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Abstract—One of the most challenging problems in the fight
against Android malware is finding a way to classify them
according to their behavior, in order to be able to utilize
previously gathered knowledge in analysis and prevention.

In this paper we introduce a novel technique that dis-
covers similarities between Android malware samples by
comparing fragments of executed traces (strands) generated
from their most suspect methods. This way we can accurately
pinpoint which (possibly) malicious behaviors are shared
between these different samples, allowing for easier analysis
and classification.

We implement this approach in a tool, StrAndroid, that
we evaluate on a few dataset of malware and ransomware
samples, comparing its results to an existing similarity tool.

Index Terms—Program Analysis, Similarity, Android Mal-
ware

1. Introduction

Android is the most widespread mobile OS in the
world with an estimated 85% market share as of 2020
[1]. Combined with the fact that around 3.5 billion people
nowadays own a smartphone [2] results in close to 3
billion active Android users and many more Android
devices. These numbers are helpful in explaining why
Android is a highly coveted attack vector for malware
developers.

Even though the security model of Android is complex
[3] and new versions of the system tend to keep up with
new threats, it is rare for users to consistently have the
new version installed on their devices [4]. Securing the
app distribution system is also not always a sound solution
for the security of the ecosystem, as users from all over
the world regularly access third-party stores that are not
known for their thorough app vetting process [5]. All of
these factors combined result in an ecosystem that presents
many potentially lucrative attack vectors.

Recent work on Android malware focuses on devel-
oping new intelligent and adaptive methods for malware
detection and classification [6], [7], generally by adopting
machine learning models. These academic endeavors sel-
domly reflect in the actual usage by anti-malware vendors,
where the main techniques used for the classification
of malware is still signature-based [8] and thus easily
circumvented by simple code modifications [9]. Indeed it
is necessary to find better ways to discover the similarities
between different malware samples.

A recent report published by MalwareBytes [10]
shows that Android malware is getting “stealthier and
more aggressive”, which should result in research focused
on more precision and accuracy. The approach that we
present in this paper is meant as a step towards applying
more sophisticated methods to the analysis of Android
malware, possibly leading to more precision in the anal-
ysis results.

We take direct inspiration from [11], where the authors
applied similarity by composition to binaries in order
to discover their similarity even when compiled with
different toolchains and optimizations. The idea behind
similarity by composition comes from a work in image
recognition [12] and leverages the fact that two images
are similar if they are made of similar components. Thus
finding the similarities between the components is a key
part of establishing if the two original images are also
similar. The goal of [11] was to find pieces of code that
were semantically similar to a query fragment mainly to
allow the search of bugs or known exploits in a benign
scenario where binary samples are generated with differ-
ent compilers or different versions of the same compiler.
This use case is of course different from malware analysis
where we need to take into consideration the use of ma-
licious code modifications explicitly designed to prevent
analysis. For this reason the methodology differs in some
key areas that we will expand upon in Section 4.

Motivation. We believe the similarity by composition
approach might work for Android malware because ma-
licious behaviors are often just different combinations of
the same few base components.

For example, there are approaches that aim at find-
ing Android clones that are similar wrt their behaviors
[13] . For this purpose, Object Based Actions (OBAs)
are defined as all the API calls that can be grouped
into a common semantic group: i.e. HTTP-based ac-
tions, TelephonyManager-based actions, SMSManager-
based actions, etc. A malicious behavior can then be
summarized by the combinations of these OBAs into
common patterns. For example, if the goal of the malware
is to steal the user data and send it to a remote server
then the corresponding behavior can be described with
TelephonyManager-based + HTTP-based actions, while if
the data was sent through SMS texts then we would have
TelephonyManager-based + SMSManager-based actions.
These are malicious behaviors that can help classify the
malware into different classes and they are all combina-
tions of smaller components.
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Figure 1. A diagram capturing the workflow of StrAndroid

With the similarity by composition approach of [11]
we can give a more precise characterization of the behav-
iors hidden in Android methods.

Contributions. The contributions of this paper are:

• a novel similarity algorithm for Android Malware
• the implementation of a tool for similarity by

composition, StrAndroid
• the evaluation of StrAndroid on datasets of An-

droid malware and ransomware

2. Background

In this section we will give a brief rundown of the
main concepts needed to understand our methodology and
the problem it sets to solve. For readers familiar with the
static analysis of Android malware we suggest skipping
to Section 4.

2.1. Android Environment

Android is an open source operating system meant for
mobile devices that adopts a very strict security model [3].
Every app installed in an Android device is packaged in
an APK file (which is an archive for distribution) and it
has to conform to the model in order to interact with the
most vulnerable parts of the system, and this is enforced
through the use of permissions [14] and specific system
APIs. Throughout the paper we will use the terms app and
APK interchangeably.

APIs and Permissions. Android offers a comprehensive
list of APIs to its developers in order to better control
the behavior of apps wrt the system itself. We analyzed
a number of Android malware samples and created a list
of APIs that can be used to execute malicious attacks on
the device, we call these risky APIs. These are functions
that range from network APIs, necessary to send packets
through network protocols, to device-specific APIs, which
are used to access private information about the user of
the device. This is a small sample of our risky APIs list:

android.telephony.TelephonyManager
android.provider.Contacts
java.net.ServerSocket
org.apache.http.impl.DefaultHttpClient

Other works share our view that some APIs have
more weight than others, for example [15] calls them

“sensitive” APIs and uses them as meaningful features
to automatically characterize Android malware.

The usage of system APis in Android is regulated by
requiring the use of each API to be accompanied by a
request for permission to the user. These permissions are
stored in an XML document (the manifest) at the root of
the application and are often used in malware analysis to
spot which APKs could contain malicious behaviors [16]–
[18]. Naturally, applications that do not request permission
to use any risky API will not be able to affect the behavior
of the device nor infringe on the privacy of the user in any
way. It is hard to draw conclusions from the sole inclusion
of permissions in the manifest, since app developers tend
to be overzealous and request more permissions than
necessary [14].

For this reason we focus on the API calls encountered
in the code without checking the permissions, as we be-
lieve this gives us an edge when it comes to the precision
of the analysis.

Smali. Before being run by Dalvik, the JVM implemen-
tation of Android, every app is compiled in dex bytecode.
This format is not very user-friendly, and for this reason
most static analysis on Android code is done on the smali
format. StrAndroid uses APKTool [19] in order to translate
the native bytecode into smali files, which will then be
parsed and analyzed by our tool.

A detailed description of the parsing process and our
analysis methodology is in Section 4.

2.2. Android Malware

There are many types of Android malware found in
the various markets, and they can be grouped by behavior
[20] as: 1) spyware, which is malware that allows an
external entity to acquire private information about the
unsuspecting user, 2) ransomware, encrypting the private
data of the user and requiring a payment (ransom) to
decrypt it, and 3) adware, showing unwanted ads to the
user. Of course many other types of malware exist, but in
this work we target a small dataset of ransomware samples
in order to gauge the effectiveness of StrAndroid.

2.3. Static Analysis

Program analysis is mainly divided into static and
dynamic analysis, where the former studies the properties
of programs from the code itself, while the latter exe-
cutes the program and analyzes the execution traces. The



approach described in this paper is static, as we analyze
the smali code obtained from the APKs. We now give a
brief description of the basic components of static analysis
that are required to understand the inner workings of
StrAndroid.

Basic Blocks. Basic blocks are fragments of code un-
interrupted by control flow instructions. They usually are
represented as nodes in the control flow graph.

Program Slicing. Program slicing is a static analysis pro-
cedure that allows the isolation of code fragments (slices)
containing only instructions that are directly related to
the slicing criterion through data flow and control flow
[21]. The slicing criterion can be a variable in a specific
location, a list of variables or an instruction that contains
at least a variable.

In this paper we will focus on backward slicing as
our preferred technique to extract strands from the APKs,
meaning that we identify a program location of interest
(slicing criterion) and perform a backward scan of the
code, saving a list of instructions that are correlated to at
least one of the variables in the slicing criterion.

Strands. The concept of strand was first introduced in
[11] (section 3.2) and simply defines a basic block-level
program slice. Isolating slices in a basic block means that
all the variables therein contained are connected with only
data flow (as basic blocks do not contain any control flow
by definition). This allows for a less precise representation
of the code itself but a more fine-grained kind of analysis,
where it is easier to discard non important elements.
Section 4 goes in more depth about our specific strands
implementation, while two examples of strands can be
seen in Figure 3.

3. State of The Art

In this section we will cover some existing works that
closely relate to our approach.

Android malware analysis. In [22], the authors highlight
how important it is to develop more precise descriptions of
the behaviors for existing malware datasets. They conduct
a large-scale study where they analyze specific samples
in various families that have been classified by existing
anti-virus scans. Our approach shares the same goal of
achieving a more precise analysis, but it differs in the
methodology.

Many Android malware analysis tools have been
developed recently using Machine Learning. There are
works such as [15] that we already mentioned in Section
2 for sharing our view on sensitive APIs, and more recent
works that employ modern ML techniques such as LSTM
and autoencoders in order to better classify Android mal-
ware [6], [23]. Even if our approach is static, with no ML
influence, we share the goal of finding the best features
that can predict the maliciousness of an Android malware.

Program similarity. The work that most relates to ours is
[11], where the authors envisioned an approach based on
similarity by composition to find code clones in binaries
that have either been compiled with different toolchains

or that belong to different systems altogether. Our work
is a direct translation of their effort to Android malware
analysis. We make some changes to the strand similarity
methodology (see Section 4 for details) and we apply the
approach to a very different problem domain.

4. Methodology
In this section we will describe our approach in detail,

including some of the methodology in [11] that initially
inspired this work and delving deeper in the differences
between our work and [11].

A detailed workflow can be seen in Fig 1. A query
APK is compared to the rest of the dataset by first
extracting all its methods and dividing them into basic
blocks. Then, from every method we generate the strands
(see Section 2 and [11]) which are placed in buckets. This
is done for every sample in the dataset (only once, then
it is saved for future runs). Every strand from the query
APK is compared with all the strands coming from each
method of the dataset samples using the Strand Similarity
Measure. The Local Evidence Score is then computed
to gauge how significant the strand matching really is.
Finally, the Global Evidence Score will simply sum all the
LES from the various strands in the methods and generate
a score that indicates how similar two methods are. In the
rest of the section we go into detail for each of the steps
just described.

Use Case. StrAndroid is a tool focused on the analysis
and reverse engineering of malware. In order to use the
tool at its fullest we first need a dataset of Android
malware samples, then we can input a query sample qs
into the system and StrAndroid will show which sample
best matches qs wrt its potentially malicious behaviors.

This comparison is done at the method level: the
sample that shares the highest number of methods with
qs is selected as the result of the analysis. Along with
this, StrAndroid will show a comprehensive list of all
the common methods between the two samples and their
relative similarity scores, allowing the analysts to focus
the reverse engineering efforts on these methods.

Method Filtering and Collection. As a first step in the
analysis StrAndroid builds an internal representation of all
the APKs in the dataset by collecting their methods. We
filter out the methods that do not meet two basic require-
ments: 1) a minimum length, and 2) presence of Risky
APIs (see Section 2 and [24] for a brief introduction).

The minimum length of the methods is a variable
parameter that can be set at the beginning of the analysis
and is meant to filter out common methods that are used
in most APKs (such as init methods) and would muddy
the detection of actual malicious behaviours. In order to
further speed up the analysis, StrAndroid will not consider
methods that do not contain at least one invocation to a
risky API, since these methods only contain the internal
logic of the app and cannot exhibit malicious behaviors
targeted towards either the user or the device itself. Both
of these heuristics have been adopted due to our previous
experience with GroupDroid [24] and they have been suc-
cessfully tested empirically. During this initial scan of the
methods in the dataset, the code is parsed by StrAndroid
in order to speed up the next part of the analysis.



strands = []
for inst in reverse(BB):

s <- new Strand
s <- s + inst
d <- defined_vars(inst)
u <- used_vars(inst)
BB <- BB - inst
for inst_1 in reverse(BB):

d_1 <- defined_vars(inst_1)
u_1 <- used_vars(inst_1)
for v in u:

if v in d_1:
u <- u + u_1
s <- s + inst_1
BB <- BB - inst_1

strands <- strands + reverse(s)
return strands

Figure 2. Strand Extraction Algorithm

Parsing. Program slicing requires isolating instructions
that are correlated to the slicing criterion through data
flow [21] (control flow can be ignored since strands are
extracted from basic blocks), thus the first component of
the tool is a parser for Smali. In order to generate def-use
chains it is essential to know which variables are used
and defined in each line. For this purpose, our smali code
parser extracts these variables using the pattern of the
particular opcode: we define 6 procedures covering all the
possible Def-Use behaviors of the instructions and apply
to each opcode the correct routine.

Strand Extraction and Normalization. Once all the
interesting methods have been collected and parsed for
every APK in the dataset, they are split into basic blocks
by a simple heuristic. At this point, strands are extracted
from the basic blocks. Strands are static slices of the
code contained in a basic block, obtained via a simple
backward slicing algorithm (see pseudocode at Figure 2).
These strands then go through a normalization process,
where every variable encountered is renamed wrt its order
of appearance in the strand.

As an example we show this on a snippet from a
simplified method (its statements are shorter):
move-object v4, v2
const/high16 v5, 0x10000000
invoke-virtual {v4, v5}, setFlags(I)
move-result-object v4
move-object v6, v1
move-object v7, v4
invoke-virtual {v6}, LstartService()
move-result-object v6

Assuming that the last statement is the slicing criterion,
starting from it, the algorithm walks backwards and col-
lects all the statements that may affect the value of v6,
which is the only variable in the slicing criterion. This is
the strand extracted:
move-object v6, v1
invoke-virtual {v6}, LstartService()
move-result-object v6

Clearly all the statements ignored do not contain a data-
flow connection with v6. At this point we normalize the
strand by renaming the variables:
move-object v1, v2
invoke-virtual {v1}, LstartService()
move-result-object v1

This last step is done in order to thwart the all too
common occurrence of statement reordering, which hap-
pens both due to obfuscation attempts and due to the
decompilation process. In our tests strand normalization
has proven to be a necessary step, since the similarity
measure is very syntactic.

Strand Similarity Measure (SSM ). In [11] the simi-
larity between two strands was computed via a program
verifier that checks for input-output equivalence between
the strands while pairing each variable from a strand with
the corresponding one in the other. This is done by lifting
the binary procedure into BoogieIVL [25] by first going
through IDA pro, then LLVM IR [26] via BAP [27] and
lastly SMACK [28] is used to translate LLVM IR into
BoogieIVL.

Lacking such a peculiar toolchain for our Android use
case we opted to simplify the strand similarity measure
and adopt the very common Jaccard index. Two strands
s1 and s2 are compared wrt the Jaccard index of the
instructions they contain. Let us recall the mathematical
definition of the Jaccard index between two sets:

J(A,B) =
|A

⋂
B|

|A
⋃

B|
=

|A
⋂

B|
|A|+ |B| − |A

⋂
B|

(1)

Then our strand similarity measure (SSM) can be
stated as:

SSM(s1, s2) = J(lines(s1), lines(s2)) (2)

Where lines(s1) and lines(ss) denote the set of state-
ments contained in the normalized strand s1 and s2 re-
spectively. For example, given the normalized strand in the
previous section (strandA) we can have a similar strand
extracted from a different method and then normalized
(strandB):

move-object v1, v2
move-object v2, v1
invoke-virtual {v1}, LstartService()
move-result-object v1

This strand is almost equivalent to the previous but has
an added line move-object v2, v1 that does not change the
semantics of the strand (we found these types of meaning-
less insertions in our manual investigation). Calculating
the Jaccard Index between these strands we have 0.75,
since:

|strandA
⋂

strandB |
|strandA

⋃
strandB |

=
3

4
= 0.75 (3)

This can be thought of as the likelihood of the two strands
being similar. While 75% likelihood might seem too low
of a value, it is mainly dictated by the reduced length of
this example, for longer strands the Jaccard Index of two
similar strands is usually higher.

The design choice of using the Jaccard index as
similarity between two strands comes from the need to
have an efficient method to compute the function, as it
necessarily needs to be computed for every strand in every
method. It is also convenient that the Jaccard index gives
a value between 0 and 1, giving a sort of likelihood to
the similarity of two strands. We will discuss possible
problems with this approach in Section 6.



i g e t−o b j e c t v5 , p0 , Lcom / xxx / yyy /BBBB;−> r e s p o n s e : Lorg / apache / h t t p / H t tpResponse ;
invoke−i n t e r f a c e {v5 } , Lorg / apache / h t t p / H t tpResponse;−> g e t E n t i t y ( ) Lorg / apache / h t t p / H t t p E n t i t y ;
move−r e s u l t−o b j e c t v1
. l o c a l v1 , ” e n t i t y ” : Lorg / apache / h t t p / H t t p E n t i t y ;
invoke−i n t e r f a c e {v1 } , Lorg / apache / h t t p / H t t p E n t i t y ;−>g e t C o n t e n t ( ) L java / i o / I n p u t S t r e a m ;
move−r e s u l t−o b j e c t v5
invoke−v i r t u a l {p0 , v5 } , Lcom / xxx / yyy /BBBB;−>g e n e r a t e S t r i n g ( L java / i o / I n p u t S t r e a m ; ) L java / l a n g / S t r i n g ;

i g e t−o b j e c t v9 , p0 , Lcom / xxx / yyy /BBBB;−> r e s p o n s e : Lorg / apache / h t t p / H t tpResponse ;
invoke−i n t e r f a c e {v9 } , Lorg / apache / h t t p / H t tpResponse;−> g e t E n t i t y ( ) Lorg / apache / h t t p / H t t p E n t i t y ;
move−r e s u l t−o b j e c t v2
. l o c a l v2 , ” e n t i t y ” : Lorg / apache / h t t p / H t t p E n t i t y ;
i g e t−o b j e c t v9 , p0 , Lcom / xxx / yyy /BBBB;−> r e s p o n s e : Lorg / apache / h t t p / H t tpResponse ;
invoke−v i r t u a l {p0 , v9 } , Lcom / xxx / yyy /BBBB;−>g e t C o n t e n t C h a r s e t ( Lorg / apache / h t t p / H t tpResponse ; )
move−r e s u l t−o b j e c t v0
. l o c a l v0 , ” c h a r s e t ” : L java / l a n g / S t r i n g ;
invoke−i n t e r f a c e {v2 } , Lorg / apache / h t t p / H t t p E n t i t y ;−>g e t C o n t e n t ( ) L java / i o / I n p u t S t r e a m ;
move−r e s u l t−o b j e c t v9
invoke−v i r t u a l {p0 , v9 , v0 } , Lcom / xxx / yyy /BBBB;−>g e n e r a t e S t r i n g ( L java / i o / I n p u t S t r e a m ; )

Figure 3. Two semantically equivalent strands from method HppGet

Method Similarity Measure. When every strand is ex-
tracted both in the dataset and in the query sample
qs, StrAndroid checks every method in qs against every
method of the dataset with the following algorithm. First
we define a function that, given a query strand sq and a
target method t, gives us the likelihood of finding a strand
st ∈ strands(t) such that sq and sr are semantically
similar. This is equal to the maximum of the SSM between
the query strand sq and every strand contained in t:

P(sq|t) = maxst∈t(SSM(sq, st)) (4)

Continuing with the methodology first described in
[11] we implement a function that measures the statistical
significance of a strand wrt the entire dataset. This is
done in order to give more weight to strands that are not
common in the dataset, and should result in a similarity
measure that focuses on the more unique parts of the code.
Given a query strand sq and all the strands in the dataset
st ∈ T , we define:

P(sq, T ) =
∑

st∈T SSM(sq|st)
|T |

(5)

A lower value of P(sq, T ) represents a higher statistical
relevance, as it means that sq has few semantically similar
strands in the dataset.

Following [11] we can now define the Local Evidence
Score (LES) between a strand and a method as:

LES(sq, t) = Log(
P(sq, t)
P(sq, T )

)

= Log(
maxst∈t(SSM(sq, st))

P(sq, T )
)

(6)

The last function that we need to define in order to
obtain a similarity between methods is the Global Evi-
dence Score (GES). Given a query method q contained
in the query sample and a target method t extracted from
one of the samples in the database we have:

GES(q|t) =
∑
sq∈q

LES(sq|t) (7)

The measure of similarity between two methods is given
by the sum of the individual values of LES for every
strand in the query method. This sum is of course only
lower-bounded by 0 but does not have an upper bound,
which can induce significant errors that we discuss in
Sections 5 and 6. For each method in the query sample,
StrAndroid computes the GES for every method in the
dataset and returns only the method that generates the
highest score, provided it exceeds the set threshold of 4.

The sample rs that matches the most methods with
the query sample qs is then returned as the result of the
analysis, with a list of all similar methods between the
two samples.

5. Evaluation

As a first step, StrAndroid has been evaluated against
the well known GENOME dataset [29] simulating a clas-
sification task. Since our tool requires an existing dataset
of known malware, this proved to be the easiest test bed
to ascertain its efficacy, even though the dataset itself is
showing its age. The GENOME dataset mostly contains
malware that has not been thoroughly modified, so these
results, while encouraging, were not sufficient for a proper
evaluation. For this reason a second evaluation has been
conducted on the PraGuard dataset [30], which contains
various program transformation such as string encryption,
class encryption and reflection.

We then tested StrAndroid on samples selected from
a dataset of Android ransomware and malware previously
used in the evaluation of GroupDroid [24], this allowed
us to easily spot any inconsistencies between the two
approaches. Unlike our previous approach, StrAndroid
adopts a more precise similarity algorithm that has vir-
tually zero false positives, thus it easily refines the results
we had with GroupDroid. Figure 5 shows a comparison
between the two tools by comparing the number of similar
methods that were found among 8 pairs in the dataset.
GroupDroid almost always over-approximates and returns
more similar methods than StrAndroid, except a few cases
where StrAndroid actually discovers some methods that



Figure 4. A screenshot of StrAndroid, highlighted in yellow are the new similar methods that were missed by GroupDroid. In green the only false
positives of StrAndroid

eluded detection in GroupDroid. An example of the anal-
ysis results can be seen in Figure 4.

GENOME. We extracted around 600 samples from the
GENOME dataset, excluding mainly the families that
contained less than 20 samples each, then we randomly
chose one sample from each family and removed it from
the dataset. We then used StrAndroid with each one of
these removed samples as the query APKs, in order to find
similar APKs in the dataset. Our tool paired each query
APK with samples of their original family on 100% of
the cases, thus validating the approach.

PraGuard. The PraGuard dataset [30] provided a few dif-
ferent code obfuscations applied to the GENOME dataset.
We tested StrAndroid with these by extracting one sample
from each class in the obfuscated database and used it
as a query APK against the entire original GENOME
dataset. The results with the samples modified with string
encryption have been positive, with every sample extracted
randomly from each malware class being classified cor-
rectly with other samples in the same class. This test
proved that the string comparison, used to gauge the
equivalence of statements for the SSM between strands,
does not impact negatively the effectiveness of our tool
when used for classification.

The next two obfuscation classes obtained from Pra-
Guard, class encryption and reflection, uncovered a lot of
flaws in the approach. Both classes resulted in unsatis-
factory classification, with the samples obfuscated with
class encryption resulting in zero similar APKs for many
of them. This negative result is unavoidable as the APKs
are obfuscated with DexGuard [31], which encrypts and
compresses (with GZIP) every class in the APK. The
content of the classes is thus completely hidden to a static
analyzer and is only revealed at run-time. Our approach
relies on extracting data-flow information from methods
statically, which means that the only methods available
for analysis were the ones used for run-time decryption.

The samples obfuscated with reflection instead gener-
ated many false positives, which is easily explainable by

the confined nature of our analysis (every strand comes
from a single basic block). In order to correctly calculate
the similarity between strands, the method invocation has
to be part of the strand itself.

Use Case Dataset. We used a dataset of 20 Android
malware and ransomware samples, a reduced version of
the one collected in 2017 for [24], where each sample
is similar to at least one other sample in the dataset,
giving a total of 10 semantically-similar program pairs
(or families). By similar samples, in this context, we mean
that they contain some of the same malicious behaviors,
while the rest of the application (usually a piggy-backed
legitimate app) is not considered for the similarity. In
Figure 5 we show a direct comparison between StrAndroid
and GroupDroid. The latter almost always returns more
similar methods but this is due to the presence of false
positives, while StrAndroid is generally more precise for
all the classes considered and sometimes obtains even
less false negatives than GroupDroid (for example in 1-
ransom).

The dataset contains ransomware and malware sam-
ples and is fairly small to allow manual verification of
the results, since the goal of this evaluation phase is to
challenge the ground-truth extracted from an analysis by
GroupDroid. In Section 7 we speculate on some possible
improvements of this step.

Precision. The nature of the similarity measure imple-
mented in StrAndroid should make it so that the tool is
not affected by certain types of code obfuscation such
as structural transformations (modifying the CFG of the
methods) and dummy code insertion. We verified this
in our reduced dataset by running both GroupDroid and
StrAndroid and manually evaluating the results of the
analyses.

The results of our tests are overwhelmingly positive,
using StrAndroid we uncovered the source of some false
negatives in the analysis with GroupDroid, mostly coming
from samples employing the two aforementioned modifi-
cations.



Figure 5. Comparing the number of similar methods found in 8 pairs of the dataset. GroupDroid often over-approximates and finds many false
positives while StrAndroid is more precise.

Figure 6. CFGs extracted from two semantically equivalent methods with
bogus code insertions

In Section 5.1 we explore two specific examples of
these tests.

Normal Code Evolution. Since most malware nowadays
consists of modified versions of existing malware, it is
possible that some of the transformations that we noticed
in the samples are not always the result of an attempt to
obfuscate the code, but they could simply be the result of
updated and refined code for the new versions. Malware
developers could add code to their samples not just as
dummy filler to fool signature based approaches (although
that seems to work well [32]), but also to add new
behaviors. It is our opinion that this has to be investigated
more, as it is possible to use StrAndroid to analyze the
evolution of malware in the same family over time (we
will expand on this in Section 7).

Threshold. As anticipated in Section 4, the similarity
between two methods is given by their GES, which is a
summation of all the local LES between the strands and
the method itself. This causes the similarity measure to

assume theoretically unbounded values (since it depends
on the number of strands in a methods), which means
that setting a predefined threshold Tr that works on all
methods is not a trivial task. If Tr is too small it can cause
false positives among methods that are not similar but
contain a lot of strands (as we will see in Section 6) and
false negatives if the methods are indeed similar but too
small to reach Tr. We thoroughly experimented with our
dataset and reached the conclusion that Tr = 4 is a good
threshold to decide the similarity between two methods,
as we encountered 71 methods in the class 7−malware
that are similar between the two samples and returned a
GES between 4 and 4.5.

5.1. Case Studies

The nature of strands, mainly their existence confined
in basic blocks, allows StrAndroid to be very precise when
finding similarities between methods even when one of the
control flow is modified substantially. Another advantage
of using buckets of strands is evident when evaluating
the similarity of methods where dummy code has been
inserted, as the original code (the code that is semantically
relevant) is still present in the form of a composition of
strands. We now show two specific examples of these
cases and highlight how focusing on strands helped the
analysis.

Modified CFG. HppGet() is a method that is present in
two similar malware samples (sample1 and sample2) in
our reduced dataset and is used to communicate with a
remote server with the use of the Apache HTTP API. The
peculiarity of the two versions of this method is that the
one in sample2 is heavily modified wrt its CFG compared
to the version in sample1 (both CFGs can be seen in
Figure 7).

This proved to be a challenge for the structural similar-
ity approach taken by GroupDroid, while StrAndroid still
recognizes the meaningful strands in the code, ignoring
the modifications to the CFG. One of the meaningful
strands from each ransomware sample can be seen in



N. of APKs N. of Methods Avg. Time
(per method)

TS 1 100 20489 0.9s
TS 2 150 27273 1.32s
TS 3 200 40277 2.15s
TABLE 1. TEST SET FOR PERFORMANCE EVALUATION

Figure 3, it is easy to see how they describe the same
behavior.

Dummy code insertion. onEnable() is a method extracted
from two ransomware samples (sample3 and sample4).
Both versions of the method have been manually inves-
tigated and evidently perform the same function, but the
one in sample4 is almost double the size of its original
version in sample3. The CFG of the methods has not been
modified, but around 20 lines of dummy code have been
inserted. This can be seen in Figure 6 where the weight
parameter in the second basic block shows that the amount
of statements therein contained has doubled.

This is usually done in order to fool automatic mal-
ware recognition tools that rely on exact file signature and
it also proved to be a challenge for GroupDroid, since the
similarity measure relies heavily on the weight of the basic
blocks (the number of statements in it). As expected the
strand approach taken with StrAndroid works flawlessly
with transformations that modify the structure of the CFG.

5.2. Performance

The method parsing and the strand generation are
relatively simple operations, as they only require one pass
for each smali file. Doing this to every sample in the
dataset still yields a linear complexity, meaning that even
with hundreds of samples the extraction times are fairly
small. The true complexity of StrAndroid comes from
strand comparisons, as each strand from every method in
the query APK has to be compared (via SSM) with every
strand from every method in every sample of the dataset.

To gauge the actual performance of the tool we ran
tests on a MacBook Pro with a 2.3 GHz i5 dual-core pro-
cessor and 8GB of RAM, against a test set composed of 3
different subsets of the GENOME dataset with randomly
extracted samples. The specifics of the test set can be seen
in Table 1, along with the average time it took to analyze a
single method in the query sample against every method
in the test set. The query samples were also extracted
randomly from the original dataset, one for each of the
5 classes BeanBot, DroidDream, DroidKungFu, Geinimi
and GoldDream. The specific execution times for the tests
on each sample against the 3 subsets can be observed in
Table 2.

TS 1 TS 2 TS 3 Risky methods
in query sample

BB43 4m 18s 6m 15s 10m 39s 361
DDL7 3m 35s 5m 18s 8m 50s 234
DKF14 3m 58s 5m 44s 9m 45s 289
GEIN37 2m 50s 4m 23s 6m 58s 163

GD17 2m 24s 3m 58s 5m 55s 166
Avg. 3m 25s 5m 7s 8m 25s

TABLE 2. RUNNING TIMES OF THE ANALYSIS ON THE TEST SET

Improvements. Strand comparisons are independent of
each other, which means that the performance of our tool
could be increased by a great factor if we employed code
parallelization. The tool also suffers from the bare-bones
Python implementation, where a great number of string
comparisons means a great decrease in performance. We
are currently looking into Cython [33] in order to leverage
the faster C implementation for string comparison.

6. Limitations

Our tests with the PraGuard dataset [30] and the
manual assessment of the results with our reduced mal-
ware/ransomware dataset have unveiled some limitations
of our approach.

String Comparison. When calculating the SSM as the
Jaccard Index between two strands, the union operator
considers the strands as sets and the statements therein
contained as strings. This means that our algorithm will
judge the uniqueness of a statement in the set by using
exact string equivalence. This has proven to not be a
problem when analyzing most samples in the GENOME
dataset [29] but has resulted in a slightly reduced number
of equivalent methods found when using samples from
PraGuard obfuscated with string encryption.

Static Thresholds. The value 4 as a threshold for the
GES between two methods has proven to be a good
estimate for method similarity throughout the tests. This
value is highly dependent on the size of the methods and
on the number of strands, thus it could be useful to have
a threshold that adapts to these parameters, or conversely
implement an algorithm that learns the correct threshold
given the parameters.

Unbounded Similarity Measure. Related to the previous
point, the GES is calculated as a summation of the LES
between all strands. This makes its value theoretically
unbounded, which further exacerbates the problem of
having a static threshold for the similarity measure. Future
evolutions of this work could consider a measure of central
tendency such as the arithmetic mean.

Unique Result. As introduced in Section 4, StrAndroid
returns only one method as a result of the similarity anal-
ysis for each method in the query APK. This effectively
means that, given a dataset containing families of malware
and a query apk that belongs to one of the families, the
result APK is going to be unique. In other words, no other
APKs containing less similar methods (but still similar) is
going to be returned. This might be too strict of a design
choice, as our similarity measure is in no way perfect.

7. Conclusions and Future Work

We implemented a tool StrAndroid to assess the sim-
ilarity of Android malware wrt their malicious behaviors,
taking as inspiration the approach of similarity by compo-
sition first introduced in [12] for image recognition and in
[11] for binary code. We tested the approach on a selected
dataset of 20 Android malware and ransomware samples
and we compared the results to GroupDroid.



Figure 7. CFGs extracted from two semantically equivalent methods, StrAndroiddeems the methods similar enough

We assessed that StrAndroid produces results that are
much more precise, with a low rate of false negatives
and false positives, and is able to overcome certain types
of structural code transformations such as dummy code
insertion and CFG transformations. The strength of this
approach comes from the fact that it combines semantic
and syntactic types of analysis and benefits from each.
Semantic analysis is applied in the parsing of the methods
and extraction of the strands, while syntactic analysis is
used in the similarity score calculations where each line in
the strand is exactly compared to those in another strand.
We believe our methodology shows promise as a concrete
step towards helping analysts with the reverse engineering
of Android malware. In the following we will list some
of the possible improvements to this work that could be
considered as future research directions.

Program Verifier for Smali. One of the original limita-
tions of this work has been the inability to find a free
program verifier written specifically for smali code. A
useful direction would be to develop either a new program
verifier for smali or a transpiler from smali to a similar
language that already has a program verifier. This should
counter some of the limitations of using the Jaccard index
as similarity measure between strands, as stated in Sec. 6.

Machine Learning. Strands proved to be a great feature to
ascertain similarity between malware samples in Android,
but they are used in a rigid static algorithm with set
thresholds. Strands could be used as features for a classi-
fication algorithm based on Machine Learning techniques,

where the importance of a strand can be calculated through
attention instead of its uniqueness in the dataset. This is
similar to the approach in code2vec [34] where the authors
used paths in the AST in order to train an algorithm that
could infer method names from their code.

New Evaluation Testbed. The compact size of the dataset
comes from a need to manually verify the precision of
StrAndroid over GroupDroid, a future direction for this
research could be to design a new evaluation methodology
that automates such a task. This is not a trivial proposition,
as it is hard to trust any automatically-generated ground-
truth and it is even harder to find datasets that have already
been analyzed with our same use-case in mind.

A Combination of StrAndroid and GroupDroid. As
we discuss in Section 5, GroupDroid is a very fast tool
that works very well for clustering a dataset of unknown
malware even if it returns many false positives wrt the
individual methods. StrAndroid, on the other hand, is very
precise when it comes to recognizing similar methods in
different malware samples, but its performance is quite
lacking. We are actively investigating how to combine
these two approaches in a new tool.

Monitoring Malware Evolution. Android malware is in
constant evolution, new families are added at a slower rate
[35] but new versions of existing malware are constantly
being discovered on the distribution platforms. It is then of
the utmost importance to be able to analyze and counteract
the evolution of these new variants. We already discussed



(Section 5) how StrAndroid seems to be resilient to certain
code transformation techniques, such as dummy code in-
sertion, but its strength lies in focusing on specific strands
that execute the malicious behavior. This means that it can
recognize new versions of the same methods even when
the code has been updated to modify or add to the existing
behaviors, and highlighting the common strands between
two cloned methods can bring into light the newly added
behaviors. A new direction in the development of this
approach is geared towards analyzing the new versions
of existing malware, in order to assess their evolution.

Acknowledgment. The research has been partially sup-
ported by the project Dipartimenti di Eccellenza 2018
2022 funded by the Italian Ministry of Education, Uni-
versities and Research (MIUR).

References

[1] IDC, “Smartphone users worldwide,” 2020, [accessed 13-
March-2020]. [Online]. Available: https://www.idc.com/promo/
smartphone-market-share/os

[2] S. O’Dea, “Smartphone users worldwide,” 2020, [accessed
13-March-2020]. [Online]. Available: https://www.statista.com/
statistics/330695/number-of-smartphone-users-worldwide

[3] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android
security,” IEEE security & privacy, vol. 7, no. 1, pp. 50–57, 2009.

[4] M. Mahmoudi and S. Nadi, “The android update problem: An em-
pirical study,” in Proceedings of the 15th International Conference
on Mining Software Repositories, 2018, pp. 220–230.

[5] M. Xu, Y. Ma, X. Liu, F. X. Lin, and Y. Liu, “Appholmes: De-
tecting and characterizing app collusion among third-party android
markets,” in Proceedings of the 26th International Conference on
World Wide Web, 2017, pp. 143–152.

[6] W. Wang, M. Zhao, and J. Wang, “Effective android malware
detection with a hybrid model based on deep autoencoder and
convolutional neural network,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 8, pp. 3035–3043, 2019.

[7] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. Tsang, and W. Zhou,
“Familial clustering for weakly-labeled android malware using
hybrid representation learning,” IEEE Transactions on Information
Forensics and Security, 2019.

[8] A. Kapoor, H. Kushwaha, and E. Gandotra, “Permission based
android malicious application detection using machine learning,”
in 2019 International Conference on Signal Processing and Com-
munication (ICSC). IEEE, 2019, pp. 103–108.

[9] M. Dalla Preda and F. Maggi, “Testing android malware detectors
against code obfuscation: a systematization of knowledge and
unified methodology,” Journal of Computer Virology and Hacking
Techniques, vol. 13, no. 3, pp. 209–232, 2017.

[10] Malwarebytes, “State of malware report,” 2020, [accessed 13-
March-2020]. [Online]. Available: https://resources.malwarebytes.
com/files/2020/02/2020 State-of-Malware-Report.pdf

[11] Y. David, N. Partush, and E. Yahav, “Statistical similarity of
binaries,” ACM SIGPLAN Notices, vol. 51, no. 6, pp. 266–280,
2016.

[12] O. Boiman and M. Irani, “Similarity by composition,” in Advances
in neural information processing systems, 2007, pp. 177–184.

[13] G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, and A. Narayanan,
“Semantic modelling of android malware for effective malware
comprehension, detection, and classification,” in Proceedings of the
25th International Symposium on Software Testing and Analysis,
2016, pp. 306–317.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “An-
droid permissions demystified,” in Proceedings of the 18th ACM
conference on Computer and communications security, 2011, pp.
627–638.

[15] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware char-
acterization and detection using deep learning,” Tsinghua Science
and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[16] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Signifi-
cant permission identification for machine-learning-based android
malware detection,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 7, pp. 3216–3225, 2018.

[17] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level
features for robust malware detection in android,” in International
conference on security and privacy in communication systems.
Springer, 2013, pp. 86–103.

[18] K. A. Talha, D. I. Alper, and C. Aydin, “Apk auditor: Permission-
based android malware detection system,” Digital Investigation,
vol. 13, pp. 1–14, 2015.

[19] R. Winsniewski, “Android–apktool: A tool for reverse engineering
android apk files,” 2012.

[20] N. Kiss, J.-F. Lalande, M. Leslous, and V. V. T. Tong, “Kharon
dataset: Android malware under a microscope,” in The {LASER}
Workshop: Learning from Authoritative Security Experiment Re-
sults ({LASER} 2016), 2016, pp. 1–12.

[21] M. Weiser, “Program slicing,” IEEE Transactions on software
engineering, no. 4, pp. 352–357, 1984.

[22] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth
analysis of current android malware,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assess-
ment. Springer, 2017, pp. 252–276.

[23] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences and
lstm,” Multimedia Tools and Applications, vol. 78, no. 4, pp. 3979–
3999, 2019.

[24] N. Marastoni, A. Continella, D. Quarta, S. Zanero, and M. D.
Preda, “Groupdroid: Automatically grouping mobile malware by
extracting code similarities,” in Proceedings of the 7th Software
Security, Protection, and Reverse Engineering/Software Security
and Protection Workshop, 2017, pp. 1–12.

[25] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M.
Leino, “Boogie: A modular reusable verifier for object-oriented
programs,” in International Symposium on Formal Methods for
Components and Objects. Springer, 2005, pp. 364–387.

[26] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in International Sym-
posium on Code Generation and Optimization, 2004. CGO 2004.
IEEE, 2004, pp. 75–86.

[27] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A bi-
nary analysis platform,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 463–469.
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