons 

(measured at the detector DV) while the PBS deflects horizontally polarized 

photons (measured at the detector DH). Thus, all photons will be measured at DV 

in Figure 1.  

 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, {𝛼, 𝛽 ∈ ℂ} (1) 

|𝜓1⟩ ⊗ |𝜓2⟩ = [𝜓1,0, 𝜓1,1]
𝑇
⊗ [𝜓2,0, 𝜓2,1]

𝑇

                                             = [𝜓1,0𝜓2,0,𝜓1,0𝜓2,1,𝜓1,1𝜓2,0, 𝜓1,1𝜓2,1]
𝑇 (3)
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Figure 1: All photons are detected at DV 

 
If a filter that only transmits diagonally polarized photons called “Filter-45°”, 

however, is placed between Filter-V and PBS (Figure 2), a vertically or horizontally 

polarized photon is found at each detector with the probability of ½.  

 

 

Figure 2: The half of photons are found at DV, and the rest are at DH 

 
Since the probability of finding the horizontally polarized photon |𝜓⟩ = |𝐻⟩  or 

vertically polarized photon |𝜓⟩ = |𝑉⟩ at the PBS is ½, the probability amplitudes 

𝛼 and 𝛽 should be 1/√2. Thus, the state of a photon just before PBS can be written 

as 

Since |H⟩  is used to represent a classical bit “0” and |V⟩   is used for “1”, the 

expression (4)  is written as 

When a photon is prepared in this state, the digital information encoded in the 

photon is “0” or “1”. We can interpret the equation (5)  as meaning the states 

“0” and “1” exist at the same time. This unique state is called a superposition state. 

When two qubits are both in the superposition state (5), the state can be written as 

|𝜓⟩ =
1

√2
|𝐻⟩ +

1

√2
|𝑉⟩ (4) 

|𝜓⟩ =
1

√2
|0⟩ +

1

√2
|1⟩ (5) 
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This two-qubit state represents four classical binary states (00, 01, 10, 11) at the 

same time. When a quantum computer prepares n qubits in a superposition state as 

its input for a quantum circuit (Figure 3),  2n  possible inputs can be processed 

simultaneously. This quantum parallelism is one of the significant advantages of 

quantum computers.  

 

 
Figure 3: n-qubit quantum circuit 

 

Quantum Circuit and Measurement 

 

As mentioned earlier, computation is a process of manipulating the states of a 

physical system. A quantum computer takes a quantum state as the input and 

controls the state to increase the probability of finding the answer in the output state 

for the computation. For instance, Shor’s algorithm manipulates the quantum states 

to find prime factors of a large number. A significant difference between a classical 

(electronic) circuit and a quantum circuit is the intermediate states in the circuits. 

In a classical electronic circuit, we can measure the intermediate state since zero 

and one in binary is represented by the voltages (e.g., 0 volts and 5 volts) on a node 

in the circuit. Thus, it is possible to find an error (e.g., 2.5 volts) by measuring the 

voltage in the circuit. However, in a quantum circuit, the intermediate states are 

likely to be in a superposition state. If the superposition state is measured, the 

quantum state is corrupted and becomes one of the two orthogonal base states (i.e., 
|0⟩ or |1⟩) at the time of the measurement with the probabilities |𝛼|2 and |𝛽⟩2.   

For example, when the photons in the equation (6) are measured, one of the four 

states (e.g., |𝜓1⟩|𝜓2⟩ = |0⟩|1⟩) is observed with an equal probability (i.e., 1/4, ) 
but all other information about the original state (6) are lost by the measurement. 

In other words, the measurement is a one-way operation that does not allow us to 

|𝜓1⟩|𝜓2⟩ = {
1

√2
 |0⟩ +

1

√2
 |1⟩} {

1

√2
 |0⟩ +

1

√2
 |1⟩} 

=
1

2
{[1,1]𝑇 ⊗ [1,1]𝑇} =

1

2
[1,1,1,1]𝑇 

=
1

2
{[1,0,0,0]𝑇 + [0,1,0,0]𝑇 + [0,0,1,0]𝑇 + [0,0,0,1]𝑇} 

=
1

2
|0⟩|0⟩ +

1

2
|0⟩|1⟩ +

1

2
|1⟩|0⟩ +

1

2
|1⟩|1⟩ (6) 
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find the original state from the measured result similar to classical one-way function 

(e.g., hash.) 

 

Quantum Gate and Reversibility 

 

The basic operations to manipulate an input state for a quantum circuit is called 

quantum gates. Each gate operation can be mathematically represented with a 

matrix. For instance,  the Filter-45° in Figure 2 converts from one of the orthogonal 

base states (i.e., |0⟩) to a superposition state (i.e.,  
1

√2
|0⟩ +

1

√2
|1⟩.)  This operation 

can be expressed with the following matrix 𝑈𝐻, called Hadamard gate (Nielsen & 

Chuang, 2010). 

𝑈𝐻|0⟩ =
1

√2
[
1 1
1 −1

] [
1
0
] =

1

√2
|0⟩ +

1

√2
|1⟩ (7) 

 

Another example of the quantum gate is the controlled-NOT (cNOT) gate (Figure 

4), which behaves like a classical XOR gate, as shown in Table 1. 

 

Table 1: A truth table for the quantum XOR gate with two inputs and two 

outputs 

𝜓𝑖𝑛1  𝜓𝑖𝑛2 𝜓𝑜𝑢𝑡1 𝜓𝑜𝑢𝑡2 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

 

 

Figure 4: Controlled-Not gate behaves like a classical XOR 

 

This quantum gate negates the state of the second qubit |𝜓𝑖𝑛2⟩ only when the first 

qubit |𝜓𝑖𝑛1⟩  is |1⟩  while |𝜓𝑖𝑛1⟩  itself is unchanged by the gate (i.e., |𝜓𝑖𝑛1⟩ 
=|𝜓𝑜𝑢𝑡1⟩).  This operation can be written as:   
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If we can construct a NAND gate with quantum gates, any logic gate (e.g., AND, 

OR, NOT) can be built since the NAND gate is universal (Mano, 1995).  The 

classical NAND gate’s truth table is given in Table 2. 

 

Table 2: A truth table for the classical NAND gate with two inputs 

𝐼𝑁1 𝐼𝑁2 𝑂𝑢𝑡 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

If the NAND gate is built based on the truth table above and the inputs are two 

qubits |0⟩|1⟩ = [1, 0]T ⊗ [0, 1]T = [0,1,0,0]T ,  the operation can be written as 

following (Yanofsky & Mannucci, 2008), 

 

However, this NAND gate cannot be realized with quantum gates because two-bit 

information before the gate becomes one bit after the gate in (10) . Quantum 

mechanics does not allow the system (e.g., quantum circuit) to lose information 

unless the quantum states in the system are measured.  Therefore, quantum gates 

must have the same number of inputs as the outputs and must be reversible with no 

information loss by the gates. In contrast, classical gates except NOT gate are one-

way functions and lose some of the input information at the exit of the gate.  This 

requirement is another significant difference from classical computing.  

 

Table 3: Truth table for Quantum NAND gate 

𝜓𝑖𝑛1 𝜓𝑖𝑛2 𝜓𝑖𝑛3 𝜓𝑜𝑢𝑡1 𝜓𝑜𝑢𝑡2 𝜓𝑜𝑢𝑡3 

0 0 1 0 0 1 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 

|𝜓𝑜𝑢𝑡1⟩|𝜓𝑜𝑢𝑡2⟩ = 𝑈𝑐𝑁𝑂𝑇|𝜓𝑖𝑛1⟩|𝜓𝑖𝑛2⟩ = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

[
 
 
 
𝜓1,0𝜓2,0

𝜓1,0𝜓2,1

𝜓1,1𝜓2,0

𝜓1,1𝜓2,1]
 
 
 

=

[
 
 
 
𝜓1,0𝜓2,0

𝜓1,0𝜓2,1

𝜓1,1𝜓2,1

𝜓1,1𝜓2,0]
 
 
 

(8) 

𝑁𝐴𝑁𝐷: [
0 0 0 1
1 1 1 0

] (9) 

𝑈𝑁𝐴𝑁𝐷|0⟩|1⟩ = [
0 0 0 1
1 1 1 0

] [0,1,0,0]𝑇 = [0,1]𝑇 = |1⟩ (10) 
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A quantum NAND gate can be made of a Toffoli gate, also known as the controlled-

controlled-NOT (ccNOT) gate (Figure 5, Table 4). The revised truth table for the 

quantum NAND gate is given in Table 3. 

 

 

Figure 5: Controlled-Controlled-NOT (Toffoli gate) 

 

Table 4: Truth table for Controlled-Controlled-NOT 

𝜓𝑖𝑛1 𝜓𝑖𝑛2 𝜓𝑖𝑛3 𝜓𝑜𝑢𝑡1 𝜓𝑜𝑢𝑡2 𝜓𝑜𝑢𝑡3 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 

 

When the Toffoli gate with 𝜓𝑖𝑛3 = 1, the ccNOT gate works as a NAND gate.  

Thus, we can build any digital logic with the quantum gates theoretically.  

 

No-Cloning Theorem and Entangled State 

 

When 𝜓𝑖𝑛2 is zero in Table 1, the cNOT gate keeps the 𝜓𝑜𝑢𝑡2 to be zero for 𝜓𝑖𝑛1 =
0 and changes 𝜓𝑜𝑢𝑡2 to be one for 𝜓𝑖𝑛1 = 1.  Thus, it seems that cNOT gate copies 

the classical bit information in 𝜓𝑖𝑛1 to  𝜓𝑜𝑢𝑡2 when 𝜓𝑖𝑛2 = 0.  

If cNOT gate can copy an arbitrary state in a qubit to the other qubit, it should be 

valid for a superposition state. When the input 𝜓𝑖𝑛1  is 𝛼|0⟩ + 𝛽|1⟩, the output 

𝜓𝑜𝑢𝑡2 should be 𝛼|0⟩ + 𝛽|1⟩.  

𝜓𝑜𝑢𝑡3 = ¬(𝜓𝑖𝑛1 ∧ 𝜓𝑖𝑛2) (11) 

|𝜓𝑜𝑢𝑡1⟩|𝜓𝑜𝑢𝑡2⟩ = 𝑐𝑁𝑂𝑇|0⟩|0⟩ = |0⟩|0⟩

|𝜓𝑜𝑢𝑡1⟩|𝜓𝑜𝑢𝑡2⟩ = 𝑐𝑁𝑂𝑇|1⟩|0⟩ = |1⟩|1⟩
(12) 
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|ψout1⟩|ψout2⟩ = cNOT(α|0⟩ + β|1⟩)|0⟩  

 

However, from (12), the output from the cNOT gate for the superposition state turns 

out to be 𝛼|0⟩|0⟩ + 𝛽|1⟩|1⟩.  

Obviously, the equation (13) is not equal to (14). In quantum mechanics, the 

replication of an arbitrary quantum state is not possible. This restriction is known 

as the no-cloning theorem (Nielsen & Chuang, 2010; Wootters & Zurek, 1982). 

Even if cNOT gate seems to copy the classical bit information in |𝜓𝑖𝑛1⟩ to |𝜓𝑜𝑢𝑡2⟩, 
this is not a classical meaning of “copy”. The results in (12) are the special cases 

for 𝛼 = 1 or 𝛽 = 1 (|α|2 + |𝛽|2 = 1).  

 

Also, the resulting states in (14) is quite impressive. The equation says, when we 

observe zero in 𝜓𝑜𝑢𝑡1  by measurement, we know 𝜓𝑜𝑢𝑡2  is also zero with no 

additional measurement. Similarly, when we find one in 𝜓𝑜𝑢𝑡1, we know 𝜓𝑜𝑢𝑡2 is 

also one without measuring 𝜓𝑜𝑢𝑡2 . In other words, the quantum state in 𝜓𝑜𝑢𝑡2 

depends on the value observed in |𝜓𝑜𝑢𝑡1⟩ . Thus, the outputs 𝜓𝑜𝑢𝑡1  and 𝜓𝑜𝑢𝑡2 

cannot be described independently. This bizarre states, where the individual states 

of qubits are intimately related to one another, is called the entangled state. There 

is no way to express the entangled states as separable states like the expression 

|𝜓𝑜𝑢𝑡1⟩ = (𝛼|0⟩ + 𝛽|1⟩) and |𝜓𝑜𝑢𝑡2⟩ = (𝛼|0⟩ + 𝛽|1⟩)  in (13).  The use of 

entangled states is another essential ingredient of quantum computing. 

 

 

APPLICATIONS 

 
Quantum Computations 

 

As mentioned earlier, one of the significant advantages of quantum computation is 

the ability of massively parallel computation.  By using a quantum superposition 

state, 2𝑛 inputs can be stored in n qubits simultaneously.  Since universal quantum 

gates allow us to design an arbitrary quantum circuit, the n qubits can be used as 

the input for a quantum circuit, which performs an arbitrary computation.  

      ⟶ (𝛼|0⟩ + 𝛽|1⟩)(𝛼|0⟩ + 𝛽|1⟩)

                                 = 𝛼2|0⟩|0⟩ + 𝛼𝛽|1⟩|0⟩ + 𝛽𝛼|0⟩|1⟩ + 𝛽2|1⟩|1⟩ (13)
 

|𝜓𝑜𝑢𝑡1⟩|𝜓𝑜𝑢𝑡2⟩ = 𝑐𝑁𝑂𝑇(𝛼|0⟩ + 𝛽|1⟩)|0⟩

= 𝑐𝑁𝑂𝑇(𝛼|0⟩|0⟩ + 𝛽|1⟩|0⟩)

= 𝛼|0⟩|0⟩ + 𝛽|1⟩|1⟩ (14)
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For example, four classical values {0, 1, 2, and 3} can be stored in two qubits 

simultaneously, which can be written as the state (6). For example, a circuit can be 

designed to compute 𝑓(𝑥) = 𝑥 + 5 . It seems that four computations can be 

performed with only one step by placing the qubits in the superposition states in the 

circuit. However, the output state is a superposition state of four possible output 

values {5, 6, 7, and 8}. The result of the measurement on the output qubits is one 

of the four possible outputs. In short, when a classical logic is implemented as a 

quantum circuit, the output qubits are the superposition of  2𝑛  outputs for 2𝑛  

inputs.  

The measurement result is one of  2𝑛 possible output states with the probability 

1/2𝑛 . Therefore, a quantum circuit needs to be designed to manipulate the 

probability amplitudes of the qubits so that an expected result can be found by the 

measurement with the probability higher than 1/2𝑛 . In this section, two well-

known quantum algorithms that significantly outperform classical algorithms are 

introduced. 

 

Grover’s algorithm 

 

This database search algorithm is designed to find an item in an unordered list. For 

example, it can be used for speeding up brute force key search on symmetric key 

encryption such as AES (Bernstein, 2010). It is known that this algorithm requires 

𝑂(√𝑁) operations to search an unsorted array of size N, which requires 𝑂(𝑁) 

operations for classical algorithms (Grover, 1996).   

The idea of Grover’s algorithm is the following.  When the number 𝑥𝑎 that satisfies 

𝑓(𝑥𝑎) = 1 needs to be found in a large unsorted database, the qubits are set to be 

in a superposition state of all possible ID numbers {𝑥 = 0,1,2,… , 𝑁 − 1} as the 

initial state. To simplify the expression, the decimal notation is used for n-qubit. 

For example,|1⟩|0⟩|0⟩ is written as |4⟩. The initial state (Figure 6) can be written 

as  

where the initial values of 𝜌𝑥 are 1/√2𝑛  when 𝑁 = 2𝑛. Thus, ∑ 𝜌𝑥
2𝑁−1

𝑥=0 = 1. 

 

|𝜓⟩ = ∑ 𝜌𝑥|𝑥⟩

𝑁−1

𝑥=0

= 𝜌0|0⟩ + 𝜌1|1⟩ + 𝜌2|2⟩ + ⋯𝜌𝑁−1|𝑁 − 1⟩ (15) 
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Figure 6: Initial States for N = 8 (n = 3) 

 

Next, a quantum circuit is used to flip the phase of the state where x is equal to 𝑥𝑎 

(Figure 7). 

|ψ′⟩ = (−1)f(x) ∑ ρx|x⟩

N−1

x=0

 

= ρ0|0⟩ + ρ1|1⟩ + ⋯+ (−1)ρxa
|xa⟩ + ⋯+ ρN−1|N − 1⟩ (16) 

 

where 𝑓(𝑥) = [
0 𝑥 ≠ 𝑥𝑎

1 𝑥 = 𝑥𝑎
 . 

 

 
 

Figure 7: Flip the phase of the state xa for N = 8 (n = 3), assuming 

𝒇(𝒙𝒂 = 𝟑) = 𝟏 in this example 

Then, the difference between the average of the probability amplitudes 𝜌𝑎𝑣𝑒  and the 

amplitude 𝜌𝑥 is subtracted from the amplitude 𝜌𝑎𝑣𝑒 (Figure 8)  

 

where 𝜌𝑎𝑣𝑒 =
1

𝑁
∑ 𝜌𝑥

𝑁−1
𝑥=0 . 

|𝜓′′⟩ = ∑ {𝜌𝑎𝑣𝑒 − (𝜌𝑥 − 𝜌𝑎𝑣𝑒)}|𝑥⟩ = ∑ (2𝜌𝑎𝑣𝑒 − 𝜌𝑥)|𝑥⟩   
𝑁−1

𝑥=0

𝑁−1

𝑥=0
(17) 
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Figure 8: Difference between 𝝆𝒂𝒗𝒆 and 𝝆𝒙 is subtracted from 𝝆𝒂𝒗𝒆 for N = 8 

(n = 3) 

 

This operation is called inversion about the average.  As shown in the example with 

N = 8 (n = 3), the probability amplitude of the target state |3⟩ goes up to 5/2√8 

from 1/√8 after the operation, while the amplitudes for the rest of the states is 

reduced to 1/2√8 .  This result still satisfies ∑ 𝜌𝑥
2𝑁−1

𝑥=0 = (5/2√8)
2
+ 7 × ( 1/

2√8)
2

= 1. Thus, the probability of finding the target state |3⟩  by measurement is 

increased from 12.5% to 78.1%.  If the operation is repeated one more time, 𝜌𝑎𝑣𝑒 =

1/8√8  and 2𝜌𝑎𝑣𝑒 − 𝜌𝑥3
= 11/4√8 . Thus, the probability (2𝜌𝑎𝑣𝑒 − 𝜌𝑥3

)
2

 is 

increased to 94.5%.   

By performing inversion about the average multiple times, the probability of 

yielding the targeted ID 𝑥𝑎  by measurement can be boosted from the initial 

probability of  1/𝑁.  Since finding an item from 𝑁 items takes 𝑁/2 operations on 

average, when 𝑁 is small, the quantum algorithm does not substantially exceed the 

performance of classical algorithms. 

However, when 𝑁 is large, the advantage is quite distinct. For example, when a 

database has 106 items (e.g., for biometric authentications), Grover’s algorithm 

only needs 1000 steps to search an item while a classical algorithm needs 50,000 

steps (Morsch, 2008). 

 

𝑂(√𝑁) < 𝑂(𝑁/2) (18) 
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Shor’s Algorithm 

 

In 1994, Peter Shor showed that a quantum computer could be used to factor a large 

integer in polynomial time (Shor, 1994). His algorithm attracted a great deal of 

attention from security agencies since, if a quantum computer is developed, it can 

break the RSA encryption algorithms (Van Meter & Horsman, 2013), which is the 

most widely used public-key encryption algorithm.   

Shor’s algorithm consists of classical parts and quantum parts. This section explains 

how quantum computation is utilized with the classical computation in Shor’s 

algorithm after the RSA algorithm is briefly introduced. 

 

Summary of the RSA encryption algorithm 

 

A receiver of a secret message, Alice, chooses two large prime numbers (𝑝, 𝑞) and 

computes 𝑁 = 𝑝𝑞. Also, she randomly chooses a number 𝑒, which is coprime to 

(𝑝 − 1)(𝑞 − 1) .   (i.e., gcd{𝑒, (𝑝 − 1)(𝑞 − 1)} ≡ 1 ) and finds the number 𝑑  , 

which satisfies  

She makes those two numbers (𝑁, 𝑒) available as her public key and keeps the 

number 𝑑 as her private key. To encrypt a message 𝑀, a sender, Bob, computes 

𝐶 = 𝑀𝑒  𝑚𝑜𝑑 𝑁.  For decryption, Alice computes 𝑀 = 𝐶𝑑𝑚𝑜𝑑 𝑁.      

In order to break the security of the RSA, the eavesdropper, Eve, needs to find the 

private key 𝑑. Since 𝑁 and 𝑒 are in public, all she has to do is to find 𝑝 and 𝑞 from 

𝑁 to compute (19). However, there is no classical algorithm that can factor a large 

integer in polynomial time. The security of the RSA encryption relies on the 

difficulty of factoring a large integer (e.g., 200 digits)(Schneier, 1996).    

 

Classical computations in Shor’s algorithm 

 

According to the number theory (Stallings, 1999), if a randomly chosen integer 𝑎 

that satisfies 0 < 𝑎 < 𝑁, is coprime to 𝑁, the function 

 is periodic and there is at least one integer 𝑚 that satisfies the condition 

For example, when 𝑎 = 7 and 𝑁 = 15, 

 

𝑓7,15(1) = 71 𝑚𝑜𝑑 15 = 7 
𝑓7,15(2) = 72 𝑚𝑜𝑑 15 = 4 

𝑒𝑑 ≡ 1 𝑚𝑜𝑑{(𝑝 − 1)(𝑞 − 1)} (19) 

𝑓𝑎,𝑁(𝑚) = 𝑎𝑚  𝑚𝑜𝑑 𝑁 (20) 

𝑎𝑚 ≡ 1 𝑚𝑜𝑑 𝑁 (21) 
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𝑓7,15(3) = 73 𝑚𝑜𝑑 15 = 13 
𝑓7,15(4) = 74 𝑚𝑜𝑑 15 = 1 (22) 

𝑓7,15(5) = 75 𝑚𝑜𝑑 15 = 7 
𝑓7,15(6) = 76 𝑚𝑜𝑑 15 = 4 

𝑓7,15(7) = 77 𝑚𝑜𝑑 15 = 13 

 

Therefore, when 𝑚 = 4,8,12,… , the function 𝑓7,15(𝑚)  is equal to 1. The least 

positive exponent is the length of the period generated by 𝑓𝑎,𝑁(𝑚). In this example, 

the period r is 4. 

The condition (21)  can be revised by subtracting one from both sides of the 

equivalence. 

When the period r is an even number,   

Thus, when the integer N is a divisor of (𝑎𝑟/2 − 1)(𝑎𝑟/2 + 1), the remainder is 

zero. There is a good chance that one of two factors (𝑎𝑟/2 − 1) or (𝑎𝑟/2 + 1) is a 

factor for 𝑁. By using the classical Euclidean algorithm, a factor for 𝑁 can be found 

with 𝑔𝑐𝑑 {𝑎𝑟/2 − 1,𝑁} and 𝑔𝑐𝑑 {𝑎𝑟/2 + 1,𝑁} except for the case where 𝑎𝑟/2 =
±1 𝑚𝑜𝑑 𝑁. In the example, when 𝑚 = 4, the factors 3 and 5 for 𝑁 = 15 can be 

found calculating 𝑔𝑐𝑑{72 − 1, 15} = 𝑔𝑐𝑑{48,15} = 3  and 𝑔𝑐𝑑{72 + 1, 15} =
𝑔𝑐𝑑{50,15} = 5. 

 

Quantum computations in Shor’s algorithm 

 

When the integer N is large (e.g., 200 digits), finding the period of 𝑓𝑎,𝑁(𝑚) is very 

time-consuming with a classical computer (if possible.) Thus, a quantum 

superposition state is used to find the period by computing  𝑓𝑎,𝑁(𝑚) for 𝑚 = 0 to, 

at least, 𝑚 = 𝑁2. 

In Grover’s algorithm, only one set of qubits in the superposition state is 

manipulated to increase the probability of finding the targeted index by 

measurement on the qubits. In Shor’s algorithm, two sets of qubits are used: |𝜓1⟩ 
for the input m and |𝜓2⟩ for the output of  𝑓𝑎,𝑁(𝑚) in  (20). The number of qubits 

for |𝜓2⟩ is 𝑘 = log 𝑁  since 𝑓𝑎,𝑁(𝑚) is always less than 𝑁  while the number of 

qubits for |𝜓1⟩ is, at least, log𝑁2 = 2𝑘 (Yanofsky & Mannucci, 2008). Similar to 
(15), the initial state of the qubits for m is  

𝑎𝑟 − 1 ≡ 0 𝑚𝑜𝑑 𝑁 (23) 

(𝑎𝑟/2 − 1)(𝑎𝑟/2 + 1) ≡ 0 𝑚𝑜𝑑 𝑁 (24) 

|𝜓1⟩ = ∑ 𝜌𝑚|𝑚⟩ = 𝜌0|0⟩ + 𝜌1|1⟩ + 𝜌2|2⟩ + ⋯+ 𝜌𝑁2−1|𝑁
2 − 1⟩

𝑁2−1

𝑚=0
(25) 
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where the initial values of 𝜌𝑚  are 1/√22k .  The initial state of the qubits for 

𝑓𝑎,𝑁(𝑚) is 

|𝜓1⟩ and |𝜓2⟩ are placed into a quantum circuit which computes 𝑓𝑎,𝑁(𝑚) as shown 

in Figure 9. 

 

 

Figure 9: Quantum Computation in Shor’s algorithm 

 

The output states from the quantum circuit can be written as  

|𝜓1⟩  and |𝜓2′⟩  are entangled. For example, in the case with 𝑎 = 7  and 𝑁 =
15 (𝑘 = 4), by using the result of (22), |𝜓1⟩|𝜓2′⟩ is written as 

 

Obviously, |𝜓1⟩ and |𝜓2′⟩ cannot be expressed as a separable state like their initial 

states.  

When the second set of qubits |𝜓2′⟩ is measured, the superposition state of |𝜓2′⟩ is 

corrupted and one of four states (i.e., 𝜓2 = 1,7,4,13) is observed on |𝜓2′⟩. But, the 

first set of qubits |𝜓1⟩ is still in a superposition state. When 4 is yielded by the 

measurement on |𝜓2⟩, the state (28) will be  

|𝜓1⟩|𝜓2′⟩ =
1

√64
(|2⟩|4⟩ + |6⟩|4⟩ + |10⟩|4⟩ + ⋯+ |254⟩|4⟩)

=
1

√64
(|2⟩ + |6⟩ + |10⟩ + ⋯+ |254⟩)|4⟩ (29)

 

Thus, the period 𝑟  of 𝑓𝑎,𝑁(𝑚)  can be observed as the distance Δ𝑡  between 

successive possible states of |𝜓1⟩ in Figure 10. 

|𝜓2⟩ = |000…0⟩ = |0⟩ (26) 

𝑈|𝜓1⟩|𝜓2⟩ = 𝑈|𝑚⟩|0⟩ = |𝑚⟩|𝑓𝑎,𝑁(𝑚)⟩ = |𝜓1⟩|𝜓2′⟩ (27) 

|𝜓1⟩|𝜓2′⟩ =
1

√256
 (|0⟩|1⟩ + |1⟩|7⟩ + |2⟩|4⟩ + |3⟩|13⟩ + |4⟩|1⟩ + |5⟩|7⟩ + ⋯

+|254⟩|1⟩ + |255⟩|7⟩) (28)
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Figure 10: Discrete Fourier Transform 

 

A simple measurement on |𝜓1⟩ is not useful to find 𝑟 since the measurement result 

is 𝑚 = 𝑙𝛥𝑡 + 𝑡0 (where 𝑡0 is unknown and 𝑙 = 0,1,2,3,…). The offset 𝑡0 needs to 

be eliminated before the measurement.  A quantum circuit for Discrete Fourier 

Transform for qubits, called quantum Fourier Transform (QFT), is designed to 

eliminate the offset in |𝜓1⟩ and to convert 𝛥𝑡 to 22𝑘/𝑟 .  After the QFT operation, 

the measurement on the state |𝜓1′⟩ yields a number 𝑐 = 𝑗[22𝑘/𝑟] (𝑗 = 1,2,3,…).  

Since 22𝑘 is known, the result value 𝑐 can be divided by 22𝑘. 

By using the continued fraction expansion, the closest rational to 𝑗/𝑟  can be found 

(Rieffel & Polak, 2000; Williams & Clearwater, 1998). By repeating this quantum 

operation several times, the period 𝑟 can be found.  

 

Summary of Shor’s algorithm 

 

To factor a large integer 𝑁,  

1. Randomly choose integer 𝑎 that satisfies both 0 < 𝑎 < 𝑁 and gcd{𝑎, 𝑁} = 1. 

2. Find the period 𝑟  for 𝑎𝑚𝑚𝑜𝑑 𝑁  ( 0 < 𝑚 < 𝑁2 ) by using the quantum 

computation with the classical continued fraction expansion. 

3. When 𝑟 is an even number, compute 𝑔𝑐𝑑 {𝑎𝑟/2 − 1,𝑁} and 𝑔𝑐𝑑 {𝑎𝑟/2 + 1,𝑁}. 
a. If 𝑟 is an odd number, repeat steps 1 and 2. 

4. Check if one of the results from step 3 is the factor of N. If not, repeat all steps. 

 

𝑐

22𝑘
=

𝑗

𝑟
(30) 
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Quantum Key Distribution 

 

Quantum cryptography (Gisin, Ribordy, Tittel, & Zbinden, 2002) is currently one 

of the most practical applications of quantum information science. The most well-

known quantum cryptography is the quantum key distribution (QKD) protocol 

(Bennett & Brassard, 1984), which has been implemented and commercially 

available for more than a decade. The OKD with the one-time pad can provide 

theoretically unbreakable end-to-end security by utilizing quantum mechanical 

properties in a classical cryptographic protocol.  Here “unbreakable” means that the 

security of the cryptography does not rely on the complexity of the algorithm but a 

physical property that prevents decryptions without the key.  The one-time pad is 

classical cryptography known to be a perfect encryption scheme (Schneier, 1996). 

The protocol is simple as follows. A sender, called Alice, generates n-bit random 

number K as a one-time shared key and delivers it to a receiver, called Bob, before 

the communication.  

𝐾 = {𝑘𝑖 = 0,1 | 𝑖 = 1,2,3,… 𝑛} 

When Alice wants to deliver an n-bit secret message M to Bob, Alice performs 

exclusive OR operations for each bit in M and K, respectively. Then, she sends the 

resulting bit sequence C to Bob and discards the K. 

𝑀 = {𝑚𝑖 = 0,1 | 𝑖 = 1,2,3,… , 𝑛} 

𝐶 = {𝑐𝑖 = 𝑚𝑖⨁𝑘𝑖  | 𝑖 = 1,2,3,… , 𝑛} 

Bob decrypts the ciphertext C by performing exclusive OR operations with the 

shared key K and discards the K. 

 

This is an entirely secure protocol. The random bit sequence added to the message 

produces an utterly random bit sequence. Since the key is used only once, there is 

no possible attack except making a guess of n-bit random bit sequence for an n-bit 

message. The problem with this method is that there is no perfectly secure way to 

deliver the key (i.e., K) to Bob prior to the communication. If classical cryptography 

such as RSA or AES was used, the strength of the one-time pad protocol relies on 

the strength of the classical cryptography, which is not a perfect encryption scheme. 

QKD plays a significant role in delivering the keys for the one-time pad. The first 

QKD was proposed by C.H. Bennett and G. Brassard in 1984, called BB84 

protocol. BB84 uses photons to deliver a random sequence of bits, which will be 

used as a shared key between Alice and Bob after the completion of the protocol. 

We introduce the implementation of BB84 with the photon polarization in the 

following discussion to be consistent with the experiments introduced in section 2. 

 

Figure 11 shows a simple BB84 example, which is very similar to Figure 1.  
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The difference is that the polarization angles of Filters are variable. 

 

 

Figure 11: A simple BB84 example 

 

Alice’s filter can be set to four different angles: 0°, 45°, 90°, and 135° while Bob 

can change the orientation of the base angle (PBS) to 0° or 45° degrees (Figure 12).  

 

  

 

Figure 12: Alice’s filter and Bob’s filter angles 

 

In the BB84 protocol,   

1. Alice generates a t-bit random bit sequence, R.  

𝑅 = {𝑟𝑖 = 0,1 | 𝑖 = 1,2,3,… 𝑡} 
2. Alice randomly chooses a horizontal-vertical base (H-V) or diagonal base 

(D) before she sends each photon. When Alice chooses a horizontal-vertical 

base and 𝑟𝑖 = 0 , Alice adjusts her filter to be 0° position so that a 

horizontally polarized photon is sent to Bob.  When Alice chooses a 

horizontal-vertical base and 𝑟𝑖 = 1, Alice adjusts her filter to be 90° position 

so that a vertically polarized photon is sent to Bob.  Similarly, when Alice 

chooses the diagonal base and 𝑟𝑖 = 0, Alice adjusts her filter to be 45° 

position so that a photon polarized by 45° is sent to Bob.  When Alice 

chooses the diagonal base and 𝑟𝑖 = 1, Alice adjusts her filter to be 135° 
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position so that a photon polarized by 135° is sent to Bob.   

3. Bob also independently chooses a horizontal-vertical base or diagonal base 

before he receives each photon at his PBS. 

4. Once Alice has sent all t photons for R to Bob, Alice and Bob exchange the 

information about which base they chose for each transmission and 

reception over a public channel (e.g., telephone).  Only those bits for their 

bases matched are kept as a shared bit sequence K.  The result for each 

transition is shown in Table 5. 

 

Table 5: Bob’s measurement result for each of Alice’s transmission 

 Alice Bob 

Chosen 

Base 

Random 

Bit 

ri 

Rotation 

Angle 

Photon 

State 

Chosen 

Base 

Photon 

State 

 after PBS 

Measured 

Result 

Horizontal 

-Vertical 

(H-V) 

0 0° ↔ 
H-V ↔ 0 

D ⤢ or ⤡ ? 

1 90° ↕ 
H-V ↕ 1 

D ⤢ or ⤡ ? 

Diagonal 

 (D) 

0 45° ⤢ 
H-V ↔ or ↕ ? 

D ⤢ 0 

1 135° ⤡ 
H-V ↔ or ↕ ? 

D ⤡ 1 

 
In the cases that Alice and Bob chose the same base by chance, Alice and Bob can 

share the same classical bit information.  However, when Alice and Bob used 

different bases, the bit information is discarded because Bob’s measurement result 

is not reliable.  

For example, when Alice chooses D base and 𝑟𝑖 = 0, the polarization is rotated by 

45 degrees. Thus, by using a rotation operator, Jones matrix for a rotator (Saleh & 

Teich, 1991),  

the state of the photon can be written as  

Similar to the example in Figure 2, if Bob chooses the H-V base, Bob obtains |0⟩ 

or |1⟩ with the probability 
1

2
. When there is a 45-degree difference between the 

𝑈𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (31) 

|𝜓𝑖⟩ = 𝑈𝑅(45°)|0⟩ =
1

√2
|0⟩ +

1

√2
|1⟩. (32) 
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rotation angle of Alice’s photon and the orientation of Bob’s base, Bob’s 

measurement result is 0 or 1 with the probability of  
1

2
.  

The same rule is applied to the measurements by an eavesdropper, Eve. If Eve has 

the same equipment as Alice and Bob, she can intercept the photons from Alice and 

retransmit the same state of a photon to Bob. However, since Eve does not know 

which base she should use for the measurement, 25% of the measurement results 

are wrong. If Eve encodes new photons based on her measurement results and 

transmits them to Bob, the 25 % of Bob’s measurement results are also incorrect. 

Thus, the existence of an eavesdropper significantly increases the error rate.  Alice 

and Bob can detect Eve’s attack by checking some bits in K to calculate the error 

rate.  Although Eve may try to make copies of Alice’s photon to avoid increasing 

errors, the no-cloning theorem forbids the replication of an arbitrary unknown 

quantum state. 

 

CHALLENGES 

 
Quantum Computer 

 
As listed in “The European Quantum Technologies Roadmap” (Acín et al., 2018), 

many approaches to realize quantum commuters have been explored for decades, 

and some approaches have successfully demonstrated quantum operations. In 2001, 

the first implementation of Shor’s algorithm (factorization of 15 = 3 × 5) was 

realized using nuclear magnetic resonance (NMR)  (Vandersypen et al., 2001).  The 

controlled-Not gate operations have been realized with trapped ions (Schmidt-Kaler 

et al., 2003), superconductors (Plantenberg, de Groot, Harmans, & Mooij, 2007), 

and optical systems (O’Brien, Pryde, White, Ralph, & Branning, 2003). As of 2019, 

the largest number of qubits tested in laboratories is 53-qubit on a superconducting 

based quantum computer. IBM has 20-qubit superconducting based commercial 

quantum computers. Google, IonQ, and Rigetti also have quantum computers in 

their laboratories. 

Theoretically, if universal quantum gates are developed as hardware, any arbitrary 

quantum circuit can be designed. However, there are many technical challenges in 

building the hardware for gate-based quantum computation with a large number of 

qubits (DiVincenzo, 2000; Nielsen & Chuang, 2010). For example, whatever 

material chosen as a qubit must be robustly represented as a stable two-level system 

and must have a longer decoherence time than the gate operations. (Decoherence is 

the coupling between the qubit and its environment.) If the decoherence time is not 

enough for a gate operation, the output state from the gate is likely to have errors. 

Thus, each qubit (e.g., ion, electron)  needs to be well isolated from its environment, 

including neighbor qubits. Quantum error correction (Calderbank & Shor, 1996) 
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can correct some errors, but the error correction mechanism requires a lot of extra 

qubits to be managed. Also, the operations with the qubits need to be performed at 

cryogenic temperatures. This requires refrigeration technologies, which are scalable 

to quantum circuits with a few hundred qubits.   

D-Wave’s quantum computer uses superconducting flux qubit generated inside the 

circulating current in a loop acting as a quantum mechanical spin (Lupaşcu et al., 

2007) and currently has about 2000 qubits (Gibney, 2017), but is not a general-

purpose computer like the gate-based quantum computer. It uses quantum 

annealing (Kadowaki & Nishimori, 1998) to solve only specific types of problems, 

such as optimization problems. It has not been reported that D-wave’s quantum 

computer can perform Shor’s algorithm or Grover’s algorithm with large numbers. 

 

 
Quantum Key Distribution 

 

QKD schemes have been implemented in free space (Hughes, Nordholt, Derkacs, 

& Peterson, 2002) and optical fiber (Gordon, Fernandez, Townsend, & Buller, 

2004).  

A QKD system with a phase encoding in a standard telecommunication optical fiber 

network was implemented (Gobby, Yuan, & Shields, 2004).  In 2004, the first real 

bank transfer utilizing a QKD system took place (Poppe et al., 2004).  In 2012, the 

QKD system over 260 km in standard telecom fiber was experimentally realized 

(Wang et al., 2012). In 2017, the free-space QKD system over 53 km in daylight 

was demonstrated (Liao et al., 2017).  Also, several companies have been offering 

QKD commercial products for more than a decade (“ID Quantique,” n.d.; “MagiQ 

Technologies.,” n.d.).  However, they have not been disseminated widely through 

the community of information security practitioners.  

One of the significant issues with a QKD for the practitioners is that there is no 

commercially available quantum repeater to extend the distance and to fan out 

across a network. A photon is, by its nature, prone to interfere with its environment.  

It is not a critical problem for a short distance QKD scheme because the data 

transmitted over a quantum channel are random bits that can be discarded when 

they have errors. For long-distance, the amplification of the signal (i.e., a photon) 

is necessary due to the high SNR (signal to noise ratio).  However, it is very 

challenging (if possible) to develop a quantum repeater (Meter & Touch, 2013) 

since replication of a transmitted unknown photon is not possible due to the no-

cloning theorem. Although quantum repeaters have been proposed (Briegel, Dür, 

Cirac, & Zoller, 1998; Jiang et al., 2009; Meter & Touch, 2013; Zwerger, Dür, & 

Briegel, 2012; Zwerger, Pirker, Dunjko, Briegel, & Dür, 2017), current 

commercially available QKD systems are generally designed to be used with point-

to-point dedicated connections between networks (Aleksic et al., 2015). Thus, the 
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application of the QKD is still limited to metropolitan area networks (W. Chen et 

al., 2009; Elliott et al., 2005; Sasaki et al., 2011; Stucki et al., 2011).  

In 2018, the distribution of entangled photon pairs via a satellite was demonstrated. 

It enabled sharing the entangled photon pairs between two locations separated by 

more than 1200 km (Yin et al., 2017).   The satellite system may be used for 

entanglement-based QKD (Ekert, 1991) and as a repeater station for QKD 

networks.   

Another issue about QKD schemes is their security. The QKD schemes do not 

generally guarantee that the origin of the message is genuine. If an eavesdropper is 

capable of compromising both quantum and classical channels, the man-in-the-

middle attack against QKD schemes is possible (Pacher et al., 2016; Svozil, 2005). 

Therefore, authentication functionalities need to be incorporated into QKD 

schemes, especially for multipoint connections. 

 

CONCLUSION 

 
In this paper, the fundamental principles used in the quantum computations and 

three well-known quantum applications were introduced. Quantum computing is a 

promising technology, which changes our lives in many ways. Quantum computer 

improves database search significantly and solves many optimization problems 

used in business such as data analytics (e.g., big data (Philip Chen & Zhang, 2014)), 

logistics (e.g., optimizing routes of 10,000 taxies (Cusumano, 2018)), and medical 

research (Parsons, 2011) while quantum computing can be a cybersecurity threat 

until we have post-quantum cryptography (cryptographic algorithms that are secure 

against the attacks by quantum computers  (L. Chen et al., 2016; Mailloux, Lewis, 

Riggs, & Grimaila, 2016).)  

After Shor’s and Grover’s algorithms were found, researchers have not found many 

useful quantum algorithms that substantially outperform classical algorithms. Shor 

states in his paper, “Any quantum algorithm offering a speed-up over classical 

computation must use interference; this phenomenon is unknown in classical 

computer science, and most theoretical computer scientists are not used to 

reasoning about it” (Shor & W., 2003). As researches in quantum computing get 

more attention from government, industry, and academia, more useful quantum 

algorithms are expected to be found.  

Although it may take ten years to build a quantum computer that significantly 

outperforms classical computers, every business needs to think of new quantum 

applications to prepare for the day. As fortune 500 companies have kept investing 

in quantum computing, there must be chances to find a high grade of gold ore in 

this research and business fields.  
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