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Seeking the largest solution to an expression of the form Ax ≤ B is a common task in several domains

of engineering and computer science. This largest solution is commonly called quotient. Across

domains, the meanings of the binary operation and the preorder are quite different, yet the syntax

for computing the largest solution is remarkably similar. This paper is about finding a common

framework to reason about quotients. We only assume we operate on a preorder endowed with an

abstract monotonic multiplication and an involution. We provide a condition, called admissibility,

which guarantees the existence of the quotient, and which yields its closed form. We call preordered

heaps those structures satisfying the admissibility condition. We show that many existing theories in

computer science are preordered heaps, and we are thus able to derive a quotient for them, subsuming

existing solutions when available in the literature. We introduce the concept of sieved heaps to deal

with structures which are given over multiple domains of definition. We show that sieved heaps also

have well-defined quotients.

1 Introduction

The identification of missing objects is a common task in engineering. Suppose an engineer wishes to

implement a design with a mathematical description B, and will use a component with a description A

to implement this design. In order to find out what needs to be added to A in order to implement B, the

engineer seeks a component x in an expression of the form A • x = B, where • is an operator yielding

the composite of two design elements. Many compositional theories include the notion of a preorder,

usually called refinement. The statement A ≤ C usually reads “A refines C” or “A is more specific than

C.” In this setting, the problem is recast as finding an x such that A• x ≤ B. It is often assumed that the

composition operation is monotonic with respect to this preorder. Therefore, if x is a solution, so is any

y satisfying y ≤ x. This focuses our attention on finding the largest x that satisfies the expression. The

literature often calls this largest solution quotient.

1.1 Background

The logic synthesis community has been a pioneer in defining and solving special cases of the quotient

problem for combinational and sequential logic circuit design ([24, 12]) under names like circuit recti-

fication or engineering change or component replacement. In combinational synthesis, much work has

been reported to support algebraic and Boolean division: given dividend f and divisor g, find the quotient

q and remainder r such f = q ·g+ r (for ·,+ standard Boolean operators AND and OR, respectively), as

key operation to restructure multi-level Boolean networks [17]. The quotient problem for combinational

circuits was formulated as a general replacement problem in [9]: given the combinational circuits A and
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C whose synchronous composition produces the circuit specification B, what are the legal replacements

of C that are consistent with the input-output relation of B? The valid replacements for C were defined

as the combinational circuits x such that A◦x ⊆ B, and the largest solution for x was characterized by the

closed formula x =
(

A◦B⊥
)⊥

, where (·)⊥ is a unary operator that complements the input-output relation

of the circuit to which it is applied (switching the inputs and outputs), while a hiding operation gets rid

of the internal signals.

In sequential optimization, the typical question addressed was, given a finite-state machine (FSM)

A, find an FSM x such that their synchronous composition produces an FSM behaviorally equivalent to

a specification FSM B, i.e., solve over FSMs the equation A ◦ x = B, where ◦ is synchronous composi-

tion and equality is FSM input-output equivalence. Various topologies were solved, starting with serial

composition where the unknown was either the head or tail machine, to more complex interconnections

with feedback. As a matter of fact, sometimes both A and x were known, but the goal was to change

them into FSMs yielding better logical implementations, while preserving their composition, with the

objective to optimize a sequential circuit by computing and exploiting the flexibility due to its modular

structure and its environment (see [17, 38, 21]). An alternative formulation of FSM network synthesis

was provided by encoding the problem in the logic WS1S (Weak Second-Order Logic of 1 Successor),

which enables to characterize the set of permissible behaviors at a node of a given network of FSMs

by WS1S formulas [1], corresponding to regular languages and so to effective operations on finite state

automata. 1

Another stream of contributions has been motivated by component-based design of parallel systems

with an interleaving semantics (denoted in our exposition by the composition operator ⋄). The problem

is stated by Merlin and Bochmann [31] as follows: “Given a complete specification of a given module

and the specifications of some submodules, the method described below provides the specification of an

additional submodule that, together with the other submodules, will provide a system that satisfies the

specification of the given module.” The problem was reduced to solving equations or inequalities over

process languages, which are usually prefix-closed regular languages represented by labeled transition

systems. A closed-form solution of the inequality A⋄x ⊆ B over prefix-closed regular languages, written

as pro jx(A⋄B)− pro jx(A⋄B) (where pro jx is a projection over the alphabet of x), was given in [31, 19].2

This approach to solve the equation A⋄x = B has been further extended to obtain restricted solutions that

satisfy properties such as safety and liveness, or are restricted to be FSM languages, which need to be

input-progressive and avoid divergence (see [19, 7, 40]). The quotient problem has been investigated also

for delay-insensitive processes to model asynchronous sequential circuits, see [13, 30, 32]. Equations of

the form A ⋄ x ≤ B were defined, and their largest closed-form solutions were written as x = (A⋄B∼)∼,

where (·)∼ is a suitable unary operation.

An important application from discrete control theory is the model matching problem: design a

controller whose composition with a plant matches a given specification (see [2, 16]). Another significant

application of the quotient computation has been the protocol design problem, and in particular, the

protocol conversion problem (see [27, 18, 35, 33, 25, 20, 41, 11]). Protocol converter synthesis has been

studied also over a variant of Input/Output Automata (IOA, [29]), called Interface Automata (IA, [15,

14]), yielding a similar quotient equation A ⋄IA x ⊆ B and closed-form solution
(

A⋄IA B⊥
)⊥

, where ⋄IA

is an appropriate interleaving composition defined for interface automata, and (·)⊥ is again a unary

operation [6].

Some research focused on modal specifications represented by automata whose transitions are typed

1A detailed survey of previous work in this area can be found in [23, 40].
2For a discussion about the maximality of this solution and for more references, we refer to [40], Sec. 5.2.1.
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with may and must modalities, as in [28, 36], with a solution of the quotient problem for nondeterministic

automata provided in [3]. It is outside the scope of this paper to address the quotient problem for real-

time and hybrid systems (see [10, 8] for verification and control in such settings).

As seen above, the quotient problem was studied by different research communities working on

various application domains and formalisms. Often similar formulations and solutions were reached

albeit obfuscated by the different notations and objectives of the synthesis process. This motivated a

concentrated effort to distill the core of the problem, modeling it as solving equations over languages

of the form A ‖ x � B, where A and B are known components and x is unknown, ‖ is a composition

operator, and � is a conformance relation (see [39] and the monograph [40] for full accounts). The notion

of language was chosen as the most basic formalism to specify the components of the equation, and

language containment ⊆ was selected as conformance relation. Two basic composition operators were

defined each encapsulating a family of variants: synchronous composition (•) modeling the classical

step-lock coordination, and interleaving composition (⋄) modeling asynchrony by which components

may progress at different rates (there are subtle issues in comparing the two types, as mentioned in [26,

42]). Therefore two language equations were defined: A • x ⊆ B and A ⋄ x ⊆ B, where the details of the

operations to convert alphabets according to the interconnection topologies are hidden in the formula. It

turned out that the largest solutions have the same structure, respectively, A•B and A⋄B. This led to

investigate the algebraic properties required by the composition operators to deliver the previous largest

closed-form solutions to unify the two formulas [39]. This effort assumed that the underlying objects

were sets, and that their operations were given in terms of set operations. This work, thus, could not

account for quotient computations in more complex theories, like interface automata.

As a parallel development, in recent years we have seen the growth of a rigorous theory of system

design based on the algebra of contracts (see the monograph [5]). In this theory, a strategic role is

played by assume-guarantee (AG) contracts, in which the missing component problem arises: when the

given components are not capable of discharging the obligations of the requirements, define a quotient

operation that computes the contract for a component, so that by its addition to the original set the

resulting system fulfills the requirements. The quotient of AG contracts was completely characterized

very recently by a closed-form solution proved in [37]. Once again, the syntax of the quotient has the

form
(

A ‖ B−1
)−1

for contracts A and B and standard contract operations.

In summary, even though the concrete models of the components, composition operators, confor-

mance relations and inversion functions vary significantly across chosen models and application domains,

the quotient formulas have similar syntax across theories.

1.2 Motivation and contributions

The motivation of this paper is to propose the underlying mathematical structure common to all these

instances of quotient computation to be able to derive directly the solution formula for any equation

satisfying the properties of this common structure.

We show that we can compute the quotient by only assuming the axioms of a preorder, enriched with

a binary operation of source multiplication and a unary involution operation. In particular we introduce

the new algebraic notion of preordered heaps characterized by a condition, called admissibility, which

guarantees the existence of the solution and yields a closed form for it. Then we show that a number

of theories in computer science meet this condition, e.g., Boolean lattices, AG contracts, and interface

automata; so for all of them we are able to (re-)derive axiomatically the formulas that compute their

related quotients. We also introduce the concept of sieved heaps to deal with structures defined over

multiple domains, and we show that the equations A • x ≤ B admit a solution also over sieved heaps,
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generalizing the known solutions of equations on languages over multiple alphabets with respect to

synchronous and interleaving composition, well studied in the literature.

1.3 Organization

The paper is structured as follows. Sec. 2 develops the basic mathematical machinery of preordered

heaps, whereas Sec. 3 shows that various theories are preordered heaps. Sec. 4 introduces sieved heaps,

whereas Sec. 5 applies them to equations over languages with multiple alphabets. Sec. 6 concludes.

Some proofs are omitted due to space constraints.

2 Preordered heaps

In this section we introduce an algebraic structure for which the existence of quotients is guaranteed.

We show in Section 3 that many theories in computer science are instances of this concept. First we

introduce the notation we will use:

• Let P be a set and let µ : P×P → P be a binary operation on P. For any element a ∈ P, we let

µa : P → P be the function µa = µ ◦ (a× id), where id is the identity operator and (a× id) : P → P2 is

the unary function (a× id) : b 7→ (a,b). Similarly, we let µa = µ ◦(id×a). If we call µ multiplication,

µa is left multiplication by a, and µa is right multiplication by a.

• For any set P, we let the mapping flip : P×P → P×P be flip(a,b) = (b,a) (a,b ∈ P).

• Consider a set P and a binary relation ≤ on P. Then ≤ is a preorder if it is reflexive and transitive; i.e.,

for all a,b and c in P, we have a ≤ a (reflexivity) and if a ≤ b and b ≤ c then a ≤ c (transitivity). If a

preorder is antisymmetric, (a ≤ b and b ≤ a implies a = b), then it is a partial order.

• Let (P,≤) be a preorder and let a,b ∈ P. If a ≤ b and b ≤ a, we write a ≃ b.

• Let F : P → P. We say that F is monotonic or order-preserving if a ≤ b ⇒ Fa ≤ Fb for all a,b ∈ P.

Similarly, we say that F is antitone or order-reversing if a ≤ b ⇒ Fb ≤ Fa for all a,b ∈ P.

• Suppose that L,R : P → P are two monotonic maps on P. We say that (L,R) form an adjoint pair, or

that L is the left adjoint of R (R is respectively the right adjoint of L), or that the pair (L,R) forms a

Galois connection when for all b,c ∈ P, we have Lb ≤ c if and only if b ≤ Rc.

• Let F,G : P → P be functions on a preorder P. We say that F ≤ G when Fa ≤ Ga for all a ∈ P.

2.1 The concept of preordered heap

As we discussed in the introduction, many times in engineering and computer science one encounters

expressions of the form A• x ≤ B, and one wishes to solve for the largest x that satisfies the expression.

The symbols have different specific meanings in the various domains, yet in all applications we know,

the syntax for computing the quotient always has the form A•B, where (·) is an involution (i.e., a unary

operator which is its own inverse). To give meaning to the inequality, at a minimum we need a preorder

and a binary operation; to give meaning to the quotient expression, we need to assume the existence

of an involution. In all compositional theories, the refinement order has the connotation of specificity:

if a ≤ b then a is a refinement of b. The binary operation is usually interpreted as composition. The

product a•b is understood as the design obtained when operating both a and b in a topology given by the

mathematical description of each component. The unary operation is sometimes understood as giving an
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external view on an object. If a component has mathematical description a, then a gives the view that

the environment has of the design element. In Boolean algebras, this unary operation is negation. In

interface theories, it’s usually an operation which switches inputs and output behaviors.

We thus introduce an algebraic structure consisting of a preorder, a binary operation which is mono-

tonic in both arguments, and an involution which is antitone. We have called the binary operation source

multiplication for reasons having to do with category theory: we will show that this operation serves

as the left functor of an adjunction. Therefore, its application to an object of the preorder yields the

source of one of the two arrows in the adjunction. Why not simply call it multiplication? Because source

multiplication together with the involution generate another binary operation. This second operation we

call target multiplication because its application to an object yields the target of one of the arrows in the

adjunction. The unary operation will simply be called involution.

The algebraic structure will be called preordered heap. The inspiration came from engineering de-

sign. In some design methodologies, design elements at the same level of abstraction are not comparable

in the refinement order. Indeed, a refinement of a design element usually yields a design element in a

more concrete layer. But we are placing all components under the same mathematical structure. This

suggested the name heap. We add the adjective preorder simply to differentiate the concept from existing

algebraic heaps. We are ready for the definition:

Definition 2.1. A preordered heap is a structure (P,≤,µ ,γ), where (P,≤) is a preorder; µ : P×P → P

is a binary operation on P, monotonic in both arguments, called source multiplication; and γ : P → P is

an antitone operation on P called involution. These operations satisfy the following axioms:

• A1: γ2 = id.

• A2a (left admissibility): µa ◦ γ ◦µa ◦ γ ≤ id (a ∈ P).
• A2b (right admissibility): µa ◦ γ ◦µa ◦ γ ≤ id (a ∈ P).

Note 2.1. In Definition 2.1, we did not assume commutativity in µ . If µ is commutative, we have µ =
µ ◦flip, so µa = µ ◦ (a× id) = µ ◦flip ◦ (a× id) = µ ◦ (id× a) = µa. It follows that for a commutative

preordered heap, axioms A2a and A2b become

(µa ◦ γ)2 ≤ id. (1)

We have discussed all elements in the definition of a preordered heap, except for the admissibility

conditions. What are they? Consider left admissibility: µa ◦γ ◦µa ◦γ ≤ id. Let b∈P and set B= (γ ◦µa ◦
γ)(b). Left admissibility means that B satisfies the expression µ(a,x) ≤ b. Similarly, set C = (γ ◦µa ◦
γ)(b). Right admissibility means that C satisfies µ(x,a)≤ b. When µ is commutative, we of course have

B =C. We will soon show a surprising fact: the axioms of a preordered heap are sufficient to guarantee

that B and C are in fact the largest solutions to both expressions, i.e., B and C are the quotients for left

and right source multiplication, respectively. We show this immediately after introducing an important

binary operation called target multiplication, but first we consider an example.

Example. Consider a Boolean lattice B. The lattice is clearly a preorder. Take the involution to be

the negation operator. This is an antitone operator and satisfies A1: ¬¬b = b for all b ∈ B. Take

source multiplication to be the meet of the lattice (i.e., logical AND). This operation is monotonic in

the preorder. Since this source multiplication is commutative, the admissibility conditions reduce to

checking (1). For a,b ∈ B, we have (µa ◦ γ)2b = a∧¬(a∧¬b) = a∧ (¬a∨ b) = a∧ b ≤ b. Thus, the

Boolean lattice satisfies the admissibility conditions, making it a preordered heap.
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2.2 Target multiplication

For the rest of this section, let (P,≤,µ ,γ) be a preordered heap. We define the target multiplication

τ : P×P → P as τ = γ ◦µ ◦(γ × γ). Since γ2 = id (axiom A1), we can also write µ = γ ◦τ ◦(γ × γ), i.e.,

the diagram
P×P P

P×P P

γ×γ

µ

τ

γ commutes.

We could have defined a preordered heap in terms of target multiplication instead of source multipli-

cation. The two operations are closely linked. In fact, we will see in the next section that these operations

form an adjoint pair.

Example. We showed that Boolean lattices are preordered heaps. For B a Boolean lattice and a,b ∈ B,

we have τ(a,b) = γ ◦ µ(γa,γb) = ¬(¬a∧¬b) = a∨ b. This suggests that the relation between source

and target multiplications is a generalization of De Morgan’s identities for Boolean algebras.

We will use the following identities: for a ∈ P,

µa = γ ◦ τ ◦ (γ × γ)◦ (a× id) = γ ◦ τ ◦ (γa× id)◦ γ = γ ◦ τγa ◦ γ and

µa = γ ◦ τ ◦ (γ × γ)◦ (id×a) = γ ◦ τ ◦ (id× γa)◦ γ = γ ◦ τγa ◦ γ .
(2)

2.3 Solving inequalities in preordered heaps

For a,b ∈ P, we are interested in the conditions under which we can find the largest x ∈ P such that

µ(a,x) ≤ b. The following theorem says that source multiplication in a preordered heap is “invertible.”

Theorem 2.2. Let (P,≤,µ ,γ) be a preordered heap and let τ be its target multiplication. Then for a ∈ P,

(µa,τ
γa) and (µa,τγa) are adjoint pairs.

Proof. Let b,c ∈ P with b ≤ τγa(c). We have µa(b) ≤ (µa ◦ τγa)(c) = (µa ◦ γ ◦ µa ◦ γ)(c) ≤ c, by left

admissibility (by A2a).

Conversely, assume that µa(b) ≤ c. Then

µa ◦ γ2(b)≤ c (by A1)

γ ◦ (µa ◦ γ)(γb)≥ γ(c)

(µa ◦ γ)◦ (µa ◦ γ)(γb)≥ (µa ◦ γ)(c)

(γb)≥ (µa ◦ γ)(c) (by A2b)

b ≤ (γ ◦µa ◦ γ)(c) = τγa(c). (by A1)

The adjointness of (µa,τγa) follows from a similar reasoning.

The fact that (µa,τ
γa) is an adjoint pair means that left source multiplication by a is “inverted” by

right target multiplication by γa, i.e.,

µ(a,x) ≤ b if and only if x ≤ τ(b,γa).

In other words, the largest solution of µ(a,x) ≤ b is x = τ(b,γa). Using the familiar multiplicative

notation for source multiplication, and (·)/a = τγa for “right division by a,” we have shown that the

largest solution of ax ≤ b is x = b/a. Calling a\(·) = τγa “left division by a,” we have shown that the

largest solution of xa ≤ b is x = a\b. These two divisions are related as follows:

Corollary 2.3 (Isolating the unknown). Let P be a preordered heap and a,x,y ∈ P. Then y ≤ a/x if and

only if x ≤ y\a.
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Proof. By two applications of Theorem 2.2, we obtain y ≤ a/x = τγx(a)⇔ µ(x,y) ≤ a ⇔ x ≤ τγy(a) =
y\a.

Theorem 2.2 is our main result. It shows that preordered heaps have sufficient structure for the

computation of quotients. When we prove that a structure is a preordered heap, this theorem immediately

yields the existence of an adjoint for multiplication, and its closed form.

In general, to show that a theory is a preordered heap, we must identify its involution and source

multiplication. Then we have to verify the admissibility conditions. How difficult is that? Our original

problem was identifying the largest x satisfying µ(a,x) ≤ b for some notion of multiplication µ , invo-

lution γ , and preorder ≤. As we discussed, left admissibility requires that τγab satisfies the inequality

µ(a,x) ≤ b, and right admissibility requires that τγab satisfies µ(x,a) ≤ b. What the theorem tells us

is that they are the largest solutions to µ(a,x) ≤ b and µ(x,a) ≤ b, respectively. In other words, the

theorem saves us the effort of making an argument for the optimality of the solutions.

Theorem 2.2 also suggests the following observation. For a given a ∈ P, we have adjoint pairs

(µa,τ
γa) and (µa,τγa). As we noticed, this means we can find the largest x such that µ(a,x) ≤ b or

µ(x,a) ≤ b. But it also means that we can find the smallest x such that b ≤ τ(a,x) or b ≤ τ(x,a). This is

because, µγa is the left adjoint of τa, and µγa is the left adjoint of τa. For all examples we will discuss,

source multiplication plays the role of the usual composition operation of the theory. But preordered

heaps make it clear that µ and τ are closely related operations. In fact, preordered heaps generalize De

Morgan’s identities (see section 2.2). Thus, while inequalities of the form µ(a,x) ≤ b are more common

in the literature, preordered heaps indicate that we can also solve inequalities of the form b ≤ τ(a,x). As

we will see, for some theories there is clear understanding of how target multiplication can be used, but

for others its use is unknown.

Example. In the case of a Boolean lattice B, what is the quotient? We showed in previous examples

that B is a preordered heap, and we identified its target multiplication. For a,b ∈ B, we can write an

expression of the form µ(a,x) ≤ b. By Theorem 2.2, we know the largest x that satisfies this expression

is τγab = τ(b,¬a) = b∨¬a, i.e., the quotient is the implication a → b.

2.4 Preordered heaps with identity

In the definition of a preordered heap, we did not assume that source multiplication has an identity. Here

we consider briefly what happens when it does. Multiplicative identities are common, and in fact, there

exists a multiplicative identity in all compositional theories we know.

Suppose P is a preordered heap and e ∈ P is a left identity for source multiplication, i.e., µe ≃ id.

By Theorem 2.2, (id,τγe) is an adjoint pair. The right adjoint of id is id. Since adjoints are unique up

to isomorphism, τγe ≃ id. This means that γe is a right identity element for τ . Moreover, in view of (2),

τγe ≃ id. By Theorem 2.2, (µe, id) is an adjoint pair. By the same reasoning just followed, we must have

µe ≃ id. We record this result:

Corollary 2.4. Let (P,≤,µ ,γ) be a preordered heap. If e ∈ P is a left (or right) identity for source

multiplication, it is a double-sided identity for source multiplication, and γe is a double-sided identity

for target multiplication. Analogously, if e ∈ P is a left (or right) identity for target multiplication, it is a

double-sided identity for target multiplication, and γe is a double-sided identity for source multiplication.

Example. Let B be a Boolean lattice. The top element of the lattice, usually denoted 1, is an identity

for source multiplication: 1∧a = a for all a ∈ B. The previous corollary tells us that ¬1 = 0 is a double

sided identity for target multiplication, which we identified to be disjunction.



Í. Íncer Romeo, L. Mangeruca, T. Villa, and A. Sangiovanni-Vincentelli 223

3 Additional instances of preordered heaps

As described in Section 2, as soon as we verify that a theory is a preordered heap, we know how to

compute quotients for that theory. Here we show that assume-guarantee (AG) contracts and interface

automata are preordered heaps. In both cases, we first define the algebraic aspects of the theory, and

then we proceed to show that it is a preordered heap, which involves verifying the axioms of Definition

2.1. After we do this, we invoke Theorem 2.2 to express its quotient in closed-form. The literature for

both theories is large, and we only discuss them algebraically. To learn about their uses and the design

methodologies based on them, we suggest [5] and [15].

3.1 AG contracts

Assume-guarantee contracts are an algebra and a methodology to support compositional system design

and analysis. Fix once and for all a set B whose elements we call behaviors. Subsets of B are referred to

as behavioral properties or trace properties. An AG contract is a pair of properties C = (A,G) satisfying

A ∪G = B. Contracts are used as specifications: a component adheres to contract C if it meets the

guarantees G when instantiated in an environment that satisfies the assumptions A. The specific form of

these properties is not our concern now; we are only interested in the algebraic definitions. The algebra

of assume-guarantee contracts was introduced by R. Negulescu [32] (there called process spaces) to deal

with assume-guarantee reasoning for concurrent programs. The algebra was reintroduced, together with

a methodology for system design, by Benveniste et al. [4] to apply assume-guarantee reasoning to the

design and analysis of any engineered system. Now we describe the operations of this algebra.

For C′ = (A′,G′) another contract, the partial order of AG contracts, called refinement, is given

by C ≤ C′ when G ⊆ G′ and A ⊇ A′. The involution of AG contracts, called reciprocal, is given by

γC = (G,A). This operation is clearly antitone and meets axiom A1. Source multiplication is contract

composition: µ(C,C′) = (A∩A′∪¬(G∩G′),G∩G′). This operation yields the tightest contract obeyed

by the composition of two design elements, each obeying contracts C and C′, respectively. Composition

is monotonic in the refinement order of AG contracts. We need to verify the admissibility conditions.

Since source multiplication for AG contracts is commutative, we verify (1):

(µC ◦ γ)2C′ = (µC ◦ γ)◦ (µC)(G
′,A′) = µC(G∩A′,A∩G′∪¬(G∩A′))

= (A∩G∩A′∪¬G∪¬(A∩G′∪¬A′),G∩ (A∩G′∪¬A′))

= (A∩A′∪¬G∪¬A∩A′∪¬G′∩A′,G∩ (A∩G′∪¬A′))

= (A′∪¬G,G∩ (A∩G′∪¬A′))≤ (A′,G′) =C′,

where in the last step we used the fact that ¬A′ ⊆ G′, which follows from A′∪G′ = B. We conclude that

AG contracts satisfy the admissibility conditions, and thus have preordered heap structure.

What is target multiplication for AG contracts? From its definition, we have τ(C,C′) = γ ◦ µ ◦
(γC,γC′) = γ ◦µ ((G,A),(G′,A′)) = (A∩A′,G∩G′∪¬(A∩A′)). This is an operation on contracts called

merging. One of the main objectives of the theory of assume-guarantee contracts is to deal with multiple

viewpoints, i.e., a multiplicity of design concerns, each having a contract representing the specification

for that concern (e.g., functionality, timing, etc.). In [34], it is argued that the operation of merging is

used to bring multiple viewpoint specifications into a single contract object.

Since AG contracts are preordered heaps, we get their quotient formulas from Theorem 2.2. The

adjoint of µC′ is τγC′
= γ ◦ µC′

◦ γ . Applying this to C yields τγC′
(C) = γ ◦ µC′

(G,A) = (A∩G′,G∩
A′∪¬(A∩G′)). This closed-form expression for the quotient of AG contracts was first reported in [37].
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Also by Theorem 2.2, the left adjoint of merging by a fixed contract C′ is the operation µ(C,γC′) =
µ ((A,G),(G′,A′)) = (A∩G′∪¬(G∩A′),G∩A′). This operation was recently introduced under the

name of separation in [34].

3.2 Interface automata

We show that Interface Automata as introduced in [15] have preordered heap structure. To achieve this

result, we first provide the relevant definitions for interface automata. All definitions match those of

[15], except for our definition of alternating simulation for interface automata.

An interface automaton P = 〈VP,V
init
P ,A I

P ,A
O

P ,A H
P ,TP〉 consists of the following elements:

• VP is a set of states.

• V init
P ⊆VP is a set of initial states. Following [15], we require that V init

P contains at most one state.

• A I
P ,A

O
P , and A H

P are mutually disjoint sets of input, output, and internal actions. We denote by

AP = A I
P ∪A O

P ∪A H
P the set of all actions.

• TP ⊆VP ×AP×VP is a set of steps.

Following [15], if a ∈ A I
P (resp. a ∈ A O

P , a ∈ A H
P ), then (v,a,v′) is called an input (resp. output,

internal) step. We denote by T I
P (resp. T O

P , T H
P ) the set of input (resp. output, internal) steps. An

action a ∈ AP is enabled at a state v ∈VP if there is a step (v,a,v′) ∈ TP for some v′ ∈VP. We indicate

by A I
P(v),A

O
P (v),A H

P (v) the subsets of input, output, and internal actions that are enabled at the state v,

and we let AP(v) = A I
P(v)∪A O

P (v)∪A H
P (v).

Definition 3.1. If P and Q are interface automata, let shared(P,Q) = (A I
P ∩A O

Q )∪ (A O
P ∩A I

Q). The

product P ⊗Q is the interface automaton with the following constituents: VP⊗Q = VP ×VQ, V init
P⊗Q =

V init
P ×V init

Q , A I
P⊗Q = (A I

P ∪A I
Q)− shared(P,Q), A O

P⊗Q = (A O
P ∪A O

Q )− shared(P,Q), A H
P⊗Q = A H

P ∪

A H
Q ∪ shared(P,Q)− (A I

P⊗Q∪A O
P⊗Q), and

TP⊗Q =
{

((v,u),a,(v′ ,u))
∣

∣ (v,a,v′) ∈ TP ∧a ∈ AP −AQ∧u ∈VQ

}

∪
{

((v,u),a,(v,u′))
∣

∣ (u,a,u′) ∈ TQ ∧a ∈ AQ −AP ∧ v ∈VP

}

∪
{

((v,u),a,(v′ ,u′))
∣

∣ (v,a,v′) ∈ TP ∧ (u,a,u′) ∈ TQ ∧a ∈ AP ∩AQ

}

.

We call illegal those states of the product in which one of the interface automata can take a step

through a shared action, but the other can’t. These states are removed from the product in the defini-

tion of composition of interface automata. Given two composable interface automata P and Q, the set

Illegal(P,Q) ⊆ VP ×VQ of illegal states of P⊗Q is given by

Illegal(P,Q) =







(v,u) ∈VP ×VQ

∣

∣

∣

∣

∣

∣

∃a ∈ shared(P,Q).





a ∈ A O
P (v)∧a /∈ A I

Q(u)

∨
a ∈ A O

Q (u)∧a /∈ A I
P(v)











.

An environment for an interface automaton R is an interface automaton E such that E is composable

with R, E is nonempty, A I
E = A O

R , and Illegal(R,E) = /0. A legal environment for the pair (P,Q) is an

environment for P⊗Q such that no state in Illegal(P,Q)×VE is reachable in (P⊗Q)⊗E . We say that

a pair (v,u) ∈ VP ×VQ of states is compatible if there is an environment E for P⊗Q such that no state

in Illegal(P,Q)×VE is reachable in (P⊗Q)⊗E from the state {(v,u)}×V init
E . Two interface automata

P and Q are compatible if the initial state (v,u) ∈V init
P ×V init

Q is compatible. We write Cmp(P,Q) for the

set of compatible states of P⊗Q. With these notions, we can define parallel composition for interface

automata.
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Given two compatible interface automata P and Q, the composition P ‖ Q is an interface automaton

with the same action sets as P ⊗Q. The states are VP‖Q = Cmp(P,Q); the initial states are V init
P‖Q

=

V init
P⊗Q ∩Cmp(P,Q); and the steps are TP‖Q = TP⊗Q ∩ (Cmp(P,Q)×AP‖Q×Cmp(P,Q)).

Let v∈VP, the set IntReachP(v) is the smallest set U ⊆VP such that v∈U and if u∈U and (u,a,u′)∈
T H

P , then u′ ∈U . Moreover, we let

ExtEnO
P (v) =

⋃

u∈IntReach(v)

A
O

P (u) and ExtEnI
P(v) =

⋃

u∈IntReach(v)

A
I

P(u)

be the sets of externally enabled output and input actions, respectively, at v. And for all externally enabled

input and output actions a ∈ ExtEnI
P(v)∪ExtEnO

P (v), we let

ExtDestP(v,a) =
{

u′
∣

∣ ∃(u,a,u′) ∈ TP. u ∈ IntReachP(v)
}

.

With these notions, we can define an alternating simulation between interface automata.

Definition 3.2. Consider two interface automata P and Q. A binary relation �⊆VQ ×VP is an alternat-

ing simulation from Q to P if for all states u ∈ VQ and v ∈ VP such that u � v, the following conditions

hold:

(a) ExtEnI
P(v)⊆ ExtEn

I
Q(u), ExtEn

O
Q(u)⊆ ExtEn

O
P (v).

(b) For all actions a ∈ ExtEn
O
Q(u) and all states u′ ∈ ExtDestQ(u,a), there is a state v′ ∈ ExtDestP(v,a)

such that u′ � v′ and for all actions a ∈ ExtEn
I
P(v) and all states v′ ∈ ExtDestP(v,a), there is a state

u′ ∈ ExtDestQ(u,a) such that u′ � v′.

Now we use the notion of alternating simulation to establish a preorder for interface automata: the

interface automaton Q refines the interface automaton P, written Q � P, if A I
P ⊆ A I

Q, A O
P ⊇ A O

Q , and

there is an alternating simulation � from Q to P, a state v ∈V init
P , and a state u ∈V init

Q such that u � v.

Let P = 〈VP,V
init

P ,AI
P,A

O
P ,A

H
P ,TP〉 be an interface automaton. The mirror of P, denoted P⊤, is given

by P⊤ = 〈VP,V
init

P ,AO
P ,A

I
P,A

H
P ,TP〉. The mirror operation is clearly an involution, i.e.,

(

P⊤
)⊤

= P. Let

the source multiplication µ be the parallel composition of interface automata, γ be the mirror operation,

and let the preorder be refinement. We state the main claim of this section:

Proposition 3.3. A theory of interface automata is a preordered heap.

Since interface automata have preordered heap structure, for given interface automata P and Q, The-

orem 2.2 enables us to find largest solutions R for equations of the form µ(Q,R)≤ P. The quotient for

interface automata was first reported in [6]. Now that we know interface automata have preordered heap

structure, we can ask: what is target multiplication for interface automata? The operation is given by

τ(P,Q) =
(

P⊤ ‖ Q⊤
)⊤

. We propose to call this operation merging in analogy to the case of AG contracts.

Similarly, by Theorem 2.2, merging by fixed Q, τQ, has a left adjoint given by µγQ(P) = P ‖ Q⊤. For

the same reason, we propose to call this binary operation separation. In AG contracts, merging and sep-

aration are used to handle multiple viewpoints in a design. To the best of our understanding, the notion

of handling multiple design viewpoints has not been discussed for interface automata. Maintaining the

analogy to AG contracts, we suspect that merging and separation here defined provide interface automata

the ability to handle these multiple viewpoints. Exploring this idea is material for future work.

4 Sieved heaps

Some theories in computer science require manipulating objects which are not defined over the same

domain. For example, consider a language L1 defined over an alphabet Σ1. Let Σ2 be another alphabet
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for which L2 is a language. The powerset of a set is a Boolean lattice, so we have two preordered heaps

PΣ1
= 2Σ∗

1 and PΣ2
= 2Σ∗

2 whose source multiplications and involutions are intersection and negation (∗
is the Kleene star—we will define operations carefully in the section on languages). With the theory of

preordered heaps, we know how to solve inequalities for PΣ1
and for PΣ2

. Suppose we define an operation

that allows us to compose L1 ∈ PΣ1
with L2 ∈ PΣ2

. How do we solve inequalities involving L1 and L2

then? These languages belong to different preordered heaps. It is natural to define such an operation

by mapping L1 and L2 to a common preordered heap, which by definition, has its own notion of source

multiplication. We need a notion of mapping between preordered heaps:

Definition 4.1. Let (P,≤,µ ,γ) and (P′,≤′,µ ′,γ ′) be two preordered heaps. A preordered heap homo-

morphism f : P → P′ is an order-preserving map which commutes with the source multiplications and

involutions, i.e.,
P×P P′×P′

P P′

f× f

µ µ ′

f

and
P P′

P P′

f

γ γ ′

f

commute.

Preordered heaps PΣ1
and PΣ2

are indexed by alphabets. The common preordered heap where L1 and

L2 can be mapped is determined by Σ1 and Σ2. As we will see in the next section, one option is to say

that they generate the alphabet Σc = Σ1 ∪Σ2, and we can define maps ι1 : PΣ1
→ PΣc

and ι2 : PΣ2
→ PΣc

that embed languages over Σ1 and Σ2 to those defined under Σc. This observation tells us that we can

use a structure S in order to index preordered heaps; this structure must have a binary operation defined

in it. This operation will fulfill the role of identifying the alphabets where two languages can meet.

Call this structure S, and let · be its binary operation. If we have two languages defined over the same

alphabet, we should not need to move to another alphabet to compute the source multiplication of the

two languages; thus, the binary operation of S should be idempotent. We will also require the operation

to be commutative since it makes no difference whether we go to the language generated by Σ1 and Σ2 or

to that generated by Σ2 and Σ1. A similar reasoning leads us to require associativity. Thus, S is endowed

with an associative, commutative, idempotent binary operation, which means it is a semilattice. We

make the choice to interpret it as an upper semi-lattice because we have the intuition that the languages

generated by two smaller languages should be larger than any of the two, but this interpretation does not

impose any algebraic limitations: an upper semilattice can be turned into a lower semilattice simply by

flipping it upside-down.

We introduce the notion of a sieved, preordered heap (sieved heap, for short) that allows us to move

objects between different domains of definition or different levels of abstraction. A sieved heap is a

collection of preordered heaps indexed by an upper semilattice S together with mappings between the

preordered heaps. We call these mappings concretizations. An upper semilattice can be interpreted as

a partial order: for a,b ∈ S, we say that a ≤ ab. Thus, the shortest definition for a sieved heap is that

it is a functor from the preorder category S to PreHeap, the preordered heap category, whose objects

are preordered heaps and whose arrows are preordered heap homomorphisms. We will give a longer

definition. But first, why the adjective sieved? A sieved heap consists of a collection of preordered heaps

and maps between them. We interpret these preordered heaps as structures containing varying amounts

of detail about an object. This varying granularity motivated the name. This is the definition of this

composite structure:

Definition 4.2. Let S be a semilattice. Let {(Px,≤x,µx,γx)}x∈S be a collection of preordered heaps such

that for every x,y,z ∈ S we have a unique preordered heap homomorphism ι : Px → Pxy referred to as

a concretization and making
Pxy

Px Pxyz

ι ′
ι

ι ′′
commute. We require the concretization ι : Px → Px to be the

identity. Let P =⊕x∈SPx, where ⊕ stands for disjoint union. We call (P,≤,µ ,γ) an S-sieved heap, where
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µ : P×P → P is an operation called source multiplication, and γ : P → P is called involution. Let a ∈ Px

and b ∈ Py, and let ιx : Px → Pxy and ιy : Py → Pxy be concretizations. These operations are given by

µ(a,b) = µxy (ιx(a), ιy(b)) and γ(a) = γx(a).

Moreover, we say that a≤ b if and only if there exists z∈ S and concretizations ι : Px →Pz and ι ′ : Py → Pz

such that ι(a)≤z ι ′(b), where ≤z is the preorder of Pz.

Target multiplication τ for P is defined in a similar way: τ(a,b) = τxy (ιx(a), ιy(b)), where τxy is the

target multiplication of the preordered heap Pxy.

4.1 Sieved heaps are preordered heaps

Now we show that a sieved heap is itself a preordered heap. To do this, we must show that the relation

≤ over sieved heaps is a preorder, that source multiplication defined for a sieved heap is monotonic, that

its involution is antitone, and that it meets the admissibility conditions. The following statements show

that sieved heaps have these properties.

Lemma 4.3. The relation ≤ on an S-sieved heap P is a preorder.

Proof. Reflexivity. Let a ∈ Px. Let ι be the concretization ι : Px → Px. Then ιa ≤x ιa because ≤x is a

preorder in Px; this means that a ≤ a in P.

Transitivity. Let b ∈ Py and c ∈ Pz and suppose that a ≤ b and b ≤ c. Then there exist v,w ∈ S such

that ιxa ≤v ιyb and ι ′yb ≤w ιzc, where the diagram
Pv Pvw Pw

Px Py Pz

ιv ιw

ιx
ιy ι ′y

ιz shows the relevant concretization

maps (these diagrams commute per Definition 4.2). We obtain immediately ιv ◦ ιxa ≤vw ιv ◦ ιyb and

ιw ◦ ι ′yb ≤vw ιw ◦ ιzc. From the diagram, ιv ◦ ιy = ιw ◦ ι ′y, which means that ιv ◦ ιxa ≤vw ιw ◦ ιzc, which

means that a ≤ c.

Lemma 4.4. Source multiplication on P is monotonic in both arguments.

Proof. Let a,b,c ∈ P with a ≤ c. Suppose that a ∈ Px, b ∈ Py, and c ∈ Pz. Since a ≤ c, there exist u ∈ S

such that ιxa ≤u ιzc for concretizations ιx : Px → Pu and ιz : Pz → Pu. Note that this means there exist

u′,u′′ ∈ S such that u = xu′ and u = zu′′. But this implies that uy = xyu′ and uy = yzu′′. Thus, there exist

concretizations ιxy : Pxy → Puy and ιyz : Pyz → Puy, and

Py

Pxy Puy Pyz

Px Pu Pz

ι ′y
ιy

ι ′′y

ιxy ιyz

ι ′x
ιx

ιu ι ′zιz

(3)

commutes. Since a ≤ c, we have

µuy (ιu ◦ ιxa, ιyb)≤uy µuy (ιu ◦ ιzc, ιyb) . (4)

By the commutativity of the diagram, ιy = ιxy ◦ ι ′y = ιyz ◦ ι ′′y and ιu ◦ ιx = ιxy ◦ ι ′x and ιu ◦ ιz = ιyz ◦ ι ′z.

Using these identities, we can rewrite (4) as

µuy

(

ιxy ◦ ι ′xa, ιxy ◦ ι ′yb
)

≤uy µuy

(

ιyz ◦ ι ′zc, ιyz ◦ ι ′′y b
)

, which implies that

ιxy ◦µxy

(

ι ′xa, ι ′yb
)

≤uy ιyz ◦µyz

(

ι ′zc, ι
′′
y b

)

and thus ιxy ◦µ (a,b) ≤uy ιyz ◦µ (c,b) .

This shows that µ (a,b)≤ µ (c,b). Monotonicity in the second argument is proved in the same way.
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Theorem 4.5. An S-sieved heap P is a preordered heap.

Proof. By lemma 4.3, we know that (P,≤) is a preorder. By lemma 4.4, we know that source multipli-

cation for P is monotonic. From the definition of involution γ for P, it is immediate that this operation is

antitone and that γ2 = id. We must show the admissibility conditions. Let a∈Px and b∈Py. Using the no-

tation of (3), we have µ(a,γ ◦µ(γb,a)) = µ(a,γ ◦µxy(ι
′
y ◦ γb, ι ′xa)) = µxy(ι

′
xa,γ ◦µxy(γ ◦ ι ′yb, ι ′xa))≤ ι ′yb,

where we used the left admissibility of the preordered heap Pxy. But this means that µ(a,γ ◦µ(γb,a))≤ b.

We conclude that P meets the left admissibility condition. Applying the same procedure tells us that P

also has right admissibility. Thus, P is a preordered heap.

Now that we know that sieved heaps are preordered heaps, we can compute quotients in these struc-

tures. We will now consider the solution of inequalities over languages as an application of sieved heaps.

5 Sieved heaps and language inequalities

Language inequalities arise as the formalization of the problem of synthesizing an unknown component

in hardware and software systems. In this section, we provide preliminaries on languages and discuss

their properties and operations. A fuller treatment of language properties can be found in [42, 40]. Our

objective is to show that commonly studied language structures are sieved heaps, which allows us to

axiomatically find their quotients per the results of Section 4.

5.1 Operations on languages

An alphabet is a finite set of symbols. The set of all finite strings over a fixed alphabet X is denoted by

X⋆. X⋆ includes the empty string ε . A subset L ⊆ X⋆ is called a language over alphabet X . [22] is a

standard reference on this subject.

A substitution f is a mapping of an alphabet Σ to subsets of ∆⋆ for some alphabet ∆. The substitution

f is extended to strings by setting f (ε) = {ε} and f (xa) = f (x) f (a). The following are well-studied

language operations.

• Given a language L over alphabet X and an alphabet V , consider the substitution l : X → 2(X×V )⋆

defined as l(x) = {(x,v) | v ∈V} . Then the language L↑V = ∪α∈Ll(α) over alphabet X ×V is the

lifting of language L to alphabet V .

• Given a language L over alphabet X and an alphabet V , consider the mapping e : X → 2(X∪V )⋆ defined

as e(x) = {αxβ | α ,β ∈ (V −X)⋆} . Then the language L⇑V = ∪α∈Le(α) over alphabet X ∪V is the

expansion of language L to alphabet V , i.e., words in L⇑V are obtained from those in L by inserting any-

where in them words from (V −X)⋆. Notice that e is not a substitution and that e(ε) = {α | α ∈V ⋆}.

The following proposition states that language liftings and expansions meet the properties of concretiza-

tion maps of a sieved heap. These results will be used in the next section dealing with inequalities over

languages.

Proposition 5.1. Liftings and expansions are order-preserving and commute with intersection and com-

plementation.
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5.2 Composition of languages and inequalities involving languages

Consider two systems A and B with associated languages L(A) and L(B). The systems communicate with

each other by a channel U and with the environment by channels I and O. The following two well-studied

operators describe the external behavior of the composition of L(A) and L(B).

Definition 5.2. Given the disjoint alphabets I,U,O, a language L1 over I ×U, and a language L2 over

U ×O, the synchronous composition of languages L1 and L2 is the language (L1)↑O ∩ (L2)↑I , denoted

by L1 •L2, defined over I ×U ×O.

Definition 5.3. Given the disjoint alphabets I,U,O, a language L1 over I ∪U, and a language L2 over

U ∪O, the parallel composition of languages L1 and L2 is the language (L1)⇑O ∩ (L2)⇑I , denoted by

L1 ⋄L2, defined over I∪U ∪O.

Example. Let L1 = {a,aa} be a language of the alphabet Σ1 = {a,b}, and Σ2 = {c,d} be another

alphabet for which L2 = {c} is a language. Then L1 •L2 = {(a,c)} and L1 ⋄L2 = {ac,ca,caa,aca,aac}.

Synchronous composition abstracts the parallel execution of modules in lock step, assuming a global

clock and instant communication by a broadcasting mechanism, modeling the product semantics com-

mon in the hardware community. In asynchronous composition modules execute independently at dif-

ferent speeds assuming clocks which progress at arbitrary rates relative to one another, modeling the

interleaving semantics common in the software community. A comparison can be found in [26]. Now

we show that we can interpret the above products as the source multiplication of a sieved heap. For each

product, we first need to identify a suitable indexing semilattice. Then we need to build the appropriate

preordered heaps and their maps.

5.2.1 Synchronous equations

Semilattice. Suppose we have a disjoint family F = {Σi}1≤i≤n of alphabets for some positive integer n,

and let S = 2F . Then S is a semilattice under the operation of set union, i.e., if x,y ∈ S, we have xy = x∪y.

Preordered heaps. For any x ∈ S, let |x| be the cardinality of x. There exist natural numbers k1, . . . ,k|x|
such that x = {Σk j

}1≤ j≤|x| ⊆ F and 1 ≤ ki < k j ≤ n for i < j. We map each x to a preordered heap

as follows. We define the alphabet over x as α(x) = Σk1
× ·· · × Σk|x| , and we set Px = 2α(x)∗ . Source

multiplication µx for Px is intersection, and involution γx is complementation. (Px,≤x,µx,γx) is a Boolean

lattice, thus a preordered heap, as shown in Section 2.

Concretizations. For x,y ∈ S, Pxy is clearly a preordered heap because xy ∈ S. We also define the

preordered heap Px,y = 2Σ∗
x,y for Σx,y = α(x)×α(y−x) with source multiplication equal to set intersection

and involution equal to complementation. Note that the only difference between Pxy and Px,y is the order

in which the alphabets Σi appear in each: Pxy contains all sets of finite strings over the alphabet α(xy), and

Px,y contains all sets of finite strings over the alphabet α(x)×α(y−x). Thus, Pxy and Px,y are isomorphic

as sets. Let β : Px,y →Pxy be this isomorphism, which is easily seen to be a preordered heap isomorphism.

This allows us to define the concretization ιx as follows:

Pxy

Px Px,y

β
(·)↑α(y−x)

ιx .

From Proposition 5.1, we know that (·) ↑α(y−x) is a preordered heap map. Thus, we have an S-sieved

heap {(Px,≤x,µx,γx)}x∈S. Since sieved heaps are preordered heaps (Theorem 4.5), for A ∈ Px and B ∈ Py,

an equation of the form A• z ≤ B has the largest solution Z ∈ Pxy with

Z = ¬
(

¬β ′
(

B ↑α(x−y)

)

∩ β ′′
(

A ↑α(y−x)

))

,
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where β ′ : Py,x → Pxy and β ′′ : Px,y → Pxy are extensions of the alphabet permutations to languages, as

described above.

Example. Let I, U , and O be disjoint alphabets. Then S consists of all subsets of {I,O,U}. Let i = {I},

u = {U}, and o = {O}. The preordered heap Piu consists of all languages over the alphabet I ×U .

Puo consists of all languages over U × O. If L1 ∈ Piu, the concretization ι : Piu → piuo maps L1 to a

language over I ×U ×O. Observe that the order in which each alphabet appears is important and set

from the beginning; this eliminates any potential ambiguities with the ordering of the alphabets (e.g., is

it the alphabet I ×U or U × I?). By definition, this concretization map is (·) ↑O. In the same way, the

concretization ι ′ : Puo → piuo is β ◦ (·) ↑I , where β : Puo,i → Piuo permutes the symbols of the language

so that they appear in the order (a,b,c) with a ∈ I, b ∈ U , and c ∈ O. Thus, source multiplication is

µ(L1,L2) = L1 ↑O ∩β (L2 ↑I), which is the synchronous product.

5.2.2 Asynchronous equations

Now we form a semilattice S whose elements are abstract sets and whose operation is set union. Let

x ∈ S, and define Px = 2x∗ . For y ∈ S, the concretization Px Pxy
ι

is ι = (·) ⇑y−x. Proposition 5.1

shows that ι is a preordered heap map. Thus, we have a sieved heap {(Px,≤x,µx,γx)}x∈S.

Since sieved heaps are preordered heaps (Theorem 4.5), we are in a position to solve language equa-

tions under asynchronous composition. Let x,y ∈ S, A ∈ Px and B ∈ Py. The largest solution to the

equation A⋄ z ≤ B yields Z ∈ Pxy with Z = ¬(¬B ⇑x−y ∩ A ⇑y−x).

Example. As before, let I, U , and O be disjoint alphabets, and let I,U,O ∈ S, where S is a semilattice

with the operation of set union. The preordered heap PIU consists of all languages over I ∪U . Simi-

larly, the preordered heap PUO consists of all languages over U ∪O. The embedding ι : PIU → PIUO is

simply (·) ⇑O, and the embedding ι ′ : PUO → PIUO is (·) ⇑I . Thus, for L1 ∈ PIU and L2 ∈ PUO, source

multiplication is µ(L1,L2) = L1 ⇑O ∩L2 ⇑I , which is the asynchronous product.

6 Conclusions

The comparison of the closed form computation of quotients ranging from language equations to AG

contracts suggested a new algebraic structure, called preordered heap, endowed with the axioms of

preorders, together with a monotonic multiplication and an involution. We showed that an admissibility

condition allows to solve equations over preordered heaps, and we gave the closed form of the solution.

We showed that various theories qualify as preordered heaps and therefore admit such explicit solution.

In particular, we showed that the conditions for being preordered heaps hold for Boolean lattices, assume-

guarantee contracts, and for interface automata: in all cases we were able to derive axiomatically the

quotients, which had been previously obtained by specific analysis of each theory. Finally we defined

equations over sieved heaps to handle components defined over multiple alphabets, and rederived as

special cases the solution of language equations known in the literature.
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Í. Íncer Romeo, L. Mangeruca, T. Villa, and A. Sangiovanni-Vincentelli 231

References

[1] A. Aziz, F. Balarin, R.K. Brayton & A. L. Sangiovanni-Vincentelli (2000): Sequential synthesis using S1S.

IEEE Transactions on Computer-Aided Design 19(10), pp. 1149–1162, doi:10.1109/43.875301.

[2] G. Barrett & S. Lafortune (1998): Bisimulation, the Supervisory Control Problem and Strong Model Matching

for Finite State Machines. Discrete Event Dynamic Systems: Theory & Applications 8(4), pp. 377–429,

doi:10.1023/A:1008301317459.

[3] Nikola Beneš, Benoı̂t Delahaye, Uli Fahrenberg, Jan Křetı́nský & Axel Legay (2013): Hennessy-Milner

Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory. In Pedro R. D’Argenio

& Hernán Melgratti, editors: CONCUR 2013 – Concurrency Theory, Springer Berlin Heidelberg, Berlin,

Heidelberg, pp. 76–90, doi:10.1007/978-3-642-40184-8 7.

[4] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone & C. Sofronis (2007): Multiple Viewpoint

Contract-Based Specification and Design. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf &

Willem-Paul de Roever, editors: Formal Methods for Components and Objects, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 200–225, doi:10.1007/978-3-540-92188-2 9.

[5] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. L. Sangiovanni-

Vincentelli, W. Damm, T. A. Henzinger & K. G. Larsen (2018): Contracts for System Design. Foundations

and Trends R©in Electronic Design Automation 12(2-3), pp. 124–400, doi:10.1561/1000000053.

[6] P. Bhaduri & S. Ramesh (2008): Interface synthesis and protocol conversion. Formal Asp. Comput. 20(2),

pp. 205–224, doi:10.1007/s00165-007-0045-4.

[7] G. Bochmann (2013): Using logic to solve the submodule construction problem. Discrete Event Dynamic

Systems 23(1), pp. 27–59, doi:10.1007/s10626-011-0127-6.

[8] Patricia Bouyer, Franck Cassez & François Laroussinie (2011): Timed Modal Logics for Real-Time Systems

- Specification, Verification and Control. Journal of Logic, Language and Information 20(2), pp. 169–203,

doi:10.1007/s10849-010-9127-4.

[9] J.R. Burch, D. Dill, E. Wolf & G. DeMicheli (1993): Modelling hierarchical combinational cir-

cuits. In: The Proceedings of the International Conference on Computer-Aided Design, pp. 612–617,

doi:10.1109/ICCAD.1993.580149.

[10] Franck Cassez & François Laroussinie (2000): Model-Checking for Hybrid Systems by Quotienting and

Constraints Solving. In E. Allen Emerson & Aravinda Prasad Sistla, editors: Computer Aided Verification,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 373–388, doi:10.1007/10722167 29.

[11] G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, R. K. Brayton & A. Mishchenko (2015): Automated

Synthesis of Protocol Converters with BALM-II. In D. Bianculli, R. Calinescu & B. Rumpe, editors: Software

Engineering and Formal Methods. SEFM 2015 Collocated Workshops: ATSE, HOFM, MoKMaSD, and

VERY*SCART. York, UK, September 7-8, 2015, pp. 281–296, doi:10.1007/978-3-662-49224-6 23.

[12] E. Cerny & M. Marin (1977): An approach to unified methodology of combinational switching circuits. IEEE

Transactions on Computers vol. C-26(8), pp. 745–756, doi:10.1109/TC.1977.1674912.

[13] W. Chen, J. Udding & T. Verhoeff (1989): Networks of communicating processes and their (de-)composition.

In J.L.A. van de Snepscheut, editor: Mathematics of Program Construction, Lecture Notes in Computer

Science 375, Springer Berlin Heidelberg, pp. 174–196, doi:10.1007/3-540-51305-1 10.

[14] L. De Alfaro (2003): Game Models for Open Systems. In N. Dershowitz, editor: Verifica-

tion: Theory and Practice, Lecture Notes in Computer Science 2772, Springer Verlag, pp. 269–289,

doi:10.1007/978-3-540-39910-0 12.

[15] L. De Alfaro & T. A. Henzinger (2001): Interface Automata. SIGSOFT Softw. Eng. Notes 26(5), pp. 109–

120, doi:10.1145/503209.503226.

[16] M. D. Di Benedetto, A. Sangiovanni-Vincentelli & T. Villa (2001): Model Matching for Finite State Ma-

chines. IEEE Transactions on Automatic Control 46(11), pp. 1726–1743, doi:10.1109/9.964683.

http://dx.doi.org/10.1109/43.875301
http://dx.doi.org/10.1023/A:1008301317459
http://dx.doi.org/10.1007/978-3-642-40184-8_7
http://dx.doi.org/10.1007/978-3-540-92188-2_9
http://dx.doi.org/10.1561/1000000053
http://dx.doi.org/10.1007/s00165-007-0045-4
http://dx.doi.org/10.1007/s10626-011-0127-6
http://dx.doi.org/10.1007/s10849-010-9127-4
http://dx.doi.org/10.1109/ICCAD.1993.580149
http://dx.doi.org/10.1007/10722167_29
http://dx.doi.org/10.1007/978-3-662-49224-6_23
http://dx.doi.org/10.1109/TC.1977.1674912
http://dx.doi.org/10.1007/3-540-51305-1_10
http://dx.doi.org/10.1007/978-3-540-39910-0_12
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1109/9.964683


232 The Quotient in Preorder Theories

[17] M. Fujita, Y. Matsunaga & M. Ciesielski (2001): Multi-Level Logic Optimization. In R. Brayton, S. Hassoun

& T. Sasao, editors: Logic Synthesis and Verification, Kluwer, pp. 29–63, doi:10.1007/978-1-4615-0817-5 2.

[18] P. Green (1986): Protocol Conversion. IEEE Transactions on Communications 34(3), pp. 257–268,

doi:10.1109/32.4655.

[19] E. Haghverdi & H. Ural (1999): Submodule construction from concurrent system specifications. Information

and Software Technology 41(8), pp. 499–506, doi:10.1016/S0950-5849(99)00014-2.

[20] H. Hallal, R. Negulescu & A. Petrenko (2000): Design of divergence-free protocol converters using supervi-

sory control techniques. In: 7th IEEE International Conference on Electronics, Circuits and Systems, ICECS

2000, 2, pp. 705–708, doi:10.1109/ICECS.2000.912975.

[21] S. Hassoun & T. Villa (2001): Optimization of Synchronous Circuits. In R. Brayton, S. Hassoun & T. Sasao,

editors: Logic Synthesis and Verification, Kluwer, pp. 225–253, doi:10.1007/978-1-4615-0817-5 2.

[22] J.E. Hopcroft, R. Motwani & J.D. Ullman (2001): Introduction to Automata Theory, Languages, and Com-

putation. Addison-Wesley Publishing Company, doi:10.1145/568438.568455.

[23] T. Kam, T. Villa, R. K. Brayton & A. L. Sangiovanni-Vincentelli (1997): Synthesis of FSMs: Functional

Optimization. Kluwer Academic Publishers, Boston, doi:10.1007/978-1-4757-2622-0.

[24] J. Kim & M.M. Newborn (1972): The simplification of sequential machines with input restrictions. IRE

Transactions on Electronic Computers, pp. 1440–1443, doi:10.1109/T-C.1972.223521.

[25] R. Kumar, S. Nelvagal & S.I. Marcus (1997): A discrete event systems approach for protocol conversion. Dis-

crete Event Dynamic Systems: Theory & Applications 7(3), pp. 295–315, doi:10.1023/A:1008258331497.

[26] R.P. Kurshan, M. Merritt, A. Orda & S.R. Sachs (1999): Modelling asynchrony with a synchronous model.

Formal Methods in System Design vol. 15(no. 3), pp. 175–199, doi:10.1007/3-540-60045-0 61.

[27] S. S. Lam (1988): Protocol Conversion. IEEE Trans. Softw. Eng. 14(3), pp. 353–362, doi:10.1109/32.4655.

[28] K.G. Larsen & L. Xinxin (1990): Equation solving using modal transition systems. In: Logic in

Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium on e, pp. 108–117,

doi:10.1109/LICS.1990.113738.

[29] N. Lynch & M. Tuttle (1989): An introduction to Input/Output automata. CWI-Quarterly 2(3), pp. 219–246,

doi:10.1.1.83.7751.

[30] W.C. Mallon, J.T. Tijmen & T. Verhoeff (1999): Analysis and Applications of the XDI Model. In:

International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 231–242,

doi:10.1109/ASYNC.1999.761537.

[31] P. Merlin & G. v. Bochmann (1983): On the Construction of Submodule Specifications and Com-

munication Protocols. ACM Transactions on Programming Languages and Systems 5(1), pp. 1–25,

doi:10.1145/357195.357196.

[32] R. Negulescu (2000): Process spaces. In C. Palamidessi, editor: Proceedings of CONCUR 2000,

11th International Conference on Concurrency Theory, LNCS 1877, Springer-Verlag, pp. 199–213,

doi:10.1007/3-540-44618-4 16.

[33] R. Passerone, L. De Alfaro, T. A. Henzinger & A. L. Sangiovanni-Vincentelli (2002): Convertibility verifi-

cation and converter synthesis: two faces of the same coin. In Lawrence T. Pileggi & Andreas Kuehlmann,

editors: ICCAD, ACM, pp. 132–139. Available at http://doi.acm.org/10.1145/774572.774592.
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