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ABSTRACT OF THE DISSERTATION

MANY-OBJECTIVE HYBRID OPTIMIZATION UNDER UNCERTAINTY

WITH APPLICATIONS

by

Sohail R. Reddy

Florida International University, 2019

Miami, Florida

Professor George S. Dulikravich, Major Professor

A novel method for solving many-objective optimization problems under

uncertainty was developed. Many-objective optimization typically refers to

problems with more than three objectives. It is well known that no single

optimization algorithm performs best for all problems. Therefore, the developed

method, a many-objective hybrid optimizer (MOHO), uses five constitutive

algorithms and actively switches between them throughout the optimization

process allowing for robust optimization. MOHO monitors the progress made by

each of the five algorithms and allows the best performing algorithm more

attempts at finding the optimum. This removes the need for user input for

selecting algorithm as the best performing algorithm is automatically selected

thereby increasing the probability of converging to the optimum. An uncertainty

quantification framework, based on sparse polynomial chaos expansion, to

propagate the uncertainties in the input parameter to the objective functions was

also developed and verified. Where the samples and analysis runs needed for

standard polynomial chaos expansion increases exponentially with the

dimensionality, the presented sparse polynomial chaos approach efficiently

propagates the uncertainty with only a few samples, thereby greatly reducing the

computational cost. The performance of MOHO was investigated on a total of 65
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analytical test problems from the DTLZ and WFG test suite, for which the

analytical solution is known. It was also shown that MOHO is capable of solving

single-objective problems. The Single-Objective Hybrid Optimizer (SOHO) was

used to solve the parameter identification problem in the electrochemical model of

a Lithium-Ion (Li+) battery. The complex non-linear electrochemical model adds

additional difficulty due to its multidisciplinary nature and is, therefore, a good

test case. The SOHO algorithm decreased the time required to estimate the

parameters from three weeks to less than one day. MOHO is also applied to two

additional real-life cases of aerodynamic shape design of subsonic and hypersonic

bodies. Aerodynamic shape optimization is often computationally expensive and

is, therefore, a good test case to investigate MOHO‘s ability to reduce the

computational time through robust optimization and accelerated convergence. The

subsonic design optimization had three objectives: maximize lift and minimize

drag and moment. The hypersonic design optimization had two objectives:

maximize volume and minimize drag. Two accelerated solvers based on fast

multipole method and Newton impact theory are developed for simulating

subsonic and hypersonic flows. The results show that MOHO performed, on

average, better than all five remaining algorithms in 52% of the DTLZ+WFG

problems. The results of robust optimization of a subsonic body and hypersonic

bodies were in good agreement with theory. The MOHO developed is capable of

solving many-objective, multi-objective and single objective, constrained and

unconstrained optimization problems with and without uncertainty with little user

input.
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CHAPTER 1

INTRODUCTION

Before the advent of computers, engineering analysis design had been restricted

to analytical methods, experimentation, intuition, trial-and-error and experience.

Iterative design stages of past decades required constant design updates and

experimentation, often becoming very expensive. Modern developement in

computers and mathematical models has made designs safer, more efficient and

less expensive. With increasing computing power becoming less expensive and

more accessible, the time and resources to go from concept to production has

drastically decreased.

Although sophisticated analysis methods, such as finite elements and finite

volume, have made it possible to predict the performance of the model, the

optimization methodologies have made it possible to deterministically update the

design to reach a particular goal. Numerical optimization typically refers to the

identification of some model parameters or design variables that maximize or

minimize a particular response.

The original field of optimization started in the times of Fermat, who used

calculus-based methods to find the optimum, and Newton, who invented iterative

methods to search for the optimum. Since then, the field has matured and

methods have been developed to perform optimization of multiple objectives,

under enforced constraints while accounting for uncertainty. However, there exist

several methods developed to solve specific problems, and very few that can be

generalized to solve a large assortment of problems. This work aims to address this

scarcity.

In this work a novel algorithm is developed that is able to cope with several

objectives, constraints, and model uncertainty with limited input from the user.

1



The algorithm incorporates several existing and new optimization techniques and

learns about the characteristics of the problem being solved. It automatically

switches back-and-forth between algorithms, allowing the most effective algorithm

more attempts at finding a better optimum design. The performance of the

developed algorithm is investigated on analytical test cases as well as three real-life

test problems of inverse parameter identification, subsonic aerodynamic shape

optimization and hypersonic aerodynamic shape optimization.

1.1 Motivation

The field of numerical optimization is mature yet still a productive area of

research. Several algorithms, capable of solving difficult problems more efficiently,

continue to be published. Academic journals such as the IEEE Transactions on

Evolutionary Computation have seen an increased influx of works in algorithm

development.

Optimization algorithms can typically be separated into two categories:

gradient based and non-gradient based. Gradient based algorithms such as

Sequential Quadratic Programming (SQP) and Broyden-Fletcher-Goldfarb-Shanno

(BFGS) use the gradient of the objective functions to update the search direction.

Non-gradient based algorithms, sometimes referred to as evolutionary and

heuristics algorithms, use random search processes to update the search.

Several evolutionary and heuristic algorithms exist that are capable of solving

complex optimization problems. Algorithms such as the genetic algorithm (GA),

particle swarm (PS), dragonfly algorithm (DA) and differential evolution (DE) use

a population based approach to navigate the design and objective function space.

There is, however, a scarcity in high level hybridization of multiple algorithms into

one.
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It is well known that no single optimization algorithm performs best for all

conceivable problems. Since the objective function topology is not known in

advance, selecting an appropriate optimization algorithm can be difficult, if not

impossible. One approach to overcome this lack of knowledge is to employ several

different optimization algorithms and actively switch between them based on their

performance. This hybridization of algorithms can allow the better performing

algorithm, for the current test problem, more attempts at locating the optimum.

Talbi [1] defined two forms of hybridization techniques: relay and teamwork. The

teamwork hybridization approach uses several algorithms simultaneously to solve a

problem, whereas the relay approach actively switches back-and-forth between

algorithms based on some switching criteria. This study develops a high level

relay-type hybrid optimization algorithm capable of solving different types of

optimization problems.

One of the early examples of high-level relay type hybrid algorithm is the work

of Lin et al. [2], which combine the GA and simulated annealing (SA) algorithms.

The optimization starts with the SA algorithm and uses the GA algorithm to

enrich the solutions found. In the work of Talbi et. al [3], tabu search algorithm

was used to improve the population obtained by a GA. Like Lin et al. [2],

Mahfoud and Goldberg [4] also used the GA to enrich the solution obtained using

SA. These works, however, do not actively switch between the two algorithms. For

such an approach, one must look at the work of Foster and Dulikravich [5, 6].

They used several gradient and non-gradient based algorithms with active

switching between them to accelerate the convergence to the global minimum.

This active switching also helped avoid premature convergence to the local

minimum. Their single objective hybrid optimizer uses eight switching criteria to

determine when an algorithm prematurely converges and automatically switches to
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another algorithm. Poloni et al. [7] hybridized the genetic algorithm with a

conjugate gradient method. Their work made use of Neural Network surrogate to

analytically compute the derivatives needed by the gradient based method. The

work of Emmerich et al. [8] employed a hybrid gradient descent coupled with a

GA to perform multi-objective optimization. Their work first used GA to perform

a global search followed by the gradient descent to perform the local search. This

makes their hybridization sequential. The work of Satoru et al. [9] investigated the

performance of a hybrid GA-SQP approach also in a sequential manner. The GA

was first used to conduct a broad design space search followed by the SQP

algorithm to refine the local search. A hybrid global and local search approach was

used by Balsa-Canto et al. [10] to perform parameter estimation in dynamical

systems. Their work determined whether a local minimum was approached to

switch between the DE algorithm and the multiple shooting algorithm. Drawback

of the sequential method is that each algorithm only gets one attempt at locating

the optimum. Because an algorithm might perform better in one region of the

design space than another, it might not get enough attempts in its dominant

region to exhaustively perform the search.

The global-local search approach was also investigated by Kelner et al. [11] but

within the multi-objective optimization framework. Their work utilized both the

evolutionary and gradient based algorithms at each iteration to refine the Pareto

front. The work of Moral [12] developed a multi-objective hybrid optimization

algorithm by combining the SPEA [13], MOPSO [14] and NSDE [15] algorithms.

It continuously switched between constitutive algorithms, thereby avoiding local

Pareto fronts. Their work outlines five criteria for switching, based on the

convergence and diversity of the population. These five criteria will be discussed

further. Colaco et al. [16] also uses a similar strategy to switch between
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constitutive algorithms. Their work approximates the single objective function

using radial basis functions and then performs the optimization using this

approximation. This constant switching between algorithm alleviates the

drawback experienced in sequential switching. The continuous switching allows

each algorithm an attempt at finding an optimum in the region of current search.

Once the search region changes, an algorithm that best performs on the current

objective function topology can be selected. This approach is used by Dulikravich

et al. [17]. The single-objective hybrid algorithm suite of Dulikravich et al. [17]

uses several non-gradient based algorithms. Their work uses a search-vector

concept to control the switching. The search-vector and an algorithm’s population

centroid are used to determine the algorithm that should be used. This approach

works well for single-objective optimization problem. For the many-objective

problems, the search vector is often difficult, if not impossible, to obtain.

The adoption of relay-type hybridization for solving multi-objective optimization

problems is scarce. This is mainly due to the difficulty in determining appropriate

switching criteria. Nonetheless, efforts have been made to improve multi-objective

optimization using a relay-type hybridization. A hybrid framework was developed

by Sindhya et al. [18] that combined an evolutionary algorithm with a local search

algorithm. Their work utilized the NSGA-II [19] and the MOEA/D [20] algorithms

to perform the global search and an SQP algorithm to perform the local search.

Automatic switching is used based on a metric of diversity in the population. This

approach only takes into account the diversity of the Pareto optimal solutions but

not the convergence. For optimal results, both diversity and convergence should be

taken into account.

Wang et al. [21] also used a global-local search approach without switching.

Bosman [22] used an efficient gradient-based and evolutionary algorithm
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combination to develop a real-valued multi-objective hybrid optimizer. The

solution of a multi-objective optimization problem using gradient based methods

typically requires a weighted sum of all objectives to form a single objective.

Bosman’s work performs this gradient-based optimization without constructing a

single objective function.

An alternate approach to hybridization is presented by Sekhar and Devi [23]

where a GA-PSO hybrid and a DE-PSO hybrid is used to solve a single objective

transmission system design problem. Their work used a divide-and-conquer

approach where each algorithm in the hybridization was used to solve a separate

sub-problem. This is known as teamwork hybridization. A thorough review of a

PSO-DE hybridization is performed by Xin et al. [24]. The work of Liu and Yang

[25] developed a hybrid particle swarm - Nelder-Mead (NM) algorithm. Their

approach uses both the PSO and NM algorithms at each iteration. Although this

approach guarantees that each algorithm attempts the optimization at each

iteration, it also requires excessive number of objective function calculations. This

is because the objective function has to be calculated even for the algorithm that

is under performing.

Reddy et al. [26, 27] accelerated the parameter estimation in Lithium-Ion

batteries using a relay-type single objective hybrid optimizer. Their switching

strategy randomly selected between NSGA-III, MOEA/DD and NSDE-R if the

current algorithm failed to improve in its objective function. Their work reduced

the time required to solve the problem from three weeks, when a non-hybrid

algorithm was used, to 14 hours using the hybrid approach. Lepagnot [28]

developed a multi-objective high-level relay hybrid algorithm consisting of a local

search, differential evolution and particle swarm algorithms. Their approach first
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used the local search algorithm, followed by the differential evolution and particle

swarm algorithm in a sequential manner.

All hybrid multi-objective optimization algorithms thus far do not perform well

for problems with more than four to five objectives. These types of problems,

named many-objective optimization problems, pose great difficulty in preserving

diversity in the Pareto solution. This is even more true when accounting for

uncertainty. It will be later shown that for each objective in the deterministic

optimization framework, there are two objectives in the probabilistic framework.

Uncertainty is a very significant yet inevitable issue in design optimization. Often

uncertainties present in the model input, i.e. through geometry defects, improper

calibration of measurement equipment, can lead to uncertainties in and

deterioration of design performance. Few researchers have investigated solving the

probabilistic optimization problem using algorithms for multi-objective

optimization. Cheng et al. [29] developed a hybrid DE-SQP algorithm for robust

optimization. Zhang et al. [30] used a finite difference combined with a stochastic

gradient method to solve Bayesian inverse problems under uncertainty.

It can be seen that the amount of work in hybrid optimization under

uncertainty is far-and-few. This work develops a many-objective hybrid optimizer

(MOHO) capable of solving constrained and unconstrained, many-objective

optimization problems under uncertainty. The MOHO algorithm will feature five

constitutive algorithms and will use a single deterministic criteria to control the

switching. It will use several methods for modeling the uncertainties in objective

functions. The developed MOHO algorithm will be analyzed using 65 analytical

test problems for which the optimum solution is known. The single objective

version of MOHO, named SOHO, will be used to perform parameter estimation on

a highly non-linear electrochemical model of a battery. MOHO will also be used to
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perform design optimization of subsonic and hypersonic bodies, both, within the

deterministic framework and probabilistic framework. These real-life test cases are

used due to the popularity of aerodynamic shape design. The increased

computational cost of such aerodynamic design and analysis, pose a challenge for

optimization algorithms to efficiently solve the design problem with few objective

function evaluations. The design of subsonic aerodynamic bodies will utilize an

in-house developed fast multipole method solver to accelerate the computation of

the flow-field around the geometry. The hypersonic design analysis will be

performed using an in-house developed modified Newton impact theory solver.

1.2 Objective of the Research

The ultimate objective of this research is to develop a robust framework for

probabilistic many-objective optimization. The developed optimization and analysis

frameworks will be analyzed on an analytical test suite as well as three real-life

problems. The objectives of this research are the following:

1. Develop and validate a many-objective hybrid optimizer (MOHO) that:

(a) Can optimize for several objectives

(b) Can incorporate constraints

(c) Can account for uncertainty

(d) Requires little user input

(e) Is robust

2. Develop and validate an uncertainty quantification framework

3. Validate Single-Objective Hybrid Optimizer (SOHO) for inverse parameter

identification problems:
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(a) Non-intrusively estimate 44 parameters in a highly non-linear

electrochemical model of Li+ battery

(b) Drastically reduce time required to estimate the parameters.

4. Validate MOHO on subsonic aerodynamic shape optimization:

(a) Develop Fast Multipole solver

(b) Validate Fast Multipole solver

(c) Validate MOHO for subsonic case within the deterministic framework

(d) Validate MOHO for subsonic case within the probabilistic framework

5. Validate MOHO on hypersonic aerodynamic shape optimization

(a) Develop modified Newton impact theory Solver

(b) Validate modified Newton impact theory Solver

(c) Validate MOHO for hypersonic case within the deterministic framework

(d) Validate MOHO for hypersonic case within the probabilistic framework

The main contributions of this work are as follows:

1. Two new optimization algorithms featuring increased rate of convergence

2. A new robust hybrid optimizer with automatic switching

3. A new deterministic criteria to control the automated switching between

constitutive algorithms

4. Development of an efficient uncertainty quantification framework

5. Development of accelerated external flow analysis frameworks
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1.3 Organization of the Dissertation

The remaining chapters of the dissertation are organized as follows.

In Chapter 2, the multi-objective, many-objective and probabilistic optimization

frameworks are presented. The constitutive algorithms and switching rules in

MOHO are also presented in this chapter. Finally, Chapter 2 also presents the

results of MOHO on the analytical test cases. Chapter 3 presents the framework

for uncertainty quantification. In Chapter 4, the numerical framework for

geometry parameterization, electrochemical model of a Li+ battery, potential flow

(Fast Multipole) solution and modified Newton impact theory solution is presented

and validated. In Chapter 5, the parameter estimation in electrochemical model of

a battery is performed. In Chapter 6, the results of subsonic aerodynamic shape

optimization are presented. The results of both, optimization within the

deterministic framework and probabilistic framework, are presented here. In

Chapter 7, the results of hypersonic aerodynamic shape optimization are

presented. The results of both, optimization within the deterministic framework

and probabilistic framework, are presented here. Chapter 8 presents the summary

of the dissertation and some area of future work.
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CHAPTER 2

OPTIMIZATION

Numerical optimization typically involves identifying a set of parameters or

design variables to maximize or minimize a particular objective or set of

objectives. Most optimization problems typically fall under the following

traditional categories:

1. Single objective vs. Multi-Objectives vs. Many-Objectives

2. Constrained vs. Unconstrained

3. Deterministic vs. Probabilistic

4. Continuous vs. Discrete

All optimization methods use some type of procedure for updating the design

variables in search for a better optimum. These updating procedures can be

deterministic, like in the case where the gradient of the objective function is used

to obtain the search direction. These deterministic updated procedures are

typically used by gradient based optimization algorithms. There also exist

stochastic methods such as those used by evolutionary or heuristic optimization

algorithms. The proposed set of variables, obtained using the updating procedure,

are then evaluated and compared against those from the previous iteration. The

proposed set of variables are either kept or discarded depending on their

superiority over the designs from the previous iterations. This step is typically

referred to as the selection step. The updating and selection process is continued

until a user-specified number of iterations has been reached, or no further

improvement in optimum is obtained.
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This section outlines the different types of optimization problems that MOHO

is able to solve. This section also presents the frameworks that are used to solve

various optimization problems.

2.1 Multi-Objective Optimization

Multi-objective optimization problems typically involve minimizing or

maximizing two or more conflicting objectives. The standard multi-variate,

multi-objective, constrained optimization problem [31] is defined as

min ~f (~x)

~f = {f1 (~x) , . . . , fl (~x)}

~x = {x1, . . . , xm}

subject to : x ∈ [ai, bi] , i = 1, . . . ,m

hj (~x) = 0, j = 1, . . . , n

gk (~x) ≤ 0, k = 1, . . . , o

(2.1)

where ~x is the vector of m design variables, ~f is the vector of l objectives, hj

are the n equality constraints, and gk are the o inequality constraints. If l = 1

the problem reduces to a single objective problem and if n = o = 0 the problem

reduces to an unconstrained optimization problem. It should be noted that the

single objective optimization problem can also be solved within the multi-objective

optimization framework if l > 1 by setting the value of all objectives to the value

of the objective that is being minimized/maximized. This approach is used to solve

all single objective optimization problems in this work.

In single objective optimization, it is easy to identify which design is better

simply by comparing the values of the single objective. In multi-objective
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optimization, an alternate method to judge the superiority of one design over

another is needed. This is done using the non-domination criteria presented by

Deb [31]. Using the non-domination criteria, design A is said to dominate design B

if A is better than B in at least one objective and no worse than B in the

remaining objectives. Otherwise, the two designs are non-dominated with each

other. The set of these non-dominated designs form the Pareto frontier. The

solution of the multi-objective optimization problem is this Pareto front of

non-dominated designs. Figure 2.1 shows the Pareto frontier where the black

points represent the non-dominated designs and the red points represent the

dominated designs. The proposed designs at the next iteration are obtained

through an update procedure using these non-dominated designs. The update

procedure is specific to each algorithm and will be presented in greater detail.

Figure 2.1: Representation of the non-domination criteria used in multi-objective
optimization
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2.2 Many Objective Optimization (MOO)

Optimization problems with two to three objectives are commonly referred to as

multi-objective optimization problems. Optimization problems with four or more

objectives are referred to as many-objective optimization problems. These types of

optimization problems pose additional difficulties and are an active field of research.

It is well known that with an increase in the number of objectives, an increasingly

larger percent of the total population becomes non-dominated [31, 13]. Since most

algorithms use the non-domination criteria to compare superiority of designs, no

new information is obtained if the entire population is non-dominated. Figure 2.2

shows the percent of the population that is non-dominated, for different numbers of

objectives, as the optimization procedure continues for longer generations. It can

be seen that for optimization problems with five objectives or more, almost 100%

of the population becomes non-dominated in the early phase of the search.

Figure 2.2: Percent of population that is non-dominated at each generation for varying
number of objectives

A successful optimization yields Pareto designs that are both well converged

and uniformly distributed on the analytical Pareto front. This uniform
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distribution is referred to as diversity preservation. Many-objective optimization

problems also pose a difficulty with diversity preservation. Consider a simple

genetic algorithm initialized with 100 members where all 100 members are

non-dominated. The recombination operator will yield an additional 100 members

(one child for each original member) all of which are non-dominated. From this set

of 200 non-dominated members, a robust method is needed to carry into the next

generation the 100 members that best preserve convergence and diversity.

This work uses a space partitioning technique to preserve diversity in the Pareto

set [32]. The objective function space is partitioned using reference points created

using uniform random number generators. The Pareto designs that are closest to

the sparsely populated region of the objective function space are carried forward

into the next generation. This type of reference point based selection is shown in

Fig. 2.3, where the red points are the members of the population and the black

points are the reference points. Each member is associated with the single reference

point with the shorted perpendicular distance. Preference is given to the designs

closest to the sparsely populated reference points. Uniformly distributed reference

points will result in uniformly distributed Pareto designs, while a biased distribution

of reference points will yield the Pareto designs nearest to those reference points.

This can be very beneficial when designs in a specific region of the Pareto front are

sought after.
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Figure 2.3: Representation of reference point based niching used to preserve diversity in
many-objective optimization

2.3 Probabilistic Optimization

The multi-objective optimization framework presented in Section 2.1 considers

that the design variables, objective function and constraints are all deterministic

values. In most applications, although neglected, all three sets contain some level

of random error. The error in design variables can arise from defects in

manufacturing or machine imprecision, while errors in objective functions and

constraints can arise from simplified mathematical models, machine imprecision,

errors in input parameters, etc. Objective function values obtained through

experimentation also contain some form of error. Therefore, it can often become

imperative to also incorporate such uncertainty into the optimization framework.

The deterministic framework can be converted to a probabilistic framework by

incorporating uncertainty ξ in objective functions and constraints as
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min ~f
(
~x, ~ξ
)

~f =
{
f1

(
~x, ~ξ
)
, . . . , fl

(
~x, ~ξ
)}

~x = {x1, . . . , xm}

subject to : x ∈ [ai, bi] , i = 1, . . . ,m

hj

(
~x, ~ξ
)

= 0, j = 1, . . . , n

gk

(
~x, ~ξ
)
≤ 0, k = 1, . . . , o

(2.2)

The probabilistic optimization problem, however, is not solvable within the

current framework and must be converted to a deterministic optimization problem

while incorporating the uncertainty. This is done by using statistical moments of

the objectives and constraints. The probabilistic optimization problem can be

posed as a deterministic optimization problem as

min ~µ = {µf1 , µf2 , . . . , µfl}

min ~σ = {σf1 , σf2 , . . . , σfl}

subject to :

Prob
[
hj

(
~x, ~ξ
)

= 0
]
≥ Rj, j = 1, . . . , n

Prob
[
gk

(
~x, ~ξ
)
≤ 0
]
≥ Rk, k = 1, . . . , o

(2.3)

where µfi is the mean value of the ith objective function f , σfi is the standard

deviation of the ith objective function f , Prob [·] is the probability and Ri is the

threshold probability of satisfying the ith constraint. Immediately, it can be seen

that each probabilistic objective yields two deterministic objectives. Therefore, a

probabilistic optimization problem that is multi-objective in nature, can easily

become a many-objective optimization problem when solved in the deterministic

framework. The uncertainty in design variables must also be propagated through
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the analysis code to the objective function to obtain the probabilistic response.

This is the main difficulty in solving probabilistic optimization problems as this

uncertainty propagation is computationally expensive. Methods for propagating

uncertainty are discussed in later sections.

2.4 Many Objective Hybrid Optimization (MOHO)

There exist several optimization algorithms, each using a different update and

selection procedure. It is also known that the objective function topology is

dependent on the input variables and the analysis code. It is therefore safe to

assume that there is no single algorithm that can outperform all other algorithms

for every conceivable optimization problem. This is apparent in the “No Free

Lunch Theorem for Search” proposed by Wolpert and Macready [33]. The theorem

states

“. . . all algorithms that search for an extremum of a cost function perform exactly

the same, when averaged over all possible cost functions. In particular, if algorithm

A outperforms algorithm B on some cost functions, then loosely speaking there must

exist exactly as many cost functions where B outperforms A.”

Therefore the probability of converging to the optimum designs can be

increased by combining several algorithms into a single suite. This hybridization of

several algorithms and controlled switching between the algorithms can increase

the convergence speed to optimum design on the Pareto front. This work develops

a Many-Objective Hybrid Optimizer (MOHO) to address these key issues. Several

attempts have been made to hybridize particular algorithms by combining the

update and selection procedure but this is a lower level hybridization. The

hybridization in this work is a high-level relay since MOHO does not alter the
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individual algorithms. This combination of several algorithms into a single suite

leads to MOHO’s performance to be heavily dependent on not only the individual

constitutive algorithms but also the switching mechanism used. Both dependencies

are investigated in the the upcoming sections.

2.4.1 Constitutive Algorithms

Since the topology of the objective function is not known a priori, it is impossible

to select the correct algorithm for that particular problem. Therefore, the MOHO

suite should include a selection of algorithms that perform differently in their update

and selection procedures. The MOHO suite currently contains five constitutive

algorithms. A general overview of the algorithms is given. Due to the large number

of established algorithms in the MOHO suite, the inner workings of the individual

algorithms are not presented. The reader is referred to the algorithm’s respective

reference. The MOHO suite contains the following algorithms:

1. NSGA-III [32]: The Non-Dominated Sorting Genetic Algorithm-III

(NSGA-III) is a third-generation genetic algorithm developed for

many-objective optimization problems. It uses a combination of Simulated

Binary Crossover (SBX) [34] and polynomial mutation [31] to produce a

candidate design from randomly selected parent designs. The candidate

designs are then evaluated and a non-dominated sort is performed. A

reference point based niching is performed to select the designs to be carried

into the next generation.

2. MOEA-DD [35]: The Many-Objective Evolutionary Algorithm Based on

Dominance and Decomposition (MOEA-DD) is an evolutionary algorithm

that uses similar recombination operators as NSGA-III. Whereas the
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NSGA-III selects its parent designs randomly, the MOEA-DD algorithm

selects the parent design from its immediate neighborhood. The MOEA-DD

uses a penalty-boundary-intersection metric (PBI) to select the designs to be

carried into the next generation.

3. SPEA-R [36]: The Strength Pareto Evolutionary Algorithm Based on

Reference Point (SPEA-R) is also an evolutionary algorithm that uses the

same recombination operators as MOEA-DD. It, however, prioritizes

diversity preservation in the Pareto front before the convergence to the

Pareto front.

4. NSDE-R1B [37]: The Non-Dominated Sorting Differential Evolution

(NSDE) algorithm uses the same selection operator as NSGA-III but a

different recombination operator. Whereas the previous three algorithms

combine two parent designs to create a candidate designs, the NSDE-R1B

algorithm uses the ”rand/1/bin” (R1B) mutation operator to create a

candidate design from three parent designs.

5. NSDE-D3 [37]: The Non-Dominated Sorting Differential Evolution

algorithm uses the same selection operator as NSGA-III but a different

recombination operator. The NSDE-D3 uses the ”donor3” (D3) mutation

operator that performs a weighted combination of three parent designs. The

random weights can be generated using any distribution but are uniformly

distributed in this work.

The NSDE-R1B and NSDE-D3 algorithms were recently developed for use in

MOHO. The NSDE-R1B and NSDE-D3 algorithms showed an increased rate of

convergence. Figure 2.4 shows the convergence of four algorithms on the DTLZ
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problems. It can be seen that that the NSDE-R1B and NSDE-D3 algorithms have

better convergence and a higher rate of convergence.

(a) (b)

(c)

Figure 2.4: Convergence histories of the newly developed algorithms on: a) DTLZ1, b)
DTLZ2 and c) DTLZ4

It should be mentioned that MOHO is also able to interchange recombination

and selection operators from different algorithms to also hybridize the constituent

algorithms, but this is out of the scope of this work.
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2.4.2 Switching Rules

Although the MOHO suite contains a diverse set of algorithms, its performance

is also dependent on the switching criteria used. The switching criteria for a single

objective optimization problem is simple since it is easy to monitor the progress of

the algorithm. In single objective optimization, an algorithm has made progress if it

found a point at the current iteration that is better than the best known point at the

previous iteration. This approach cannot be used for many-objective optimization

problems since the solution of the optimization problem is now a set of designs.

The hybrid optimizer developed by Moral [12] assigned a score out of five at each

generation. If the total scored by an algorithm was less than two, another algorithm

was selected at random for the next generation. An algorithm is assigned a score of

one for each of the following criteria it fulfills:

1. Change in non-dominated set size

2. A point from the new generation dominates

3. Change in dominated hypervolume

4. Average distance change between the designs in objective function space

5. Spread of non-dominated set

Most metrics used for multi-objective problems fail for many-objective problems.

As shown in Fig. 2.2, as the number of objectives increases, a greater percent of the

population becomes non-dominated. This very quickly leads to all the population

members becoming non-dominated and the change in non-dominated set size from

generation to generation becomes zero. For this reason, neither the first nor the

second criteria used by previous versions of MOHO can be applied to many-objective

problems. Computing the average distance of the designs in objective function
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space with respect to the origin, provides incomplete information about the Pareto

solution. It is possible that all designs converge to a single point that is farthest

away from the origin. In this case, the average distance metric will indicate that

the current Pareto front is better when actually the Pareto designs fail to preserve

diversity. Similarly, this is true for the spread metric since it only considers the

extreme values of the objectives on the Pareto front.

Hypervolume is a metric that can quantify both the convergence and diversity

of the Pareto front [38]. Hypervolume measures the size of the objective function

space dominated by solutions S and bounded by zr where zr is the reference point

dominated by all Pareto optimal solutions. Therefore, the hypervolume metric does

not require the analytical Pareto front to be known. The hypervolume is computed

as

HV (S) = V ol (x∈S [f1 (x) , zr1]× . . . [fM (x) , zrM ]) (2.4)

where V ol (·) is the Lebesgue measure. A larger value of HV indicates a better

converged and more diversified solution set. The reference point is taken as the

Nadir point [39] from the initialization population. The Nadir point is the worst-

case objective vector where the worst value of each objective function from the

entire population set is collected into a single vector. Unlike in previous attempts at

multi-objective hybridization where the alternative algorithm is selected at random,

the current MOHO uses a more deterministic criteria, Probability of Success (POS),

for selecting the next algorithm. During the optimization process, the number of

attempts made by each algorithm and the number of successful attempts of each

algorithm is monitored and updated at each generation. The POS value is then

computed as
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POS (·) =
Nsuccess (·)
Ntotal (·)

(2.5)

where · is a particular algorithm, Nsuccess are the number of successful attempts, and

Ntotal are the total attempts made by the algorithm. Here, a successful attempt is one

where the hypervolume increases from the current maximum value. At initialization,

each algorithm in the MOHO suite is given a POS value of one. This value is

updated at each generation for each algorithm. The algorithm with the largest POS

is selected for the next generation. If multiple algorithms have the same largest

POS value, one is selected at random. This switching criteria allows the algorithm

that is performing best for the current problem to be selected and the algorithm

performing worst to not be selected.

2.5 Benchmarking MOHO

Each optimization algorithm in the MOHO suite is analyzed on a family of test

problems for which the analytical Pareto front is known. The test problems vary in

degree of difficulty and number of variables, objectives and constraints.

2.5.1 Test Problems for Many-Objective Optimization

The test problems used to evaluate the performance of MOHO are taken from

the DTLZ [40] and WFG [41] test suites. These test suites were chosen because

they can be scaled up to any number of design variables N and any number of

objectives M . It should be mentioned that the test suites only contain unconstrained

problems. The test suites contain problems of varying difficulty, each with different

properties (linear, concave, etc.). They provide a diverse set of objective function

topologies that the optimization algorithm can be validated against. Table 2.1 shows
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these properties. Their analytical Pareto fronts are also known, which allow for the

convergence analysis of the algorithms. The Pareto front for the DTLZ1 problem

is a half-unit-hyperplane, while for DTLZ2 to DTLZ4, the Pareto front is a unit

hypersphere. The WFG4 to WFG9 test problems have a hyperelliptic Pareto front

with radii ri = 2i where i ∈ {1 . . .M}.

The total number of design variables for the DTLZ cases is N = M + k − 1.

For DTLZ1, k = 5 and for DTLZ2, DTLZ3 and DTLZ4, k = 10. The total number

of variables for the WFG suite is N = k + l, where l = 20 and k = 2 × (M − 1).

The algorithms were investigated on problems having three, five, eight, 10 and 15

objectives.

Table 2.1: Properties of DTLZ and WFG test problems used to validate the optimization
algorithms

Test problem Properties
DTLZ1 Linear, multi-modal
DTLZ2 Concave
DTLZ3 Concave, multi-modal
DTLZ4 Concave, biased
WFG1 Mixed, biased
WFG2 Convex,disconnected, multi-modal, non-separable
WFG3 Linear, degenerate, non-separable
WFG4 Concave, multi-modal
WFG5 Concave, deceptive
WFG6 Concave, non-separable
WFG7 Concave, biased
WFG8 Concave, biased, non-separable
WFG9 Concave, biased, multi-modal, deceptive, non-separable

The constrained test problems were obtained by incorporating constraints to

the original DTLZ problems. In particular, the C1-DTLZ1, C1-DTLZ3 and C3-

DTLZ4 [42] test problems are considered to evaluate the algorithms on constrained

test problems. The C1 constrained test problems maintain the same optimal Pareto
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front as their unconstrained version, but the feasible search space is greatly reduced.

The C3 constrained test problems alter the unconstrained Pareto front by placing

it in an infeasible region. The Pareto front for the C3 type constrained problems is

the constraint boundary itself.

2.5.2 Indicator of Performance

This work utilizes two metrics to quantify the performance of the optimization

algorithms: inverted generalized distance (IGD) and hypervolume (HV).

Because all algorithms in the MOHO suite are reference point-guided

algorithms, only the analytical Pareto points closest to these reference points,

called targeted Pareto points, should be used to construct the accuracy measure.

Since the analytical Pareto front is known, the targeted Pareto points, Ztar, can

be obtained by finding the intersection between the analytical Pareto front and the

ray connecting the reference point and the origin. The accuracy measure should

then use these targeted Pareto points and the converged Pareto point obtained

from the optimization algorithms. This work makes use of the inverted generalized

distance (IGD) metric [43] given by

IGD (P,Ztar) =
1

|Ztar|

|Ztar |∑
i=1

|P |
min
j=1

d (zi,pi) (2.6)

where d (zi,pi) = ||zi,pi||2. The IGD measures both convergence to the analytical

Pareto front and the diversity of the Pareto solution, if the targeted Pareto points

are well distributed. The smaller the value of IGD, the better the approximated

Pareto solution.

The IGD metric is only used for the DTLZ test problems because of their well

defined Pareto front. It is difficult to generate the targeted Pareto points for the
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WFG problems, due to their complicated Pareto fronts. Therefore, the

hypervolume is used instead of the IGD metric for the WFG problems. The

reference points required for the hypervolume calculations in Eq. (2.4) are given in

Table 2.2. The hypervolume is normalized to [0, 1] by dividing by z =
∏M

i=1 z
r
i . For

three to 10-objective test problems, the exact hypervolume is calculated using the

WFG algorithm [44] . For problems with greater than 10 objectives, the

hypervolume is approximated using Monte Carlo sampling [45]. The sampling size

was held constant, as recommended, at 10, 000 samples [45].

Table 2.2: The reference point used in the computation of Hypervolume for each problem

Test problem Reference point

DTLZ1 (1.0, . . . , 1.0)T

DTLZ2 to DTLZ4 (2.0, . . . , 2.0)T

WFG1 to WFG9 (3.0, . . . , 2.0×M + 1.0)T

2.5.3 Algorithm Parameter Settings

The algorithm-specific and test-problem-specific parameters are presented in this

section.

Due to the stochastic nature of the optimization, each algorithm was ran 20

times on each test problem. Due to the varying degree of difficulty of problems in

the test suites, the number of generation and population size were made test problem

specific. Table 2.3 shows the population size and the number of generations for each

test problem.
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Table 2.3: Population size and generations for each test problem

Number of generations
M Population size DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG
3 92 400 250 1000 600 400
5 212 600 350 1000 1000 600
8 156 750 500 1000 1000 750
10 276 1000 750 1500 2000 1000
15 136 1500 1000 2000 3000 1500

The parameters that control the recombination operator of the algorithm are

kept constant for all test problems. The properties for each algorithm are as follows:

• NSGA-III: The crossover probability, pc, and the mutation probability, pm

are 1.0 and 1/N respectively. The crossover distribution index, ηc, and

mutation distribution index, ηm, are set to 30 and 20 respectively.

• MOEA-DD: The crossover and mutation parameters are the same as those

for the NSGA-III algorithm. The penalty parameter θ in PBI is set to 5.0.

The neighborhood size, T, is set to 20 and the probability, δ, used to select in

the neighborhood is chosen to be 0.9.

• SPEA-R: The crossover and mutation parameters are the same as those for

the NSGA-III algorithm.

• NSDE-R1B: The scale factor F is held constant at 0.5 and the crossover

probability Cr is also held constant at 0.7.

• NSDE-D3: The scale factor and crossover probability are the same as those

for the NSDE-R1B algorithm.
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2.5.4 Performance of MOHO on Unconstrained Test

Problems

The performance of MOHO is investigated on analytical unconstrained test

problems with three, five, eight, 10 and 15 objectives. Table A.1 and Table A.2

show the IGD values for the DTLZ test problems and hypervolume values for the

WFG test problems respectively. For both test problem suites, it can be seen that

MOHO performs better on average then the other algorithms.

One main issue when solving optimization problems with more than three

objectives, is the visualization of the Pareto front. In this work, the higher

dimensional Pareto fronts are shown using a parallel coordinate graph, e.g. Fig.

2.6, where each line represents a Pareto design. The minimum and maximum

values of the parallel coordinate graph should coincide with the ideal point and the

Nadir point of the analytical Pareto front. For example, in the case of the DTLZ1

problem, Fig. 2.6, the ideal point has a value of zero for all the objectives and the

Nadir point has a value 0.5 for all the objective. Therefore, the value of each

objective for each design in parallel coordinate graph should be between 0.0 and

0.5. Similarly, the value of each objective for each design in parallel coordinate

graph should be between 0.0 and 1.0 for the DTLZ2 to DTLZ4 test problems. The

distribution of the parallel coordinates indicates the distribution of the Pareto

design through the objective function space. A uniform, structure parallel

coordinate graph indicates a uniformly distributed Pareto front.

Figure 2.5 shows the Pareto fronts obtained for the three objective DTLZ1

problem where the grey surface represents the analytical Pareto front, the half-unit

hyperplane. It can be seen that the SPEA-R algorithm is unable to properly

converge to the analytical Pareto front or preserve diversity. The MOEA-DD
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algorithm also isn’t able to properly preserve the diversity, whereas the other

algorithms are able to both converge and preserve diversity. It can be seen that

even with an under performing algorithm, MOHO is able to produce good results.

(a) (b)

(c) (d)
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(e) (f)

Figure 2.5: The Pareto front for a three objective DTLZ1 problem, obtained using: a)
NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 2.6 shows the Pareto fronts for a 10 objective DTLZ1 problem. The

structured arrangement of the designs indicate a good convergence to the analytical

Pareto front and to the reference points. The MOEA-DD and SPEA-R again fail

to produce good results for the 10 objective DTLZ1 test problem, whereas the

remaining algorithms all produce good convergence. This suggests that the MOEA-

DD and SPEA-R algorithms are non-ideal for the linear multi-modal problems.

(a) (b)
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(c) (d)

(e) (f)

Figure 2.6: Parallel coordinates plot showing the Pareto front for a 10 objective DTLZ1
problem, obtained using: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e)
NSDE-D3 and f) MOHO

Figure 2.7 shows the Pareto fronts for a 10 objective DTLZ3 problem. The

analytical Pareto front for this problem is a unit hypersphere. Unlike the DTLZ1

problem, the MOEA-DD algorithm performs well for the DTLZ3 problem while

the SPEA-R algorithm continues to under perform. The remaining algorithms also

perform well for the DTLZ3 problem. Again, MOHO is able to produce good

convergence and preserve diversity despite the presence of SPEA-R in its switching

suite. Like the DTLZ1 problem, the DTLZ3 test problem is also multi-modal,
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again indicating that the SPEA-R algorithm is unable to converge well for

multi-modal DTLZ problems.

(a) (b)

(c) (d)
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(e) (f)

Figure 2.7: Parallel coordinates plot showing the Pareto front for a 10 objective DTLZ3
problem obtained, using: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e)
NSDE-D3 and f) MOHO

Figure 2.8 shows the Pareto fronts for a 15 objective DTLZ4 problem. The

analytical Pareto front for this problem is also a unit hypersphere. It can be seen that

the SPEA-R algorithm performs better for the DTLZ4 problem than the DTLZ1

and DTLZ3 problems but still under performs when compared to the other five

algorithms. The MOHO algorithm continues to produce stable results.

(a) (b)
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(c) (d)

(e) (f)

Figure 2.8: Parallel coordinates plot showing the Pareto front for a 15 objective DTLZ4
problem, obtained using: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e)
NSDE-D3 and f) MOHO

Figure 2.9 shows the Pareto fronts obtained for the three objective WFG4

problem where the grey surface represents the analytical Pareto front, a

hyperellipse. It can be seen that the final Pareto front obtained by MOEA-DD

converges to a particular area of the objective function space, rather than

uniformly over the entire hyperellipse. The WFG4 problem like the DTLZ3

problem is concave and multi-modal, but unlike in previous cases, the SPEA-R

algorithm is able to both converge to the analytical Pareto front and preserve

diversity. For the WFG test suite, the MOEA-DD algorithm under performs
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compared to the remaining five. It can be seen that even with an under

performing algorithm, MOHO is able to produce good results.

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: The Pareto front for a three objective WFG4 problem, obtained using: a)
NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO
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Figure 2.10 shows the Pareto fronts for a 15 objective WFG5 problem. The

analytical Pareto front for this problem is also a unit hypersphere. The WFG5

problem features a concave, deceptive topology. It can again be seen that the

MOEA-DD algorithm under performs when compared to the remaining five. The

NSDE-R1B and NSDE-D3 algorithms also are not able to produce Pareto solutions

in the lower bound of the first few objectives. Despite having three algorithms not

suited for the WFG5 test problem, MOHO is able to produce a Pareto front that

both converges to the analytical Pareto front and satisfies diversity.

(a) (b)

(c) (d)
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(e) (f)

Figure 2.10: Parallel coordinates plot showing the Pareto front for a 15 objective WFG5
problem, obtained using: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e)
NSDE-D3 and f) MOHO

Figure 2.11 shows the Pareto fronts for a 15 objective WFG6 problem. The

WFG6 is a concave, non-separable problem with a hyperelliptic Pareto front. It

can again be seen that the MOEA-DD algorithm under performs significantly. The

NSDE-R1B and NSDE-D3 algorithms for the WFG6 problem produce Pareto

solutions comparable to those obtained by NSGA-III, SPEA-R and MOHO.

(a) (b)
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(c) (d)

(e) (f)

Figure 2.11: Parallel coordinates plot showing the Pareto front for a 15 objective WFG6
problem, obtained using: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e)
NSDE-D3 and f) MOHO

2.5.5 Performance of MOHO on Constrained Test Problems

The performance of MOHO is investigated on analytical constrained test

problems.

Figure 2.12 shows the Pareto fronts obtained for the three objective C1-DTLZ1

problem where the grey surface represents the analytical Pareto front, the half-unit

hyperplane. The C1-DTLZ1 problem features only a small feasible region close to

the analytical Pareto front. It can be seen that the SPEA-R algorithm again fails to
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properly converge to the analytical Pareto front or preserve diversity, drawing the

search to the upper region of the Pareto front. The remaining five algorithms, all

produce accurate results for this test problem.

(a) (b)

(c) (d)
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(e) (f)

Figure 2.12: The Pareto front for a three objective C1-DTLZ1 problem, obtained using:
a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 2.13 shows the Pareto fronts obtained for the three objective C1-DTLZ3

problem where the grey surface represents the analytical Pareto front, the unit

hypersphere. The C1-DTLZ3 problem features a banded infeasible region adjacent

to the Pareto front. For this case, the MOEA-DD, SPEA-R and NSDE-D3

algorithms, all fail to converge to the Pareto front. Those that converge,

NSGA-III, NSDE-R1B and MOHO, all show good convergence to the Pareto front

and to the reference points. Again, it can be seen that despite having under

performing algorithms available in its switching pool, MOHO is still able to

produce converged results.

(a) (b)
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(c) (d)

(e) (f)

Figure 2.13: The Pareto front for a three objective C1-DTLZ3 problem, obtained using:
a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 2.14 shows the Pareto fronts obtained for the three objective C3-DTLZ4

problem where the grey surface represents the analytical Pareto front. The C3-

DTLZ4 test problem completely redefines the original Pareto front. The original

hyperspherical Pareto front now lies in the infeasible region therefore making the

new Pareto front, the surface of the constraint boundary. It can be seen that all

six algorithms converge to the Pareto front and preserve diversity satisfactorily.

The algorithms that features the best convergence and diverse populations are the

MOEA-DD and MOHO algorithms.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: The Pareto front for a three objective C3-DTLZ4 problem, obtained using:
a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO
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2.6 Optimization: Summary

A robust algorithm for many-objective optimization was presented. The

MOHO algorithm performs controlled switching between five constitutive

algorithms to accelerate convergence and avoid local Pareto fronts. A deterministic

switching criteria was developed to control the switching between the constitutive

algorithms. The developed MOHO algorithm was validated on a set of analytical

test problems from the DTLZ and WFG test suites with varying degrees of

difficulty. It was shown that the MOHO algorithm can robustly solve problems

with up to 15 objectives. The developed MOHO was investigated for both

constrained and unconstrained problems. MOHO performed better in more than

50% of the test problems. It was shown that MOHO is able to reliably converge to

the Pareto front despite having under performing algorithms in its algorithm suite.
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CHAPTER 3

UNCERTAINTY QUANTIFICATION

Uncertainty quantification is the science of quantifying and characterizing

uncertainty in a numerical model or real world system. It primarily deals with

quantifying the uncertainty in output given the uncertainty in the input and vice

versa. Uncertainty is inherently present in the system and can appear in the model

through measurement errors, uncertain material properties and manufacturing

defects. Uncertainty can typically be put in two categories: aleatoric and

epistemic. Aleatoric uncertainty is uncertainty that is beyond our current ability

to measure. Examples of aleatoric uncertainty would involve rolling a die or

shooting an arrow. Epistemic uncertainty is uncertainty arising from lack of

knowledge about a particular system. Examples of epistemic uncertainty include

material properties and manufacturing dimensions. When performing uncertainty

quantification for design optimization, only epistemic uncertainties are considered.

For probabilistic optimization, the uncertainty in output due to uncertainties

present in the the inputs must be quantified. This is commonly referred to as

uncertainty propagation. That is, uncertainties in the input are propagated through

the model to the outputs. The goal of uncertainty propagation is to obtain low-order

statistical moments of the outputs (mean and variance). There exist several methods

for propagation of uncertainty, each with its own advantages. Uncertainties can be

propagated through the model using an intrusive approach, requiring modification

to the existing analysis code, or a black-box non-intrusive approach. Only non-

intrusive propagation is considered in this work to generalize the application of
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the uncertainty quantification. The approaches available in MOHO in propagating

uncertainties are presented in this section.

3.1 Monte Carlo Sampling

One of the simplest methods for propagating uncertainties through a model

is through the Monte Carlo method (MCM) [46]. The Monte Carlo method is a

sampling method that generates a set of N deterministic samples xii∈[1,N ]
, from their

corresponding probability distribution function π (x). Each deterministic sample

is then evaluated using the model to obtain a deterministic response, f (xi). The

deterministic responses can then be used to compute the mean, µf , and standard

deviation, σf , of the response using Eq. (3.1). By the central limit theorem it can

be shown that the Monte Carlo method displays 1/
√
N convergence. This shows

that the convergence is independent of the dimensionality of the model and only

depends on the sample size.

µf =
1

N

N∑
i=1

fi σ2
f =

1

N − 1

(
N∑
i=1

(fi − µf )2

)
(3.1)

Monte Carlo sampling can become infeasible if the computational time required

to compute the model response is too large. For this reason, Monte Carlo sampling

should only be used when the time required to compute a single response is under one

second as typically several thousand samples are required for an accurate calculation

of the statistical moments. Therefore, Monte Carlo sampling is usually performed

using a surrogate model.
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3.2 Polynomial Chaos Expansion

An alternative approach for propagating uncertainty is through Polynomial

Chaos Expansion (PCE) [47, 48]. This approach decomposes the model response

into a deterministic component and a stochastic component as shown in Eq. (3.2)

f (ξ,D) =
∞∑
i=0

αi (D) Ψi (ξ) (3.2)

where the coefficients α are dependent on the deterministic component D, and the

basis functions Ψ are dependent on the stochastic component ξ. The basis functions

are chosen such that they are orthogonal with respect to the probability distribution

function of the input parameters, Eq. (3.3). Some common probabilities and their

corresponding orthogonal Wiener-Askey basis functions [49] are given in Table 3.1.

∫
Ψi (ξ) Ψj (ξ) π (ξ) dξ = δi,j (3.3)

Table 3.1: Polynomials of the Wiener-Askey scheme for some random variables

π (x) Orthogonal Polynomials Support Range
Uniform Legendre [−1, 1]

Gaussian/Normal Hermite [−∞,∞]
Gamma Laguerre [0,∞]

Beta Jacobi [−1, 1]

Polynomial Chaos Expansions can be used intrusively or non-intrusively. An

intrusive approach requires changes to the analysis code and, therefore, is not

considered in this work. Several methods have been developed for non-intrusive

polynomial chaos expansion. This work makes extensive use of the

point-collocation approach [48]. In practice the infinite series in Eq. (3.2) must be

truncated at some value P using a suitable truncation scheme. Since the joint
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distribution function of the design variables is the product of the probability

distribution function of each variable, it can be shown that the total number of

basis functions P + 1 is given by, Eq. (3.4), where n is the number of random

variables and s is the order of the PCE.

Nt = P + 1 =
(n+ s)!

n!s!
(3.4)

This results in a linear system of size P shown in Eq. (3.5),



Ψ0 (ξ0) Ψ1 (ξ0) · · · Ψp (ξ0)

Ψ0 (ξ1) Ψ1 (ξ1) · · · Ψp (ξ1)

...
...

. . .
...

Ψ0 (ξP ) Ψ1 (ξP ) · · · Ψp (ξP )





α0

α1

...

αP


=



f (ξ0, D)

f (ξ1, D)

...

f (ξP , D)


(3.5)

where Ψi (ξj) is the ith basis function evaluated at the jth sample. Once the

coefficients α are computed, the mean and variance can be obtained using Eq.

(3.6) and Eq. (3.7) respectively.

µf = 〈f〉 ≈
P∑
i=0

αi (D) 〈Ψi (ξ)〉 = α0 (3.6)

σ2
f =

〈
(f − µf )2〉 ≈ 〈( P∑

i=0

αi (D) Ψi (ξ)

)2〉
=

P∑
i=1

α2
i (D)

〈
Ψ2
i (ξ)

〉
(3.7)

It is evident from Eq. (3.4) that the standard PCE approach suffers from the

“curse of dimensionality” [50]. To construct a PCE of third order (s = 3) with

five random variables (n = 5), a total of 55 (P = 54) samples are needed. This

can sometimes become prohibitively expensive if the computational cost of a single

analysis is too large. An ideal approach would be to construct the PCE using as
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few deterministic samples as possible, even if the total required number of samples

is not attainable. This can be done using a sparse representation of the PCE [51].

It is known that an underdetermined system has an infinite number of

solutions. In PCEs, only a small fraction of the coefficients may carry significant

weight, allowing for the assumption that many coefficients are zero. This leads to

a sparse vector of unknowns. This assumption allows for the system to be

regularized, leading to a well-posed problem. Doostan and Owhadi [52] discuss the

theory, formulation and stability of this approach in great detail. The goal is to

seek a solution to the linear system with the fewest number of non-zero

coefficients. This problem can be solved using an L1-minimization:

min ||a||1 subject to ||Ψα− f ||2 ≤ δ (3.8)

where δ is the truncation error. The L1-minimization problem can be solved using

quadratic programming. This work uses the least-angle regression (LARS) algorithm

[53] to solve the L1-minimization problem since it is not significantly affected by the

dimensionality of the problem. The PCE obtained by solving the linear system in

Eq. (3.5) will be referred to as the standard PCE whereas the expansion obtained

by solving Eq. (3.8) will be referred to as the sparse PCE.

3.3 Uncertainty Quantification: Summary

This section presented the framework for uncertainty quantification. Three

different approached were presented to propagate the uncertainty in input

variables, through the system, to the output variables. The three approaches

available in the suite are: Monte Carlo sampling, standard polynomial chaos

expansion and sparse polynomial chaos expansion. Whereas, the Monte Carlo and
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standard polynomial chaos requires several samples to quantify uncertainty, the

sparse polynomial chaos can perform the quantification using fewer samples. All

three approaches will be be investigated in real life test problems.
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CHAPTER 4

NUMERICAL MODELING

This chapter discusses the numerical framework, and governing equations used

for each analysis. It presents the framework used for geometry parameterization,

analysis of subsonic flows and analysis of hypersonic flows.

4.1 Geometry Parameterization and Deformation

The process of design, analysis and optimization often requires constant

changes to an existing geometry or domain being analyzed. The method used to

parameterize the geometry is sometimes not known and is often defined using

simplified point clouds with no information on connectivity of the point clouds.

One such example is point cloud data obtained from MRI and CT scans, or surface

data used for 3D printing. A method is needed to efficiently manipulate such data

without prior knowledge of parameterization and data formats. Since the solution

of an optimization problem is heavily dependent on the number of variables used

to define the problem, an efficient approach that can reduce the number of

variables while providing detailed control of the geometry is needed. This work

uses an efficient freeform deformation (FFD) technique to parameterize the

geometry with only a few parameters.

The FFD technique used here originated in the field of computer graphics and

animation. This method encloses the geometry or region of interest in a lattice of

control points. These control points are then deformed and the resulting lattice

deformation is propagated to the enclosed geometry. It was originally developed by

Sederberg and Parry [54] and expanded on by others. This FFD approach is used

herein. The authors described this approach as follows:
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“A good physical analogy for FFD is to consider a parallelpiped of clear, flexible

plastic in which is embedded an object, or several objects, which we wish to deform.

The object is imagined to also be flexible, so that it deforms along with the plastic

that surrounds it.”

(a)
(b)

Figure 4.1: Surface boundary representation of: a) undeformed lattice and object and b)
deformed lattice and the corresponding deformed object.

Figure 4.1 shows a visual example of this approach. This approaches uses

trivariate Bernstein polynomails to propagate the deformation in the lattice to the

enclosed object.

Any point on the object of interest in 3D space can be written as, Eq. (4.1),

~X = ~X0 + s~S + t~T + u~U (4.1)

where ~X = {x, y, z}, ~X0 is the lattice origin, ~S,~T ,~U are the frame vectors for the

lattice, and s, t, u are the normalized coordinate defined by Eq. (4.2)

s =

~T × ~U
(
~X − ~X0

)
~T × ~U · ~S

t =

~S × ~U
(
~X − ~X0

)
~S × ~U · ~T

u =

~S × ~T
(
~X − ~X0

)
~S × ~T · ~U

(4.2)

52



where s ∈ [0, 1], t ∈ [0, 1], u ∈ [0, 1] if the point lies within the lattice. Let l, m, n

be the number of subdivisions of the lattice in the x, y and z direction. Then the

coordinates of the lattice point ~Pijk can be written as Eq. (4.3)

~Pijk = ~X0 +
i

l
~S +

j

m
~T +

k

n
~U (4.3)

If a lattice point ~Pijk is moved to a new location P̃ijk, then the resulting deformed

geometry can be obtained using Eq. (4.4)

~Xdef =
l∑

i=0

(
l

i

)
(1− s)l−i si

[
m∑
j=0

(
m

j

)
(1− t)m−j tj

(
n∑
k=0

(
n

k

)
(1− u)n−k ukP̃ijk

)]
(4.4)

Figure 4.2 shows the applicability of the FFD framework for localized

deformations, where only certain areas of interest are to be deformed.

(a)
(b)

Figure 4.2: Surface boundary representation of undeformed NASA 25D aircraft (blue)
with: a) deformed wing (green) and b) deformed underbody (green)

4.2 Electrochemical Model of Doyle-Fuller-Newman

The dynamics of Lithium-Ion batteries is of a highly multi-physics nature. The

physics of the processes in Li+ cells are governed by strongly coupled, highly non-

linear system of partial differential equations. Although simplifications can be made

53



to the mathematical model of electrochemistry in the Li+ battery, the simulation

of such simplified processes is still computationally expensive. For this reason, an

efficient implementation of the mathematical model is needed. Due to the nature

of materials inside a cell several simplifying assumptions have been made, often

applied in the field of battery modelling, to enable computational simulation of the

electrical and chemical processes inside a cell. One crucial assumption is made: all

electrode particles are spheres of radius Rs,i, where i ∈ {a, c} denotes the anode and

cathode domain. This results in a simplified one-dimensional diffusion equation.

This work models the electrochemistry inside the battery using the Doyle-Fuller-

Newman (DFN) model [55]. Figure 4.3 shows the model domain schematically,

including the layered structure of a cell, as well as the sub-domains annotations.

Figure 4.3: Schematic view of the battery cell sub-domains: Ωl is the electrolyte, Ωa and
Ωc are the anode (negative) and cathode (positive) electrode areas, Ωs,a and Ωs,c are the
electrodes’ particles

Each electrode is represented by homogeneously distributed spherical particles

as the limiting factor, connected via electrolyte. The model equation system results

in
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∂cs,i
∂t
− 1

r2
∇ ·
(
r2Ds,i∇cs,i

)
= 0 in Ωs,i × Ωi

εl
∂cl
∂t
−∇ ·

(
RT

F 2
t+

κ (cl)

cl
∇cl + t+

κ (cl)

F
∇φl

)
= AijBV in Ωi

−∇ ·
(
RT

F
(2t+ − 1)

κ (cl)

cl
∇cl + κ (cl)∇φl

)
= FAijBV in Ωi

(4.5)

where cs denotes the concentration of lithium inside the solid electrode, R is the

universal gas constant, F is the Faraday constant, jBV is the electrode current

density defined by the Butler-Volmer expression , Eq. (4.7), r is the spheres’ radial

dimension and Ds is the solid diffusion coefficient in electrode i, with Ωs,i = (0, Rs,i).

Due to the homogenous distribution of the particles and the assumption of a small

dimension orthogonal to the layered structure, a single one-dimensional cut through

the electrolyte domain models the electrolyte geometry, i.e.Ωl = (0, L), Ωa = (0, La)

and Ωc = (L− Lc, L) see Figure 4.3.

The constant inner surface Ai = 3εs/Rs,i arises as the constant particle surface

to particle volume ratio, εl and εs denote the active volume fraction in the liquid

and solid phase, respectively, t+ is the charge transfer constant and κ (cl) is the

conductivity in the liquid phase. Taking into account all electrolyte and electrode

quantities allows to set the particle boundary condition to

Ds,i
∂cs,i
∂n

= jBV,i (φl, φs, UOCP (cs)) on Γs,i (4.6)

jBV,i = i0 (cs)

(
cl
cl,0

exp

(
αF

RT
(φs − φl − UOCP (cs))

))
− i0

(
exp

(
−1 (1− α)F

RT
(φs − φl − UOCP (cs))

)) (4.7)

where φs denotes the electrode potential and UOCP (cs) is the open circuit

potential of the electrode at a given lithium concentration cs. The model of

UOCP (cs) utilized in this work is based on the Redlich-Kister expansion [56] given

as
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UOCP (ξ) = E0 +
RT

F
ln

(
1− ξ
ξ

)
+
RT

F

n∑
k=0

Ak

(
(2ξ − 1)k+1 − 2ξk (1− ξ)

(2ξ − 1)1−k

)
(4.8)

ξ = cs/ctotal is a measure for the lithiation state of an intercalation electrode. The

system of partial differential equations were dicretized using the finite element

method. For breviety, the complete derivation and numerical implementation of

this model is not presented in this work but can be found in the work of Pichler

[57].

4.3 Fast Multipole Method for Potential Flow Problems

Aerodynamic shape optimization has been an active area of research since the

1980s. Traditional methods typically involve parameterizing the geometry and

solving the flow field around a geometry to obtain certain aerodynamic coefficients

be optimized. The flow field analysis used can significantly influence the results of

the design optimization. While high-fidelity computational fluid dynamics (CFD)

solvers, such as Reynolds Averaged Navier-Stokes (RANS) solvers [58], can yield

accurate flow fields, they typically require days or weeks of computing time.

Certain simplifications can be made to the RANS model, such as neglecting

viscosity [59], to accelerate the solution but even this can take hours or days. Such

methods also require additional computing time to construct a computational

volume mesh.

In cases where the computational time is of more importance than the

accuracy, lower fidelity panel methods can be used to accelerate the flow field

calculation. Panel methods [60] solve the linearized potential flow equation using

indirect boundary element method. This approach only requires the boundary, on

which the flow variables are required, to be meshed, thereby reducing the total
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computational cost of each analysis. The linear potential flow equation assumes

steady-state, inviscid, irrotational flow with no body forces. The derivation of the

linearized potential flow equation and the boundary integral equation are

presented herein.

Let u, v and w be the velocities in the x, y and z direction respectively. For

three-dimensional steady-state flows the continuity equation can be written as

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (4.9)

and the steady-state momentum balance equation, neglecting viscous effects and

body forces, as

ρu · ∇u = −∇p
ρ

(4.10)

where p is the pressure and ρ is the density. Since the speed of sound, a, can be

expressed as a2 = ∂p/∂ρ, using the chain rule, the pressure gradient can be written

as

∇p =
∂p

∂ρ
· ∇ρ = a2∇ρ (4.11)

Substituting Eq. (4.11) into Eq. (4.10) yields

ρu · ∇u = −a
2

ρ
∇ρ (4.12)

Multiplying the x, y and z components of Eq. (4.12) by u, v and w, adding them

and substituting Eq. (4.9) into the resulting equation yields [61]

(
u2

a2
− 1

)
∂u

∂x
+

(
v2

a2
− 1

)
∂v

∂y
+

(
w2

a2
− 1

)
∂w

∂z

+
uv

a2

(
∂u

∂y
+
∂v

∂x

)
+
uw

a2

(
∂u

∂z
+
∂w

∂x

)
+
vw

a2

(
∂v

∂z
+
∂w

∂y

)
= 0

(4.13)
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The velocity potential for irrotational flows can be expressed as u = ∇Φ. Using

this definition of the velocity potential, Eq. (4.13) can be rewritten as

(
u2

a2
− 1

)
∂2Φ

∂x2
+

(
v2

a2
− 1

)
∂2Φ

∂y2
+

(
w2

a2
− 1

)
∂2Φ

∂z2

+
2uv

a2

(
∂2Φ

∂x∂y

)
+

2uw

a2

(
∂2Φ

∂x∂z

)
+

2vw

a2

(
∂2Φ

∂y∂z

)
= 0

(4.14)

Using the notation Φx = ∂Φ/∂x and Φxx = ∂2Φ/∂x2, Eq. (4.14) can be written

compactly as

(
u2

a2
− 1

)
Φxx +

(
v2

a2
− 1

)
Φyy +

(
w2

a2
− 1

)
Φzz

+
2uv

a2
Φxy +

2uw

a2
Φxz +

2vw

a2
Φyz = 0

(4.15)

Let us consider the flow to be primarily in a single dominant direction x, with

relatively small components of velocity in y and z directions. Then it can be assumed

that v/a << 1 and w/a << 1. This assumption reduces Eq. (4.15) to

(
1−M2

∞
)

Φxx + Φyy + Φzz = 0 (4.16)

where M∞ = u/a is the freestream Mach number. Using the small perturbation

theory, the total velocity potential Φ can be represented as Φ = V∞x + φ, where

φ is the perturbation velocity potential [61]. Then Eq. (4.16) can be written for

perturbation velocity as [62]

(
1−M2

∞
)
φxx + φyy + φzz = 0 (4.17)

The elliptic partial differential equation presented in Eq. (4.17) can be converted

into Laplace’s equaton using the Prandtl-Glauert transformation [63]. Let us define

the Prandtl-Glauert factor, β as β =
√

1−M2
∞. Using the geometrically scaled

properties, x̄ = x, ȳ = βy, z̄ = βz and φ̄ = β2φ, Eq. (4.17) can be written as
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∇2φ̄ = 0 (4.18)

The unscaled properties can be obtained from the scaled properties using

Gothert’s rule [64].

The Laplace’s equation can be transformed into a boundary integral equation

(BIE) and can be solved using the boundary element method.

The equivalent boundary integral equation form of the Laplace’s equation can

be stated as [65, 66], Eq. (4.19)

c (~x)φ (~x) =

∫
S

[
∂φf (~y)

∂ny
GL (~x, ~y)− ∂GL (~x, ~y)

∂ny
φf (~y)

]
dS (~y) (4.19)

where Green’s function, GL (~x, ~y) = 1/4π |~x− ~y|, is the fundamental solution to Eq.

(4.18), c (~x) = 0.5 for smooth boundaries, and the boundary condition is given by

the surface velocity as ∂φf (~y) /∂ny = −~U∞ · ~n.

It should be noted that the fundamental solution is non-zero everywhere and

tends to zero only at infinity. If using the standard boundary element method, this

characteristic requires the storage and solution of a dense, non-symmetric linear

system. The dense nature of the coefficient matrix requires O (N2) storage whereas

the solution of the linear system using direct method requires O (N3) operations.

This computational bottleneck can be avoided using an iterative solver and the Fast

Multipole Method (FMM) [67] to accelerate the matrix-vector product.

4.3.1 The Fast Multipole Method

In recent years, the Fast Multipole Method (FMM) has been used to accelerate

the solution of boundary integral equations. The FMM approach has been used for

elastodynamics [68], heat transfer [69], fluid dynamics [70] and aeroacoustics [71], to
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name a few. Solution of boundary integral equations typically require the solution of

a dense system. If direct linear solvers are used, it would require O (N3) operations

and O (N2) storage space, where N is the number of nodes. Iterative solvers can be

used to accelerate the solution of the linear system, but this would require explicit

dense matrix-vector multiplication. Both, the large number of operations required to

solve the linear system and the storage space required, can be overcome using the fast

multipole method. The fast multipole method never explicitly computes or stores

the coefficient matrix. Instead, it directly computes the matrix-vector product.

The fast multipole method accelerates the matrix-vector product by partitioning

the analysis domain and using direct, high-fidelity calculations for the nearfield

elements and approximations for farfield elements. Therefore, the FMM approach

requires O (N) operations to solve the linear system and O (N) space for storage.

The derivation of the FMM approach for the Laplace’s equation is presented herein.

For the fast multipole method to be applicable, the Green’s function must first

be expanded as [72]

GL (~x, ~y) =
1

4π

∞∑
n=0

n∑
m=−n

Smn ( ~ox)Rm
n ( ~oy) (4.20)

where o is the center of expansion. This expansion decouples the source point x

and field point y, allowing for the influences of the nearby elements to be handled

differently to those at farfield. It can be seen from Eq. (4.19) that the integration

is with respect to dS (~y). Therefore, only the Rm
n terms in the multipole expansion

need to be integrated.

The solid harmonics functions Rm
n and Smn , where Smn is the complex conjugate

of the function Smn , are defined as
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Rm
n

(
~X
)

=
1

(n+m)!
Pm
n (cosθ) eimφrn (4.21)

Smn

(
~X
)

= (n−m)!Pm
n (cosθ) eimφ

1

rn+1
(4.22)

where Pm
n is the associated Legendre function defined in spherical coordinates r, φ

and θ of some vector ~X, which can be ~ox or ~oy for example. The vectors ~ox and ~oy

point from the box center, ~o, to a farfield source location, ~x, and a nearfield source

location, ~y, respectively. The box centers ~o are taken to be the centroid of the

boxes obtained from space partitioning (Quadtree or Octree decomposition). The

two solid harmonics functions together construct the spherical harmonics functions,

which form an infinite set of orthogonal functions on a sphere and thus may be used

to represent functions defined on the surface of a sphere.

The boundary integral in Eq. (4.19) can be written using the expansion given

in Eq. (4.20) as

∫
S

[
∂φf (~y)

∂ny
GL (~x, ~y)− ∂GL (~x, ~y)

∂ny
φf (~y)

]
dS =

1

4π

∞∑
n=0

n∑
m=−n

Smn ( ~ox)Mm
n (~o)

(4.23)

Therefore, the multipole expansions, Mm
n (~o) can be written as

Mm
n (~o) =

∫
S

[
∂φf (~y)

∂ny
Rm
n ( ~oy)− ∂Rm

n ( ~oy)

∂ny
φf (~y)

]
dS (4.24)

The multipole to multipole (M2M), Eq. (4.25), multipole to local (M2L), Eq.

(4.26), and local to local (L2L), Eq. (4.27), expansion and translation operators

[72, 71] are given as

Mm
n (~o′) =

∞∑
n′=0

n′∑
m′=−n′

Rm′

n′

(
~o′o
)
Mm−m′

n−n′ (~o) (4.25)
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Lmn (~o′) =
∞∑
n′=0

n′∑
m′=−n′

Sm+m′

n+n′

(
~oo′
)
Mm′

n′ (~o) (4.26)

Lmn (~o′) =
∞∑
n′=0

n′∑
m′=−n′

Rm′−m
n′−n

(
~oo′
)
Lm

′

n′ (~o) (4.27)

where
(
~oo′
)

represents a vector pointing from o to o′. Once the local expansions

are obtained, the Laplace’s BIE can be written as

∫
S

[
∂φf (~y)

∂ny
GL (~x, ~y)− ∂GL (~x, ~y)

∂ny
φf (~y)

]
dS =

1

4π

∞∑
n=0

n∑
m=−n

Rm
n ( ~ox)Lmn (~o) (4.28)

The procedure for implementation for the fast multipole method is as follows:

1. Partition analysis domain: The computational domain is first partitioned

using an iterative hierarchical domain decomposition method [73] (Octree in

3D and Quadtree in 2D). For a 2D example, at the first iteration a simple

square encompassing the 2D domain is created. The square is then

decomposed into 4 smaller squares of equal sizes. This decomposition is

continued until the number of nodes/elements within a square is less than

some specified number. It should be noted that only those squares that

contain more than the allowable number of nodes/elements are decomposed.

This decomposition creates a hierarchical tree where the childless boxes are

called leaves and all other boxes are called parent boxes. Figure 4.4 shows

the decomposition and sample hierarchical tree created for a 2D problem.

2. Compute multipole expansion: Once the computational domain is

decomposed, the multipole expansions must be computed in each leaf cell,

level three in Fig. 4.4b, using Eq. (4.24) using the elements within the leaf.

In Eq. (4.24), the known solution parameters are taken as those specified
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from the boundary conditions and the unknowns are taken as the initial

guess.

3. Translate multipole moments upward: The multipole moments computed

in the leaves are then translated up the hierarchical structure to the parent cells

from its children cells using the M2M translation, Eq. (4.25). The moments

are translated up to the top tree level, level 0 in Fig. 4.4b, and is known as

the upward pass.

4. Translate multipole moments downward: The multipole moments

computed at the top level are then translated down the hierarchical structure

using a combinating of L2L Eq. (4.26) and M2L Eq. (4.27) translation. The

L2L translation is used when translating the local moment from the parent

down to its children. The M2L translation is used to translate the multipole

moments from the cells in the interaction list to the local moment. The

moments are translated down to the lower level and is known as the

downward pass.

5. Direct Evalution: While the farfield influence is modeled using the multipole

expansion, the influence of nearfield elements is evaluated directly using Eq.

(4.19). Nearfield elements are those that are in the leaves that neighbor the

current leaf. It should be noted that direct evaluation is only performed at

the leaf level.

6. Local Expansion: Once the local moments are translated to the leaves, the

boundary integral at each source point ~x can be obtained using Eq. (4.28).

This is done at each collocation point present in that leaf cell.
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(a)
(b)

Figure 4.4: An example of: a) quadtree decomposition and b) sample hierarchical tree
structure

For a more detailed description about the multipole translation operators and

the nearfield-farfield decomposition list, the reader is referred to [67, 72]. The

upward and downward pass together implicitly yield the matrix-vector product of

the coefficient matrix and the vector of field variable and its gradient. Therefore,

an iterative solver can be used to accelerate the solution of the linear system due

to the acceleration in the matrix-vector multiplication. The fast multipole method

implementation in this work uses multi-level tree structure, is parallelized and

makes use of constant elements. It can, however, be easily extended to include

higher order elements. The direct integration of the neighbouring elements is

performed analytically [74]. The GMRES iterative solver [75, 76, 77] is used to

solve the linear system.

4.3.2 Verification of Potential Flow Solver

The developed potential flow solver is verified on an analytical solution of flow

around an ellipsoid [78]. For an ellipsoid with principle axis a, b and c, the velocity

potential that satisfies Eq. (4.18) is given by
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φ (x, y, z) = U∞

[(
α

2− α
+ 1

)
x+

(
β

2− β
+ 1

)
y +

(
γ

2− γ
+ 1

)
z

]
(4.29)

where

α = abc

∫ ∞
0

dx

(a2 + x)
√

(a2 + x) + (b2 + y) + (c2 + z)
(4.30)

β = abc

∫ ∞
0

dy

(b2 + y)
√

(a2 + x) + (b2 + y) + (c2 + z)
(4.31)

γ = abc

∫ ∞
0

dz

(c2 + z)
√

(a2 + x) + (b2 + y) + (c2 + z)
(4.32)

Figure 4.5 shows the analytical solution and the FMM solution of an ellipsoid

subject to the Neumann boundary condition. It can be seen that the FMM solver

produces accurate results, even when using constant boundary elements.
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(a) (b)

(c) (d)

Figure 4.5: Verification of potential flow solver on a) an ellipsoid, subject to b) normal
gradient boudary condition, showing c) FMM solution and d) the analytical solution

The computational time required to solve the BIE using the standard boundary

element method and the fast multipole method is compared on a circular geometry

with different mesh sizes. Figure 4.6 shows this comparison where Fig. 4.6a shows

the octree decomposition of the sphere used in the FMM. Figure 4.6b shows the

computing time required by the standard boundary element method, serial fast

multipole method (FMM) and parallel fast multipole method using two cores

(FMMp). It can be seen that the computational time for the standard boundary

element method increases cubically while the computation times for the fast
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multipole methods increases linearly with the number of elements. This decrease

in computing time allows for more designs to be analyzed and objective functions,

that are required for the optimization, to be calculated in a shorter time.

(a)
(b)

Figure 4.6: Illustration of a) octree decomposition of a sphere and b) computing time
required to solve the potential flow by different methods for different mesh sizes

4.4 Modified Newton Impact Theory for Hypersonic Flow

Analysis of subsonic and supersonic flows typically require the solution of the

continuity, momentum balance and energy balance equations. For hypersonic flows,

chemical reactions and heat transfer also need to be accounted for. This drastically

increases the computational cost for a high-fidelity hypersonic flow analysis. Because

design optimization typically requires tens-of thousands-of flow field calculations,

an efficient model that accurately captures the major aerodynamic phenomenon is

required. One such model is based on Newtonian dynamics. The aerodynamics of

hypersonic vehicles can be efficiently modeled using modified Newton impact flow

theory (MNIT) [79, 80]. The MNIT approach is extremely simple, fast and accurate

for hypersonic regimes. The Newton impact theory has been shown to model reality
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when freestream Mach, M∞, tends to infinity and the ratio of specific heats, γ, tends

to one.

The MNIT models the local coefficient of pressure on the surface of an inclined

panel as a function of the square of the local panel inclination angle and the

maximum coefficient of pressure. This model assumes the flow impacting surface

looses all momentum normal to the surface and then move tangentially to the

surface. For a surface inclined at an angle θ to the freestream, the change in

normal velocity is ∆Vn = V∞ · sin θ. The mass flux on the inclined surface is then

ṁ = ρ∞V∞A sin θ, where A is the surface area and ρ∞ is the freestream density.

The time rate of change of momentum can be calculated as

ṗ = ρ∞V
2
∞A sin2 θ (4.33)

Using Newton’s second law, which states that the time rate of change of

momentum is equal to the force exerted, the force F , on the surface is computed

using Eq. (4.33). The pressure on the surface can be stated as F/A = p − p∞,

where p∞ is the freestream pressure. Using the definition of dynamic pressure,

q = 0.5ρV 2
∞, and rearranging, yields the standard Newton impact theory definition

of the surface coefficient of pressure.

Cp = 2 sin2 θ (4.34)

Equation (4.34) can also be written in terms of φ, (φ = 90 - θ), the angle between

freestream and the surface normal, as

Cp = 2 cos2 φ (4.35)
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This formulation was modified by Lees [79], Eq. (4.36), which replaced the

coefficient of sine squared term in Eq. (4.34), with the coefficient of pressure at the

stagnation point behind a normal shock.

Cp = Cp0 sin2 θ (4.36)

The coefficient of pressure at the stagnation point, Cp0, is given as

Cp0 =
2

γM2
∞

[(
γ + 1

2γM2
∞ − γ + 1

) 1
γ−1
(
γ + 1

2
M2
∞

) γ
γ−1

− 1

]
(4.37)

It should be noted that Eq. (4.36) is only used in the frontal region of the object

shown in Fig. 4.7. The frontal region is the region that is directly exposed to the

oncoming freestream.

The pressure coefficient can also be defined in a standard form as

Cp =
p− p∞

1
2
γp∞M2

∞
(4.38)

Since the pressure in a vacuum is zero (p = 0), the coefficient of pressure in a vacuum

becomes [81]

Cp =
−2

γM2
∞

(4.39)

Equation (4.39) is used to compute the coefficient of pressure on the panels in the

shadow region. The force on a panel is defined as F = −pAn̂, where A is the panel

area, n̂ is the panel unit normal and p is the pressure on the panel defined as

p = p∞ +
1

2
Cpγp∞M

2
∞ (4.40)
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Shadow region

Frontal region

Figure 4.7: Haack-Sears body showing the frontal and ”shadow” region

4.4.1 Validation of Modified Newton Impact Theory Solver

The developed MNIT solver is first validated using experimental data of a

sphere in a hypersonic wind tunnel for increasing Mach numbers. Figure 4.8a

shows the triangulated sphere geometry used. Figure 4.8b shows the coefficient of

drag obtained using the developed MNIT solver and the experimental set up of

Masson et. al [82]. It can be seen that the numerical value tends towards the

experimental mean for higher Mach numbers. This is expected since the MNIT is

only valid within the hypersonic regime.
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(a)
(b)

Figure 4.8: Validation of modified Newton impact theory solver on a) triangulated sphere,
showing b) experimentally and numerically computed coefficient of drag

The developed MNIT solver is also validated against experimental data obtained

from the wind tunnel [83] for a half-sphere-cone geometry shown in Fig. 4.9a. The

radius of curvature for the hemispherical nose measured 0.365in and the diameter

of the semicircular rear plane measured 2.43in. The total length of the cone was

4.0in and the planform area was 6.025 in2. The model was analyzed at a freestream

Mach number of 12.6, a Reynolds number (based on model length) of 4.9× 105 and

at various angles of attack. The lift and drag forces obtained using the MNIT solver

were normalized using the planform area and dynamic pressure of 2320.78 psf. The

experimentally obtained and numerically calculated coefficients of drag and lift are

shown in Fig. 4.9c and Fig. 4.9b respectively. It can be seen that the MNIT solver

is in good agreement with experimental measurements.
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(a)

(b) (c)

Figure 4.9: Illustration of a) Hypersonic half-sphere-cone waverider and its experimentally
and numerically obtained: b) coefficient of lift and c) coefficient of drag
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4.5 Numerical Modeling: Summary

This section presented the theory and numerical framework of the analysis

tools used in this work. A versatile framework for geometry parameterization and

morphing, that requires no knowledge for format, is presented. The

electrochemical model of Doyle-Fuller-Newman was presented. An accelerated

framework for the solution of potential flow around a subsonic body was developed

and verified against an analytical solution of flow over an ellipsoid. It was shown

that the fast multipole potential flow solver was 100 times faster than the standard

boundary element method. A modified Newton impact theory solver was

developed for the rapid analysis of hypersonic flow. The developed hypersonic

solver was validated against experimental data. These developed numerical model

will be used in the application of MOHO for real life test problems.
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CHAPTER 5

PARAMETER ESTIMATION IN BATTERY MODEL

The applications of Lithium-Ion batteries have drastically increased over the

last decade. With the continuous implementation of the Li-Ion (Li+) cells in

household appliances, automotive, aerospace and defense industries, accurate

modeling and simulation of them is paramount. Accurate analysis of the battery

can at time require the internal state of the cell to be known. This internal state

can include abstract quantities (e.g. state of charge (SoC) and state of health) and

physical quantities (e.g. potentials and concentrations). Some of these quantities

can be measured through experimentation. In several cases, the material

properties of the cell can also be of interest. These material properties sometimes

cannot be measured directly and must be estimated, often non-intrusively. This

gives rise to the traditional parameter estimation problem. Parameter estimation

techniques attempt to identify certain parameters in a model using only the model

response. Parameter estimation techniques can be non-intrusive and

non-destructive depending on whether the model response can be obtained

non-intrusively and non-destructively. The parameter estimation problem in this

work can be stated as follows: Given only the voltage, how can the material

properties and model parameters of the Lithium-Ion cell model be estimated?

Santhanagopalan et al. [84] used the Levenberg-Marquardt algorithm to

identify five parameters in the Doyle-Fuller-Newman (DFN) under constant charge

and discharge conditions. Scharrer et al. [85] made use of a space-mapping

parameter surrogate model to the DFN model to successfully identify three

parameters. Their work made use of a Morris-One-At-A-Time sensitivity analysis

to identify the three most sensitive parameters in the model.
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Forman et al. [86] performed parameter identification of 88 parameters using a

genetic algorithm. To date, this is the latest attempt in estimating a significant

number of parameters in the DFN model. Recently, Jin et al. [87] also performed

sensitivity analysis to identify the five most sensitive parameters. They then used

Levenberg-Marquardt algorithm to estimate the values of these five parameters. A

parallel genetic algorithm was used by Zhang et al. [88] to identify 29 parameters

in the pseudo-two-dimensional DFN model. They reported a computing time of

22.3 hours to identify the 29 parameters. Uddin et al. [89] estimated a total of

three parameters in the DFN model using the differential evolution algorithm.

Previous works have reported solution times ranging from 22 hours up to three

weeks. In the work of Forman et al. [86] it was stated that the parameter

estimation took approximately three weeks. This work drastically accelerates the

parameter estimation of several parameters in the DFN model by using the

MOHO algorithm in the single objective mode, called the Single-Objective Hybrid

Optimizer (SOHO).

5.1 Problem Definition of Inverse Parameter Estimation

The measured voltage data obtained through cycling a Panasonic NCR18650B

commercial cell is used in this work. The cell is first charged at C/3 rate (C-rate

= 3.35A) until the voltage reaches 4.113V followed by a constant voltage charge at

4.113V until the current tapered down to 160mA (≈C/20 rate), then discharged at

C/3 rate until 3.498V again followed by a constant voltage discharge at 3.498V for 40

minutes or until the current dropped to 160mA, respectively. This is repeated three

times, afterwards two full capacity estimation cycles according to the data sheet are

executed: the cell is charged at C/2 rate until 4.2V, constant voltage charged at

4.2V until the current dropped to C/50 rate and discharged at 1C rate until 2.5V.

75



The cell is then charged to 3.498V again and discharged to a specific SoC level for a

total of seven cycles (85%, 75%, 65%, 55%, 45%, 35% and 25%). At each level a set

of current pulses are applied such that the dynamic behavior of the cell is reflected

as much as possible in the voltage. The pulse sequence subsequently applies C/5,

1.25C and 1.35C pulses in charge (+) and discharge (-) direction for 10s, followed by

15 minutes rest after each pulse. The pulse sequence ends with a combined 5s-pulse

sequence of +C/5, +C/5, -C/5, -C/5, -1.35C, +1C with 5s rest in-between and a

discrete discharge/charge stair profile of 0.2C, 0.35C, 0.5C, 0.75C, 1.25C for 10s

per level. Figure 5.1 shows the voltage and current measured throughout this time.

All tests were done using an Arbin BT-2000 battery testing system and Memmert

incubator with peltier cooling (model IPP600) for maintaining the temperature at

25oC by forced air cooling.

(a)

(b)

Figure 5.1: The cycling of the Li+ battery showing: a) the applied current and b) the
measured voltage

76



The traditional approach to solve the parameter identification problem involves

minimizing the difference between the measured response and predicted response. If

the cell voltage curve obtained through experimental measurement is VE(t) and the

cell voltage curve obtained by solving the mathematical model for a given parameter

set is V (π, t), then the correct parameter set π can be estimated by solving the

optimization problem given by

πest = arg min
π∈Π

∫ T

0

(VE (t)− V (π, t))2 dt (5.1)

The minimization algorithm subsequently updates the parameter set π to

minimize the error norm. It should be mentioned that each computation of that

error norm requires the solution of the mathematical model using the given

parameter set π. For this reason, an algorithm that can efficiently minimize the

error with a few model evaluations is very appealing. This minimization algorithm

must be robust and should be able to avoid local minima. For this reason, a newly

developed hybrid optimizer is used to solve the above optimization problem.

The DFN-model used in this work is defined using 44 parameters. The

parameters to be estimated are: the separator resistance, along with the particle

radii, diffusion coefficients, reaction rates and active mass of both the cathode and

the anode, electrode area, separator porosity and the tortuosity of the cathode,

anode and separator. A total of 15 terms (n = 15) in the Redlich-Kister expansion

are used to define the OCP curve for each the anode and the cathode. The first

RK coefficient for the anode is always set to zero. Thus, the total number of RK

coefficients is 29 for both the anode and the cathode.

The parameter estimation problem is solved by minimizing the L2-norm of the

difference between the calculated and measured voltage curves. The calculated

curve is obtained by solving the mathematical model while the measured voltage
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curve is obtained experimentally. It should be mentioned that the so-called inverse

crime [90] is avoided in this work since the two voltage curves are obtained using

different methods and because of the inherent measurement errors present in the

experimentally obtained voltage curve. The SOHO algorithm will search for the

parameters, within a user-specific bound, that best minimizes this L2-norm.

It should be mentioned that the solution of the DFN model was terminated if

either the time step became less than 10−6 or if the maximum allowable working

time was exceeded. This greatly reduces computing time as infeasible parameter

combinations runs are not evaluated. These termination criteria add additional

degree of non-linearity and discontinuity to the cost function space. It also adds

several flat regions where the gradient is zero. For this reason, a gradient based

method will find it very difficult to converge to the correct values of the model

parameters. The SOHO algorithm is not affected by any of these function space

modifications.

5.2 Parameter Estimation in DFN Model

The DFN model was defined using a total of 44 parameters. The results of the

parameter estimation problem are presented in this section.

Figure 5.2a shows the convergence history for the DFN model estimation

problem, where the residual is defined as the L2-norm of the error between the

measured and calculated voltage. Here, the residual is seen to sharply decrease

within the first 10,000 evaluations. Figures 5.2b, Fig. 5.2c and Fig. 5.2d show

error distributions at three different locations along the convergence history. It can

be seen that even parameter sets in the early regions of the convergence history

(Case 1) have majority of the errors within 50mV, with a significant number of
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them centered close to the 0mV region. In the Case 3, the majority of the errors

are within 25mV.
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Figure 5.2: Parameter estimation of the DFN model showing: a) the convergence history
of the SOHO algorithm, b) error probability distribution of Case 1, c) error probability
distribution of Case 2, d) error probability distribution of Case 3.

The error statistic and the convergence information of the three selected cases

of the DFN model are shown in Table 5.1. Even though the computing time of the

DFN-model is of considerable magnitude, the SOHO algorithm is able to estimate

the parameters in the DFN model in less than one day. This is a significant

improvement in convergence time over the previous studies, which took

approximately three weeks to obtain converged results. It should be mentioned

that the computing time for the Newman model used in [86], i.e. 63 seconds, is

similar to the DFN model used in this work (30 seconds on average).
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Table 5.1: Error statistics of the three selected cases in parameter identification

Case 1 Case 2 Case 3
Evaluations to convergence 8700 21100 83500

Time to convergence (s) 5455 13330 52354
Mean absolute error (mV) 18.91 15.82 6.47

Standard deviation of absolute error (mV) 24.49 10.95 7.16

Figure 5.3 shows the estimated voltage and measured voltage using the 44

converged parameters. It can be seen that the results of the DFN model are

similar to those measured. The charging and discharge peaks coincide well for the

entire time range.
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Figure 5.3: Measured and estimated voltage response obtained using the converged DFN
model

This shows that SOHO is able find optimum solutions even in a highly nonlinear

higher dimensional space. The accelerated convergence of SOHO is clearly visible in

the convergence history as well as the reduction in estimation times from three-weeks

to under one day.
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5.3 Parameter Estimation in Battery Model: Summary

This section utilized the Single-Objective Hybrid Optimizer (SOHO) to perform

parameter estimation in a highly nonlinear electrochemical model of a Li+ battery.

A total of 44 parameters that best minimized the difference between the measured

and calculated voltage were identified. It was shown that the SOHO algorithm is

able to converge to relatively low residual in only 5500 iterations. The converged

parameters from the SOHO algorithm resulted in a mean absolute error of only 6.47

mV. The presented framework reduces the time required to estimate the parameters

from three weeks to less than one day.
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CHAPTER 6

OPTIMIZATION OF SUBSONIC BODIES

Aerodynamic shape optimization has been a popular application of

optimization techniques, often pushing the capabilities of existing software.

Aerodynamic design and analysis requires computational fluid dynamics (CFD)

methods which are often time and memory consuming. Due to the increased

computational cost, the optimization technique should find an optimum solution

with few objective function calculations.

Several researchers have applied techniques of different complexity and fidelity

in their pursuits of an optimum aerodynamic design. Dulikravich performed a

review of approaches used for aerodynamic shape optimization and inverse design

[91, 92]. Their survey demonstrated the effectiveness of accelerated, lower fidelty

models as analysis tools in aerodynamic shape design. Skinner and Behtash [93]

performed a comprehensive review of 229 research articles on the topic of

aerodynamic shape design. They show that various researchers [94, 95] used the

freeform deformation approach to parameterize the aerodynamic shape. The type

of aerodynamic analysis selected for aerodynamic shape design can play a

significant role in the robustness of the design. Where high fidelity analysis such as

finite volume and finite elements is prohibitively expensive, panel methods can be

used to accelerate the flow field calculations with lower fidelity. Panel methods

that solve the potential flow equation have been previously been used for

aerodynamic shape design [96, 97, 98, 99]. Although fast multipole methods exist

to solve the potential flow around a body [100, 101], Skinner and Behtash’s [93]

review does not mention any work involving aerodynamic shape optimization using

the fast multipole method.
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Most non-gradient aerodynamic shape optimization works use surrogate models

to accelerate the computation of the objective functions. Using accelerated CFD

techniques can decrease the time required to design an optimized shape. This section

utilizes the fast multipole method, presented in Section 4.3, to compute the flow field

variables on the aircraft’s surface. The results are compared to those obtained using

surrogate based optimization. The aerodynamic shape optimization in this section

attempts to optimize the wing design of an aircraft for maximum lift and minimum

drag and moment. The problem formulation and the results of the deterministic

and robust optimization are presented herein.

6.1 Problem Definition of Subsonic Aerodynamic Shape

Design

The tools developed and presented thus far are applied to the aerodynamic

optimization of a subsonic aircraft. The wing design of a baseline aircraft

geometry is modified to maximize the coefficient of lift and minimize the

coefficients of drag and moment.

The baseline aircraft features a wing span of 28.8m, a combined surface area,

A, of both wings of 135 m2 and a mean aerodynamic chord (MAC) length of 6m.

The aircraft is assumed to be traveling at a Mach number of 0.6 (U∞ = 205.8m/s)

at a 0o angle of attack. The freestream pressure, p∞, and air density, ρ∞, are held

constant at 1 atm and 1.225 kg/m3 respectively.

The freeform deformation approach presented in Section 4.1 is used to deform

the geometry using a total of 12 control points; six on the upper surface and six

on the lower surface. The deformations were kept symmetric with respect to the

plane along the center line of the aircraft to ensure symmetric wing deformation.
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The 12 control points were only allowed to move either upwards or downwards in

the z-direction by at most 0.25m. Figure 6.1 shows the lattice encapsulating one of

the wings and the possible deformations that are possible with this approach.

(a) (b)
(c)

Figure 6.1: 3-D view of the baseline aircraft geometry with: a) the FFD lattice used, b)
sample deformations on the upper surface of the wing and c) sample deformations on the
lower surface of the wing

The fast multipole method was used to solve the potential flow equation on the

surface of the aircraft. Since the potential flow theory is invalid for transonic regime,

the freestream Mach number was held at 0.6 to ensure no locally transonic regions

develop on the aircraft surface. Once the velocity components are obtained using

the FMM solver, the surface coefficient of pressure, Cp, can be computed using

Cp = 1−
~V · ~V
U2
∞

(6.1)

The aerodynamic coefficients, Cl, Cd and Cm, are computed using

Cl =
FL

1
2
ρU2
∞A

Cd =
Fd

1
2
ρU2
∞A

Cm =
M

1
2
ρU2
∞ALMAC

(6.2)

where FL, Fd and M are the lift force, drag force and the moment respectively. A

surrogate model based on Hardy’s multiquadrics radial basis functions [102] is used

to model the approximate lift, drag and moment coefficients for a particular design.

The shape factor in the radial basis function formulation is tuned using Rippa’s

approach [103]. A total of 1,000 designs were created, using Sobol’s quasirandom
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sequence [104], and analyzed using the fast multipole method. These 1,000 designs

were used to construct the three surrogate models, one each for coefficients of lift,

drag and moment.

6.2 Deterministic Optimization of Subsonic Bodies

The aerodynamic optimization of the aircraft is first done within the

deterministic framework. That is, no uncertainty was assumed in the control point

locations. Due to the increased computational cost of the fast multipole solver

over the surrogate model, the optimization using the potential flow solver was

performed using an initial population of 92 members and was ran for 20

generations. The optimization using the surrogate was performed using 100

members and was ran for a total of 1,000 generations.

The three-dimensional Pareto front obtained using the potential flow solver and

the surrogate model is shown in Fig. 6.2. It can be seen that the two approaches

yield similar Pareto fronts. The extents of the Pareto front limits are larger for the

case using the surrogate model due to the increased population size and generations

of the optimization.
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(a) (b)

Figure 6.2: Pareto front, obtained by each algorithm, within the deterministic framework,
for the subsonic shape optimization problem showing the a) objective function space and
b) normalized objective function space

Figure 6.3 shows the deformations from the baseline geometry, the surface Cp

for the baseline configuration and the two Pareto designs as well as the difference

in Cp between the optimum and the baseline configuration. Here the term

“optimum” means the “preferred” design. It should be mentioned that the entire

Pareto front is, by definition, optimal and that an alternative design that best fits

the designers’ needs can also be selected. It can be seen that both the FMM and

surrogate approach yield similar deformations. The resulting surface coefficient of

pressure is also similar, therefore, yielding similar aerodynamic coefficients.

Although the surface Cp appears similar in all three cases, the difference in Cp,

∆Cp, about the baseline shows stark differences. Firstly, it can be seen that the

pressure on the upper surface of the wing is lower, contributing to increased lift. It

can also be seen the the pressure is lower towards the trailing edge of the wing,

increasing the pitch-down moment and reducing the net moment about the

aircraft’s centroid. Therefore, the results of the optimization coincide well with

theory.
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(a) (b)

(c) (d)
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(e) (f)

Figure 6.3: Surface distribution of the deformation for design obtained using: a) the
potential flow solver and b) the surrogate model; the surface pressure coefficient for: c)
design obtained using the potential flow solver and d) design obtained using the surrogate
model; the surface pressure coefficient difference between the baseline and: e) design
obtained using the potential flow solver and f) design obtained using the surrogate model

Table 6.1 shows the objective functions of two designs selected from a similar

region of the Pareto front. It can be seen that both the lift and moment objectives

were achieved with only a slight increase in drag. The optimized design obtained

using the surrogate was also analyzed using the fast multipole solver. It can be

reported that the coefficients of lift, drag and moment using the potential flow

solver were 0.1501, 4.22E-3 and -9.28E-3 respectively. The relative error from the

potential flow solver for the values obtained from the surrogate for the coefficients

of lift, drag and moment were 4%, 6% and 3% respectively. This shows that the

constructed surrogate is accurate.

Table 6.1: Objective functions values of the baseline aircraft and the two optimized designs
obtained within the deterministic framework

Cl Cd Cm
Baseline 0.1252 3.6E-03 -0.281

OptimalFMM 0.1508 (20%) 4.32E-3 (19%) -9.05E-3 (-96%)
OptimalRBF 0.1555 (24%) 4.39E-3 (21%) -9.91E-3 (-96%)
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6.3 Optimization of Subsonic Bodies Under Uncertainty

Aircraft components typically have a factor of safety of 1.4 to 1.5. Deviation

from design conditions can significantly affect the performance and reliability of the

design. Accounting for uncertainty can lead to a robust design whose performance

does not degrade at off-design conditions. The previous section did not account

for uncertainty in the geometric defects. In this section, the aerodynamic shape

optimization problem is solved within the probabilistic framework.

This section introduces defects in geometry through uncertainty in control

point locations. The uncertainty in geometric parameters, no matter how small,

also introduce uncertainty in the flow solution and therefore the aerodynamic

coefficients. The uncertainty in control points is modeled as additive and Gaussian

with zero mean and some specified standard deviation. Due to the increased

number of samples needed for uncertainty propagation and high computational

cost of the fast multipole method, the probabilistic optimization problem is only

solved using the surrogate model. This is not an issue as the surrogate was

previously verified.

Although the deterministic analysis has been verified, the uncertainty

propagation should also be verified for this particular problem. The stochastic

moments obtained using the Polynomial Chaos Expansion framework are

compared to those obtained using Monte Carlo sampling. The Monte Carlo

sampling is performed using 14,000 and 1,400 points to see the effects of sampling

size. The uncertainty in control points was assumed to be 10% of the maximum

displacement (σ = 0.025m). Figure 6.4 shows the probability distributions of each

objective for the baseline configuration and the previously selected Pareto designs
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from the deterministic optimization. Immediately it can be seen that the certain

PCE methods are not able to correctly model the probability distribution.

The standard second order PCE yields a large standard deviation in the lift

coefficient. Not only is the accuracy of the PCE function specific but it also appears

to be domain specific. For example, the standard linear PCE performs well for

modeling the lift uncertainty in the baseline configuration but under performs in

modeling the probability distribution for the two Pareto designs. It can also be seen

that the PCE performs similarly for all the objectives of a design.

Comparing the probability distributions in Fig. 6.4, it is evident that the

sparse PCE performs best. This is because the over-fitting issue, that is present in

most polynomial interpolation methods, is avoided. Over-fitting tends to give rise

to oscillations as the interpolating polynomial tried to pass exactly through the

samples. The sparse PCE only computes the most significant coefficients and

therefore does not experience large local oscillations. For the case of robust

aerodynamic shape optimization, the sparse PCE of second order will be used to

model the uncertainty in the aerodynamic coefficients.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
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(i)

Figure 6.4: The probability density functions, obtained using different uncertainty
quantification methods, of baseline configuration for : a) Cl, b) Cd and c) Cm;
configuration obtained using potential flow solver for: d) Cl, e) Cd and f) Cm; configuration
obtained using the surrogate for: d) Cl, e) Cd and f) Cm

Table 6.2 shows the stochastic moments for the designs obtained using the

deterministic optimization framework. The designs obtained using robust

optimization will be compared to these designs.

Table 6.2: Mean and standard deviation of the aerodynamic coefficients for the subsonic
designs obtained within the deterministic framework

Coefficient of Lift Coefficient of Drag Coefficient of Moment
Geometry µ σ µ σ µ σ
Baseline 0.1531 9.42E-04 4.34E-03 2.50E-05 -1.09E-02 5.57E-04

OptimalFMM 0.1522 8.85E-04 4.39E-03 3.29E-05 -6.23E-03 9.06E-04
OptimalRBF 0.0394 3.84E-02 4.11E-03 1.24E-04 -1.09E-01 4.01E-02

Figure 6.5 shows the Pareto fronts obtained using 100 population members and

20 population members. The error bars for the standard deviation are easier to see

when less members are visualized. Firstly, it can be seen that the two Pareto fronts

are similar indicating that the optimizer is able to converge to the Pareto front even

with a small search group. Figure 6.5b shows that the lower region of the Pareto

front contains a large amount of uncertainty in the aerodynamic coefficients. The
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area of low uncertainty can be seen to be populated by all algorithms. Three designs

are selected from the Pareto front and analyzed. They are taken from the low drag,

high lift and a middle section of the Pareto front.

(a) (b)

Figure 6.5: Pareto front obtained by each algorithm, within the probabilistic framework,
for the subsonic shape optimization problem using: a) 100 population members and b) 20
population members

Figure 6.6 shows the deformations about the baseline, surface pressure coefficient

and the difference in pressure coefficient about the baseline. Table 6.3 shows the

stochastic moments of the three designs. Figure 6.6 shows that the low drag and

the trade-off design both feature larger deformations of similar magnitude near the

wing tips. The low drag geometry yields a lower coefficient of lift, indicating higher

pressure on the lower surface than the baseline geometry. The pressure on the upper

surface is increased due to the optimized deformation, resulting in a lower pressure

difference, especially at the wing tips. Although this reduction in pressure difference

reduces the overall lift, it also reduces the induced drag due to wing tip effects. This

is the reason that the low drag designs feature deformation at the wing tips. This

is conversely true for the case of high lift. The majority of the deformations are

inboard from the wing tip where the majority of the lift forces are produced. It can
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be seen that the coefficient of pressure decreases on the upper surface of the wing,

resulting in increased lift force. This in turn increases the induced drag due to wing

tip vortices. Once again, the results of the optimization agree with theory.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)
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(i)

Figure 6.6: Surface distribution of the deformation for: a) low drag design, b) high lift
design and c) an optimal trade-off design; the surface pressure coefficient for: d) low
drag design, e) high lift design and f) an optimal trade-off design; the surface pressure
coefficient difference between the baseline and: g) low drag design, h) high lift design and
i) an optimal trade-off design

Table 6.3: Mean and standard deviation of the aerodynamic coefficients for the subsonic
designs obtained within the probabilistic framework

Coefficient of Lift Coefficient of Drag Coefficient of Moment
Geometry µ σ µ σ µ σ
Low Drag 0.1412 2.11E-03 4.15E-03 2.03E-05 -3.37E-03 2.34E-03
High Lift 0.1800 7.29E-04 5.20E-03 3.87E-05 -2.14E-02 5.67E-04
Optimal 0.1508 1.10E-03 4.29E-03 2.62E-05 -9.61E-03 6.59E-04

Figure 6.7 shows the probability density function of each objective for the three

optimized designs and the baseline geometry. It is clear to see that the low drag

design experiences large changes in the moment and lift coefficients. This is also

shown in the Pareto front in Fig. 6.5b where the low drag region features significant

uncertainty in the objectives. It should be mentioned that other Pareto designs can

be selected from the Pareto front that best satisfies the design requirements. It is

proof that the probabilistic design optimization framework developed can efficiently

identify robust designs in all areas of the objective function space.
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(a) (b)

(c)

Figure 6.7: Probability density functions of aerodynamic coefficients for each design,
obtained within the probabilistic framework: a) Cl, b) Cd and c) Cm

6.4 Optimization of Subsonic Bodies: Summary

This section presented the results of MOHO on a subsonic shape optimization

problem. The freeform deformation toolbox was used to parameterize the aircraft

wing geometry. The fast multipole solver was used to perform the external flow

analysis and obtain the aerodynamic coefficients. The three simultaneous

objectives were to maximize the coefficient of lift and minimize the coefficients of

drag and pitching moment. The optimum designs obtained within the
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deterministic framework featured a 20% increase in lift and drag and a 96%

decrease in pitching moment. The design problem was also solved within the

probabilistic framework. The sparse polynomial chaos expansion approach was

verified against results obtained using Monte Carlo sampling. It was shown that

the sparse approach yield more stable result than the standard polynomial chaos

expansion. The sparse polynomial chaos expansion was used to propagate

uncertainty within the probabilistic optimization framework. It was shown that

the robust configurations featured a smaller standard deviation than those design

that were obtained within the deterministic framework. This showed that the

MOHO algorithm is capable of solving problems with several objectives efficiently.

It also shown that the uncertainty quantification framework produces accurate and

stable models for uncertainty propagation.
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CHAPTER 7

OPTIMIZATION OF HYPERSONIC BODIES

With current world events, several nations have invested significant resources

in to the design of hypersonic bodies. The field of hypersonic aerodynamic design

flourished between the 1970 and 1990 with great interest in hypersonic waveriders

[105, 106]. Since then, the design considerations have shifted from waveriders to

rockets and missiles.

Recent works in hypersonic nose-cone body optimization include the work of

Cui and Yang [107] who used a simplex method of Nelder and Mead and a thin

layer Navier-Stokes solver to design arc-wing missiles. The work of Lesieutre et. al

[108] used a panel method with a Sequential Unconstrained Minimization Technique

(SUMT) to perform multidisciplinary design optimization of missile configurations

and fin planforms. Bowcutt [109] also performed multidisciplinary optimization of

air-breathing hypersonic vehicles. Theisinger and Braun [110] performed a multi-

objective optimization of a hypersonic entry aeroshell to maximize drag and stability

upon reentry. Their work utilized a freeform deformation based on Non-Uniform

Rational B-Splines (NURBS) to parameterize the model. The flow-field analysis

was performed using the modified Newton impact theory. Foster and Dulikravich

[111] performed a single objective optimization of a hypersonic nose-cone shape using

a modified Newton impact theory solver and a hybrid genetic and gradient search

algorithm. Sheffer and Dulikravich [112] used Pshenichny-Danilin gradient method

to minimize drag while preserving length and volume of the hypersonic shape.

This section performs multi-objective aerodynamic shape optimization of a

generic nose cone design to minimize the wave drag and maximize the volume.

The hypersonic analysis is accelerated using the previously validated modified
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Newton impact theory presented in Section 4.4. The problem formulation and the

results of the deterministic and robust optimization are presented herein.

7.1 Problem Definition of Hypersonic Shape Design

The MOHO suite is applied to develop optimized bodies for hypersonic flight.

The optimization problem definition and formation is presented here.

This section considers two conflicting objectives for the design problem: minimize

coefficient of drag and maximize volume. The maximize volume requirement is

inspired by the requirement to carry more payload in the case of a suborbital rockets

or more space for warheads in the case of intercontinental ballistic missiles (ICBM).

The freeform deformation (FFD) presented in Section. 4.1 is used to deform the

geometries where the control points are set as the design variables. Since the FFD

approach deforms the original geometry, an inefficient aerodynamic body, a cylinder,

is selected as the starting geometry. This means that the optimization will have to

yield an efficient body despite starting from such an inefficient shape.

The cylinder and the FFD lattice used are shown in Fig. 7.1. The cylinder has

a radius of 0.95m, a length of 18m and a discretized volume of 50.89m3.

Figure 7.1: The surface mesh and lattice points for the cylinder used as the starting point
for hypersonic shape optimization
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The velocity is held constant at Mach 14 (4800m/s). The surface is discretized

using ≈ 13000 triangles. The coefficient of drag is computed using the MNIT solver,

whereas the volume, Vtotal, is computed using only the surface mesh as

Vi =

~X1 ·
(
~X2 × ~X3

)
6

, Vtotal =
N∑
i=1

Vi (7.1)

where Vi is the volume of the ith triangle and Xi are the coordinates of the ith vertex.

The lattice points are only allowed to move in the normal direction ensuring that the

shape is axi-symmetric. The lattice was created using a total of 13, 4 and 4 lattice

points in the x, y, and z directions respectively. The set of control points at each x

station moved axially by the same distance to ensure axi-symmetry. This results in

a total of 13 design variables, the normal displacement of the lattice points at each

axial location. Each lattice point was allowed to move up to 2m either inwards or

outwards.

7.2 Deterministic Optimization of Hypersonic Bodies

The performance of the MOHO suite for the design of an optimized hypersonic

body was first investigated within the deterministic framework. That is,

uncertainties in the volume and drag due to uncertainties in the shape were

neglected. It should be mentioned that no surrogate model was used in this work

since the MNIT solver is able to compute the drag in approximately one to two

seconds. The optimization was performed in a “master-slave” parallel arrangement

where the master performs all the recombination and selection whereas the slaves

compute the objective functions for the designs in parallel.

Figure 7.2 shows the Pareto front for the deterministic problem. The shape of

the Pareto front is as expected, where a larger volume design leads to more drag. It
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can be seen that the Pareto front obtained by MOHO is slightly higher than some of

the other constitutive algorithms such as NSGA-III and SPEA-R. The performance

of MOHO in this problem is comparable to that of NSDE-R1B and NSDE-D3. It

should be mentioned that MOEA-DD performed the worst and failed to obtain

the complete Pareto front for this problem, resulting in all of the Pareto designs

to be concentrated in the high-drag-high-volume region of the front. The designs

obtained by MOEA-DD in that region are still similar to those obtained by the

other algorithms. Despite having algorithms that under performed for this case, the

MOHO algorithm was able to converge to the Pareto front.

(a) (b)

Figure 7.2: Pareto front, obtained by each algorithm, within the deterministic framework,
for the hypersonic shape optimization problem showing the: a) objective function space
and b) normalized objective function space

Figure 7.3 shows the Pareto fronts obtained by MOHO at different generations.

It can be seen that in just 25 generations, MOHO is able to sufficiently converge to

the final converged Pareto front at 300th generation. The Pareto fronts obtained

by MOHO for 50 and 50+ generations are almost indistinguishable. It can also be

seen that the hypervolume at higher generations is drastically greater than the

hypervolume due to the initial population. This shows that MOHO is able to

converge to the Pareto front in fewer function evaluations.
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Figure 7.3: Pareto front obtained by MOHO at different number of generations

Two designs were selected from the Pareto front; one from a low drag region and

one from the optimal region. Here, the term “optimal” again refers to “preferred”

designs. The region on the Pareto front where the two designs were selected from

is shown in Fig. 7.2, and the corresponding geometry is shown in Fig. 7.4. In can

be seen in both cases that the two geometries have a pointed nose cone, and the

majority of the cross-section remains constant along the length. This is because

the local coefficient of pressure is proportional to the local panel inclination angle.

This constant cross-section along the length gives a zero panel inclination angle and

therefore creates minimum drag for the body.
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(a) (b)

Figure 7.4: Pareto designs, obtained within the deterministic framework by MOHO,
selected from the: a) minimum drag region and b) optimal region

The objective function values of the two geometries are given in Table 7.1. It can

be seen that both geometries performed better in both objectives than the starting

point.

Table 7.1: Objective functions for the starting shape and the two optimized hypersonic
designs obtained within the deterministic framework

Geometry Coefficient of Drag Volume (m3)
Cylinder 1.8077 (0%) 50.8 (0%)

Minimum Drag 0.0549 (-97%) 65.8 (+30%)
Optimal 0.1560 (-91%) 87.4 (+72%)

7.3 Optimization of Hypersonic Bodies Under Uncertainty

Although optimization under the deterministic framework can yield well

converged results, it often becomes necessary to account for the uncertainty. In the

previous section, Section 7.2, the uncertainty in volume and drag due to the

uncertainties in geometry were neglected. In this section, they are taken into

account. The uncertainty in geometry is incorporated through the uncertainty in
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FFD control points movement. In this case, the uncertainties in control points

movement are considered additive and Gaussian with zero mean and a specified

standard deviation.

The uncertainty associated with the volume and drag of the designs obtained

using deterministic optimization is computed using various approaches. The

uncertainties in control points, with σ = 0.2m, about their converged values, are

propagated using Polynomial Chaos Expansion (PCE) and Monte Carlo (MC)

sampling. Figure 7.5 shows the probability distribution functions (PDF) of

coefficient of drag and volume, computed using different approaches. The Monte

Carlo method is used here as a benchmark and it can be seen that it converges to

a similar PDF with both 1,400 and 14,000 sampling points. The PDF obtained

using Polynomial Chaos Expansions of first and second order are also shown,

where the Linear and Quadratic represent the standard first and second order

PCE respectively, while the LinearSP and QuadraticSP represent the sparse PCE

of first and second order respectively.

It can be seen that although the standard PCE captures the mean of the PDF

well, the standard deviation is typically larger than that obtained using MC. It is

mainly the case for the PDF of coefficient of drag. The standard PCE using

second order expansion is able to model the PDF of volume well for all three

geometries, whereas the linear expansion only provides accurate results for one

case. The standard PCE, both linear and quadratic expansions, is unable to

capture the PDF of drag for any case, whereas the sparse PCE, of both first and

second order, is able to converge to the PDF obtained using MC well. This is due

to the problem of over-fitting encountered by many polynomial interpolation

techniques. The sparse PCE does not suffer from this since it only considers the

most dominant coefficients. Therefore, for the case of hypersonic shape design
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under uncertainty, the sparse PCE of second order will be used to compute the

stochastic moments of the objectives.

(a) (b)

(c) (d)
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(e) (f)

Figure 7.5: The probability density functions, obtained using different uncertainty
quantification methods, of the coefficient of drag for: a) starting cylinder, b) low drag
design and c) optimal trade-off design; volume for: d) starting cylinder, e) low drag design
and f) optimal trade-off design

Figure 7.6 shows the probability distribution functions for drag and volume with

different levels of uncertainty, σ, in the control points. As expected, the standard

deviation of the volume and drag both drastically increases with increasing σ. The

mean of the volume is relatively unaffected while the mean of the coefficient of drag

is greatly affected. Due to the accuracy of modern manufacturing processes with

high precision, a 5% and 10% relative error (σ = 0.05m and σ = 0.1m), to the

cylindrical radius, are used to model the uncertainty in the control point locations.

(a) (b)
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(c) (d)

(e) (f)

Figure 7.6: The probability density functions, due to varying degree of uncertainty in the
control point, of the coefficient of drag for: a) starting cylinder, b) low drag design and
c) optimal trade-off design; volume for: d) starting cylinder, e) low drag design and f)
optimal trade-off design

Table 7.2 and Table 7.3 show the mean and standard deviation of drag and

volume for the designs obtained using deterministic optimization for an uncertainty

in control points of σ = 0.05m and σ = 0.1m respectively. The robust Pareto

designs will be compared to the stochastic moments of the design obtained using a

deterministic framework.
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Table 7.2: Mean and standard deviation of the objective function, under control point
uncertainty of σ = 0.05m, for the hypersonic designs obtained within the deterministic
framework

Coefficient of Drag Volume (m3)
Geometry µ σ µ σ
Cylinder 1.745 0.078 50.891 0.433

Mimimum Drag 0.057 0.004 65.867 0.272
Optimal 0.157 0.005 87.420 0.413

Table 7.3: Mean and standard deviation of the objective function, under control point
uncertainty of σ = 0.1m, for the hypersonic designs obtained within the deterministic
framework

Coefficient of Drag Volume (m3)
Geometry µ σ µ σ
Cylinder 1.673 0.157 50.894 0.904

Mimimum Drag 0.062 0.012 65.875 0.564
Optimal 0.161 0.011 87.423 0.858

Figure 7.7 shows the Pareto fronts obtained by each algorithm for a relative

error of 5% where the mean and the error bars represent the standard deviation of

the objective. It can be seen that MOEA-DD again fails to preserve diversity in

the Pareto front. Each algorithm is able to find a Pareto front in a different region

of the objective function space. It can also be seen that the Pareto front is sparse,

with regions where no Pareto points are obtained. This is due to the relatively small

population used in the optimization, where not enough members were available to

be distributed on the Pareto front.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Pareto front, obtained within the probabilistic framework, for hypersonic
shape optimization problem by: a) NSGA-III, b) MOEA-DD, c) SPEA-R, d) NSDE-R1B,
e) NSDE-D3 and f) MOHO
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Figure 7.8 shows the Pareto fronts obtained by each algorithm for a relative error

of 5% and 10%. A similar trend can be seen between the Pareto front obtained using

robust optimization and that of the deterministic optimization, Fig. 7.2. It is also

evident that a larger uncertainty in the control points leads to larger uncertainty in

the output, as can be seen by the increased width of the error bars. It can be seen

that MOHO and SPEA-R were able to find designs with lower uncertainty in the

optimum region of the Pareto front. The designs selected from this optimal region

are shown in Fig. 7.8.

(a) (b)

Figure 7.8: Pareto front, obtained by each algorithm, within the probabilistic framework,
for the hypersonic shape optimization problem under a control point uncertainty level of:
a) σ = 0.05m and b) σ = 0.1m

Figure 7.9 shows the designs selected from the optimal region of the Pareto fronts.

It can be seen that the relative shape is similar to that of the designs obtained using

deterministic optimization. Although designs were taken from similar regions of the

Pareto fronts, their overall shape is slightly different.
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(a) (b)

Figure 7.9: Pareto designs, obtained within the probabilistic framework by MOHO, under
a control point uncertainty level of: a) σ = 0.05m and b) σ = 0.1m

Table 7.4 shows the mean and standard deviation of the objective functions for

different levels of uncertainty and their relative changes with respect to the mean

and standard deviation of the deterministic designs as shown in Table 7.2 and Table

7.3. It can be seen that in most cases, both the mean and the standard deviation

has decreased. This is with respect to an already optimized geometry. The relative

change is greater for cases with greater uncertainty in the the control point location.

Again, MOHO and the probabilistic framework are able to identify designs that are

both optimal and stable under uncertainty.

Table 7.4: Mean and standard deviation of the objective function, under varying degrees
of control point uncertainty, for the hypersonic designs obtained within the probabilistic
framework

Coefficient of Drag Volume (m3)
Geometry µ σ µ σ

Optimal (σ=0.05m) 0.1477 (-6%) 0.010 (+10%) 82.1 (-6%) 0.400 (-2%)
Optimal (σ=0.10m) 0.1201 (-25%) 0.010 (-7%) 79.6 (-9%) 0.7 (-18%)

Figure 7.10 shows the probability distributions for the optimal design obtained

within the deterministic framework and the ones obtained using robust optimization.

112



In each case the mean drag and volume of the robust optimum is less than that of the

deterministic optimization. This is expected, as the deterministic approach yields

the best possible design since it does not account for random deviations from the

designs.

(a) (b)

(c) (d)

Figure 7.10: Probability density functions for each design, obtained within the
probabilistic framework, of coefficient of drag under a control point uncertainty level of:
a) σ = 0.05m and b) σ = 0.1m; volume under a control point uncertainty level of: c)
σ = 0.05m and d) σ = 0.1m
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7.4 Optimization of Hypersonic Bodies: Summary

This section presented the results of MOHO on a hypersonic shape

optimization problem. The freeform deformation toolbox was used to parameterize

the projectile geometry. The modified Newton impact theory solver was used to

obtain the wave drag. The two simultaneous objectives were to maximize the

volume of the projectile and minimize the coefficients of drag. Starting from an

inefficient shape, the optimum designs obtained within the deterministic

framework featured a 72% increase in volume and a 91% decrease in drag. The

designs obtained within the probabilistic framework featured a 9% decrease in

volume and a 25% decrease in drag relative to the deterministic optimum. The

probabilistic optimization framework was also able to find designs more robust

than those found within the deterministic framework. A comparison of the Pareto

fronts showed that MOHO is able to converge to the Pareto front with only

relatively low number of function evaluations. This proved that the MOHO

algorithm drastically decreases the time and function evaluations needed for

convergence.

114



CHAPTER 8

CONCLUSION

In this section the main findings of the dissertations are presented and some

areas for further improvement and future research suggested.

8.1 Summary of Thesis

In this work, a novel robust optimization algorithm was developed for solving

optimization problems with several objectives. The objective of this research was

to develop an algorithm that is robust, requires little user input, can solve

many-objective optimization problems and account for uncertainty. Since the

objective function characteristics are usually not known, a robust method that can

adapt is required to arrive at the optimum. This robust method was developed by

combining five different algorithms, all performing under different principles, into a

single optimizer, MOHO. MOHO learns and adapts to the objective function

topology by actively switching between the five constitutive algorithms.

The MOHO suite consists of the NSGA-III, MOEA-DD, SPEA-R, NSDE-R1B

and NSDE-D3 algorithms, which can be ran individually or hybridized. The

MOHO algorithm monitors the hypervolume of non-dominated solutions. A larger

value of hypervolume indicates a better converged and diverse Pareto front. If the

hypervolume obtained by an algorithm increases from the previous generation, the

current algorithm is allowed to continue. If the hypervolume does not improve, the

algorithm with the largest probability of success is selected for the next generation.

This gives the algorithm that performs best for the current test problem to have a

higher probability to be selected.

It was shown that MOHO performed better than the other five algorithms in

approximately 50% of the analytical test cases and no worse for the other test cases.
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It was shown that some algorithms in the MOHO suite under perform for certain

test cases, yet MOHO itself is able to select the best performing algorithm for the

current test problem. This was seen by the fact that MOHO never severely under

performed on any test problem. MOHO was shown to perform well for problems

with constraints and several objectives.

The inevitable uncertainty that is present in real-world design problems is also

modeled in this work. An efficient framework based on sparse polynomial chaos

is used to propagate the uncertainty in the objectives due to the uncertainty in

the design variables. The sparse approach was verified against results obtained

using Monte Carlo sampling and was shown to be more accurate than the standard

polynomial chaos expansion. This is due to the over-fitting and the oscillations that

are present in several polynomial interpolation techniques. The sparse polynomial

chaos expansion was used in the robust optimization of subsonic and hypersonic

bodies.

The single objective version of MOHO, named SOHO, was used to

non-intrusively estimate 44 parameters in a highly non-linear electrochemical

model of a Lithium-Ion battery. It was shown that the converged parameters

resulted in a mean absolute error of 6.47 mV. The SOHO algorithm also reduced

the time required to estimate the parameters in the model from three-weeks, using

traditional methods, to under one day.

The developed MOHO algorithm and the sparse polynomial chaos package

developed was applied to the robust optimization of subsonic and hypersonic

aerodynamic shapes. An accelerated potential flow solver was developed by solving

the boundary integral equation using the fast multipole method (FMM). The

computational time for the FMM solver was shown to increase linearly with the

number of elements while the computational time increases cubically for the
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standard boundary element solver. The FMM solver was also verified against an

analytical solution of flow around an ellipsoid. A subsonic aircraft was optimized

for maximum lift, minimum drag and minimum moment. The wing was

parameterized using the freeform deformation approach (FFD). It was shown that

the lift and drag increased by 20% while the coefficient of moment decreased by

96%. It was also shown that the robust optimization framework was able to

identify designs with less uncertainty in the performance than the design arrived

at using the deterministic framework.

The robust optimization framework was also used to design a robust

hypersonic body for minimum drag and maximum volume. An analysis code based

on modified Newton impact theory (MNIT) was used to obtain the coefficient of

pressure and compute the drag on the hypersonic body. The MNIT solver was

validated against experimental data obtained for hypersonic flow around a sphere

and a sphere-cone body. The hypersonic body was parameterized using the

freeform deformation approach where the underlying starting geometry was a

simple cylinder. The deterministic optimization was able to find designs which

reduced drag by 91% and increased volume by 71%. The design obtained using

robust optimization featured similar objective function values as the designs

obtained using the deterministic framework but with greater certainty in the

values.

It was shown that MOHO coupled with the sparse-polynomial chaos approach is

able to solve several types of optimization problems of high dimensionality. It is able

to solve single, multi-objective and many-objective, constrained and unconstrained,

deterministic and probabilistic optimization problems. The toolbox is written using

object-oriented programming and can be easily extended to include more algorithms

and other switching criteria.
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8.2 Future Work

The work on Many-Objective Hybrid Optimizer (MOHO) can be further

expanded. Some interesting areas of research might include the following:

1. Use more constitutive algorithms: The MOHO suite can include

additional algorithms that operate under different principles. Increasing the

number of algorithms that are available for selection can increase the number

of different problems MOHO is able to solve.

2. Metrics for evaluating Pareto superiority: Currently only the

hypervolume, since it measures both convergence and diversity, is used to

compare two Pareto fronts. In the future, it might be beneficial to monitor

the convergence and diversity separately to gain more insight into the

performance of the constitutive algorithms.

3. Additions to switching criteria: Currently, the algorithm that has the

highest probability of success is selected when an improvement in the Pareto

front is not made. If the convergence and diversity are monitored separately, an

algorithm that performs best at improving convergence or diversity (whichever

is lacking) can be selected.

4. Additions to local search algorithm: Currently, the MOHO suite only

includes global search algorithms. Although the distribution indices for

simulated binary crossover and polynomial mutation can be used to create

designs closer to its parents and implicitly perform a local search, a true

local search algorithm should also be added. This can include a

multi-objective gradient based algorithm or simulated annealing.
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APPENDIX A

APPENDICES

Performance of MOHO on DTLZ Test Problem

The IGD values obtained by each algorithm on the DTLZ test problem are

shown in Table A.1, where the best performing algorithm for each test problem is

highlighted in red.
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Performance of MOHO on WFG Test Problem

The hypervolume values obtained by each algorithm on the WFG test problem

are shown in Table A.2, where the best performing algorithm for each test problem

is highlighted in red.

Table A.2: Mean and standard deviation of the hypervolume obtained by each
algorithm for the WFG problems. Best performance is coloured in red

Problem M NSGA-III MOEA-DD SPEA-R NSDE-R1B NSDE-D3 MOHO

WFG1 3 0.4821 (0.0028) 0.4612 (0.0037) 0.4584 (0.0018) 0.4695 (0.0021) 0.4824 (0.0033) 0.4979 (0.0022)

5 0.4245 (0.0019) 0.4164 (0.0018) 0.4017 (0.0019) 0.4005 (0.0013) 0.4235 (0.0024) 0.4208 (0.0018)

8 0.3517 (0.0025) 0.3440 (0.0037) 0.3365 (0.0031) 0.3252 (0.0059) 0.3521 (0.0021) 0.3613 (0.0068)

10 0.3227 (0.0036) 0.3362 (0.0046) 0.3075 (0.0021) 0.2951 (0.0019) 0.3232 (0.0033) 0.3379 (0.0060)

15 0.2714 (0.0090) 0.2856 (0.0052) 0.2698 (0.0022) 0.2528 (0.0054) 0.2665 (0.0085) 0.2913 (0.0131)

WFG2 3 0.9134 (0.0580) 0.9314 (0.0049) 0.8643 (0.0634) 0.9512 (0.0021) 0.9001 (0.0662) 0.9514 (0.0038)

5 0.9777 (0.0016) 0.9214 (0.0036) 0.9565 (0.0048) 0.9814 (0.0026) 0.9779 (0.0020) 0.9894 (0.0030)

8 0.9752 (0.0036) 0.9270 (0.0071) 0.9481 (0.0401) 0.9896 (0.0156) 0.9582 (0.0554) 0.9597 (0.0406)

10 0.9792 (0.0027) 0.9445 (0.0048) 0.9672 (0.0042) 0.9997 (0.0006) 0.9793 (0.0032) 0.9755 (0.0050)

15 0.9101 (0.0515) 0.9101 (0.0402) 0.9758 (0.0033) 0.9289 (0.0247) 0.9302 (0.0131) 0.9133 (0.0417)

WFG3 3 0.6869 (0.0057) 0.6780 (0.0132) 0.6606 (0.0048) 0.6752 (0.0063) 0.6895 (0.0042) 0.7007 (0.0067)

5 0.6479 (0.0096) 0.6502 (0.0051) 0.6365 (0.0115) 0.5941 (0.0102) 0.6478 (0.0073) 0.6239 (0.0093)

8 0.4942 (0.0222) 0.5566 (0.0122) 0.5641 (0.0189) 0.4600 (0.0150) 0.4896 (0.0264) 0.4797 (0.0202)

10 0.4732 (0.0455) 0.5459 (0.0087) 0.5542 (0.0165) 0.4500 (0.0160) 0.4687 (0.0403) 0.4316 (0.0418)

15 0.3371 (0.0442) 0.2104 (0.0250) 0.4760 (0.0144) 0.3085 (0.0401) 0.3179 (0.0392) 0.3419 (0.0474)

WFG4 3 0.7027 (0.0026) 0.7043 (0.0031) 0.6938 (0.0040) 0.7031 (0.0038) 0.7046 (0.0044) 0.7058 (0.0039)

5 0.8291 (0.0029) 0.8211 (0.0036) 0.8381 (0.0036) 0.8435 (0.0028) 0.8283 (0.0042) 0.8521 (0.0029)

8 0.8421 (0.0062) 0.7769 (0.0093) 0.8707 (0.0064) 0.8772 (0.0033) 0.8441 (0.0078) 0.8821 (0.0200)

10 0.8733 (0.0064) 0.7729 (0.0077) 0.9141 (0.0059) 0.9011 (0.0041) 0.8761 (0.0053) 0.9054 (0.0173)

15 0.8554 (0.0106) 0.6599 (0.0437) 0.9205 (0.0039) 0.9308 (0.0042) 0.8489 (0.0123) 0.8400 (0.0373)

WFG5 3 0.6782 (0.0050) 0.6759 (0.0046) 0.6709 (0.0040) 0.6826 (0.0047) 0.6785 (0.0037) 0.6831 (0.0036)

5 0.8077 (0.0040) 0.7877 (0.0037) 0.8035 (0.0028) 0.8155 (0.0035) 0.8076 (0.0034) 0.8106 (0.0057)

8 0.8291 (0.0056) 0.7033 (0.0094) 0.8230 (0.0047) 0.7601 (0.0153) 0.8288 (0.0050) 0.7484 (0.0139)

10 0.8496 (0.0053) 0.6898 (0.0128) 0.8608 (0.0041) 0.7412 (0.0176) 0.8483 (0.0046) 0.7574 (0.0212)

15 0.8053 (0.0241) 0.4431 (0.0435) 0.8401 (0.0044) 0.7076 (0.0194) 0.8117 (0.0180) 0.6549 (0.0425)

WFG6 3 0.6777 (0.0041) 0.6724 (0.0096) 0.6636 (0.0043) 0.6781 (0.0126) 0.6794 (0.0041) 0.7161 (0.0047)

5 0.8079 (0.0069) 0.7849 (0.0068) 0.8070 (0.0035) 0.7797 (0.0180) 0.8097 (0.0062) 0.8680 (0.0038)

8 0.8505 (0.0102) 0.7280 (0.0153) 0.8460 (0.0053) 0.8323 (0.0386) 0.8490 (0.0093) 0.9106 (0.0072)

10 0.8774 (0.0059) 0.7199 (0.0157) 0.8814 (0.0040) 0.8718 (0.0015) 0.8750 (0.0070) 0.9423 (0.0044)

15 0.8879 (0.0112) 0.4973 (0.0684) 0.8844 (0.0060) 0.8682 (0.0005) 0.8898 (0.0103) 0.9152 (0.0319)

WFG7 3 0.7145 (0.0037) 0.7032 (0.0156) 0.6831 (0.0160) 0.7239 (0.0030) 0.7147 (0.0034) 0.7272 (0.0039)

5 0.8558 (0.0031) 0.8338 (0.0036) 0.8425 (0.0048) 0.8593 (0.0038) 0.8552 (0.0033) 0.8721 (0.0044)

8 0.8897 (0.0040) 0.8004 (0.0063) 0.8990 (0.0041) 0.8555 (0.0078) 0.8907 (0.0048) 0.8965 (0.0131)

10 0.9195 (0.0034) 0.8025 (0.0079) 0.9460 (0.0022) 0.8884 (0.0062) 0.9208 (0.0037) 0.9439 (0.0039)

15 0.9348 (0.0036) 0.7094 (0.0336) 0.9636 (0.0024) 0.9812 (0.0031) 0.9348 (0.0034) 0.9556 (0.0101)

WFG8 3 0.6659 (0.0043) 0.6614 (0.0179) 0.6594 (0.0061) 0.6725 (0.0036) 0.6662 (0.0039) 0.6740 (0.0041)

5 0.7784 (0.0046) 0.7815 (0.0052) 0.7887 (0.0044) 0.7670 (0.0027) 0.7781 (0.0034) 0.7857 (0.0057)

8 0.7660 (0.0098) 0.7205 (0.0287) 0.8074 (0.0046) 0.7198 (0.0082) 0.7665 (0.0072) 0.7641 (0.0144)

10 0.7902 (0.0093) 0.7045 (0.0395) 0.8582 (0.0048) 0.7219 (0.0070) 0.7918 (0.0105) 0.8027 (0.0155)

15 0.8202 (0.0082) 0.5248 (0.0572) 0.8588 (0.0106) 0.7738 (0.0217) 0.8210 (0.0097) 0.7770 (0.0203)

WFG9 3 0.6596 (0.0171) 0.6571 (0.0211) 0.6313 (0.0038) 0.6397 (0.0029) 0.6468 (0.0161) 0.6724 (0.0215)

5 0.7395 (0.0096) 0.7532 (0.0051) 0.7278 (0.0093) 0.7428 (0.0050) 0.7360 (0.0107) 0.7583 (0.0237)

8 0.7244 (0.0118) 0.6352 (0.0187) 0.6815 (0.0230) 0.7231 (0.0094) 0.7332 (0.0216) 0.7231 (0.0156)

10 0.7499 (0.0207) 0.6250 (0.0123) 0.7131 (0.0194) 0.7248 (0.0054) 0.7428 (0.0184) 0.7389 (0.0143)

15 0.6914 (0.0190) 0.4780 (0.0361) 0.6717 (0.0221) 0.6615 (0.0112) 0.7029 (0.0190) 0.6749 (0.0239)
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