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Abstract—Sim-to-real Deep Reinforcement Learning (DRL)
has shown promising in subtasks automation for surgical robotic
systems, since it allows to safely perform all the trial and error
attempts needed to learn the optimal control policy. However, a
realistic simulation environment is essential to guarantee direct
transfer of the learnt policy from the simulated to the real
system. In this work, we introduce UnityFlexML, an open-source
framework providing support for soft bodies simulation and
state-of-the-art DRL methods. We demonstrate that a DRL agent
can be successfully trained within UnityFlexML to manipulate
deformable fat tissues for tumor exposure during a nephrectomy
procedure. Furthermore, we show that the learned policy can
be directly deployed on the da Vinci Research Kit, which is
able to execute the trajectories generated by the DRL agent.
The proposed framework represents an essential component
for the development of autonomous robotic systems, where
the interaction with the deformable anatomical environment is
involved.

Index Terms—Deformable simulation; Sim-to-real reinforce-
ment learning; Autonomous robotic surgery

I. INTRODUCTION

Recent trends in surgical robotics have focused on automa-
tion of some common subtasks that take place in many dif-
ferent procedures, to enhance precision and reduce surgeons’
workload. The main challenge to face during surgical task au-
tomation relies on accounting for the dynamic and deformable
behavior of the anatomical environment, which makes the
design of model-based control policies prone to failure [1].
Explicit modelling of the highly deformable anatomical envi-
ronments can be avoided using a Learning From Demonstra-
tions (LfD) approach, where the robot learns the task from a
set of expert demonstrations [2]. However, collecting a wide
enough dataset of example trajectories is often impractical
in real clinical settings. Deep Reinforcement Learning (DRL)
represents an alternative approach to the automation of robotic
tasks, without the need to design ad-hoc control strategies
[3]. The main drawback of model-free DRL is the huge
amount of trial and error attempts required to learn even simple
behaviors, which makes its direct application to real robotic
system unfeasible. To tackle this issue, autonomous agents can
be trained in a realistic simulation of the environment and
the learned policies can be later transferred to a real system
[4]. Sim-to-real DRL seems particularly promising for robotic
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Fig. 1. Sequence of action frames for task completion in UnityFlexML (top)
and real environment (bottom). From left to right: approach, grasp, retract.

surgery, since it allows to avoid all the limitations related
to the organization of clinical data collection. However, to
exploit sim-to-real methods in the surgical robotic field, it is
essential to have realistic and fast simulation environments
where to prototype and test the algorithms. In this work, we
present UnityFlexML, an open-source framework to train DRL
methods in simulated surgical environments which involve
deformable objects. We further show that UnityFlexML can
be successfully employed to train an end-to-end reinforcement
learning algorithm to accomplish a tissue manipulation task,
which consists in the retraction of perirenal fat tissue to
expose the underlying kidney tumor, during robotic assisted
partial nephrectomy (Fig.1). Eventually, we demonstrate that
the learned policy translates directly to the real surgical robotic
system thanks to the da Vinci Research Kit (dVRK).

II. METHOD
A. UnityFlexML

UnityFlexML' is based on Unity3D, a general and mod-
ular development platform which allows to easily edit and
customize the virtual scene. It relies on two main Unity plu-
gins: the Machine Learning Agents Toolkit (ML-Agents), for
training intelligent agents, and NVIDIA FleX, for modelling
soft objects. In particular, NVIDIA FleX provides a highly
optimized implementation of the Position Based Dynamics
(PBD) simulation approach, which has already proved able
to model soft tissue deformations both realistically and fast
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[5]. In addition, UnityFlexML implements the simulation of
dVRK slave arms, called Patient Side Manipulators (PSMs).
We provide a closed form inverse kinematics of the PSM
to enable the Cartesian space control of the manipulator and
implementation of the grasping as an atomic event triggered
when the relative distance with the end-effector (EE) is less
that 2mm.

B. Learning Soft Tissue Retraction

A DRL algorithm based on Proximal Policy Optimisation
(PPO) is trained within UnityFlexML to perform fat tissue
retraction and expose the underlying kidney tumor (Fig.1).
The specific task to learn consists in moving the PSM arm
from an initial position pg to a position close to the tumour
to, grasp the tissue and lift it to a predefined target position p
(Fig.1). The considered state space leverages on kinematics in-
formation only, defining the current robot and the environment
states. The action space is defined by an increment motion
of 0.5mm in each spatial dimension. The reward function
is based on the distance between the current PSM position
and the tumor, promoting the approach behaviour towards the
tumour before the tissue is grasped and tissue retraction to a
fixed target point after grasping.

III. EXPERIMENTS

Our experimental setup consists of a synthetic kidney phan-
tom surrounded by silicone fat tissue (Fig.1, bottom line). The
agent is first trained on a realistic virtual replica of the real
scenario (Fig.1, top line), where the fat tissue deformation
parameters have been optimized to minimize the discrepancy
between simulation and reality [6]. To evaluate if the task has
been successfully learnt, we assess tumor exposure (TE) once
the agent has reached pr. TE is computed as percentage of
tumor pixels seen from a simulated endoscope placed in front
of the kidney in simulation. Afterwards, the trained policies
are transferred and tested on the real system. Policy transfer is
evaluated by counting the number of successful task executions
with the PSM arm starting from 25 different initial positions
distributed on a regular grid above the real fat tissue.

IV. RESULTS

The agent takes 3 million steps to learn the task in simula-
tion, divided into 500 thousand, 1.5 million and 1 million steps
to learn the approach behavior towards the fat, the interaction
with the fat and the retract behavior respectively. Fig.2a shows
the obtained TE in simulation when considering different pg.
Whenever the agent starts from the farthest part of the tissue
from the fixed region, the tumor becomes at least partially
visible from the camera, demonstrating that the learned policy
can account for different initial EE configurations. When
transferring the learn policy to the real system, the PSM
successfully gets in contact with the fat tissue for all the
different initial positions and it is always able to reach the
target point. However, Fig.2b shows that the PSM is able to
grasp the fat tissue in only 9 cases out of 25 (plus 2 cases when
the tissue is grasped but lost during the task). These results

suggest that the tissue is more likely to be grasped when the
EE starts close to the tumor area. The presence of failed grasps
is due to the inaccurate modelling of the grasping action in
the simulated environment, where grasping is triggered based
on the relative distance between the tissue and the EE. If the
same condition could be precisely replicated in the real setup,
the total number of accomplished grasps would increase, due
to the fact that the PSM is able to touch the fat surface in all
the attempts.
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Fig. 2. (a) Simulation results: color of each cell represents the TE from

the simulated camera at different pg. (b) Real world results: color of
each cell represents the outcome of the grasping task performed with the
dVRK at different po. Green, orange and yellow stand for successful, semi-
successful and failed grasps, respectively. Gray region is not considered for
the experiments.

V. CONCLUSION

We present UnityFlexML, a flexible simulation environment
suitable for DRL training in surgical robotic applications.
The developed framework demonstrates adapt for training an
autonomous agent to perform fat tissue manipulation for the
exposure of tumor during robotic assisted nephrectomy proce-
dure. We demonstrate that a DRL agent trained in simulation is
able to generalize to real scenario. The proposed framework is
an essential component in development of autonomous agents
for controlling surgical tools and manipulating soft tissues.
Future work would be focused on autonomous control using
visual cues.
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