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Abstract

In 1994, it was conjectured by Fan and Raspaud that every simple bridge-
less cubic graph has three perfect matchings whose intersection is empty. In
this paper we answer a question recently proposed by Mkrtchyan and Var-
danyan, by giving an equivalent formulation of the Fan-Raspaud Conjecture.
We also study a possible weaker conjecture originally proposed by the first
author, which states that in every simple bridgeless cubic graph there exist
two perfect matchings such that the complement of their union is a bipartite
graph. We here show that this conjecture can be equivalently stated using
a variant of Petersen-colourings, we prove it for graphs having oddness at
most 4 and we give a natural extension to bridgeless cubic multigraphs and
to certain cubic graphs having bridges.
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ture, Berge-Fulkerson Conjecture, Petersen-colouring.
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1. Introduction and terminology

Many interesting problems in graph theory are about the behaviour of perfect
matchings in cubic graphs. One of the early classical results was made by Petersen
[26] and states that every bridgeless cubic graph has at least one perfect matching.
Few years ago one of the most prominent conjectures in this area was completely
solved by Esperet et al. in [5]: the conjecture, proposed by Lovász and Plummer
in the 1970s, stated that the number of perfect matchings in a bridgeless cubic
graph grows exponentially with its order (see [18]). However, many others are
still open, such as Conjecture 2.1 proposed independently by Berge and Fulkerson
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in the 1970s as well, and Conjecture 2.2 by Fan and Raspaud (see [10] and [7],
respectively). These two conjectures are related to the behaviour of the union and
intersection of sets of perfect matchings, and such kind of properties are already
largely studied: see, amongst others, [1, 2, 14, 15, 16, 17, 20, 21, 23, 28, 29].
In this paper we prove that a seemingly stronger version of the Fan-Raspaud
Conjecture is indeed equivalent to the classical formulation (Theorem 3.3). In the
second part of the paper (Section 4 and Section 5), we study a weaker conjecture
proposed by the first author in [22]: we show how we can state it in terms of a
variant of Petersen-colourings (Proposition 4.1) and we prove it for cubic graphs
of oddness 4 (Theorem 5.4). Although all mentioned conjectures are about simple
cubic graphs without bridges, we extend our study of the union of two perfect
matchings to bridgeless cubic multigraphs and to particular cubic graphs having
bridges (Section 6.1 and Section 6.2).
Graphs considered in the sequel, unless otherwise stated, are simple connected
bridgeless cubic graphs and so do not contain loops and parallel edges. Graphs
that may contain parallel edges will be referred to as multigraphs. For a graph G,
let V (G) and E(G) be the set of vertices and the set of edges of G, respectively.
A matching of G is a subset of E(G) such that any two of its edges do not share
a common vertex. For an integer k ≥ 0, a k-factor of G is a spanning subgraph
of G (not necessarily connected) such that the degree of every vertex is k. The
edge-set of a 1-factor is said to be a perfect matching. The least number of odd
cycles amongst all 2-factors of G, denoted by ω(G), is called the oddness of G
and is clearly even for a cubic graph since G has an even number of vertices. For
M ⊆ E(G), we denote the graph G\M by M . In particular, when M is a perfect
matching of G, then M is a 2-factor of G. In this case, following the terminology
used for instance in [8], if M has ω(G) odd cycles, then M is said to be a minimal
perfect matching.
A cut in G is any set X ⊆ E(G) such that X has more components than G,
and no proper subset of X has this property, i.e. for any X ′ ⊂ X, X ′ does not
have any more components than G. The set of edges with precisely one end in
W ⊆ V (G) is denoted by ∂GW , or just ∂W when it is obvious to which graph
we are referring. Moreover, a cut X is said to be odd if there exists a subset W
of V (G) having odd cardinality such that X = ∂W .
We next define some standard operations between graphs that will be useful in
the sequel. Let G1 and G2 be two bridgeless graphs (not necessarily cubic), and
let e1 and e2 be two edges such that e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2).
A 2-cut connection on e1 and e2 is a graph operation that consists of constructing
the new graph

[G1 − e1] ∪ [G2 − e2] ∪ {u1u2, v1v2},
and denoted by G1(e1) ∗ G2(e2). Clearly, the graph obtained is also bridgeless.
Now, let G1 and G2 be two bridgeless cubic graphs, v1 ∈ V (G1) and v2 ∈ V (G2)
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such that the vertices adjacent to v1 are x1, y1 and z1, and those adjacent to v2 are
x2, y2 and z2. A 3-cut connection (sometimes also known as the star product, see
for instance [11]) on v1 and v2 is a graph operation that consists of constructing
the new graph

[G1 − v1] ∪ [G2 − v2] ∪ {x1x2, y1y2, z1z2},

and denoted by G1(v1)∗G2(v2). It is clear that the resulting graph is also bridge-
less and cubic. The 3-edge-cut {x1x2, y1y2, z1z2} is referred to as the principal
3-edge cut (see for instance [9]).

2. A list of relevant conjectures

One of the aims of this paper is to study the behaviour of perfect matchings in
cubic graphs, more specifically the union of two perfect matchings (see Section
4 and Section 5). We relate this to well-known conjectures stated here below, in
particular: the Berge-Fulkerson Conjecture and the Fan-Raspaud Conjecture.

Conjecture 2.1 (Berge-Fulkerson) [10]. Every bridgeless cubic graph G admits
six perfect matchings M1, . . . ,M6 such that any edge of G belongs to exactly two
of them.

⇒ ⇒Conjecture 2.3 Conjecture 2.4⇒Berge-Fulkerson
Conjecture Conjecture

Fan-Raspaud Prop. 2.5

Figure 1. Conjectures mentioned and how they are related.

We here also state other (possibly weaker) conjectures implied by the above
conjecture.

Conjecture 2.2 (Fan-Raspaud) [7]. Every bridgeless cubic graph admits three
perfect matchings M1,M2, and M3 such that M1 ∩M2 ∩M3 = ∅.

In the sequel we will refer to three perfect matchings satisfying Conjecture
2.2 as an FR-triple. We can see that Conjecture 2.2 is immediately implied by
the Berge-Fulkerson Conjecture, since we can take any three perfect matchings
out of the six which satisfy Conjecture 2.1. A still weaker statement implied by
the Fan-Raspaud Conjecture is the following:

Conjecture 2.3 [19]. For each bridgeless cubic graph G, there exist two perfect
matchings M1 and M2 such that M1 ∩M2 contains no odd-cut of G.
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We claim that any two perfect matchings out of the three in an FR-triple
have no odd-cut in their intersection, in other words that Conjecture 2.2 implies
Conjecture 2.3. For, suppose not. Then, without loss of generality, suppose that
M2 ∩M3 contains an odd cut X. Hence, since every perfect matching has to
intersect an odd-cut at least once, then |M1 ∩ (M2 ∩M3)| ≥ |M1 ∩ X| ≥ 1, a
contradiction, since we assumed that M1∩M2∩M3 = ∅. In relation to the above,
the first author proposed the following conjecture:

Conjecture 2.4 (S4-Conjecture) [22]. For any bridgeless cubic graph G, there
exist two perfect matchings such that the deletion of their union leaves a bipartite
subgraph of G.

For reasons which shall be obvious in Section 4 we let such a pair of perfect
matchings be called an S4-pair of G and shall refer to Conjecture 2.4 as the
S4-Conjecture. We will first proceed by showing that this conjecture is implied
by Conjecture 2.3, and so, by what we have said so far, is a consequence of
the Berge-Fulkerson Conjecture. In particular, we can see the S4-Conjecture as
Conjecture 2.3 restricted to odd-cuts ∂V (C), where C is an odd cycle of G.

Proposition 2.5. Conjecture 2.3 implies the S4-Conjecture.

Proof. Let M1 and M2 be two perfect matchings such that their intersection
does not contain any odd-cut. Consider M1 ∪M2, and suppose that it contains
an odd cycle C. Then all the edges of ∂V (C) belong to M1 ∩M2. If ∂V (C)
has exactly two components, then ∂V (C) is an odd-cut belonging to M1 ∩M2,
a contradiction. Therefore, ∂V (C) must have more than two components, say
k, denoted by C1, C2, . . . , Ck, where the first component C1 is the cycle C. Let
[C1, Cj ] denote the set of edges between C1 and Cj , for j ∈ {2, . . . , k}. Since∑k

j=2 |[C1, Cj ]| = |∂V (C)| ≡ 1 mod 2, then there exists at least one j′ for some
j′ ∈ {2, . . . , k}, such that |[C1, Cj′ ]| ≡ 1 mod 2. However, [C1, Cj′ ] is an odd-cut
which belongs to M1 ∩M2, a contradiction.

3. Equivalent Statements to the Fan-Raspaud Conjecture

Let M1, . . . ,Mt be a list of perfect matchings of G, and let a ∈ E(G). We denote
the number of times a occurs in this list by νG[a : M1, . . . ,Mt]. When it is obvious
which list of perfect matchings or which graph we are referring to, we will denote
this as ν(a) and refer to ν(a) as the frequency of a. We will sometimes need to
refer to the frequency of an ordered list of edges, say (a, b, c), and we will do this
by saying that the frequency of (a, b, c) is (i, j, k), for some integers i, j and k.
Mkrtchyan et al. [25] showed that the Fan-Raspaud Conjecture, i.e. Conjecture
2.2, is equivalent to the following:
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Conjecture 3.1. [25] For each bridgeless cubic graph G, any edge a ∈ E(G) and
any i ∈ {0, 1, 2}, there exist three perfect matchings M1,M2, and M3 such that
M1 ∩M2 ∩M3 = ∅ and νG[a : M1,M2,M3] = i.

In other words they show that if a graph has an FR-triple then, for every i
in {0, 1, 2}, there exists an FR-triple in which the frequency of a pre-chosen edge
is exactly i. In the same paper, Mkrtchyan et al. state the following seemingly
stronger version of the Fan-Raspaud Conjecture:

Conjecture 3.2. [25] Let G be a bridgeless cubic graph, w a vertex of G and i, j
and k three integers in {0, 1, 2} such that i+j+k = 3. Then, G has an FR-triple
in which the edges incident to w in a given order have frequencies (i, j, k).

This means that we can prescribe the frequencies to the three edges incident
to a given vertex. At the end of [25], the authors remark that it would be inter-
esting to show that Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture.
We here prove that this is actually the case.

Theorem 3.3. Conjecture 3.2 is equivalent to the Fan-Raspaud Conjecture.

Proof. Since the Fan-Raspaud Conjecture is equivalent to Conjecture 3.1, it
suffices to show the equivalence of Conjectures 3.1 and 3.2. The latter clearly
implies the former, so assume Conjecture 3.1 is true and let a, b and c be the edges
incident to w such that the frequencies (i, j, k) are to be assigned to (a, b, c). It
is sufficient to show that there exist two FR-triples in which the frequencies of
(a, b, c) are (2, 1, 0) in one FR-triple (Case 1 below) and (1, 1, 1) in the other
FR-triple (Case 2 below).

u4

u1 u2

u3

G1 G2

u3

a1

b1
c1

a2

c2
b2

u4

Figure 2. The graphs K4 and K∗4 in Case 1 of the proof of Theorem 3.3.

Case 1. Let u1, u2, u3 and u4 be the vertices of the complete graph K4 as in
Figure 2. Consider two copies of G, and let the vertex w in the ith copy of G be
denoted by wi, for each i ∈ {1, 2}. We apply a 3-cut connection between ui and
wi, for each i ∈ {1, 2}. With reference to this resulting graph, denoted by K∗4 ,
we refer to the copy of the graph G − w at u1 as G1, and to the corresponding
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edges a, b and c as a1, b1 and c1, respectively. The graph G2 and the edges a2, b2
and c2 are defined in a similar way, such that b1 and b2 are adjacent, and also
c1 and c2, as Figure 2 shows. Note also that a1 and a2 coincide in K∗4 . By our
assumption, there exists an FR-triple M1,M2 and M3 of K∗4 in which the edge
u3u4 has frequency 2. Without loss of generality, let u3u4 ∈M1 ∩M2. Then, a1
(and so a2) must belong to M1∩M2. Clearly, a1 (and so a2) cannot belong to M3,
and so the principal 3-edge-cuts with respect to G1 and G2 do not belong to M3.
If b1 ∈M3, then we are done, as then M1,M2 and M3 restricted to G1, together
with a and b having the same frequencies as a1 and b1, induce an FR-triple of
G such that the frequencies of (a, b, c) are (2, 1, 0). So suppose c1 ∈ M3. Then,
b2 ∈ M3, and so by a similar argument applied to G2 and the corresponding
edges, M1,M2 and M3 induce an FR-triple in G such that the frequencies of
(a, b, c) are (2, 1, 0).

Case 2. Let P be the Petersen graph and {u1, u2, u3, u4} be a maximum

e

G1

G2 G3

G4

a1

b1

c3

a4

c2

c1

a2 a3

u2

u4

e

u1

u3

b3b2

b4

c4

Figure 3. The graphs P and P ∗ in Case 2 of the proof of Theorem 3.3.

independent set of vertices in P as in Figure 3. Consider four copies of G. Let
the vertex w in the ith copy of G be denoted by wi, for each i ∈ {1, . . . , 4}. Let
P ∗ be the graph obtained by applying a 3-cut connection between each ui and
wi, as shown in Figure 3. Similar to Case 1 we refer to the copy of G − w at
ui as Gi and to the corresponding edges a, b and c as ai, bi and ci, respectively.
Since we are assuming true Conjecture 3.1, we can consider an FR-triple M1,M2

and M3 of P ∗ in which the edge e incident to both a1 and a4 has frequency 2.
Without loss of generality, let the two perfect matchings containing e be M1 and
M2. The edges a1, c2, c3 and a4 are not contained in M1 and neither M2, since
they are all incident to e, and so no principal 3-edge-cut leaving Gi belongs to M1

or M2. Then, M1 and M2 induce perfect matchings of P (clearly distinct), and
since there are exactly two perfect matchings of P containing e, we can assume
that M1 contains {e, b1, a2, a3, b4}, and M2 contains {e, c1, b2, b3, c4}.

If the third perfect matching M3 induces a perfect matching of the Petersen
graph then the induced perfect matching cannot be one of the perfect matchings
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induced by M1 and M2 in P . Hence, there exists at least one Gi such that
the frequencies of (ai, bi, ci) are (1, 1, 1) and so M1,M2 and M3 restricted to Gi,
together with a, b and c having the same frequencies as ai, bi and ci, induce an
FR-triple in G with the needed property.

Therefore, suppose M3 contains the principal 3-edge-cut of one of the Gi’s,
say G1 by symmetry of P ∗. Thus, a1, b1 and c1 belong to M3. The perfect
matching M3 can intersect the principal 3-edge-cut at G2 either in b2 or c2 (not
both). If c2 ∈M3 we are done by the same reasoning above but now applied to G2

and the corresponding edges. So suppose b2 ∈ M2 ∩M3. Then clearly c4 ∈ M3,
and M3 can only intersect the principal 3-edge-cut at G3 in c3, implying that the
frequencies of (a3, b3, c3) are (1, 1, 1) in P ∗ and that M1,M2 and M3 restricted to
G3, together with a, b and c having the same frequencies as a3, b3 and c3, induce
an FR-triple in G with the needed property.

In [25] it is also shown that a minimal counterexample to Conjecture 3.2 is
cyclically 4-edge-connected. It remains unknown whether a smallest counterex-
ample to the original formulation of the Fan-Raspaud Conjecture has the same
property. Indeed, we only prove that the two assertions are equivalent, but we
cannot say whether a possible counterexample to Conjecture 3.2 is itself a coun-
terexample to the original formulation.

4. Equivalent Statements to the S4-Conjecture

All conjectures presented in Section 2 are implied by a conjecture made by Jaeger
in the late 1980s. In order to state it we need the following definitions. Let G
and H be two cubic graphs. An H-colouring of G is a proper edge-colouring f
of G with edges of H, such that for each vertex u ∈ V (G), there exists a vertex
v ∈ V (H) with f(∂G{u}) = ∂H{v}. If G admits an H-colouring, then we will
write H ≺ G. In this paper we consider S4-colourings of bridgeless cubic graphs,
where S4 is the multigraph shown in Figure 4. Since S4 is not cubic we remark
that in an S4-colouring of a bridgeless cubic graph G, the above definition of H-
colourings applies, but for all vertices u ∈ V (G), ∂G{u} is not mapped to ∂S4{z},
where z is the vertex of degree 1 in S4 (see Figure 4).

The importance of H-colourings is mainly due to Jaeger’s Conjecture [13]
which states that for each bridgeless cubic graph G, one has P ≺ G (here P is
again the Petersen graph). For recent results on P -colourings, known as Petersen-
colourings, see for instance [12, 24, 27]. The following proposition shows why we
choose to refer to a pair of perfect matchings whose deletion leaves a bipartite
subgraph as an S4-pair.
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g3 g0g4
z

g1

g2

Figure 4. The multigraph S4.

Proposition 4.1. Let G be a bridgeless cubic graph, then S4 ≺ G if and only if
G has an S4-pair.

Proof. Along the entire proof we denote the edges of S4 by using the same
labelling as in Figure 4. Let M1 and M2 be an S4-pair of G. The graph induced
by M1 ∪M2, denoted by G[M1 ∪M2], is made up of even cycles and isolated
edges, whilst the bipartite graph M1 ∪M2 is made up of even cycles and paths.
We then obtain an S4-colouring of G as follows:

• the isolated edges in M1 ∪M2 are given colour g0,

• the edges of the even cycles in M1 ∪M2 are properly edge-coloured with g3
and g4, and

• the edges of the paths and even cycles in M1 ∪M2 are properly edge-
coloured with g1 and g2.

One can clearly see that this gives an S4-colouring of G. Conversely, assume that
S4 ≺ G. We are required to show that there exists an S4-pair of G. Let M1 be the
set of edges of G coloured g3 and g0, and let M2 be the set of edges of G coloured
g4 and g0. If e and f are edges of G coloured g3 (or g4) and g0, respectively,
then e and f cannot be adjacent, otherwise we contradict the S4-colouring of
G. Thus, M1 and M2 are matchings. All that is left to show is that they are
perfect matchings. This follows since for every vertex v of G, f(∂G{v}) is equal
to {g1, g3, g4}, or {g2, g3, g4}, or {g0, g1, g2}. Thus, M1 ∪M2 is the graph induced
by the edges coloured g1 and g2, which clearly cannot induce an odd cycle.

Hence, by the previous proof, Conjecture 2.4 can be stated in terms of
S4-colourings, which clearly shows why we choose to refer to it as the S4-Conjecture.
In analogy to what we did for FR-triples, here we prove that for S4-pairs we can
prescribe the frequency of an edge and the frequencies of the edges leaving a
vertex (the proof of the latter implies also that we can prescribe the frequen-
cies of the edges of each 3-cut). Consider the following conjecture, analogous to
Conjecture 3.1:
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Conjecture 4.2. For any bridgeless cubic graph G, any edge a ∈ E(G) and any
i ∈ {0, 1, 2}, there exists an S4-pair, say M1 and M2, such that νG[a : M1,M2] =
i.

In Theorem 4.3 we show that the latter conjecture is actually equivalent
to the S4-Conjecture. The proof given in [25] to show the equivalence of the
Fan-Raspaud Conjecture and Conjecture 3.1 is very similar to the proof we give
here for the analogous case for the S4-Conjecture, however we need a slightly
more complicated tool in our context.

Theorem 4.3. Conjecture 4.2 is equivalent to the S4-Conjecture.

G1

G2

Figure 5. An edge in P transformed into the corresponding structure in H.

Proof. Clearly, Conjecture 4.2 implies the S4-Conjecture so it suffices to show
the converse. Assume true the S4-Conjecture and let f1f2f3 be a path of length
three in K4 which does not form a cycle. Consider two copies of G. Let the edge
a in the ith copy of G be denoted by ai, for each i ∈ {1, 2}. Let K ′4 be the graph
obtained by applying a 2-cut connection between fi and ai for each i ∈ {1, 2}.
We refer to the copy of the graph G− a on fi as Gi.
Let {e1, . . . , e15} be the edges of the Petersen graph and let T1, . . . , T15 be 15
copies of K ′4. For every i ∈ {1, . . . , 15}, apply a 2-cut connection on ei and the
edge f3 of Ti. Consequently, every edge ei of the Petersen graph is transformed
into the structure Ei as in Figure 5, and we refer to G1 and G2 on Ei as Gi

1 and
Gi

2, respectively. Let H be the resulting graph. By our assumption, there exists
an S4-pair of H, say M1 and M2, which induces a pair of two distinct perfect
matchings in P , say N1 and N2, respectively. There exists an edge of P , say ej ,
for some j ∈ {1, . . . , 15}, such that νP [ej : N1, N2] = 1. Hence, the restriction

of M1 and M2 to the edge set of Gj
1, together with the edge a having the same

frequency as ej , gives rise to an S4-pair of G in which the frequency of a is 1.
Moreover, there exists an edge of P , say ek, for some k ∈ {1, . . . , 15}, such that
νP [ek : N1, N2] = 2. Restricting M1 and M2 to the edge set of Gk

1, together with
the edge a having the same frequency as ek, gives rise to an S4-pair of G, in
which the frequency of a is 2. Also, the restriction of M1 and M2 to the edge set
of Gk

2 gives rise to an S4-pair of G (Gk
2 together with a), in which the frequency

of a is 0, because if not, then there exists an odd cycle in G, say of length α,
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passing through a and having all its edges with frequency 0. However, this would
mean that there is an odd cycle of length α + 4 on Ek in M1 ∪M2 (in H), a
contradiction.

As in Section 3, we here state an analogous conjecture to Conjecture 3.2, but
for S4-pairs:

Conjecture 4.4. Let G be a bridgeless cubic graph, w a vertex of G and i, j and
k three integers in {0, 1, 2} such that i + j + k = 2. Then, G has an S4-pair in
which the edges incident to w in a given order have frequencies (i, j, k).

The following theorem shows that this conjecture is actually equivalent to
Conjecture 4.2, and so to the S4-Conjecture by Theorem 4.3.

Theorem 4.5. Conjecture 4.4 is equivalent to the S4-Conjecture.

Proof. Since the S4-Conjecture is equivalent to Conjecture 4.2, it suffices to
show the equivalence of Conjectures 4.2 and 4.4. Clearly, Conjecture 4.4 implies
Conjecture 4.2 and so we only need to show the converse. Let a, b and c be the
edges incident to w such that the frequencies (i, j, k) are to be assigned to (a, b, c).
We only need to prove the case when (i, j, k) is equal to (1, 1, 0), as all other cases
follow from Conjecture 4.2.

Consider the graph G(w) ∗ P (v), where P is the Petersen graph and v is any

aw

d

cw

bw

G−w

Figure 6. The graph G(w) ∗ P (v) from Theorem 4.5.

vertex of P . We refer to the edges corresponding to a, b and c in G(w) ∗P (v), as
aw, bw and cw. Let d be an edge originally belonging to P and adjacent to cw in
G(w) ∗ P (v). Since we are assuming true Conjecture 4.2, there exists an S4-pair
in G(w) ∗ P (v) in which d has frequency 2. If the frequencies of (aw, bw, cw) are
(1, 1, 0), then we are done, because the S4-pair for G(w) ∗ P (v) restricted to the
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edges in G − w, together with a and b having the same frequencies as aw and
bw, give an S4-pair for G with the desired property. We claim that this must be
the case. For, suppose not. Then, without loss of generality, the frequencies of
(aw, bw, cw) are (2, 0, 0). This implies that all the edges of G(w) ∗P (v) originally
in P have either frequency 0 or 2, since the two perfect matchings in the S4-pair
induce the same perfect matching in P . However, this implies that M1 ∪M2 is
not bipartite, a contradiction.

As in [25], a minimal counterexample to Conjecture 4.4 (but not necessarily
to the S4-Conjecture) is cyclically 4-edge-connected. We omit the proof of this
result as it is very similar to the proof of Theorem 2 in [25].

5. Further Results on the S4-Conjecture

Little progress has been made on the Fan-Raspaud Conjecture so far. Bridge-
less cubic graphs which trivially satisfy this conjecture are those which can be
edge-covered by four perfect matchings. In this case, every three perfect match-
ings from a cover of this type form an FR-triple since every edge has frequency
one or two with respect to this cover. Therefore, a possible counterexample to
the Fan-Raspaud Conjecture should be searched for in the class of bridgeless
cubic graphs whose edge-set cannot be covered by four perfect matchings, see
for instance [6]. In 2009, Máčajová and Škoviera [20] shed some light on the
Fan-Raspaud Conjecture by proving it for bridgeless cubic graphs having odd-
ness two. One of the aims of this paper is to show that even if the S4-Conjecture
is still open, some results are easier to extend than the corresponding ones for
the Fan-Raspaud Conjecture. Clearly, the result by Máčajová and Škoviera in
[20] implies the following result:

Theorem 5.1. Let G be a bridgeless cubic graph of oddness two. Then, G has
an S4-pair.

We first give a proof of Theorem 5.1 in the same spirit of that used in [20],
however much shorter since we are proving a weaker result.

Proof 1 of Theorem 5.1. Let M1 be a minimal perfect matching of G,
and let C1 and C2 be the two odd cycles in M1. Colour the even cycles in M1

using two colours, say 1 and 2. For each i ∈ {1, 2}, let Ei be the set of edges
belonging to the even cycles in M1 and having colour i. In G, there must exist a
path Q whose edges alternate in M1 and E1 and whose end-vertices belong to C1

and C2. Note that since the edges of C1 and C2 are not edges in M1 ∪E1, every
other vertex on Q which is not an end-vertex does not belong to C1 and C2.
For each i ∈ {1, 2}, let vi be the end-vertex of Q belonging to Ci, and let MCi be
the unique perfect matching of Ci − vi. Let M2 := (M1 ∩Q) ∪ (E1 \Q) ∪MC1 ∪
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MC2 . Clearly, M2 is a perfect matching of G which intersects C1 and C2, and so
M1 ∪M2 is bipartite. �
We now give a second alternative proof of the same theorem using fractional
perfect matchings, which we will show to be easier to use for graphs having
larger oddness. Let w be a vector in R|E(G)|. The entry of w corresponding to
e ∈ E(G) is denoted by w(e), and for A ⊆ E(G), we let the weight of A, denoted
by w(A), to be equal to

∑
e∈Aw(e). The vector w is said to be a fractional perfect

matching of G if:

1. w(e) ∈ [0, 1] for each e ∈ E(G),

2. w(∂{v}) = 1 for each v ∈ V (G), and

3. w(∂W ) ≥ 1 for each W ⊆ V (G) of odd cardinality.

The following lemma is presented in [15] and it is a consequence of Edmonds’
characterisation of perfect matching polytopes in [3].

Lemma 5.2. If w is a fractional perfect matching in a graph G, and c ∈ R|E(G)|,
then G has a perfect matching N such that

c · χN ≥ c · w,

where · denotes the scalar product. Moreover, there exists a perfect matching
satisfying the above inequality and which contains exactly one edge of each odd
cut X with w(X) = 1.

Remark 5.3. If we let w(e) = 1/3 for all e ∈ E(G), for some graph G, then we
know that w is a fractional perfect matching of G. Also, since the weight of every
3-cut is one, then by Lemma 5.2 there exists a perfect matching of G containing
exactly one edge of each 3-cut of G.

Proof 2 of Theorem 5.1. Let M1 be a minimal perfect matching of G,
and let C1 and C2 be the two odd cycles in M1. For each i ∈ {1, 2}, let ei1 and
ei2 be two adjacent edges belonging to Ci ∩M1. We define the vector c ∈ R|E(G)|

such that

c(e) =

{
1 if e ∈ ∪2i=1{ei1, ei2},
0 otherwise.

Also, as in Remark 5.3, we know that if we let w(e) = 1/3 for all e ∈ E(G), then
w is a fractional perfect matching of G. Hence, by Lemma 5.2, there exists a
perfect matching M2 such that c · χM2 ≥ c · w, which implies that

| ∪2i=1 {ei1, ei2} ∩M2| ≥ 1/3× 2× 2 = 4/3 > 1.

Therefore, for each i ∈ {1, 2}, there exists exactly one j ∈ {1, 2} such that
eij ∈M2. Hence, M2 intersects C1 and C2 and so M1 ∪M2 is bipartite. �
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Using the same idea as in Proof 2 of Theorem 5.1, we also prove that the
S4-Conjecture is true for graphs having oddness 4.

Theorem 5.4. Let G be a bridgeless cubic graph of oddness four. Then, G has
an S4-pair.

Proof. Let M1 be a minimal perfect matching of G, and let C1, C2, C3 and C4

be the four odd cycles in M1. By Remark 5.3, there exists a perfect matching
N of G such that if G has any 3-cuts, then N intersects every 3-cut of G in one
edge. Moreover, for every i ∈ {1, . . . , 4}, there exists at least a pair of adjacent
edges ei1 and ei2 belonging to Ci ∩N . We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪4i=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

The vector w is clearly a fractional perfect matching of G because, in particular,
N intersects every 3-cut in one edge and so w(X) ≥ 1 for each odd cut X of G.
Hence, by Lemma 5.2, there exists a perfect matching M2 such that c·χM2 ≥ c·w,
which implies that

| ∪4i=1 {ei1, ei2} ∩M2| ≥ 2/5× 2× 4 = 16/5 > 3.

Therefore, for each i ∈ {1, . . . , 4}, there exists exactly one j ∈ {1, 2} such that
eij ∈ M2. Hence, M2 intersects C1, C2, C3 and C4 and so M1 ∪M2 is bipartite.

As the above proofs show us, extending results with respect to the S4-Conjecture
is easier than in the case of the Fan-Raspaud Conjecture and this is why we be-
lieve that a proof of the S4-conjecture could be a first feasible step towards a
solution of the Fan-Raspaud Conjecture. For graphs having oddness at least six
we are not able to prove the existence of an S4-pair and we wonder how many
perfect matchings we need such that the complement of their union is bipartite.
In the next proposition we use the technique used in Theorem 5.4 and show that
given a bridgeless cubic graph G, if ω(G) ≤ 5k−1 − 1 for some positive integer k,
then there exist k perfect matchings such that the complement of their union is
bipartite. Note that for k = 2 we obtain ω(G) ≤ 4.

Proposition 5.5. Let G be a bridgeless cubic graph and let C be a collection
of disjoint odd cycles in G such that |C| ≤ 5k−1 − 1 for some positive integer k.
Then, there exist M1, . . . ,Mk−1 perfect matchings of G such that for every C ∈ C,
C ∩Mj 6= ∅ for at least one of the M ′js. Moreover, if ω(G) ≤ 5k−1−1, then there
exist k perfect matchings such that the complement of their union is bipartite.



14 G. Mazzuoccolo and J.P. Zerafa

Proof. We proceed by induction on k. For k = 1, the assertion trivially holds
since C is the empty set. Assume result is true for some k ≥ 1 and consider
k + 1. Let C1, C2, . . . , Ct, with t ≤ 5k − 1, be the odd cycles of G in C. Let N
be a perfect matching of G which intersects every 3-cut of G once. For every
i ∈ {1, . . . , t}, there exists at least a pair of adjacent edges ei1 and ei2 belonging
to Ci ∩N . We define the vector c ∈ R|E(G)| such that

c(e) =

{
1 if e ∈ ∪ti=1{ei1, ei2},
0 otherwise.

We also define the vector w ∈ R|E(G)| as follows:

w(e) =

{
1/5 if e ∈ N,
2/5 otherwise.

As in the proof of Theorem 5.4, w is a fractional perfect matching of G and by
Lemma 5.2 there exists a perfect matching Mk such that c · χMk ≥ c · w. This
implies that

| ∪2i=1 {ei1, ei2} ∩Mk| ≥ 2× 2/5× t.
Let C′ be the subset of C which contains the odd cycles of C with no edge of
Mk. Then, |C′| ≤ |C| − 4

5 t = t − 4
5 t = t

5 ≤ 5k−1 − 1
5 , and so |C′| ≤ 5k−1 − 1. By

induction, there exist k − 1 perfect matchings of G, say M1, . . . ,Mk−1, having
the required property with respect to C′. Therefore, M1, . . . ,Mk intersect all odd
cycles in C. The second part of the statement easily follows by considering as C
the set of odd cycles in the complement of a minimal perfect matching M of G,
since the union of M with the k−1 perfect matchings which intersect all the odd
cycles in C has a bipartite complement.

Remark 5.6. We note that with every step made in the proof of Proposition
5.5, one could update the weight w of the edges using the methods presented
in [15, 21] which gives a slightly better upperbound for ω(G). For reasons of
simplicity and brevity, we prefer the present weaker version of Proposition 5.5.

6. Extension of the S4-Conjecture to larger classes of cubic
graphs

6.1. Multigraphs

In this section we show that the S4-Conjecture for bridgeless cubic graphs is
true if and only if its natural extension to bridgeless cubic multigraphs is true.
We note that bridgeless cubic multigraphs cannot contain any loops. Clearly,
if every bridgeless cubic multigraph has an S4-pair, then the S4-Conjecture is
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true, since the class of bridgeless cubic multigraphs contains the class of simple
bridgeless cubic graphs. So it suffices to show that the S4-Conjecture implies that
every bridgeless cubic multigraph has an S4-pair, as Theorem 6.1 shows.
We will make use of the following operation on parallel edges, referred to as
smoothing. Let G′ be a bridgeless cubic multigraph. Let u and v be two vertices
in G′ such that there are exactly two parallel edges between them.

x u v y

Figure 7. Vertices x, u, v and y in G′.

Let x and y be the vertices adjacent to u and v, respectively (see Figure 7).
We say that we smooth uv if we delete the vertices u and v from G′ and add an
edge between x and y (even if x and y are already adjacent in G′). One can easily
see that the resulting graph after smoothing uv is again bridgeless and cubic.

Let x, y, u and v be as in Figure 7 and let M ′ be a perfect matching of G′.
Then, xu ∈ M ′ if and only if vy ∈ M ′. Let G be the resulting graph after
smoothing uv. We note that

M =

{
M ′ ∪ xy − {xu, vy} if xu ∈M ′,
M ′ − uv otherwise.

is a perfect matching of G and we say that M and M ′ are corresponding perfect
matchings.

Theorem 6.1. The S4-Conjecture is true if and only if every bridgeless cubic
multigraph has an S4-pair.

Proof. The backward direction is clearly true, so assume true the S4-Conjecture.
Let G′ be a bridgeless cubic multigraph, and assume that G′ is a minimum
counterexample. Then, G′ cannot be a simple graph as we are assuming that the
S4-Conjecture is true. Therefore, G′ must have some parallel edges. Clearly, the
unique bridgeless cubic multigraph on two vertices C2,3, has an S4-pair and so
assume that G′ 6= C2,3. Thus, G′ must have vertices x, u, v and y as in Figure 7.
Let G be the resulting multigraph after smoothing uv. By minimality of G′, G
has an S4-pair, say M1 and M2, with corresponding perfect matchings M ′1 and
M ′2 in G′. However, the latter clearly form an S4-pair for G′, contradicting our
initial assumption.

The following theorem says that Conjecture 4.4 can also be extended to
multigraphs.
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Theorem 6.2. Let i, j and k be three integers in {0, 1, 2} such that i+ j+ k = 3
and let w be a vertex in a bridgeless cubic multigraph G′. Then, the S4-Conjecture
is true if and only if G′ has an S4-pair in which the edges incident to w in a given
order have frequencies (i, j, k).

Proof. It suffices to assume true the S4-Conjecture and only show the forward
direction, by Theorem 6.1. Let G′ be a minimal counterexample and suppose it
has some parallel edges. If G′ = C2,3 then the result clearly follows. So assume
G′ 6= C2,3. Let a, b and c be the edges incident to w such that the frequencies
(i, j, k) are to be assigned to (a, b, c). We proceed by considering two cases: when
w has two parallel edges incident to it (Figure 8) and otherwise (Figure 9).
Case 1. Let G be the resulting multigraph after smoothing wv. By minimality

x w v y

a
c

b

Figure 8. Case 1 in the proof of Theorem 6.2.

of G′, G has an S4-pair (say M1 and M2) in which ν(xy) = k. It is easy to see
that a pair of corresponding perfect matchings have νG′(c) = νG′(vy) = k and
can be chosen in such a way such that νG′(a) = i and νG′(b) = j, a contradiction
to our initial assumption. Therefore, we must have Case 2.

a c

b

w

Figure 9. Case 2 in the proof of Theorem 6.2.

Case 2. Let G be the resulting multigraph after smoothing some parallel
edge in G′ and let aw, bw and cw be the corresponding edges incident to w in G
after smoothing is done. In G, there exists an S4-pair such that the frequencies
of (aw, bw, cw) are equal to (i, j, k). Clearly, the corresponding perfect matchings
form an S4-pair in G′ in which the frequencies of (a, b, c) are (i, j, k), a contra-
diction, proving Theorem 6.2.

Using the same ideas as in Theorem 6.1 and Theorem 6.2 one can also state
analogous results for the Fan-Raspaud Conjecture in terms of multigraphs.
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6.2. Graphs having bridges

Since every perfect matching must intersect every bridge of a cubic graph,
then the Fan-Raspaud Conjecture cannot be extended to cubic graphs containing
bridges. The situation is quite different for the S4-Conjecture as Theorem 6.3
shows. We know by Errera’s Theorem [4] that if all the bridges of a connected
cubic graph lie on a single path, then the graph has a perfect matching. We use
this idea to show that there can be graphs with bridges that can have an S4-pair.

Theorem 6.3. Let G be a connected cubic graph having k bridges all of which lie
on a single path, for some positive integer k. If the S4-Conjecture is true, then
G admits an S4-pair.

v3

xk+1

yk+1

x1

y1

u1
uk

vk+1Bk+1v2 B2B1 u2
e1 e2 ek

Figure 10. G with k bridges lying all on the same path.

Proof. Let e1, . . . , ek be the bridges of G, and let B1, B2, . . . , Bk+1 be the 2-
connected components of G such that ei = uivi+1 for each i ∈ {1, . . . , k}, where
ui ∈ V (Bi) and vi+1 ∈ V (Bi+1). For each i ∈ {1, . . . , k + 1}, let Gi be the graph
induced by V (Bi), i.e. G[V (Bi)]. Let x1 and y1 be the two vertices adjacent to
u1 in G1, and let xk+1 and yk+1 be the two vertices adjacent to vk+1 in Gk+1.
Let G′1 = (G1 − u1) ∪ x1y1 and G′k+1 = (Gk+1 − vk+1) ∪ xk+1yk+1. Also, let
G′i = Gi ∪ viui for every i ∈ {2, . . . , k}. Clearly, G′1, . . . , G

′
k+1 are bridgeless

cubic multigraphs. Since we are assuming that the S4-Conjecture holds, then, by
Theorem 6.1, for every i ∈ {1, . . . , k + 1}, G′i has an S4-pair, say M i

1 and M i
2.

Using Theorem 6.2, we choose the S4-pair in:

• G′1, such that the two edges originally incident to x1 (not x1u1) both have
frequency 1,

• G′i, for each i ∈ {2, . . . , k}, such that νG′
i
(viui) = 2, and

• G′k+1, such that the two edges originally incident to xk+1 (not xk+1vk+1)
both have frequency 1.

Let M1 := ∪k+1
i=1M

i
1 ∪kj=1 ej −∪kl=2vlul, and let M2 := ∪k+1

i=1M
i
2 ∪kj=1 ej −∪kl=2vlul.

Then, M1 and M2 are an S4-pair of G.
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Finally, we remark that there exist cubic graphs admitting a perfect matching
which do not have an S4-pair. For example, since the edges uivi in Figure 11 are
bridges, then they must be in any perfect matching. Consequently, every pair of
perfect matchings do not intersect the edges of the odd cycle T . This shows that
there is no way to extend the S4-Conjecture to the entire class of cubic graphs.

G2

G1

G3

T

v1

v3v2

u3u2

u1

Figure 11. A cubic graph with bridges having no S4-pair.

7. Remarks and Problems

Many problems about the topics presented above remain unsolved: apart from
asking if we can solve the Fan-Raspaud Conjecture and the S4-Conjecture com-
pletely, or at least partially for higher oddness, we do not know which are those
graphs containing bridges which admit an S4-pair and we do not know either if
the S4-Conjecture is equivalent to Conjecture 2.3. Here we would like to add
some other specific open problems.
For a positive integer k, we define ωk to be the largest integer such that any graph
with oddness at most ωk, admits k perfect matchings with a bipartite comple-
ment. Clearly, for k = 1, we have ω1 = 0, since the existence of a perfect matching
of G with a bipartite complement is equivalent to the 3-edge-colourability of G.
Moreover, the S4-Conjecture is equivalent to ωk =∞, for k ≥ 2, but a complete
result to this is still elusive. Proposition 5.5 (see also Remark 5.6) give a lower-
bound for ωk and it would be interesting if this lowerbound can be significantly
improved. We believe that the following problem, weaker than the S4-Conjecture,
is another possible step forward.

Problem 7.1. Prove the existence of a constant k such that every bridgeless cubic
graph admits k perfect matchings whose union has a bipartite complement.

It is also known that not every perfect matching can be extended to an



An equivalent formulation of the FR-Conjecture and related problems 19

FR-triple and neither to a Berge-Fulkerson cover, where the latter is a collection
of six perfect matchings which cover the edge set exactly twice. We do not see a
way how to produce a similar argument for S4-pairs and so we also suggest the
following problem.

Problem 7.2. Establish whether any perfect matching of a bridgeless cubic
graph be extended to an S4-pair.

It can be shown that Problem 7.2 is equivalent to saying that given any
collection of disjoint odd cycles in a bridgeless cubic graph, then there exists a
perfect matching which intersects all the odd cycles in this collection.
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[5] L. Esperet, F. Kardoš, A.D. King, D. Král and S. Norine, Exponentially
many perfect matchings in cubic graphs, Adv. Math. 227 (2011) 1646-1664.

[6] L. Esperet and G. Mazzuoccolo, On cubic bridgeless graphs whose edge-set
cannot be covered by four perfect matchings, J. Graph Theory 77(2) (2014)
144-157.

[7] G. Fan and A. Raspaud, Fulkerson’s Conjecture and circuit covers, J. Com-
bin. Theory Ser. B 61(1) (1994) 133-138.

[8] M.A. Fiol, G. Mazzuoccolo and E. Steffen, On measures of edge-
uncolorability of cubic graphs: A brief survey and some new results,
arXiv:1702.07156 (2018).

[9] J.L. Fouquet and J.M. Vanherpe, On the perfect matching index of bridgeless
cubic graphs, submitted to Opuscula hal-00374313 (2009).

[10] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Pro-
gram. 1(1) (1971) 168-194.



20 G. Mazzuoccolo and J.P. Zerafa

[11] M. Funk, B. Jackson, D. Labbate and J. Sheehan, 2-Factor hamiltonian
graphs, J. Combin. Theory Ser. B 87 (2003) 138-144.
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