
UNIVERZA V MARIBORU

FAKULTETA ZA ELEKTROTEHNIKO,

RAČUNALNIŠTVO IN INFORMATIKO

Marko Sagadin

Energy efficient system for

detection of elephants with

Machine Learning

Energetsko učinkovit sistem za

detekcijo slonov s pomočjo

strojnega učenja

Master’s thesis

Maribor, December 2020

Marko Sagadin

Energy efficient system for

detection of elephants with

Machine Learning

Energetsko učinkovit sistem za

detekcijo slonov s pomočjo

strojnega učenja

Master’s thesis

Maribor, December 2020

Energy efficient system for

detection of elephants with

Machine Learning

Energetsko učinkovit sistem za

detekcijo slonov s pomočjo

strojnega učenja

Master’s thesis

Student: Marko Sagadin

Study Programme: Second Cycle Bologna Study Programme of

Electrical Engineering

Module of study program: Electronics

Mentor: Dr. Iztok Kramberger

Co-mentor: MECE. Vojislav Dragan Milivojević

Lector: Mrs. Shelagh Hedges

Zahvala

To magistrsko delo ne bi bilo možno brez pomoči nekaterih ljudi. Prvo bi se rad

zahvalil mentorju Iztoku Krambergerju in somentorju Vojislavu Draganu Milivojeviču

za njune neprecenljive nasvete in napotke. Posebej bi se rad zahvalil Luki Mustafi,

mojemu šefu in nenapisanemu mentorju. Hvala ti za nasvete, za mnoge sestanke,

da si skrbel da je napisano dosegalo visoke standarde in za vedno prižgan AWS

server. Rad bi se zahvalil mojim sodelavcem na Irnasu za njihovo podporo, še posebej

mojima prijateljema Njecu in Vidu, da sta si vzela čas in pregledala mojo delo.

Rad bi se zahvalil Arribadi Initiative, ki je priskrbela nabor termalnih slik in tako sploh

omogočila nastanek tega dela. Hkrati bi se tudi rad zahvalil Danileu Situnayakeju in

Janu Jongboomu, za odgovore na vsa moja vprašanja v zvezi s TinyML-om.

Rad bi se zahvalil mojim staršem za njihovo podporo in spodbudo skozi vsa leta

mojega šolanja. Brez vaju dveh ne bi bil tukaj, kjer sem sedaj.

Nazadnje se želim zahvaliti moji punci Hristini, ker je verjela vame in me podpirala

med pisanjem magistrskega dela.

i

Acknowledgement

This Master’s thesis would not be possible without the assistance of certain people.

Firstly, I would like to thank Mentor Iztok Kramberger and Co-mentor Vojislav

Dragan Milivojević for their invaluable guidance and feedback. Special thanks go

to Luka Mustafa, my boss and unwritten mentor. Thank you for your advice, for

numerous feedback sessions, for making sure that the writing is up to a high standard

and for the 24/7 AWS server. I would like to thank my colleagues at Irnas for their

support, especially my friends Nejc and Vid, for taking the time to read and correct

my work.

I want to thank the Arribada Initiative for providing me with the thermal image

dataset, thus making this thesis possible in the first place. Additionally I would like

to thank Daniel Situnayake and Jan Jongboom, for answering all my TinyMl related

questions.

I want to thank my parents for supporting and encouraging me through the years of

my education. Without you, I would not be here, where I am today.

Lastly I want to thank my girlfriend Hristina for believing in me and supporting me

during thesis writing.

ii

Energetsko učinkovit sistem za detekcijo slonov
s pomočjo strojnega učenja

Ključne besede: strojno učenje, mikrokrmilnik, inferenca na napravi, termalna

kamera, sistem z majhno porabo

UKD: 004.85:004.932(043.2).

Povzetek

1. Uvod

Konflikti med ljudmi in sloni predstavljajo velik problem ohranjanja populacije slonov.

Zaradi fragmentacije in pomanjkanja habitata sloni, v iskanju hrane, pogosto zaidejo

na rǐzeva polja in plantaže, kjer pridejo v stik s človekom. Po podatkih skupnosti

WILDLABS, zaradi konfliktov, samo v Indiji, letno umre povprečno 400 ljudi in

100 slonov. Sistemi zgodnje opozoritve nadomeščajo vlogo človeških stražarjev in

opozarjajo blǐznjo skupnost o blǐzini, potencialno nevarnih, slonov in tako pripomorejo

k zmanǰsevanju konfliktov med ljudmi in sloni.

V tem magistrskem delu predstavljamo strukturo sistema zgodnje opozoritve, ki je

sestavljen iz večih, nizko porabnih, vgrajenih sistemov, ki so opremljeni s termalnimi

kamerami in ene dostopne točke oz. prehoda (gateway). Vgrajeni sistemi so postavljeni

na terenu, ob zaznavi slona pošljejo opozorilo preko brezžičnega omrežja do dostopne

točke, ki nato lahko opozori lokalno skupnost. Za prepoznavo slonov iz zajetih termalnih

slik smo uporabili metode strojnega učenja, bolj specifično konvolucijske nevronske

mreže. Glavni cilji tega magistrskega dela so bili zasnova, izvedba in ovrednotenje

modelov strojnega učenja, ki jih je možno poganjati na mikrokrmilnkih pod pogoji

nizke porabe.

iii

2. Teoretični opis gradnikov sistema

V tem poglavju opisujemo osnovna znanja, ki jih bralec potrebuje za razumevanje tega

magistrskega dela. Opǐsemo kako lahko strojno učenje pomaga reševati probleme, ki bi

s klasičnimi tehnikami zahtevali kompleksne rešitve. Podrobno predstavimo izvajanje

modelov strojnega učenja v vgrajenih sistemih. Ugotovimo, da kljub omejitvam kot

so nizke procesorske moči in majhni spomini, prednosti kot so hitra odzivnost na

dogodke, zmanǰsanje porabe zaradi manšje potrebe po pošiljanju podatkov v oblak in

povečane stopnje zasebnosti, hitro odtehtajo slabosti. Lotimo se opisa nevronskih

mrež, aktivacijskih funkcij, konvolucijskih nevronskih mrež in tehnik prenosnega

učenja. Predstavimo tudi platformo TensorFlow Lite for microcontrollers, ki nam

je omogočila implementacijo nevronskih mrež na mikrokrmilnikih. Naredimo pregled

možnih brezžičnih tehnologij in argumentiramo zakaj smo se odločili za LoRaWAN.

Nazadnje opǐsemo delovanje termalnih kamer in predstavimo kako je potekala izbira

optimalne termalne kamere. Izbrana kamera je bila FLIR Lepton.

3. Zasnova modela nevronske mreže

V tem poglavju podrobno opǐsemo celoten proces zasnove modela, ki je sposoben

klasificirati termalne slike in predvideti kateri objekt je na sliki. Pri zasnovi smo se

omejili na prepoznavo 4 različnih razredov: sloni, ljudje, krave in narava oz. nakjučni

objekt. Zadali smo si cilj, da klasificiranje termalne slike ne sme trajati več kot 1

sekundo in da mora biti model dovolj majhen, da ga lahko naložimo na mikrokrmilnik.

Na začetku opǐsemo orodja in delovno okolje, ki smo jih uporabljali pri zasnovi modela

(uporabljali smo platformo TensorFlow), nato pa se lotimo analize nabora termalnih

slik, ki jih je zbralo podjetje Arribada Initiative. Iz nabora termalnih slik smo izbrali

slike, ki so ustrezale našim zahtevam. Nabor termalnih slik je vseboval veliko število

slik slonov in ljudi, ampak ne veliko slik krav ali narave. Slednje smo posneli sami na

terenu, s hitrim prototipom, ki smo ga izdelali sami.

Opisali smo kako smo so slike pripravili za učenje modela in predstavili smo osnovno

arhitekturo modela. Odločili smo se za klasično convolucijsko arhitekturo, kjer se

konvolucijski sloji in pooling sloji ponovijo nekajkrat nato pa se priklučijo na tesno

iv

povezani neuronski sloj. Opisali smo tudi, kako poteka optimizacija modelov, ki bodo

tekli na mikrokrmilnikih.

Nazadnje ponovno opǐsemo potek zasnove modela od začetka do konca, ampak tokrat

to storimo s Edge Impulse Studijem.

4. Zasnova in izvedba sistema zgodnje opozoritve

V četrtem poglavju predstavimo sprva generalne gradnike sistema in njihove funkcije,

nato pa predstavimo konkretne komponente. Odločili smo se za sistem z dvema

mikrokrmilnikoma. Mikrokrmilnik NRF52840 kontrolira delovanje celotnega sistema

in preživi večino časa v režimu nizke porabe. Ob signalu iz PIR sensorja se zbudi iz

spanja in vklopi drugi mikrokrmilnik, STM32F767ZI. STM32F767ZI je visoko zmogljiv

mikrokrmilnik s Cortex-M7 jedrom. Povezan je s FLIR Lepton termalno kamero in

kontrolira zajemanje slik ter njiovo procesiranje s nevronsko mrežo. STM32F767ZI

sporoči rezultate klasifikacije nRF52840 mikrokrminlniku, ki jih obdela in nato pošlje

preko LoRaWAN omrežja na dostopno točko. Za LoRa brezžični modul smo uporabili

LR1110 čip.

Veliki del magistrskega dela se je ukvarjal s prenosom TensorFlow Lite for Micro-

controllers platfrome na platformo naše izbire, libopencm3. V procesu prenosa smo

se podrobno spoznali s prevajanjem in povezovanjem kode, saj nismo uporabljali

programskega okolja, ki bi to naredilo za nas. Tako smo ustvarili odprto-kodni projekt

MicroMl, ki omogoča uporabo TensorFlow lite kode na platformi libopencm3. Sestava

in uporabo MicroML-a smo podrobno opisali. MicroMl smo uporabili pri pisanju kode

za mikrokrmilnik STM32F767ZI, za nRF52840 pa smo uporabili operacijski sistem

Zephyr.

5. Meritve in rezultati

Izvedli smo vrsto različnih meritev in testov. V 3. poglavju smo predstavili osnovno

arhitekturo modela, ampak nismo določili točnih vrednosti hiperparametrov. Ker je

iskanje optimalnih hiperparametrov nehevristična naloga, smo določili možni razpon

hiperparametrov in izvedli algoritem naključnega iskanja, ki je naučil večje število

v

modelov z različnimi hiperparameteri. V prvem koraku smo naučili 300 modelov,

največja dosežena natančnost modela je bila 98.35 %. Opazili smo da nekaj je nekaj

modelov doseglo primerljive rezultate, s mnogo manǰsim številom parametrov. Ker se

manǰse število parametorv prevede v kraǰsi čas inference, smo ponovili iskanje, tokrat

z zmanǰsanjim možnim razponom hiperparametrov. Iz rezultatov smo izbrali nekaj

obetajočih modelov in jih primerjali s modeli, ki smo jih ustvarili s Edge Impulse

Studijem.

Vse izbrane modele smo tudi stestirali na mikrokrmilniku, beležili smo čas inference

in velikost kode v flash in ram pomnilniku. Večina modelov je izvedla inferenco pod

200 milisekundami. Skoraj vsi modeli so zasedli manj kot 1 MB flash pomnilnika. Vsi

Edge Impulse modeli so zasedli manj ram pomnilnika v primerjavi z našimi modeli,

saj so uporabljali drugačen pristop izvajanja inference.

Za najbolj uspešne modele so se izkazali modeli, ki so bili trenirani s tehniko prenosnega

učenja. Dosegali so visoke natančnosti in se kljub večjemu številu parametrov izvajali

hitreje kot klasični konvolucijski modeli s manǰsimi števili parametrov.

Želeli smo predvideti življensko dobo sistema z baterijskim napajanjem, zato smo

izvedli več testov porabe. Skupna poraba nRF52840 mikrokrmilnika in LR1110 modula

je bila večja kot pričakovana, okoli 207 µA, pričakovali smo porabo pod 10 µA.

Povprečna poraba celotne sekvence detekcije, kjer je mikrokrmilnik naredil 5 slik in

na vsaki izvajal inferenco, ter nato poslal sporočilo preko LoRaWAN omrečja, je bila

52 mA in je trajala 8 sekund. Za izračun smo si izbrali litijsko baterijo s nominalno

kapaciteto 3350 mA h. V izračunu smo predvideli število detekcij na dan, omejili smo

se na 100, 200, 300, 400, 500 in 600 detekcij. Hkrati smo predpostavili, da lahko ima

naš sistem do 6 baterij. Izračunana življenska doba sistema z šestimi baterijami in 600

detekcijami na da je bil 10 mesecov, v primeru 100 detekcij je bila 44 mesecov.

6. Povzetek

V tem magistrskem delu smo predstavili rešitev, sistem zgodnje opozoritve, ki bi

lahko pripomogla k zmanǰsevanju konfliktov med ljudmi in sloni. Prikazali smo

celotni postopek od analize problema, predloga rešitve, analize nabora termalnih slik,

vi

procesiranja slik in zasnova modela. Opisali smo implementacijo izvedbe inference,

kako smo izvedli prenos TensorFlow-a na našo platformo in celotno programsko kodo

vgrajenega sistema. Podrobno smo primerjali naučene modele in jih stestirali na

mikrokrmilniku. Izračunali smo predvideno življensko dobo sistema iz zajetih meritev

porabe.

Magistrska naloga zajema več različnih področij, vsako je možno izbolǰsati. Da bi

izbolǰsali natančnost modelov, bi bilo potrebno zbrati več termalnih slik in podrobneje

raziskati tehniko prenosnega učenja, saj je ta pokazala zelo dobre rezultate.

Iz vidika porabe sistema, bi bilo potrebno nadalje zmanǰsati porabo celotne detekcije

in porabo v režimu nizke porabe. To je izvedljivo s izdelavo primernega tiskanega

vezja, kakor tudi proučevanjem nepotrebne programske kode.

Seveda je potrebno celotni sistem stestirati na terenu, tako bi pridobili nove ideje in

zahteve za izbolǰsave.

vii

Energy efficient system for detection of elephants
with Machine Learning

Key words: machine learning, microcontroller, on-device inference, thermal camera,

low-power system

UKD: 004.85:004.932(043.2).

Abstract

Human-Elephant Conflicts are a major problem in terms of elephant conservation.

According to WILDLABS, an average of 400 people and 100 elephants are killed

every year in India alone because of them. Early warning systems replace the role of

human watchers and warn local communities of nearby, potentially life threatening,

elephants, thus minimising the Human-Elephant Conflicts.

In this Master’s thesis we present the structure of an early warning system, which

consists of several low-power embedded systems equipped with thermal cameras and a

single gateway. To detect elephants from captured thermal images we used Machine

Learning methods, specifically Convolutional Neural Networks. The main focus of this

thesis was the design, implementation and evaluation of Machine Learning models

running on microcontrollers under low-power conditions. We designed and trained

several accurate image classification models, optimised them for on-device deployment

and compared them against models trained with commercial software in terms of

accuracy, inference speed and size. While writing firmware, we ported a part of the

TensorFlow library and created our own build system, suitable for the libopencm3

platform. We also implemented reporting of inference results over the LoRaWAN

network and described a possible server-size solution. We finally a constructed fully

functional embedded system from various development and evaluation boards, and

evaluated its performance in terms of power consumption. We show that embedded

systems with Machine Learning capabilities are a viable solution to many real life

problems.

viii

List of Abbreviations

WWF World Wide Fund for Nature

HEC Human-Elephant Conflicts

ML Machine Learning

NN Neural Networks

CNN Convolutional Neural Networks

DNN Deep Neural Networks

IoT Internet of Things

RMS Root Mean Square

ReLu Rectified Linear Activation Unit

ISM Industrial, Scientific and Medical

3GPP The 3rd Generation Partnership Project

LoRa Long Range

IR Infrared

EM Electromagnetic

LWIR Long Wave Infrared Region

ROIC Readout Integrated Circuit

VOx Vanadium-Oxide

NETD Noise Equivalent Temperature Difference

CPU Central Processing Unit

FPA Focal Point Array

TWI Two Wire Interface

ix

LFRC Low Frequency Resistance-Capacitance Oscillator

GPIO General Purpose Input/Output

UART Universal Asynchronous Receiver/Transmitter

SPI Serial Peripheral Interface Bus

PIR Passive Infrared Sensor

I2C Inter-Integrated Circuit

MOSI Master Out Slave Input

MISO Master Input Slave Out

USB Universal Serial Bus

FPA Focal Point Array

GCC the Gnu Compiler Collection

TTN The Things Network

DK Development Kit

EVK Evaluation Kit

GNSS Global Navigation Satellite System

DWT Data Watchpoint Trigger

TTN The Things Network

SQL Structured Query Language

CSV Comma Separated Value

x

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Early warning system . 3

1.3 IRNAS and the Arribada Initiative 4

1.4 Reasoning for the Machine Learning approach 5

1.4.1 Implementation of Machine Learning algorithms 6

1.4.2 Edge Impulse . 7

1.5 Objective . 7

1.6 Master’s thesis outline . 8

2 Theoretical description of system building blocks 9

2.1 Machine Learning . 9

2.1.1 General Machine Learning workflow 11

2.1.2 TinyML . 12

2.2 Neural Networks . 13

2.2.1 Activation functions . 14

2.2.2 Backpropagation . 15

2.2.3 Convolutional Neural Networks 17

2.2.3.1 Convolutional layers 18

2.2.3.2 Pooling layers . 19

2.3 Transfer Learning . 21

2.4 TensorFlow . 22

2.4.1 TensorFlow Lite for Microcontrollers 23

2.4.1.1 Post-training quantization 25

xi

2.5 IoT and wireless technologies . 25

2.5.1 LoRa and LoRaWAN . 26

2.6 Thermal cameras . 28

2.6.1 Choosing the thermal camera 31

3 Neural Network model design 34

3.1 Model objectives . 35

3.2 Tools and development environment 36

3.3 Creating the dataset . 37

3.4 Exploring the dataset . 40

3.5 Image preprocessing . 42

3.6 Model creation and training . 45

3.7 Model optimisation . 46

3.8 Neural Network model design in Edge Impulse Studio 48

4 Design and implementation of the early warning system 52

4.1 Hardware . 54

4.1.1 Nucleo-F767ZI . 54

4.1.2 nRF52840 DK . 55

4.1.3 LR1110 development kit . 56

4.1.4 Boost converter evaluation kit 56

4.1.5 FLIR Lepton 2.5 camera module and Lepton breakout board 57

4.1.6 PIR Sensor . 58

4.2 Firmware . 59

4.2.1 Tools and development environment 59

4.2.1.1 Development environment for STM32F767ZI 59

4.2.1.2 Development environment for nRF52840 60

4.2.2 Architecture design . 60

4.2.3 FLIR Lepton driver . 62

4.2.4 Simple shell . 66

4.2.5 MicroML and build system 67

4.2.6 Running inference on a microcontroller 71

xii

4.3 Server-side components and software 73

5 Measurements and results 76

5.1 Comparison of models . 76

5.1.1 Hyperparameter search space and result’s analysis 77

5.1.2 Comparison of selected, re-trained models 81

5.1.3 Comparison of Edge Impulse models 84

5.2 On-device performance testing . 87

5.2.1 Comparison of code sizes . 88

5.2.2 Comparison of different optimisations 90

5.2.3 Scoring trained models . 91

5.3 Summary of model testing . 93

5.4 Power profiling of an embedded early warning system 94

5.4.1 Measuring setup . 94

5.4.2 Current measurements . 95

5.4.3 Commentary of the current measurement results 99

5.4.4 Battery life estimations . 101

6 Conclusion 105

6.1 Future work . 106

6.2 Final words . 107

xiii

List of Figures

1.1 Various Human-Elephant Conflicts. 2

1.2 Diagram of an early warning system. 3

2.1 Workflow diagram of solving a generic Machine Learning problem. . . 11

2.2 Mathematical model of artificial neuron and fully connected 3-layer

neural network. 14

2.3 Different activation functions and their equations. 15

2.4 Structure of a Convolutional Neural Network. 17

2.5 Dot product operation between filter and zero-padded input matrix. . 18

2.6 Convolutional layer with five different filters. 20

2.7 Polling layer. 20

2.8 Transfer Learning. 22

2.9 Workflow of preparing an ML model for an inference on a microcontroller. 24

2.10 Properties of Lora signal. 27

2.11 Comparison between a normal image and thermal image 28

2.12 Focal point array and bolometer. 30

2.13 Comparison of images of the same object taken with cameras with

different NETD values. 30

2.14 Comparison of image quality made by different thermal cameras. . . . 32

3.1 Camera trap used in Assam, India. 37

3.2 Thermal images of elephants from the dataset. 38

3.3 Camera setup used for taking thermal images with FLIR Lepton 2.5. 39

3.4 Distribution of used images from thermal dataset depending on image

location and type of sensor. 41

xiv

3.5 Class distribution of thermal images. 42

3.6 Image preprocessing pipeline. 42

3.7 Distribution of training images before and after resampling. 44

3.8 Creating a Neural Network in Edge Impulse Studio. 48

3.9 Different resizing methods . 49

3.10 Training performance report. 50

4.1 General block diagram of an embedded system 53

4.2 Diagram describing the behaviour of the embedded early warning system 53

4.3 Hardware diagram of the embedded early warning system 54

4.4 Nucleo-F767ZI development board . 55

4.5 nRF52840DK development board . 55

4.6 LR1110 development kit . 56

4.7 MAX17225ENT+T boost converter breakout board 57

4.8 Front and back side of FLIR Lepton breakout board with thermal

camera module inserted. 58

4.9 Front and back side of a PIR sensor. 59

4.10 Architecture diagram of the firmware that is running on the STM32

microcontroller. 60

4.11 Architecture diagram of the firmware that is running on the nRF52840

microcontroller. 61

4.12 Command and control interface of an FLIR Lepton camera. 63

4.13 Directory structure of the MicroML project. 68

4.14 Build system of MicroML project. 69

4.15 Server side flow of information. 73

4.16 Node-RED flow . 74

4.17 Example of a Grafana graph. 75

5.1 Confusion matrices of 0a model (left) and 460b model (right). 84

5.2 Comparison of time of inference of different models. 88

5.3 Comparison of Flash and RAM size of compiled example models. . . 89

5.4 Inference time of the 0b model using different optimisations. 90

xv

5.5 Score comparison of different models 93

5.6 Otii Arc with nRF52832 DK and added measurement board made by

IRNAS. 94

5.7 Screenshot of Otii user interface. 95

5.8 Current consumption of nRF52840 microcontroller in low-power state. 96

5.9 Current profile of the LoRaWAN join sequence. 97

5.10 Device under test: nRF52840 DK with attached LR1110 shield, boost

converter breakout board, Nucleo-F767ZI and FLIR Lepton camera. . 98

5.11 Current profile of image capture and inference procedure. 99

5.12 Current profile of image capture and inference procedure repeated 5

times. 100

5.13 Current profile of image capture and inference procedure. 103

xvi

List of Tables

5.1 First hyperparameter search space . 77

5.2 Partial results of the first random search of hyperparameters 79

5.3 Second hyperparameter search space 80

5.4 Partial results of the second random search of hyperparameters 81

5.5 Properties of selected models . 82

5.6 Precision and recall metrics of trained models 83

5.7 Properties of Edge Impulse models using the CNN architecture. . . . 85

5.8 Properties of Edge Impulse models using the Transfer Learning technique. 86

5.9 Precision and recall metrics of trained Edge Impulse models 86

5.10 First hyperparameter search space . 101

xvii

List of Listings

3.1 CNN architecture written in Python using Keras Sequential API. . . 45

4.1 Examples of FLIR Lepton driver API. 64

4.2 Example of finite state machine implementation for reading FLIR

images over SPI. 65

4.3 Code snippet of simple shell implementation. 66

4.4 Example of TensorFlow Lite inference code in C++. 72

5.1 Example output of arm-none-eabi-size command. 89

xviii

1 Introduction

1.1 Motivation

As a result of increasing human population and habitat loss, human-wildlife conflicts

have become increasingly common in recent decades [1]. According to the organisation

The World Wide Fund for Nature (WWF), human-wildlife conflicts are defined as:

”any interaction between humans and wild animals, that results in negative impacts

on human social, economic or cultural life, on the conservation of wildlife populations,

or on the environment” [2]. These conflicts range from mostly harmless, non-violent

contacts, such as sightings of wildlife animals in urban areas, to the destruction of

crops and infrastructure, killing of livestock, and, in the worst cases, loss of human

lives. In more severe cases these conflicts end in defensive or retaliatory killings of

wild animals, which can drive an already endangered species to extinction.

Polar bears, tigers, and elephants are generally considered to be the most problematic

[1]. In the Arctic, as a consequence of the reduction of their natural habitat, polar

bears are drawn to human settlements and food dumps while searching for food [3].

Unexpected encounters can become deadly for both sides. As wide-ranging animals,

tigers need large areas where they can roam, hunt, and breed [4]. When their natural

prey population is depleted, they often turn their attention to poorly protected

livestock. Their attacks often have economic, social, and psychological consequences.

According to WILDLABS, tigers killed 101 people between the years 2013 and 2016,

in India alone [4].

As herbivores, elephants might be seen as less problematic when compared to

polar bears or tigers, but this assumption could not be further from the truth.

1

Although exact numbers vary between sources, casualties from Human-Elephant

Conflicts (HEC) are much higher compared to conflicts involving polar bears or

tigers. According to WILDLABS, an average of 400 people and 100 elephants are

killed every year in India [5]. The leading cause of death of elephants is electrocution

(by electric fences, unprotected power lines), followed by train accidents, poaching,

and poisoning [6]. Reasons for HEC are similar to the conflicts with polar bears

and tigers. Their habitat is shrunk continuously and replaced with crop fields and

plantations. As their food options decrease, surrounding agricultural landscapes

become inviting. Various HECs can be seen in figure 1.1.

Figure 1.1: Various Human-Elephant Conflicts. Top left: two elephants running from
a mob hurling flaming tar balls, top-right: palm plantation owner inspecting damage
done by elephants to the crops, bottom-left: an elephant crossing the protective barrier,
bottom-right: An elephant that died because of HEC. Image sources: [5] [7] [8] [9]

One of the HEC hotspots is in the Sonitpur District, Assam Province, India. In

a 5300 km2 large area around 200,000 people and 200 elephants share the same

space [5]. Elephants often venture into paddy fields which represent livelihood for

2

local communities. A single elephant can quickly trample fields of rice crops in a few

hours, causing big financial problems to already impoverished farmers [5].

Several measures have been taken to minimise HEC: Electrical fences, watch towers,

trenches, chilli-based deterrents, regular patrols, usage of trained captive elephants

and camera traps with motion sensors.

Although the above mentioned measures function to some degree, they are not

effective enough, since they are unreliable, or come into effect when the damage has

already been done [10].

1.2 Early warning system

Key component of minimizing Human-Elephant Conflicts is a reliable early warning

system. A system capable of detecting the presence of nearby elephants would warn

nearby communities and give them enough time to prepare and respond non-violently.

The same kind of system would also provide information about common elephant

paths, thus giving farmers knowledge on how to construct and place their fences

better to minimise HEC. The system (Figure 1.2) should consist of several small,

deployed devices with mounted cameras that will detect elephants and communicate

wirelessly with a server. Server would display messages and alerts, and if needed,

directly notify local community, if elephants were detected in local area.

Elephants are detected by
an embedded system

Warnings and messages
are transmitted over

wireless network

Data is visualized on
a application server

Server warns community
about elephant's presence

Figure 1.2: Diagram of an early warning system. Icons source: [11]

3

Although most of the villages in the Sonitpur district have access to cell phones

and the internet, the connectivity can be unreliable [5]. Furthermore, devices will be

placed quite far from the main server, which makes sending a large amount of data a

problem. This limits the choice of wireless networks to long range, low bandwidth

technologies. It is, therefore, preferable that elephant detection is done on deployed

devices, and only results (which can be few bytes big) are sent over some radio

network to the main server. Deployed devices will be placed in forests, fields, with no

access to electricity, therefore, they need to be battery powered. Low maintenance of

deployed devices is a desirable quality, which means that they should be functional

for longer periods without any human interactions. To achieve that with a limited

power source, they should be energy efficient, equipped with solar panels, and a

low power radio. Devices should spend most of their time in sleep mode, conserving

energy, only waking up to take a photo, processing it, and sending results to the

main server. A thermal camera is needed, as most of the Human-Elephant Conflicts

happen during the night [5].

Elephant recognition can be done with the help of a convolutional neural network

(CNN) running inference on a microcontroller. Making this possible and evaluating

the solution is the focus of this master’s thesis.

1.3 IRNAS and the Arribada Initiative

The system described above is currently in development at IRNAS in the collaboration

with Arribada Initiative. The Slovenia based Institute IRNAS offers a complete

development service, starting with an idea on paper and ending with a finished

product. Its previous projects cover a wide range of different fields, from free space

optical systems, bio-printing, to Internet of things (IoT) solutions that cover various

industrial and nature conservative use cases. The Arribada Initiative is a London

based team, that uses open source solutions for purposes of nature conservation. As

the winner of WWF and WILDLABS Human Wildlife Conflict Tech Challenge [12],

Arribada received funding to develop an early warning system. They spent some time

in Assam, India, where they tested a proof-of-concept design [13]. They decided on

4

devices with thermal cameras, as Human-Elephant conflicts often happen during the

night. The sensor of choice was an FLIR Lepton 2.5 and/or 3.5. They also created a

large dataset of elephant images while filming elephants in Whipsnade Zoo in the

United Kingdom. This dataset will be used for training the Neural Networks and

will be discussed in Section3.4. To create a final embedded system with on device

Machine Learning, Arribada chose to work with IRNAS.

1.4 Reasoning for the Machine Learning approach

Today Machine Learning (ML) is present in many products that we use on a daily

basis. It can be found in email spam detection, recommendation algorithms on

Facebook and YouTube, speech recognition on smartphones and medical applications.

ML can help us solve problems that are hard to solve by conventional methods. For

example, to develop an email spam detector, a programmer would have to write a

program that would scan the content of an email while checking for the common words

and phrases that appear in spam emails and flag the email as spam if they would

be found. This would take several iterative cycles of writing the rules, evaluating

the solution and analysing the possible mistakes. Even if a possible deterministic

solution would be made, it would not stand the test of time, as new forms of spam

emails would emerge, tricking the system.

Compare that to a Machine Learning approach. Given enough examples of spam

and normal emails, we can train an ML algorithm and let it to discover by itself the

rules that mandate what is a spam and what is a normal email. The program would

be much smaller compared to the one made by the conventional approach. After the

program is deployed into the real world, we can use it to store new data and relearn,

thus always adapting to new changes. This process can be automated.

Same parallels can be drawn to recognising elephants from thermal images. It is

an difficult task to write a deterministic algorithm that could identify an elephant

successfully from an image and not confuse it for a human or livestock. Using an ML

approach we can train the algorithm on a image dataset and let it figure out the

connections between the images and correct labels.

5

1.4.1 Implementation of Machine Learning algorithms

Since ML algorithms are at their core basic math operations, they can be implemented

(although maybe not efficiently) in any programming language and on any hardware

platform from scratch. However, to avoid reinventing the wheel and wasting the

time on algorithm optimisation, it is more logical to use one of the available ML

frameworks. Frameworks such as scikit-learn, Keras, Caffe and TensorFlow enable

programmers to write application code in a high level language such as Python,

which, at run time, translates to efficient C/C++ code. These frameworks take

away low-level details of ML algorithms, enabling programmers to deal only with

application code and not its underlying implementation.

Over the past several years there has been a growing desire to expand ML applications

to embedded devices. Executing ML algorithms directly on microcontrollers has it’s

benefits and presents new challenges compared to executing those algorithms on

PC’s or servers. These comparisons are described further in Section 2.1.2. There are

several frameworks, proprietary and open-sourced, that can be used to develop ML

applications on microcontrollers. STMicroelectronics created X-CUBE-AI, a tool

that converts the pre-trained model created by one of the various Deep Learning

frameworks into an optimised library. X-CUBE-AI works only with STM32 microcon-

trollers, and is proprietary. Another framework, TensorFlow Lite for microcontrollers,

was created as an extension of TensorFlow Lite, which is used to develop ML models

for mobile applications. It provides converter tools and C++ implementations of

common ML operations. In 2019 another framework, µTensor, was merged with Ten-

sorFlow Lite, providing it with support for an efficient CMSIS-NN library developed

by ARM.

For this thesis we used TensorFlow Lite for microcontrollers. It can be used with any

family of microcontrollers, and is open-source, so we can study its internal code.

6

1.4.2 Edge Impulse

Regardless of the many Ml frameworks on the market, companies that specialise

in ML on embedded devices are scarce. One of them is Edge Impulse, which is a

recently founded company from San Jose, USA. They provide users with an end

to end web solution for developing ML applications for embedded devices. Instead

of designing and writing specific programs that deal with preprocessing of training

data and creation and training of ML models, Edge Impulse does this automatically

for their customers. After the ML model is created and converted into an optimised

format for embedded systems, customers get the immediate first approximation of

how much RAM and FLASH memory the model will take and how fast it will run.

We can then run the model on the local machine, or deploy to a variety of different

platforms, such as Arduino, STM32, OpenMV, Zeyphr and others.

Their solution will be used as a benchmark for our work with TensorFlow Lite.

1.5 Objective

The objective of this Master’s thesis is to evaluate the feasibility to recognize animals,

especially elephants, from thermal images, with Machine Learning algorithms, running

directly on a microcontroller.

Additionally we will design and build a system capable of detecting an elephant with

the help of Machine Learning algorithms in the day or at night. Detection of an

elephant needs to be reported over a wireless network to an application server.

For that we will:

� Train a Neural Network model capable of classifying elephants, humans and

other animals from thermal images.

� Optimise Neural Network model for on-device inference.

� Implement on device inference on an STM32 microcontroller using TensorFlow

Lite.

7

� Compare the performance of our implementation against the Edge Impulse

implementation.

� Build a system around the STM32 microcontroller with a thermal camera and

wireless network support.

� Profile power consumption of the built system.

1.6 Master’s thesis outline

This chapter provided an overview of motivation and the companies involved, some

reasoning for choosing the Machine Learning approach and the objectives of this thesis.

Chapter 2 provides a theoretical description of the system building blocks. Machine

Learning, Neural Networks, thermal cameras, TensorFlow Lite, and others topics

are discussed there. Chapter 3 revolves around the design of an image classification

Neural Network model. Chapter 4 describes the design and implementation of an

early warning system, from the hardware, firmware and software points of view. In

Chapter 5 we describe the measurement procedure and results. Chapter 6 presents

our findings, describes the limitations of our project, and suggest paths for further

research.

8

2 Theoretical description of system building blocks

2.1 Machine Learning

According to Arthur Samuel (qtd. in Geron [14]) Machine Learning is a field of

study that gives computers the ability to learn without being programmed explicitly.

This ability to learn is the property of various Machine Learning algorithms. We

will be using the terms ”Machine Learning” and ”learning” interchangeably. To

learn, these learning algorithms need to be trained on a collection of examples of

some phenomenon [15]. These collections are called datasets, and can be generated

artificially or collected in nature.

To understand how the ML approach can solve problems better, we can examine

an example application. Let us say that we would like to build a system that can

predict a type of animal movement based on accelerometer data. To train its learning

algorithm, also known as a model, we need to train it on a dataset that contains

accelerometer measurements of different types of movement, such as walking, running,

jumping and standing still. Input to the system could be either raw measurements

from all three axes, or components extracted from raw measurements such as RMS,

spectral power, peak frequency and/or peak amplitude. These inputs are also known

as features, they are values that describe the phenomenon being observed [15].

The output of the system would be a predicted type of movement. Although we

would mark each example of measurement data with what type of movement it

represents, we would not define the relationship between the two directly. Instead,

we would let the model figure out the connection by itself, through the process of

training. The trained model should be general enough so that it can predict the type

of movement on unseen accelerometer data correctly. Performance of the model is

9

measured in accuracy. It tells us what percentage of input data has been predicted

correctly.

There exists a large variety of different learning algorithms. We can categorise

them broadly in several ways, and one of them depends on how much supervision

the learning algorithm needs in the training process. Algorithms like K-nearest

neighbours, linear and logistic regression, Support Vector Machines fall into the

category of supervised learning algorithms. Training data that is fed into them

includes solutions, also known as labels [14]. The above described example is an

example of a supervised learning problem.

Algorithms like k-Means and Expectation Maximization, fall into the category of

unsupervised learning algorithms. Here, training data is unlabelled, algorithms

are trying to find similarities in data by themselves [14]. Other categories exist,

such as semi-supervised learning which is a combination of the previous two and

reinforcement learning, where the model acts inside the environment according to

learned policies [14].

Neural Networks, algorithms inspired by neurons in human brains [14] [16], can fall

into either of the categories. They are appropriate for solving complex problems like

image classification, speech recognition, and autonomous driving, but they require a

large amount of data and computing power for training. They fall into the field of

Deep Learning, which is a sub-field of Machine Learning.

Training of ML models is computationally demanding, and is usually done on

powerful servers or computers with dedicated Graphic Processing Units to speed up

training time. After a model has been trained, data can be fed in and a prediction is

computed. This process is also known as inference. The inference is computationally

less intensive compared to the training process, so, with properly optimised models,

we can run inference on personal computers, smartphones, tablets, and even directly

in internet browsers.

10

2.1.1 General Machine Learning workflow

There are several steps in ML workflow that need to happen to get from an idea to

a working ML based system, and this is represented in Figure 2.1.

Deploy the model
- Monitor accuracy
- Collect more data
- Retrain if needed

Train the model
- Build it from scratch or
 use existing ones
- Try different models
- Collect more data if
 needed

Collect data
- Either from the internet
 or from the real world
- Clean and label data
- Use data augmentation
 if needed

Study the problem
- Understand the objectives
- Analyze current
 approaches
- Chose architecture of the
 model

Figure 2.1: Workflow diagram of solving a generic Machine Learning problem. Icons
source: [11]

First, the problem has to be studied, it has to be understood what are the objectives,

what are current solutions and which approach should be used. Here, we decide on

the rough type of ML model that we will use, based on the problem. In the second

step we collect and clean up data. We should always strive to collect a large amount

of quality and diverse data that represent a real world phenomenon. Collecting that

kind of data can be hard and expensive, but we can use various tools, such as data

augmentation or data synthesis, thus increasing data size and variety. Sometimes

data are not collected by us, in that case we should examine them and extract

information that we need. Third, we train the ML model. We might create something

from scratch or use an existing model. We can train several different types of models

and choose the one that performs the best. To achieve the desired accuracy, steps

two and three can be repeated many times. In step four we deploy our model and

monitor its accuracy. If accuracy drops we can always collect new data and retrain

the model.

11

2.1.2 TinyML

Machine Learning on embedded devices, also known as TinyML is an emerging field,

which coincides nicely with the Internet of Things. The field is experiencing a large

boom in popularity, when we started working on this thesis in May, 2020, there

was considerable fewer resources about it, then they are now, in December, 2020.

Nevertheless the resources about it are limited, when compared to the vast number

of resources connected with Machine Learning on computers or servers. Most of the

information about it can be found in the form of scientific papers, blog posts and

Machine Learning framework documentation [17] [18] [19] [20] [21].

Running machine learning algorithms directly on embedded devices comes with many

benefits. Reduced power consumption is one of them. In most IoT applications

devices send raw sensor data over a wireless network to the server, which processes it

either for visualisation or for making informed decisions about the system as a whole.

Wireless communication is one of the more power hungry operations that embedded

devices can do, while computation is one of more energy efficient [19]. For example,

a Bluetooth communication might use up to 100 milliwatts, while a MobileNetV2

image classification network running 1 inference per second would use up to 110

microwatts [19]. As deployed devices are usually battery powered, it is important to

keep any wireless communication to a minimum, so minimising the amount of data

that we send is paramount. Instead of sending everything we capture, is much more

efficient to process raw data on the devices and only send the results.

Another benefit of using ML on embedded devices is decreased latency time. If

the devices can extract high-level information from raw data, they can act on it

immediately, instead of sending it to the cloud and waiting for a response. Getting a

result now takes milliseconds, instead of seconds.

Such benefits do come with some drawbacks. Embedded devices are a more resource

constrained environment when compared to personal computers or servers. Because

of limited processing power, it is not feasible to train ML models directly on mi-

crocontrollers. Also it is not feasible to do online learning with microcontrollers,

12

meaning that they would learn while being deployed. Models also need to be small

enough to fit on a device. Most general purpose microcontrollers only offer several

hundred kilobytes of flash, up to 2 megabytes. For comparison, the MobileNet v1

image classification model, optimised for mobile phones, is 16.9 MB in size [20]. To

make it fit on a microcontroller and still have space for our application, it would

have to be simplified.

The usual workflow while developing Machine Learning models for microcontrollers,

is to train a model on training data on a computer. When we are satisfied with the

accuracy of the model we quantize it, and convert it into a format understandable

by our microcontroller. This is described further in Section 2.4.1.

2.2 Neural Networks

Although the first models of Neural Networks (NN) were presented in 1943 (by

McCulloch and Pitts) [14] and hailed as the starting markers of the Artificial

Intelligence era, several decades of research and technological progress had to pass

before they could be applied to practical, everyday problems. Early models of NNs,

such as the one proposed by McCulloch and Pitts, were inspired by how real biological

neural systems work. They proved that a very simple model of an artificial neuron,

with one or more binary inputs and one binary output, is capable of computing any

logical proposition when used as a part of a larger network [14].

To learn how NNs work we can refer to Figure 2.2a, which shows a generic version of

an artificial neuron.

A Neuron takes several inputs, multiplies each input with its weight and sums them

up. A bias parameter is added to the sum, which is then passed to an activation

function.

NNs consist of many neurons, which are organised into layers. Neurons inside the

same layer do not share any connections, but they connect to the layers before and

after them. The first layer is known as the input layer and last one is known as the

output layer. Any layers between are said to be hidden. In Figure 2.2b we can see

13

(a) Artificial neuron (b) 3-layer neural network

Figure 2.2: (a) Mathematical model of an artificial neuron, similarities with biological
neurons can be seen. (b) Fully connected 3-layer neural network. Image source: [16]

a neural network with an input layer with three inputs, two hidden layers with four

neurons each, and an output layer with just one neuron. If all inputs of neurons in

one layer are connected to all outputs from the previous layer, we say that a layer

is fully connected or dense, Figure 2.2b is an example of one. NNs with many

hidden layers fall into the category of Deep Neural Networks (DNN).

2.2.1 Activation functions

Activation functions introduce non-linearity to a chain of otherwise linear transforma-

tions, which enables ANNs to approximate any continuous function [14]. There are

many different kinds of activation functions, as seen on Figure 2.3, such as sigmoid

function and rectified linear activation function (ReLu). A sigmoid function was

used commonly in the past, as it was seen as a good model for a firing rate of a

biological neuron: 0 when not firing at all, and 1 when fully saturated and firing at

maximal frequency [16]. It takes a real number and squeezes it into a range between

0 and 1. It was later shown that training NNs with sigmoid activation function often

hinders the training process, as saturated outputs cut off parts of networks, thus

preventing the training algorithm from reaching all neurons and configuring the

weights correctly [16]. It has since fallen out of practice, and is nowadays replaced by

ReLu or some other activation function.

Another commonly used activation function is a softmax function (seen in 2.1, which

takes a vector as an input, computes the exponential of every element and divides

14

−10 0 10

0.5

1.0

σ(x) =
1

1 + e−x

Sigmoid function

−10 10

−1

1

y = tanh(x)

Tanh function

−10 0 10

10

f(x) = max(0, x)

ReLu function

−10 10

10

f(x) = max(0.1x, x)

Leaky ReLu function

Figure 2.3: Different activation functions and their equations.

that with the sum of exponentials of all elements [14] The input vector of values

becomes a vector of probabilities. Softmax is usually used as an activation in the

last layer of a classifier network.

σ(yi) =
eyi∑K
j=1 e

yj
for i = 1, · · · , K and y = (y1, · · · , yk) ∈ RK (2.1)

Where:

y - Input vector

K - Number of elements in the input vector

σ(yi) - Computed probability of the i-th element in the input vector

2.2.2 Backpropagation

Training of Neural Networks is done with a training algorithm, known as backprop-

agation. As mentioned before, we train the Neural Network by showing it a large

amount of training data with labels. At the start of the training phase, all weights

and biases are set to randomly small values. During each training step, a Neural

Network is shown a small batch of training data. Each instance is fed into the NN

15

and the final output label is calculated. This is known as forward pass, which is

the same as making predictions, except that intermediate results are stored from

each neuron from every layer. Calculated output is compared to an expected one

using a loss (also known as cost) function. The loss function returns a single value,

which tells us how badly our is NN performing: the higher it is, the worse is our NN

performing. The goal is to minimise the loss function, thus increasing the accuracy

of our NN. In the context of multivariable calculus, this means that we have to

calculate the negative gradient of weights and biases, which will tell us in which

direction we have to change each weight and bias so that the value of loss function

decreases.

Doing this for all weights and biases at the same time would be complicated, so the

backpropagation algorithm does this in steps. After computing the loss function, the

algorithm calculates analytically how much each output connection contributed to

the loss function (essentially the local gradient) with the help of previously stored

intermediate values. This step is done recursively for each layer until the first input

layer is reached. At that moment the algorithm knows in which direction each weight

and bias should change, so that the value of the loss function lowers. A procedure is

then performed, known as a Gradient Descent. All local gradients are multiplied

with a small number known as a learning rate, and then subtracted from all weights

and biases. This way, in each step we change weights and biases slowly in the right

direction, while minimising the loss function. Gradient Descent is not only used when

training neural networks but also when training other ML algorithms.

We do not have to execute a backpropagation algorithm for each training instance,

instead, we can calculate predictions for a small set of training data, calculate the

average loss function and then apply backpropagation.

16

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a kind of Neural Networks that work

especially well with image data. Like NNs they have found inspiration in nature, in

their case the visual cortex of the brain.1

In Figure 2.4 we can see an example of CNN which takes an image of a car as an

input and outputs probability results in five different classes.

Figure 2.4: Structure of a Convolutional Neural Network. Image source: [16]

Specific to CNNs are two different types of layers, convolutional layers and pooling

layers. Each convolutional layer detects some sort of shapes: the first ones detect

different kinds of edges, while later ones detect more complex shapes and objects, like

wheels, legs, eyes, ears. Pooling layers downsample the data in the spatial dimension,

thus decreasing the number of parameters and operations needed in CNN. After a few

alternating pairs of convolutional and pooling layers, the output of the last pooling

layer is flattened out into one dimensional vector and fed into a fully connected NN

which produces probability results in given classes.

1Scientists Weisel and Hubel showed that different cells in the primary visual cortex of a cat
responded differently to different visual stimuli [16]. Some were activated when shown a horizontal
line in a specific location, some were activated by vertical lines. More complex cells responded
to boxes, circles and so on. CNNs also detect simpler shapes first and use them to detect more
complex ones later.

17

It makes sense to explain how convolutional and pooling layers work in greater detail,

as this will be important later when we will be designing our CNN models in Section

3.6.

2.2.3.1 Convolutional layers

Data that CNNs operate on are 3 dimensional matrices, where width and height

correspond to an image resolution, and depth corresponds to the number of colour

channels, 3 for colourful images (red, green, blue) and 1 for greyscale. When speaking

about these matrices we will refer to them as volumes.

Convolution layers perform dot products between input volume and several filters

or kernels to produce output volume. In these layers, filters are configured through

the training phase. We can see a concrete example in Figure 2.5. 2D filter with size

2 x 2 covers a part of the input volume, over which element-wise multiplication is

computed, elements are summed and the result is written into the first element of

output volume.

Figure 2.5: Dot product operation between filter and zero-padded input matrix.
Image sources: [22]

The filter then moves a fixed distance or stride and the process is repeated. It is

important to note that, although we can choose the width and height of the filter,

the depth of the filter is always equal to the depth of the input volume. If the depth

is larger than one, then dot products are done for each 2D matrix in the depth

dimension separately, and then an element-wise sum operation is performed between

18

these matrices. To avoid losing information from the image pixels that are on the

edges (as they would be included in dot products fewer times compared to central

ones) we often pad input images with zeros.

The size of output volume depends on several factors as seen in 2.2.

Vo = (Vi − F + 2P)/S + 1 (2.2)

Where:

Vi - Input volume size, only width or height

Vo - Output volume size, only width or height

F - Filter or receptive field size

P - Amount of zero padding used on the border

S - Stride length

If we examine the example in Figure 2.5 we can see that input with a size 3 x 3,

stride 1, padding 1 and filter with a size 2 x 2, produces an output with size 4 x

4.

The depth of output volume is equal to the number of filters used in the convolutional

layer as seen in Figure 2.6, it is a norm that a single convolutional layer uses a

large number of filters to produce a deep output volume [16]. It is also common

to set padding, stride and filter size so that the width and height of the input

volume are preserved. This prevents the information at the edges from being lost too

quickly [16].

At the end of the convolutional layer the output volume is fed into neurons similar

to the one described in Section 2.2. All elements in the same depth are affected by

the same bias term and fed into the activation function. The size of the volume is

preserved in this step.

2.2.3.2 Pooling layers

Pooling layers perform the downsampling of input volumes in both width and height

dimensions. This is done by sliding a filter of fixed size over the input and doing a

19

Figure 2.6: Convolutional layer with five different filters. Image sources: [22] [16]

MAX operation on elements that the filter covers, and only the largest value element

is copied into the output (Figure 2.7). Pooling is done on each depth slice separately

from other slices, so depth size is preserved through the layer.

(a) Max pooling operation (b) Effect of polling on input dimensions

Figure 2.7: Pooling layer. Image source: [16]

It is common to select pool size 2 x 2 and stride 2. Like this, inputs are downsampled

by two in height and width dimensions, discarding 75 % of activations. Pooling layers

therefore reduce the number of activations, and prepare them to be flattened out

and fed into a fully connected layer.

20

2.3 Transfer Learning

Transfer Learning is a ML technique, which transfers knowledge that was learned on

one problem, to another, similar problem.

We mentioned earlier in Section 2.2.3 that CNNs learn in first few layers how to

detect simple shapes, like edges and lines, which are in later layers used to detect

boxes, circles, faces and so on. This behaviour is not limited only to CNNs, but to

all DNNs.

The task of detecting simple shapes in first few layers of DNNs can be common

between models that are trying to solve a similar problem. Example would be a

model classifying images depicting different types of objects and a model classifying

images with different types of animals. First model is trying to solve a more general

problem than the seconds one, however, the learned weights in first few layers from

first model can be reused in the second model.

And this is exactly what Transfer Learning is all about, it is possible to train a big,

complex model on a large dataset and then reuse first few layers in a different model.

Example Transfer learning is shown in Figure 2.8. It is important to note that the

weights of transferred layers are fixed, they are not being trained.

Benefits of using Transfer learning are:

� Shorter training time. Using a pre-trained model with fixed weights and

adding few trainable layers on its top greatly lower training time, simply

because there are less parameters to train.

� No need for large datasets. Training DNN usually requires large amount

of data, which we might not have. Using a pre-trained model, that was trained

on a large dataset, and applying it to a specific small dataset yielded better

performance than just training a model from scratch [14].

21

Figure 2.8: Transfer Learning. Image source: [14]

2.4 TensorFlow

TensorFlow is a free and open-source framework for numerical computation. It is

particularly suited for large-scale Machine Learning applications [14]. It started as

a proprietary project developed by a Google Brain team at Google in 2011, and

became open-source in late 2015. It is used in many of Google’s products such as

Gmail, Google Cloud Speech and Google Search.

TensorFlow gives programmers tools for creating and training ML models, without

needlessly diving into the specifics of computing Neural Networks. Programmers can

write high level code in Python API, which calls a highly efficient C++ code. When

using TensorFlow, the hardest part of an ML project is usually data preparation.

After that is done, the creation of an ML model, its training and evaluation can be

done in a few lines of Python code.

TensorFlow also supports Keras high level API for building ML models. Keras is

a Python library that functions as a wrapper for TensorFlow. When building ML

models developers can use Keras Sequential API, where each layer in a model is

represented as one line of code. Users do not need to care about connections between

22

the layers, they only need to choose the type of layer (convolutional, max pool, fully

connected), its size and a few other specific parameters. Sequential API is used most

of the time, but if a finer level of control is needed TensorFlow provides low level

math operations as well.

Finally, TensorFlow’s trained model is portable [14]. Models can be trained in one

environment and executed in another. This means that we can train our model by writ-

ing Python code on a Linux machine and execute it with Java on an Android device.

This last functionality is important for running ML models on microcontrollers.

2.4.1 TensorFlow Lite for Microcontrollers

TensorFlow Lite (TFLite) is a set of tools and libraries that enable running ML

inferences on constrained devices [23]. It provides support for Android and iOS

devices, and embedded Linux. TensorFlow Lite for Microcontrollers (TFLite Micro)

is a recent port of TFLite (as of mid 2019), dedicated to running ML models on

microcontrollers. TFLite itself provides API in different languages, such as Java,

Swift, Python and C++. TFLite Micro uses C++ API, specifically C++11, which

reuses a large part of the general TensorFlow codebase.

TFLite Micro library does not require any specific hardware peripherals, which means

that the same C++ code can be compiled to run on a microcontroller or a personal

computer with minimal changes. Users are only expected to implement their version

of the printf() function. As microcontroller binaries are usually quite big, flashing

firmware to a microcontroller is a time consuming process. It makes sense to first test

and debug a program that includes only ML inference specific code on a personal

computer, before moving on to a microcontroller, to save time. Implementation of

the test setup is described in 4.2.5.

The TFLite Micro library is available publicly as a part of a much larger TensorFlow

project on GitHub [23]. To use the library for embedded development the whole

project has to be cloned from the GitHub. The TensorFlow team provides users

with several example projects that have been ported to several different platforms,

such as Mbed, Arduino, OpenMV and ESP32. Example projects show how to use

23

TFLite API, while showcasing different ML applications: Motion detection, wake

word detection and person detection.

Is important to know that TFLite is just an extension of the existing TensorFlow

project. General steps for creating a trained ML model are still the same as seen in

Figure 2.1, although we have to be aware of some details. Figure 2.9 shows all steps

that are needed to prepare an ML model for running on a microcontroller.

Run inference
- Use C++ api to run the
 model with TensorFlow
 Lite Interpreter on a
 microcontroller.

Convert to C byte array
- use xxd to create
 hexdump
- generate a .c and .h file

Convert and optimise
- with TensorFlow Lite
 Converter
- optimise size and speed
- evaluate accuracy

Train a small model
- consider size vs. accuracy
 trade-offs.
- use only supported
 operations

Figure 2.9: Workflow of preparing a ML model for an inference on a microcontroller.
Icons source: [11]

We start with a small but inaccurate model that can still accomplish the basic criteria

that our objective demands. When the end of this workflow process is reached and we

made sure that the model can fit into a flash memory area of our target microcontroller,

we can start training more complex models to increase accuracy. We are allowed to

use only operations that have supported implementations on microcontrollers. This

is usually not a restriction, as many of them are supported.

The model that is created is usually quite big, and needs to be converted with the

TensorFlow Lite Converter tool. This tool provides a non-optimised conversion and

several different optimised conversions.

To import and use the optimised model, we need to convert it into binary format,

which is done with the command line tool xxd. The model is then ready to be

executed on a microcontroller, we can run it and process the results. Accuracy will

be the same as compared to running the same .tflite model on a personal computer,

but execution time will naturally be different. If needed, we can tweak the model

24

parameters, train a new model and repeat the described workflow again.

2.4.1.1 Post-training quantization

By using quantization optimisation we approximate floating-point numbers in a

different format, usually with 8-bit integers. When computing Neural Networks we

can quantize weights, biases and intermediate values output by separate neurons.

Quantization has a dramatic effect on the size of the model and its execution speed.

By changing 32-bit floating-point numbers with 8-bit integers size decreases by a

factor of 4. Floating-point math is by nature slow to compute, many microcontrollers

do not even have a floating-point unit. In comparison integer math is faster to

compute, therefore quantized models are executed faster. Model accuracy decreases

after using quantization, but usually by less than a percent.

2.5 IoT and wireless technologies

The Internet of Things, or IoT, is a system of uniquely identifiable devices, which

communicate with each other or other systems over wireless networks [24]. A device

or a thing is a battery powered embedded system such as smart watch, heart monitor,

or animal tracker which would transmit collected sensor data to an IoT gateway,

which would relay the data over to the cloud. These data can then be analysed and

displayed in such a fashion which would provide businesses or users with valuable

information. Examples of this would be tracking the energy consumption of machines

in factories, monitoring conditions of crops in agriculture, or monitoring locations of

endangered species in African conservation parks.

An important part of the IoT system is a wireless network that is used to transport

data from edge devices to gateways, or directly to the Internet. The choice of a

wireless network is highly dependent on a type of problem an IoT solution is trying

to solve. Factors such as required battery life, amount of data being sent, the distance

that data have to travel and environment conditions of the edge device itself are

important.

25

Because our early warning system demands a decent battery life of several months

and needs to send a small amount of data over one or two kilometres, we will focus

on wireless technologies such as NB-IoT, Sigfox and LoRa.

Narrowband IoT or NB-IoT is a radio technology standard developed by the 3GPP

standard organisation [25]. NB-IoT was made specifically with embedded devices

in mind, it has a range of up to 15 km and it has deep indoor penetration [25].

Compared to Sigfox and LoRa it has better latency and a higher data rate, but

also higher power consumption [26]. However it is unsuitable for our use case as it

operates on the network provided by the cellular base towers, which is inconvenient

as the mobile connection in Assam, India can be inconsistent [5].

Sigfox is a radio technology developed by the company of the same name that operates

on an unlicensed Industrial, Scientific and Medical (ISM) radio band. In many views

it is similar to LoRa, as it has the comparative range and power consumption [26].

However, there are a few important differences. Although Sigfox modules are a bit

cheaper when compared to Lora modules, each message is paid, devices are limited

to 12 bytes per uplink, 140 uplinks per day and only 4 downlinks are available per

day. Sigfox devices can also only communicate with base stations, installed by the

Sigfox company [26]. This means that users can not build their own network and are

dependent on the coverage provided by Sigfox.

This leaves us with the Lora protocol, which covers our use case from points view of

long range, low power consumption and the ability to set up our own network.

2.5.1 LoRa and LoRaWAN

LoRa (Long Range) is a physical layer protocol that defines how information is mod-

ulated and transmitted over the air [27] [25]. The protocol is proprietary and owned

by a semiconductor company, Semtech, who is the sole designer and manufacturer of

Lora radio chips in the world. The LoRa protocol uses a modulation similar to chirp

spread spectrum modulation [27]. As the protocol is proprietary, exact details of it

are not known, although it was reverse engineered by a radio frequency specialist [28].

An example of a LoRa signal that was captured with a software defined radio can be

26

seen in Figure 2.10a. Each symbol is modulated into a radio signal whose frequency

is either increasing or decreasing with a constant rate inside of a specified bandwidth.

When the bandwidth boundary is reached, the signal ”wraps around” and appears at

the other boundary. Although the frequency is always changing with a constant rate,

it is not continuous inside the bandwidth window, but it can change to a different

frequency immediately and continue from there.

(a) LoRa signal (b) Properties of LoRa signal

Figure 2.10: Lora signal (left) and different properties of LoRa with their effects
on range, bit rate, receiver sensitivity, time on air and consumption (right). Image
sources: [28] [29]

This kind of modulation gives LoRa extreme resiliency against the interference of

other radio frequency signals that might be using the same frequency band [27] [29].

For example, on a lower part of Figure 2.10a we can see a signal with constant

frequency transmitting inside the bandwidth window that the LoRa signal is using.

This kind of interference is filtered out easily by a LoRa receiver.

The size of a bandwidth window, rate of frequency change (also known as a spreading

factor) and transmitting power further define the LoRa signal. With these factors,

we can influence the range, power consumption and bit rate of a LoRa signal. For

example, as seen in Figure 2.10b, by increasing the spreading factor we increase the

time on air, thus giving the receiver more time to sample the signal, which leads to

better sensitivity, but increases power consumption.

27

While LoRa defines the physical layer, LoRaWAN defines the media access control

protocol for wide area networks, which are built on top of LoRa [27]. Its specification

is open, so anyone can implement it. LoRaWAN takes care of communication between

end-devices and gateways and manages communication frequency bands, data rates

and transmitting power.

LoRaWAN has a star of stars topology [27]. Devices deployed in the field transmit

messages on frequency bands that differ from region to region. Messages are received

by gateways which relay them to the network server. The network server displays

relayed messages, decodes them and sends them to various applications. If the same

message is heard by several gateways, the server drops all duplicates. The server also

decides which gateway will send a downlink message to a specific device.

Because LoRaWAN operates on an unlicensed ISM band, anyone can setup up their

network without any licensing fees. For some use cases, a single gateway with an

internet connection is enough to provide coverage to a large number of devices.

2.6 Thermal cameras

Thermal cameras are transducers that convert infrared (IR) radiation into electrical

signals, which can be used to form a thermal image. A comparison between a normal

and a thermal image can be seen in Figure 2.11.

Figure 2.11: Comparison between a normal image and thermal image. Image source:
Arribada Initiative [30]

28

IR is an electromagnetic (EM) radiation, and covers part of the EM spectrum that

is invisible to the human eye. The IR spectrum covers wavelengths from 780 µm to 1

mm, but only a small part of that spectrum is used for IR imaging (from 0.9 µm to 14

µm) [31]. We can classify IR cameras broadly into two categories: photon detectors or

thermal detectors [31]. Photon detectors convert absorbed EM radiation directly into

electric signals by the change of concentration of free charge carriers [31]. Thermal

detectors covert absorbed EM radiation into thermal energy, raising the detector

temperature [31]. The change of the detector’s temperature is then converted into an

electrical signal. Since photon detectors are expensive, large and therefore unsuitable

for our use case, we will not describe them in greater detail.

Common examples of thermal detectors are thermopiles and microbolometers. Ther-

mopiles are composed of several thermocouples. Thermocouples consists of two

different metals joined at one end, which is known as the hot junction. The other

two ends of the metals are known as cold junctions. When there is a temperature

difference between the hot and cold junctions, a voltage proportional to that differ-

ence is generated on the open ends of the metals. To increase voltage responsivity,

several thermocouples are connected in series to form a thermopile [31]. Thermopiles

have lower responsivity when compared to microbolometers, but they do not require

temperature stabilisation [31].

Microbolometers can be found in most IR cameras today [31]. They are sensitive

to IR wavelengths of 8 to 14 µm, which is a part of the long wave infrared region

(LWIR) [31]. Measuring part of a microbolometer is known as Focal Point Array

(FPA) (Figure 2.12a). FPA consists of IR thermal detectors, bolometers (Figure

2.12b), that convert IR radiation into an electric signal. Each bolometer consists

of an absorber material connected to a Readout Integrated Circuit (ROIC) over

thermally insulated, but electrically conductive legs [32].

Absorber material is either made out of metals such as gold, platinum, titanium,

or, more commonly, out of semiconductors such as vanadium-oxide (VOx) [32].

The important property of absorber materials is that electrical resistance changes

proportionally with the material’s temperature [31]. When IR radiation hits absorber

29

(a) Focal point array (b) Bolometer

Figure 2.12: (a) Focal point array under electronic microscope. (b) Bolometer with
λ/4 resonant cavity. Image source: Vollmer, Möllmann [31]

material, it is converted into thermal energy, which raises the absorber’s temperature,

thus changing its resistance. To detect the change in resistance, ROIC applies a

steady-state bias current to the absorber material, while measuring voltage over the

conductive legs [31].

When deciding between different types of thermal cameras we are often comparing

them in terms of the cost, size and image resolution. One important property that

also has to be taken into account is temperature sensitivity, also known as Noise

Equivalent Temperature Difference (NETD). Comparison between images taken with

two cameras with different NETD values can be seen in Figure 2.13.

(a) NETD is 60 mK (b) NETD is 80 mK

Figure 2.13: Comparison of images of the same object taken with cameras with
different NETD values. Low NETD values are more appropriate for object recognition.
Image source: MoviTherm [33]

30

NETD is measured in mK, and tells us the minimum temperature difference that can

still be detected by a thermal camera. In microbolometers, NETD is proportional

to the thermal conductance of the absorber material, among other factors [31]. The

thermal conductance of bolometers is minimised by enclosing FPA into the vacuum

chamber, thus excluding thermal convection and conduction due to the surrounding

gases. The only means of heat transfer that remain are radiant heat exchange

(highly reflective material below the absorber is minimising its radiative losses), and

conductive heat exchange through the supportive legs. NETD also depends on the

temperature inside the camera, as higher ambient temperatures can raise the internal

temperature, thus increasing the NETD and noise present in the thermal image.

Today’s thermopiles can achieve NETD of 100 mK, microbolometers 45 mK, while

photon detectors can have NETD of 10 mK. Although tens of mK does not seem a

lot, we can see in Figure 2.13 what a difference of 20 mK means for image resolution

and noise.

2.6.1 Choosing the thermal camera

The choice of thermal camera was made by the Arribada Initiative [30]. They tested

several different thermopiles and microbolometers while searching for the desired

properties. The camera had to be relatively inexpensive, and small enough so that

it could be integrated into a relatively small housing. The main property that they

searched for was that elephants could be recognised easily from thermal images. That

meant that the camera needed to have decent resolution and low NETD. Cameras

were tested in Whipsnade Zoo and the Yorkshire Wildlife Park where images of

elephants and polar bears could be made.

They tested two thermopile cameras (Heimann 80x64, MELEXIS MLX90640) and

two microbolometer cameras (ULIS Micro80 Gen2, FLIR Lepton 2.5). Although

thermopile cameras were cheaper than microbolometer cameras, the quality of images

they produced was inferior, as can be seen in Figure 2.14.

31

Figure 2.14: Comparison of image quality made by different thermal cameras,
MELEXIS MLX90640 (top left), Heimann 80x64 (top right), ULIS Micro80 Gen2
(bottom left) and FLIR Lepton 2.5 (bottom right). Image source: Arribada Initia-
tive [30]

The MELEXIS MLX90640 camera had a resolution of 32 x 24 pixels and NETD of

100 mK, while the Heimann camera had a resolution of 80 x 64 pixels and NETD of

400 mK. It was concluded that images taken by either one of the thermopile cameras

could not be used for object recognition, merely only if the object was present or

not [30].

Microbolometers produced better results. Both the Ulis Micro80 and FLIR Lepton

had a similar resolution, 80 x 80 and 80 x 60 respectively, but the Ulis Micro80 had

two times bigger NETD compared to the FLIR Lepton camera, 100 mK and 50 mK,

respectively. Images produced by the FLIR Lepton were much cleaner, so it was

chosen as an appropriate camera for the task.

It is important to note that the FLIR Lepton, like all microbolometers, requires

frequent calibration to function properly. In temperature non-stabilised cameras

small temperature drifts can have a major impact on image quality [31]. Calibration

32

is done either by internal algorithms of the camera or by exposing the camera to

a uniform thermal scene. The FLIR Lepton camera comes with a shutter, which

acts as a uniform thermal signal and enables regular calibration. Calibration in the

FLIR Lepton is by default automatic, triggering at startup, and every 3 minutes

afterwards or if camera temperature drifts by more than 1.5 ◦C.

The FLIR Lepton camera comes in two versions, 2.5 and 3.5. Both cameras function

the same and have exactly the specifications, they only differ in resolution: the 3.5

has a resolution of 120 x 160, while the 2.5 has 60 x 80. Both were used in the process

of image collection.

33

3 Neural Network model design

In this chapter we describe the design of a Convolutional Neural Network that can

process thermal images and predict what object they contain. The workflow that we

followed is largely a combination of the workflows shown in Figures 2.1 and 2.9.

We first had to set concrete objectives, while keeping in consideration various

constraints. The tools and development environment that were used in the process

are then described. The methods of dataset creation are described afterwards: first,

the dataset that was created by Arribada Initiative, then the dataset provided by

us.

We then explored both datasets, analysed different class representations, and decided

if they were appropriate for accomplishing the objectives that we set earlier.

In the image preprocessing phase we imported images and connected them with

metadata that was parsed from the Excel database. We analysed the dataset, split it

into different sets, and applied image correction procedures. We then decided on a

rough CNN architecture with variable hyperparameters, and ran a random search

algorithm, which searched for the best performing models based on accuracy.

We finish this chapter by going through the same design process again, but this time

using tools provided by Edge Impulse.

34

3.1 Model objectives

The accuracy of our early warning system should be equal or similar to the one of

the human observers, no matter if it is operating in daytime or night time. Although

the system will be placed on paths that are traversed regularly by elephants, they

are not the only possible objects that can appear on the taken thermal images.

Humans and various livestock, such as goats and cows, could also be photographed.

Reporting false positives should be avoided, which means that the system should

not label a human or a livestock animal incorrectly as an elephant. At the same

time, false negatives also need to be avoided, as an elephant could pass the system

undetected. These kinds of mistakes could undermine the community’s confidence in

the early warning system and defeat the purpose. This means that, besides elephant

detection, we should also focus on classifying humans and livestock correctly, while

providing a nature/random class for all other unexpected objects or simply images

of nature.

It would be beneficial if the thermal camera could take several images of the same

object in a short time, thus increasing the confidence of the computed label of the

object. However, this is constrained by the image processing time and the camera’s

field of view. The thermal camera FLIR Lepton has a horizontal field of view of 57

degrees. The closer an object passes by a thermal camera, the quicker it traverses the

camera’s field of view, thus giving the camera less time for capture. This problem

can be solved by minimising the execution time of the ML model, or by placing the

early warning system in a position that is several metres away from the expected

elephant’s path. As the latter option might not always be possible, we should strive

to keep the whole image processing time as short as possible.

Finally, as our Neural Network has to run on a microcontroller and not on a computer

or a server, we have to keep it lightweight in terms of memory. Extra model complexity

that brings few percents of accuracy does not matter much if the model is too large

to fit on a microcontroller or takes too long to run.

35

To summarise:

� We will create an image classification ML model that will be capable of

processing a thermal image and sorting it into one of 4 possible categories:

Elephant, human, livestock, and nature/random.

� Total image processing time should be as short as possible: we should try to

keep it under 1 second.

� The model should be small enough to fit on a microcontroller of our choice,

while still leaving some space for the application code. The microcontroller of

our choice (STM32F767) has 2 MB of flash memory, so the model size should

be smaller than that.

3.2 Tools and development environment

All of the work connected with image preparation and ML model creation was

done in Python 3.6, Numpy was used for image preprocessing, Pandas for Excel

database manipulation, and Matplotlib for plot generation. The Neural Networks

were designed in TensorFlow 2.4, using Keras high-level API and a Keras Tuner

model was used for the hyperparameter search.

As training Neural Networks is a computationally demanding process, it would not be

feasible to do it on a personal laptop. Amazon’s Elastic Compute Cloud web service

was used instead. Elastic Compute Cloud, or EC2, enables users to create an instance

of a server in a cloud with a specified amount of processing power and memory. Some

instances come with dedicated software modules and dedicated graphics cards for

an extra boost in performance. We created an instance of a Linux server that came

with TensorFlow, Numpy, and other libraries pre-installed. Interaction with servers

was done one command line through the SSH protocol.

Instead of writing Python scripts and executing them through the command line,

we used Juptyer Notebook. Juptyer Notebook is a web-based application that can

run programs that are a mix of code, explanatory text, and computer output. Users

can divide code into segments, which can be executed separately, and visual output

36

from modules such as Matplotlib is also supported. To use Juptyer Notebook on our

cloud instance, we had to install and run it. We could then access the web service

simply through a we browser by writing the IP address of the server, followed by the

default Juptyer Notebook server port, 8888.

3.3 Creating the dataset

As mentioned in Section 1.3, the major part of the thermal image dataset was provided

by the Arribada Initiative [12] [13]. Images in the dataset came from two different

locations: Assam, India, and ZSL Whipsnade Zoo, in the United Kingdom.

Assam served as a testing ground. The Arribada team positioned two camera traps

at two locations that overlook paths commonly used by elephants. Cameras were

built out of Raspberry Pi, a Passive Infrared Sensor (PIR) sensor, an FLIR Lepton

2.5 camera, and batteries, all of which were enclosed in a plastic housing. The insides

of the camera and an example of a deployed camera can be seen in Figure 3.1.

Figure 3.1: Camera trap used in Assam, India. Image source: Arribada Initiative [13]

The PIR sensor functioned as a photo trigger: whenever an object passed in front of

it, the camera made an image. This setup provided Arribada with elephant images in

real-life scenarios, however, they could not capture elephants in a variety of different

conditions. It is important to create an image dataset, where the object can be seen

in different orientations, distances, angles, and temperature conditions. Models that

were trained on diverse datasets end up being much more robust and, therefore,

37

perform better on never before seen image data, when deployed in real life.

This was accomplished in ZSL Whipsnade Zoo, where they took many images of

elephants in a variety of different conditions [34]. With elephants in the enclosure,

researchers could move cameras around and get images that were needed. The PIR

sensor trigger approach was dropped in favour of a 5 second time-lapse trigger. Two

cameras were used again, although, one of them now used an FLIR Lepton 3.5

camera with better resolution.

Images of elephants that came from both locations can be seen in Figure 3.2.

Figure 3.2: Thermal images of elephants from the dataset.

A small part of the thermal image dataset was provided by us. This was done because

the number of images of cows was low compared to the number of human and

elephant images, and because we also did not have any images that could be used for

the nature/random class. We wanted to gather images as quickly and efficiently as

possible, so we built a prototype camera made out of an FLIR Lepton 2.5 breakout

38

board, a Raspberry Pi Zero, and a power bank. We used an open-source library [35]

for the FLIR Lepton module, which used a simple C program to take a single image

with a thermal camera and save it to a Raspberry Pi. The image of the setup can be

seen in Figure 3.3.

Figure 3.3: Camera setup used for taking thermal images with FLIR Lepton 2.5.

We wrote a simple Python script that executed the C program every time we pressed

the trigger push-button. An additional shutdown button was added to call the

Raspberry Pi shutdown routine, as removing power from it forcibly would corrupt

freshly taken thermal images on the Raspberry Pi’s SD card.

With this setup, we made 365 images of cows in varying conditions, 308 images of

nature, and 124 images of humans that were made on the go. We then sorted the

images manually into appropriate folders and added them to the dataset.

39

3.4 Exploring the dataset

A thermal image dataset created by Arribada was given to us in the form of a Google

Drive folder, which we downloaded to our computer.

After examining the folder, we came to several conclusions.

1. We saw that the primary focus of the Arribada team was to build an object

localization model, not an image classification model. In object localisation, the

Neural Network draws bounding boxes around objects that it recognises and

assigns them labels, while the image classification model only labels the image

as a whole. Object localization produces a bigger and more complex model

than image classification, and it is unsuitable for running on a microcontroller.

All major work that was done by the Arribada team was contained in one

folder where each image had an accompanying text file of the same name.

Text files were produced by a DeepLabel software, which is used for preparing

images for training object localisation models. Each line in a text file described

the location of the bounding box and its label. This dataset format was not

suitable for us, as many images contained more bounding boxes, which would

be troublesome to sort into a distinct label.

We later saw that there were a few folders with names such as ”Human”, ”Single

Elephant”, ”Multiple Separate Elephants”, ”Multiple obstructing Elephants”,

”Cows”, ”Goats” and so on, which contained sorted images that we could use.

We merged all folders with elephant pictures into one folder, as we did not care

if the model can differentiate how many elephants are on a taken image, as we

only wanted to know if there were any elephants on it or not.

2. We found out that all images were documented in a large Excel database. For

each image, there was a row in a database that connected the image file name

with the information on where the image was taken and with what sensor. This

enabled us to generate the graph seen in Figure 3.4.

We used a total of 13,667 images from the thermal image dataset: almost 88 %

40

Number of images: 13667
Zoo images:
83.8 %, 11455

Assam images:
16.2 %, 2212

Lepton 2.5 images from zoo:
79.4 %, 9094

Lepton 3.5 images from zoo:
20.6 %, 2361

Lepton 2.5 images from Assam:
100.0 %, 2212

Figure 3.4: Distribution of used images from thermal dataset depending on image
location and type of sensor.

of them were made in Whipsnade Zoo, while the rest of them were made in

Assam. All images from Assam were made with the FLIR Lepton 2.5, while

both cameras were used in Whipsnade zoo. However, more photos were made

with the 2.5 version of the thermal camera.

3. After inspecting the folder with goat images manually, we saw that it contained

mostly images of a herd of goats standing around a single elephant. This folder

was usable only for object localisation ML models, where each goat could be

tagged with a bounding box. In the case of an image classification model, this

sort of training data is not desirable, as it would be too similar to another

separate class, in our case the elephant class. We therefore dropped goat images

out of our training data entirely. Livestock class was replaced with cow class.

4. We also realised that there was a large class imbalance, as seen in Figure 3.5

in favour of the elephant class.

The number of elephant images was more than 4 times larger than the number

of images of the all other classes combined. We solved this issue by acquiring

more images of the minority class and oversampling the minority class.

41

Elephant images:
86.9 %, 11976

Human images:
10.9 %, 1502

Cow images:
1.4 %, 189

Goat images:
0.8 %, 115

Figure 3.5: Class distribution of thermal images.

3.5 Image preprocessing

The image preprocessing phase is a pipeline process that differs from project to

project. Our process can be seen in Figure 3.6.

Resampling, combining
- Resample only traininig

 set to fix class imbalance
- Combine and shuffle
- Reshape
- Save to disk

Encode and split data
- Assign encoded labels
 to all images
- Split them into training,
 validation and test sets

Filter and import images
- Extract filenames from
 database
- Import only matching
 images from folders
- Merge in images
 taken in Slovenia

Mean subtraction
- Subtract mean pixel
 value from all images
- With this we center
 the data around zero

Figure 3.6: Image preprocessing pipeline. Icons source: [11]

At the start of the process, we compared the filenames of each separate folder to the

list of filenames found in the Excel database. We imported only the images found in

both sources, as lists were not identical, and we wanted to keep track of the different

metadata information. As some images were made with two different FLIR Lepton

cameras with different resolutions (60 x 80 and 120 x 160), we downscaled higher

resolution images directly in the importing process. After this, we added images that

42

were taken by us in Slovenia. At this point, we had four separate Numpy arrays, one

for each class, with 3 dimensions: The first dimension stored a number of different

images in that class, the second and third dimensions stored images pixel values (60

and 80 pixels respectively).

The next step was assigning labels to each image. As the output of NNs are numbers,

we cannot just assign labels in strings format to data. Instead, we assigned every

image a single number that represented that class, 0 for an elephant, 1 for a human,

2 for a cow, and 3 for a nature/random class. We shuffled images inside of each class

and then split them into training, validation and test sets.

The training set was used for model training, while the validation set helped to

choose the best model based on accuracy. The test set is normally set aside and used

only at the end, after the model is chosen, to assess how the model, performs on

never seen data. If we did not use the validation set and only chose the best model

according to the test set, we could be overfitting1a model and we would have no

accurate measure of how well our model would perform on unseen data.

At end of this step we had 4 different Python dictionaries for each class. Each

dictionary had 3 key-value pairs for every training, validation, and test set, which

held image data and encoded labels.

We next applied the simplest form of normalisation to all images, a mean subtraction.

We calculated a two-dimensional matrix that held mean values of pixels averaged over

the whole training set, which we subtracted from all images, essentially zero centring

the data. This is a common preprocessing step in every ML image preprocessing

pipeline, which is usually combined with standardisation2. We achieved this by

resampling the human, cow, and nature/random classes. The human class was

resampled 5 times, while both cow and nature/random classes were resampled 8 times.

Figure 3.7 shows the distribution of training images before and after resampling.

1Overfitting means that the model performs well on the training data, but it does not generalise
well to real-world examples [14].

2Standardisation scales the whole range of input pixel values into -1 and 1 interval. This is only
needed if different input values have widely different ranges [16]. Because images that were created
with the FLIR camera were all 8-bit encoded and therefore had the same range, this was not needed.

43

Number of all training images
before resampling: 8715

Elephant images:
82.9 %, 7222

Human images:
11.2 %, 976

Cow images:
3.8 %, 332

Nature/random images:
2.1 %, 185

Number of all training images
after resampling: 16238

Elephant images:
44.5 %, 7222

Human images:
30.1 %, 4880

Cow images:
16.4 %, 2656

Nature/random images:
9.1 %, 1480

Figure 3.7: Distribution of training images before and after resampling.

We only resampled training sets, not validation or test sets. If we resampled everything,

the model would be seeing the same image several times during testing, thus reporting

incorrect accuracy in the validation and test phases.

After resampling we merged and shuffled all data, and saved it to the disk for later

use.

44

3.6 Model creation and training

For the creation of CNN models, we used Keras Sequential API and a Keras Tuner

module. Sequential API abstracted many low-level details of the model’s design.

While specifying layers, we only had to specify what type of layer we wanted, its

size and layer-specific features. We did not have to keep track of any connections

between or in layers, as this was done automatically by Keras.

For a model architecture we decided to use a simplified version of the common CNN

architecture that was shown in Figure 2.4. The best way to present the model is

by inspecting the Sequential API code that creates it, which is shown in Listing

3.1.

1 model = models.Sequential ()
2

3 model.add(Conv2D(FilterNum1 , FilterSize ,
4 activation=’relu’,
5 padding="same",
6 input_shape =(60,80, 1)))
7 model.add(MaxPooling2D ((2, 2)))
8

9 model.add(Conv2D(FilterNum2 , FilterSize ,
10 activation=’relu’,
11 padding="same")
12 model.add(MaxPooling2D ((2, 2)))
13

14 model.add(Conv2D(FilterNum3 , FilterSize ,
15 activation=’relu’,
16 padding="same")
17 model.add(Flatten ())
18

19 model.add(Dense(DenseSize , activation=’relu’))
20 model.add(Dropout(DropoutRate))
21 model.add(Dense (4), activation=’softmax ’)

Listing 3.1: CNN architecture written in Python using Keras Sequential API.

The model consisted of two pairs of convolutional and max-pooling layers, followed

by a final convolutional layer. For activation the function ReLu was chosen, as it is

currently the most effective and popular option [16] [14]. The padding option was

set to same, which meant that a spatial dimension of a volume would not change

before and after a convolutional layer. Pooling layer kernel size was set to 2 x 2, with

a default stride of 2.

45

The output volume of the last convolutional layer was flattened out into a single

vector and fed into a dense layer, which was followed by a dropout layer3.

The last dense layer was a final output layer with only 4 neurons, each one representing

one class. Softmax activation was used to calculate class probabilities. The model

was set to use the Adam optimizer and Sparse Categorical Crossentropy loss function.

Adam is an upgraded version of the gradient descent method, which adapts the

learning rate automatically to decaying gradients [14]. It is generally easier to use

than gradient descent, as it requires less tuning or learning rate hyperparameters.

Sparse Categorical Crossentropy loss function is used when building a multi-class

classifier.

The above set hyperparameters follow the general rules of thumb and serve as a

good starting point when building CNNs [16]. However, hyperparameters such as the

number of filters, filter size, size of a hidden dense layer, dropout rate, and learning

rate, are specific to each dataset, and cannot be chosen heuristically.

To find hyperparameters that would yield the highest accuracy we used the Keras

Tuner module. The exact configuration of a Keras Tuner module and comparison of

trained models is presented and discussed in Section 5.1.

3.7 Model optimisation

Keras supports saving models in h5 format, which model’s architecture, values of

weights, and information used while compiling the model. h5 format cannot be

used directly for running trained models on mobile devices and microcontrollers:

conversion to a .tflite format has to be done with the TFLite Converter tool.

3The Dropout layer decides with probability p in each training step how many activations from
the previous layer will be passed on to the next layer. It is active only during the training phase,
during the testing phase activations are multiplied with (1− p) factor to compensate. It is a very
popular type of regularisation technique, which makes models more robust to the input data [14].

46

The TFLite converter can convert a model in .h5 format into four differently optimised

tflite models:

� Non-quantized tflite model, no quantization, just basic conversion from

.h5 to .tflite format is done.

� Float16 model, weights are quantized from 32-bit to 16-bit floating-point

values. The model size is split in half, and the accuracy decrease is minimal,

but there is no boost in execution speed.

� Dynamic model, weights are quantized as 8-bit values, but operations are

still done in floating-point math. Models are 4 times smaller and execution

speed is faster when compared to float16 optimisation but slower than full

integer optimisation.

� Full integer model, weights, biases, and math operations are quantized,

execution speed is increased. It requires a representative dataset at conversion

time.

A full integer model is an ideal choice for running models on microcontrollers,

although, it should be noted that not all operations have full integer math support

in TFLite Micro.

Furthermore, created tflite models need to be converted into a format that is

understandable to the C++ TFlite API running on a microcontroller. This is done

with the xxd, a Linux command-line tool that creates a hex dump out of any input

file. By setting -i flag, the xxd tool creates a hex dump of our model,and formats it

as a char array in the C programming language.

To automate the optimisation process we wrote a Python script that took the model

in raw .h5 format and converted it into every possible version of the optimised tflite

model. Each model was then processed with the xxd tool and pairs of .c and .h files

were created, ready to be included in our application code.

47

3.8 Neural Network model design in Edge Impulse Studio

Designing a Neural Network with Edge Impulse is a much less involved process

than the one we described above, because many steps of image preprocessing are

automated. To start with NN design, we first had to upload our image data to

the Edge Impulse Studio project. This can be done either by connecting an S3

bucket4with data with the Edge Impulse account, and transferring data to a specific

project or by using the Edge Impulse command-line tools to upload image data from

a computer directly to a project. We chose the S3 bucket approach, as once the data

was uploaded it was trivial to transfer it to different projects.

After the data were uploaded, the rest of the NN design was done through the Edge

Impulse web interface. In Figure 3.8 we can see the so-called Impulse Design tab,

where we design a Neural Network by choosing different blocks.

Figure 3.8: Creating a Neural Network in Edge Impulse Studio.

With input blocks, we tell what kind of data are we inputting, either image or

time-series data, and with processing blocks we decide how are we going to extract

4Simple Storage Service or S3 is another service provided by Amazon, used for storing a large
amount of data in the cloud.

48

features. Input and preprocessing blocks always return same output given the same

input, while learning blocks are trainable and learn from previous experiences. For

the learning block, we can choose to use a Neural Network provided by Keras, an

anomaly detection algorithm, or a pre-trained model for transfer learning.

Since we were training with image data, we selected an image input block. As Edge

Impulse did not support images of different image ratios at the time, we had to

resize our images to 60 x 60 pixels. Image input block offers different resize options,

which are also shown in Figure 3.9. We chose crop option, where the excess pixel

were simply dropped. For the processing block, we selected the image processing

block as this was the only possible choice. For the learning block we were using both

Keras’s Neural Network block and Transfer Learning block.

Figure 3.9: Different resizing methods

49

Both of the blocks are configurable. We could either define our network with different

blocks representing layers, or switch to the text editor with Keras Sequential API

code, where we could make our adjustments. Settings such as learning rate, number

of epochs5, and confidence rating are also available, regardless of the option we chose.

Training of Neural Networks inside Edge Impulse Studio is done in a cloud, so as

users we do not have to worry about setting up a development environment. We

only have to start it and wait for it to finish. After training was done, Edge Impulse

showed how well the model was performing on the validation data, how much flash

and RAM would it need, and approximately how long on-device inference would

take, based on the frequency and the processor of the microcontroller.

An example of the output is presented in Figure 3.10, where inferencing time is

estimated for a Cortex-M4 microcontroller, running at 80 MHz. Edge Impulse also

automatically converts trained model to an optimised full-integer model.

Figure 3.10: Training performance report.

The final step was deploying the trained model to the microcontroller. This step is

fairly simple, as Edge Impulse provides a few example projects on their GitHub for

the different platforms that it supports. As we wanted to compare the performance

of the models on STM32f767ZI, we chose the Mbed platform. We copied the example

Mbed project from GitHub, and in the Edge Impulse Studio we selected to generate

5Number of epochs tells us how many times the whole training set passed through model, during
training process.

50

an inferencing library with our model for the Mbed platform. We extracted the

library, which consisted of C++ files, into an example project and compiled it. An

example project just runs the inference continuously on one image and outputs

results over the serial port. A performance comparison between this example project

and our implementation is done in Section 5.2.3.

51

4 Design and implementation of the early warn-

ing system

General structure and tasks of an early warning system were already described in

chapter 1.2. As mentioned before, an early warning system consists of two different

components:

1. Several small embedded devices, which are deployed in the field. They capture

images with a thermal camera and process them. Results are then send over a

wireless network.

2. One gateway, which is receiving messages and relaying them to an application

server over an Internet connection.

In this Chapter, we focus on the structure and design of the deployed embedded

system, both from the hardware and firmware perspectives. We also describe the

construction of an application server, and how received data is processed, stored and

presented.

The general block diagram of an embedded system with a thermal camera is presented

in Figure 4.1

The embedded system consists of two different microcontrollers with two distinct

tasks, a thermal camera, a PIR sensor, a wireless communication module, a power

switch and a battery.

The powerful, high-performance microcontroller and thermal camera are usually

turned off to conserve battery life. A less capable, but low-power microcontroller

spends most of the time in low-power mode, waiting for a wakeup trigger from the

PIR sensor. The PIR sensor points in the same direction as the thermal camera and

52

Thermal
camera

High performance
microcontroller

LoRa communication
module

Control commands

Image data

Inference result
System data

Power
switch

Enable

Power
source

Control commands

Inference result

Low power
microcontroller

PIR
sensor

Trigger
signal

Figure 4.1: General block diagram of an embedded system

detects any IR radiation of a passing object.

If an object passes the PIR’s field of vision, the PIR sensor produces a trigger signal,

which, consequently, wakes up the low-power microcontroller. The microcontroller

then enables the power supply to the high-performance microcontroller and thermal

camera, and sends a command request for image capture and processing.

The thermal camera only communicates with the high-performance microcontroller,

which configures it and requests image data. Those data are then input into a Neural

Network algorithm, which computes probability results that are sent back to the

low-power microcontroller. The low-power microcontroller then packs the data and

sends them over the radio through a wireless communication module. The power

source to the high-performance microcontroller and thermal camera is then turned

off to conserve power. A diagram of the described procedure can also be seen in

Figure 4.2.

Passing object
triggers

PIR sensor

Low-power
microcontroller
enables power

Thermal camera
makes an image

Image is processed
by a high

performance
microcontroller

Result is sent to
the low power
microcontoller

Result is sent over
radio, system goes

in sleep mode

Figure 4.2: Diagram describing the behaviour of the embedded early warning system

53

4.1 Hardware

In this Section, we present the concrete components that we used to implement the

embedded part of the early warning system. The hardware version of the embedded

system diagram is presented in Figure 4.3. The system consists of various development

and evaluation boards.

1.2V, 2.8V power supply
25 MHz oscilator

FLIR Lepton 2.5
camera module

Nucleo-F767ZI
development board

STM32F767ZI
microcontroller

ST LINK programmer

I2C

SPI

FLIR Lepton
Breakout Board v2.0

nRF52840 DK
development kit

NRF52840
microcontroller

LR1110
development kit

Uart

Power

PIR module

Power source

Trigger
output

Power

PowerJ-LINK programmer

SPI Various
GPIO
lines

Power

Boost converter
evaluation kit

Enable

PowerPower

Figure 4.3: Hardware diagram of the embedded early warning system

4.1.1 Nucleo-F767ZI

Nucleo-F767ZI (seen in Figure 4.4) is a development board made by STMicroelec-

tronics. It features an STM32F767ZI (STM32) microcontroller with a Cortex-M7

core, which has 2 MB of flash, 512 kB of SRAM, and can operate at a clock speed of

216 MHz. It also features memory caches and a flash accelerator, which provide an

extra boost in performance. It is convenient to programme, as it includes an onboard

ST-LINK programmer circuit.

We chose this microcontroller simply because it is one of the more powerful general

purpose microcontrollers on the market. As we knew that Neural Networks are

computationally expensive to compute and that models can be quite large in terms of

memory, we selected it knowing that we can always scale it down if we have to.

54

Figure 4.4: Nucleo-F767ZI development board

4.1.2 nRF52840 DK

For the part of the system which had to contain the low-power microcontroller and

would control the communication module and power control for the Nucleo-F767ZI

board, we decided to use the nRF52840 DK development kit. The development kit,

made by Nordic Semiconductor, can be seen in Figure 4.5

The main logic on the board is provided by an nRF52840 (nRF52) microcontroller

with a Cortex-M4 core, which has 1 MB of flash, 256 kB of RAM and Bluetooth 5

support. nRF52 has a consumption of 0.5 µA in sleep mode, which makes it ideal for

our purpose.

Figure 4.5: nRF52840DK development board

55

4.1.3 LR1110 development kit

For the role of the LoRa transceiver module we decided to use Semtech’s develop-

ment kit which uses the LR1110 chip. LR1110 is a multi-functional solution, as it

contains a LoRa transceiver, and GNSS and WiFi geoposition scanning modules.

The development kit seen in Figure 4.6 contains an LR1110 chip, three different

antennas and their respective tuning networks. It comes in a convenient Arduino

shield form factor, which means that we can attach it directly to the nRF52 without

any jumper wires.

Figure 4.6: LR1110 development kit

4.1.4 Boost converter evaluation kit

The power to the Nucleo-F767ZI board and the FLIR camera is provided by the

MAX17225ENT+T boost converter chip. The breakout board containing the chip is

shown in Figure 4.7. Operating the boost converter chip is simple, its enable line

can be connected directly to a microcontroller pin driving it high enables output,

and driving it low disables it. The output voltage is controlled by an external

resistor.

56

Figure 4.7: MAX17225ENT+T boost converter breakout board

4.1.5 FLIR Lepton 2.5 camera module and Lepton breakout board

Section 2.6 described what kinds of thermal cameras exist and how they work, and

Section 2.6.1 described why the FLIR Lepton 2.5 was chosen. However, not much

was said about what sort of support circuitry the FLIR camera needs and how we

use it.

The FLIR Lepton camera is powered from two different sources, 1.2 V and 2.8 V, and

requires a reference clock of 25 MHz. All of this is provided by the Lepton breakout

board, which can be seen in Figure 4.8. The front side of the breakout board contains

an FLIR module socket, and the backside contains two voltage regulators and an

oscillator. The breakout board can be powered from 3.3 to 5 V, and also, conveniently

breaks out all communication pins in the form of header pins.

The FLIR Lepton module itself contains five different subsystems that can be

configured:

� AGC – Automatic Gain Control, affects image contrast and quality

� SYS – System Information

� VID – Video Processing Control

� OEM – Camera configuration for OEM customers

� RAD – Radiometry

57

Figure 4.8: Front and back side of FLIR Lepton breakout board with thermal camera
module inserted.

The task of an AGC subsystem is to convert a dynamic range of an IR sensor into a

compact range that is more suitable for storing and displaying images. In the case of

the FLIR Lepton, this is a 14-bit to 8-bit conversion. For our purposes, the AGC

subsystem was turned on, as the inputs to our image classification model were 8-bit

values.

The microcontroller communicates with FLIR camera over two interfaces: A Two-

Wire interface (TWI) is used for control of the FLIR camera and Lepton’s VoSPI

protocol is used for image transfer.

4.1.6 PIR Sensor

We used a cheap, generic PIR sensor, that can be seen in Figure 4.9. It has two

potentiometers, which are used to adjust the sensor’s sensitivity and detection delay.

The PIR sensor runs on 3.3 V, which enables us to power it directly from the nRF52.

58

Figure 4.9: Front and back side of a PIR sensor.

4.2 Firmware

4.2.1 Tools and development environment

For our firmware development we did not choose any of the integrated development

environments, provided by different vendors. Instead we used the terminal text editor

Vim for writing and editing the code.

As we were programming two different microcontrollers, we were using different tools

for each one.

4.2.1.1 Development environment for STM32F767ZI

For building our firmware programs we used the GNU Make, a build automation

system that builds software according to user written Makefiles. To compile code

we used the Arm embedded version of GNU GCC. To programme binaries into our

microcontroller we used OpenOCD.

For the hardware abstraction library we used libopencm3, which is an open-source

low-level library that supports many of Arm’s Cortex-M processors cores, which can

be found in a variety of microcontroller families, such as ST’s STM32, Toshiba’s

TX03, Atmel’s SAM3U, NXP’s LPC1000, Silabs’s EFM32 and others. Libopencm3

provided us with linker files, start-up routines, thinly wrapped peripheral drivers and

a starting template makefile, which served as the starting point for our project.

59

As libopencm3 does not provide printf functionality out of the box we used an

excellent library by GitHub user mpaland [36].

4.2.1.2 Development environment for nRF52840

To develop the firmware for nRF52 we decided to use The Zephyr OS, which is a small

kernel, designed for IoT embedded systems. Besides the usual RTOS functionalities

such as tasks, mutexes, semaphores, it also provides a common driver API for

supported microcontrollers.

4.2.2 Architecture design

The STM32 firmware was designed to be very efficient and lean, and only truly

necessary parts of the firmware were implemented.

As seen in Figure 4.10 we split the firmware into a hardware module and application

module.

FLIR Lepton driver

STM32F767 microcontroller

I2C driver

FLIR Lepton 2.5
thermal camera

Initialization
Camera control over TWI
Image data receive over VoSPI

System initialization

Utility functions

Timing driver

UART driver

SPI driver

Printf library

ML inference box
Preprocess images
Invokes inferences
Predicts class probability

Error reporter

Stored model

Result reporter

Tensorflow Lite for Microcontrollers

Model Interpreter

Hardware specific Application specific

Simple shell
Communication interface nRF52840 DKSystem clock

Peripherals
I/D caches
Flash prefetch

Memory constrained
implementation for
embedded devices

NRF52840

Various peripheral
drivers
Systick timer
DWT timer

between STM32F767 and

Figure 4.10: Architecture diagram of the firmware that is running on the STM32
microcontroller.

The hardware specific module is using mostly libopencm3 API to set the system

clock and initialise peripherals. Small function wrappers had to be written to make

60

use of various peripheral drivers easier.

FLIR Lepton libraries provided by the camera manufacturer or open-source commu-

nities were too complex, and implemented way too many features that we did not

need. We wrote the FLIR Lepton driver from scratch, while reusing some concepts

from the official manufacturer’s library.

Thanks to TFLite Micro API, the ML inference module could be written as a simple

black box: Image data goes in, predictions come out.

The architecture diagram for nRF52 can be seen in Figure 4.11. For the nRF52

microcontroller we did not have to write any peripheral drivers, as they were provided

by Zephyr itself.

NRF52840 microcontroller

Hardware specific

SPI driver

Zephyr specific Application specific

STM32F767 microcontroller

Scheduling
Task priorities
Kernel tick

PIR sensor handling

GPIO driver

Wireless communication

LR1110 driver

Inference requester
Waits for wakeup interrupt
Controls power to STM32

Boost control

LoraWAN OTAA join
Preparing outgoing data
Handling incoming data

System control and monitoring
Sleep state transition
Power source monitoring
System messages

PIR sensor

LR1110 chip

Boost converter chip

Power source

UART driver

RTOS

System initialization
Various peripheral
drivers
Devicetree

Simple shell
Communication interface

NRF52840
between STM32F767 and

Figure 4.11: Architecture diagram of the firmware that is running on the nRF52840
microcontroller.

Extra care was given to low power consumption. That meant that the nRF52 had to

spend most of its time in low-power mode, only waking up for regular system checks

and PIR trigger signals. When the a PIR trigger signal is received, the interrupt

wakes up the nRF52, which then enables a boost converter, thus enabling power

to the STM32 and FLIR Lepton camera. Handling transitions to low-power state

in Zephyr is quite straightforward, although, each individual peripheral has to be

turned off explicitly. When entering a low-power state we turned off the UART and

SPI peripherals, while GPIO stayed active, as we needed a wakeup interrupt. After

61

receiving the interrupt we had to turn on each peripheral manually.

For the communication interface, we decided to implement a simple UART shell

module. We also wrote a communication module, which took care of controlling

the LR1110 chip, joining the LoRaWAN network, preparing outgoing messages and

sending them over the LoRaWAN network.

4.2.3 FLIR Lepton driver

As mentioned before, the FLIR Lepton driver had to implement two different protocols

to control the FLIR Lepton camera: TWI for general camera control and VoSPI for

receiving images.

TWI is a variation of an I2C protocol, but instead of 8 bits all transfers are 16

bits. The internal structure of the Lepton’s control block can be seen in Figure 4.12.

Whenever we are communicating with the FLIR camera we have to specify which

subsystem we are we addressing, what type of action we want to do (get, set or run),

length of data and the data themselves.

We wrote the driver in such a way that the API hid low-level details of exact data

transfers. Two examples of such an API can be seen in Listing 4.1.

Lepton’s VoSPI protocol (which is a variation of the SPI protocol) is used only to

stream image data from the camera module to the microcontroller, which means that

the MOSI line is not used. Each image fits into one VoSPI frame, and each frame

consists of 60 VoSPI packets. One VoSPI packet contains 2 bytes of an ID field, 2

bytes of a CRC field and 160 bytes of data1, which represents one image line. The

ID field of a valid VoSPI packet contains the number of the equivalent frame row.

The refresh rate of VoSPI frames is 27 Hz, however, only every third frame is unique

from the last one. It is the job of the microcontroller to control the SPI clock speed

and process each frame fast enough so that each unique frame is not discarded.

1Because images pixel values fit into the 14-bit range by default, it means that one-pixel value
needs two bytes of data (the two most significant bytes are zero). That means that each image line
(80 pixels) is stored in 160 bytes. If AGC conversion is turned on, each pixel is then mapped into
an 8-bit range, however, the size of one line in the VoSPI packet remains 160 bytes, and the 8 most
significant bits are simply zeros.

62

Listing 4.2 shows our implementation of a get_picture function that was reading

images from VoSPI protocol.

Figure 4.12: Command and control interface of an FLIR Lepton camera. Image
source: [37]

63

To capture images from the VoSPI stream we implemented a finite state machine

with three states: INIT, OUT_OF_SYNC and READING_FRAME. State INIT executes the

chip select sequence expected by the FLIR camera. After that, we start clocking out

a stream of VoSPI frames over the MISO line. Whenever we start communication, we

do not know where exactly in stream we are, additionally, FLIR is also transmitting

discard packets between valid frames. To solve this problem we have to check the

ID field of every VoSPI packet and look for an ID byte with a value 0x00, while

discarding packets with values 0xFF. When the first frame row is detected we simply

start storing all incoming frame rows into a frame variable, while checking that the

ID byte is correct. We loop until all VoSPI packets of a single frame are received. If

we somehow missed the VoSPI packet, we return early from the function.

1 /*!
2 * @brief Function sets position of shutter
3 *
4 * @param[in] position
5 */
6 void set_flir_shutter_position(SHUTTER_POSITION position)
7 {
8 if(! set_flir_command32(command_code(SHUTTER_POSITION ,
9 LEP_I2C_COMMAND_TYPE_SET),

10 (uint32_t) position)) {
11 flir_print("Set shutter position : function failed !\n");
12 }
13 }
14 /*!
15 * @brief Enable or disable AGC processing
16 *
17 * @param[in] position If true AGC will be enabled
18 */
19 void set_flir_agc(bool enable)
20 {
21 if(! set_flir_command32(command_code(AGC_ENABLE_STATE ,
22 LEP_I2C_COMMAND_TYPE_SET),
23 (uint32_t) enable)) {
24 flir_print("AGC mode: function failed !\n");
25 }
26 }

Listing 4.1: Examples of FLIR Lepton driver API.

64

1 bool get_picture(uint16_t frame [60][82])
2 {
3 state_e state = INIT;
4 uint8_t frame_row = 0;
5 while (1)
6 {
7 switch(state)
8 {
9 case INIT:

10 enable_flir_cs ();
11 disable_flir_cs ();
12 delay (185);
13 enable_flir_cs ();
14 state = OUT_OF_SYNC;
15 break;
16

17 case OUT_OF_SYNC:
18 spi_read16(frame[frame_row], 82);
19 // Look for the start of the frame
20 if ((frame[frame_row][0] & 0x00FF) == 0x0)
21 {
22 // Start of frame detected
23 frame_row ++;
24 state = READING_FRAME;
25 }
26 break;
27

28 case READING_FRAME:
29 spi_read16(frame[frame_row], 82);
30 // Check each frame row
31 if((frame[frame_row][0] & 0x00FF) == frame_row)
32 {
33 // Frame row matches
34 frame_row ++;
35 if (frame_row == 60)
36 {
37 // Full frame received , return to caller
38 disable_flir_cs ();
39 return true
40 }
41 }
42 else
43 {
44 // Error , end image reading
45 disable_flir_cs ();
46 return false;
47 }
48 break;
49 }
50 }
51 }

Listing 4.2: Example of finite state machine implementation for reading FLIR images
over SPI.

65

4.2.4 Simple shell

The simple shell module controls the execution of all subroutines inside the STM32

firmware. The nRF52 microcontroller acts as a host and sends commands to the

STM32, which executes commands and sends back the results. Listing 4.3 shows the

main simple_shell function.

1 /*!
2 * @brief Supported shell commands
3 */
4 typedef enum
5 {
6 INVALID_CMD ,
7 BLINK ,
8 ML ,
9 FLIR ,

10 } shell_cmd;
11

12 /*!
13 * @brief Entry point to simple shell , which does not
14 * ever return. It calls all other modules and
15 * functions.
16 */
17 void simple_shell ()
18 {
19 char buf[SHELL_BUF_LEN];
20 uint16_t len;
21 shell_cmd cmd;
22

23 put_line("$");
24 while (1) {
25 len = get_line(buf , SHELL_BUF_LEN);
26 if (len) {
27 cmd = parse_command(buf , len);
28

29 if (execute_command(cmd)) {
30 get_command_response(cmd , buf , SHELL_BUF_LEN);
31 put_line(buf);
32 }
33 else {
34 put_line("\nNOT OK\n");
35 }
36 }
37 }
38 }

Listing 4.3: Code snippet of simple shell implementation.

At the start of the while loop, function get_line() returns when it receives a string,

terminated with a newline character. Function parse_cmd then decides with a set

of strcmp functions if the received command is supported. If yes, that command is

later executed by the function execute_cmd and a response is returned, returning

66

result in the case of successful execution, or a fail reason in the case of failure.

The module is written to be easily scalable, and when new functionality is added,

it is trivial to extend the number of possible commands. Once we knew that the

UART communication worked correctly, we could issue commands directly from the

computer’s serial port, which enabled us to develop and test firmware for the STM32

separately from the nRF52 firmware.

4.2.5 MicroML and build system

A large part of this thesis was concerned with porting TFLite Micro to the libopencm3,

our platform of choice. To understand how this could be done, we first had to analyse

how the code is built in TFLite Micro.

To compile source files and build binaries TFLite Micro uses GNU Make. The main

makefile includes several platform specific makefiles, which dictate how the firmware

is built, and several bash scripts which download various dependencies. By providing

command-line arguments users decide which example needs to be compiled and for

which platform. The build system makes some assumptions about the locations of

the platform specific files, which, in the case of example projects, are scattered over

the whole TensorFlow GitHub repository.

We learned a useful principle while analysing the build process. Each time we would

build an example for a new platform, Make would first compile all TensorFlow files,

create a static library out of them, compile specific example source files and then

link against the library in the linking stage. If we wanted to build firmware for a

different example, but for the same platform, Make would only have to compile

source files of that example, and link them with the previously made library. As

compilation of required the TensorFlow files takes quite some time, this was an

efficient option.

After analysing the TFLite Micro’s build system we created a list of the requirements

that we wanted to fulfil on our platform:

67

1. We wanted to keep the project-specific code, libopencm3 code and TFLite

Micro code separated.

2. We wanted a system where it would be easy to change a microcontroller specific

part of a building process.

3. We wanted to reuse the static library principle that we saw in the TFLite

Micro build process.

Covering different platforms and use cases made the main TFLite Micro makefile

quite complex and hard to understand. This meant that it would be hard to reuse it

when porting to a new platform and we needed a different approach.

To solve our problem we started developing a small project that we named MicroML2.

MicroML enables users to develop ML applications on microcontrollers supported by

libopencm3. The project’s directory structure can be seen in Figure 4.13

MicroML

tensorflow

libopencm3

projects

hello world stm32f7

elephant stm32f7

test

src

Makefile

project.mk

openocd.cfg

archive makefile

rules.mk

Figure 4.13: Directory structure of the MicroML project.

Folders tensorflow and libopencm were cloned directly from their respective sources

as Git submodules, which means that they are fixed at specific commits, usually at

major release points. User specific projects are placed in projects folder. Besides

source files, each project has to contain three specific files:

2Project is open-source and publicly available on GitHub [38].

68

� project.mk - It contains information on which files need to be compiled inside

the project folder. It defines for which microcontroller the code needs to be

compiled, and what kind of optimisation flags should be used.

� openocd.cfg - A configuration file that tells OpenOCD which programmer

interface needs to be used to flash a microcontroller, and the location of the

binary file that needs to be flashed.

� Makefile - The project’s makefile that gathers source files inside the project

folder. It makes it possible to call make directly from the projects directory,

which eases the development process. It does not specify any building rules;

those are specified in the rules.mk file in the root directory of the project.

Some initial commands need to be executed when the project is cloned from the

GitHub for the first time. Figure 4.14 represents the complete build process.

.c
make -c libopencm3

make -c tensorflow
hello_world.cc

.a

hello_
world.bin

third party
folder

Libopencm3
source files

TensorFlow
source files

Libopencm3
archive files

Not used

Used later

.cc
TensorFlow
source files

make -f archive_makefile
project=elephant_stm32f7

microlite.a

Project specific
archive file,
 used later

third party
folder

.cc

make flash

Project
source files

rules.mk

project.mk genlink-
config.mk

genlink-
rules.mk

Device name
Arch flags
linker file

firmware.elf

OpenOCD

microcontroller

Device name
Arch flags

Submodules setup

Project specific

Provided by
libopencm3

Project setup

microlite.a

Project specific
archive file,
 used later

Compile and flash

project.mk

genlink-
config.mk

.a
Libopencm3
archive files

Figure 4.14: Build system of MicroML project.

69

In the submodules setup stage we first compile both of the submodules; this step

requires two makefiles that are already provided by each submodule. Compiling

libopencm3 creates a group of archive files (static libraries), which contain all platform

specific code. Compiling a TensorFlow Hello World example does not produce any

archive files that we would need, although, it does execute several scripts which

download several different third party files. The TFLite Micro library depends on

these files, which means that MicroML does as well. The Submodules setup stage

only has to be executed once.

Whenever we start with a new project that will use ML algorithms, we need to

go through the project setup stage. From the main directory we execute make

with archive_makefile and define the PROJECT variable with the name of our

project. Archive_makefile looks into project.mk and extracts the DEVICE variable.

Libopencm3’s genlink-config.py script then determines which microcontroller

specific compilation flags3are needed. All needed TensorFlow source files and third

party files are then compiled and a project specific microlite.a archive file is

created in our project’s folder.

The compile and flash stage is then executed continuously during the development

process. By calling make flash directly in our project folder, we compile all project

files, microlite.a and libopencm3 archive files that were created early. Libopencm3

helper scripts (genlink-config.mk and genlink-rules.mk) provide us with the

microcontroller specific flags and a linker script. After compilation a firmware.elf

is created, Make then calls OpenOCD automatically, which flashes a microcon-

troller.

As flashing a big binary to a microcontroller takes a long time, we also created a

similar setup for testing the inference directly on the host machine. That way we

could test ML specific routines fast and remove any mistakes found on the way

quickly.

3For example, to compile firmware for STM32 we need flags -mcpu=cortex-m7, -mthumb,
-mfloat-abi=hard and -mfpu=fpv5-sp-d16. They tell the GCC that we are compiling for a cortex-
m7 processor, that we want to use a thumb instruction set and that we want to use a hardware
floating-point unit with single precision.

70

4.2.6 Running inference on a microcontroller

TFLite Micro API is fairly simple to use, and general enough that it can be copied

from project to project without many modifications. Listing 4.4 shows a simplified

inference code example, copied from our project. As a first step, we needed to define

the size of the tensor_arena array, which holds the memory of input, output, and

intermediate arrays. The exact size of the tensor_arena is determined by trial and

error: We set it to some big value and then decrease it in steps.

In lines 9 and 10 we created an instance of the ErrorReporter object. This object

serves as a thin wrapper around the platform specific printf implementation. If

some part of TensorFlow code crashes, ErrorReporter notifies us what went wrong.

In line 13 we pull in our ML model in hex dump format that we created with xxd.

Full_quant_model is defined in a different file, not seen in this example.

In lines 16 to 24 we created an operation resolver. One way to do it is to specify

each required operation specifically (which is done in the example) or simply pull

in all operations. The latter approach is not recommended, as it results in a large

binary size. To find out exactly which operations were required we used the online

tool Netron [39], which showed us a deconstructed view of a trained model.

In lines 27 and 33 we created an MicroInterpreter instance and allocated the

memory to it that we specified with tensor_arena earlier. Lines 37 and 38 assigned

input and output of the interpreter to the new TfLiteTensor variables. This step

enabled us to do two things. Firstly, variables input and output now point to

information about data format: We can find out how many dimensions are needed,

what is the size of those dimensions, and what is the expected type of the variable

(uint8_t, int8_t, float...). In tests that we were running on the laptop, we tested

exactly for these values to confirm that the model worked as expected. Secondly, we

now had a way to feed data directly into input, and this is done in the for loop on

line 41. One of the TfLiteTensor members is a union variable data which contains

variables of all possible types. This type of structure enabled us to load input with

any kind of data, in our case int8.

71

1 // An area of memory to use for input , output ,
2 // and intermediate arrays.
3 const int kTensorArenaSize = 200 * 1024;
4 static uint8_t tensor_arena[kTensorArenaSize];
5

6 int main()
7 {
8 // Debug print setup
9 tflite :: MicroErrorReporter micro_error_reporter;

10 tflite :: ErrorReporter *error_reporter = µ_error_reporter;
11

12 // Map the model into a usable data structure
13 const tflite :: Model* model = tflite :: GetModel(full_quant_tflite

);
14

15 // Pull in needed operations
16 static tflite :: MicroMutableOpResolver <8> micro_op_resolver;
17 micro_op_resolver.AddConv2D ();
18 micro_op_resolver.AddMaxPool2D ();
19 micro_op_resolver.AddReshape ();
20 micro_op_resolver.AddFullyConnected ();
21 micro_op_resolver.AddSoftmax ();
22 micro_op_resolver.AddDequantize ();
23 micro_op_resolver.AddMul ();
24 micro_op_resolver.AddAdd ();
25

26 // Build an interpreter to run the model with.
27 static tflite :: MicroInterpreter interpreter(model ,
28 micro_op_resolver ,
29 tensor_arena ,
30 kTensorArenaSize ,
31 error_reporter);
32 // Allocate memory from the tensor_arena
33 interpreter ->AllocateTensors ();
34

35 // Get information about the memory area
36 // to use for the model’s input.
37 TfLiteTensor* input = interpreter ->input (0);
38 TfLiteTensor* output = interpreter ->output (0);
39

40 // Load data from image array
41 for (int i = 0; i < input ->bytes; ++i) {
42 input ->data.int8[i] = image_array[i];
43 }
44

45 // Run the model on this input and time it
46 uint32_t start = dwt_read_cycle_counter ();
47 interpreter ->Invoke ();
48 uint32_t end = dwt_read_cycle_counter ();
49

50 // Print probabilites and time elapsed
51 print_result(error_reporter , output , dwt_to_ms(end -start));
52 }

Listing 4.4: Example of TensorFlow Lite inference code in C++.

72

In line 47 we finally invoked interpreter and ran inference on input data. The whole

expression was surrounded by the timing functions, which were used to keep track of

the time spent computing inference.

We finally called print_results, written by us, where we passed error_reporter

for printing, output for extracting computed probabilities and elapsed time.

After the initial setup, we could load data, call invoke, and print results as many

times we wanted.

4.3 Server-side components and software

In this Section, we describe the possible server-side construction of various frameworks

which enable us to receive LoRaWAN messages, parse them, store them in a database

and visualise them. We did not implement this specific setup as it was not required

for testing purposes, however, at IRNAS, we use this setup for our IoT products and

implementation of a such system would be trivial.

The system that we use consists of different tools, each one with a distinct task.

These tools are The Things Network (TTN), Node-RED, InfluxDB and Grafana.

The flow of information and tasks for each tool is presented in Figure 4.15.

Grafana
- Visualizes stored data
- Supports many type of
 graphs and visualization
 mediums.

Node - RED
- Connects to TTN
- Parses payloads
- Saves them into InfluxDB
- Can be used to with many
 other technologies

The Things Network
- Receives LoRaWAN
 messages from gateway
- Offers direct control of
 devices
- Decodes payload

InfluxDB
- Stores payload in
 time-series data
 format.

Figure 4.15: Server side flow of information. Icons source: [11]

TTN is responsible for routing packets that are captured by a gateway to the

application server. Since it is open-source and free, anyone can register their gateway

device into the network and, thus, help to extend it. TTN is web-based, so we can see

73

payload messages directly in the browser. Since data are usually encoded in binary

format, we can provide a decoder-script written in JavaScript and TTN will pass

each message into it automatically, thus decoding it.

Node-RED functions as a glue logic that parses packets and shapes them into a

format that is required by InfluxDB. Node-RED provides a browser-based flow

editor, where actual programming can be done graphically. Logic is programmed by

choosing different blocks, called nodes, and connecting them. This is convenient, as

Node-RED provides different nodes for communicating with different technologies,

such as MQTT, HTTP requests, emails, Twitter accounts and others. In our use

case, we needed to use the nodes seen in Figure 4.16. The node Elephant Gateway is

connected to a specific application on TTN, which is used for the collection of packets

from our devices in the field. Any packet that will appear in that TTN application

will also appear in Node-RED. The node Parse packet extracts information contained

in each packet and stores it in a specific format, which is finally sent to the Elephant

Database node.

Figure 4.16: Node-RED flow

Elephant Database is connected to InfluxDB, which is a time-series database. Any

packet that is saved in it is timestamped automatically.

Data are then visualised in Grafana. Grafana is an open-source analytics and moni-

toring solution. Users define which database is set as a source, and Grafana provides

graphical controls which are, at some point, converted into SQL-like language, un-

derstandable to InfluxDB. Grafana provides different types of visualisations, such as

graphs, gauges, heat maps, alert lists and others. In our use case, we could display

information about various devices in the field, such as battery voltage, number of

wakeup triggers, results of each inference, and others.

74

An example of a Grafana graph can be seen in Figure 4.17.

Figure 4.17: Example of a Grafana graph.

One important quality of Node-RED, InfluxDB and Grafana is that they can run

directly on an embedded Linux system, such as Raspberry Pi or BeagleBone, which

lowers the cost of hardware that is needed greatly .

75

5 Measurements and results

5.1 Comparison of models

As mentioned in Section 3.6, we used a Keras Tuner model to find the hyperparameters

that would yield the highest accuracy. Instead of hard-coding hyperparameters when

building a model with Keras API, we defined a search space of possible values with

HyperParameter class, and used that as a hyperparameter.

We passed the created model to a RandomSearch class, with a few other parameters,

such as batch size, number of epochs and maximum number of trials. As we started the

hyperparameter search, Keras Tuner started picking a selected set of hyperparameters

randomly, which were used to train a model. This process was repeated a number of

times. The used hyperparameters and achieved accuracy on the validation set for

each trained model were logged in a text file for later use.

After training several different models we picked a few and compared them. Compar-

ison of models trained in Edge Impulse Studio was also done.

To distinguish models from one another we decided to mark them with a number

and letters a, b, ei and tl. Models with letters a and b were trained using our

system. Models marked with ei and tl were created in the Edge Impulse Studio. More

specifically, ei models have a same basic CNN architecture as our models, while tl

models were trained by the Transfer Learning technique, which reuses a pre-trained

MobileNetV2 architecture. The Tables that are shown below list one of the metrics

as accuracy. By accuracy we mean validation accuracy; it tells us how well the model

performed on a validation dataset.

76

5.1.1 Hyperparameter search space and result’s analysis

The general structure of the CNN model was already described in Section 3.6 and in

Figure 3.1. We decided to search for the following hyperparameters:

� Number of filters in all three convolutional layers (can be different for each

layer)

� Size of filters in all three convolutional layers (same for all layers)

� Size of the dense layer

� Dropout rate

� Learning rate

The possible values of hyperparameters (also known as a hyperparameter search

space) are specified in Table 5.1.

Table 5.1: First hyperparameter search space

Hyperparameter Set of values

FilterNum1 From 16 to 80, with a step of 8
FilterNum2 From 16 to 80, with a step of 8
FilterNum3 From 16 to 80, with a step of 8
FilterSize 3 x 3 or 3 x 4
DenseSize From 16 to 96, with a step of 8
DropoutRate From 0.2 to 0.5, with a step of 0.05
LearningRate 0.0001 or 0.0003

Random search value
variable

EPOCHS 25
BATCH_SIZE 100
MAX_TRIALS 300

The search spaces of FilterNumX, DenseSize and DropoutRate hyperparameters

were chosen based on initial training tests conducted on a thermal image dataset and

other various models that were trained on similar data. The value of FilterSize

is usually 3 x 3; however, most of the example ML projects that we could find on

77

the Internet were training on image data of the same dimensions. We wanted to

test how a filter with the same ratio of dimensions as image data (3 x 4 and 60 x

80 respectively) would perform. The hyperparameter learning_rate was chosen

heuristically; we saw that 10 times higher values, such as 0.001 or 0.003, would

leave the model’s accuracy stuck at suboptimal optima, from where it could not be

improved anymore.

We also had to set 3 variables that affected directly how long the random search

would last. From initial tests we saw that models usually reached maximum possible

accuracy at around the 20th epoch, so, to give some headroom we set the number

of epochs to 25. We kept the batch size relatively small, at 100, which meant that

weights would get updated regularly. The MAX_TRIALS hyperparameter had the

biggest impact on the training time, so we set it to 300.

The training lasted for about 12 hours. After it was done we compiled a list of all

300 trained models and their different hyperparameter values, number of parameters

and achieved accuracies. Part of it can be seen in Table 5.2.

After analysing results we came to several conclusions:

1. We saw that almost all trained models, except for the last one, achieved

accuracy above 90 %. This proved that the general architecture of the model

was appropriate for the problem.

2. We could not see any visible correlation between a specific choice of a certain

hyperparameter and accuracy. This showed that selection of hyperparameters

is a non-heuristic task, at least for our particular problem.

3. Filter of size 3 x 4 did not perform significantly better compared to one with

size 3 x 3.

4. The first 200 models covered an accuracy range of 0.62 %. However, inside of

this range, the number of parameters varied hugely, for example, the model

192a had more than 8 times fewer parameters than the model 96a, although

the difference in accuracy (0.27 %) was negligible.

78

Table 5.2: Partial results of the first random search of hyperparameters

Model ID Filt
er

N
um

1

Filt
er

N
um

2

Filt
er

N
um

3

D
en

se
Si

ze

D
ro

po
ut

R
at

e

Filt
er

Si
ze

Lea
rn

in
gR

at
e

N
um

be
r

of

pa
ra

m
et

er
s

A
cc

ur
ac

y[
%

]

0a 72 80 64 72 0.4 3x4 0.0003 1,514,400 98.35
1a 32 40 72 56 0.35 3x4 0.0001 1,260,332 98.31
2a 40 48 32 64 0.35 3x4 0.0001 656,797 98.31
3a 56 16 48 72 0.4 3x4 0.0001 1,057,924 98.28
4a 80 64 40 96 0.45 3x4 0.0003 1,245,788 98.28

96a 16 32 72 80 0.25 3x4 0.0001 1,762,508 98.00
97a 72 56 40 56 0.45 3x4 0.0003 748,580 98.00
98a 32 24 24 48 0.35 3x3 0.0001 358,308 98.00
99a 48 16 40 40 0.45 3x3 0.0003 493,412 98.00
100a 24 72 64 40 0.45 3x3 0.0003 844,684 98.00

191a 64 56 16 52 0.4 3x3 0.0001 386,996 97.76
192a 48 40 24 24 0.4 3x4 0.0001 208,172 97.73
193a 56 64 72 24 0.25 3x4 0.0003 617,692 97.73
194a 48 72 48 32 0.25 3x4 0.0003 544,652 97.73

295a 48 32 64 16 0.5 3x4 0.0001 351,012 95.87
296a 40 24 56 24 0.5 3x4 0.0001 431,572 95.77
297a 56 16 80 16 0.2 3x4 0.0001 411,020 95.63
298a 24 16 48 24 0.5 3x4 0.0001 359,924 94.46
299a 40 48 56 16 0.35 3x3 0.0003 310,860 82.86

It was apparent from the results that large models were not necessary to achieve

high accuracy, so we decided to run the random search of hyperparameters again.

This time we lowered the maximum and the minimum numbers of filters and size of

the dense layer. We decreased all steps from 8 to 2, thus increasing the number of

possible configurations. We decided to lower the bottom boundary of DropoutRate

from 0.2 to 0.0, which meant that some models would not be using the dropout

layer at all. We expected that training without the dropout layer would produce

suboptimal results, however, we wanted to test it. The redefined search space for

the second random search can be seen in Table 5.3 We increased the number of

MAX_TRIALS from 300 to 500, as we were expecting that more models would end up

underfitting, and also because there would be more possible options because of the

smaller step size.

79

Partial results of the random hyperparameter search can be seen in Table 5.4.

Table 5.3: Second hyperparameter search space

Hyperparameter Set of values

FilterNum1 From 4 to 48, with a step of 2
FilterNum2 From 4 to 48, with a step of 2
FilterNum3 From 4 to 48, with a step of 2
FilterSize 3 x 3 or 3 x 4
DenseSize From 4 to 48, with a step of 2
DropoutRate From 0.0 to 0.5, with a step of 0.05
LearningRate 0.0001 or 0.0003

Random search value
variable

EPOCHS 25
BATCH_SIZE 100
MAX_TRIALS 500

Some observations:

1. We can see that the accuracy of the best model 0b compared to the best model

0a from the previous search is only 0.21 % lower, although it has about 5 times

fewer parameters.

2. Although it might seem that FilterSize of 3 x 4 yielded the best results, we

did not saw a strong tendency towards 3 x 3 or 3 x 4 filter size after analysing

the best 30 models manually.

3. We can see that the worst three models had the same accuracy of 82.86 %,

same as the worst-performing model from the first random search. There are

82.86 % images of elephants in the validation class, which means that the model

probably assigned all validation images to elephant class and was satisfied with

the achieved accuracy.

4. We can see that the model 296b has quite a low number of parameters, only

65,740, when compared to its neighbours.

80

Table 5.4: Partial results of the second random search of hyperparameters

Model ID Filt
er

N
um

1

Filt
er

N
um

2

Filt
er

N
um

3

D
en

se
Si

ze

D
ro

po
ut

R
at

e

Filt
er

Si
ze

Lea
rn

in
gR

at
e

N
um

be
r

of

pa
ra

m
et

er
s

A
cc

ur
ac

y[
%

]

0b 40 20 20 48 0.25 3x4 0.0001 304,216 98.14
1b 44 10 28 42 0.2 3x4 0.0003 362,264 98.14
2b 18 38 26 38 0.1 3x4 0.0003 316,956 98.11

95b 20 16 34 40 0.3 3x3 0.0003 416,230 97.62
96b 46 42 28 32 0.4 3x3 0.0003 297,466 97.62
97b 30 26 30 34 0.2 3x3 0.0001 320,570 97.59

195b 28 16 40 24 0.1 3x3 0.0001 298,252 97.31
196b 44 30 32 20 0.3 3x4 0.0003 220,098 97.31
197b 46 40 10 40 0.1 3x3 0.0001 140,874 97.31

295b 20 8 34 26 0.3 3x3 0.0003 269,464 96.90
296b 18 16 10 20 0.3 3x4 0.0003 65,740 96.87
297b 8 22 28 16 0.1 3x3 0.0001 141,742 96.87

395b 10 20 12 30 0.0 3x3 0.0001 112,246 96.87
396b 24 24 46 18 0.2 3x3 0.0003 263,924 96.14
397b 6 18 12 24 0.4 3x4 0.0001 90,520 96.11

497b 42 30 22 6 0.4 3x3 0.0003 57,386 82.86
498b 4 4 20 12 0.4 3x3 0.0003 72,992 82.86
499b 32 36 36 4 0.15 3x3 0.0001 65,648 82.86

5.1.2 Comparison of selected, re-trained models

Two random searches gave us a large number of different models to choose from. In

every other ML application where the execution time would not be a constraint, we

could simply take the best performing model and be done with it. In our case, we

had to make a trade-off between the model’s accuracy and execution speed.

For comparison and later on-device performance testing we decided to pick and

retrain16 models: 0a, 2a, 0b, 172b, 338b and 460b. Their properties are listed in Table

5.5.

1Retraining was required as the Keras Tuner module only saved hyperparameter settings during
search and not each trained model. As the weights are initially randomised, the accuracy of retrained
models is going to be similar, but not exact, when compared to the accuracy returned by the
random search.

81

The chosen models vary greatly in the number of parameters. Models 0a, 2a, 0b have

a high number of parameters, but their accuracy is high. Models 172b, 338b and

460b were chosen because of their small size and reasonably good accuracy.

Table 5.5: Properties of selected models

Model ID Filt
er

N
um

1

Filt
er

N
um

2

Filt
er

N
um

3

D
en

se
Si

ze

D
ro

po
ut

R
at

e

Filt
er

Si
ze

Lea
rn

in
gR

at
e

N
um

be
r

of

pa
ra

m
et

er
s

A
cc

ur
ac

y[
%

]

0a 72 80 64 72 0.4 3x4 0.0003 1,514,400 98.35
2a 40 48 32 64 0.35 3x4 0.0001 656,797 98.31
0b 40 20 20 48 0.25 3x4 0.0001 304,216 98.14
172b 42 44 8 14 0.1 3x4 0.0001 60,672 97.38
338b 4 18 6 10 0.05 3x4 0.0003 20,290 96.63
460b 6 28 4 8 0.1 3x4 0.0003 13,114 93.60

As we are dealing with an imbalanced dataset, where 82.86 % of our validation

data consists of elephant images, accuracy is not the best metric to use when

comparing models. Simply classifying all images into the elephant class would yield

an accuracy of 82.86 %, which sounds high, although it would not actually do any

classification.

When analysing the performance of a model on an imbalanced dataset it is more

appropriate to use precision and recall metrics. They give us a better idea of how

well the model is performing on data of the specific classes. Precision tells us what

percentage of data points in a specific predicted class fall into that class. Recall

tells us what percentage of data points inside a certain class were actually predicted

correctly. How they are calculated is shown in 5.1.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(5.1)

82

Where:

TP - Number of data points that were true positive

FP - Number of data points that were false positive

FN - Number of data points that were false negative

Calculated metrics can be seen in Table 5.6; we abbreviated precision to P and recall

to R for clarity. We also colour coded each Table row, where bright green shows the

highest value in the row, red shows the lowest, light-green and orange colours show

values in between.

Table 5.6: Precision and recall metrics of trained models

Model ID 0a 2a 0b 172b 338b 460b

Metrics

accuracy[%] 98.18 98.04 98.04 96.80 96.28 93.4
Number of parameters 1,515K 657K 304K 61K 20K 13K

P of elephant class[%] 99.22 99.46 99.25 99.29 98.80 97.80
P of human class[%] 96.92 95.38 95.38 92.00 91.69 80.31
P of cow class[%] 90.99 93.69 90.09 84.68 75.68 69.37
P of nature/random class[%] 77.42 64.52 79.03 46.77 59.68 40.32

R of elephant class[%] 99.29 98.80 98.84 97.87 98.43 97.39
R of human class[%] 93.20 94.51 95.09 91.44 89.22 85.57
R of cow class[%] 94.39 92.04 96.15 89.52 84.00 81.91
R of nature/random class[%] 87.27 97.56 84.48 93.55 67.27 28.09

As we can see, all six models are generally classifying elephants correctly, both

precision and recall of the elephant class are high, above 97 %, which is important.

Precision and recall values of other classes are generally lower, especially for na-

ture/random. We can see that the top three models 0a, 2a and 0b are quite similar

in terms of precision and recall, which means that we can easily prefer 0b without

sacrificing accuracy. Models 172b and 338b performed a bit worse when compared to

the top three models, although, they had a low number of parameters, which should

translate to lower inference time. The last model, 460b, performed the worst and

should generally not be used.

83

Another way to compare models’ performance is to look at a confusion matrix.

Figure 5.1 shows a comparison between the confusion matrices of an 0a model on

the left and 460b model on the right. In the case of 0a, 19 elephant images were not

classified correctly, and 17 images were wrongly classified as elephants. This is not

ideal, however, it is much better compared to the performance of 460b, where 53

elephants were wrongly classified and 63 of images classified as elephants were not

actually elephants.

elephant human cows nature/
random

Predicted Label

elephant

human

cows

nature/
random

T
ru

e
L

ab
el

2388 12 3 4

6 315 3 1

2 6 101 2

9 5 0 48

Model 0a

elephant human cows nature/
random

Predicted Label

elephant

human

cows

nature/
random

T
ru

e
L

ab
el

2354 22 5 26

32 261 8 24

9 11 77 14

22 11 4 25

Model 460b

Figure 5.1: Confusion matrices of 0a model (left) and 460b model (right).

5.1.3 Comparison of Edge Impulse models

We wanted to take our 6 models and compare them against 6 Edge Impulse models

that were created by using the same hyperparameters. However, at the time of writing,

Edge Impulse supported only model training on images of the same dimensions.

Images with different dimensions could either be cropped or scaled to fit a 1:1 ratio.

Using the same hyperparameters in Edge Impulse Studio that were used in our

models, would always create a model with a smaller number of parameters. The

smaller image creates a smaller network when compared to a bigger image, given that

the rest of the architecture does not change. That meant that we could not make

a direct comparison between our models and models trained in the Edge Impulse

84

Studio. We also could not perform a random search of hyperparameters in the Edge

Impulse Studio, as this feature was not fully supported at the time of writing this

thesis.

We decided to train a few differently sized models, using the same general CNN

architecture as before, but with some minor changes in hyperparameter values. We

also trained a few models with the Transfer Learning technique. Edge Impulse

offers scaled-down versions of pre-trained MobileNetV22NN architecture, which we

used.

Tables 5.7 and 5.8 show the properties of Edge Impulse models using CNN architecture

and the Transfer Learning technique, respectively. Table 5.9 shows the calculated

precision and recall values of Edge Impulse models using both approaches.

We used only two different versions of MobileNetV2, 0.35, and 0.1, as we saw an

accuracy drop in the reduction of the width multiplier hyperparameter. In all cases

the pre-trained model was followed by one or two dense layers, with dropout layers

in between.

Table 5.7: Properties of Edge Impulse models using the CNN architecture.

Model ID Filt
er

N
um

1

Filt
er

N
um

2

Filt
er

N
um

3

D
en

se
Si

ze

D
ro

po
ut

R
at

e

Filt
er

Si
ze

Lea
rn

in
gR

at
e

N
um

be
r

of

pa
ra

m
et

er
s

A
cc

ur
ac

y[
%

]

0ei 72 80 64 72 0.4 3x4 0.0003 1,168,804 97.7
1ei 40 48 32 64 0.35 3x4 0.0001 503,196 97.5
2ei 40 20 20 48 0.25 3x4 0.0001 231,204 97.3
3ei 42 44 8 14 0.1 3x4 0.0003 52,272 96.6

2MobileNetV2 is a efficient, lightweight NN architecture, designed for image recognition tasks,
suitable for mobile applications [14]. MobileNetV2 contains a width multiplier hyperparameter,
which scales up or down the total number of parameters, thus providing a trade-off between accuracy
and computation complexity. Edge Impulse offers three different width multiplier options: 0.35, 0.1
and 0.05.

85

Table 5.8: Properties of Edge Impulse models using the Transfer Learning technique.

Model ID W
id

th

M
ul

tip
lie

r

D
en

se
Si

ze
1

D
en

se
Si

ze
2

D
ro

po
ut

R
at

e

Lea
rn

in
gR

at
e

N
um

be
r of

pa
ra

m
et

er
s

A
cc

ur
ac

y[
%

]

0tl 0.35 16 N/A 0.1 0.0005 430,676 98.5
1tl 0.35 16 16 0.1 0.0005 430,948 98.4
2tl 0.35 32 32 0.1 0.0005 452,484 98.7
3tl 0.1 32 32 0.1 0.0005 135,732 95.7

Table 5.9: Precision and recall metrics of trained Edge Impulse models

Model ID 0e 1e 2e 3e 0tl 1tl 2tl 3tl

Metrics

Accuracy[%] 97.7 97.5 97.3 96.6 98.5 98.4 98.7 95.7
Number of parameters 1,169K 503K 231K 52K 430K 431K 452K 136K

P of elephant class[%] 99.69 99.53 99.42 99.27 99.27 99.42 99.48 98.65
P of human class[%] 95.05 95.05 91.87 91.52 97.17 95.41 96.47 85.16
P of cow class[%] 82.22 78.89 82.22 79.57 92.22 91.01 92.22 75.56
P of nature/random class[%] 63.04 65.22 73.91 50.0 86.96 89.13 91.3 78.85

R of elephant class[%] 99.86 98.91 98.44 98.65 99.48 99.27 99.37 98.03
R of human class[%] 93.4 92.44 94.2 88.4 94.5 95.74 95.79 90.26
R of cow class[%] 90.24 86.59 84.09 79.57 92.22 89.01 94.32 67.33
R of nature/random class[%] 87.88 88.24 94.44 95.83 95.24 97.62 95.45 91.11

Some observations:

� Models using CNN architecture did not out perform our models in terms of

accuracy. Models 2a and 0b both had accuracy of 98.04 %, while none of the

Edge Impulse models with CNN architecture passed 98 %.

� Most of the models trained with the Transfer Learning technique outperformed

our models.

� Model 2tl performed exceptionally well, reaching an accuracy of 98.7 % while

having a relatively small number of parameters.

� We saw that by decreasing the width multiplier, we did not benefit much in

accuracy as much as we lost in model size. Even increasing the sizes of dense

layers did not solve the problem.

86

5.2 On-device performance testing

Performance testing of all models was done on an STM32F767ZI microcontroller,

running at 216 MHz. Testing of our models was done by using the MicroML framework

that we wrote, which called TFLite Micro API directly. Testing of Edge Impulse

models was done on Mbed OS, as this platform is supported by Edge Impulse, and

they already provide an example for it. We could not test model 0a on the device as

the TFLite converter failed to produce a compilable model.

To time the execution of our code we used Data Watchpoint Trigger (DWT) which

contains a counter that is incremented directly by the system clock. DWT does

not use interrupts, therefore it does not introduce the overhead of calling interrupt

routines as systick timer does.

Edge Impulse provides examples for testing out of the box, so not much work is needed

to get the first-order approximation of performance. For profiling, the code execution

Mbed API was used, which uses timer interrupts to track elapsed time. Figure 5.2

shows models ranked from the fastest to the slowest with marked corresponding

accuracies and inference times.

We can see that all models performed inference in less than 1 second, which was a

constraint that we set earlier in Section 3.1. The best time wise performing model

was 338b, with an inference time of 51 ms, but there are also many models that

perform inference in under 300 ms.

We also discovered some unexpected trend in the results. We assumed that inference

time is proportional to the number of parameters if the general structure of the

model remains the same. As can be seen in Figure 5.2, there are few exceptions

to this rule; model 338b executed inference faster than 460b, although it has more

parameters (20K versus 13K). Model 172b was slower than 0b, although it has five

times less parameters. This behaviour is not exclusive only to our models, but it can

be seen in Edge Impulse models as well, for example, models 2ei and 1ei.

Edge Impulse models trained with the Transfer Learning technique 0tl, 1tl, 2tl and

87

0 100 200 300 400

0ei

2a

172b

1ei

3ei

0b

2ei

2tl

1tl

0tl

3tl

460b

338b

M
o
d

el

403 ms98.04%

354 ms96.8%

293 ms97.5%

255 ms96.6%

228 ms98.04%

150 ms97.3%

110 ms98.7%

108 ms98.4%

108 ms98.5%

73 ms95.7%

69 ms93.4%

51 ms96.28%

750 800 850

797 ms97.7%

Number of
parameters

Below 20K

20K - 100K

100K - 400K

400K - 500K

Above 500K

Time [ms]

Figure 5.2: Comparison of time of inference of different models.

3tl should not be compared to other models in this sense, as the architecture of

MobileNetV2 contains additional different operations.

We can only speculate about the reason for this behaviour, since it is present both

in our models and Edge Impulse models, and we can assume this to be a TFLite

bug.

5.2.1 Comparison of code sizes

We also wanted to inspect the Flash and RAM sizes of binaries that we compiled

for on-device testing. For this task we used the arm-none-eabi-size command line

tool, which returns sizes of text, data, bss sections in bytes, and an example of its

output can be seen in Figure 5.1. To compute the used Flash we simply had add

bytes from text and data sections, and to compute used RAM we added together

data and bss sections3.

3A data section which contains initialised static variables is first placed into Flash memory and
is copied to RAM before the program enters the main function. That is why we have to account for
an additional data section in Flash memory.

88

1 $ arm -none -eabi -size firmware.elf
2 text data bss dec hex filename
3 149124 388 47064 196576 2ffe0 firmware.elf

Listing 5.1: Example output of arm-none-eabi-size command.

Code sizes for all models are presented in Figure 5.3, models are ordered the same

way as they have been in Figure 5.2.

100 101 102 103 104

Size [KiB]

0ei
2a

172b
1ei
3ei
0b
2ei
2tl
1tl
0tl
3tl

460b
338b

M
o
d

el

1244.5KiB
5.1KiB

780.9KiB
251.0KiB

197.7KiB
254.8KiB

592.7KiB
5.1KiB

151.7KiB
5.1KiB

435.3KiB
265.3KiB

326.3KiB
5.1KiB

701.3KiB
21.8KiB

680.1KiB
21.8KiB

679.6KiB
21.5KiB

338.6KiB
21.9KiB

149.3KiB
46.3KiB

156.0KiB
31.0KiB Flash

RAM

Figure 5.3: Comparison of Flash and RAM size of compiled example models.

We can see that all of our models generally use more RAM then Edge Impulse

models. This is due to how the inference is executed. TFLite Micro uses a generic

interpreter approach, where the model is loaded at runtime. Edge Impulse uses a

compiled approach, which they named The EONTM Compiler [21]. The EONTM

Compiler still uses TFLite Micro, however, it does not use its interpreter, but calls

operation kernels directly. This means that the linker knows exactly which operations

are used and more data can be moved into Flash, thus eliminating unneeded code

size [21].

89

5.2.2 Comparison of different optimisations

Some extra amount of work and research was required to be able to run the ML

inference at maximum possible efficiency under MicroML. Figure 5.4 shows the re-

ductions in inference time of the 0b model while using different optimisation methods.

0 2 4 6 8 10 12

Time [s]

-O3 + CMSIS-NN
+ I Cache

+ D Cache
+ Flash ART

+ Flash prefetch

-O3 + CMSIS-NN

-O3

-Os

228 ms

1023 ms

4117 ms

11295 ms

Figure 5.4: Inference time of the 0b model using different optimisations.

We started with no optimisations at all, while using only the -Os compiler flag. The

-Os flag generally optimises for minimal size, it enables all -O2 optimisations, except

those that increase in size. This optimisation level is often used, however, we found

out that the inference time of more than 11 seconds was too long.

Changing optimisation level to -O3 decreased the time of inference drastically, down

to 4117 ms. -O3 turns on all -O2 optimisations plus additional ones, and disregards

any code size optimisations completely.

Changing compiler optimisation flags could not lower the time of inference any

further, so other approaches were needed. While reading through the TensorFlow

documentation we saw that it supports the CMSIS-NN library for ARM microcon-

trollers. CMSIS-NN is a collection of efficient Neural Network kernels, that intends

to maximise performance and lower code size of NN models implemented on ARM

90

microcontrollers. TensorFlow provides wrappers for some of these kernels, such as

convolutional, fully connected, pooling layers and others. Not much work was needed

to use these highly efficient kernels, as we only needed to specify in our Makefile

that we wanted to compile CMSIS-NN kernels and not compile generic TensorFlow

kernels. Time of inference dropped by about 3 seconds, down to 1023 ms.

As we saw that similarly sized Edge Impulse models were running much faster on the

Mbed platform compared to our MicroML code while using the same microcontroller,

we knew that there was another step left. The final performance increase was reached

by using features only fully found in Cortex-M7 microcontrollers and partly in Cortex

M3/4 microcontrollers. To achieve it we had to enable I and D caches, flash prefetch

and flash ART.

ART stands for Adaptive Real-Time memory accelerator, which encompasses I/D

caches and a flash prefetch buffer. I and D caches are small, efficient portions of

memory, which are located in the CPU of the microcontroller. They hold instruc-

tions and data respectively, and if those are requested by the next microcontroller

instruction, they can be read much faster compared to reading them from flash

memory. By enabling flash prefetch the microcontroller reads additional sequential

instructions into the prefetch buffer, thus enabling execution without any wait states

(if the instruction flow is sequential). Elimination of wait states improved the time of

inference greatly, as it was decreased to 228 ms.

5.2.3 Scoring trained models

Choosing the best model for on-field deployment is a hard task due to many different

metrics: Precision and recall values, time of inference, and code size. To make this

job easier we devised a scoring system: Each metric was going to be normalised and

multiplied with some weight value. All products would then be summed up, and

the result would represent the final score. The sum of the weights was equal to 100,

which means that the possible maximum score was also 100. We decided to allocate

50 weight points to all precision and recall values, 30 points to the time of inference

value, 5 points for Flash size and 15 points for RAM size. As we cared more about

91

the precision and recall values of the elephant, human and cow classes, we gave them

7 weight points each, while the nature/random class received only 4. We valued Flash

size less than RAM, as most of the microcontrollers have much less RAM than they

do Flash, thus, we gave 15 weight points to RAM size and only 5 to Flash size.

Since the time of inference, Flash and RAM sizes are properties which should give a

larger score, the smaller they were, we mapped them into a range between 0 and 1.

The smallest value inside the set would be assigned 1, the biggest 0, the values in

between were mapped linearly.

Scoring is described mathematically in 5.2, while the final results can be seen in

Figure 5.5.

Score[i] = 7K(Pelephant, i) + 7K(Phuman, i) + 7K(Phuman, i) + 4K(Pntr/rnd, i)

+ 7K(Relephant, i) + 7K(Rhuman, i) + 7K(Rhuman, i) + 4K(Rntr/rnd, i)

+ 30 F (ToI, i) + 5 F (Flash, i) + 15 F (RAM, i)

K(X, i) =
(X[i]−MIN(X))

MAX(X)−MIN(X)

F (X, i) =
(X[i]−MAX(X))

MIN(X)−MAX(X)

(5.2)

Where:

Score - Vector of calculated scores

i - ith model

Pj - Vector of precision values of the jth class

Rj - Vector of recall values of the jth class

ToI - Vector of Time of Inference values

Flash - Vector of Flash sizes

RAM - Vector of RAM sizes

K(X, i) - Normalising function with vector X and element index i as arguments

92

F (X, i) - Normalising, inverting, function with vector X and element index i as

arguments

MAX(X) - Function that finds the maximum element in vector X

MIN(X) - Function that finds the minimum element in vector X

0 20 40 60 80 100
Score

0ei
2a

172b
0b

460b
0tl
3ei
1ei

338b
2ei
2tl
1tl
3tl

M
o
d

el

18.54

60.66

64.70

68.00

70.41

70.51

75.69

78.21

78.30

79.58

88.03

88.95

93.83

Figure 5.5: Score comparison of different models

5.3 Summary of model testing

As we saw in Figure 5.5 model 3tl received the highest score, and models 1tl, 2tl

followed. This should not be a surprise, because models trained with Transfer Learning

achieved high accuracies and executed inference in about 100 ms. Additionally, the

compiled approach for computing Neural Networks keeps the used Flash and RAM

sizes to a minimum. We saw that using a number of different optimisations was

critical to achieving low inference times, thus making ML on the embedded device

viable.

93

5.4 Power profiling of an embedded early warning system

5.4.1 Measuring setup

To measure power consumption we used a product called Otii Arc (Otii), which can

be seen in Figure 5.6. Otii, made by the company Qoitech, is a small portable box,

that contains a power supply, a current and voltage measurement unit and a data

acquisition module. It connects to a computer over a USB cable, and can be powered

through it or with an external charger.

It can provide output voltage between 0.5 V and 4.55 V, and has accuracy of ±(0.1

% + 50 nA) when measuring current. It is a perfect tool for evaluating low-power

systems.

Figure 5.6: Otii Arc with nRF52832 DK and added measurement board made by
IRNAS.

Measurements analysis is done with a desktop application, example of it is seen in

Figure 5.7. The application enables users to select a part of the measurement, for

which it computes minimum, maximum and average values automatically. To present

our results we exported the current measurements in CVS format and plotted them

94

with Matplotlib.

In the following Section we evaluated the power consumption of our embedded

early warning system. We first measured the power consumption of the nRF52

microcontroller in a low-power state, then we connected the LR1110 evaluation shield

to the nRF52840 DK board and repeated the measurement. We then connected

Nucelo-F767ZI and the FLIR camera, and measured power consumption of the whole

detection sequence.

Figure 5.7: Screenshot of Otii user interface.

5.4.2 Current measurements

We conducted all our measurements with Otii’s output voltage set to 3.3 V. Before

measuring the current consumption of the whole image processing sequence we

wanted to evaluate the current consumption of the nRF52 microcontroller in the

low-power state. In a Zephyr kernel such procedure is relatively simple; type of sleep

mode is configured with a Kconfig file and the microcontroller transitions into it

whenever it enters the lowest idle thread. Peripherals require special attention, as

it needs to be specified explicitly which one needs to be turned off. We turned off

both of the UART peripherals and the SPI peripheral, while keeping GPIO active,

95

as we needed a GPIO interrupt to wake nRF52 up from a low-power state. We also

had to make sure that the nRF52 microcontroller was completely disconnected from

the on board J-Link debug probe to avoid any unnecessary current leaks. Luckily,

the nRF52840 development board has an analogue switch, which does exactly that.

To measure current consumption we simply connected the voltage output of Otii to

the external power pins of the nRF52840 DK board. Figure 5.8 shows the current

consumption in the low-power state.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [S]

0

5

10

15

20

25

30

35

C
u

rr
en

t
[m

A
]

Initial spike

Onboard regulator

1.36 1.38 1.40

Time [S]

0

50

C
u

rr
en

t
[µ

A
]

Figure 5.8: Current consumption of nRF52840 microcontroller in low-power state.

The initial spike at the beginning of the graph happens due to the many decoupling

capacitors on the board. Due to the sudden change in voltage their impedance is

low, therefore, more current is drawn. The pyramid looking shape between 0.5 and 1

second happens due to the onboard regulators turning on.

The smaller graph inside Figure 5.8 shows a close up view of the current consumption.

The peaks reached 70.3 µA, steady state was at 6.9 µA, while the average current

was 9.1 µA. Peaks were repeating at a frequency of 33.3 Hz.

96

The measured average current was higher than expected, according to the nRF52’s

datasheet [40] current consumption should be 3.16 µA.

In the next measurement we connected the LR1110 shield to the nRF52840 DK

board, and observed the current consumption of the initial LoRaWAN join sequence.

The current profile of it can be seen in Figure 5.9.

0 5 10 15 20 25 30 35

Time [S]

0

20

40

60

80

C
u

rr
en

t
[m

A
]

Join request

Join accepted

Lora Cloud
message

Empty
packet

Figure 5.9: Current profile of the LoRaWAN join sequence.

Besides the initial spike, we can see an additional four pulses afterwards, with some

smaller spikes in between. As we are using Over-The-Air Activation (OTAA), the

LR1110 first has to negotiate for a set of keys with the server before it can start

transmitting. This happens in first the two pulses; LR1110 first sends a join request

and then listens for a response. After receiving a response it confirms it. In the

third pulse LR1110 sends a message that is a part of the LoRa Cloud service. This

message is specific to LR1110, and it cannot be disabled completely. The last, thin

pulse belongs to an empty payload message, which LR1110 always transmits in the

beginning. The average current consumption of the LoRaWan join procedure is 11.4

mA and lasts for about 34 seconds. Average current consumption in sleep state

97

increased to 76.8 µA.

In our next test we connected the nRF52 to a boost converter circuit, Nucleo-F767ZI

and FLIR Lepton camera, setup can be seen in Figure 5.10. We did not use a PIR

sensor as a wakeup source, as we saw that its detection was too sensitive to its

surroundings and we could not control it completely. Instead we used a button on the

nRF52840 DK as a wakeup interrupt. To account for PIR sensor current consumption

in later calculations we measured it separately, and we saw that it drew 130 µA.

Figure 5.10: Device under test: nRF52840 DK with attached LR1110 shield, boost
converter breakout board, Nucleo-F767ZI and FLIR Lepton camera.

Since we wrote our firmware with libopencm3 in mind, we could not use the best

performing model 3tl, as Edge Impulse models could only run on the Mbed platform.

We used our model 460b instead, as it was most similar to 3tl in terms of inference

time (69 ms compared to 73 ms). We captured two different inference procedures;

in the first image capture and inference were done once, in the second one they

were repeated 5 times. Procedures can be seen on Figures 5.11 and 5.12 respectively.

Both procedures were followed by a LoRaWAN message that reported results to the

server.

98

In the case where image capture and inferencing happened once, we measured the

total time of the whole detection procedure to be about 1480 ms, not including the

time needed for the LoRaWAN message. Average current consumption for this period

was 114 mA. The measured average current of the whole event, shown in Figure 5.11

between 0 and 6 seconds, was 30 mA.

In the case where image capture and inferencing happened five times, we measured

the total time of the whole detection procedure to be about 2,960 ms, not including

the time needed for the LoRaWAN message. Average current consumption for this

period was 131 mA. If we add the transmission of the LoRaWAN message to the

measured current consumption, thus increasing the time of the whole detection event

to 8 seconds, we measure 51.9 mA.

0 1 2 3 4 5 6

Time [S]

0

25

50

75

100

125

150

175

200

C
u

rr
en

t
[m

A
]

ResetsResets

Image capture
and inference

Lora message

700 ms
startup delay

1.5 1.6 1.7 1.8

Time [S]

150

200

C
u

rr
en

t
[m

A
]

Figure 5.11: Current profile of image capture and inference procedure.

5.4.3 Commentary of the current measurement results

The measured low-power state of nRF52, visible in Figure 5.8, was higher than

expected. nRF52’s datasheet [40] specifies current consumptions in many different

conditions, which depend on: Type of sleep mode (System ON or System OFF, the

99

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time [S]

0

25

50

75

100

125

150

175

200

C
u

rr
en

t
[m

A
]

ResetsResets

Lora message

Inference
Image

capture

700 ms
startup delay

Figure 5.12: Current profile of image capture and inference procedure repeated 5
times.

latter loses execution context at wakeup), the amount of RAM retention and type of

wakeup event. Consumption can range from 0.95 µA to 17.37 µA. Because Zephyr

provides only abstract interface to power management, implementation of which is

platform dependent, further research is needed to determine which exact nRF52 sleep

mode Zephyr uses. We assumed an expected current consumption of 3.16 µA as this

is the specified current consumption in System ON mode with full RAM retention

and LFRC set as a wakeup event. Another reason for increased power consumption

could also be inadequate support circuitry of the nRF52840 DK board.

When we connected the LR1110 shield to the nRF52840 DK board we saw that average

current consumption increased to 76.8 µA, which was much more than expected.

LR1110 enters sleep mode automatically when it is finished with communication;

according to its datasheet [41], current consumption should be around 1.85 µA.

This current consumption is plausible, as we observed it in other IRNAS’s products

that use the LR1110 chip. We suspect that the incorrect state of common GPIO

connections between LR1110 and nRF52 was the reason for the increased current

consumption, although, we were not able to fix the problem.

100

We mentioned that the time required for detection was about 1480ms, if we captured

one image and processed it or 2960 ms, if done five times. We can see that both

detection procedures started with 700 ms of delay. According to the FLIR Lepton’s

datasheet [37], a delay is required before we can start communicating with the camera

over the TWI interface. Two microcontroller resets are visible, during our testing we

saw that we could not communicate with the camera properly, if we did not reset

the STM32 twice before that. To accomplish this we simply connected the reset pin

of STM32 with one of available nRF52 GPIO pins.

5.4.4 Battery life estimations

Table 5.10 shows parameters values that we used in 5.3 to calculate battery lifetime.

We defined a detection as a sequence where image capture and inference were

repeated 5 times and then followed by a LoRaWAN message. In our calculation

we also accounted for one daily LoRaWAN message, which would report system

status. We assumed that the system is in low-power mode when it is not performing

detection sequence or sending a LoRaWAN message. As a power source we chose a

lithium-ion cell battery NCR 18650B of the manufacturer Panasonic. Its properties

can be seen in Table 5.10.

Table 5.10: First hyperparameter search space

Event Current consumption at 3.3 V

Low-power state 76.8 µA
PIR 130 µA
PIR and low-power state 206.8 µA
Detection sequence, 8 s 51.9 mA
LoRaWAN message, 230 ms 80 mA

Battery type Properties
Panasonic NCR 18650B Nominal Voltage: 3.6 V

Nominal Capacity: 3350 mA h

101

Psleep = Usupplied Isleep

Pdetect = Usupplied Idetec

Plora = Usupplied Ilora

tsleep = 24h− tdetect Ndetect − tlora

Paverage =
Psleep tsleep + Pdetect tdetect Ndetect + Plora tlora

24h

tlifetime =
Ubat Ahbat Nbat

Paverage

(5.3)

Where:

Usupplied - Voltage at which we did our measurements, 3.3 V

Ubat - Battery nominal voltage, 3.6 V

Ahbat - Battery nominal capacity, 3350 mA h

Ilora - Current consumption when sending a LoRaWAN message

Isleep - Current consumption of low-power state with PIR consumption

Idetect - Current consumption of detection sequence

Psleep - Used power of low-power state and PIR

Pdetect - Used power of detection sequence

Plora - Used power of LoRaWAN message send

Paverage - Average power needed for the system to operate

tdetect - Time spent in detection sequence in hours

tsleep - Time spent in low-power state in hours

tlora - Time spent sending LoRaWAN messages

tlifetime - Battery life time in hours

Ndetec - Number of detections in a day

Nbat - Number of batteries

Because we could only assume how frequently our system had to perform the detection

sequence, we repeated our calculation for several different numbers of detections per

day. We also varied the number of battery cells. The enclosure that we planned to

use had enough space for up to 6 battery cells. The results of the estimations can be

102

seen in Figure 5.13. The X axis represents the number of battery cells, the Y axis

represents the system life time in months, and the colour of the lines represents the

number of detections per day, from 100 to 600.

1 2 3 4 5 6

Number of battery cells

0

10

20

30

40

S
y
st

em
li
fe

ti
m

e
[m

o
n
th

s]

Number of
detections per day

100

200

300

400

500

600

Figure 5.13: Current profile of image capture and inference procedure.

Results were promising, we can see that most battery configurations lasted more

than 6 months, which is a long time, considering the application. If we decide on a 6

battery cell configuration, we see that in the worst case where we are executing 600

detections per day, we can expect a system lifetime of 10 months, which is more than

enough. There are some things that we have to take into account. We assumed 100

% battery efficiency, meaning that each battery would provide its complete nominal

capacity, in our case 3350 mA h. In practice this is not possible, due to effects such

as self-discharge rate, high discharge profiles and temperature influences. On the

other hand, we assumed that we would process same amount of detections everyday,

which was in the worst case 600. This is unlikely to happen and 600 detection per

day is quite high so we expected the actual system lifetime to be longer. Such effects

and conditions can drastically change the lifetime of the system and can be hard to

estimate.

103

While calculating the system lifetime, we tried changing the input parameters to see

which ones affected the final lifetime of the system the most. We found out that,

by decreasing current consumption in the low-power state by a factor of ten (from

206.8 µA to 21 µA), we did not increase the system’s lifetime dramatically. With 6

batteries and 600 detections per day the lifetime increased to 10.5 months from 9.9

months. However, we saw a large increase in the system’s lifetime if we halved either

the current consumption of a detection event or its duration, with same conditions

as before the system’s lifetime increased from 9.9 to 18.5 months. This means that in

order to increase the system’s lifetime or to keep it the same with a smaller number

of batteries, we should focus on lowering the power consumption of detection events

rather than lowering the low-power state current.

104

6 Conclusion

In this Master’s thesis we presented a solution, an early warning system, for minimising

Human-Elephant Conflicts. In the beginning we presented a Machine Learning

approach for solving classification of thermal images and we outlined its strengths

compared to classical problem solving. We described in depth the knowledge required

for understanding our work from various sub parts of Machine Learning, to wireless

IoT technologies and thermal cameras.

We presented several Machine Learning workflows that we followed during the design

and planning of our own Neural Network. We analysed the thermal image dataset

and recognized what kind of data it lacked. We compensated for missing data by

gathering more of them with our own image capturing setup and by resampling

them. We proposed a basic CNN structure that we used later in the model training

phase.

As we wanted to execute Machine Learning algorithms on our selected STM32

microcontroller, we had to find a way to make this possible. We ported a TensorFlow

Lite for a Microcontrollers library to the libopencm3 platform and in the process

created an open-source project MicroML. In the process we familiarised ourselves

with the specifics of cross compiling and build systems.

To implement our early warning system on the hardware we decided to use a two

microcontroller setup, with an STM32 as a main inferencing processor and nRF52 as a

low-power system controller. To communicate with the FLIR Lepton camera we wrote

the driver code, and we also wrote the LoRaWAN communication module.

We ran random search algorithms to find the proper hyperparameters for our proposed

CNN model. We did an in depth comparison of several trained models and compared

105

them to the models trained with the help of commercial software.

We saw that we could train CNN models with an accuracy as high as 98.04 % and we

saw that models trained with the Transfer Learning technique reached 98.7 % without

much additional work. We ran each trained model on the STM32 and measured its

inference time. From the results we saw that reaching an inference time below 200

ms is not hard if special care is devoted to the low number of parameters and correct

microcontroller optimisations.

We also evaluated the performance of the embedded system from the battery lifetime

perspective and we saw promising results. Assuming that our system would have to

process 600 events per day, while connected from 6 battery cells, we estimated the

lifetime of the system would be around 10 months.

This thesis shows that the field of Machine Learning on embedded devices has reached

a point were it is viable enough to use it in real life applications. Running inference

directly on the embedded device can provide instant feedback and can extend the

device’s lifetime, as data do not need to be sent to the server for processing. Many

use cases from the Animal Conservation field would benefit from such technology, as

there is a need for the embedded devices that require minimal manual care and can

provide big value for their cost.

6.1 Future work

Our research into elephant detection with the aid of Machine Learning models yielded

promising results. There are several aspects of it that can be improved.

In terms of model performance, we can always improve it by gathering more relevant

training data. The dataset that we used contained several thousand images of

elephants, but only a couple of thousand images of humans and only a few hundred

images of cows. In order to train a more robust and reliable model, we should gather

more thermal images of humans and livestock, especially goats.

It would be interesting to further explore models trained with the Transfer Learning

technique. We saw that Transfer Learning models reached higher accuracies with

106

shorter inferencing times when compared to other models. We expect that running a

random hyperparameter search with a smaller version of the pre-trained MobileNetV2

model could produce optimal results.

In terms of the system performance, testing our early warning system in the field

would give us key insights into what could be improved. With a device deployed

in a zoo, we could monitor its performance and see which conditions degrade its

performance. We could add an SD card to the system, and save every taken image

and the result of its inference.

By observing the performance of the model in the field we would see if extremely

low inference times are really needed. It might be feasible to run CNN models on

slower, low-power, Cortex-M4 microcontrollers. Although we are expecting longer

inference times, we would benefit from a simpler system design and a lower overall

price of the embedded system.

In terms of battery life performance, creating a custom printed circuit board specially

for our application would give us more control over the current consumption of the

systems. Reaching lower low-power state current consumption should be easier. At

the same time, we should research how to optimise the detection sequence. Decrease

in either current consumption or the duration of detection sequence would provide

us with huge improvements in battery life.

6.2 Final words

Machine Learning on the embedded devices is opening doors to various, wonderful

applications that were not possible a few years ago. We can see that there is already

a demand for intelligence for devices on the ”edge” and we expect it to increase as

the field matures. It is quite possible that future embedded engineers would require

some amount of Machine Learning knowledge to stay competitive and interesting to

the market.

As Pete Warden said: ”The Future of ML is Tiny and Bright”.

107

Bibliography

[1] Nyhus, P. J. Human–Wildlife Conflict and Coexistence. Annual Review of

Environment and Resources, 41, (2016), 11, pages 143–171.

[2] SARPO, WWF. Human Wildlife Conflict Manual. Available on:

https://wwf.panda.org/our work/wildlife/human wildlife conflict/

hwc news/?84540/Human-Wildlife-Conflict-Manual, [12.06.2020].

[3] WILDLABS, WWF. Human Wildlife Conflict Tech Challenge: Polar Bear Case.

Available on:

https://www.wildlabs.net/hwc-tech-challenge-polar-bear-case,

[14.06.2020].

[4] WILDLABS, WWF. Human Wildlife Conflict Tech Challenge: Tiger Case.

Available on: https://www.wildlabs.net/hwc-tech-challenge-tiger-case,

[14.06.2020].

[5] WILDLABS, WWF. Human Wildlife Conflict Tech Challenge: Asian Elephant

Case. Available on:

https://www.wildlabs.net/hwc-tech-challenge-elephant-case,

[14.06.2020].

[6] Ganesh, S. Human-elephant conflict kills 1,713 people, 373 pachyderms in 3

years. Available on:

https://www.thehindu.com/news/national/human-elephant-conflict-

kills-1713-people-373-pachyderms-in-3-years/article26225515.ece,

[14.06.2020].

108

https://wwf.panda.org/our_work/wildlife/human_wildlife_conflict/hwc_news/?84540/Human-Wildlife-Conflict-Manual
https://wwf.panda.org/our_work/wildlife/human_wildlife_conflict/hwc_news/?84540/Human-Wildlife-Conflict-Manual
https://www.wildlabs.net/hwc-tech-challenge-polar-bear-case
https://www.wildlabs.net/hwc-tech-challenge-tiger-case
https://www.wildlabs.net/hwc-tech-challenge-elephant-case
https://www.thehindu.com/news/national/human-elephant-conflict-kills-1713-people-373-pachyderms-in-3-years/article26225515.ece
https://www.thehindu.com/news/national/human-elephant-conflict-kills-1713-people-373-pachyderms-in-3-years/article26225515.ece

[7] Guha N., In the Heart of the Conflict: Understanding the Human Elephant

Dynamics in Udalguri. Available on:

https://www.econe.in/post/in-the-heart-of-the-conflict-

understanding-the-human-elephant-dynamics-in-udalguri, [08.09.2020].

[8] Save our species, Human wildlife conflict - global challenge: local solutions.

Available on: https://www.saveourspecies.org/news/human-wildlife-

conflict-global-challenge-local-solutions, [08.09.2020].

[9] The Week, Arresting image of human elephant conflict wins photo prize.

Available on: https://www.theweek.co.uk/89566/arresting-image-of-

human-elephant-conflict-wins-photo-prize, [08.09.2020].

[10] WILDLABS, WWF. Human Wildlife Conflict Tech Challenge. Available on:

https://www.wildlabs.net/hwc-tech-challenge, [14.06.2020].

[11] Icons8 - Icons used in various figures. Available on: https://icons8.com/,

[21.9.2020].

[12] WILDLABS, WWF. HWC Tech Challenge Winners Announced. Available on:

https://www.wildlabs.net/resources/news/hwc-tech-challenge-

winners-announced, [20.06.2020].

[13] Dangerfield A. Progress report – January 2019 – Thermal imaging for

human-wildlife conflict. Available on:

https://blog.arribada.org/2019/01/10/progress-report-january-2019-

thermal-imaging-for-human-wildlife-conflict, [20.06.2020].

[14] Geron, A. Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems, 2nd edition. O’Reilly

Media, Sebastopol, CA, 2019.

[15] Burkov, A. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[16] Li F., Karpathy A., “Cs231n: Convolutional neural net- works for visual

recognition.” Stanford University course. Available on:

http://cs231n.stanford.edu/, [25.06.2020].

109

https://www.econe.in/post/in-the-heart-of-the-conflict-understanding-the-human-elephant-dynamics-in-udalguri
https://www.econe.in/post/in-the-heart-of-the-conflict-understanding-the-human-elephant-dynamics-in-udalguri
https://www.saveourspecies.org/news/human-wildlife-conflict-global-challenge-local-solutions
https://www.saveourspecies.org/news/human-wildlife-conflict-global-challenge-local-solutions
https://www.theweek.co.uk/89566/arresting-image-of-human-elephant-conflict-wins-photo-prize
https://www.theweek.co.uk/89566/arresting-image-of-human-elephant-conflict-wins-photo-prize
https://www.wildlabs.net/hwc-tech-challenge
https://icons8.com/
https://www.wildlabs.net/resources/news/hwc-tech-challenge-winners-announced
https://www.wildlabs.net/resources/news/hwc-tech-challenge-winners-announced
https://blog.arribada.org/2019/01/10/progress-report-january-2019-thermal-imaging-for-human-wildlife-conflict
https://blog.arribada.org/2019/01/10/progress-report-january-2019-thermal-imaging-for-human-wildlife-conflict
http://cs231n.stanford.edu/

[17] Zhang, Y., Suda, N., Lai, L., and Chandra, V. Hello edge: Keyword spotting on

microcontrollers. ArXiv, abs/1711.07128, (2017), 2.

[18] Louis, M. S., Azad, Z., Delshadtehrani, L., Gupta, S., Warden, P., Reddi, V. J.,

and Joshi, A. Towards deep learning using tensorflow lite on risc-v. Third

Workshop on Computer Architecture Research with RISC-V (CARRV), 1,

(2019), 6.

[19] Warden P., Why the future of machine learning is tiny. Available on:

https://petewarden.com/2018/06/11/why-the-future-of-machine-

learning-is-tiny/, [06.07.2020].

[20] Situnayake D., Make deep learning models run fast on embedded hardware.

Available on: https://www.edgeimpulse.com/blog/make-deep-learning-

models-run-fast-on-embedded-hardware/, [08.07.2020].

[21] Jongboom J., Introducing EON: neural networks in up to 55less ROM.

Available on: https://www.edgeimpulse.com/blog/introducing-eon,

[20.11.2020].

[22] Dive into deep learning, Convolutional Neural Networks. Available on: http:

//d2l.ai/chapter convolutional-neural-networks/conv-layer.html,

[17.9.2020].

[23] TensorFlow, GitHub repository. Available on:

https://github.com/tensorflow/tensorflow, [21.9.2020].

[24] Rouse M., internet of things (IoT). Available on:

https://internetofthingsagenda.techtarget.com/definition/Internet-

of-Things-IoT, [27.9.2020].

[25] Ubidots, LoRaWAN vs NB-IoT: A Comparison Between IoT Trend-Setters.

Available on: https://ubidots.com/blog/lorawan-vs-nb-iot/, [28.9.2020].

[26] Polymorph, IoT connectivity comparison (GSM vs LoRa vs Sigfox vs NB-Iot).

Available on: https://www.polymorph.co.za/iot-connectivity-

comparison-gsm-vs-lora-vs-sigfox-vs-nb-iot/, [28.9.2020].

110

https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/
https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/
https://www.edgeimpulse.com/blog/make-deep-learning-models-run-fast-on-embedded-hardware/
https://www.edgeimpulse.com/blog/make-deep-learning-models-run-fast-on-embedded-hardware/
https://www.edgeimpulse.com/blog/introducing-eon
http://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
http://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html
https://github.com/tensorflow/tensorflow
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://ubidots.com/blog/lorawan-vs-nb-iot/
https://www.polymorph.co.za/iot-connectivity-comparison-gsm-vs-lora-vs-sigfox-vs-nb-iot/
https://www.polymorph.co.za/iot-connectivity-comparison-gsm-vs-lora-vs-sigfox-vs-nb-iot/

[27] Bäumker, E., Garcia, A., and Woias, P. Minimizing power consumption of lora

® and lorawan for low-power wireless sensor nodes. Journal of Physics:

Conference Series, 1407, (2019), 11, page 012092.

[28] Knight M., A GitHub repository containing open-source implementation of the

LoRa CSS PHY. Available on:

https://github.com/BastilleResearch/gr-lora, [29.9.2020].

[29] Wong G.W., LoRa Rolls Into Philly. Available on:

https://www.electronicdesign.com/technologies/embedded-revolution/

article/21805205/lora-rolls-into-philly, [29.9.2020].

[30] Dangerfield A., HWC Tech Challenge Update: Comparing thermopile and

microbolometer thermal sensors. Available on:

https://www.wildlabs.net/resources/case-studies/hwc-tech-

challenge-update-comparing-thermopile-and-microbolometer-thermal,

[18.07.2020].

[31] Vollmer, M. and Möllmann, K. P. Infrared Thermal Imaging: Fundamentals,

Research and Applications. Wiley-VCH, Boston, Massachusetts, 2018.

[32] Bhan, R., Saxena, R., Jalwania, C., and Lomash, S. Uncooled infrared

microbolometer arrays and their characterisation techniques. Defence Science

Journal, 59, (2009), 11, page 580.

[33] MoviTherm, What is NETD in a Thermal Camera? Available on:

https://movitherm.com/knowledgebase/netd-thermal-camera/,

[18.07.2020].

[34] Dangerfield A., Progress report – February 2020 – Thermal imaging for

human-wildlife conflict. Available on:

https://blog.arribada.org/2020/02/17/progress-report-feburart-

2020-thermal-imaging-for-human-wildlife-conflict/, [02.10.2020].

[35] GroupGets - LeptonModule, GitHub repository. Available on:

https://github.com/groupgets/LeptonModule, [21.9.2020].

111

https://github.com/BastilleResearch/gr-lora
https://www.electronicdesign.com/technologies/embedded-revolution/article/21805205/lora-rolls-into-philly
https://www.electronicdesign.com/technologies/embedded-revolution/article/21805205/lora-rolls-into-philly
https://www.wildlabs.net/resources/case-studies/hwc-tech-challenge-update-comparing-thermopile-and-microbolometer-thermal
https://www.wildlabs.net/resources/case-studies/hwc-tech-challenge-update-comparing-thermopile-and-microbolometer-thermal
https://movitherm.com/knowledgebase/netd-thermal-camera/
https://blog.arribada.org/2020/02/17/progress-report-feburart-2020-thermal-imaging-for-human-wildlife-conflict/
https://blog.arribada.org/2020/02/17/progress-report-feburart-2020-thermal-imaging-for-human-wildlife-conflict/
https://github.com/groupgets/LeptonModule

[36] Mpaland, A printf / sprintf Implementation for Embedded Systems, GitHub.

Available on: https://github.com/mpaland/printf, [27.10.2020].

[37] FLIR, Lepton Engineering Datasheet. Available on:

https://flir.netx.net/file/asset/12411/original/attachment,

[29.11.2020].

[38] Sagadin M., MicroML, Quick-start machine learning projects on

microcontrollers with help of TensorFlow Lite for Microcontrollers and

libopencm3, GitHub repository. Available on:

https://github.com/MarkoSagadin/MicroML, [27.10.2020].

[39] Roeder, L., Netron, Visualizer for neural network, deep learning, and machine

learning models. Available on: https://netron.app/, [30.10.2020].

[40] Nordic Semiconductor, nRF52840 Product Specification. Available on:

https://infocenter.nordicsemi.com/pdf/nRF52840 PS v1.1.pdf,

[28.11.2020].

[41] Semtech, LR1110 Datasheet. Available on:

https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/

2R000000Q2YY/7hyal8gUewWREN8DSEk5R3Ee8OpqEuVOdsHpiAHb3jo,

[29.11.2020].

112

https://github.com/mpaland/printf
https://flir.netx.net/file/asset/12411/original/attachment
https://github.com/MarkoSagadin/MicroML
https://netron.app/
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R000000Q2YY/7hyal8gUewWREN8DSEk5R3Ee8OpqEuVOdsHpiAHb3jo
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R000000Q2YY/7hyal8gUewWREN8DSEk5R3Ee8OpqEuVOdsHpiAHb3jo

	 Introduction
	 Motivation
	 Early warning system
	 IRNAS and the Arribada Initiative
	 Reasoning for the Machine Learning approach
	 Implementation of Machine Learning algorithms
	 Edge Impulse

	 Objective
	 Master's thesis outline

	 Theoretical description of system building blocks
	 Machine Learning
	 General Machine Learning workflow
	 TinyML

	 Neural Networks
	 Activation functions
	 Backpropagation
	 Convolutional Neural Networks
	 Convolutional layers
	 Pooling layers

	 Transfer Learning
	 TensorFlow
	 TensorFlow Lite for Microcontrollers
	 Post-training quantization

	 IoT and wireless technologies
	 LoRa and LoRaWAN

	 Thermal cameras
	 Choosing the thermal camera

	 Neural Network model design
	 Model objectives
	 Tools and development environment
	 Creating the dataset
	 Exploring the dataset
	 Image preprocessing
	 Model creation and training
	 Model optimisation
	 Neural Network model design in Edge Impulse Studio

	 Design and implementation of the early warning system
	 Hardware
	 Nucleo-F767ZI
	 nRF52840 DK
	 LR1110 development kit
	 Boost converter evaluation kit
	 FLIR Lepton 2.5 camera module and Lepton breakout board
	 PIR Sensor

	 Firmware
	 Tools and development environment
	 Development environment for STM32F767ZI
	 Development environment for nRF52840

	 Architecture design
	 FLIR Lepton driver
	 Simple shell
	 MicroML and build system
	 Running inference on a microcontroller

	 Server-side components and software

	 Measurements and results
	 Comparison of models
	 Hyperparameter search space and result's analysis
	 Comparison of selected, re-trained models
	 Comparison of Edge Impulse models

	 On-device performance testing
	 Comparison of code sizes
	 Comparison of different optimisations
	 Scoring trained models

	 Summary of model testing
	 Power profiling of an embedded early warning system
	 Measuring setup
	 Current measurements
	 Commentary of the current measurement results
	 Battery life estimations

	 Conclusion
	 Future work
	 Final words

