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ABSTRACT OF THE DISSERTATION 

IDENTIFICATION OF SECONDARY TRAFFIC CRASHES AND RECOMMENDED 

COUNTERMEASURES  

by 

Armana Sabiha Huq 

Florida International University, 2020 

Miami, Florida 

Professor Xia Jin, Major Professor 

Secondary crashes (SCs) usually occur due to congestion or other prior incidents. 

SCs are increasingly spotted as a significant issue in traffic operations, leading to reduced 

capacity, extra traffic delays, increased fuel consumption, and additional emissions. SCs 

have substantial impacts on traffic management resource allocation. One of the challenges 

in the traffic safety area of the transportation industry is to determine an adequate method 

for identifying SCs. The specific objectives of this study are: identification of SCs using 

spatiotemporal criteria and exploring the contributing risk factors to the identified SCs.  

Two different approaches were explored to identify SCs. The first approach is based 

on a “static” method that employs a predefined 2 miles-2 hours fixed spatiotemporal 

threshold. Four-year (2011 to 2014) crash and traffic data from the Crash Analysis 

Reporting (CAR) system database were used. The linear referencing tool of Geographic 

Information Systems (GIS) was applied to identify crashes that fell within the threshold. 

About 1.49% of all crashes were identified as SCs. A Structural Equation Model (SEM) 

was developed to investigate the contributing risk factors to the occurrence and severity 

level of SCs. Model results revealed that a series of driver attributes contributed to the 

occurrence of SCs, including the influence of alcohol or drug, inattentive driving, fatigue 
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or speeding. Other variables that might lead to higher probabilities of SCs include vehicle 

attributes (brake defects, motorcycles), roadway conditions (roadway surface, vision 

obstruction) and environmental factors (raining condition Given that about 40% of SCs 

were rear-end crashes, this study also examined contributing factors to severity levels of 

rear-end SCs. Results revealed that the presence of horizontal curves, presence of guardrail, 

and posted speed limit showed a significant influence on the severity level of SCs. Crash 

modification factors were also developed by considering the roadway and traffic 

characteristics. 

In contrast to the static method, the dynamic approach identifies a dynamic 

spatiotemporal impact area for each primary incident using the Speed Contour Plot method.  

This analysis was explored using the Regional Integrated Transportation Information 

System (RITIS) and the SunGuide™ database for the year of 2014-2017. This study further 

analyzed contributing risk factors to SCs on I-95 and found that SCs were more likely to 

occur if primary incident clearance times were longer. It also revealed that SCs were more 

severe at night and on weekends. It implies that timely emergency responses would have a 

significant effect on mitigating SCs. These findings point to necessary strategies to mitigate 

SCs, including improved traffic management policies and implementation of advanced 

intelligent transportation warning systems.    

One of the challenges in addressing SCs lies in the lack of quality databases (such 

as speed data and incident information) to appropriately identify and investigate SCs. 

Therefore, future efforts may focus on institute a framework that combines all levels of 

databases from multiple sources, which can help timely identification and investigation of 

SCs. This would lead to the development and implementation of efficient and effective 

countermeasures to mitigate SC and enhance safety.   
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Traffic incidents are estimated to cause between 30-50% of the congestion 

problems on urban roadways (Skabardonis et al. 1995, Ozbay 1999, Kwon et al. 2006). 

Traffic incident or primary incident (PI) can be a crash or any type of incident such as 

disabled vehicles, debris on the roadway, emergency vehicles, police activity, vehicle fire, 

flooding, pedestrian, and so on. Traffic crashes are the most frequent incidents on highways 

and the ones with the most severe consequences. According to the National Highway 

Traffic Safety Administration (NHTSA), about 6.3 million highway crashes are reported 

annually in the United States, among which more than 32,000 are fatal crashes (NHTSA, 

2016). These type of incidents often poses challenging problems in traffic operations and 

safety. Both transportation agencies and the general public are concerned about their 

notable direct and indirect impacts. It has been estimated that these highway crashes 

resulted in almost $1 trillion in economic loss and societal harm, dating back to 2010 

(Blincoe et al., 2015).  

The hazardous traffic conditions caused by any type of PI can cause additional 

traffic crashes, often referred to as secondary crashes (SCs). SCs are typically defined as 

crashes that occur within the spatial and temporal boundaries of the impact area of earlier 

PIs. Researchers have argued whether the principal cause of SCs is due to recurring or non-

recurring congestions immediately after earlier PIs. 

Moore et al. (2004) specified a comprehensive definition, “secondary crashes as 

those occurring in either direction of primary incident, within or at the boundary of the 
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queue formed by that incident”. Per this definition, several studies including Raub (1997a, 

1997b), Zhan et al. (2009), and Zhang & Khattak (2010b) assumed that potential SCs 

would be the result of PIs. However, Owens et al. (2009, 2010) defined SCs as those that 

occurred within the spatial and temporal boundaries of the impact areas that is formed due 

to earlier primary crashes (PCs).  

 The Federal Highway Administration (FHWA) Focus State Initiative defined SC 

as “unplanned incidents (starting at the time of detection) for which a response or 

intervention is taken, where a collision occurs either: a) within the incident scene, or b) 

within the queue (which could include the opposite direction) resulting from the original 

incident”. Kentucky’s highway incident management task force adopted a slightly different 

definition from FHWA, stating, “a secondary crash is a crash that has occurred due to non-

recurring traffic congestion. The congestion should be a result of an earlier documented 

crash” (Pigmen et al., 2011). On the other hand, Xu et al. (2016) identified SCs accounting 

for recurrent congestions.  

Although there is no standard definition of SCs, accurately defining those crashes 

is very critical (Park & Haghani, 2016). Several authors agreed that the reduction of SCs 

is a reliable performance measure for incident management systems (Sun & Chilukuri, 

2010, Yang et al., 2018). That is why there is an urgent need to classify SCs with an 

appropriate methodological approach.  

Previous studies determined that anywhere between 1-30% of total crashes were 

identified as SCs resulting from PC occurrence. (Karlaftis et al., 1999; Wang et al., 2016). 

Raub (1997a) found that 15% of all crashes on urban arterial roadways were secondary 

crashes caused by a prior incident. Chimba et al. (2014) reported that about 18% of all 
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freeway traffic fatalities were SCs. Xie et al. (2016) analyzed three years of crash records 

from May 2008 to April 2011 in Manhattan, finding that nearly 7.5% of crashes were SCs 

and 9.3% of those resulted in incapacitating and fatal injuries. Bryden & Fortuniewicz 

(1986) investigated a total of 3,302 barrier crashes in New York State and concluded that 

about 25% of total crashes were SCs, 90% resulting in fatalities. It has been reported that 

SCs can account for as high as 20% of all crashes and 18% of all fatalities on the United 

States’ freeways (Owens, 2010). Considering the significant economic and social costs as 

well as the potential preventability, SC mitigation has become a priority for transportation 

agencies around the world.  

1.2 Problem Statement 

Researchers have found several issues and challenges in analyzing SCs, including:   

 There are two major issues that could result in misclassification of SCs: (a) 

inadequate incident data; and (b) inconsistent approach to secondary crash 

identification (Yang et al., 2014b). 

 Non-standard subjective selection of spatiotemporal thresholds inadequately 

identifies SCs (Yang et al., 2014b).   

 It is difficult to determine if a SC was due to recurrent or non-recurrent congestion. 

The use of the category “accident ahead” underestimates SC records, while the 

category “congestion ahead” overestimates the SC frequencies. In general, crash 

records have insufficient data to identify SC (Sun & Chilukuri, 2010). 

 Crashes are both a rare and random event, depending on various factors, including 

human, vehicle, roadway, and weather conditions. Since not all influencing factors 

are included in the statistical models, addressing unobserved heterogeneity is 
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critical (Sarker et al., 2017). Note that unobserved heterogeneity is an issue for any 

type of crash frequency analysis.  

 It is difficult to evaluate the correlation between multiple incidents that occur within 

the spatiotemporal window of primary crashes (Haghani et al., 2006). The authors 

also mentioned that SC identification when congestion level information is 

unavailable might yield biased results. 

 Intelligent Transportation Systems (ITS) strategies are becoming an essential 

components of Traffic Incident Management (TIM). On the other hand, effective 

TIM depends on reducing the risk of SCs, which is very challenging due to the 

stochastic nature of PC and SC. However, SC could be an effective TIM 

performance measure if properly recorded either in police crash reports or at the 

Traffic Management Center (TMC).  

1.3 Research Objective  

This research explores different approaches to identify the most suitable method of   

SC identification. Both static and dynamic approaches have been modeled to identify SCs. 

According to Sarker et al (2017), the dynamic approach is mostly applied on freeways over 

arterials, due to its discontinuous traffic flows and interrupted turning movements at 

intersections. Therefore, in this research work, the dynamic approach has been utilized only 

for the analysis of SCs of freeway facilities in Florida. And the static approach has been 

utilized for both freeway and arterial facilities in Florida. The findings of this research will 

be used by public and private sectors of the transportation industry in making operational 

strategies and management policies for improving traffic safety and mobility.  
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The specific objectives of this dissertation work are as follow:  

1. Determining the most applicable method to identify SCs  

2. Developing an enhanced model to quantify the major influential factors of SCs 

1.4 Research Organization 

This dissertation work includes a total of six chapters. Chapter 1 includes 

introduction, scope, and objective of this research work. Chapter 2 provides a 

comprehensive review of existing literature on SC identification, and methodological 

approaches to address the risk of potential SCs and its prevention policies. Chapter 3 

presents the methodology that has been performed in this research to achieve the stated 

objectives. Chapter 4 describes the data sources and variables to perform the analysis. 

Chapter 5 includes the details of the results and findings. Chapter 6 summarizes the 

complete research and provides recommendations for future works. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter provides a review of existing literature on secondary crash occurrence 

on freeways and possible influential risk factors associated with secondary crashes. The 

different approaches adopted to identify secondary crashes are first discussed in detail. The 

models to predict the probability of secondary crash occurrences are then presented, 

followed by a discussion of the influential risk factors associated with secondary crashes. 

This section also presents several different challenges faced by researchers in analyzing 

secondary crashes. The summary of this chapter demonstrates in Appendix (Table A 2.1 – 

Table A 2.3). 

2.1 State of the Art of SC Identification Methods 

The identification and analysis of secondary crashes are difficult due to the lack of 

detailed information about prior incidents and relative traffic data (Zhan et al., 2008). As 

such, the most critical step in identifying secondary crashes is to determine the temporal 

and spatial boundaries of primary incidents (Khattak et al., 2007). The following 

approaches were found to be used frequently to identify secondary crashes (Sando et al., 

2018).  More specifically, static, dynamic, and the spatial analysis tools are discussed. 

2.1.1 Fixed Spatiotemporal Thresholds Based   

The static approach identifies secondary crashes using pre-specified spatial and 

temporal thresholds regardless of site and event-specific characteristics (e.g., Sarker et al., 

2015; Mishra et al., 2016; etc.). The fixed spatiotemporal thresholds were predefined by 

the researcher’s personal observation to identify those crashes.  
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Several researchers in 1990s used the static approach as this is the simplest 

approach of identifying SCs. Raub (1997a) retrieved past crash data and identified 

secondary crashes using fixed and predefined spatiotemporal boundaries. In Figure 1, the 

primary crash is at the point of (0,0) where distance and time are equal to zero. It is quite 

clear that crashes (a and b) at the same location and within a few minutes of the primary 

crash are related. However, it is very difficult to assume the distance (Ds) from a prior 

event, which has a probable influence of primary crashes for occurring secondary crashes. 

This influential distance is affected by traffic volume and travel times. During peak hours 

when traffic volume is high, this distance might be several kilometers. 

 

 

 

 

 

Figure 1: Defining Secondary Crashes Using Time-space Diagram (Raub, 1997a)  

In Figure 1, it is assumed that crashes a, b, d, e, and f within the distance Ds and 

time Ts are linked to the prior crash. This assumption varies based on the researchers. 

Within the time T1, “a” and “d” crashes are more likely to be related than “e”, “f”, and “b”. 

The rest of the crashes “c”, “g” and “h” are assumed not to be influenced by the primary 

crash. According to Raub (1997a), distance Ds is less than 1 mile (1600 m), and time of 

effect Ts is 15 minutes longer than T1. The author used incident data for the 28-day period 

in January 1995 from the metropolitan region in Northern Chicago, Illinois. He found that 

the average time between primary crashes and secondary crashes was 36.4 minutes.  
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Several researchers, including Karlaftis et al. (1998, 1999), used similar 

spatiotemporal thresholds for identifying secondary crashes. Latoski et al. (1999) estimated 

the benefits of Hoosier Helper freeway service patrol in Northern Indiana during the 

daytime patrol and 24-hour patrol in 1996. In this study, the authors defined secondary 

crashes as those that occurred within 3 miles upstream and within 15 minutes after the 

clearance time of the primary crashes. The authors concluded that Hoosier Helper could 

reduce secondary crashes by 18.5% in winter and 36.3% in all other seasons per crash 

assisted.  

Karlaftis et al. (1999) used a similar approach Karlaftis et al. (1998) to identify 

secondary crashes. Using four years of incident records from 1992-1995 on Borman 

Expressway, the authors determined 35% of all crashes to be secondary crashes. In this 

study, less than 0.8 km (1.5 km later on) in upstream and 15 minutes plus primary crash 

clearance time were considered as spatiotemporal thresholds to identify secondary crashes. 

Furthermore, the study also discovered that the assumed spatial distance was precisely 

accurate for higher traffic flow on Borman Expressway with nearly 140,000 vehicles per 

day. Zhan et al. (2008) utilized the Systems Management for Advanced Roadway 

Technologies (SMART) database from January 2005 to January 2007 in Florida to examine 

the likelihood of secondary crashes and their relation to primary incident characteristics. 

The crashes that occurred within 2 miles upstream in the same direction of the primary 

incident, and within the timeframe from the start time of primary incident to 15 minutes 

plus the clearance time were identified as secondary crashes. They found 413 secondary 

crashes that were linked with 352 primary incidents in 4,435 lane blockage incidents.  
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Moore et al. (2004) examined 84,684 crash records from 1998 to 1999 to identity 

secondary crash rates on Los Angeles freeways using a four-steps filtering method. In this 

study, the authors identified secondary crashes as those that occurred within 120 minutes 

and 2 miles of primary incidents. The authors concluded that secondary crashes per primary 

crash ranged from 1.5% to 3.0%, and secondary crashes per primary incident ranged from 

0.7% to 1.3%. Hirunyanitiwattana & Mattingly (2006) used data from Highway Safety 

Information System (HSIS) to identify secondary crash characteristics in California. They 

compared primary and secondary crash characteristics using over 350,000 crashes in 1999 

and 2000. The authors defined secondary crashes by a 2-mile-60-minute spatiotemporal 

window boundary. The authors used the approach that was similar to Moore et al. (2004) 

to exclude crashes in the opposite direction of primary crashes. They also found that the 

maximum queue length was between 2 miles and 5 miles. Per these spatio-temporal 

thresholds, about 4.4% of the total crashes were identified as secondary crashes, and this 

rate slightly increased from 1999 to 2000. 

Sun & Chilukuri (2007) attempted to use the dynamic spatiotemporal threshold 

instead of a fixed boundary, as in the static approach to identify secondary crashes 

accurately. The study was based on 5,514 crashes in 2002 in Missouri. The authors used 2 

miles-60 minutes static threshold window to define secondary accidents. As crash queues 

are continuously moving, the static threshold may have a significant risk of identifying 

secondary crashes with high positive and negative numbers (i.e., Type I and Type II errors, 

respectively). This limitation of the static method motivated the authors to apply dynamic 

spatiotemporal thresholds. The authors concluded that secondary crashes identified using 

the static and dynamic methods varied by more than 30%. Khattak et al. (2009) sought the 
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interdependence between primary incident duration and secondary incident occurrence 

using traffic incident and road inventory data in the Hampton Roads, Virginia in 2006. The 

study identified secondary incidents that occurred within 1 mile in the same direction and 

within the actual duration of primary incidents. However, actual duration plus 15 minutes 

threshold was used when the primary incident blocked lanes. By fixing the aforementioned 

threshold criteria, only 1.93% and 2.01% of 38,086 incidents were identified as primary 

and secondary incidents, respectively. Significant independent variables associated with 

longer duration were found to result in higher secondary incident occurrences include 

detection resources (Closed Circuit Television (CCTV) cameras, radio, and phone), 

accident (incident type), lane closure time, more vehicles involved, more response vehicles, 

higher AADT, left shoulder or ramp affected, and peak hours (Khattak et al., 2009). 

Green et al. (2012) analyzed secondary crash occurrence on roadways in Kentucky 

from 2007 to 2010. The authors identified secondary crashes per the following definition: 

“a secondary crash is a crash that has occurred due to non-recurring traffic congestion. The 

congestion should be a result of an earlier documented crash”. During the 18-month period 

from January 2009 to June 2010, a total of 9,330 crashes were coded as secondary crashes. 

The authors manually reviewed the police reports of these crashes and found that only 

about 3.88% (362 of 9,330) were secondary crashes. This inconsistency was due to two 

main reasons: the secondary crash had to occur as a result of a previous crash, and these 

must be secondary crashes and not secondary events. Moreover, this study further used an 

alternative algorithm to identify secondary crashes using the fixed spatiotemporal threshold 

window constituting 1.14 miles and within 80 minutes upstream of primary crashes. The 

authors also identified secondary crashes due to the “rubbernecking effect” by identifying 



11 

 

crashes within 0.2 miles of the primary crash. Overall, they found only a very small 

percentage of total crashes (0.10% to 0.15% of total annual crashes) to be secondary 

crashes.  

Sarker et al. (2015) used both static and dynamic approaches to identify secondary 

crashes in Shelby County, Tennessee. The authors used three years (2010-2012) of crash 

data, freeway and arterial traffic data, incident management data, and roadway network 

data from the Tennessee Department of Transportation (TDOT). The authors used five 

different temporals (30, 60, 120, 180, and 300 minutes) and spatial thresholds (0.5, 1, 2, 3, 

and 5 miles) to identify secondary crashes using the static approach. The results revealed 

that the static approach inconsistently estimated secondary crash frequencies for various 

spatiotemporal thresholds. This study proved that dynamic approach is more accurate and 

reliable than static approach in identifying secondary crashes. A Secondary Crash 

Identification Algorithm (SCIA) was developed to identify secondary crashes resulting 

from primary crashes for the following possible five cases: (a) Case 1: Same Direction-

Upstream; (b) Case 2: Opposite Direction-Upstream; (c) Case 3: Opposite Direction-

Downstream; (d) Case 4: Opposite Direction-Upstream/Downstream; and (e) Case 5: 

Combination of first three cases. 

Tian et al. (2016) conducted a pilot study in Florida to develop an efficient 

technique to identify secondary crashes. Sunguide® incident database, FDOT Crash 

Analysis Reporting (CAR) system database and geo-coded roadway geometric, and traffic 

data were analyzed for the year 2010. Similar to Sarker et al. (2015), Tian et al. (2016) 

utilized both static and dynamic approaches to identify secondary crashes. However, the 

static approach was used to create a new method using Geographic Information System 
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(GIS) to identify secondary crashes, and a dynamic approach was used to validate the 

feasibility of the proposed method. In this study, the spatiotemporal threshold window was 

fixed as 2 miles-2 hours in the same direction of primary crashes. This study also compared 

secondary crash frequencies and their characteristics using the following three 

spatiotemporal threshold groups: (a) Group 1: 2 miles, 2 hours; (b) Group 2: 2 miles, 

clearance time + 15 minutes; and (c) Group 3: 2 miles, clearance time + 30 minutes. 

Khattak et al. (2010b) used Kernel density spatial analysis to observe the clustering 

of secondary incidents for five major Interstate freeways in Virginia. The Kernel density 

method approximates the concentration of secondary crashes per unit area or per unit 

length. Considering normal density or Gaussian function with mean 0 and variance 1, 

Kernel density function K calculates the shape of the bumps with kernel radius h. Equations 

1 and 2 describe the Kernel density functions. The spatial distribution of the incidents for 

the entire network is estimated by these two equations. Compared to secondary incidents, 

as expected, the authors found that non-secondary incidents were widely distributed across 

roadway segments.  

f̂(x) = 
1

nh
∑ K {

1

h
(x − Xi)}

n

i=1

 (1) 

K(x) = 
1

√2π
e−(x

2

2
⁄ ) (2) 

where,  

f̂(x)  =  Kernel density estimator at location, x; 

n  =  observed number of events;  

h  =  Kernel radius (bandwidth parameter);  
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Xi  =  frequency of incidents observed on segment, i; and 

K(x) =  symmetric probability Kernel density function.  

Jalayer et al. (2015) identified secondary crashes based on 2 miles of queue length 

and 120 minutes of queue clearance time using 2010-2013 crash data from Alabama. The 

results revealed that only 5% of total crashes were identified as secondary crashes. Several 

studies concluded that the static approach is inaccurate in identifying secondary crashes 

due to its subjective assumption on fixed spatiotemporal thresholds (Sun & Chilukuri, 

2006; Sun & Chilukuri, 2010; Khattak et al., 2010a; Chou et al., 2009). For example, a 

crash on an uncongested freeway that is far away from a primary crash should not  be 

identified as a secondary crash (Park & Haghani, 2016).  

  On the other hand, overall static thresholds could be effective for a rough 

estimation of SCs in a specific study area due to their simplicity. However, they are 

inelastic and thus error-prone. Primary incident impact areas may vary significantly 

depending on weather, traffic conditions, or time of the day, so the likelihood of 

misidentification of SCs is significant. Moreover, Raub (1997) and Moore et al. (2004) 

concluded transferability of static thresholds is questionable for classifying SCs. To 

overcome the above mentioned limitations, several recent studies have used the dynamic 

approach, which uses flexible spatiotemporal thresholds.  

2.1.2 Dynamic Spatiotemporal Thresholds Based   

Principal idea of the dynamic approach is to identify secondary crashes using 

flexible spatiotemporal thresholds. This section includes previous studies related to the 

identification of secondary crashes using the dynamic approach.  
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Deterministic Queueing Model 

Fundamentally, SCs identification utilizing this algorithm is based on maximum 

queue length. The estimated maximum queue length and dissipation time of primary 

incidents are used to identify SC spatiotemporal threshold. After that, PIs are linked to 

possible SCs through C+ programming environment. Traffic incidents and traffic count 

data are used for this kind of model to identify SCs. Queue length is calculated by the 

following deterministic queuing model with a single server (D/D/1). Based on total delay, 

ti, the temporal boundary of secondary incidents can be estimated. Total remaining delay 

can be quantified by adding all the small trapeziums under the shaded area from ti to te. 

Figure 2 illustrates the cumulative arrival and departure curve due to the incident 

bottleneck.    

q(ti) = q(tn-1) + (ti − tn-1)(λn − u*)   for  tn-1, ti < Tc 

q(ti) = q(tn-1) + (ti − tn-1)(λn − u)   for  tn-1, ti > Tc 

(3) 

A1 = 
1

2
(q(tn) − q(ti)) × (tn − ti) 

A2 = 
1

2
(q(tn+1) − q(tn)) × (tn+1 − tn) 

A3 = 
1

2
(q(tn+2) − q(tn+1))×(tn+2 − tn+1) 

(4) 

……………… 

So, the remaining total delay at, ti = ∑ Akk=1 . 

The annotations of the above queueing model are as follows: 

q(ti)  =  Queue length for ti; 

u* =  reduced capacity of the bottleneck; 
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u  =  returned capacity after primary incident clearance;  

Tc =  Primary incident clearance time; 

tn-1 =  (n-1)th time intervals from primary incident; 

tn =  nth time intervals from primary incident; 

Ac(t)  =  cumulative arrival curve; and 

Dc(t)  =  cumulative departure curve after bottleneck. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Queue Length and Remaining Total Delay at ti  (Khattak et al., 2010a) 

Zhan et al. (2009) first introduced this method. The authors calculated incident 

recovery time from 33.34 minutes to 52.60 minutes and incident dissipation time from 0 to 

21.76 minutes. By following Highway Capacity Manual (HCM) method, the study 

estimated maximum queue length from 1.09 miles to 1.49 miles. This study identified 225 

secondary crashes that were linked to primary incidents. Khattak et al. (2010a) proposed a 

dynamic queue-based algorithm to develop STIA of primary incidents. The specific 

objective of this study was to develop an online prediction tool termed as DSD (Duration-

Secondary Incident-Delay). After identifying dynamic spatiotemporal boundaries based on 

a simple Deterministic Queueing Model, the study identified secondary incidents (2% of 
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total recorded incidents) in both directions of primary incidents on Hampton Roads. 

However, Zhang & Khattak (2011) estimated average distance (1.2 miles) and time gap 

(34 minutes) between primary and secondary incidents based on 15 miles of maximum 

queue lengths. Vlahogianni et al. (2010) collected data via 220 CCTVs in Attica Tollway 

in Greece. The study utilized Bayesian Network and queueing model to identify the 

upstream STIA of primary crashes. The study revealed that 30% of the secondary crashes 

occurred approximately 1 km long and last for less than 1 hour.  

Although queue-based approaches may offer a more accurate and dynamic 

representation of impact areas, they largely depend on the number and quality of available 

predictors. Considering that the factors affecting queue formation and dissipation may vary 

from case to case, it is likely that the impact areas predicted by these approaches might be 

inaccurate. 

Speed-Based Matrix 

This method is based on binary integer programming (BIP) to determine the actual 

spatiotemporal extent of delay using loop detector data. The basic idea of this approach is 

to develop congested cells caused by each primary incident and comparing other cells 

captured by the maximum extent of incident impact area with and without speeds. The 

detailed method includes three steps: 

 Step 1 - Construct the Spatiotemporal Speed Matrix: Table 1 is the base condition 

matrix for the crash free scenario. In the matrix, if sj(tm) is speed for a specific 

section j and for specific time interval tm, then sjn(tm) would be the speed 

distribution for n specific historical archived period. Table 1 includes a set of 

parameters (Ωj,m=Ω(sj̅(tm),σsj(tm)
,α1,α2,…..,αp)) corresponding to the crash free 

http://www.sciencedirect.com/science/article/pii/S0968090X15000972#b0185
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speed distribution. Here, s̅j(tm), σsj(tm)
, and 𝛼 are mean speed, standard deviation, 

and level of confidence, respectively.  

Table 1: Matrix of Crash-Free Speed sjn(tm)  (Chung 2013) 

Freeway Section (Traffic Flow Direction                ) 

Time i i-1 i-2 - 2 1 

t1 Ωi,1 Ωi-1,1 Ωi-2,1 - Ω2,1 Ω1,1 

t2 Ωi,2 Ωi-1,2 Ωi-2,2 - Ω2,2 Ω1,2 

- - - - - - - 

tM-1 Ωi,M-1 Ωi-1,M-1 Ωi-2,M-1 - Ω2,M-1 Ω1,M-1 

tM Ωi,M Ωi-1,M Ωi-2,M - Ω2,M Ω1,M 

Table 2 shows the speed reduction profile due to crash occurrence in the section i 

at time t1. This matrix can be schematically described by negative impact of crash (i.e., 

speed reduction) which follows shockwave theory, as illustrated in Figure 3(a). 

Table 2: Matrix Observed Crash Speeds ŝj(tm)  (Chung 2013) 

 Freeway Section (Traffic flow direction                 ) 

Time i i-1 i-2 - 2 1 

t1 ŝi(t1) ŝi-1(t1) ŝi-2(t1) - ŝ2(t1) ŝ1(t1) 

t2 ŝi(t2) ŝi-1(t2) ŝi-2(t2) - ŝ2(t2) ŝ1(t2) 

- - - - - - - 

tM-1 ŝi(tM-1) ŝi-1(tM-1) ŝi-2(tM-1) - ŝ2(tM-1) ŝ1(tM-1) 

tM ŝi(tM) ŝi-1(tM) ŝi-2(tM) - ŝ2(tM) ŝ1(tM) 

 Step 2 - Determine Maximum Extent of Crash Influence. The maximum extent of 

crash influence area due to the discontinuity of uncongested and congested traffic 
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flow is estimated. Due to a lack of crash scenario data (i.e., number of lane 

blockage, accident clearance time, etc.), this method assumed the worst-case 

scenario (i.e., total lane blockage) for the crash occurred in section, i at pre-

specified time t1. In this step, the real congested section specifically due to a crash, 

could be separated by a complete schematic speed distribution profile. Figure 3(b) 

displays the maximum set of freeway sections affected by a crash.  

 

 

 

 

 

 

 

(a) Schematic of Spatiotemporal Freeway Sections Affected by a Crash  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

(b) Maximum Set of Freeway Sections Affected by a Crash 

Figure 3: Estimation of Spatiotemporal Crash Impacts (Chung 2013) 
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 Step 3 - Identify Spatiotemporal Crash Impact Region. Using maximum extent of 

crash influence, the real congested crash region and other region are separated by 

comparing  crash speed ŝj(tm) to crash-free speed sjn(tm) at α level of confidence. It 

is assumed that any particular ŝj(tm) is not from the crash-free speed distribution 

sjn(tm). Figure 4 represents the actual binary crash speed matrix where:  

Pjm = {
0,  ŝj(tm)  ≤  s̅j(tm)  −   (α × σsj(tm)

)

1,  ŝj(tm)  >  s̅j(tm)  −   (α × σsj(tm)
)
 (5) 

Note that the thick red line shows the actual boundary of the affected region.  

 
Figure 4: Binary Crash Speed Matrix  (Chung, 2013) 

The subset of cells for which the crash speeds are significantly different from the 

crash-free speeds, must follow certain topological properties. There are three problematic 

local shape configurations for the subset of cells that need to be addressed (Chung, 2013): 

a. the spatiotemporal progression of the crash shock wave must be uninterrupted (i.e., 

an affected region does not contain holes), 

b. the boundary of the spatiotemporal progression of the crash shock wave must be 

upstream [i.e., the vertical position (t) of any dot-shaded section j along the 
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boundary of the region must be either lower than or the same as the vertical position 

of the neighboring dot-shaded section j - n], and 

c. the entire boundary of the affected region must be contiguous. 

These conditions and the problem of determining the “best” set of dot-shaded cells 

can be formulated as the following binary integer programming (BIP) problem: 

min
δjm

Z = ∑[Pjm.δjm + (1 − Pjm).(1 − δjm)]

∀j,m

 (6) 

subject to  

where R is a large number, J is the maximum number of upstream sections, and M 

is the maximum number of subinterval time periods that define maximum duration 

assumed for congestion caused by a crash.  

Chung (2012) proposed above mentioned “Speed-Based Matrix” for the first time 

to quantify non-recurring congestion delay caused by crashes on urban freeways in Orange 

County, California. Chung (2013) applied this method to identify secondary crashes using 

one year of crash data from March 2001 to February 2002 in California. The author 

assumed that crashes that occurred within the average time duration of the study and in the 

vicinity of primary crashes would be secondary crashes. Using BIP, the author found 1,890 

of 6,200 secondary crashes were linked to primary crashes. About 7.5% (141 of 1,890) of 

δj+k,m  ≤  [1 − (δj,m − δj+1,m)].R                  ∀j, m; ∀k ≤ J − j 

δj,m+r  ≤  [1 − (δj,m − δj,m+1)].R               ∀j, m; ∀r ≤ M − m 

δj,m+k ≤  [1 − (δj,m − δj+1,m)].R ∀j, m; ∀k ≤ M − m 

δjm = {
0

1
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them were in the same direction of the primary crashes, and only 3.8% (71 of 1,890) of 

them occurred due to the rubbernecking phenomenon. An average spatiotemporal 

boundary was found to be 1.34 miles-65.81 minutes for the same direction and 1.83 miles-

81.49 minutes in the opposite direction. The author also identified cascading secondary 

crashes in both directions. In the same direction of primary crashes, about 6.1%, 1.1%, 

0.2%, and 0.1% of the 1,890 crashes were first, second, third, and fourth secondary crashes. 

Similarly, 3.5% and 0.3% of the 1,890 crashes were the first and second secondary crashes 

in the opposite direction of primary crashes.  

Speed Contour Plot 

The main idea behind these approaches is to establish the speed contour (heat) map 

based on speed measurements from various sensor measurements. The time-space diagram 

is split into grid cells based on certain time intervals (e.g., 5 min, 15 min, etc.) and milepost 

of sensor stations. In general, each cell is determined to be congested or not based on the 

following condition: 

𝑉(𝑡,𝑠)
𝑏 =  {

1, 𝑖𝑓 𝑉(𝑡,𝑠) < 𝑉(𝑡,𝑠)
𝑟

0,               𝑜𝑡ℎ𝑒𝑟𝑠 
 (7) 

where 𝑉(𝑡,𝑠) represents its current speed; 𝑉(𝑡,𝑠)
𝑏 = 1 means that the cell is congested 

and 0 means not congested; and  𝑉(𝑡,𝑠)
𝑟  depicts its reference speed obtained from historical 

data. Thus, the impact area of PI can be depicted using the congested cells following the 

occurrence of the PI. If another crash occurs within the congested cells, it has been 

identified as a SC. The key premise is the selection of the reference speed. 

Yang et al. (2013, 2014a, 2014b, 2014c, 2014d), Xu et al. (2016), and Goodall 

(2017) utilized the “Speed Contour Plot” approach to identify SCs. Yang et al. (2014c) 
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proposed a new online-based approach by developing speed contour plot utilizing virtual 

sensors that collect data from private traffic information providers such as Bing Maps, 

Google Maps, and MapQuest, instead of traditional sensors (i.e., loop detector or roadside 

traffic sensors). The specific objective of this study was to develop a readily employable 

tool for large scale roadway network so that researchers could identify secondary crashes 

directly from the tool. The authors concluded that this algorithm is a more reliable method 

of identifying secondary crashes than the traditional static or dynamic queuing models. The 

authors also found that virtual sensors provide better results compared to the traditional 

sensors. Yang et al. (2013, 2014a) used the archived data from traditional traffic sensors 

and a similar approach using speed contour plots to identify secondary crashes. The study 

used traffic information (volume, speed, occupancy, and travel time) from traditional 

sensors for 27 miles on New Jersey Turnpike in 2011. The authors also compared the 

results using both the predefined fixed static approach and the aforementioned method. The 

authors concluded that the proposed algorithm captured more crashes compared to the 

static approach. The proposed method also reduced the incorrect classification of 

secondary crashes. 

Goodall (2017) addressed two limitations, captured all the secondary crashes if at 

least 90% of the connecting line passes within the non-recurring congestion zone. 

Moreover, since secondary crashes can be associated at any time of the primary crash 

occurrence, the author categorized crashes that occurred at the tail or border of the queue 

as secondary crashes. Goodall (2017) applied this refined approach to identify secondary 

crashes on I-66 corridor using incident, speed, crash, and vehicle probe project surveillance 

for 2014. About 13.80% (340 of 2,466) of secondary crashes were found to be in correlation 
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with the upstream of primary crashes. The findings revealed that secondary crash occurred 

on an average once in each 24.8 incidents. Xu et al. (2016) followed the approach discussed 

by Yang et al. (2014c) to identify secondary crashes on I-880 freeway in CA using five 

years of crash and traffic data. Only 113 of 9,188 crashes (about 1.2%) were identified as 

secondary crashes based on the speed contour plot. This proportion was found to be 

consistent with several other studies, including Sarker et al. (2015), Wang et al. (2016), 

Park & Haghani (2016), and Mishra et al. (2016).  

Simulation-Based Approach 

A computationally efficient methodology, the Simulation Based Secondary 

Incident Filtering (SBSIF) method, is proposed for efficiently delineating the boundaries 

of the incident impact area in a time-space contour map of traffic speeds and employing 

the outcome in identifying secondary incidents.   

In comparison to the static and dynamic approaches, this method accounts for the 

dynamic spatial and temporal properties of incident impact given prevailing traffic 

conditions. The SBSIF method is composed of two main tasks. The first task identifies the 

incident impact area that results from each primary incident, i.e., the portion of the time-

space traffic speed contour map in which traffic speeds are impacted due to the incident 

(Figure 5). The second task employs the impact area to identify the secondary incidents 

from archived data (Figure 6). 
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Figure 5: Traffic Speed Contour Map  (Chou & Miller-Hooks 2009) 

 
Figure 6: Secondary Incident Identification Through STIA (Chou & Miller-Hooks 2009)  

The SBSIF method utilizes multi-regression models for the quick identification of 

the corner points of the incident impact areas. Each corner point is associated with two 

calibrated ordinal least-square regression models. 

Figure 7 illustrates secondary incident identification for the specific average speed 

threshold under specific traffic conditions through the corner point identification approach. 

The x and y of each corner point of the polygon represent time and space value, 
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respectively. The side of the impact area is estimated using Equation 8 under the given 

corner points (x1, y1) and (x2, y2). As such, any incident at time x in location y within the 

polygon is classified as secondary incident resulting from primary incident. 

y = y
1
 + [

(y
2

−  y
1
)

(x2 − x1)
]  × (x − x1) (8) 

 
Figure 7: Corner Points Identification Approach  (Chou & Miller-Hooks 2009)  

Haghani et al. (2006) introduced a simulation-based approach to identify the 

spatiotemporal impact area (STIA) of an isolated incident using a three-step process in 

CORSIM micro-simulation software. The authors conducted a Multi-Layer Sensitivity 

Analysis (MLSA) for the evaluation of Hudson Valley Highway Emergency Local Patrol 

(H.E.L.P.) program. As part of MLSA, longitudinal location of secondary incidents was 

defined with respect to dynamic queue formation based on shock wave theory. In this case, 

queue formation on the part of I-287 corridor was explained by an analytical algorithm (Al-

Deek et al., 1995) considering mean occupancy rates of loop detector data. A set of time 

intervals for a set of queue lengths were employed to determine the impact areas in both 

the directions of primary incidents. Each iteration consisted of increasing the time with a 

constant time interval to identify the impact areas.  
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Figure 8: Steps of SBSIF Method  (Chou & Miller-Hooks 2009)  

Figure 8 shows the detailed steps adopted in this method. This step was repeated 

until the traffic returned into the pre-stage of the primary incident condition. A secondary 

incident was considered within the impact areas for each time interval till the end interval. 

Based on this model, the secondary incident rate was found to be between 0.7% and 0.13%.    

Chou & Miller-Hooks (2009) also adopted the Simulation Based Secondary 

Identification Filtering (SBSIF) method by considering the parameters (lane blockages, 

incident duration, speed, volume, etc.) used by Haghani et al. (2006). Chou & Miller-Hooks 

(2009) collected incident data for 10 miles on I-287 corridor in New York State from 

January to June 2006. The authors used one year of traffic data from 2007 to create the 

contour map where 693 primary incidents were simulated in CORSIM. About 3.80% and 

4.30% of secondary incidents were identified in the same direction of primary incidents 
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using visual and regression applications of SBSIF method, respectively. The study also 

compared the results with the static filtering method for two spatiotemporal thresholds 

values adopted by Zhan et al. (2008) (Static threshold # 1: 2 miles-15 minutes) and Raub 

(1997a) (Static threshold #2: 1 mile-15 minutes). About 6.70% and 7.50% of secondary 

incidents were identified using static threshold #s 1 and 2, respectively. Only three 

incidents were erroneously identified by the SBSIF method, whereas the static approach 

based on 2 miles-15 minutes threshold had erroneously identified 23 secondary incidents. 

Queuing Shockwave Based Algorithm 

In this approach, a dynamic spatiotemporal impact area is outlined based on real 

time traffic conditions employing kinematic shockwave theory for bi-direction traffic flow, 

as shown in Figure 9. A crash is categorized as a secondary crash if it occurred within the 

estimated STIA.  

 
Figure 9: Shockwave Speed for Bi-Directional Traffic Flow  (Sarker et al., 2017)  
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The Methodological framework consists of the following steps:  

 Step 1 - Developing Crash Pair Algorithm: This step identifies candidate secondary 

crashes paired with primary crashes (ci, cj) based on pre-specified static thresholds. 

The algorithm consists of the following conditions: 

o Condition 1: 0 ≤ t(cj) − t(ci) ≤ T    

o Condition 2: d(ci,cj) ≤ D 

where,  

ci  =  former crash, i 

cj  =  later crash, j 

t(c)  =  c crash at t time since an early time origin in minutes 

d(ci,cj)  =  distance from crash ci to cj in miles 

T  =  temporal threshold in minutes 

D  =  spatial threshold in miles 

Two crashes are paired if they satisfy these two conditions. The spatial distance, 

d(ci,cj) between two crashes is estimated using Dijkstra’s method. Dijkstra’s method is an 

iterative approach that finds the shortest path from an origin to every node in a network. In 

addition, this distance needs to be calculated using the absolute difference in Beginning 

Log Mile (BLM). The position of the paired crashes is determined with in relation to each 

other, using their direction, BLM, and their respective spatial coordinates.     

 Step 2 -  Identification of Secondary Crashes: The two filters (ramp and impact area 

filters) are performed to identify secondary crashes from the paired crashes. The 

crash pairs need to be excluded where primary crashes occurred on highway ramps 
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since very few secondary crashes were found to have occurred on ramps. The 

impact area of a crash is defined between two simplified straight shockwave lines, 

one for the queuing shockwave and the other for the discharging shockwave. 

 Step 3 - Estimation of STIA: In order to estimate STIA, following algorithm needs 

to be performed. Shockwave speeds have been calculated using the following 

equations. Moreover, clearance time (Tc) and time difference between primary 

crash and potential secondary crash can be directly collected from the database.       

abr,s × (t − Tc) ≤ d ≤ abf,s × t, when t > Tc 

0 ≤ d ≤ abf,s × t, when t < Tc 

abf,s = 
(q

ini
)

s
− (q

int
)

s

(kini)s − (kint)s

 
(9) 

abr,s  =  
(q

int
)

s
− (q

sat
)

s

(kint)s − (ksat)s

 
(10) 

Notations of the proposed algorithm are:  

 

abr,s  =  backward-recovery shockwave speed in the same 

direction of primary crash;  

abf,s  =  backward-forming shockwave speed in the same 

direction of primary crash;  

(kini)s, (q
ini

)
s
, (uini)s  =  density, flow, and speed in the same direction prior to 

primary crash; 

(kint)s,(q
int

)
s
, (uint)s  =  density, flow, and speed in the same direction prior to 

primary crash clearance;  



30 

 

(ksat)s,(q
sat

)
s
,(usat)s  =  density, flow, and speed in the same direction at optimal 

condition;   

abr,o  =  backward-recovery shockwave speed in the opposite 

direction of primary crash;  

abf,o  =  backward-forming shockwave speed in the opposite 

direction of primary crash;  

(kini)o, (q
ini

)
o
, (uini)o  =  density, flow, and speed in opposite direction prior to 

primary crash;  

(kint)o,(q
int

)
o
, (uint)o  =  density, flow, and speed in opposite direction prior to 

primary crash clearance;  

(ksat)o,(q
sat

)
o
,(usat)o  =  density, flow, and speed in opposite direction at optimal 

condition;   

t  =  time difference between primary crash and secondary 

crash; and 

Tc  =  clearance time. 

Algorithms based on queuing shockwaves can “better capture the effects of traffic 

characteristics (e.g., flow, speed, and density), that change over time and space, and affect 

both queue formation from a primary crash occurrence” (Sarker et al., 2017). Zheng et al. 

(2014, 2015) and Sarker et al. (2015, 2017) used queuing shockwave-based algorithms to 

identify secondary crashes. The methodological framework specifically conducted for 

large scale networks with limited available data. The Crash Pair Algorithm was found to 

be both reliable and faster compared to the ArcGIS program (Zheng et al., 2014). Zheng et 
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al. (2014) utilized State Trunk Network (STN) and the crash data for 1,500 miles of 

freeways in Wisconsin. The data was collected for the year 2010 from WisTransPortal Data 

Hub of the Traffic Operations and Safety (TOPS) Laboratory at the University of 

Wisconsin. The Two-Phase Automated procedure was applied on 7,034 crash records to 

identify secondary crashes on that large segment of freeways. In this study, only 79 

secondary crashes were identified.  

In contrast, Sarker et al. (2015, 2017) identified secondary crashes that occurred 

within STIA by employing shockwave theory. The likelihood of secondary crash 

occurrence was found to be much higher within 0.5 miles to 1 mile and within 30 minutes 

to 60 minutes of the prior crash occurrence, while the likelihood was found to be lower 

within 5 miles-300 minute threshold. 

Incident Progression Curve 

The temporal and spatial region of influence of a primary incident is delineated by 

the queue length resulting from a primary incident throughout the duration of an incident. 

Since a queue often persists after an incident has been cleared, the incident normalization 

time is required in addition to the incident clearance time. This temporal and spatial region 

of influence of a primary incident is bounded by a curve (Figure 10). Sun & Chilukuri 

(2010) named this curve as Incident Progression Curve (IPC).  
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Figure 10: Static Threshold Versus Actual Incident Progression 

The study methodology includes following four steps to identify secondary incidents:  

 Step 1 - Reviewing Intranet Incident Reports: in this step, researchers need to 

download the pages of the reports at a regular interval through an automated 

computer script. Incident type, description and reporting time were extracted in a 

specific field via computer programming. All the information is then be integrated 

from different sources e.g., aircrafts, elevated traffic cameras, freeway service 

patrol, emergency management (fire, police, ambulance, and HAZMAT), and 

motorist calls.  

 Step 2 – Filling of Incomplete Incident Reports: The final dataset needs to be 

constructed using all incidents based on second, third, and fourth-order polynomial 

models.  

 Step 3 - Master Incident Progression Curves: In this step, a master IPC is developed 

by capturing the central propensity of incidents. To create a master IPC, all 

individual IPCs should be separated by an equal growth interval (Figure 11). 
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Median of the incident duration and queue length are estimated for each of the 

interval. The joined IPCs are sketched as an isolated IPC for a single incident.   

 
Figure 11: Static Versus Dynamic Incident Progression Curve  (Shlayan et al., 2009) 

  Step 4 - Identification of Secondary Incidents Based on Dynamic IPC: This step is 

to estimate the dynamic threshold based using the maximum queue length model 

using Equation 11. In this equation, Q is the length of the queue in miles, and t is 

the time duration from the primary incident occurrence in minutes. Sun & Chilukuri 

(2010) estimated values of the coefficients a0, a1, a2, and a3 (0.013873, 0.12652, -

0.00094363, and -0.000007826).  

Q = a0 + a1t + a1t2 + a3t3 (11) 

Sun & Chilukuri (2010) developed a nonlinear regression incident progression 

curve (IPC) to identify secondary traffic crashes in the both directions of primary crashes. 

Other than previous studies, the authors attempted to improve static methodology by 

addressing the end of the dynamic queue through the entire curve. This study analyzed 480 

intranet reports (5,514 crashes) for the freeway segments of I-70 and I-270 in St. Louis. 

Based on master IPC, a dynamic spatiotemporal threshold window was found as 3.09 



34 

 

miles-43.5 minutes. The results also showed that only 7.19% of total crashes were found 

as secondary crashes based on the dynamic threshold IPC. 

Shlayan et al. (2009) also recommended a model for identifying secondary 

incidents employing the dynamic progression curve. The study considered both directions 

of primary incidents. The methodology of this research work demonstrated through a real-

time case (a video example) and based on multiple VISSIM simulation models for 15 

conditions in the Las Vegas area. It was found that the front of the queue was disseminated 

upstream. 

The deployment of IPCs solely depends on detailed incident data. However, such 

data is difficult to obtain as incidents are random events, and most agencies do not track 

queue lengths in real time. That is why, identification of SCs using IPC approach is quite 

challenging to deploy.  

Automatic Staudynamikanalyse Model 

Automatic Staudynamikanalyse (ASDA), also known as automatic tracking of 

moving traffic jams, is a robust model for tracking and defining the spatiotemporal 

influence of traffic disturbance in freeways (Zheng et al., 2015). The ASDA method 

possibly be used to track a moving jam at all times (Kerner et al., 2004). Based on Kerner’s 

three-phase traffic theory, Kerner et al. (2004) established the ASDA algorithm to capture 

freeway congested traffic flow patterns by employing spatiotemporal boundaries. Li & 

Bertini (2010) used this algorithm for capturing wide, moving jam. They concluded that 

ASDA might be a better model compared to the traditional speed threshold algorithms, 

especially because ASDA is based on not only traffic speed but also traffic flow.  

http://www.sciencedirect.com/science/article/pii/S0968090X15000972#b0095
http://www.sciencedirect.com/science/article/pii/S0968090X15000972#b0095
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This is a robust model to identify SCs on freeways. Automatic Staudynamikanalyse 

(ASDA) model algorithm considers not only traffic speed, but also the flow. Figure 12 

schematically illustrates the ASDA model where Q0 and Qn are two successive detectors 

on a freeway road section. The model starts measuring the uninterrupted positions of the 

upstream front, xup
(jam) immediately after moving jam has been detected by Qn at time t0. 

Note that the upstream front of the moving jam is considered to have reached a detector at 

some time if the three following criteria need to be fulfilled: 

 The speed at the detector is below the maximum speed threshold; 

 The speed drop at the detector is greater than a certain threshold (estimated from 

real time data); and 

 The difference between the speeds at the detector and the next downstream detector 

is greater than the speed differential 

 

 

 

 

 

 

 

 

 

Figure 12: Schematic Illustration of ASDA Model (Kerner et al., 2004) 
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On the other hand, continuous positions of downstream front of traffic jam, xdown
(jam) 

is measured by Qn at time t1. ASDA model estimates xup
(jam) and xdown

(jam) resulting from 

primary incidents using Equations 12 and 13, where i and j are two detectors at t time 

values. These two indices increase in the same direction of traffic flow along x axis. Li+1, 

Lj are coordinates of the corresponding detectors. vup
(jam)(t) and vdown

(jam)(t) are upstream 

and downstream fronts of the moving jam velocities, respectively. to
(t+1) is the time when 

the upstream front jam is calculated at (i+1) detector and t1
 (j) is the time when the 

downstream front jam is calculated at j detector. wo
(i)(t) and qo

(i)(t) are the average speed 

and traffic flow rate at detector i upstream of the jam. On the other hand, wmax
(j)(t) and 

qout
(j)(jam)(t) are the averaged vehicle speed and the traffic flow rate at detectors j 

downstream of the wide moving jam. Whereas, qmin and ρmax are the traffic flow rate and 

density inside the moving jam.  

Using Equations 12 and 13, total jam width, Ls (Equation 14) at t, queue duration 

and maximum queue length resulting from primary incidents need to be calculated. So, 

spatiotemporal boundaries of the incident impact areas are easily defined. Consequently, 

secondary incidents could be identified if they occurred within the impact areas.  

xup
(jam)

(t) = Li+1 + ∫ vup
(jam)

t

t0
(i+1)

(t)dt 

≈ Li+1 − ∫
q

0

(i)(t) − q
min

ρ
max

− (
q

0

(i)(t)

w
0

(i)(t)
)

t

t0
(i+1)

dt,  t ≥ t0
(i+1)

,  i = 1,2,… 

(12) 

xdown

(jam)
(t) =  Lj + ∫ vdown

(jam)
t

t1
j

(t)dt (13) 
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≈  Lj − ∫
q

out
(j)(jam)(t) − q

min

ρ
max

− (
q

out

(j)(jam)
(t)

wmax

(j) (t)
)

t

t1
(j)

dt,  t ≥ t1
(j)

,  j = 1,2,… 

Ls =  xdown

(jam)
 −  xup

(jam)
 (14) 

The density parameter, ρmax is estimated by Equation 15.  

𝜌𝑚𝑎𝑥 =
1000

𝐿𝑃𝐶 . 𝐴𝑃𝐶 + 𝐿𝐻𝐺𝑉 . (1 − 𝐴𝑃𝐶)
[
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝑘𝑚
] (15) 

where, 

𝐿𝑃𝐶 = the expected average length of passenger cars (PC) including a (small) average  

   distance between vehicles inside the moving jam  

𝐴𝑃𝐶 = the fraction of PC, can be determined with local detector measurements 

𝐿𝑃𝐶 = the expected average length of heavy goods vehicles including a (small) average  

               distance between vehicles inside the moving jam  

Imprialou et al. (2014) analyzed 1,287 incidents for the years 2007 and 2009 on a 

31-mile freeway segment on Attica Tollway. The authors compared the results with the 

ASDA model and the cumulative plots method. The authors defined the spatiotemporal 

thresholds of the incident influence area to be 1.43 miles-70 minutes and 1.6 miles-80 

minutes for the ASDA algorithm and cumulative plots method, respectively. For 

identifying secondary incidents, the authors initially constructed a second-order 

polynomial model that could link spatial distance from prior incident to the incident 

duration. The model was fitted based on Levenberg-Marquardt algorithm, a nonlinear least-

squares curve-fitting procedure. Only 1.79% of secondary incidents were identified using 

this method. In another study conducted by Orfenou et al. (2011) using the same approach, 

http://www.sciencedirect.com/science/article/pii/S0968090X15000972#b0060
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only 3.5% of the total accidents (30 of 856 accidents) were categorized as secondary 

accidents. 

2.2 Influential Risk Factors and SCs Occurrence Model 

Several researchers have used statistical models and tests to analyze the 

relationships between the primary crash characteristics, and the possibility of secondary 

crash occurrence. This section discusses the studies that adopted regression models, 

ordered probit models, logit models, multinomial logits models, Bayesian logit models, 

binomial logit models, proportional test, t-test, chi-square test, etc. to identify the risk 

factors of SCs.  

2.2.1 Probability of SC Occurrence  

Goodall (2017) developed the binary logistic regression model to predict the 

secondary crash occurrences. Latoski et al. (1999) also developed logistic regression 

models to predict the probability of a secondary crash as a function of clearance time in 

winter, clearance time during the rest of the year, vehicle type, weekday, and presence of 

a ramp or a median. In this research, the authors identified secondary crashes using the 

static approach: crashes that took place within 3 miles upstream and within the clearance 

time plus 15 min of a primary crash were identified as secondary crashes.  

Kopitch & Saphores (2011) examined the probability of secondary crashes 

depending on various contributing factors using a simple logistic regression model. The 

authors focused on evaluating the impact of Changeable Message Signs (CMS) on reducing 

secondary crashes. They concluded that the effectiveness of a CMS in preventing 

secondary crashes increases between 2 miles and 11.15 miles, and then decreases between 

11.15 mi and 22.3 miles, and these results are only slightly statistically significant.  
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The analysis was based on a combined database of weather data with geometric 

information and accident data in 2008 for 74 miles on I-5 from Mexico-US border to 

Orange County, CA. In this study, crashes that occurred within 2 miles and 2 hours in the 

both directions of primary crash occurrence were defined as secondary crashes. About 

5.2% of all primary crashes were represented as secondary crashes. Moreover, findings 

also showed that CMS might be an effective incident management tool to mitigate potential 

secondary crashes.  

Descriptive Statistics 

A few studies used descriptive statistics to analyze secondary crashes. Yang et al. 

(2013, 2014a) conducted a descriptive analysis on the secondary crashes identified using 

speed contour plots. The findings are as follows:  

 About 8% of all crashes were identified as secondary crashes. Every 11 non-

secondary crashes were linked to one secondary crash.  

 50% of secondary crashes occurred within 2 miles upstream of primary crashes.  

 75% of secondary crashes were within 2 hours of primary crashes.  

 Two or more vehicles were involved in secondary crashes. 75% of secondary 

crashes were rear-end crashes.  

 “Following too closely” (54%) followed by “driver inattention” (12%), and 

“improper lane change” (18%) were the major contributing factors to the secondary 

crash occurrence.  

 Clearance time for the identified secondary crashes was less than primary crashes. 

A high 90% of the secondary crashes were cleared within 90 minutes.  
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Tian et al. (2016) utilized both static and dynamic approaches to identify secondary 

crashes. The authors identified secondary crashes using GIS and a fixed spatiotemporal 

threshold window of 2 miles-2 hours in the same direction of primary crashes. They also 

conducted descriptive analysis on the identified secondary crashes. The findings include:  

 “Careless driving” (50%) followed by “exceeded safe speed limit” (8.13%) and “no 

improper driving/action” (4.07%) were the major contributing factors of primary 

crashes that were linked to secondary crashes.  

 A majority of secondary crashes were rear-end, followed by angle crashes. 

 More than 50% of secondary crashes resulted in no injuries. Within the 2-hour 

temporal window, secondary crashes were found to result in the lowest percentage 

of fatal crashes (0.73%) and the highest percentage of PDO crashes (61.59%) were 

found.  

Like Yang et al. (2013, 2014a) and Tian et al. (2016), Carrick et al. (2015) also 

conducted descriptive analysis using data from secondary crashes in Florida. The authors 

collected information about secondary crashes at the scene by police officers reporting 

traffic crashes. Some of the relevant findings include:  

 Secondary crashes were found to be more likely to occur in cloudy or rainy 

conditions. Wet roadway surface condition was found to be involved in twice the 

number of SCs.  

 The likelihood of secondary crashes was found to be high in hilly areas. Uphill and 

downhill grades combined were found to experience twice the number of crashes.  

 Higher rates of secondary crashes were observed when they occurred “on the 

roadway” and involved three or more vehicles, including commercial vehicles.  
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2.2.2 Risk Factor Model 

A study examined the underlying relationship between SC occurrences and 

different contributing factors. In general, both parametric and non-parametric models were 

sought to model the association of SCs with external conditions. With the modeled 

association, it is expected to provide transportation agencies with more insightful 

information when developing countermeasures to mitigate SC risks. A detailed of the 

modeling practices are provided below. Information regarding the authors, methods, 

considered variables, data used, and SC identification methods in each study are presented. 

Logistic Regression Model  

Junhua et al. (2016) used three years of loop detector data from California freeways 

to analyze secondary crashes. Based on 180 minutes-24.85 miles of spatiotemporal 

boundary, researchers identified 1,183 crash pairs for further analysis. They investigated 

major contributing factors involving primary crashes resulting in secondary crashes using 

a binary logistic regression model. The authors used the shock wave boundary filtering 

(SWBF) method based on queuing theory to identify secondary crashes. This method 

“provides real-time accident impact scope and is equipped with an automatic algorithm to 

conduct the filtering work circularly” (Junhua et al., 2016). “It includes three main steps: 

(1) calculate traveling speed of primary accident impact through flow and density 

information; (2) determine a feasible spatiotemporal district for secondary accidents by 

estimating the real time space-time scope of shock waves generated by every potential 

primary accident; and (3) match the primary accident with the corresponding loop data to 

calculate the spatiotemporal district for secondary accidents.” (Junhua et al., 2016). 
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Junhua et al. (2016) found that crash processing duration significantly affects on 

the secondary crash occurrence. Several studies including Zhan et al. (2008, 2009); 

Karlaftis et al. (1999, 2009); Zhang & Khattak (2010a, 2010b, 2011); Yang et al. (2014b); 

Vlahogianni et al. (2010, 2012) made similar observations. However, tow away indicator, 

road surface condition, and other parties involved, were found to be insignificant. This 

study also identified the high significance of the following three types of shock waves 

generated by primary crashes: (a) Shock Wave 1: Generated at the time of the primary 

crash; (b) Shock Wave 2: Generated when rescue personnel or police arrive at the site to 

control traffic, and (c) Shock Wave 3: Dissipated when primary crash has been transacted, 

and the bottleneck is recovered. The study revealed that all these waves increased the 

likelihood of secondary crash occurrence. The authors concluded that “stepwise speed 

control is necessary in the downstream section of the bottleneck to slow down the traffic 

wave” (Junhua et al., 2016).  

Mishra et al. (2016) used the above multinomial logit model to observe the 

correlation between secondary crashes with corresponding contributing risk factors. 

Increased number of vehicles involved in crashes, relatively high AADT, increased 

upstream flow was found to lead to a higher likelihood of secondary crash occurrence. 

Nonetheless, good weather condition decreased the likelihood of secondary crash 

occurrence. The study also found that the likelihood of secondary crashes increased if the 

primary crashes were rear-end compared to other crash types (i.e., angle, sideswipe, head-

on, etc.). The authors found that more secondary crashes involved with higher upstream 

traffic flow. Primary crashes with rear-end collision type was found to be the predominant 

factor that contributed to secondary crash occurrences. The authors concluded that the 
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probability of a secondary and a tertiary crash are 37.18% and 4.05%, respectively. Note 

that the SCs that occurred in the upstream same direction of the primary crashes were 

considered in crash prediction modeling.  

Zhan et al. (2008) used regression models, and identified the following five factors 

to have statistically significant effect on the likelihood of secondary incident occurrence: 

the number of vehicles involved in the primary incident, the number of lanes at the primary 

incident location, the primary incident duration, time-of-day of incident occurrence, and 

the probability of vehicle rollover occurring during the primary incident. The authors also 

concluded that incident visibility and the lane blockage durations of the primary incidents 

are significant contributing variables for determining the severity of secondary crashes. 

Khattak et al. (2012) used a binary logit model to identify factors associated with 

the occurrence of secondary incidents resulting from primary incidents. Note that the other 

variables are self-explanatory. The authors found a significant positive correlation between 

secondary crash occurrences and longer primary incident duration, higher AADT, and 

primary incidents occurred during peak hours. 

Neural Network Model 

The following NN model is to identify SCs risk factors. This model is based on 

multi-layer perceptions (MLPs) and a logistic regression model with no interaction term.    

y
p
 = 

1

1+e−netj
 (16) 

 

where, 

netj = ∑ ωkjhk + θj

k
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y
p
  =  output of pth data 

ωkj  =  connection weight between kth neuron in the hidden layer and jth neuron in the 

output layer with the bias term, θj 

hk = 
1

1+e−netk
 = output of the hidden neuron  

netk = ∑ ωikxi - θi

i

 

ωki  =  connection weight between kth neuron in the hidden layer and ith input variable 

with the bias term, θi 

Neural networks (NNs) are efficient predictive models widely applied in function 

approximation and classification problems (Vlahogianni & Karlaftis, 2013). Vlahogianni 

et al. (2012) implemented logistic output activation function in their NN model to identify 

significant variables associated with secondary crashes on a 65.2 km urban motorway 

linked to the city center from the Athens International Airport.  

The authors ranked the importance of independent variables in the modeling of the 

probability of having a secondary accident using two measures: mutual information, and 

the second is partial derivatives. The mutual information provides the overall significance 

of certain variables on the secondary accident likelihood under the prevailing roadway and 

traffic conditions; while the “partial derivatives-based ranking provides information on 

which variable to alter in order to affect immediate change to the secondary accident 

likelihood” (Vlahogianni et al., 2012).  

Traffic speed, duration of the primary accident, hourly volume, rainfall intensity, 

and a number of vehicles involved in the primary accident were found to be the top five 

factors associated with secondary accident likelihood. The authors also found changes in 
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traffic speed and volume, blocked lanes, percentage of trucks, and upstream geometry to 

significantly influence the probability of secondary incident occurrence (Vlahogianni et 

al., 2012).  

Park & Haghani (2016) used a Bayesian neural network for the sequential 

prediction of secondary incidents from the point of incident response to the clearance of 

primary incidents. The authors compared the results with Binary Logit model results. 

Probabilistic learning models were considered as conditional distribution of the dependent 

variables. The results revealed that the likelihood of secondary incidents was higher when 

the clearance time for primary incidents is between 10 minutes and 20 minutes, or more 

than 75 minutes. 

Bayesian Random Effect Logit Model  

Bayesian random effect logit model (Equation 17) is for predicting the secondary 

crashes due to primary crash characteristics, roadway geometric, and environmental 

conditions (Huq 2011). To avoid bias parameter estimation, this model consists of 

unobserved heterogeneous factors i.e., the work zones, design features, and pavement 

conditions. Markov Chain Monte Carlo (MCMC) simulations were used to quantify the 

random effect logit model. 

y
n
= Bernoulli (p

n
) (17) 

logit (p
n
) = β

0
 + θr + β

1
x1n + β

2
x2n + … + β

i
xin; θr ∼ (0,Σθ) (18) 

The elasticity of continuous independent variables such as traffic flow 

characteristics can be estimated using Equation 18. The pseudo-elasticity (see Equation 19) 

can be calculated to estimate the elasticity of non-continuous variables, such as indicator 

variables that take on values zero or one. The elasticity of a continuous independent 
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variable represents the percentage change in the dependent variable resulting from a 1% 

change in the independent variable (Washington et al., 2010). Similarly, pseudo-elasticity 

gives “the incremental change in frequency caused by changes in the indicator variables” 

(Washington et al., 2010).  

Ei = 
∂Y

∂xi

×
xi

Y
 = (1 − P)β

i
xi (19) 

Ei = {
e∆(x'β)×(1+exiβi)

e∆(x'β)×exiβi+1
− 1} ×100 

 

(20) 

where, 

y
n
  =  secondary crash indicator (i.e., 1 if a secondary crash is induced by a primary 

crash, and 0 otherwise) for the nth observation; 

p
n
   =   P = probability of a secondary crash; 

β
i
  =  coefficient of independent variable xi; 

xin  =  the value of variable i for sample n; and 

θr  =  random effect which captures the heterogeneity effects for freeway segment, r. 

Using this mode, Xu et al. (2016) observed findings similar to Sarker et al. (2017); 

they found a positive correlation between AADT and secondary crash occurrences. The 

likelihood of secondary crashes was found to be much higher on weekends compared to 

weekdays. Compared to several different crash types, sideswipe primary crashes were 

found to be less likely to cause secondary crashes. Similar to Xie et al. (2016), Xu et al. 

(2016) indicated that the likelihood of secondary crashes decreased with increase in 

number of lanes. The authors also observed that the probability of secondary crashes was 

more likely to occur during morning peak periods. The authors also concluded that 
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including real-time traffic variables increased the prediction accuracy by 16.6%, and 

considering unobserved heterogeneity (consideration of random variables) effectively 

increased the prediction accuracy by 7.7%.  

Generalized Ordered Response Probit Model 

Sarker et al. (2017) developed a GORP model and confirmed that there was no 

significant evidence of unobserved heterogeneity in both expected count and propensity 

components. The study also compared the standard NB model with the final GORP model 

using log-likelihood ratio (LR) test statistic and found that the GORP model might be a 

superior statistical model. The study also found a significant effect of right shoulder width, 

speed limit, AADT, number of lanes, and presence of raised median on secondary crash 

occurrences. The findings revealed that about 10% increase in AADT increased secondary 

crash occurrences by 34.24%. Moreover, the authors also found that two-lane roads caused 

73% more secondary crashes compared to road segments with three or more lanes, and 

locations with raised medians experienced more secondary crashes compared to undivided 

roads. Segments with right shoulder width less than 14 ft were found to be experienced 

more secondary crashes compared to roads with wider shoulders, and those segments with 

over 55 mph experienced more secondary crashes compared to segments with lower speed 

limits.  

Structural Equation Models 

Xie et al. (2016) proposed Structural Equation Modeling (SEM) that was used a 

combination of factor analysis and multiple regression analysis to analyze structural 

relations (Ullman, 2003). The authors investigated structural relationships between the 

contributing factors, presence of secondary collisions, and injury severity. The authors 
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conducted the chi-square difference test to estimate the goodness of fit of the three models. 

The authors concluded that, compared to SEMs, probit models overestimated the safety 

effects of confounding variables by mixing the direct and indirect effects (Xie et al., 2016).   

The study found the following thirteen explanatory variables to contribute to the 

presence of secondary crashes: alcohol, drugs, inattention, inexperience, sleep, control 

disregarded, speeding, fatigue, defective brake, pedestrian involved, defective pavement, 

limited view, and rain. The sixteen variables were found to be increased in the risk of severe 

injuries presence of secondary crashes. They include alcohol, drugs, inattention, yield, 

illness, control disregarded, speeding, fatigue, cell phone, defective brake, motorcycle 

involved, bike involved, pedestrian involved, defective pavement, and at intersection. The 

likelihood of the occurrence of secondary crashes and severe injuries were found to be 

higher at nighttime compared to daytime conditions (Xie et al., 2016).   

Gompit Model 

Vlahogianni et al. (2012) used a Gompit model employing the Weibull distribution 

to identify secondary incident risk factors related to primary incident characteristics. The 

authors could not find a significant relation between collision type and secondary crash 

occurrence. However, they found that the likelihood of SCs is negatively correlated with 

the number of blocked lanes for primary incidents occurrence.   

Probit Model 

Vlahogianni et al. (2012) used probit model for estimating the probability of 

secondary incidents. The authors found that secondary crash occurrence was significantly 

affected by upstream geometry, rainfall intensity, speed, and traffic volume. The results 
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also revealed that lower speed and higher lane volume might increase secondary accidents. 

This output is consistent with Junhua et al. (2016).   

Statistical Tests 

This section focuses on the statistical tests applied in earlier discussed studies to 

analyze contributing risk factors associated with possible secondary crashes resulting from 

primary crashes.  

Test for Proportions 

Hirunyanitiwattana & Mattingly (2006) conducted the test for proportions to 

compare the differences in the characteristics of secondary crashes and primary crashes 

using crash data from 1999 and 2000 from California highway system. The authors 

identified secondary crashes using a 2-mile-60-minute spatiotemporal window boundary. 

Jalayer et al. (2015) also conducted the Test for Proportions to determine if there is any 

statistically significant difference between the primary and secondary crashes with regards 

to various characteristics including crash type, severity level, time of day, area type, 

average emergency response duration, and roadway classification. The null hypothesis is 

that the proportion of primary crashes by primary crash contributing factor is not 

statistically significantly different from the proportion of secondary crashes of the same 

classification. The alternate hypothesis is that the proportion of primary crashes by primary 

crash contributing factor is statistically significantly different from the proportion of 

secondary crashes of the same classification. The authors used static threshold of 2 miles-

120 minutes to identify secondary crashes. The analysis was based on four years of data 

from 2010 through 2013 of Alabama State. These results were found to be consistent with 
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several other studies including Raub (1997a), Hirunyanitiwattana & Mattingly (2006), and 

Zhan et al. (2008). Some of the key findings are listed below (Jalayer et al., 2015):  

 The probability of the secondary crash occurrence in urban areas was found to be 

higher than in rural areas.  

 “Following too close” and “driving too fast” were found to be the main contributing 

factors of secondary crashes.  

 Secondary crashes were found to result in no injury (i.e., PDO).  

 Rear-end crashes were found to be overrepresented among secondary crashes.  

 The proportion of secondary crashes with no emergency response required was 

found to be significantly higher compared to those in the primary crash. 

 Compared to all crashes in Alabama, the secondary crashes were found to be 

overrepresented and underrepresented for interstate and state highways, 

respectively. 

 Secondary crashes were found to be more frequent during morning and evening 

peak hours.  

Pearson’s Chi-square Test 

Zheng et al. (2015) used Pearson’s Chi-square (χ
2
) test to test the independence 

between secondary crashes and general crashes (identified using the two-phase automatic 

identification process discussed in Section 2.2.5), and for the day of week, month of the 

year, and hour of the day. They did not observe statistically significant differences between 

secondary crashes and general crashes with respect to day of the week (χ
2
=2.88). On the 
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contrary, secondary crashes were significantly different from primary crashes with respect 

to month of the year and hour of the day, the χ2 values are 20.13 and 88.91, respectively.  

t-Test 

Tian et al. (2016) used t-test to determine if there is a statistically significant 

difference in crash rates, crash severity and other factors between secondary crashes 

identified. The authors found a very limited influence on temporal criteria of secondary 

crashes at 5% significance level. The results also indicated no significant differences 

between the temporal boundaries of clearance time plus 15 minutes and clearance time plus 

30 minutes. However, rear-end crashes were found to increase when clearance time plus 

30 minutes instead of 2 hours was considered. 

2.3 Review on SC Prevention 

Other than the identification and risk factor modeling of SCs, very few studies 

focused on the prevention of SC occurrences. The primary countermeasures explored in 

existing studies include the deployment of the active traffic management using changeable 

or variable message signs (CMS or VMS) variable speed limit control (VSL), and 

connected vehicles (CVs). For example, Kopitch and Saphores (2011) verified the 

effectiveness of 11 CMS that provided real-time traffic information about incidents, work 

zones, congestion, speed limits ahead, and alerts in reducing SC risk. It was found that the 

effectiveness of CMS increased between 2 and 11.15 miles and decreased between 11.15 

and 22.3 miles. Li et al. (2014) introduced the strategy of implementing a variable speed 

limit with both weather and traffic flow information to mitigate SC risk. Two surrogate 

safety measures, including time exposed time-to-collision (TET) and time integrated time-

to-collision (TIT), were found to be reduced by 40–50 percentage in a case study on I-880 
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in California during heavy rain conditions. Lately, Yang et al. (2017) examined the impact 

of connected vehicles on improving the situational awareness of drivers to mitigate SC 

occurrences. SC risk, measured by the number of simulated conflicts, was found to be 

significantly reduced if the market penetration rate of CVs on a highway was relatively 

high (e.g., 15%) in dense traffic conditions.  

Other than the countermeasures, some studies also examined the benefits of service 

patrol programs in reducing SCs. For example, Karlaftis et al. (1999) examined the effect 

of the Hoosier Helper service patrol program on the Broman Expressway in Indiana. It was 

found that the program may help reduce SC likelihood by 18.5 percent in winter and by 

36.3 percent in other seasons per crash assisted. The delay savings and crash cost savings 

from secondary crash reduction were $568,080 in 1995, which was 1.38 times the service 

patrol program cost. Although there was no quantitative assessment, some other studies 

also mentioned the use of service patrol programs as an effective countermeasure to reduce 

SC risk. For example, Khattak et al. (2012) suggested the improvement of coverage of 

service patrols and towing service on highway chokepoints that have higher SC occurrence 

probability.  

Mitigation of post-crash impacts of SCs rather than the prevention of SCs has also 

been discussed by some researchers. Compared with previous studies that only used PC 

information, Park et al. (2016a) considered the evolution of PCs and SCs over time to 

determine an appropriate location for emergency response units. Linear programming 

approach with relaxed integrality constraint for integer variables was verified to be valid 

in reducing the expected total delay of crashes in a numerical study with data collected on 

an interstate highway. 
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2.4 Review of Study Constraints  

 This section includes several issues and constraints that have been faced by 

previous authors while doing their research on secondary crash analysis, are summarized 

below: 

 As crash queues are continuously moving, the static threshold may have a 

significant risk of identifying secondary crashes with high positive and negative 

numbers (i.e., Type I and Type II errors, respectively).  

 Two major issues resulted in misclassification of secondary crashes: (a) inadequate 

incident data; and (b) inconsistent approach to secondary crash identification (Yang 

et al., 2014).  

 Nonstandard subjective selection of spatiotemporal thresholds cannot adequately 

identify secondary crashes (Yang et al., 2013).   

 It is difficult to determine if a secondary crash was due to recurrent or non-recurrent 

congestion. The use of the category “accident ahead” underestimated the secondary 

crash records, while the category “congestion ahead” overestimated the secondary 

crash frequencies. In summary, crash records do not have sufficient information to 

identify secondary crashes (Sun et al., 2006).  

 Crashes are rare and random events, which depend on various factors, including 

humans, vehicles, roadways, and weather conditions. Since not all influencing 

factors are included in the statistical models, addressing unobserved heterogeneity 

is critical (Sarker et al., 2017). Note that unobserved heterogeneity is an issue for 

any type of crash frequency analysis (Sarker et al., 2017). Moreover, the model 
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parameters can be constrained to be the same or allowed to vary between groups. 

So, it is difficult to identify parameter constraints (Xie et al., 2017). 

 It is difficult to evaluate the correlation between multiple incidents that occur within 

the spatiotemporal window of primary crashes (Haghani et al., 2006). The authors 

also mentioned that secondary incident identification when congestion level 

information is unavailable might yield biased results. That is why, in this 

dissertation work, the dynamic approach was conducted by assuming that there 

were no multiple SCs occurred within the same congested spatiotemporal area. It 

eventually yields biased results. 

 Though Connected Vehicle (CV) technology is the most advanced method of 

mitigating SCs, there are some significant limitations that still needs to be addressed 

(Yang et al., 2017).  
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CHAPTER 3 

METHODOLOGY 

3.1 Methodology for SC Identification   

This chapter describes the methodology that has been applied in this research. The 

first two sections provide methods that have been performed to achieve the two specific 

objectives of this dissertation. A detailed description of the procedures involved in the 

methodology is presented in each subsequent section.  

3.1.1 Static Approach 

The static approach includes fixed spatiotemporal thresholds to identify SCs.  

According to Table A 2.1, the majority of previous studies considered 2 miles-2 hours 

threshold values to identify SCs. Therefore, this study used 2 miles-2 hours spatiotemporal 

thresholds while using the static approach. The ArcGIS, a mainstream Geographical 

Information System (GIS) software, was used to assign mileposts to all incidents. Based 

on previous studies, SCs can occur either in the upstream direction of the primary incidents 

(PIs) or in the opposite direction of the PIs. However, this study identified SCs only in the 

same direction and upstream of PIs. Figure 13 is the flow chart showing the static approach 

using GIS.  

 

 

 

 

 



56 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: SCs Identification by Static Approach Using ArcGIS 

Identification of Upstream Secondary Crashes  

SCs occurred in the upstream direction of the Primary Incident (PI). The following 

steps were performed:  

 Step 1 - Assign Mileposts to Incidents: Traffic incidents are mapped in GIS using 

the corresponding coordinates (latitude and longitude) in the dataset. Next, 

mileposts were assigned to each traffic incident using a linear referencing tool in 

ArcGIS.  

 Step 2 - Identify Potential Secondary Incidents that are Crashes: While the primary 

event could be any incident and not necessarily a crash, this method focuses on 

identifying only SCs (and not secondary incidents). Thus, as one of the initial steps, 

the potential secondary incidents are checked to make sure that they are crashes . 

Creating incident shape file 

Creating interstate shape file 

Utilizing linear referencing tool 

Start 

Apply predefined spatial and temporal thresholds 

Identify secondary incidents 

End 

Separate SCs from secondary incidents 
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 Step 3 - Identify Upstream Potential SCs: The occurrence of a PI is expected to 

result in a queue backup in the upstream direction. Therefore, SCs that occurred 

only in the same direction and upstream of the PI are identified by comparing the 

milepost of the PI with the milepost of the potential SCs.  

 Step 4 - Calculate Distance (Spatial Threshold): The mileposts of the PI and the 

potential SCs are used to compute the distance between the two.  

 Step 5 - Calculate Time Difference (Temporal Threshold): The time difference 

between the PI and the potential SC is calculated.  

 Step 6 - Extract PI-SC Pair: Following the identification of the spatiotemporal 

relationship between the PI and the potential SC (in Steps 4 and 5), the respective 

pairs are extracted based on the set spatiotemporal criteria.  

 Step 7 - Store the Identified Secondary Crash: The extracted SCs are stored, and 

the process is repeated for the rest of the incidents.  

3.1.2 Dynamic Approach  

In contrast to the static approach, this method utilizes the dynamic spatiotemporal 

impact areas (STIA) to identify secondary crashes (SCs). At first, the STIA of the primary 

incidents are deployed using speed contour plot (SCP). Later, incidents within or at the 

boundary of the STIA, have been recognized as SIs. In this research, both recurring and 

non-recurring traffic congestion formed by primary incidents are considered to identify 

SIs. Afterwards, SCs were extracted from SIs. The real time traffic data including speed 

information were extracted from RITIS and incident data were obtained from SunGuide™ 

incidents database from 2014 to 2017. A total of 21,589 incidents were extracted to identify 
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SCs in the same direction and upstream of PIs using SCP dynamic approach. The incident 

zone only includes Miami-Dade County areas.  

Speed Contour Plot   

This approach first determines STIA of the PI using real-time traffic flow data 

while accounting for the effects of recurring congestion. A secondary incident is then 

identified if it is within the STIA of the primary incident. Figure 14 shows flow chart of 

SCP method.  

 

 

 

 

 

 

 

 

 

 

 

Figure 14: SCs Identification Using SCP Method 

Detail explanation of the steps conducted in SCP algorithm are listed below: 

 Step 1 - The 5-min speed data were extracted from RITIS database to develop a 

speed contour plot for a prior incident. More specifically, the speed data were 

extracted for the time interval between 6 h before the prior incident and 6 h after 

Preparing master database with incident, network, traffic operation data 

Assessing traffic flow characteristic using detector data 

Organizing all data by date, route and direction of traffic flow 

 

Extracting raw speed and average speed at detectors 

Start 

Developing an incident speed contour plot on time and space values 

Locating speed drop area on speed contour plot 

Identifying secondary incidents within or at boundaries of speed drop 

area 

End 

Separating SCs from total incidents 
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the prior incident from the loop detectors within 10 miles upstream the prior 

incident. Figure 15a illustrates an example of a speed contour plot for a prior 

incident, where congestions and queue formations were clearly observed after the 

prior incident. It is difficult, however, to determine whether the queue formations 

were caused by recurrent congestions or the prior incident. To account for effects 

of the recurrent congestions, the following two steps were further used to identify 

the spatial and temporal impact range of the prior incident. 

 Step 2 – 5-min speed data for the same time and location in the step 1 was extracted 

from incident-free days in one year. For example, the prior incident in Figure 15a 

occurred at the time of 12:30 am on June 2014 and the milepost of 8.65. Then the 

speed data were collected for the same time interval and location in Figure 15a from 

all incident-free days in 2014. Then the speed data for each time and location was 

averaged over all the incident-free days 

 Step 3 - To account for the potential effects of recurrent congestions, the average 

speed over incident-free days was subtracted in Step 2 from the speed data for each 

time and location in Step 1. The differences between speeds in Step 2 and Step 1 

for various times and locations were then used to develop a new speed contour plot, 

which was used to identify the spatial and temporal impact range of the prior 

incident. Figure 15b illustrates the modified speed contour for identifying the 

spatial and temporal impact range of a prior incident. 

 Step 4 - The incidents that occurred in the spatial and temporal impact ranges of 

primary incidents were identified as secondary incidents.  
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(a) With Recurrent Congestions 

 

 

 

 

 

 

 

 

(b) Without Recurrent Congestions 

Figure 15: Speed Counter Plot to Identify SCs 

3.2 Modeling SC Occurrences and Risk Factors   

As discussed in earlier sections, identifying secondary crashes is the most critical 

step of this research work. The next important step is calculating the probability of 

secondary crash occurrences and investigating the influential risk factors to SCs.  
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3.2.1 Statistical Hypothesis Test 

A set of selected characteristics, including crash severity, collision type, driver 

actions, area type, were established to conduct the proportional test. In this test, accepting 

the null hypothesis statement that there is no statistically significant difference between the 

primary and the SCs in having a specific characteristic, then they are both the same. In 

other words, that characteristics have the same contributions to both primary and secondary 

crashes. The test results are discussed in more detail in the results section.  

To determine if it is statistically significant based upon a pre-defined threshold 

probability (𝛼), a proportional test examines the differences between the primary and the 

secondary crashes with regards to various characteristics. The fundamental equation to 

conduct the test (𝑧 test) is shown in Equation 21: 

𝑧 =
𝑝1

∧ −  𝑝2
∧

√𝑃∧(1 − 𝑃∧) ∗ (
1
𝑛1

+
1

𝑛2
)
 (21) 

𝑃∧ =
𝑥1+𝑥2

𝑛1+𝑛1
 =  

𝑝1
∧ =

𝑥1

𝑛1
  

𝑝2
∧ =

𝑥2

𝑛2
 

where 

𝑃∧ = pooled sample proportion 

𝑝1
∧, 𝑝2

∧ = two compared population proportions 

𝑥1, 𝑥2 = number of successes for populations  

𝑛1, 𝑛2 = population sample sizes 
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The null hypothesis is when it states that there is no difference between the two 

population proportions. For a two-tailed test with 0.05 significance level, the null 

hypothesis is 𝐻0: 𝑝1
∧= 𝑝2

∧ and the alternative hypothesis is defined as 𝐻1: 𝑝1
∧≠ 𝑝2

∧ if 𝑧 > 𝑧α/2 

or 𝑧 < −𝑧α/2.  

3.2.2 Structural Equation Models 

Structural Equation Modeling (SEM) is a multivariate statistical analysis technique 

that uses a combination of factor analysis and multiple regression analysis to analyze 

structural relations (Ullman, 2003). SEM framework (Figure 16) was developed to 

investigate structural relationships between the contributing factors, the presence of 

secondary collisions, and injury severity levels. The mean and variance adjusted weighted 

least squares (WLSMV) were used to estimate the parameters of the SEMs. The chi-square 

difference test has been conducted to estimate the goodness of fit of the three models. In 

this study, the SEM was developed for both nighttime and daytime crashes with equal 

regression coefficients. 

 
Figure 16: Structural Equation Model Framework (Xie et al., 2016) 

The formulation for the proposed SEM is expressed using the following equations. 

Note that the contributing factors affecting secondary crashes have been identified using 
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Equation 22, and the effect of secondary collisions on injury severity has been analyzed 

using Equation 23.  

sci
* = α'Zi +  vi; vi ∼ N(0,σv

2) 

sci = 1, if sci
* > φ, sci = 0, otherwise 

(22) 

where  

sci
*  = a latent secondary collision propensity in crash, i (i=1,2,…..,N);  

sci  = secondary collision indicator (1 represents presence of secondary crash); 

α' = vector of coefficients of exogenous variables; 

Zi  = all exogenous variables; and 

vi  = stochastic error for unobserved factors (independent and normally distributed). 

y
i
* = β

'
Xi + γsci + εi; εi ∼ N(0,σε

2) 

y
i
 = k, if ηk-1 < y

i
* < ηk, 

(23) 

where,  

y
i
*  =  a latent injury severity propensity for crash, i (i=1,2,…..,N) 

y
i
  =  observed injury severity level for crash i (1 = no injury, 2 = possible injury, 3 = 

non-incapacitating injury, 4 = incapacitating injury, and 5 = fatal) 

β
'
  =  vector of coefficients of exogenous variables 

Xi  =  all exogenous variables 

γ  =  the effect of the presence of secondary collisions on the injury severity 

εi  =  stochastic error for unobserved factors (independent and normally distributed) 

k  =  an index to represent injury severity outcome (k = 1,2,….,K) 
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ηk  =  upper threshold corresponding to the injury severity outcome k (η0 < η1…. < 

η5, η0 = − ∞, η5 = + ∞) 

3.2.3 Multinomial Logit Model 

The multinomial logit (MNL) model was used in this research to understand how 

roadway geometric and non-geometric characteristics affect secondary crashes. MNL 

models are traditional discrete choice models that consider three or more outcomes; 

however, MNL models do not explicitly consider the ordering that may be present in these 

outcomes (Savolainen et al., 2011). Generally, in a multinomial logit (MNL) model, a crash 

is addressed in terms of injury severity outcomes in the sense that the propensity of crash i 

towards severity category k is represented by severity propensity function, Tki, as shown in 

Equation 24 (Kim et al., 2008; Ye and Lord, 2014).  

                                            𝑇𝑘𝑖 = 𝛼𝑘+ 𝛽𝑘𝑋𝑘𝑖 +𝜀𝑘𝑖,                                                       (24) 

where  

αk = a constant parameter for crash severity category k;  

βk =  a vector of the estimable parameters for crash severity category k that follows 

KABCO; k = 1,…,K; (K = 3 in this research) representing no injury or property damage 

only/O (k = 1), possible injury/C and non-incapacitating injury/B (k = 2), and incapacitating 

injury/A and fatal injury/K (k = 3);  

Xki  = a vector of explanatory variables affecting the crash severity of i at a severity 

category k (incident, roadway and traffic characteristics); 

𝜀ki  = a random error term following the Type I generalized extreme value (i.e., Gumbel  

                distribution) where, i = 1, …, n; n is the total number of crash events  
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Equation 25 shows how to calculate the probability for each crash severity category. 

Let Pi(k) be the probability of crash i ending in crash severity category k (Ye and Lord, 

2014), such that 

                                                 𝑃𝑖(k) =
exp (𝛼𝑘 + 𝛽𝑘X𝑘𝑖)

∑ exp (𝛼𝑘 + 𝛽𝑘X𝑘𝑖)∀𝑘
.                                             (25) 

The coefficients, βk, can be estimated by the maximum likelihood method. The 

MNL models are derived with the assumption that the unobserved factors are uncorrelated 

over the alternatives or outcomes which is known as the independence from irrelevant 

alternatives (IIA) (Train, 2009; Ye and Lord, 2014). This assumption limits MNL in the 

sense that it is very likely that the unobserved factors are shared by some outcomes. 

However, the IIA assumption makes MNL very convenient to use (Ye and Lord, 2014). 

Another assumption of MNL is worth to note that the error term is considered identical and 

independently distributed (IID) (Ben-Akiva and Lerman, 1985).   

Underreported data is supposed to be biased when a crash prediction model is 

developed. But usually lower severity crashes (PDO) are likely to be underreported that 

may lead overestimation for higher severity and underestimation for lower severity crashes 

(Ye and Lord, 2011). Since estimates of exogenous variables remain unbiased in the MNL 

model, the log-odds ratio of outcomes is estimated. Only the difference in coefficients is 

identifiable by keeping the coefficients of one outcome are set to be the base category (zero 

value). The zero-value base category can solve this indeterminacy (Carson and Mannering, 

2001). As estimated coefficients of the independent and dependent variables are not 

correlated in the MNL model, odds ratio (OR) is estimated relative to the base category.  
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3.2.3 Model Validation 

There are three types of model goodness of fit were employed to assess the 

performance of above-mentioned models, SEMs in particular. They are named as the root 

mean square error (RMSEA), the comparative fit index (CFI), and Tucker Lewis index 

(TLI). The RMSEA is computed based on the chi-square statistic, but it considers the 

model complexity by including degrees of freedom. The RMSEA ranges from 0 to 1, with 

a smaller value indicating a better fit. Generally, a model with RMSEA less than 0.05 is 

favored (Markus, 2012).  

On the other hand, CFI and TLI measure the relative improvement in the fit of the 

proposed model over that of a baseline model (null model with no explanatory variables). 

The CFI or TLI with the value higher than 0.9 indicates a good fit of model (Hu and Bentler, 

1995). Equations (26, 27, 28) of RMSEA, CFI and TLI are mentioned below:  

𝑅𝑀𝑆𝐸𝐴 =  √
𝜒𝑀

2 − 𝑑𝑓𝑀

𝑑𝑓𝑀(𝑁 − 1)
 (26) 

𝐶𝐹𝐼 = 1 −
𝜒𝑀

2 − 𝑑𝑓𝑀

𝜒𝐵
2 − 𝑑𝑓𝐵

 (27) 

𝑇𝐿𝐼 =
𝜒𝐵

2/𝑑𝑓𝐵 − 𝜒𝑀
2 /𝑑𝑓𝑀

𝜒𝐵
2

𝑑𝑓𝐵
− 1

 
(28) 

where 

𝜒𝑀
2  =   the chi-square statistic for proposed model, M 

𝑑𝑓𝑀 =   degrees of freedom for model M  

𝜒𝐵
2 =   the chi-square statistic for base model, B 

𝑑𝑓𝐵 =   degrees of freedom for model B; and  

N =   sample size  
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3.3 Development of Crash Modification Factors 

The cross-sectional analysis was used in this study to develop Crash Modification 

Factors (CMF) for rear-end secondary crashes (RSCs) on two-lane undivided roadways in 

District six areas in Florida. A CMF is a multiplicative factor, used to compute the expected 

number of crashes when a specific countermeasure is implemented at a specific site. A 

CMF of 0.9 indicates a 10% expected reduction in crashes, while a CMF of 1.3 indicates a 

30% expected increase in crashes (Washington et al., 2010). Cross-sectional studies are 

recommended for CMF estimation when before-after studies cannot be conducted due to 

insufficient before and after crash data when a particular engineering countermeasure is 

implemented, or the date of the implemented treatment is unknown; or when it is difficult 

to distinguish the effect of a countermeasure from confounding factors.  

In cross-sectional studies, crash experience at locations with and without a specific 

feature is studied; and then the difference in safety is attributed to that feature. To obtain 

reliable results from cross-sectional studies, it is critical that all locations are similar to 

each other in all other factors affecting crash risk. However, in practice, it is difficult to 

collect data for enough locations that are similar in all other factors affecting crash risk. 

Therefore, cross-sectional studies are often conducted through multiple variable regression 

models. The models are developed using crash data from sites both with and without the 

treatment. The change in crashes from a unit change in a specific variable can be estimated 

from regression model. The CMFs are then deduced from the model parameters 

(Washington et al., 2010). This research used the generalized linear model (GLM) 

approach with the negative binomial distribution (NB) to develop the relevant regression 

models. The models have crash frequency as the explanatory variable, and the roadway 
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characteristics as explanatory variables. Equation 29 illustrates the basic form of the 

regression model used in this study.    

Yi=exp (β
0
+ β

1
× ln AADTi + β

2
×CWi+ β

3
×GRi+…+ β

k
×Xik +OFFSET)                        (29) 

where 

Yi  = crash frequency on a road section i, 

AADTi  = average annual daily traffic on a road section i (vehicle/day), 

CWi  = width of a carriageway section i (ft), 

GRi  = presence of guardrail along a road section i (0 if absent, 1 if present), 

Xik  = roadway characteristic k (i.e., countermeasure) of road section i, 

β0  = model intercept/constant, 

β 1, β2,…, βk = model coefficients, and 

OFFSETi = ln (3×(section length of road section i, i.e., SLi)) for segments. Note 

that the number 3 was used in the offset term because this study considered four years of 

crash data.  

The regression coefficients and over-dispersion parameters were estimated using 

the glm.nb function of MASS package in the statistical software R (Kim et al., 2008). An 

offset term was added to the regression equation to predict the crash frequency in crashes 

per mile per year for segments, as shown in Equation 29. The CMFs can be inferred from 

the estimated model parameters, i.e., coefficients. As the model form is log-linear, the 

CMFs can be calculated using Equation 30.  

                                                   CMF = exp (β
k
)                                                                          (30) 
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CHAPTER 4 

DATA PREPARATION  

The research includes various and intensive databases to address the specific 

objectives, as mentioned in Section 1.3. The entire dissertation work is conducting the 

analysis of roadways within the District 6 of Florida, includes Miami-Dade and Monroe 

Counties (Figure 17). Crash Analysis Reporting (CAR) system database was explored for 

static approach to identify SCs. However, Regional Integrated Transportation Information 

System (RITIS) and SunGuide™ database were used to identify SCs using a dynamic 

approach. The following section explains the detail of databases and data preparation 

utilized in this research work. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Study Area  
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4.1 Crash Data 

Crash data were obtained from FDOT’s Crash Analysis Reporting (CAR) 

repository for the years of 2011-2014. CAR database was utilized while using a static 

approach to identify SCs. The CAR database includes three levels of data files: crash level 

file, vehicle-driver-passenger level file, and non-motorist level file. The crash level file 

contains crash-related information such as crash number, roadway ID where the crash 

occurred, milepost of the crash location, crash severity, etc. The vehicle-driver-passenger 

file includes the road user-related information for each crash record, thus having 

information on the crash number, all vehicles involved in the crash, all drivers and 

passengers involved in the crash, etc. The non-motorist level data file includes information 

about each non-motorist involved in a crash such as crash number, type of non-motorist, 

non-motorist location, non-motorist injury severity, etc. 

4.2 Roadway Characteristics Inventory Database 

Detailed roadway characteristics information was extracted from the 2014 FDOT’s 

Roadway Characteristics Inventory (RCI) database. The RCI is mainly used to identify the 

type of road configuration, the geometrics of roadway segments and intersections, e.g., 

overall surface lane width, number of lanes, shoulder type and width, median width, 

maximum speed limit, and other roadway and traffic characteristics. Figure 18 includes a 

screenshot of the RCI query list (Park et al., 2015). 



71 

 

Figure 18: A part of Roadway Characteristics Inventory Database Query List 

Among more than 200 variables in the RCI database, the following variables were 

extracted for the Crash Modification Factors (CMFs) development of the RSCs on two-

lane undivided roadways: pavement surface width (SURWIDTH), average annual daily 

traffic (SECTADT), shoulder type (SHLDTYPE), presence of guardrail (MLTRFSEP), 

max speed limit (MAXSPEED), presence of horizontal curve (CURCLASx), functional 

classification of roadways (FUNCLASS). Segmentation was conducted with only these 

variables. Segmentation was performed per the guidelines provided in the Highway Safety 

Manual (Celik et al., 2014). It ensured that all necessary segments have similar variables. 

According to AASHTO, segmentation is important to achieve homogenous characteristics 

in each of the segments in parallel to each variable selection to the analysis while 

developing CMF (AASHTO, 2010).  
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Crash database was merged with the roadway segments based on crash location and 

then linear referenced in ArcGIS. The shapefiles for roadways were collected from FDOT 

website. It ensured that all the segments had data for all the variables and segments with 

missing data for any variable were excluded from the analysis.  

4.3 Traffic Incident Data from SunGuide Software  

SunGuide™ is an Advanced Traffic Management System (ATMS) software uses for 

incident management to process and archive incident data on freeways. Traffic incident 

data is required to evaluate the incident verification and response durations. The District 6 

SunGuide™ database was used to identify secondary crashes in freeways, I-95 corridor in 

particular. A total of 21,589 incidents were extracted to identify SCs using the dynamic 

approach. Figure 19 shows the selected four corridors (I-75, I-95, I-195 and I-395) in 

District 6 for SCs analysis on freeways using the dynamic approach. The incident zone 

only includes Miami-Dade County areas. For this study, the following information was 

retrieved from the SunGuide™ database for the years 2014 to 2017.   

 Event ID 

 Roadway 

 Latitude and longitude of the event location 

 Incident notification time 

 Incident clearance duration 

 Event type (i.e., crash, debris on roadway, disabled vehicle, emergency vehicles, 

flooding, pedestrian, police activity) 

 Time of event 
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Figure 19: Selected Four Corridors in Miami-Dade County for SCs Analysis 

4.4 Regional Integrated Transportation Information System Database   

Regional Integrated Transportation Information System (RITIS) is situational 

awareness, data archiving, and analytics platform that has been used by transportation 

officials, first responders, planners, researchers, and more. RITIS fuses data from different 

agencies, systems, and even the private sector, enabling effective decision-making for 

incident response and planning. Within RITIS are a broad portfolio of analytical tools and 

features. Ultimately, RITIS allows a wide range of capabilities and insights, reduces the 
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cost of planning activities and conducting research, and breaks down the barriers within 

and between agencies for information sharing, collaboration, and coordination.  

The RITIS database also includes many performance measures, dashboards, and visual 

analytics tools. These tools assist agencies in gaining situational awareness, measure 

performance, and communicate information between agencies and to the public. This 

database was explored while using the dynamic approach to identify SCs as like as 

SunGuide™ database. Particularly, raw speed and traffic data were retrieved from RITIS 

database for I-95 corridor within Miami-Dade County in Florida for the year 2014-2017.  
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CHAPTER 5 

RESULTS AND ANALYSIS 

5.1 Analysis of SCs Utilizing Static Approach 

The static approach uses fixed spatiotemporal thresholds to identify SCs. In this 

research, 2 miles-2 hours threshold has been used to identify SCs in District 6 for the year 

of 2011-2014. A total of 4,966 SCs were identified, which is nearly 1.49% of total crashes 

within these four years.  A set of selected characteristics, including crash severity, collision 

type, primary crash (PCs) contributing factor, driver actions, area type, highway 

classification, were established to conduct the proportional test and null hypothesis.  

Furthermore, rear-end SCs (RSCs) were identified from the crash level data file 

using the first harmful event (FRST_HARM_EVNT_CD) description and manner of 

collision (IMPCT_TYP_CD). A total of 1,992 crashes were identified as RSCs crashes. 

Afterward, a total of 561 crashes were identified as RSCs in two-lane undivided roadways 

to develop Crash Modification Factors (CMFs). 

5.1.1 Investigating the Primary and Secondary Crash Characteristics 

As secondary crashes occur after PCs, it is also vital to a thorough investigation of 

the characteristics of PCs. To conduct this further observation, the proportional test, as 

described in Chapter 3, a null hypothesis (i.e., the proportion of primary crashes by primary 

crash contributing factor is not statistically significantly different from the proportion of 

SCs of the same classification) was considered. In this analysis, the 5% significance level 

(p-values <0.05) was considered to reject the null hypothesis. Table 3 includes only 

statistically significant variables. There are several variables have been found to be 

insignificant in this analysis e.g., careless driving, failed to yield right of way, improper 



76 

 

boarding and turning, traffic rules and signals violation, wring way driving, and other 

contributing action. According to obtained results, compared to the primary crashes, the 

secondary crashes are more likely to be associated with “following too closely” and 

“driving too fast” (Table 3) variables. Therefore, “following too close” and “driving too 

fast” are counted as the prominent type of contributing factors in the SCs, which is relevant 

to the previous studies (Tian et al. 2015, 2016). As for “driving under influence (DUI)” the 

p-value less than 0.05 indicates that the difference between the percentage of the primary 

and the secondary crashes caused by this factor is statistically significant. Since these 

percentages in the SCs are lower than those in the primary crashes, DUI cannot be 

considered as a major contributing factor in the SCs for further investigation. 

Table 3: Driver Actions Using Proportional Test   

 Year Driving Too Fast DUI Following Too Close 

Primary Crash (%) 

2011 4.4 1.2 12.6 

2012 5.1 1.5 11.5 

2013 5.2 1.9 19.6 

2014 5.3 2.1 15.2 

Secondary Crash (%) 

2011 8.1 0.5 19.6 

2012 9.3 0.6 22.1 

2013 7.1 0.8 23.4 

2014 12.1 0.3 26.1 

p-value 

2011 
0.000 0.000 0.000 

2012 
0.000 0.000 0.000 

2013 
0.000 0.000 0.000 

2014 
0.000 0.000 0.000 
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Table 4 shows the distribution of PCs and SCs with respect to three different 

collision categories e.g., head-on, rear-end, side-swipe. The insignificant collision types 

include angle, front to rear, rear to side, and others as well. Table 4 clearly shows that the 

rear-end collision is the predominant type of crashes which is relevant to the previous 

studies (Mishra et al., 2016, Tian et al., 2015, 2016, Hirunyanitiwattana and Mattingly 

2006, Zheng et al., 2014, 2015, Yang et al., 2014, Jalayer et al., 2015). The proportion of 

total primary crashes for rear-end collision types and their differences found to be 

statistically significant. Moreover, from Table 3, it was found that a higher likelihood of 

SCs was associated with “driving too fast” and “following too close” factors. The outcome 

is similar in rear-end crashes. Additionally, the percentages of other types of collisions 

(head-on and side-swipe) are higher in the PCs compared to the SCs, and their differences 

are statistically significant. 

Table 4: Collision Type Using Proportional Test   

 Year Head-On Rear-End Side-Swipe 

Primary Crash (%) 

2011 7.1 50.3 22.1 

2012 8.9 51.1 23.4 

2013 9.1 55.2 25.9 

2014 10.1 59.1 26.1 

Secondary Crash (%) 

2011 4.4 66.1 24.2 

2012 5.1 68.2 25.3 

2013 6.3 66.1 26.1 

2014 7.9 67.1 24.5 

p-value 

2011 0.000 0.000 0.000 

2012 0.000 0.000 0.000 

2013 0.000 0.000 0.000 

2014 0.000 0.000 0.000 
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As shown in Table 5, unlike the fatal crashes, the percentage of the primary and the 

secondary crashes for all four years statistically differ from each other for injury and 

property damage only (PDO) severity types, meaning the secondary crashes were as fatal 

as the primary crashes in 2011 and 2012. The result reveals that the PDO crashes are the 

prevalent severity type for both primary and secondary crashes (Table 5). 

Hirunyanitiwattana and Mattingly 2006 and Jalayer et al. 2015 also found that PDO crash 

level is the prominent type of severity in their research works. Moreover, the proportion of 

SCs is significantly higher and lower than primary crashes for PDO and injury severity 

type, respectively.  

Table 5: Crash Severity Using Proportional Test   

 Year Fatal  Injury PDO 

Primary Crash (%) 

2011 0.6 31.5 60.1 

2012 0.7 35.6 58.7 

2013 0.9 35.7 57.2 

2014 1.0 37.1 55.4 

Secondary Crash (%) 

2011 0.4 29.1 65.4 

2012 0.4 25.2 61.7 

2013 0.5 30.1 59.2 

2014 0.6 29.5 57.3 

p-value 

2011 0.062 0.001 0.000 

2012 0.022 0.000 0.001 

2013 0.031 0.002 0.003 

2014 0.215 0.000 0.000 
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As per Table 6, most crashes occurred in the urban area with a higher proportion of 

the SCs similar to previous studies (Hirunyanitiwattana and Mattingly 2006, Zheng et al., 

2014, Chimba et al., 2014). The hypothesis test results indicate that the differences between 

the primary and secondary crashes for both area types are significant, with a higher 

proportion of SCs in urban areas. Table 6 shows that nearly 30 percentage points more SCs 

occur on urban roadways compared to rural roads. It is also found that nearly 1.56% of 

total crashes is identified as SCs on urban arterial roads, whereas only 0.61% of total 

crashes occur on rural arterial roads.   

Table 6: Crash Area Type Location Using Proportional Test   

 Year Urban  Rural 

Primary Crash (%) 

2011 51.4 40.1 

2012 52.1 41.1 

2013 53.9 41.1 

2014 56.5 42.5 

Secondary Crash (%) 

2011 60.9 32.1 

2012 62.8 32.5 

2013 64.3 33.1 

2014 65.1 34.2 

p-value 

2011 0.001 0.001 

2012 0.000 0.000 

2013 0.000 0.000 

2014 0.001 0.001 
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5.1.2 SEM Estimation Results 

As mentioned in the methodology section, the SEM framework is used to model 

the presence of secondary crashes and injury severity levels (no injury, possible injury, 

non-incapacitating injury, incapacitating injury, and fatal). A total of 4,966 SCs were 

identified for the years of 2011 to 2014 from the FDOT’s Crash Analysis Reporting (CAR) 

database for District 6 in Florida. The study explored all the three levels of CAR data files: 

crash level file, vehicle-driver-passenger level file, and non-motorist level file. The injury 

severity model was estimated for the four categories independent variables e.g., driver, 

vehicle, roadway and environmental features. Each of the categories includes multiple 

independent variables to investigate their effects on the injury severity of SCs. The “driver” 

category includes driver behavior and actions, the “vehicle” category includes vehicle 

condition and maneuvers, the “roadway” explores roadway geometric, and non-geometric 

features of roads and the “environment” category consider weather and lighting conditions.             

The study considered different sets of regression coefficients for both daytime and 

nighttime crashes while developing the SEM model. The root mean square error (RMSEA) 

for this SEM is found to be less than 0.05 (0.032), and the comparative fit index (CFIs) and 

Tucker Lewis index (TLIs) are higher than 0.9 (0.912 and 0.907 respectively). Both the 

estimated values confirmed that the model was well fitted.  

Table 7 reveals the estimation results. All the explanatory variables observed as 

statistically significant at 5% significance level (p-values <0.05). According to Table 7, 

nine explanatory variables found to contribute to the presence of secondary crashes. 

Drivers under the influence of alcohol are more likely to get involved with secondary 

collisions relative to those who are attentive drivers. Because the alcohol would affect the 
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judgment, reasoning, and reaction of drivers. It is also found that drinking alcohol may lead 

to aggressive driving, thus severe injuries, which is consistent with the earlier studies (Xie 

et al., 2016).  

Table 7: SEM Model Estimation Results  

 

Daytime Nighttime 

Secondary 

Crashes 
Injury Severity  

Secondary 

Crashes 
Injury Severity  

Estimate  P-value  Estimate P-value Estimate P-value Estimate P-value 

Secondary 

Crashes  
- - 0.561 0.000 - - 0.510 0.000 

Driver 

Alcohol 0.812 0.000 0.419 0.000 0.493 0.000 0.490 0.000 

Drug 0.795 0.000 0.852 0.000 0.594 0.041 0.478 0.030 

Inattentive 0.312 0.000 0.111 0.000 0.123 0.000 0.091 0.000 

Sleep 0.445 0.000 - - 0.401 0.023 0.111 0.000 

Speeding 0.811 0.000 0.488 0.000 0.721 0.000 0.410     0.000 

Vehicle 

Defective 

Brake 
0.605 0.000 0.591 0.000 0.791 0.000 0.461 0.000 

Motorcycle 

Involved   
- - 1.325 0.000 - - 1.512 0.000 

Roadway 

Carriageway 

Surface   
0.531 0.002 0.300 0.000 0.501 0.000 0.259 0.000 

Obstructed 

Vision 
0.321 0.032 - - 0.259 0.011 - - 

Environment 

Rain  0.112 0.000 - - 0.108 0.021 - - 

Threshold Values 

η1 - - 0.311 0.000 - - 0.051 0.000 

η2 - - 1.832 0.000 - - 1.705 0.000 

η3 - - 2.110 0.000 - - 2.054 0.000 

η4 - - 3.513 0.000 - - 3.291 0.000 

φ 1.435 0.000 - - 1.222 0.000 - - 

For crashes caused by distracted driving, the likelihood of secondary collisions and 

severe injuries expected to be higher. Intuitively, drivers who fall asleep can lead to more 

chances of secondary crashes since they couldn’t react in time even after the initial 
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collisions. However, sleeping causes more severe crashes at night (daytime data is missing 

in the table). Speeding also found to be associated with higher severe injury propensity, a 

result observed in the previous studies (Hirunyanitiwattana and Mattingly 2006). 

Vehicles with brake defects tend to be exposed to secondary collisions and severe 

injuries since those vehicles couldn’t stop fast enough. Khattak et al. (2007) found 

defective truck brakes were significantly associated with severe injuries.  

The likelihood of SCs is more at the roadways with pavement defects and limited 

views. Pavement defects can also increase the risk of severe injuries. Furthermore, on rainy 

days, more SCs found to occur due to the slippery roadway and obstructed vision. This 

finding is also consistent with the previous studies (Vlahogianni et al., 2012, Xu et al., 2019 

and Xie et al., 2016).   

5.1.3 MNL Model Estimation Results for Rear-End SCs 

From the above results, it is clear that rear-end is the most prominent collision type 

of SCs (Tables 3 and 4). Therefore, the Multinomial logit model (MNL) is developed to 

explore the most significant roadway geometric characteristics on the severities of rear-end 

SCs (RSCs). Rear-end crashes from 2011-2014 were identified from the crash level data 

file. From 2011-2014, a total of 1,992 crashes were identified as RSCs. KABCO (K=Fatal, 

A=Incapacitating Injury, B=Non-incapacitating Injury, C=Possible Injury, and O=Property 

Damage Only) severity levels were grouped into three categories K+A, B+C, and O for 

severity analysis. 

Before fitting the model, the random forest technique was conducted to investigate 

the most important independent variables so that the model would well fitted appropriately 

and found that the out-of-bag (OOB) error across decision trees (500 prunes) is sufficient to 
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rank the importance of explanatory variables. The random forest technique is a popular 

learning tool was first proposed by Leo Breiman (Breiman, 2001). It generates a large 

number of decision trees to identify the random parameters in the model. Gini Index is 

utilized to identify most important variables before estimating the model parameters. The 

plot of out-of-bag (OOB) error across decision trees used to check whether the assumed 

pruned number of decision trees is sufficient to rank the importance of explanatory 

variables. The random forest tool eliminated the ten independent variables e.g., shoulder 

type, presence of roadside fixed objects (trees, utility poles, and others), bridge, culvert, 

curves, guardrail, median.     

However, the estimated coefficients that are not found to be significant at the 5% 

level of significance are excluded from the Table 8. The goodness of fit of the model is 

measured by log-likelihood at convergence, log-likelihood at fitting the intercept, 

Likelihood Ratio Index, Akaike Information Criterion (AIC) and Schwarz Criterion (SC) 

values. The model is well fitted at 0.1 adjusted R2 (Miaou et al., 1996). In addition, the 

model fitted the data properly with a large likelihood ratio (Chi-Square statistic = 951.3) 

and a very small P-value (<0.0001). Besides maximum likelihood estimates, the model 

output also includes the proportional odds ratio . The estimated results for the multinomial 

logit model are represented in Table 8. 

 

 

 

 

 

http://stats.stackexchange.com/questions/3984/understanding-aic-and-schwarz-criterion
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Table 8: MNL Model Estimation Results  

Predictor Variablesa Estimates Odds Ratio (OR) 

Constant [B+C]  0.789 2.20 

Constant [K+A] -1.985 0.14 

Presence of Horizontal Curve [B+C] 0.086 1.09 

Presence of Horizontal Curve [K+A] 0.139 1.15 

Presence of Guardrail [B+C] -0.152 0.85 

Presence of Guardrail [K+A] -0.174 0.84 

Speed Limit (> 50 mph) [B+C]a 0.166 1.18 

Speed Limit (> 50 mph) [K+A]a 0.191 1.21 

Note: B+C stands for possible and non-incapacitating injury; K+A stands for fatal and severe 

injury; The base condition for injury severity is property damage only (O) crashes; aThe base 

condition for speed limit is ≤ 30 mph.  

The presence of horizontal curves is more likely to have more severe injuries from 

RSCs, as can be observed from Table 8. The coefficients for the presence of horizontal 

curve for possible and non-incapacitating (B+C) injuries and for fatal and severe (K+A) 

injuries found to be positive, and the corresponding ORs were estimated as 1.09 and 1.15 

respectively. It indicates the probability of B+C and K+A crash probability over property 

damage only crashes as 1.09 and 1.15 times, respectively, where horizontal curves are 

present. The presence of guardrails reduces the K+A crash probability compared to 

property damage only crashes (OR = 0.84). Higher speed limits resulted in more severe 

crash risk ratios.  
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5.1.4 Cross-Sectional Study for CMFs of RSCs on Two-Lane Undivided Roadways 

The rear-end secondary crash data from the previous section was then merged with 

the roadway segment database so that each site had the total number of RSCs that occurred 

during 2011-2014 to develop Crash Modification Factors (CMFs) for the two-lane 

undivided roadways. Table 9 presents the descriptive statistics of the variables for the two-

lane undivided roadway segments mentioned in this study.  

Table 9: Descriptive Statistics of the Roadway Characteristics Variables  

Attribute Attribute Category Value 

Total Roadway Segment Length (in miles) -- 431.1 

Section AADT (vehicle/day) 
Mean 10,549 

Standard Deviation 4,501 

Carriageway Width (ft.) 

Mean 27.60 

Standard Deviation 1.61 

Shoulder Type (in miles)  

Paved 366.6 

Lawn, Gravel/Marl 51.10 

Curb and Gutter 5.20 

Presence of Horizontal Curve (in miles) 

No 407.4 

Yes 23.70 

Presence of Guardrail (in miles) 

No 357.4 

Yes 73.70 

Speed Limit (in miles) 

≤ 30 mph 20.10 

30-50 50.20 

> 50 mph 355.8 
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At first, the negative binomial distribution models were developed by considering 

the following variables: AADT, Carriageway width, shoulder type, presence of curve, 

presence of guardrail, and speed limit. The variables (presence of curves, guardrails, 

carriageway width, speed limit) that found significant associated with the 5% level of 

significance, were further used to develop the final NB regression models. The CMFs were 

then estimated from the final models. Table 10 provides the CMFs. Considering the limited 

variability in the predictors within the dataset, the 95% confidence interval (CI) was 

considered acceptable while developing the NB regression models. 

Table 10: RSCs CMFs for Two-lane Undivided Roadway Segments 

Variables 

Total Crashes 

Coefficients CMFs 

Presence of Curve 0.3293 1.39 

Presence of Guardrail  -0.0101 0.99 

Carriageway Width -0.1393 0.87 

Speed Limit (> 50 mph)a 0.3436 1.41 

Note: aThe base condition for speed limit is ≤ 30 mph. 

The presence of curves at roadway segments is found to have a coefficient of 0.3293 

and a CMF of 1.39. It can be inferred from the CMF that the presence of curves increases 

RSCs crash probability by 39% per year per mile on two-lane undivided roadway segments 

in Florida. From Table 8, it is clear that the presence of curve increases the likelihood of 

RSCs occurrences which is also established in Table 10. The presence of guardrails is 

found to reduce RSCs occurrences by nearly 1%. An increase in carriageway width is found 

to have a positive impact on reducing the RSCs probabilities by 13% as they provide better 
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vehicle maneuvering options. Higher speeds found in high crash probabilities as perceived 

about 41%.  

5.2 Analysis of SCs Utilizing Dynamic Approach 

This section includes results of SCs on freeways utilizing the dynamic approach as per 

Chapter 3. A total of 21,589 incidents for the year of 2014-2017, were extracted from the 

SunGuide™ incidents database to identify SCs using speed contour plot (SCP) dynamic 

method. Table 11 shows the numbers of identified secondary, primary, and total incidents 

on the four corridors in Miami-Dade County in Florida (Figure 19). It is also found that the 

number of SCs is higher while using the static approach than the dynamic approach. It is 

also observed that using the static approach, the SCs rate is 4.6% of total crashes on 

freeways.   

Table 11: Incident Distributions Using SCP Method Among Four Corridors 

Freeway 

Total 

Incidents 

Number of 

Total Crashes 

aNumber of SCs Using 

Dynamic Approach 

bNumber of SCs Using 

Static Approach 

I-95 18,160 8,141 105 363 

I-195 1,038 534 6 23 

I-395 1,211 517 5 29 

I-75 1,180 586 9 38 

Total  21,589 9,778 125 453 

Note: aUtilizing SCP dynamic approach; bUtilizing static approach with 2 miles–2 hours fixed 

spatiotemporal thresholds  

  To validate, the result of secondary crash identification compared with those of the 

latest publications. Table 11 reveals that using dynamic method the ratio of identified 
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secondary crashes to the total crashes is within 1–1.5%, which is consistent with the 

findings of the latest publications (Park and Haghani, 2016; Sarker et al., 2015; Mishra et 

al., 2016). The following section includes the comprehensive SCs analysis for the I-95 

corridor as it has higher crash rates than other corridors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Secondary Crash Analysis on I-95 Corridor 

 

Descriptive Statistics for I-95 Corridor 

 Figure 21 shows that 45% of total incidents on I-95 corridor are related to the 

vehicle to vehicle crash type. Among them, a total of 105 secondary crashes were identified 

using the dynamic approach for I-95 corridor for four years of incident data (2014 to 2017). 
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And 363 SCs by utilizing the static approach, which is nearly double than the identified 

SCs by the dynamic approach. Among them, 70% SCs involve with PDO crashes, 25%, 

and 5% are injury and fatal crashes, respectively.   

 

Figure 21: Percentage of Incidents by Incident Type on I-95  

Figures 22 and 23 represent the distribution of SCs occurrences by month and day 

of the week, respectively. SCs are more likely to occur in October and less in February. 

The number of SCs is more likely to occur on Friday and less in Sunday. To be noted that 

the number of SCs is very close in every days of the week.  
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Figure 22: Percentage of SCs by Month 

 

Figure 23: Percentage of SCs by Day of Week 
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Table 12 shows the incident characteristics on I-95 corridor. It reveals that SCs are 

more likely to occur if incident clearance times are longer.      

Table 12: Incident Characteristics on I-95 Corridor 

Incident Type 

Number of Total 

Incidents  

Percentage of 

SCs (%) 

Average Incident 

Clearance Time (min) 

Crash 
8,141 97 69.1 

Emergency Vehicles 
1,600 2 41.98 

Disabled Vehicles 
6,832 1 36.96 

Debris on Roadway 
947 0 17.76 

5.2.1 MNL Model Estimation Results for I-95 Corridor 

Multinomial logit (MNL) model was developed for analyzing SCs risks on injury 

severity (no injury, possible injury and non-incapacitating injury, incapacitating injury and 

fatal) by the categorical covariates of temporal (crash date), environmental (lighting 

condition) and SCs occurrence time. Incident occurrence time defines as peak (0600 to 

1000 and 1530 to 1830) and off-peak (other times of day). 

The estimated results for the multinomial logit model are represented in Table 13. 

The estimated coefficients that are not found to be statistically significant at the 5% level 

of significance are excluded from the table. The other insignificant independent variable 

was the months of the year. The goodness of fit of the model is measured by the Akaike 

Information Criterion (AIC) and Schwarz Criterion values. The model is well fitted at 0.1 

adjusted R2. The model was also able to be fitted the data properly with a large likelihood 

ratio (Chi-Square statistic = 1,121.2) and a very small P-value (<.0001). Besides maximum 

likelihood estimates, the model output also includes standard errors, the Wald Chi-Square, 

http://stats.stackexchange.com/questions/3984/understanding-aic-and-schwarz-criterion
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proportional odds ratio (the coefficients are exponentiated), and the 95% confidence 

intervals for the proportional odds ratios (OR).  

Table 13: MNL Model Results for I-95 Corridor  

Predictor Variablesa Estimatesb ORc 

Constant (I) 0.928 2.53 

Constant (P) -1.212 0.29 

Day of Week 

Friday (I) -0.511  0.6 (0.4, 0.8) 

Friday (P) -0.481  0.6 (0.4, 0.9) 

Saturday (I) -0.561  0.6 (0.4, 0.8) 

Saturday (P) -0.523  0.6 (0.4, 0.9) 

Sunday (I) -0.624  0.5 (0.3, 0.7) 

Sunday (P) -0.651  0.5 (0.3, 0.8) 

SCs Occurrence Time 

Off-peak (I) -0.842  0.4 (0.3, 0.6) 

Off-peak (P) -0.991 0.4 (0.3, 0.5) 

Peak (I) -1.771  0.2 (0.1, 0.2) 

Peak (P) -2.361  0.1 (0.1, 0.2) 

Lighting Condition 

Daylight (I) -0.990  0.4 (0.2, 0.7) 

Daylight (P) -1.123  0.3 (0.2, 0.7) 

Night (I) -1.031  0.4 (0.2, 0.5) 

Night (P) -0.978  0.4 (0.2, 0.7) 

Likelihood Ratio Index (McFadden’s Pseudo R2): 0.1 

Akaike Information Criterion (AIC): 1213.1 

Schwarz Criterion (SC): 1516.3 

P-Value: <.0001 
Note: aAll predictor variables indicated as one if yes and zero if not. In parenthesis letter I and P 

are for injury and PDO crashes where Fatal is the base case with coefficients restricted at zero. 

bStandard errors are in parentheses; 

cLower, upper limits at the 95% confidence intervals (CI) are in parentheses 

http://stats.stackexchange.com/questions/3984/understanding-aic-and-schwarz-criterion
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Temporal Factors 

SCs are nearly two times (OR = 0.5) more likely to result in fatal when the crash 

occurs on Sunday. On the other hand, it is 1.7 times (OR = 0.6) more likely to have fatal 

crashes on both Friday and Saturday. So, weekdays are less likely to have fatal crashes than 

weekends. Moreover, regression coefficients of weekends are negative and significant, 

implying a significant decrease in injury and PDO crashes on weekends.  

Injury severity tends consistently increases in peak hours. This group is twice as 

likely to result in fatal crashes compared to PDO crashes (OR = 0.1) than injury crashes 

(OR = 0.2). Off-peak hours are less likely to be involved in fatal crashes than peak hours.  

Environmental Factors 

From Table 13, it is evident that dark lighting condition has a significant effect on 

SCs. Of the other categories under the lighting condition variable, the dark condition is ten 

times more likely to result in fatal crashes in compared to PDO crashes (OR = 0.1) than in 

the daylight condition (OR = 0.4). Moreover, the negative value of the coefficient indicates 

that fatal crashes significantly increase in the dark light street conditions.     
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS  

6.1 Conclusions  

This study conducted an analysis focusing on secondary crashes with two 

objectives: identification of secondary crashes (SCs) using spatiotemporal criteria and 

exploring the contributing risk factors to the identified SCs. The study area includes the 

roadways within the District 6 of Florida, which includes Miami Dade and Monroe 

counties. Crash Analysis Reporting (CAR) system database was explored for the “static” 

approach to identify SCs. The Regional Integrated Transportation Information System 

(RITIS) and the SunGuide™ incidents database were explored to identify SCs using the 

“dynamic” approach.  

For SC identification, both static and dynamic approaches were modeled. For the 

static approach, a 2 miles-2 hours fixed spatiotemporal threshold was used, which 

identified a total of 4,966 SCs, nearly 1.49% of total crashes in the district. Due to a lack 

of quality speed data, the dynamic method was only applied on freeway segments. For the 

dynamic approach, speed contour plots (SCP) were developed to identify SCs. For freeway 

corridors in the district, about 1.30% of total crashes were identified as SCs based on the 

dynamic approach compared to about 4.6% using the static approach. This indicates that 

the static approach significantly overestimates SCs, especially for freeway segments.  

The analysis showed that 2.43 percentage point more SCs occurred on freeways 

compared to arterial roadways. This may be attributed to the uninterrupted flow with high 

speeds on freeways. It implies that the timely and effective traffic incident management 

(TIM) programs may help reduce SCs significantly. Looking at urban roadways and rural 
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roadways, it was found that nearly 30 percentage point more SCs occurred on urban 

roadways compared to rural roadways.  

This study further developed severity and frequency models to investigate the 

contributing risk factors to the identified SCs. The analysis revealed that high speed and 

rear-end collisions were two prominent parameters for both primary and secondary crashes. 

Nearly 40% of SCs were related to rear-end SCs (RSCs). Based on a Structural Equation 

Model (SEM), several explanatory variables were identified as significant contributing 

factors to the occurrences of SCs, including drunk driving, driver fatigue, obstructed vision, 

surface condition of carriageways, rainy season (slippery roadways), defective brake and 

speeding. On the other hand, reckless driving (inattentiveness, speedy), defective vehicle 

conditions, poor roadway conditions, and the rainy season (slippery roadways) were 

associated with severe SCs. 

Focusing on RSCs as a prominent type of collision in SCs analysis, a MNL model 

was developed to examine the impacts of roadway geometric and non-geometric 

characteristics on the severity of RSCs. In addition, Crash Modification Factors (CMFs) 

were developed for RSCs on two-lane undivided roadways based on results from a negative 

binomial regression model. Results revealed that the presence of horizontal curves, the 

presence of guardrail, carriageway width, and posted speed limit showed significant 

impacts on the occurrence of RSCs. Specifically, the presence of horizontal curves and 

speed limit above 50 mph would increase the probability of RSC by 39% and 41%, 

respectively. On the other hand, the presence of guardrail would reduce RSC by 1%.   

In terms of SCs on freeway segments, model results revealed that weekends were 

more likely to have fatal crashes than weekdays, and dark conditions were ten times more 



96 

 

likely to result in fatal outcomes for SCs. These findings provided useful information for 

the development and identification of effective countermeasures to mitigate SCs.    

6.2 Research Contributions 

 This research explored both “static” and “dynamic” approaches to identify SCs. 

The majority of previous studies only focused on freeway SCs analysis, while this study 

conducted a comprehensive analysis of SCs for all roadway types. The study also examined 

the impacts of driver characteristics, roadway conditions, and environmental factors on SC 

occurrence and severity level. This analysis would provide useful insights in developing 

countermeasures to reduce SCs and enhance safety, which has great implications in 

improving travel time reliability, reducing congestion and delay, reducing fuel 

consumption and emissions, and increasing quality of life. 

6.3 Recommendations for Future Research 

Future studies to extend this dissertation study could focus on the following aspects: 

 The study only investigated the contributing risk factors of SCs. Future research 

can extend the analysis on examining the effects of primary incident characteristics 

on secondary crash characteristics. 

 Appropriate countermeasure selection is quite important to analyze the reduction 

of SCs. Future research might need to include a more sophisticated method of 

developing crash modification factors and validating the study results.  

 Future studies can focus on impact analysis of the advanced transportation systems 

e.g., connected and autonomous technology to mitigate SCs. 
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6.4 Limitation  

The major limitation of this dissertation is that the analysis is limited to the data 

(District 6 in Florida). Therefore, this study could not make any definite statement from 

the output.  
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APPENDIX 

Table A 2.1: Summary of Studies on Secondary Crash Identification Methods 

Reference 
Data  

(Type, Year, Location) 

Spatiotemporal 

Criteria 

SCs of Total 

Crashes (%) 

(Raub 1997)a 

Incident, 28 days in 

January 1995, Northern 

Chicago, Illinois 

<1 mile, 

<Clearance 

time+15 minutes 

15.5% (97/627) 

(Karlaftis et al., 1999) a 

Incident, 1992-1995, 

Borman Expressway, 

Northern Indiana 

1.5 km, 

Clearance 

time+15 

minutes, 

34.7% (257/741) 

(Latoski et al., 1999) a 

Incident, 1996, Borman 

Expressway, Northern 

Indiana 

No more than 3 

miles upstream, 

Clearance 

time+15 minutes 

7.7% (689/8,986) 

(Zhan et al., 2008) a 

Incident, 2005-2007, I-

95, I-75, I-595, Fort 

Lauderdale, Florida 

2 miles 

upstream, 

Clearance 

time+15 minutes 

5.2% (413/7,903) 

(Hirunyanitiwattana and 

Mattingly 2006)a 

Crash, 1999-2000, 

California 
2 miles, 2 hours 

4.3% 

(15,442/354,854) 

(Khattak et al., 2009) a 
Incident, 2006, Hampton 

road, Virginia 

1 mile upstream, 

actual duration 
2% (764/38,086) 

(Moore et al., 2004) a 

 

Incident and Loop 

Detector data, March, 

May, July 1999 and last 

week of 1998, California 

2 miles (both 

directions), 2 

hours 

0.2% 

(177/84,684) 

(Kopitch and Saphore 

2011) a 

Incident, 2008, I-5 

segments in Orange 

county, Southern 

California 

2 miles 

upstream, 2 

hours 

5.5% (528/9,549) 

(Chang and Rochon 2009) a 

Incident, 2010, 

Maryland, Coordinated 

Highways Action 

Response Team 

(CHART) 

2 miles, 2 hours; 

0.5 mile, 0.5 

hour (other 

direction) 

3.6% 

(702/19,309) 

(Tian et al., 2015, 2016) a 
Crash, Incident data, 

2010, Interstate, Florida 

2 miles, 2 hours; 

2 miles, 

clearance time + 

15 minutes; 2 

miles, clearance 

time + 30 

minutes 

326, 124 and 137  

(Wang et al., 2016) b 

Crash, Loop detector 

data, 2010-2012, 

Interstate, California 

Spatiotemporal 

shockwave with 

1 speed turning 

point 

0.4% 

(209/49,753) 
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(Jalayer et al., 2015 ) a 
Crash, 2010-2013, 

Alabama 
2 miles, 2 hours N/A 

(Zhan et al., 2009)b 

Incident, 2005-2007, I-

95, I-75, I-595, Fort 

Lauderdale, Florida 

Departure 

Traffic delay 
3.2% (255/7,903) 

(Sun and Chilukuri 2006, 

2007, 2010) b 

Incident, 2003, I-70, I-

270 segments in 

Missouri 

Incident 

progression 

curves 

7.2% (397/5,514) 

(Chou and Miller-Hooks 

2009) b  

Incident and simulated 

traffic data, 2007, New 

York 

Determine 

impact area 

based on 

simulated speed 

contour map 

3.9% (27/693) 

(Vlahogianni et al., 2010, 

2012) b 

Incident, monitor and 

sensor data, 2007-2008, 

Attica Tollway, Greece 

Identify 

influential area 

by ASDA model 

16% (279/1,746) 

(Yang et al., 2013, 2014) b 
Crash and sensor data, 

2011, New Jersey 2011 

Determine 

spatiotemporal 

impact by speed 

contour map 

8.9% (100/1,118) 

(Imprialou et al., 2013) b 

Incident, Detectors data, 

2007-2009, Attica 

Tollway, Greece 

Real influential 

area 
5.3% (67/1,287) 

(Park and Haghani 2016) b 
Incident, Probe data, I-

695 

Determine 

spatiotemporal 

impact by speed 

contour map 

1.1% (125/1,150) 

(Sarker et al., 2015, 2017; 

Miahra et al., 2016) b 

Crash, Sensor data, 

2010-2012, Shelby 

county, Tennessee 

Queuing 

shockwave-

based 

 

0.6% 

(570/91,325) 

(Chung 2013) b 

Crash and sensor data, 

2001-2002, Orange 

county, California 

Speed contour 

plot 
3.4% (212/6,200) 

(Goodle 2017) b 

Incident, speed, crash, 

and vehicle probe data, 

2014, I-66 corridor, 

Speed contour 

plot 

13.8% 

(340/2,466) 

(Xu et al. 2016) b 

Crash, Traffic Data, 

2006-2010, I-880 

freeway, California 

Speed Contour 

Plot 
1.2% (113/9,188) 

(Haghani et al., 2006) b 

Incident, Simulated 

traffic data, I-287 

corridor 

Simulation-

based approach 
0.7%-0.13% 

(Zheng et al., 2014, 2015) b 

Crash, State Trunk 

Network data, 2010, 

Wisconsin 

Queuing 

shockwave-

based 

1.1% (79/7,034) 

(Khattak et al., 2010) b 
Incident, 2006, Hampton 

road, Virginia 

Queue based 

method 

2.2% 

(907/41,539) 
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(Junhua et al., 2016) b 

Incident, Loop detector 

data, January 2010 to 

December 2012, 

California 

Queuing 

shockwave-

based 

17.7% 

(209/1183) 

(Zhang and Khattak 2010, 

2011) b 

Incident, 2008, Hampton 

roads, Virginia  

Determining 

queueing model 

0.5% 

(317/61,455) 

(Shlayan et al., 2009) b 

Incident, Simulated 

traffic data, I-15, I-405, 

Seattle, WA 

Incident 

progression 

curves 

None 

(Xu et al., 2019) b 

Crash, Loop detector 

data, 2010 and 2015, I-5 

N freeway, California  

Speed contour-

based  
2.2% (214/9,828) 

Note: a: Static Approach, b: Dynamic Approach  

 

Table A 2.2: Summary of Secondary Crash Risk Factors 

Models (Authors) Explanatory Variables Findings 

LR (Junhua et al., 2016) Crash severity, violation 

category, weather, tow away, 

road surface, lighting, traffic 

volume, duration, shock waves 

- Crash processing duration 

significantly effect on SC 

occurrence 

- Tow away indicator, road 

surface condition, and other 

parties involved, were 

insignificant 

LR (Zhan et al., 2008) Number of vehicles involved, 

number of lanes, primary 

incident duration, rollover, 

midday (9:00 to 16:00), AM 

(6:00 to 9:00) 

- The number of vehicles 

involved in the primary 

incident, the number of lanes at 

the primary incident location, 

the primary incident duration, 

time-of-day of incident 

occurrence, and if vehicle 

rollover occurs during the 

primary incident impact SC 

occurrence 

LR 

(Khattak et al., 2010, 

2012) 

Time of day, weather, location, 

AADT, detection source, 

number of vehicles, incident 

type, lane closed, EMS, right 

and left shoulder, ramp, 

predicted incident duration  

- A positive significant 

correlation between SC 

occurrence and longer primary 

incident duration, higher 

AADT, and primary incidents 

occurred during peak hours 

NNs, GM, PM 

(Vlahogianni et al., 2012) 

Duration, collision type, 

number of lanes, number of 

vehicles, heavy vehicle, travel 

speed, hourly volume, rainfall, 

alignment, upstream and 

downstream geometry 

- Traffic speed, duration of PC, 

hourly volume, rainfall 

intensity, and number of 

vehicles involved in the 

primary accident were found to 

be the top five factors 

associated with SC likelihood 

- SC are negatively correlated 

with the number of blocked 

lanes for PC 
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- Lower speed and higher lane 

volume might increase SCs. 

BNN  

(Park and Haghani 2016) 

Different stages of clearance 

time 

-Likelihood of secondary 

incidents was higher at 

clearance time of primary 

incidents from 10 minutes to 20 

minutes or more than 75 

minutes 

MLM  

(Mishra et al., 2016) 

AADT, functional classification 

of roadway, number of vehicles 

involved, stream flow, incident 

type, weather indicator 

- SC involved with higher 

upstream traffic flow 

- PC with rear end collision 

type was the predominant factor 

contributed to SC 

BLM (Xu et al., 2016) Severity, sideswipe, day of 

week, roadway surface, lane, 

average traffic volume, average 

speed, detector occupancy, 

difference in traffic volume 

between adjacent lanes 

- Likelihood of SC is higher on 

weekend, roadway with lower 

number of lane and at morning 

peak 

- Sideswipe type primary 

crashes are less likely to occur 

SCs than other type of primary 

crashes 

-Difference in traffic volume 

between adjacent lanes also has 

significant risk effect on SC 

GORP  

(Sarker et al., 2017) 

Speed Limit, Number of Lanes, 

Land use, median type, ramp, 

High occupancy vehicle (HOV) 

indicator, AADT, Right 

shoulder, Segment length  

- about 10% increase in AADT, 

increased SC occurrences by 

34.24% 

- 2 lane roads caused 73% more 

SCs than roads with 3 or more 

lanes 

- Raised median have 267% 

more SCs compared to without 

raised median roads.     

SEM (Xie et al., 2016) Driver, vehicle, roadway 

characteristics, and 

environmental condition (rain)   

- Drunk, inattentive and 

careless drivers who were 

reluctant to traffic control 

signals most likely to cause 

secondary collisions with 

higher level of injury severities. 

- Speeding, defective vehicle 

significantly increase likelihood 

of SC 

- SC with high injury level 

frequently occur at intersection 

than mid blocks 

TFP (Hirunyanitiwattana 

and Mattingly 2006) 

Area type, time of day, crash 

severity, collision type and 

factor, road classification  

- Speeding is the major 

collision factor of SC than PC 



102 

 

- Property damage only (PDO) 

crashes are more frequent in 

both PC and SC 

 

PCT (Zheng et al., 2015) Day of the week, month of the 

year, and hour of the day 

- SC were significantly 

different from PC with respect 

to month of the year and hour 

of the day 

t-test  

(Tian et al., 2015, 2016) 

Crash severity, crash type, no 

improper action, careless 

driving 

- Careless driving is the leading 

factor which accounts for more 

than 50% of the total primary 

incidents, followed by 

exceeding safety velocity limit 

(8.13%), and no improper 

driving/action (4.07%) in 

average 

- Rear-end collision type is 

predominant in SC 

ZOPM (Xu et al., 2019) Traffic volume, speed, weather 

condition, crash severity, crash 

type, road geometry  

- Rainy weather and hit-run 

primary crash type are the 

significant factors to SC 

Note: LR: Logistic Regression Model, NNs: Neural Networks, BNN: Bayesian Neural Network, 

GM: Gompit Model, PM: Probit Model, MLM: Multinomial Logit Model, BLM: Bayesian 

Random Effect Logit Model, GORP: Generalized Ordered Response Probit, SEM: Structural 

Equation Models, TFP: Test for Proportions, PCT: Pearson’s Chi-square Test, ZOPM: Zero-

inflated Ordered Probit Model 
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Table A 2.3: Summary of the Test for Proportions Study Results (Hirunyanitiwattana et 

al., 2006) 

Variable Null Hypothesis Findings 

Area type 

The proportion of SCs in urban districts is 

not significantly different from the 

proportion of SCs in rural districts. 

Urban districts have 

higher proportion of SCs 

than rural districts 

Time of day 

The proportion of PCs by time of day is 

not significantly different from the 

proportion of SCs of the same 

classification. 

During the peak hour, 

the proportion of SCs is 

higher than that of PCs 

 

Crash severity 

The proportion of PCs by crash severity is 

not significantly different from the 

proportion of SCs of the same 

classification.  

Probability of crash 

severities is greater for 

PCs than SCs 

Collision type 

The proportion of PCs by collision type is 

not significantly different from the 

proportion of SCs of the same 

classification. 

Rear end proportion of 

SCs is higher than that 

of PCs 

Primary 

collision factor 

The proportion of PCs by primary 

collision factor is not significantly 

different from the proportion of SCs of 

the same classification. 

Speeding is the major 

collision factor of SCs 

than PCs 

Road 

classification 

The proportion of PCs by road 

classification is not significantly different 

from the proportion of SCs of the same 

classification. 

Proportion of SCs on 

urban freeway with 

larger than 4 lanes is 

higher than PCs. 
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Table A 2.4: Computation Equations for SCs Analysis  
Influential Risk Factor Models 
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y
p
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1

1+e
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 ; netj = ∑ ωkjhk + θjk , y
p
 = output of pth incident, ωkj = 

connection weight between kth neuron in the hidden layer and jth 

neuron in the output layer with the bias term θj, hk = 
1

1+e−netk
 = 

output of the hidden neuron, netk = ∑ ωkixi + θii , ωki = connection 

weight between kth neuron in the hidden layer and ith input variable 

with the bias term, θi 

G
M
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V
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h
o
g
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n
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2
0
1
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p
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=probability of incident i, β, β
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coefficients of independent variables xi; φ = cumulative standard 

distribution; and ∅=density function.  
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n
= Bernoulli (p

n
); logit (p

n
) = β

0
 + θr + β

1
x1n + β

2
x2n + .. + β

i
xin; 

θr ∼ (0,Σθ); y
n
= SCs indicator for nth observation; p

n
= probability 

of SCs, β
i
 = coefficient of independent variable xi; xin = the value of 

variable i for sample n; θr = random effect with the heterogeneity 

effects for freeway segment r. 

Note: LR: Logistic Regression Model, NNs: Neural Networks, GM: Gompit Model, PM: Probit 

Model, MLM: Multinomial Logit Model, BLM: Bayesian Random Effect Logit Model  
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