AN EQUIVALENT FORMULATION OF THE FAN-RASPAUD CONJECTURE AND RELATED PROBLEMS

Giuseppe Mazzuoccolo ${ }^{1}$ and Jean Paul Zerafa ${ }^{2}$
${ }^{1}$ Dipartimento di Informatica
Università di Verona, Italy.
${ }^{2}$ Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università di Modena e Reggio Emilia, Italy.
e-mail: ${ }^{1}$ giuseppe.mazzuoccolo@univr.it
${ }^{2}$ jeanpaul.zerafa@unimore.it

Abstract

In 1994, it was conjectured by Fan and Raspaud that every simple bridgeless cubic graph has three perfect matchings whose intersection is empty. In this paper we answer a question recently proposed by Mkrtchyan and Vardanyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture. We also study a possible weaker conjecture originally proposed by the first author, which states that in every simple bridgeless cubic graph there exist two perfect matchings such that the complement of their union is a bipartite graph. We here show that this conjecture can be equivalently stated using a variant of Petersen-colourings, we prove it for graphs having oddness at most 4 and we give a natural extension to bridgeless cubic multigraphs and to certain cubic graphs having bridges.

Keywords: Cubic graph, perfect matching, oddness, Fan-Raspaud Conjecture, Berge-Fulkerson Conjecture, Petersen-colouring.
2010 Mathematics Subject Classification: 05C70, 05C15.

1. Introduction and terminology

Many interesting problems in graph theory are about the behaviour of perfect matchings in cubic graphs. One of the early classical results was made by Petersen [26] and states that every bridgeless cubic graph has at least one perfect matching. Few years ago one of the most prominent conjectures in this area was completely solved by Esperet et al. in [5]: the conjecture, proposed by Lovász and Plummer in the 1970s, stated that the number of perfect matchings in a bridgeless cubic graph grows exponentially with its order (see [18]). However, many others are still open, such as Conjecture 2.1 proposed independently by Berge and Fulkerson
in the 1970s as well, and Conjecture 2.2 by Fan and Raspaud (see [10] and [7], respectively). These two conjectures are related to the behaviour of the union and intersection of sets of perfect matchings, and such kind of properties are already largely studied: see, amongst others, $[1,2,14,15,16,17,20,21,23,28,29]$. In this paper we prove that a seemingly stronger version of the Fan-Raspaud Conjecture is indeed equivalent to the classical formulation (Theorem 3.3). In the second part of the paper (Section 4 and Section 5), we study a weaker conjecture proposed by the first author in [22]: we show how we can state it in terms of a variant of Petersen-colourings (Proposition 4.1) and we prove it for cubic graphs of oddness 4 (Theorem 5.4). Although all mentioned conjectures are about simple cubic graphs without bridges, we extend our study of the union of two perfect matchings to bridgeless cubic multigraphs and to particular cubic graphs having bridges (Section 6.1 and Section 6.2).
Graphs considered in the sequel, unless otherwise stated, are simple connected bridgeless cubic graphs and so do not contain loops and parallel edges. Graphs that may contain parallel edges will be referred to as multigraphs. For a graph G, let $V(G)$ and $E(G)$ be the set of vertices and the set of edges of G, respectively. A matching of G is a subset of $E(G)$ such that any two of its edges do not share a common vertex. For an integer $k \geq 0$, a k-factor of G is a spanning subgraph of G (not necessarily connected) such that the degree of every vertex is k. The edge-set of a 1 -factor is said to be a perfect matching. The least number of odd cycles amongst all 2-factors of G, denoted by $\omega(G)$, is called the oddness of G and is clearly even for a cubic graph since G has an even number of vertices. For $M \subseteq E(G)$, we denote the graph $G \backslash M$ by \bar{M}. In particular, when M is a perfect matching of G, then \bar{M} is a 2 -factor of G. In this case, following the terminology used for instance in [8], if \bar{M} has $\omega(G)$ odd cycles, then M is said to be a minimal perfect matching.
A cut in G is any set $X \subseteq E(G)$ such that \bar{X} has more components than G, and no proper subset of X has this property, i.e. for any $X^{\prime} \subset X, \overline{X^{\prime}}$ does not have any more components than G. The set of edges with precisely one end in $W \subseteq V(G)$ is denoted by $\partial_{G} W$, or just ∂W when it is obvious to which graph we are referring. Moreover, a cut X is said to be odd if there exists a subset W of $V(G)$ having odd cardinality such that $X=\partial W$.
We next define some standard operations between graphs that will be useful in the sequel. Let G_{1} and G_{2} be two bridgeless graphs (not necessarily cubic), and let e_{1} and e_{2} be two edges such that $e_{1}=u_{1} v_{1} \in E\left(G_{1}\right)$ and $e_{2}=u_{2} v_{2} \in E\left(G_{2}\right)$. A 2 -cut connection on e_{1} and e_{2} is a graph operation that consists of constructing the new graph

$$
\left[G_{1}-e_{1}\right] \cup\left[G_{2}-e_{2}\right] \cup\left\{u_{1} u_{2}, v_{1} v_{2}\right\}
$$

and denoted by $G_{1}\left(e_{1}\right) * G_{2}\left(e_{2}\right)$. Clearly, the graph obtained is also bridgeless. Now, let G_{1} and G_{2} be two bridgeless cubic graphs, $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$
such that the vertices adjacent to v_{1} are x_{1}, y_{1} and z_{1}, and those adjacent to v_{2} are x_{2}, y_{2} and z_{2}. A 3-cut connection (sometimes also known as the star product, see for instance [11]) on v_{1} and v_{2} is a graph operation that consists of constructing the new graph

$$
\left[G_{1}-v_{1}\right] \cup\left[G_{2}-v_{2}\right] \cup\left\{x_{1} x_{2}, y_{1} y_{2}, z_{1} z_{2}\right\}
$$

and denoted by $G_{1}\left(v_{1}\right) * G_{2}\left(v_{2}\right)$. It is clear that the resulting graph is also bridgeless and cubic. The 3 -edge-cut $\left\{x_{1} x_{2}, y_{1} y_{2}, z_{1} z_{2}\right\}$ is referred to as the principal 3-edge cut (see for instance [9]).

2. A List of Relevant conjectures

One of the aims of this paper is to study the behaviour of perfect matchings in cubic graphs, more specifically the union of two perfect matchings (see Section 4 and Section 5). We relate this to well-known conjectures stated here below, in particular: the Berge-Fulkerson Conjecture and the Fan-Raspaud Conjecture.

Conjecture 2.1 (Berge-Fulkerson) [10]. Every bridgeless cubic graph G admits six perfect matchings M_{1}, \ldots, M_{6} such that any edge of G belongs to exactly two of them.

Figure 1. Conjectures mentioned and how they are related.
We here also state other (possibly weaker) conjectures implied by the above conjecture.

Conjecture 2.2 (Fan-Raspaud) [7]. Every bridgeless cubic graph admits three perfect matchings M_{1}, M_{2}, and M_{3} such that $M_{1} \cap M_{2} \cap M_{3}=\emptyset$.

In the sequel we will refer to three perfect matchings satisfying Conjecture 2.2 as an $F R$-triple. We can see that Conjecture 2.2 is immediately implied by the Berge-Fulkerson Conjecture, since we can take any three perfect matchings out of the six which satisfy Conjecture 2.1. A still weaker statement implied by the Fan-Raspaud Conjecture is the following:

Conjecture 2.3 [19]. For each bridgeless cubic graph G, there exist two perfect matchings M_{1} and M_{2} such that $M_{1} \cap M_{2}$ contains no odd-cut of G.

We claim that any two perfect matchings out of the three in an $F R$-triple have no odd-cut in their intersection, in other words that Conjecture 2.2 implies Conjecture 2.3. For, suppose not. Then, without loss of generality, suppose that $M_{2} \cap M_{3}$ contains an odd cut X. Hence, since every perfect matching has to intersect an odd-cut at least once, then $\left|M_{1} \cap\left(M_{2} \cap M_{3}\right)\right| \geq\left|M_{1} \cap X\right| \geq 1$, a contradiction, since we assumed that $M_{1} \cap M_{2} \cap M_{3}=\emptyset$. In relation to the above, the first author proposed the following conjecture:

Conjecture 2.4 (S_{4}-Conjecture) [22]. For any bridgeless cubic graph G, there exist two perfect matchings such that the deletion of their union leaves a bipartite subgraph of G.

For reasons which shall be obvious in Section 4 we let such a pair of perfect matchings be called an S_{4}-pair of G and shall refer to Conjecture 2.4 as the S_{4}-Conjecture. We will first proceed by showing that this conjecture is implied by Conjecture 2.3, and so, by what we have said so far, is a consequence of the Berge-Fulkerson Conjecture. In particular, we can see the S_{4}-Conjecture as Conjecture 2.3 restricted to odd-cuts $\partial V(C)$, where C is an odd cycle of G.

Proposition 2.5. Conjecture 2.3 implies the S_{4}-Conjecture.
Proof. Let M_{1} and M_{2} be two perfect matchings such that their intersection does not contain any odd-cut. Consider $\overline{M_{1} \cup M_{2}}$, and suppose that it contains an odd cycle C. Then all the edges of $\partial V(C)$ belong to $M_{1} \cap M_{2}$. If $\overline{\partial V(C)}$ has exactly two components, then $\partial V(C)$ is an odd-cut belonging to $M_{1} \cap M_{2}$, a contradiction. Therefore, $\overline{\partial V(C)}$ must have more than two components, say k, denoted by $C_{1}, C_{2}, \ldots, C_{k}$, where the first component C_{1} is the cycle C. Let $\left[C_{1}, C_{j}\right]$ denote the set of edges between C_{1} and C_{j}, for $j \in\{2, \ldots, k\}$. Since $\sum_{j=2}^{k}\left|\left[C_{1}, C_{j}\right]\right|=|\partial V(C)| \equiv 1 \bmod 2$, then there exists at least one j^{\prime} for some $j^{\prime} \in\{2, \ldots, k\}$, such that $\left|\left[C_{1}, C_{j^{\prime}}\right]\right| \equiv 1 \bmod 2$. However, $\left[C_{1}, C_{j^{\prime}}\right]$ is an odd-cut which belongs to $M_{1} \cap M_{2}$, a contradiction.

3. Equivalent Statements to the Fan-Raspaud Conjecture

Let M_{1}, \ldots, M_{t} be a list of perfect matchings of G, and let $a \in E(G)$. We denote the number of times a occurs in this list by $\nu_{G}\left[a: M_{1}, \ldots, M_{t}\right]$. When it is obvious which list of perfect matchings or which graph we are referring to, we will denote this as $\nu(a)$ and refer to $\nu(a)$ as the frequency of a. We will sometimes need to refer to the frequency of an ordered list of edges, say (a, b, c), and we will do this by saying that the frequency of (a, b, c) is (i, j, k), for some integers i, j and k. Mkrtchyan et al. [25] showed that the Fan-Raspaud Conjecture, i.e. Conjecture 2.2 , is equivalent to the following:

Conjecture 3.1. [25] For each bridgeless cubic graph G, any edge $a \in E(G)$ and any $i \in\{0,1,2\}$, there exist three perfect matchings M_{1}, M_{2}, and M_{3} such that $M_{1} \cap M_{2} \cap M_{3}=\emptyset$ and $\nu_{G}\left[a: M_{1}, M_{2}, M_{3}\right]=i$.

In other words they show that if a graph has an $F R$-triple then, for every i in $\{0,1,2\}$, there exists an $F R$-triple in which the frequency of a pre-chosen edge is exactly i. In the same paper, Mkrtchyan et al. state the following seemingly stronger version of the Fan-Raspaud Conjecture:

Conjecture 3.2. [25] Let G be a bridgeless cubic graph, w a vertex of G and i, j and k three integers in $\{0,1,2\}$ such that $i+j+k=3$. Then, G has an $F R$-triple in which the edges incident to w in a given order have frequencies (i, j, k).

This means that we can prescribe the frequencies to the three edges incident to a given vertex. At the end of [25], the authors remark that it would be interesting to show that Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture. We here prove that this is actually the case.

Theorem 3.3. Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture.
Proof. Since the Fan-Raspaud Conjecture is equivalent to Conjecture 3.1, it suffices to show the equivalence of Conjectures 3.1 and 3.2 . The latter clearly implies the former, so assume Conjecture 3.1 is true and let a, b and c be the edges incident to w such that the frequencies (i, j, k) are to be assigned to (a, b, c). It is sufficient to show that there exist two $F R$-triples in which the frequencies of (a, b, c) are $(2,1,0)$ in one $F R$-triple (Case 1 below) and $(1,1,1)$ in the other $F R$-triple (Case 2 below).

Figure 2. The graphs K_{4} and K_{4}^{*} in Case 1 of the proof of Theorem 3.3.
Case 1. Let u_{1}, u_{2}, u_{3} and u_{4} be the vertices of the complete graph K_{4} as in Figure 2. Consider two copies of G, and let the vertex w in the $i^{\text {th }}$ copy of G be denoted by w_{i}, for each $i \in\{1,2\}$. We apply a 3 -cut connection between u_{i} and w_{i}, for each $i \in\{1,2\}$. With reference to this resulting graph, denoted by K_{4}^{*}, we refer to the copy of the graph $G-w$ at u_{1} as G_{1}, and to the corresponding
edges a, b and c as a_{1}, b_{1} and c_{1}, respectively. The graph G_{2} and the edges a_{2}, b_{2} and c_{2} are defined in a similar way, such that b_{1} and b_{2} are adjacent, and also c_{1} and c_{2}, as Figure 2 shows. Note also that a_{1} and a_{2} coincide in K_{4}^{*}. By our assumption, there exists an $F R$-triple M_{1}, M_{2} and M_{3} of K_{4}^{*} in which the edge $u_{3} u_{4}$ has frequency 2 . Without loss of generality, let $u_{3} u_{4} \in M_{1} \cap M_{2}$. Then, a_{1} (and so a_{2}) must belong to $M_{1} \cap M_{2}$. Clearly, a_{1} (and so a_{2}) cannot belong to M_{3}, and so the principal 3-edge-cuts with respect to G_{1} and G_{2} do not belong to M_{3}. If $b_{1} \in M_{3}$, then we are done, as then M_{1}, M_{2} and M_{3} restricted to G_{1}, together with a and b having the same frequencies as a_{1} and b_{1}, induce an $F R$-triple of G such that the frequencies of (a, b, c) are $(2,1,0)$. So suppose $c_{1} \in M_{3}$. Then, $b_{2} \in M_{3}$, and so by a similar argument applied to G_{2} and the corresponding edges, M_{1}, M_{2} and M_{3} induce an $F R$-triple in G such that the frequencies of (a, b, c) are $(2,1,0)$.
Case 2. Let P be the Petersen graph and $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a maximum

Figure 3. The graphs P and P^{*} in Case 2 of the proof of Theorem 3.3.
independent set of vertices in P as in Figure 3. Consider four copies of G. Let the vertex w in the $i^{\text {th }}$ copy of G be denoted by w_{i}, for each $i \in\{1, \ldots, 4\}$. Let P^{*} be the graph obtained by applying a 3 -cut connection between each u_{i} and w_{i}, as shown in Figure 3. Similar to Case 1 we refer to the copy of $G-w$ at u_{i} as G_{i} and to the corresponding edges a, b and c as a_{i}, b_{i} and c_{i}, respectively. Since we are assuming true Conjecture 3.1, we can consider an $F R$-triple M_{1}, M_{2} and M_{3} of P^{*} in which the edge e incident to both a_{1} and a_{4} has frequency 2 . Without loss of generality, let the two perfect matchings containing e be M_{1} and M_{2}. The edges a_{1}, c_{2}, c_{3} and a_{4} are not contained in M_{1} and neither M_{2}, since they are all incident to e, and so no principal 3-edge-cut leaving G_{i} belongs to M_{1} or M_{2}. Then, M_{1} and M_{2} induce perfect matchings of P (clearly distinct), and since there are exactly two perfect matchings of P containing e, we can assume that M_{1} contains $\left\{e, b_{1}, a_{2}, a_{3}, b_{4}\right\}$, and M_{2} contains $\left\{e, c_{1}, b_{2}, b_{3}, c_{4}\right\}$.

If the third perfect matching M_{3} induces a perfect matching of the Petersen graph then the induced perfect matching cannot be one of the perfect matchings
induced by M_{1} and M_{2} in P. Hence, there exists at least one G_{i} such that the frequencies of $\left(a_{i}, b_{i}, c_{i}\right)$ are $(1,1,1)$ and so M_{1}, M_{2} and M_{3} restricted to G_{i}, together with a, b and c having the same frequencies as a_{i}, b_{i} and c_{i}, induce an $F R$-triple in G with the needed property.

Therefore, suppose M_{3} contains the principal 3-edge-cut of one of the G_{i} 's, say G_{1} by symmetry of P^{*}. Thus, a_{1}, b_{1} and c_{1} belong to M_{3}. The perfect matching M_{3} can intersect the principal 3 -edge-cut at G_{2} either in b_{2} or c_{2} (not both). If $c_{2} \in M_{3}$ we are done by the same reasoning above but now applied to G_{2} and the corresponding edges. So suppose $b_{2} \in M_{2} \cap M_{3}$. Then clearly $c_{4} \in M_{3}$, and M_{3} can only intersect the principal 3 -edge-cut at G_{3} in c_{3}, implying that the frequencies of $\left(a_{3}, b_{3}, c_{3}\right)$ are $(1,1,1)$ in P^{*} and that M_{1}, M_{2} and M_{3} restricted to G_{3}, together with a, b and c having the same frequencies as a_{3}, b_{3} and c_{3}, induce an $F R$-triple in G with the needed property.

In [25] it is also shown that a minimal counterexample to Conjecture 3.2 is cyclically 4 -edge-connected. It remains unknown whether a smallest counterexample to the original formulation of the Fan-Raspaud Conjecture has the same property. Indeed, we only prove that the two assertions are equivalent, but we cannot say whether a possible counterexample to Conjecture 3.2 is itself a counterexample to the original formulation.

4. Equivalent Statements to the S_{4}-Conjecture

All conjectures presented in Section 2 are implied by a conjecture made by Jaeger in the late 1980s. In order to state it we need the following definitions. Let G and H be two cubic graphs. An H-colouring of G is a proper edge-colouring f of G with edges of H, such that for each vertex $u \in V(G)$, there exists a vertex $v \in V(H)$ with $f\left(\partial_{G}\{u\}\right)=\partial_{H}\{v\}$. If G admits an H-colouring, then we will write $H \prec G$. In this paper we consider S_{4}-colourings of bridgeless cubic graphs, where S_{4} is the multigraph shown in Figure 4. Since S_{4} is not cubic we remark that in an S_{4}-colouring of a bridgeless cubic graph G, the above definition of H colourings applies, but for all vertices $u \in V(G), \partial_{G}\{u\}$ is not mapped to $\partial_{S_{4}}\{z\}$, where z is the vertex of degree 1 in S_{4} (see Figure 4).

The importance of H-colourings is mainly due to Jaeger's Conjecture [13] which states that for each bridgeless cubic graph G, one has $P \prec G$ (here P is again the Petersen graph). For recent results on P-colourings, known as Petersencolourings, see for instance [12, 24, 27]. The following proposition shows why we choose to refer to a pair of perfect matchings whose deletion leaves a bipartite subgraph as an S_{4}-pair.

Figure 4. The multigraph S_{4}.

Proposition 4.1. Let G be a bridgeless cubic graph, then $S_{4} \prec G$ if and only if G has an S_{4}-pair.

Proof. Along the entire proof we denote the edges of S_{4} by using the same labelling as in Figure 4. Let M_{1} and M_{2} be an S_{4}-pair of G. The graph induced by $M_{1} \cup M_{2}$, denoted by $G\left[M_{1} \cup M_{2}\right]$, is made up of even cycles and isolated edges, whilst the bipartite graph $\overline{M_{1} \cup M_{2}}$ is made up of even cycles and paths. We then obtain an S_{4}-colouring of G as follows:

- the isolated edges in $M_{1} \cup M_{2}$ are given colour g_{0},
- the edges of the even cycles in $M_{1} \cup M_{2}$ are properly edge-coloured with g_{3} and g_{4}, and
- the edges of the paths and even cycles in $\overline{M_{1} \cup M_{2}}$ are properly edgecoloured with g_{1} and g_{2}.

One can clearly see that this gives an S_{4}-colouring of G. Conversely, assume that $S_{4} \prec G$. We are required to show that there exists an S_{4}-pair of G. Let M_{1} be the set of edges of G coloured g_{3} and g_{0}, and let M_{2} be the set of edges of G coloured g_{4} and g_{0}. If e and f are edges of G coloured g_{3} (or g_{4}) and g_{0}, respectively, then e and f cannot be adjacent, otherwise we contradict the S_{4}-colouring of G. Thus, M_{1} and M_{2} are matchings. All that is left to show is that they are perfect matchings. This follows since for every vertex v of $G, f\left(\partial_{G}\{v\}\right)$ is equal to $\left\{g_{1}, g_{3}, g_{4}\right\}$, or $\left\{g_{2}, g_{3}, g_{4}\right\}$, or $\left\{g_{0}, g_{1}, g_{2}\right\}$. Thus, $\overline{M_{1} \cup M_{2}}$ is the graph induced by the edges coloured g_{1} and g_{2}, which clearly cannot induce an odd cycle.

Hence, by the previous proof, Conjecture 2.4 can be stated in terms of S_{4}-colourings, which clearly shows why we choose to refer to it as the S_{4}-Conjecture. In analogy to what we did for $F R$-triples, here we prove that for S_{4}-pairs we can prescribe the frequency of an edge and the frequencies of the edges leaving a vertex (the proof of the latter implies also that we can prescribe the frequencies of the edges of each 3 -cut). Consider the following conjecture, analogous to Conjecture 3.1:

Conjecture 4.2. For any bridgeless cubic graph G, any edge $a \in E(G)$ and any $i \in\{0,1,2\}$, there exists an S_{4}-pair, say M_{1} and M_{2}, such that $\nu_{G}\left[a: M_{1}, M_{2}\right]=$ i.

In Theorem 4.3 we show that the latter conjecture is actually equivalent to the S_{4}-Conjecture. The proof given in [25] to show the equivalence of the Fan-Raspaud Conjecture and Conjecture 3.1 is very similar to the proof we give here for the analogous case for the S_{4}-Conjecture, however we need a slightly more complicated tool in our context.

Theorem 4.3. Conjecture 4.2 is equivalent to the S_{4}-Conjecture.

Figure 5. An edge in P transformed into the corresponding structure in H.

Proof. Clearly, Conjecture 4.2 implies the S_{4}-Conjecture so it suffices to show the converse. Assume true the S_{4}-Conjecture and let $f_{1} f_{2} f_{3}$ be a path of length three in K_{4} which does not form a cycle. Consider two copies of G. Let the edge a in the $i^{\text {th }}$ copy of G be denoted by a_{i}, for each $i \in\{1,2\}$. Let K_{4}^{\prime} be the graph obtained by applying a 2 -cut connection between f_{i} and a_{i} for each $i \in\{1,2\}$. We refer to the copy of the graph $G-a$ on f_{i} as G_{i}.
Let $\left\{e_{1}, \ldots, e_{15}\right\}$ be the edges of the Petersen graph and let T_{1}, \ldots, T_{15} be 15 copies of K_{4}^{\prime}. For every $i \in\{1, \ldots, 15\}$, apply a 2 -cut connection on e_{i} and the edge f_{3} of T_{i}. Consequently, every edge e_{i} of the Petersen graph is transformed into the structure E_{i} as in Figure 5, and we refer to G_{1} and G_{2} on E_{i} as G_{1}^{i} and G_{2}^{i}, respectively. Let H be the resulting graph. By our assumption, there exists an S_{4}-pair of H, say M_{1} and M_{2}, which induces a pair of two distinct perfect matchings in P, say N_{1} and N_{2}, respectively. There exists an edge of P, say e_{j}, for some $j \in\{1, \ldots, 15\}$, such that $\nu_{P}\left[e_{j}: N_{1}, N_{2}\right]=1$. Hence, the restriction of M_{1} and M_{2} to the edge set of G_{1}^{j}, together with the edge a having the same frequency as e_{j}, gives rise to an S_{4}-pair of G in which the frequency of a is 1 . Moreover, there exists an edge of P, say e_{k}, for some $k \in\{1, \ldots, 15\}$, such that $\nu_{P}\left[e_{k}: N_{1}, N_{2}\right]=2$. Restricting M_{1} and M_{2} to the edge set of G_{1}^{k}, together with the edge a having the same frequency as e_{k}, gives rise to an S_{4}-pair of G, in which the frequency of a is 2 . Also, the restriction of M_{1} and M_{2} to the edge set of G_{2}^{k} gives rise to an S_{4}-pair of $G\left(G_{2}^{k}\right.$ together with $\left.a\right)$, in which the frequency of a is 0 , because if not, then there exists an odd cycle in G, say of length α,
passing through a and having all its edges with frequency 0 . However, this would mean that there is an odd cycle of length $\alpha+4$ on E_{k} in $\overline{M_{1} \cup M_{2}}$ (in H), a contradiction.

As in Section 3, we here state an analogous conjecture to Conjecture 3.2, but for S_{4}-pairs:

Conjecture 4.4. Let G be a bridgeless cubic graph, w a vertex of G and i, j and k three integers in $\{0,1,2\}$ such that $i+j+k=2$. Then, G has an S_{4}-pair in which the edges incident to w in a given order have frequencies (i, j, k).

The following theorem shows that this conjecture is actually equivalent to Conjecture 4.2 , and so to the S_{4}-Conjecture by Theorem 4.3.

Theorem 4.5. Conjecture 4.4 is equivalent to the S_{4}-Conjecture.
Proof. Since the S_{4}-Conjecture is equivalent to Conjecture 4.2, it suffices to show the equivalence of Conjectures 4.2 and 4.4. Clearly, Conjecture 4.4 implies Conjecture 4.2 and so we only need to show the converse. Let a, b and c be the edges incident to w such that the frequencies (i, j, k) are to be assigned to (a, b, c). We only need to prove the case when (i, j, k) is equal to $(1,1,0)$, as all other cases follow from Conjecture 4.2 .
Consider the graph $G(w) * P(v)$, where P is the Petersen graph and v is any

Figure 6. The graph $G(w) * P(v)$ from Theorem 4.5.
vertex of P. We refer to the edges corresponding to a, b and c in $G(w) * P(v)$, as a_{w}, b_{w} and c_{w}. Let d be an edge originally belonging to P and adjacent to c_{w} in $G(w) * P(v)$. Since we are assuming true Conjecture 4.2, there exists an S_{4}-pair in $G(w) * P(v)$ in which d has frequency 2 . If the frequencies of $\left(a_{w}, b_{w}, c_{w}\right)$ are $(1,1,0)$, then we are done, because the S_{4}-pair for $G(w) * P(v)$ restricted to the
edges in $G-w$, together with a and b having the same frequencies as a_{w} and b_{w}, give an S_{4}-pair for G with the desired property. We claim that this must be the case. For, suppose not. Then, without loss of generality, the frequencies of $\left(a_{w}, b_{w}, c_{w}\right)$ are $(2,0,0)$. This implies that all the edges of $G(w) * P(v)$ originally in P have either frequency 0 or 2 , since the two perfect matchings in the S_{4}-pair induce the same perfect matching in P. However, this implies that $\overline{M_{1} \cup M_{2}}$ is not bipartite, a contradiction.

As in [25], a minimal counterexample to Conjecture 4.4 (but not necessarily to the S_{4}-Conjecture) is cyclically 4 -edge-connected. We omit the proof of this result as it is very similar to the proof of Theorem 2 in [25].

5. Further Results on the S_{4}-Conjecture

Little progress has been made on the Fan-Raspaud Conjecture so far. Bridgeless cubic graphs which trivially satisfy this conjecture are those which can be edge-covered by four perfect matchings. In this case, every three perfect matchings from a cover of this type form an $F R$-triple since every edge has frequency one or two with respect to this cover. Therefore, a possible counterexample to the Fan-Raspaud Conjecture should be searched for in the class of bridgeless cubic graphs whose edge-set cannot be covered by four perfect matchings, see for instance [6]. In 2009, Máčajová and Škoviera [20] shed some light on the Fan-Raspaud Conjecture by proving it for bridgeless cubic graphs having oddness two. One of the aims of this paper is to show that even if the S_{4}-Conjecture is still open, some results are easier to extend than the corresponding ones for the Fan-Raspaud Conjecture. Clearly, the result by Máčajová and Škoviera in [20] implies the following result:

Theorem 5.1. Let G be a bridgeless cubic graph of oddness two. Then, G has an S_{4}-pair.

We first give a proof of Theorem 5.1 in the same spirit of that used in [20], however much shorter since we are proving a weaker result.

Proof 1 of Theorem 5.1. Let M_{1} be a minimal perfect matching of G, and let C_{1} and C_{2} be the two odd cycles in $\overline{M_{1}}$. Colour the even cycles in $\overline{M_{1}}$ using two colours, say 1 and 2 . For each $i \in\{1,2\}$, let E_{i} be the set of edges belonging to the even cycles in $\overline{M_{1}}$ and having colour i. In G, there must exist a path Q whose edges alternate in M_{1} and E_{1} and whose end-vertices belong to C_{1} and C_{2}. Note that since the edges of C_{1} and C_{2} are not edges in $M_{1} \cup E_{1}$, every other vertex on Q which is not an end-vertex does not belong to C_{1} and C_{2}. For each $i \in\{1,2\}$, let v_{i} be the end-vertex of Q belonging to C_{i}, and let $M_{C_{i}}$ be the unique perfect matching of $C_{i}-v_{i}$. Let $M_{2}:=\left(M_{1} \cap Q\right) \cup\left(E_{1} \backslash Q\right) \cup M_{C_{1}} \cup$
$M_{C_{2}}$. Clearly, M_{2} is a perfect matching of G which intersects C_{1} and C_{2}, and so $\overline{M_{1} \cup M_{2}}$ is bipartite.
We now give a second alternative proof of the same theorem using fractional perfect matchings, which we will show to be easier to use for graphs having larger oddness. Let w be a vector in $\mathbb{R}^{|E(G)|}$. The entry of w corresponding to $e \in E(G)$ is denoted by $w(e)$, and for $A \subseteq E(G)$, we let the weight of A, denoted by $w(A)$, to be equal to $\sum_{e \in A} w(e)$. The vector w is said to be a fractional perfect matching of G if:

1. $w(e) \in[0,1]$ for each $e \in E(G)$,
2. $w(\partial\{v\})=1$ for each $v \in V(G)$, and
3. $w(\partial W) \geq 1$ for each $W \subseteq V(G)$ of odd cardinality.

The following lemma is presented in [15] and it is a consequence of Edmonds' characterisation of perfect matching polytopes in [3].

Lemma 5.2. If w is a fractional perfect matching in a graph G, and $c \in \mathbb{R}^{|E(G)|}$, then G has a perfect matching N such that

$$
c \cdot \chi^{N} \geq c \cdot w
$$

where • denotes the scalar product. Moreover, there exists a perfect matching satisfying the above inequality and which contains exactly one edge of each odd cut X with $w(X)=1$.
Remark 5.3. If we let $w(e)=1 / 3$ for all $e \in E(G)$, for some graph G, then we know that w is a fractional perfect matching of G. Also, since the weight of every 3 -cut is one, then by Lemma 5.2 there exists a perfect matching of G containing exactly one edge of each 3 -cut of G.

Proof 2 of Theorem 5.1. Let M_{1} be a minimal perfect matching of G, and let C_{1} and C_{2} be the two odd cycles in $\overline{M_{1}}$. For each $i \in\{1,2\}$, let e_{1}^{i} and e_{2}^{i} be two adjacent edges belonging to $C_{i} \cap \overline{M_{1}}$. We define the vector $c \in \mathbb{R}^{|E(G)|}$ such that

$$
c(e)= \begin{cases}1 & \text { if } e \in \cup_{i=1}^{2}\left\{e_{1}^{i}, e_{2}^{i}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Also, as in Remark 5.3, we know that if we let $w(e)=1 / 3$ for all $e \in E(G)$, then w is a fractional perfect matching of G. Hence, by Lemma 5.2, there exists a perfect matching M_{2} such that $c \cdot \chi^{M_{2}} \geq c \cdot w$, which implies that

$$
\left|\cup_{i=1}^{2}\left\{e_{1}^{i}, e_{2}^{i}\right\} \cap M_{2}\right| \geq 1 / 3 \times 2 \times 2=4 / 3>1
$$

Therefore, for each $i \in\{1,2\}$, there exists exactly one $j \in\{1,2\}$ such that $e_{j}^{i} \in M_{2}$. Hence, M_{2} intersects C_{1} and C_{2} and so $\overline{M_{1} \cup M_{2}}$ is bipartite.

Using the same idea as in Proof 2 of Theorem 5.1, we also prove that the S_{4}-Conjecture is true for graphs having oddness 4.
Theorem 5.4. Let G be a bridgeless cubic graph of oddness four. Then, G has an S_{4}-pair.

Proof. Let M_{1} be a minimal perfect matching of G, and let C_{1}, C_{2}, C_{3} and C_{4} be the four odd cycles in $\overline{M_{1}}$. By Remark 5.3, there exists a perfect matching N of G such that if G has any 3 -cuts, then N intersects every 3 -cut of G in one edge. Moreover, for every $i \in\{1, \ldots, 4\}$, there exists at least a pair of adjacent edges e_{1}^{i} and e_{2}^{i} belonging to $C_{i} \cap \bar{N}$. We define the vector $c \in \mathbb{R}^{|E(G)|}$ such that

$$
c(e)= \begin{cases}1 & \text { if } e \in \cup_{i=1}^{4}\left\{e_{1}^{i}, e_{2}^{i}\right\}, \\ 0 & \text { otherwise. }\end{cases}
$$

We also define the vector $w \in \mathbb{R}^{|E(G)|}$ as follows:

$$
w(e)= \begin{cases}1 / 5 & \text { if } e \in N, \\ 2 / 5 & \text { otherwise. }\end{cases}
$$

The vector w is clearly a fractional perfect matching of G because, in particular, N intersects every 3 -cut in one edge and so $w(X) \geq 1$ for each odd cut X of G. Hence, by Lemma 5.2, there exists a perfect matching M_{2} such that $c \cdot \chi^{M_{2}} \geq c \cdot w$, which implies that

$$
\left|\cup_{i=1}^{4}\left\{e_{1}^{i}, e_{2}^{i}\right\} \cap M_{2}\right| \geq 2 / 5 \times 2 \times 4=16 / 5>3 .
$$

Therefore, for each $i \in\{1, \ldots, 4\}$, there exists exactly one $j \in\{1,2\}$ such that $e_{j}^{i} \in M_{2}$. Hence, M_{2} intersects C_{1}, C_{2}, C_{3} and C_{4} and so $\overline{M_{1} \cup M_{2}}$ is bipartite.

As the above proofs show us, extending results with respect to the S_{4}-Conjecture is easier than in the case of the Fan-Raspaud Conjecture and this is why we believe that a proof of the S_{4}-conjecture could be a first feasible step towards a solution of the Fan-Raspaud Conjecture. For graphs having oddness at least six we are not able to prove the existence of an S_{4}-pair and we wonder how many perfect matchings we need such that the complement of their union is bipartite. In the next proposition we use the technique used in Theorem 5.4 and show that given a bridgeless cubic graph G, if $\omega(G) \leq 5^{k-1}-1$ for some positive integer k, then there exist k perfect matchings such that the complement of their union is bipartite. Note that for $k=2$ we obtain $\omega(G) \leq 4$.
Proposition 5.5. Let G be a bridgeless cubic graph and let \mathcal{C} be a collection of disjoint odd cycles in G such that $|\mathcal{C}| \leq 5^{k-1}-1$ for some positive integer k. Then, there exist M_{1}, \ldots, M_{k-1} perfect matchings of G such that for every $C \in \mathcal{C}$, $C \cap M_{j} \neq \emptyset$ for at least one of the $M_{j}^{\prime} s$. Moreover, if $\omega(G) \leq 5^{k-1}-1$, then there exist k perfect matchings such that the complement of their union is bipartite.

Proof. We proceed by induction on k. For $k=1$, the assertion trivially holds since \mathcal{C} is the empty set. Assume result is true for some $k \geq 1$ and consider $k+1$. Let $C_{1}, C_{2}, \ldots, C_{t}$, with $t \leq 5^{k}-1$, be the odd cycles of G in \mathcal{C}. Let N be a perfect matching of G which intersects every 3 -cut of G once. For every $i \in\{1, \ldots, t\}$, there exists at least a pair of adjacent edges e_{1}^{i} and e_{2}^{i} belonging to $C_{i} \cap \bar{N}$. We define the vector $c \in \mathbb{R}^{|E(G)|}$ such that

$$
c(e)= \begin{cases}1 & \text { if } e \in \cup_{i=1}^{t}\left\{e_{1}^{i}, e_{2}^{i}\right\}, \\ 0 & \text { otherwise } .\end{cases}
$$

We also define the vector $w \in \mathbb{R}^{|E(G)|}$ as follows:

$$
w(e)= \begin{cases}1 / 5 & \text { if } e \in N, \\ 2 / 5 & \text { otherwise. }\end{cases}
$$

As in the proof of Theorem 5.4, w is a fractional perfect matching of G and by Lemma 5.2 there exists a perfect matching M_{k} such that $c \cdot \chi^{M_{k}} \geq c \cdot w$. This implies that

$$
\left|\cup_{i=1}^{2}\left\{e_{1}^{i}, e_{2}^{i}\right\} \cap M_{k}\right| \geq 2 \times 2 / 5 \times t
$$

Let \mathcal{C}^{\prime} be the subset of \mathcal{C} which contains the odd cycles of \mathcal{C} with no edge of M_{k}. Then, $\left|\mathcal{C}^{\prime}\right| \leq|\mathcal{C}|-\frac{4}{5} t=t-\frac{4}{5} t=\frac{t}{5} \leq 5^{k-1}-\frac{1}{5}$, and so $\left|\mathcal{C}^{\prime}\right| \leq 5^{k-1}-1$. By induction, there exist $k-1$ perfect matchings of G, say M_{1}, \ldots, M_{k-1}, having the required property with respect to \mathcal{C}^{\prime}. Therefore, M_{1}, \ldots, M_{k} intersect all odd cycles in \mathcal{C}. The second part of the statement easily follows by considering as \mathcal{C} the set of odd cycles in the complement of a minimal perfect matching M of G, since the union of M with the $k-1$ perfect matchings which intersect all the odd cycles in \mathcal{C} has a bipartite complement.

Remark 5.6. We note that with every step made in the proof of Proposition 5.5 , one could update the weight w of the edges using the methods presented in $[15,21]$ which gives a slightly better upperbound for $\omega(G)$. For reasons of simplicity and brevity, we prefer the present weaker version of Proposition 5.5.

6. Extension of the S_{4}-Conjecture to larger classes of cubic GRAPHS

6.1. Multigraphs

In this section we show that the S_{4}-Conjecture for bridgeless cubic graphs is true if and only if its natural extension to bridgeless cubic multigraphs is true. We note that bridgeless cubic multigraphs cannot contain any loops. Clearly, if every bridgeless cubic multigraph has an S_{4}-pair, then the S_{4}-Conjecture is
true, since the class of bridgeless cubic multigraphs contains the class of simple bridgeless cubic graphs. So it suffices to show that the S_{4}-Conjecture implies that every bridgeless cubic multigraph has an S_{4}-pair, as Theorem 6.1 shows.
We will make use of the following operation on parallel edges, referred to as smoothing. Let G^{\prime} be a bridgeless cubic multigraph. Let u and v be two vertices in G^{\prime} such that there are exactly two parallel edges between them.

Figure 7. Vertices x, u, v and y in G^{\prime}.
Let x and y be the vertices adjacent to u and v, respectively (see Figure 7). We say that we smooth $u v$ if we delete the vertices u and v from G^{\prime} and add an edge between x and y (even if x and y are already adjacent in G^{\prime}). One can easily see that the resulting graph after smoothing $u v$ is again bridgeless and cubic.

Let x, y, u and v be as in Figure 7 and let M^{\prime} be a perfect matching of G^{\prime}. Then, $x u \in M^{\prime}$ if and only if $v y \in M^{\prime}$. Let G be the resulting graph after smoothing $u v$. We note that

$$
M= \begin{cases}M^{\prime} \cup x y-\{x u, v y\} & \text { if } x u \in M^{\prime} \\ M^{\prime}-u v & \text { otherwise }\end{cases}
$$

is a perfect matching of G and we say that M and M^{\prime} are corresponding perfect matchings.

Theorem 6.1. The S_{4}-Conjecture is true if and only if every bridgeless cubic multigraph has an S_{4}-pair.

Proof. The backward direction is clearly true, so assume true the S_{4}-Conjecture. Let G^{\prime} be a bridgeless cubic multigraph, and assume that G^{\prime} is a minimum counterexample. Then, G^{\prime} cannot be a simple graph as we are assuming that the S_{4}-Conjecture is true. Therefore, G^{\prime} must have some parallel edges. Clearly, the unique bridgeless cubic multigraph on two vertices $C_{2,3}$, has an S_{4}-pair and so assume that $G^{\prime} \neq C_{2,3}$. Thus, G^{\prime} must have vertices x, u, v and y as in Figure 7. Let G be the resulting multigraph after smoothing $u v$. By minimality of G^{\prime}, G has an S_{4}-pair, say M_{1} and M_{2}, with corresponding perfect matchings M_{1}^{\prime} and M_{2}^{\prime} in G^{\prime}. However, the latter clearly form an S_{4}-pair for G^{\prime}, contradicting our initial assumption.

The following theorem says that Conjecture 4.4 can also be extended to multigraphs.

Theorem 6.2. Let i, j and k be three integers in $\{0,1,2\}$ such that $i+j+k=3$ and let w be a vertex in a bridgeless cubic multigraph G^{\prime}. Then, the S_{4}-Conjecture is true if and only if G^{\prime} has an S_{4}-pair in which the edges incident to w in a given order have frequencies (i, j, k).

Proof. It suffices to assume true the S_{4}-Conjecture and only show the forward direction, by Theorem 6.1. Let G^{\prime} be a minimal counterexample and suppose it has some parallel edges. If $G^{\prime}=C_{2,3}$ then the result clearly follows. So assume $G^{\prime} \neq C_{2,3}$. Let a, b and c be the edges incident to w such that the frequencies (i, j, k) are to be assigned to (a, b, c). We proceed by considering two cases: when w has two parallel edges incident to it (Figure 8) and otherwise (Figure 9).
Case 1. Let G be the resulting multigraph after smoothing $w v$. By minimality

Figure 8. Case 1 in the proof of Theorem 6.2.
of G^{\prime}, G has an S_{4}-pair (say M_{1} and M_{2}) in which $\nu(x y)=k$. It is easy to see that a pair of corresponding perfect matchings have $\nu_{G^{\prime}}(c)=\nu_{G^{\prime}}(v y)=k$ and can be chosen in such a way such that $\nu_{G^{\prime}}(a)=i$ and $\nu_{G^{\prime}}(b)=j$, a contradiction to our initial assumption. Therefore, we must have Case 2.

Figure 9. Case 2 in the proof of Theorem 6.2.

Case 2. Let G be the resulting multigraph after smoothing some parallel edge in G^{\prime} and let a_{w}, b_{w} and c_{w} be the corresponding edges incident to w in G after smoothing is done. In G, there exists an S_{4}-pair such that the frequencies of (a_{w}, b_{w}, c_{w}) are equal to (i, j, k). Clearly, the corresponding perfect matchings form an S_{4}-pair in G^{\prime} in which the frequencies of (a, b, c) are (i, j, k), a contradiction, proving Theorem 6.2.

Using the same ideas as in Theorem 6.1 and Theorem 6.2 one can also state analogous results for the Fan-Raspaud Conjecture in terms of multigraphs.

6.2. Graphs having bridges

Since every perfect matching must intersect every bridge of a cubic graph, then the Fan-Raspaud Conjecture cannot be extended to cubic graphs containing bridges. The situation is quite different for the S_{4}-Conjecture as Theorem 6.3 shows. We know by Errera's Theorem [4] that if all the bridges of a connected cubic graph lie on a single path, then the graph has a perfect matching. We use this idea to show that there can be graphs with bridges that can have an S_{4}-pair.

Theorem 6.3. Let G be a connected cubic graph having k bridges all of which lie on a single path, for some positive integer k. If the S_{4}-Conjecture is true, then G admits an S_{4}-pair.

Figure 10. G with k bridges lying all on the same path.

Proof. Let e_{1}, \ldots, e_{k} be the bridges of G, and let $B_{1}, B_{2}, \ldots, B_{k+1}$ be the 2connected components of G such that $e_{i}=u_{i} v_{i+1}$ for each $i \in\{1, \ldots, k\}$, where $u_{i} \in V\left(B_{i}\right)$ and $v_{i+1} \in V\left(B_{i+1}\right)$. For each $i \in\{1, \ldots, k+1\}$, let G_{i} be the graph induced by $V\left(B_{i}\right)$, i.e. $G\left[V\left(B_{i}\right)\right]$. Let x_{1} and y_{1} be the two vertices adjacent to u_{1} in G_{1}, and let x_{k+1} and y_{k+1} be the two vertices adjacent to v_{k+1} in G_{k+1}. Let $G_{1}^{\prime}=\left(G_{1}-u_{1}\right) \cup x_{1} y_{1}$ and $G_{k+1}^{\prime}=\left(G_{k+1}-v_{k+1}\right) \cup x_{k+1} y_{k+1}$. Also, let $G_{i}^{\prime}=G_{i} \cup v_{i} u_{i}$ for every $i \in\{2, \ldots, k\}$. Clearly, $G_{1}^{\prime}, \ldots, G_{k+1}^{\prime}$ are bridgeless cubic multigraphs. Since we are assuming that the S_{4}-Conjecture holds, then, by Theorem 6.1, for every $i \in\{1, \ldots, k+1\}, G_{i}^{\prime}$ has an S_{4}-pair, say M_{1}^{i} and M_{2}^{i}. Using Theorem 6.2, we choose the S_{4}-pair in:

- G_{1}^{\prime}, such that the two edges originally incident to x_{1} (not $x_{1} u_{1}$) both have frequency 1,
- G_{i}^{\prime}, for each $i \in\{2, \ldots, k\}$, such that $\nu_{G_{i}^{\prime}}\left(v_{i} u_{i}\right)=2$, and
- G_{k+1}^{\prime}, such that the two edges originally incident to x_{k+1} (not $x_{k+1} v_{k+1}$) both have frequency 1.
Let $M_{1}:=\cup_{i=1}^{k+1} M_{1}^{i} \cup_{j=1}^{k} e_{j}-\cup_{l=2}^{k} v_{l} u_{l}$, and let $M_{2}:=\cup_{i=1}^{k+1} M_{2}^{i} \cup_{j=1}^{k} e_{j}-\cup_{l=2}^{k} v_{l} u_{l}$. Then, M_{1} and M_{2} are an S_{4}-pair of G.

Finally, we remark that there exist cubic graphs admitting a perfect matching which do not have an S_{4}-pair. For example, since the edges $u_{i} v_{i}$ in Figure 11 are bridges, then they must be in any perfect matching. Consequently, every pair of perfect matchings do not intersect the edges of the odd cycle T. This shows that there is no way to extend the S_{4}-Conjecture to the entire class of cubic graphs.

Figure 11. A cubic graph with bridges having no S_{4}-pair.

7. Remarks and Problems

Many problems about the topics presented above remain unsolved: apart from asking if we can solve the Fan-Raspaud Conjecture and the S_{4}-Conjecture completely, or at least partially for higher oddness, we do not know which are those graphs containing bridges which admit an S_{4}-pair and we do not know either if the S_{4}-Conjecture is equivalent to Conjecture 2.3 . Here we would like to add some other specific open problems.
For a positive integer k, we define ω_{k} to be the largest integer such that any graph with oddness at most ω_{k}, admits k perfect matchings with a bipartite complement. Clearly, for $k=1$, we have $\omega_{1}=0$, since the existence of a perfect matching of G with a bipartite complement is equivalent to the 3 -edge-colourability of G. Moreover, the S_{4}-Conjecture is equivalent to $\omega_{k}=\infty$, for $k \geq 2$, but a complete result to this is still elusive. Proposition 5.5 (see also Remark 5.6) give a lowerbound for ω_{k} and it would be interesting if this lowerbound can be significantly improved. We believe that the following problem, weaker than the S_{4}-Conjecture, is another possible step forward.

Problem 7.1. Prove the existence of a constant k such that every bridgeless cubic graph admits k perfect matchings whose union has a bipartite complement.

It is also known that not every perfect matching can be extended to an
$F R$-triple and neither to a Berge-Fulkerson cover, where the latter is a collection of six perfect matchings which cover the edge set exactly twice. We do not see a way how to produce a similar argument for S_{4}-pairs and so we also suggest the following problem.

Problem 7.2. Establish whether any perfect matching of a bridgeless cubic graph be extended to an S_{4}-pair.

It can be shown that Problem 7.2 is equivalent to saying that given any collection of disjoint odd cycles in a bridgeless cubic graph, then there exists a perfect matching which intersects all the odd cycles in this collection.

References

[1] M. Abreau, T. Kaiser, D. Labbate and G. Mazzuoccolo, Treelike Snarks, Electron. J. Combin. 23(3) (2016) \#P3.54.
[2] A. Bonisoli and D. Cariolaro, Excessive factorizations of regular graphs, in: A. Bondy, et al. (Eds.), Graph Theory in Paris, Birkhäuser, Basel (2007) 73-84.
[3] J. Edmonds, Maximum matching and a polyhedron with (0,1)-vertices, J. Res. Natl. Bur. Stand. Sec. B 69 (1965) 125-130.
[4] A. Errera, Une demonstration du theoreme de Petersen, Mathesis 36 (1922) 56-61.
[5] L. Esperet, F. Kardoš, A.D. King, D. Král and S. Norine, Exponentially many perfect matchings in cubic graphs, Adv. Math. 227 (2011) 1646-1664.
[6] L. Esperet and G. Mazzuoccolo, On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings, J. Graph Theory 77(2) (2014) 144-157.
[7] G. Fan and A. Raspaud, Fulkerson's Conjecture and circuit covers, J. Combin. Theory Ser. B 61(1) (1994) 133-138.
[8] M.A. Fiol, G. Mazzuoccolo and E. Steffen, On measures of edgeuncolorability of cubic graphs: A brief survey and some new results, arXiv:1702.07156 (2018).
[9] J.L. Fouquet and J.M. Vanherpe, On the perfect matching index of bridgeless cubic graphs, submitted to Opuscula hal-00374313 (2009).
[10] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1(1) (1971) 168-194.
[11] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-Factor hamiltonian graphs, J. Combin. Theory Ser. B 87 (2003) 138-144.
[12] J. Hägglund and E. Steffen, Petersen-colorings and some families of snarks, Ars Math. Contemp. 7 (2014) 161-173.
[13] F. Jaeger, Nowhere-zero flow problems, Selected topics in graph theory 3 (1988) 71-95.
[14] L. Jin and E. Steffen, Petersen Cores and the Oddness of Cubic Graphs, J. Graph Theory 84(2) (2017) 109-120.
[15] T. Kaiser, D. Král and S. Norine, Unions of perfect matchings in cubic graphs, in: M. Klazar, et al. (Eds.), Topics in Discrete Mathematics. Algorithms and Combinatorics, Springer, Berlin, Heidelberg 26 (2006) 225-230.
[16] T. Kaiser and A. Raspaud, Perfect matchings with restricted intersection in cubic graphs, European J. Combin. 31 (2010) 1307-1315.
[17] H. Lin and X. Wang, Three matching intersection property for matching covered graphs, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 19(3) (2017).
[18] L. Lovász and M.D. Plummer, Matching Theory, Akadémiai Kiadó, NorthHolland, Amsterdam (1986).
[19] E. Máčajová and M. Škoviera, Fano colourings of cubic graphs and the Fulkerson Conjecture, Theoret. Comput. Sci. 349 (2005) 112-120.
[20] E. Máčajová and M. Škoviera, Sparsely intersecting perfect matchings in cubic graphs, Combinatorica $\mathbf{3 4 (1)}$ (2014) 61-94.
[21] G. Mazzuoccolo, Covering a cubic graph with perfect matchings, Discrete Math. 313 (2013) 2292-2296.
[22] G. Mazzuoccolo, New conjectures on perfect matchings in cubic graphs, Electron. Notes Discrete Math. 40 (2013) 235-238.
[23] Z. Miao, X. Wang and C.Q. Zhang, Unique Fulkerson coloring of Petersen minor-free cubic graphs, European J. Combin. 43 (2015) 165-171.
[24] V.V. Mkrtchyan, A remark on the Petersen coloring conjecture of Jaeger, Australas. J. Combin. 56 (2013) 145-151.
[25] V.V. Mkrtchyan and G.N. Vardanyan, On two consequences of Berge-Fulkerson Conjecture, arXiv:1805.06828v1 (2018).
[26] J. Petersen, Die Theorie der regulären graphs, Acta Mathematica 15 (1891) 193-220.
[27] R. Šámal, New approach to Petersen coloring, Electron. Notes Discrete Math. 38 (2011) 755-760.
[28] E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78(3) (2015) 195-206.
[29] Q. Zhu, W. Tang and C.Q. Zhang, Perfect matching covering, the BergeFulkerson conjecture, and the FanRaspaud conjecture, Discrete Appl. Math. 166 (2014) 282-286.

