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Space-for-Time substitution modeling has been used with increasing frequency to identify 

functional relationships between environmental drivers and ecological responses. I 

investigated the use of space-for-time substitution as a null model and beta diversity as a 

validity test for this null model in the Greater Everglades aquatic metacommunity. I began 

by conducting a literature review and analysis to investigate the suitability of the space-

for-time substitution method as a null model. I then analyzed beta diversity of the Greater 

Everglades aquatic metacommunity through a sums-of-squares approach. Finally, I tested 

for correlation between the beta diversity analysis and the space-for-time models. Results 

indicate that while beta diversity is correlated with space-for-time model success for some 

species, the relationship is not consistently significant and therefore not suited for validity 

testing. Space-for-Time substitution is suitable for use as a null model but cannot be used 

reliably in predictive models for management purposes.
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Introduction for the Thesis  

 

  Simulation models have become important tools for conservation management as 

global climate change pushes the field of ecology toward a more predictive science 

(Urban et al. 2012, Thuiller et al. 2013). Conservation managers need reliable ecological 

modeling tools to quantify and project the effects of changes on vulnerable species at 

local and regional scales. Incorporation of spatial and temporal variables allows for the 

creation of predictive models that will more closely reflect the dynamics of natural 

metacommunities. Parameterizing such models is data-intensive and often is challenged 

by the limits of available information.  The lack of data often requires ecologists to 

employ data gathered at temporal or spatial scales that do not match the model 

applications, which can only be accomplished by making assumptions and employing 

short-cuts.  Space-for-time substitution is one such assumption. For example, in a large-

scale review of several types of climate change modeling, researchers found that space-

for-time-substitution models consistently overestimated the effects of warming on plant 

communities (Elmendorf et al 2015). These models assumed that spatial and temporal 

temperature gradients were interchangeable. The study found that this assumption was 

false because warming from climate change progressed at a rapid pace, whereas the 

spatial temperature gradient had stabilized over a long period.    

Space-for-time substitution modeling, or chronosequencing, uses spatial replicates 

in place of temporal replicates to establish functional relationships between biotic 

parameters and abiotic drivers. This technique can be used to create forecast models 

when long-term data are not available (Johnson and Miyanishi 2008). Space-for-time 
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substitution has been used extensively in climate forecasting (Mbogga et al. 2010) and in 

species succession models (Billings 1938).  However, recent studies have shown that 

space-for-time substitution models often do not accurately predict actual developmental 

trends (Fukami and Wardle 2005, Johnson and Miyanishi 2008, Walker et al 2010).  

Johnson and Miyanishi (2008) reviewed resampling studies of the Billings’ old-field 

succession model and several other classic space-for-time substitution models. They 

found that none of the classic space-for-time substitutions showed a good fit for the long-

term data and concluded that the method was not suitable for use in successional studies 

because the assumption that each site in the chronosequence followed the same 

developmental track regardless of differences in abiotic and biotic conditions was 

incorrect. A recent study in the Florida Everglades showed some promise in predicting 

the distribution of a single species using space-for-time substitution, but only in areas 

where connectivity among sites was high (Banet and Trexler 2013). Despite problems 

with this technique, space-for-time substitution continues to be widely used in forecast 

modeling because of the low availability of long time-series data.   

Presence of high levels of habitat heterogeneity is cited as an ecological driver 

correlated with reliability of space-for-time substitution models (Barcena et al 2014, He 

et al 2002). Beta diversity analysis provides a means to quantify heterogeneous 

distribution of species within a variable landscape. In the GE region, abundance of some 

aquatic metacommunity species shows a correlation with days since the site was last dry. 

Species that are more affected by hydrological cycles will be less evenly distributed 

throughout the region and have a higher contribution to beta diversity.  
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Previous studies have validated space-for-time substitution by comparing 

chronosequence results to long-term data observations (Banet and Trexler 2013). 

However, this method requires access to long-term data, which is not available in many 

areas where space-for-time substitution is used. Beta diversity analysis is attractive as a 

test of validity because, in contrast to other methods that have been previously used to 

test the predictive power of space-for-time substitutions, it does not require long-term 

data. A diversity analysis is conducted on a snapshot of data that covers a spatially 

extensive area.  

In this thesis, I evaluated space-for-time substitution in a diverse aquatic 

metacommunity. The goal of this project was to demonstrate the use of space-for-time 

substitution modeling as a null hypothesis and to test for correlation between beta 

diversity and space-for-time substitutability. 
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Space-for-Time Substitution Literature Review 

 

History and Controversy 

 

Space-for- time substitution exists at the intersection of controversy and ubiquity 

in modern ecology. The method has been widely used in studies of agriculture and forest 

succession for more than a century. Classic chronosequences like Billings’ 1938 old-field 

succession model still appear in introductory ecology textbooks. The number of studies 

using space-for-time substitution has risen sharply over the past four decades (Figure 1). 

Using a Web of Science search, I found 4,128 articles published 1980-2018 that use the 

space-for-time substitution method. The number of articles that include either ‘space-for-

time substitution’ or ‘chronosequence’ as a keyword has risen from 4 in 1980 to 383 in 

2018. The scope of the method has also expanded. Space-for-time substitution was 

originally developed for use in plant succession research; for many years the method was 

used almost exclusively in the fields of agriculture, plant, and soil science. However, 

space-for-time substitution is now used in a wide range of studies (Figure 2). The Web of 

Science keyword search revealed that studies in the past decade have included fields such 

as geology, physics, medicine, and reproductive ecology.        

Studies have shown, however, that Billings’ model and other chronosequences to 

be unreliable as predictive models (Fukami and Wardle 2005, Johnson and Miyanishi 

2008, Walker et al. 2010). Johnson and Miyanishi reviewed resampling studies of the 

Billings’ old-field succession model and several other classic space-for-time substitution 

models. They found that none of the classic space-for-time substitutions showed a good 

fit for the long-term data and concluded that the method was not suitable for use in 
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successional studies.  The assumption that each site in the chronosequence followed the 

same developmental track regardless of differences in abiotic and biotic conditions was 

unsupported by the data.  

Researchers who have made extensive use of space-for-time substitution in the 

past have also grown critical of the method. In a 2018 commentary, Wardle and Ghani 

critiqued their earlier work on the Franz-Josef Glacier chronosequence, a New Zealand 

sequence spanning more than 120,000 years (Wardle and Ghaini 2018). They concluded 

that the sites in this region could not be satisfactorily arranged along any unidimensional 

axis because of differences in disturbance regimes among the sites.     

The Null Model Approach 

 

Despite the controversy, use of the space-for-time substitution method has not 

slowed.  

In the past 10 years, Web of Science has identified 10 space-for-time substitution studies 

as highly cited in their field (table 1). Of these 10 papers, three used space-for-time 

substitution modeling as one method in a multi-part analysis. The remaining seven 

studies relied solely on the chronosequence model for analysis. Three of these highly 

cited articles based their models on previously constructed chronosequences, including 

the Franz-Josef Glacier sequence.  

We analyzed 40 studies that directly test the validity of the space-for-time 

substitution method (table 2). Ten studies supported the use of space-for-time 

substitution, while twelve found no support for the continued use of the method. The 

largest group, including 18 of the 40 studies analyzed, showed conditional support for 

space-for-time substitution. These studies discussed limited parameters under which the 
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method might be appropriate. For example, Wardle and Ghani (2018) recommend that 

qCO2 chronosequences not encompass both stressed and disturbed ecosystems, as these 

very different ecosystem types may show similar qCO2 values. Walker et al (2010) lay 

out a number of guidelines for using space-for-time substitution in ecological succession 

studies. They recommend that the method be reserved for communities with low 

biodiversity, rapid species turnover, and low disturbance frequency.  

These recommendations and cautions are well researched and helpful in their 

respective fields. However, the space-for-time substitution method is being used in an 

expanding range of fields and locations. Chronosequences are relatively simple to create 

and can offer valuable insight into the developmental track of many study systems. If 

these models are to be useful tools, they must be reliable in any context.  

We propose that the space-for- time substitution method be viewed as a null 

model. Under this approach, the null hypothesis states that spatial replicates can be 

substituted for temporal replicates because the directional change through time is the 

same at all sites. As with any null model, this hypothesis must be tested before using the 

substitution model to make predictions. If the null model is rejected, then spatial 

replicates cannot be substituted for temporal replicates because sites vary in temporal 

development. In this case, significant spatially heterogeneous ecological drivers can be 

identified. Reliable models for the study system would need to incorporate these drivers.   

Below, we have identified methods that can be used to test this null model. As 

several of these methods do not require long-term data, use of chronosequences as a null 

model is possible in a wide range of studies. We also recognize four categories of 

common ecological drivers that can direct the creation of alternative hypotheses when a 
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chronosequence is rejected, and we identify a priori systems where unscrutinized space-

for-time substitution is ill advised. 

Testing Space-for-Time Substitutions 

 

The simplest method of testing the validity of the space-for-time substitution null 

model in a given environment is to resample a previously constructed chronosequence. 

Of the 40 studies analyzed, nine used the resampling method to test space-for-time 

substitution models . When testing space-for-time substitution by resampling it is 

important to match sampling methods and locations as closely as possible with the 

original study. Incomplete resampling efforts could result in failing to reject the null 

space-for-time model when change in the response variable through time is 

heterogeneous within the sampling area (Barcena et al. 2014). Resampling can clearly 

show the predictive power of the chronosequence being studied, however previously 

constructed chronosequences are only useful as null models if further studies are being 

conducted involving the same response variables, sampling methods, and location as the 

original chronosequence.    

When long-term data are available in the study area, but no previously 

constructed chronosequence is available that closely matches the current study 

parameters, the validity of the space-for-time substitution null model can be tested by 

using older data to construct a chronosequence and then comparing that chronosequence 

to current data. Creating multiple chronosequences from available long-term data can 

lead to higher power tests of the space-for-time substitution null model. 

In cases where long-term data have not been collected in the study area, proxies 

can be found using other methods. For extremely large-scale studies, paleo or 
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archeological data records can be used to create chronosequences that can then be tested 

against current data. This method has been used successfully with both plant and animal 

studies, for example fossilized pollen records were used to predict current species 

distributions at the continental level (Pearman et al. 2008), and bony fish fossils were 

used to create a chronosequence predicting Hawaiian parrot fish distribution 

(Longenecker et al. 2014).  

In studies of plant succession, the stable carbon isotopic composition (δ13C) of 

soil organic carbon has been successfully used to infer temporal patterns of vegetation 

change in order to validate previously constructed chronosequences (Bai et al. 2012). 

Tree, soil, and ice cores can also provide proxies for temporal data. Long-term data can 

also be proxied by creating chronological models that do not rely on space-for-time 

substitutions. Models created using the Before and After Controlled Impact (BACI) 

method are appropriate in studies of point disturbance response. BACI models were 

shown to be superior to space-for-time substitutions in predicting the response of Dung 

Beetle populations to logging of varying intensities (Franca et al. 2016). For highly 

variable systems, chronosequences can be compared to models created using time-

stratified replicated sampling over several seasons (Kappes et al. 2010).    

When long-term data are not available and cannot be proxied through other 

methods, tests of the space-for-time substitution null model can be accomplished through 

experiments that directly examine changes in the response variable. Laboratory, 

mesocosm, or in situ experiments can be used to find the rate of change in a response 

variable that can then be compared to the predicted rate of change seen in the 

chronosequence. Elmendorf et al. (2015) showed that a chronosequence created using 
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temperature as a gradient factor consistently overestimated plant community response 

when compared to in situ experimental warming. Laboratory experiments are often 

appropriate for comparison to chronosequences that examine micro processes. For 

example, pooled results of laboratory warming experiments on marine microbial food 

webs were shown to predict a stronger warming effect than that predicted by space-for-

time substitution (Sarmento et al. 2010). Chronosequences can also be tested through 

comparison to alternative model types that do not rely directly on temporal trends. 

Clemmensen et al. (2015) were able to validate a boreal forest carbon sequestration 

chronosequence by creating a second model based on island size. They showed that the 

space-for-time model more closely reflected the data, despite differences in disturbance 

regime between sites used to construct the chronosequence. Thirteen studies used 

alternative models or experiments to validate space-for-time substitutions.  

Identifying Alternative Ecological Drivers 

 

If the null model created through space-for-time substitution is rejected, the next 

step is to identify ecological drivers that can explain differences in chronosequence site 

development. In reviewing studies that tested the validity of space-for-time substitutions 

in a wide range of systems, three broad categories of ecological drivers were cited as 

creating significant differences in spatial and temporal variability: spatial heterogeneity, 

disturbance events, and confounding variables.  

Even when the heterogeneous factors are not directly linked to the response 

variable in a study, spatial heterogeneity leads to site-specific conditions that can cause a 

mismatch between temporal and spatial variability. For example, a resampling validation 

of 15 chronosequences that modeled changes in soil organic carbon in Norwegian oak 
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and spruce woodlands rejected only one of the models (Barcena et al. 2014). Upon 

examination, the rejected chronosequence was shown to have been created in a woodland 

with high spatial heterogeneity, while the 14 other woodland sites were more 

homogeneous. Spatial connectivity is a related factor that can affect variability in a 

system. Organisms that are isolated within a patchy landscape with low spatial 

connectivity will have more heterogeneous populations (Banet and Trexler 2013). Spatial 

heterogeneity was cited as a limiting factor for space-for-time substitution in 11 of the 40 

studies analyzed.   

Temporal projections necessarily rely on the assumption that environmental 

factors will persist within a given range of variability for the duration of the projected 

period. When disturbance events cause major changes in an environment, the trajectory 

or rate of change in a response variable predicted by a chronosequence will show less 

correlation with actual data. Disturbance events were cited as a limiting factor in six 

studies. The probability that a disturbance event will result in the rejection of a space-for-

time substitution null model is related to both the intensity and size of the disturbance, 

and to the spatiotemporal scale of the chronosequence. A hurricane may significantly 

change the course of island vegetation succession over a decade, but the same storm 

would have little effect on the predictive power of a century-long chronosequence on a 

continental scale. Disturbance events that result in chronosequence rejection can include 

both pulse events, like hurricanes (Chai et al. 2012) and press events, such as land-use 

changes (Bonthoux et al. 2013). 

Variables other than the chronosequence response variable that have differing 

rates of spatiotemporal change can affect the performance of space-for-time substitution 
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in complex environments. These confounding variables were cited as limiting factors in 

12 studies. In a study of birch flowering times across an urban gradient, variation in soil 

conditions, pollution levels, nutrient availability, and water supply were indicated as 

possible confounding factors causing poor fit with an air temperature gradient 

chronosequence (Jochner et al 2013). It is also possible for the response variable in a 

chronosequence to lag in relation to other predictor variables. For example, a 

chronosequence modeling bluefin killifish (Lucania goodei) density in relation to water 

depth produced a poor fit due to the temporal lag between rising water depth and increase 

in population size (Banet and Trexler 2013).  

When the Null Model is Rejected 

 

If the space-for-time substitution null hypothesis is rejected, spatially 

heterogeneous ecological drivers must be identified. These drivers can be accounted for 

in one of two ways. If the ecological drivers affecting the space-time model fit can be 

isolated to a small number of sites, as in the case of small-scale disturbance events or 

isolated geophysical differences, then those sites can simply be dropped from the 

chronosequence and the null hypothesis tested again. If the ecological drivers are present 

in differing levels at all or most sites, such as site-specific hydrological differences or 

pollution gradients, then they can be incorporated into the model as additional gradient 

factors.  

We need to accept that space-for-time substitution may be ill-advised in some 

circumstances.  In fact, rejecting it informs us about the fundamental dynamics of the 

system under study.  The use of space-for-time substitution is only appropriate for 

populations, communities, or ecosystems fluctuating within a domain of feedbacks 
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leading to predicable responses to environmental fluctuation (Walker et al. 2010, Wardle 

and Ghani 2018). These differences need not be as dramatic as shifts to alternative stable 

states. We found that lumping population dynamics of a fish species in Everglades 

regions that experienced different histories of hydrological fluctuation and access to 

drought refuges increased the range of hydrological conditions in our spatial model but 

decreased its consistency with temporal models (Banet and Trexler 2013).  By expanding 

the spatial domain of data, we identified regions with different dynamical controls.     

Closing Thoughts 

 

Because of the assumption that all sites within a chronosequence develop at equal 

rates through time, the space-for-time substitution method as it has been historically 

implemented is useful only to show generic trends, as when the mechanism of succession 

is being explained in an introductory ecology text. Models created using this method have 

frequently been found to be unreliable in predicting real-world long-term data. In order to 

make space-for-time substitution useful for implementation outside of the theoretical 

realm, the basic chronosequence must be viewed as a null model. This null model can 

then be tested and if rejected it can be updated until a satisfactory model is achieved.    
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Table 1. Highly cited studies that use the space-for-time substitution method. 

Complete citations can be found in reference section 

Authors Year 

Validity 

Test 

Based on Previous 

Chronosequence 

Clemmensen et al. 2015 X -  

Clemmensen et al. 2013 X -  

Dini-Andreote et al. 2015 X X 

Goulden et al. 2011 -  -  

 Maher, K 2010 -  -  

Li et al. 2017 -  -  

Martinez-Garcia et al. 2014 -  X 

Zemunik et al. 2015 -  X 

Zhang et al. 2018 -  -  

Zhang et al. 2016 -  -   
  

 

 

 

 

 

 

 

 

 

 



18 
 

 

   Table 2. Studies that test space-for-time substitution validity. Complete citations can be found in reference section.  

 

 
Authors Year Testing method Findings Ecological Drivers 

Bai, E. et al. 2012 Other Model supportive none 

Banet, A. I. and Trexler, J C. 2013 Long-Term Data conditional   spatial heterogeneity, confounding variables 

Barcena, T. G. et al. 2014 Resampling   conditional   spatial heterogeneity  

Blois, J. L. et al. 2013 Long-Term Data conditional   spatial heterogeneity 

Bonthoux, S. et al. 2013 Resampling unsupportive disturbance events 

Chai, S. et al. 2012 Resampling conditional   disturbance events 

Chaideftou, E. et al.  2012 Resampling supportive none 

Clemmensen, K. E. et al. 2015 Other Model supportive none 

De Lombaerde, E. et al. 2018 Resampling conditional   confounding variables 

Derderian, D. P. et al. 2016 Resampling unsupportive disturbance events 

Dobrowski, S. Z. et al 2011 Long-Term Data conditional   confounding variables 

Dobrowski, S. Z. et al. 2011 Long-Term Data conditional   confounding variables 
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Eby, S. et al. 2 0 1
7

Other Model

Other Model

Other Model

Other Model

Other Model

Long-Term Data 

Resampling

Other Model

Long Term Data 

Long-Term Data 

Long-Term Data 

Long-Term Data 

Long-Term Data

supportive

conditional

unsupportive 

conditional

unsupportive 

unsupportive 

unsupportive 

unsupportive 

conditional

conditional

unsupportive 

conditional

supportive

none

confounding variables

none

spatial heterogeneity

confounding variable

spatial heterogeneity, confounding variables 

confounding variables, spatial heterogeneity 

spatial heterogeneity

confounding variables

spatial heterogeneity

none

spatial heterogeneity

none

Elmendorf, S. C. et 
al.

2 0 1
5

França, F. et al. 2 0 1
6

Hammond, M. P. and Kolasa, J. 

Isaac, N. J. B. et al.

2 0 1
4
2011

Jochner, S. et al. 2 0 1
3

Johnson, E. A. and Miyanishi, 
K. Kappes, H. et al.

2 0 0
8
2 0 1
0

Kharouba, H. R. et al. 2 0 0
9

La Sorte, F. A. et al. 2 0 0
9

Li, S. et al. 2 0 1
5

Li, W. K. W. et al. 2 0 1
3

Liu, G. and Schwartz, F. 
W.

2 0 1
2
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Longenecker, K. et al. 2014 Long-Term Data Proxy supportive none 

Miao, R. et al. 2018 Long-term data conditional   disturbance events 

Micallef, A. et al. 2014 Other Model supportive none 

Mimet, A. et al. 2016 Long-Term Data unsupportive spatial heterogeneity 

Pearman et al. 2008 Long-Term Data Proxy conditional   confounding variables 

Racz, I. A. et al. 2013 Long-Term Data unsupportive none 

Richardson, M. and Stolt, M. 2013 Other Model unsupportive none 

Rolo, V. et al. 2016 Resampling supportive none 

Sarmento, Hugo et al. 2010 Other Model unsupportive confounding variables 

Schrama, M. et al. 2012 Long-Term Data supportive none 

Temme, A. J. A. M. et al. 2015 Resampling conditional   disturbance events 

Thomaz, S. M. et al. 2012 Long-Term Data conditional   confounding variables 

Wardle, D. and Ghani, A. 2018 Other Model conditional   disturbance events 



21 
 

  

Williams, M. W. et al. 2011 Other Model conditional   none 

Zhu, D. et al. 2013 Long-Term Data supportive none 
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Figure Legends 

 

Figure 1. Number of articles in the Web of Science Core collection containing the 

keywords ‘space-for-time substitution’ or ‘chronosequence’ from 1980 – 2018 

 

Figure 2. Percentage of articles from figure 1 in fields other than agriculture, plant 

science, and soil science   
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Figure 1. 
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Figure 2. 
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Testing Space-for-Time Substitution in the Everglades 

 

Introduction 

 

Climate change, anthropogenic changes to the hydrologic cycle, and nutrient 

addition are altering the Florida Everglades ecosystem at a rapid pace (Sklar et al. 2005; 

Pearlstine et al. 2010). Management and restoration efforts require reliable projection 

models. These models must show functional relationships between the environmental 

factors  and ecosystem performance measures. Space-for-time substitution could be a 

useful tool to identify these relationships, but only if it can be validated through a null 

model assessment of its validity in this region (Elmendorf et al 2015, Chapter 1 this 

thesis).  Beta diversity, which measures the change in species composition between sites, 

can be used as an indicator of species dispersal rates. High beta diversity has been 

suggested as an indicator that a system may not be suitable for space-for-time substitution 

modeling (Banet and Trexler 2013, Kappes et al 2010), but this correlation has not been 

tested directly. This study had two main objectives. First, to test a multiple species null 

model of space-for-time substitution in the Florida Everglades using a broad spatial and 

temporal scale. And second,  to test for a correlation between space-for-time model 

reliability and individual species’ contributions to beta diversity. 

The Florida Everglades is a seasonally pulsed wetland with abundant rainfall from 

May through October and a dry season from November through April. Many sites 

experience periodic drying events that vary in duration and frequency due to small 

differences in elevation and hydrological cycles. Aquatic animals have proven to be 

useful performance measures of Everglades ecosystem health because of their sensitivity 
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to hydrological variation and relatively rapid response time (Trexler and Goss 2009). 

Variation in interannual and intra-annual rainfall coupled with variability in landscape 

connectivity affects dispersal of aquatic metacommunity species in this environment 

(Hoch et al. 2015; Parkos and Trexler 2014).   

Banet and Trexler (2013) found conditional support for a chronosequence 

modeling distribution of Bluefin Killifish (Lucania goodei) in relation to days since a 

drying event. Models created in that study were least reliable in areas with high landscape 

heterogeneity and lower species dispersal rates. I explored those data further to determine 

if community metrics related to beta diversity can be used to identify taxa with space-for-

time substitutability. I analyzed beta diversity using a sums-of-squares approach 

(Legendre and Caceres 2013) that measured both total beta diversity and individual 

species contribution to beta diversity for 62 aquatic metacommunity species. I created a 

series of space-for-time substitution models for species with a high contribution to beta 

diversity, with a null hypothesis that the spatial and temporal biomass distribution for 

these species was the same. Long-term data was used to test this space-for-time 

substitution null hypothesis. Finally, I compared results from these two analyses to test 

the hypothesis that beta diversity is correlated with space-for-time substitution model 

validity.  

 

Materials and Methods 

 

Data Selection 

 

I used data from two ongoing projects, the Comprehensive Everglades 

Restoration Plan (CERP) and the Modified Waters Delivery Project (MDW) (Figure 1). 
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Both projects sample small-bodied fish, macroinvertebrates, and amphibians from the 

Greater Everglades ecosystem. Together these projects provide spatiotemporally 

extensive data ideal for modeling aquatic metacommunity diversity and assessing space-

for-time substitutions.  All data were collected with a 1-m2 throw trap following a 

standard protocol (Jordan et al. 1997). 

The CERP project provided a spatially extensive dataset over most of the 

Everglades Ridge and Slough and Marl Prairie/Rocky Glades ecosystem (Ogden et al. 

2003). CERP sampling began in 2005 and continued through 2016. It provides a spatially 

extensive annual survey based on a Generalized Random Tessellation Stratified (GRTS) 

sampling design (Stevens and Olsen 2004). The CERP monitoring area covers over 

50,000 square kilometers, stretching from Loxahatchee National Wildlife Refuge in the 

north to the southern reaches of Everglades National Park.  The monitoring area for this 

project was divided into Landscape Sampling Units (LSUs) based on differences in 

physical landscape characteristics. Each LSU contained several Primary Sampling Units 

(PSUs); there were a total  of 136 PSUs in the CERP monitoring area. During each 

sampling period, 3 samples are collected at each PSU using a 1-m2 throw trap (Jordan et 

al. 1997; Trexler et al. 2003). CERP samples were collected once per year late in the 

South Florida wet season (late September through early December).  

The MDW project began in 1996 and provides temporally detailed data from 20 

monitoring sites (Trexler et al. 2003). While sampling methods have remained the same 

over the life of the project, species identification methods have changed in some cases. 

Early samples were pooled at the site level. Some species that were originally identified 
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at the genus level were later recorded as separate species. Because this study includes 

models for several species, I have truncated MDW sample data to avoid these differences 

in the spatial and temporal model data sets. MDW samples used for this project were 

collected between 2005 and 2016. The MDW monitoring area was divided into three 

regions: Water Conservation Areas (WCA 3A and 3B), Shark River Slough (SRS), and 

Taylor Slough (TSL). MDW regions overlap, but do not totally cover, the CERP 

sampling area.  Each region in the MDW monitoring area contains several sites, and each 

site contains 3 plots. Each plot was sampled using methods identical to those used in the 

CERP project. Samples were collected for the MDW project 5 times per year, creating a 

temporally robust data set for these 19 monitoring sites (12 years x 5 visits per year = 60 

sequential samples per plot).  

Physical site conditions including vegetation cover and water depth were recorded 

during each site visit in both CERP and MDW projects. Water depth field measurements 

were calibrated using data from the Everglades Depth Estimation Network (EDEN), a US 

Geological Survey network of 300 water gauges in the CERP sampling area (references 

for EDEN).   

Community metrics, including abundance and wet weight, were calculated for all 

species collected by throw trap.  There was a large disparity between fish and 

invertebrate abundance in many samples, with invertebrates including Grass shrimp and 

creeping water bugs often far outnumbering any fish species. However, high abundance 

alone does not necessarily translate to high environmental impact. This discrepancy 

therefore caused difficulty with analysis of taxonomically diverse and size-mixed groups. 
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To include all species in a single analysis, it was necessary to convert species count data 

to biomass. Conversions for fish were taken from Kushlan et al. (1986). Formulas for fish 

species not included in Kushlan et al.’s study were derived from laboratory samples using 

similar methods. Fish biomass conversion formulas were based on the length of each 

specimen. Crayfish biomass conversion formulas were taken from Klassen et al. (2014) 

based on carapace length. Conversion formulas for amphibians and invertebrates other 

than crayfish were derived by averaging weights for Everglades-collected samples. 

Conversion formulas were available for most, but not all species (appendix 1). This study 

included 57 species: 37 fish, 17 invertebrates, and 3 other vertebrates. All study species 

were found in both CERP and MDW.  

Space-for-time models were created for a set of 5 representative species: Marsh 

Killifish, Bluefin Killifish, Grass Shrimp, Everglades Crayfish, and Slough Crayfish. 

These species were chosen because of their abundance and contributions to beta 

diversity.  

Quantifying Metacommunity Dynamics through Diversity Analysis 

Beta diversity can be quantified either directionally, as the turnover from one 

sampling unit to the next along a spatial or environmental gradient, or non-directionally, 

as the variation among all sampling units (Anderson et al. 2011). For this project, I 

defined beta diversity as the non-directional total variance of the site-by-species sample 

matrix (Legendre et al 2005). Beta diversity metrics were analyzed separately for each 

year using a sums-of-squares approach (Legendre and Caceres 2013) (Figure 2). This 
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method has the advantage of being computationally independent from alpha and gamma 

diversity calculations (Ellison 2010).  

Analysis was conducted for the entire CERP dataset and for the Shark River 

Slough (SRS) and Water Conservation Area 3A (WCA 3A) individual regions. 

Analyzing beta diversity at both the project and regional levels allowed for an illustration 

of the variance in diversity within and throughout the project area. Total Beta Diversity 

(BDtotal) can range from 0 – 1, with 0 reflecting a totally homogeneous region with no 

difference in species composition or abundance between sites, and 1 representing a 

region with no common species between sites. The contribution of each species to beta 

diversity (SCBD) is expressed as a proportion of the total sums-of-squares. Results of this 

analysis included yearly SCBD metrics for the 57 study species and the yearly BDtotal for 

the CERP project and individual regions.  

Creating Space-for-Time Substitution Models 

A previous study on Bluefin Killifish that used data from the CERP and MDW 

projects found some support for space-for-time substitution in the Everglades (Banet and 

Trexler 2013). Models for this earlier study used the number of days since each sample 

site last experienced a drying event (DSD) as a gradient factor to create chronosequence 

models. For my study, I selected model species based on their abundance and 

contribution to beta diversity. Abundance of these model species, as well as all other 

aquatic metacommunity species, is controlled by a complex and variable combination of 

hydrological, environmental, and behavioral factors (Sokol et al 2014); hydrological 

factors like DSD show a strong correlation with abundance for some species and very 

little correlation with other species.  
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In order to test my hypothesis that species contribution to beta diversity is 

correlated with space-for-time substitution model reliability, I needed to create models 

that would be applicable for all model species. Because correlation with any gradient 

factor varies across species, the most generalizable model is one that relies on sample 

data alone. I therefore elected to create space-for-time substitution models that 

incorporate only species biomass in lieu of chronosequence models that incorporate an 

environmental gradient factor for this study.  

Space-for-time models were created to compare variance in species biomass in 

the spatially rich CERP dataset with that of the temporally rich Mod Waters dataset. 

Chronosequence models by nature require a large spatial aggregate of sample sites over 

which a gradient factor varies. Because space-for-time substitution relies on the 

assumption that all sites follow the same development pattern through time (Johnson and 

Miyanishi 2008), predictions resulting from a valid chronosequence model must be true 

for each site used in its creation. The models I created tested to see if biomass samples 

from a large spatial aggregate could be drawn from the same population as a those from a 

temporal series taken at a single site. The validity of these models can be used to 

demonstrate the appropriateness of space-for-time substitution in this system. If the 

variance of biomass at a single site through time does not match that of the spatial 

aggregate that would be used to create a chronosequence, then the assumption that all 

sites follow the same developmental pattern is not met.      

Previous studies have shown that space-for-time substitutions are more reliable 

when spatial and temporal data are drawn from the same sampling region (Banet and 

Trexler 2013). For this reason, when creating space-for-time models, I compared CERP 
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data from the Shark River Slough (SRS) and Water Conservation Area 3A regions to 

MDW data from two representative sites within the same regions. The remaining regions 

within the CERP sample area either did not contain enough sites for analysis or did not 

encompass MDW sites for temporal comparison.  

Yearly sample sets (2005 – 2016) from two regions of the CERP project, SRS and 

WCA 3A, were used as the spatial datasets for this analysis. The mean biomass of all 

throw-trap samples was taken at the PSU level. Because some PSUs could not be 

sampled because water depth was too deep or shallow, or other prohibitive conditions 

such as dense or tall vegetation, the total number of yearly samples varied in both 

regions. A total of 24 spatial datasets (2 regions X 12 years) were created.  

From the MDW project, two sites were selected from the SRS region and two 

from the WCA 3A region. MDW sites that did not experience conditions that would 

periodically prevent sampling, including excessive depth, frequent drying, or overly 

dense vegetation, were chosen to maximize the continuity of the temporal data samples.  

MDW samples were averaged at the site level. For each of these sites, all wet-season 

samples collected from 2005 – 2016 were used to create the temporal datasets. A total of 

four temporal datasets were created.  

For each region, spatial datasets were compared with temporal datasets using the 

nonparametric Kruskal-Wallis test. This statistic tested whether the spatial and temporal 

samples were taken from the same population. This process was repeated for each of the 

five model species, resulting in a total of 240 models.   
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To determine whether spatial heterogeneity of species was correlated with 

reliability of space-for-time substitution in the GE region, I compared SCBD scores with 

the results of the space-for-time models. Kruskal-Wallis test p-values for each space-for-

time model were paired with SCBD values for the corresponding model species and 

CERP region. After pairing, the data were bootstrapped to reduce the effect of outlier 

values. I then used Pearson’s correlation coefficient to analyze the relationship between 

SCBD and space-for-time substitution model reliability. 

 

Results 

 Interannual hydrology varied during the timeframe included in the study, 

encompassing the full range of wet and dry years typical of the region (Figure 3). Drying 

events were considered to include any water depth measurements less than 5cm at a 

sampling site. The proportion of sites in the CERP sampling region that experienced at 

least one drying event during a year (short hydroperiod) varied from a high of over 90% 

in 2005 to a low of 18% in 2016 (Figure 3).   

Beta Diversity Analysis 

A total of 157 amphibian, fish, and invertebrate species were identified in MDW 

and CERP samples. Most of these species were found in both project samples (Figure 4). 

All of the 57 species used for diversity analysis were present in both project samples. The 

few species that were found only in CERP may be attributed to the larger sampling 

region. The species found exclusively in MDW could be related to the extended length of 

the project or to multi-season sampling. The most abundant fish species were Least 

Killifish, Heterandria formosa; Eastern Mosquitofish, Gambusia holbrooki; Bluefin 
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Killifish, Lucania goodei; and Flagfish, Jordanella floridae. Grass shrimp, Palaemonetes 

paludosus, and creeping water bugs, Pelocoris femoratus, were the most abundant 

invertebrates.  

Beta diversity in the CERP project area was relatively constant over the life of the 

program, with BDtotal ranging from 0.48 – 0.65. BDtotal for the SRS region was between 

0.39 – 0.68 and BDtotal for WCA 3A ranged from 0.32 – 0.57 (Figure 5). The grand mean 

for SCBD in the CERP project area was 0.02. There were 19 species whose mean SCBD 

scores were above the grand mean (Table 1). These 19 species comprised between 0.734 

and 0.913 of the total beta diversity for the CERP region over the life of the project.  

Species contribution to beta diversity was correlated with total biomass for most 

species in the CERP region (Figure 6).This correlation relates higher total biomass to an 

expectation of higher spatial heterogeneity. Several species were notable outliers in this 

relationship. Slough Crayfish and Grass Shrimp both have SCBD scores below what 

would be predicted by biomass alone; these species were less heterogeneous in 

distribution than would be expected. Bluefin Killifish, Marsh Killifish, and Everglades 

Crayfish have SCBD scores higher than predicted by biomass alone. These species were 

chosen as models for space-for-time substitution as they represent highly abundant 

species whose contribution to beta diversity is either higher or lower than the mean 

shown through the abundance-diversity relationship.    

I analyzed SBCD for each of the model species by year and region (Figure 7). In 

the SRS region, the Everglades Crayfish showed the most variability in terms of diversity 

with SCBD of 0.043 in 2009 and 0.167 in 2015 (range = 0.124). In the WCA 3A region, 
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the Marsh Killifish had the widest range in SCBD with an SCBD of 0.003 in 2006 and 

0.094 in 2008 (range = 0.091). The Bluefin Killifish had the smallest range in SCBD in 

both regions. In the SRS region, Bluefin Killifish SCBD was 0.015 in 2008 and 0.063 in 

2013 (range = 0.048). In the WCA 3A region Bluefin Killifish SCBD was 0.041 in 2010 

and 0.064 in 2014 (range = 0.023). Overall, the WCA 3A region was less variable than 

the SRS region.  

Space-for-Time Substitution Models 

Of the 240 spatial and temporal biomass data combinations, a total of 234 space-

for-time substitution models were created. Six models were dropped because of low 

sample numbers. In 129 of the 234 models (55%), the p-value for the Kruskal-Wallis test 

was less than 0.10, suggesting that the spatial data could be drawn from the same 

distribution as the temporal data for that model. This was counted as a successful space-

for-time substitution. 

The number of successful models was analyzed by species and region (Table 2), 

and by year (Figure 8). In the WCA 3A region, 60% of the space-for-time substitution 

models had Kruskal-Wallis p-values less than 0.10. The SRS region had a 50% success 

rate for the space-for-time substitution models. Grass Shrimp yielded the most reliable 

space-for-time substitution models overall (74%). The Slough Crayfish was the least 

reliable (38%). The proportion of successful models per year ranged from 0.40 – 0.70.    

Space-for-Time Substitution and Beta Diversity Correlation 

Reliability of the space-for-time substitution models as measured by the Kruskal-

Wallis test showed little to no correlation with species contribution to beta diversity 
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(SCBD) for four of the five model species. The Pearson correlation coefficient was less 

than 0.20 for Marsh Killifish, Bluefin Killifish, Everglades Crayfish, and Slough 

Crayfish. Reliability of the Grass Shrimp models showed moderate correlation with 

SCBD in the Shark River Slough region with a Pearson correlation coefficient of 0.32, 

and high correlation in the Water Conservation Area 3A region with a Pearson 

correlation coefficient of 0.55 (Figure 9). 

 

Discussion 

 

Beta diversity metrics varied by year and between regions. The more 

hydrologically stable Water Conservation Area 3A showed less variability in beta 

diversity. Previous work has shown that samples from MDW and CERP can be drawn 

from the same distribution (Smott and Trexler, personal communication 2018). However, 

models substituting spatial distributions for temporal distributions in these projects were 

reliable only 50% to 60% of the time. Species contribution to beta diversity was not 

strongly correlated with space-for-time substitution model reliability.  

Beta Diversity in the Greater Everglades Aquatic Metacommunity 

BDtotal for the Shark River Slough region  ranged from 0.39 – 0.68  and was 

higher and more variable than that of the Water Conservation Area 3A region, which 

ranged from 0.32 – 0.57. Both of these ranges were similar to previous aquatic 

community beta diversity studies (Legendre et al. 2013). WCA 3A had fewer sites that 

experienced drying periods and a more regulated yearly hydrological cycle due to water 

management of the area. This difference in hydrological management may contribute to 

the lower variability in BDtotal for this sampling region.  
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While the CERP aquatic metacommunity includes a large number of species, just 

19 of these contribute the bulk of spatial variability in community composition. The 

sums-of-squares beta diversity analysis method was chosen in part because of its low 

sensitivity to rare taxa (Anderson et al 2011). The contribution of most species to 

regional beta diversity can be accurately predicted from species abundance (Figure 7). 

Species that fall above the line of this abundance-diversity relationship are more 

heterogeneous in distribution than would be expected from abundance alone. Species that 

fall under the line are more evenly distributed than would be expected given their 

abundance. Factors influencing heterogeneity of distribution in aquatic metacommunity 

species include hydrological cycles and individual species behavior patterns (Sokol et al 

2014). More research is needed in this area to understand the environmental drivers that 

affect the species included in this study.    

Space-for-Time Substitution 

The MDW sampling areas are spatially nested within the CERP study sites and 

sampling methods were identical between the two projects. Previous work by Smott and 

Trexler (personal communication 2019) has shown that data from these two projects 

could be drawn from the same distribution for sites within 1.5 km of each other when 

examined year-by-year. The models created for this project compared the large spatial 

area of CERP to the temporally rich MDW data to determine if variability in space and 

time would change the relationship between these two sample sets.  

Space-for-time substitution relies on the assumption that variance across space is 

equal to variance through time in the absence of driving environmental factors. 

Therefore, the careful determination of both spatial and temporal scales is essential to 
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creating valid space-for-time models. Spatial heterogeneity was one of the reasons 

identified in my literature review for poor fit in space-for-time substitution models. 

Because of this, I chose to limit the spatial aggregates used in my models to the region 

surrounding the sites used for each temporal series. These regions were created based on 

landscape and hydrological features (Stevens and Olsen 2004). However, both WCA 3A 

and SRS regions cover several hundred square kilometers and environmental conditions 

including hydrology and vegetation vary extensively within both regions. The temporal 

scale of the MDW data used in my models was twelve years, the same length as that of 

the CERP project.   

Overall, space-for-time models created for this project were shown to be valid 

between 50% and 60% of the time. Successful models indicate that environmental drivers 

were not strong enough to create divergent variances in biomass between the spatial and 

temporal samples. with substitutions of data from the more hydrologically regulated 

Water Conservation Area 3A being more reliable than those predicting Shark River 

Slough data. Individual species models were most reliable for the invertebrate Grass 

Shrimp, especially in the WCA 3A region, where 96% of the models created were 

successful. The two crayfish species yielded the least reliable models.  

Success of Bluefin killifish models ranged from 58% - 63% in this study. A 

previous study of space-for-time substitution in the Greater Everglades that also 

compared CERP and MDW data returned low R2 values, between 0.25 – 0.30, for 

chronosequence models of the relationship between days since dry (DSD) and abundance 

of Bluefin Killifish (Banet and Trexler 2013). The higher success rate for Bluefin 

Killifish models in this project was possibly due to the reduced complexity of the model, 
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as models for this study were based only on biomass distributions without the inclusion 

of the second hydrological (DSD) chronosequence factor. 

Correlation between Space-for-Time Substitution and Beta Diversity 

A relationship between space-for-time substitutability and beta diversity has been 

suggested in several studies (Banet and Trexler 2013, Kappes et al 2010). A direct 

correlation between these variables would be inverse, with higher SCBD being associated 

with lower space-for-time model validity. Further, a space-for-time model success rate 

higher than the mean success rate would be expected for species that were more 

homogeneous in distribution than would be expected by abundance alone and a lower 

success rate would be expected for species that were more heterogeneous in distribution. 

In this study, a significant correlation between SCBD and space-for-time model validity 

was found for only one of the five model species, the Grass Shrimp, in the WCA 3A 

region. This species also had a model success rate significantly higher than the mean 

model success rate. Because the Grass Shrimp was one of the species that was less 

heterogeneous in distribution than predicted by abundance alone, these results support the 

hypothesis that space-for-time substitutability can be predicted by species contribution to 

beta diversity when other environmental drivers do not affect distribution of the species. 

However, the low correlation results and model success rate for the Slough Crayfish, 

which also falls below the line of the abundance-diversity relationship, and the high 

model success rate for the Bluefin Killifish, which is highly heterogeneous in 

distribution, do not support the hypothesis.  
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Conclusion 

Space-for-time substitution is useful when employed as a null model to predict 

trends when the variance in space and time is assumed to be equal (Chapter 1 of this 

thesis). The successful models in this study support the substitution of spatially extensive 

biomass data for temporal series data in Grass Shrimp, Bluefin Killifish, and Marsh 

Killifish. These species would be appropriate candidates for future space-for-time 

substitution work in the Everglades, especially in the hydrologically managed WCA 3A 

region. However, because models in this study were broad in both spatial and temporal 

scale and based on biomass data alone, future work in this area should begin by testing 

the space-for-time substitutability of hydrological variables associated with each of these 

species.       

Beta diversity analysis shows that space-for-time substitution may be more 

reliable in regions where environmental factors are more stable and for species that are 

insensitive to variation in environmental drivers. Creating models to predict real-world 

data is complex and relies on many interconnected factors. For this reason, space-for-time 

models should not be used for prediction or management purposes unless the models can 

first be validated using long-term data.  

Future work in this area will expand these models to incorporate more species and 

to make specific predictions regarding future climate change and land-use scenarios. The 

methods described here for using space-for-time substitution as a null model can be 

generalized to projects in different ecosystems.  
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Table 1. Species with high Contribution to Beta Diversity (SCBD) 

 

Scientific Name Common Name 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Cichlasoma 

urophthalmus Mayan Cichlid 0.083 0.020 0.041 0.024 0.075 

  

0.002 0.006 0.029 0.037 0.001 

Enneacanthus 

gloriosus Bluespotted Sunfish 0.031 0.025 0.006 0.026 0.012 0.022 0.007 0.033 0.020 0.015 0.006 0.079 

Fundulus chrysotus Golden Topminnow 0.057 0.075 0.045 0.063 0.054 0.046 0.068 0.055 0.074 0.064 0.077 0.076 

Fundulus confluentus Marsh Killifish 0.062 0.091 0.098 0.079 0.092 0.076 0.082 0.072 0.076 0.070 0.094 0.081 

Gambusia holbrooki Mosquitofish 0.077 0.078 0.036 0.038 0.032 0.027 0.065 0.049 0.058 0.037 0.044 0.027 

Hetorandria 

Formosa Least Killifish 0.035 0.028 0.016 0.017 0.021 0.012 0.016 0.023 0.035 0.026 0.030 0.024 

Jordanella floridae Flagfish 0.081 0.063 0.079 0.067 0.085 0.058 0.072 0.067 0.078 0.069 0.065 0.036 

Lepomis gulosus Warmouth 0.015 0.009 0.018 0.035 0.040 0.056 0.017 0.036 0.019 0.004 0.010 0.022 

Lepomis marginatus Dollar Sunfish 0.031 0.034 0.019 0.045 0.055 0.054 0.023 0.038 0.063 0.028 0.010 0.003 

Lepomis punctatus Spotted Sunfish 0.019 0.021 0.043 0.042 0.034 0.101 0.052 0.048 0.089 0.074 0.028 0.002 

Lucania goodei Bluefin Killifish 0.063 0.055 0.030 0.036 0.035 0.048 0.038 0.042 0.065 0.056 0.034 0.052 
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Poecilia latipinna Sailfin Molly 0.035 0.080 0.061 0.075 0.049 0.042 0.056 0.021 0.050 0.030 0.080 0.063 

Pomacea paludosa Applesnail 0.019 0.035 0.113 0.080 0.103 0.093 0.042 0.089 

 

0.054 0.023 0.027 

Belostoma spp. Giant water bug 0.012 0.022 0.018 0.013 0.014 0.014 0.046 0.010 0.017 0.011 0.052 0.022 

Palaemonetes 

paludosus Grass shrimp 0.061 0.050 0.049 0.050 0.048 0.028 0.026 0.044 0.056 0.028 0.028 0.046 

Procambarus alleni Everglades crayfish 0.121 0.075 0.100 0.100 0.064 0.100 0.139 0.128 0.140 0.121 0.114 0.122 

Procambarus fallax Slough crayfish 0.059 0.050 0.050 0.030 0.038 0.042 0.082 0.043 0.061 0.050 0.050 0.046 

Rana grylio Pig Frog 0.018 0.011 0.025 0.026 0.025 0.036 0.025 0.040 0.006 0.024 0.041 0.005 

Combined SCBD 

 

0.879 0.822 0.847 0.846 0.876 0.855 0.856 0.840 0.913 0.790 0.823 0.734 
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Table 2. Proportion of models where spatial data could be successfully substituted for 

temporal data by region and species.  SRS = Shark River Slough; WCA = Water 

Conservation Area 

  

 

SRS WCA 3A Species Average 

Marsh Killifish 0.54 0.58 0.57 

Bluefin Killifish 0.63 0.58 0.62 

Grass Shrimp 0.50 0.96 0.74 

Everglades Crayfish 0.46 0.33 0.42 

Slough Crayfish 0.33 0.42 0.38 

Regional Average 0.50 0.60 
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Figure Legends 

Figure 1. Map of Modified Waters Delivery Project (MDW) and Comprehensive 

Everglades Restoration Plan (CERP) sampling areas 

Figure 2. Illustration of the sums-of-squares beta diversity analysis (left) and definitions 

of variables derived from the analysis (right) 

Figure 3. A. Proportion of study sites where the marsh surface dried within the 365 days 

before sampling plotted by year. B. Maps illustrating PSUs that dried in 365 days before 

sampling (red dots) and PSUs that did not dry (blue dots) (Trexler 2016) 

Figure 4. Greater Everglades Aquatic Metacommunity Species Distribution 

Figure 5. Total beta diversity (BDtotal) for Comprehensive Everglades Restoration Plan 

(CERP) monitoring area, 2005 – 2016 

Figure 6. Relationship between species biomass and species contribution to beta 

diversity (SCBD). 

Figure 7. Model species contribution to beta diversity in the Shark River Slough (top) 

and Water .Conservation Area 3A (bottom) from 2005 – 2016. 

Figure 8. Proportion of successful space-for-time substitution models by year. 

Figure 9. Results of Pearson’s correlation coefficient test by model species and region.  
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Figure 1. 
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Figure 4. 
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Figure 5. 

 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

CERP 0.05 0.05 0.5 0.48 0.5 0.59 0.5 0.57 0.53 0.56 0.57 0.65 

SRS 0.46 0.48 0.46 0.43 0.43 0.6 0.39 0.42 0.53 0.63 0.48 0.68 

WCA 3A 0.32 0.47 0.44 0.47 0.5 0.55 0.44 0.55 0.5 0.36 0.47 0.57 
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Figure 6. 
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Figure 7. 
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Figure 8. 

  Proportion of Successful Space-for-Time Substitution Models 
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Figure 9. 
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Appendix 1. Biomass conversion formulas for all species included in this study. 

 

Scientific Name Common Name Category Conversion 

Type 

Formula (C = count, L = length) 

Notophthalmus viridescens Peninsula newt Amphibian count 𝐶 𝑥 0.554954 

Pseudobranchus axanthus Everglades dwarf siren Amphibian count 𝐶 𝑥 0.2812791667 

Rana grylio Pig Frog Amphibian count 𝐶 𝑥 0.964577551 

Adinia xenica Diamond Killifish Fish length 10^ (−4.987 + (3.319 𝑥 log10 𝐿)) 

Ameiurus natalis Yellow Bullhead Fish length 10^ (−4.736 + (3.046 𝑥 log10 𝐿))  

Ameiurus nebulosus Brown Bullhead Fish length 10^ (−4.736 + (3.046 𝑥 log10 𝐿)) 

Aphrododerus sayanus Pirate Perch Fish length (10^ (-4.8111+(3.225* 𝑥 log10 𝐿))) 

Belonesox belizanus Pike Killifish Fish length (10^ (-5.3651+(3.2229 𝑥 log10 𝐿))) 

Cichlasoma bimaculatum Black Acara Fish length (10^ (-4.114+(2.912 𝑥 log10 𝐿))) 

Cichlasoma urophthalmus Mayan Cichlid Fish length (10^ (-4.7123+(3.1259 𝑥 log10 𝐿))) 

Cichlidae species Cichlid Fish length (10^ (-4.114+(2.912 𝑥 log10 𝐿))) 
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Clarias batrachus Walking Catfish Fish length (10^ (-4.844+(2.920 𝑥 log10 𝐿))) 

Cyprinodon variegatus Sheepshead Minnow Fish length (10^ (-5.204+(3.543 𝑥 log10 𝐿))) 

Elassoma evergladei Pygmy Sunfish Fish length (10^ (-4.581+(3.031 𝑥 log10 𝐿))) 

Enneacanthus gloriosus Bluespotted Sunfish Fish length (10^ (-4.624+(3.113 𝑥 log10 𝐿))) 

Erimyzon sucetta Lake Chubsucker Fish length (10^ (-5.236+(3.305 𝑥 log10 𝐿))) 

Esox americanus Grass Pickerel Fish length (10^ (- 5.824+(3.243 𝑥 log10 𝐿))) 

Etheostoma fusiforme Swamp Darter Fish length (10^ (-5.686+(3.453 𝑥 log10 𝐿))) 

Fundulus chrysotus Golden Topminnow Fish length (10^ (-4.876+(3.131 𝑥 log10 𝐿))) 

Fundulus confluentus Marsh Killifish Fish length (10^ (-4.526+(2.887 𝑥 log10 𝐿))) 

Fundulus lineolatus Lined Topminnow Fish length (10^ (-4.876+(3.131 𝑥 log10 𝐿))) 

Gambusia holbrooki Mosquitofish Fish length (10^ (-4.786+(3.032 𝑥 log10 𝐿))) 

Hemichromis letourneauxi Jewel Cichlid Fish length (10^ (-4.6135+(3.0239 𝑥 log10 𝐿))) 

Heterandria formosa Least Killifish Fish length (10^ (-4.837+(3.130 𝑥 log10 𝐿))) 
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Hoplosternum littorale Brown Hoplo Fish length (10^ (-4.736+(3.046 𝑥 log10 𝐿))) 

Jordanella floridae Flagfish Fish length (10^ (-4.643+(3.145 𝑥 log10 𝐿))) 

Labidesthes sicculus Brook Silverside Fish length (10^ (-5.290+(3.075 𝑥 log10 𝐿))) 

Lepomis gulosus Warmouth Fish length (10^ (-4.889+(3.224 𝑥 log10 𝐿))) 

Lepomis macrochirus Bluegill Fish length (10^ (-5.100+(3.325 𝑥 log10 𝐿))) 

Lepomis marginatus Dollar Sunfish Fish length (10^ (-4.8111+(3.225 𝑥 log10 𝐿))) 

Lepomis microlophus Redear Sunfish Fish length (10^ (-4.876+(3.198 𝑥 log10 𝐿))) 

Lepomis punctatus Spotted Sunfish Fish length (10^ (-4.808+(3.222 𝑥 log10 𝐿))) 

Lepomis sp. Other Sunfish Species Fish length (10^ (-4.699+(3.139 𝑥 log10 𝐿))) 

Lucania goodei Bluefin Killifish Fish length (10^ (-4.782+(3.042 𝑥 log10 𝐿))) 

Lucania parva Rainwater Killifish Fish length (10^ (-4.670+(2.980 𝑥 log10 𝐿))) 

Menidia beryllina Inland Silverside Fish length (10^ (-5.089+(3.052 𝑥 log10 𝐿))) 

Notropis petersoni Coastal Shiner Fish length (10^ (-5.540+(3.443 𝑥 log10 𝐿))) 
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Noturus gyrinus Tadpole Madtom Fish length (10^ (-4.552+(2.947 𝑥 log10 𝐿))) 

Poecilia latipinna Sailfin Molly Fish length (10^ (-4.750+(3.142 𝑥 log10 𝐿))) 

Tilapia mariae Spotted Tilapia Fish length (10^ (-4.114+(2.912 𝑥 log10 𝐿))) 

Belostoma spp. Giant water bug Invertebrate count 𝐶 𝑥 0.1643188312 

Brachymesia spp. Pennant larvae Invertebrate count 𝐶 𝑥 0.0480775862 

Celithemis species Pennant larvae Invertebrate count 𝐶 𝑥 0.0494062112 

Coryphaeschna ingens Regal darner Invertebrate count 𝐶 𝑥 0.3084865385 

Cybister fimbriolatus 

Predaceous diving 

beetle Invertebrate count 𝐶 𝑥 0.2546416667 

Erythemis species Pondhawk Invertebrate count 𝐶 𝑥 0.0617573529 

Family Coenagrionidae Damselfly larvae Invertebrate count 𝐶 𝑥 0.0116 

Haitia spp. Physid snail Invertebrate count 𝐶 𝑥 0.009256106 

Libellula spp Skimmer Invertebrate count 𝐶 𝑥 0.1241988095 

Order Coleoptera Aquatic beetles Invertebrate count 𝐶 𝑥 0.0277158537 
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Palaemonetes paludosus Grass shrimp Invertebrate count 𝐶 𝑥 0.0575045829 

Pelocoris femoratus creeping water bug Invertebrate count 𝐶 𝑥 0.0228193431 

Planorbella spp. planorbid snail Invertebrate count 𝐶 𝑥 0.117557626 

Pomacea paludosa Apple snail Invertebrate count 𝐶 𝑥 8.329981322 

Procambarus alleni Everglades crayfish Invertebrate length 0.217 𝑥 (L/10) ^2.85 

Procambarus fallax Slough crayfish Invertebrate length 0.192 𝑥 (L/10) ^3.03 

Order Ephemeroptera Mayfly larvae Invertebrate count 𝐶 𝑥 0.0048830189 
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