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Abstract. Here bipolar quadripartitioned single valued neutrosophic rough (BQSVNR) set is introduced. Some

basic set theoretic terminologies like constant BQSVNR set, subsethood of two BQSVNR sets are shown.

Algebraic operations like union, intersection and complement have also been defined. Different types of measure

like similarity measure, quasi similarity measure and distance measures between two BQSVNR sets have been

discussed with their properties. Again various measures of similarity namely distance based similarity measure,

cosine similarity measure, membership function based similarity measure are introduced in this paper. A

medical diagonasis problem has been solved using similarity measure at the end.

Keywords: SVN set, SVNR set, QSVNR set, BQSVNR set

—————————————————————————————————————————-

1. Introduction

Neutrosophic set (NS) was introduced by Smarandache in 2005 [7] as a generalization of

intuitionstic fuzzy set (IFS) [4]. Here in NS the indeterminacy factor is independent where as

indeterminacy in IFS is dependent completely on the truth and falsity values. This is why NS’s

are more general in nature and can handle various types of data including incomplete, incon-

sistent and even para consistent data. Wang et. al [10] in 2010 has introduced a new version of

NS called single valued neutrosophic set (SVN) which is much easier for the application than

NS in solving physical problems. Currently the theory of NS has becomes a very successful

and flourishing area of research and many researchers are doing research in different areas of

both theory and application [22, 31, 32, 34–38]. In 2016 R. Chatterjee et. al [23] defined an-

other new version of NS set called Quadripartioned SVN (QSVN) set where the indeterminacy

factor consists two divisons namely contradiction and ignorance. This QSVN set is expected

to give better results and more realistic value as it characterizes the indeterminacy factor into

two parts which is based on the notions of four valued logic of Belnap [2]. On the other hand

K. Sinha, P. Majumdar, On BQSVNR set and its application

Neutrosophic Sets and Systems,Vol. 38,2020



bipolar SVN set [19] is an identification of polarity. Thus bipolar concept which is very useful

in many decision making concept as a large number of human decision making is based on

double sided or bipolar judgement thinking on a positive side and negative side. Again Rough

Set (RS) by Pawlak [3] is a well established technique to express imperfect information by

employing vagueness to the boundary region of a set. RS theory has various applications in

artificial intelligence and especially in machine learning [5, 6, 8, 9, 14,22,24].

Here the idea of BQSVNR set which is an further extension of the articles [17, 23] is

introduced. In literature many types of NS exist together with various types of applica-

tions [10, 12, 16, 19, 21, 25–30, 33]. However we refer our readers to study NS theory [7], SVN

theory [10], QSVN theory [23], RS theory [3], BRS Theory [24] for their convenience. In this

manuscript we have defined BQSVNR set with it’s various types of operations. Also various

similarity measures of BQSVNR set are discussed. Later a uncertainty based real scientific

problem has been worked out by using BQSVNR set model. Finally the future work related

to our paper is given.

2. BQSVNR set

Throughout this paper we will consider all the definitions over X 6= φ together with an

equivalence relation R and we will denote it by (X,R). For the many other properties i.e.

entropy, various types of similarity measures of a NS, SVN sets, BNS etc we refer our readers

to follow any of the monograph say [7, 12,18].

Definition 2.1. Suppose A be a BQSVN set in (X,R) with positive membership

degrees T+(m),C+(m), I+(m), F+(m) respectively and negative membership degrees

T−(m), C−(m), I−(m), F−(m)-respectively of an element m ∈ X. The lower and upper ap-

proximations of A in (X,R) denoted by L(A) and L(A) respectively are defined as follows:

L(A) = {〈m,T+
A (m), C+

A (m), I+
A (m), F+

A (m), T−A (m), C−A (m),

I−A (m), F−A (m)〉|m ∈ [m]R ⊆ X}

L(A) = {〈m,T+
A

(m), C+
A

(m), I+
A

(m), F+
A

(m), T−
A

(m), C−
A

(m),

I−
A

(m), F−
A

(m)〉|m ∈ [m]R ⊆ X},
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where,

T+
A (m) = ∧m∈[m]RT

+
A (m), C+

A (m) = ∧m∈[m]RC
+
A (m), I+

A (m) = ∨m∈[m]RI
+
A (m),

F+
A (m) = ∨m∈[m]RF

+
A (m), T−A (m) = ∨m∈[m]RT

−
A (m), C−A (m) = ∨m∈[m]RC

−
A (m),

I−A (m) = ∧m∈[m]RI
−
A (m), F−A (m) = ∧m∈[m]RF

−
A (m), T+

A
(m) = ∨m∈[m]RT

+
A (m),

C+
A

(m) = ∨m∈[m]RC
+
A (m), I+

A
(m) = ∧m∈[m]RI

+
A (m), F+

A
(m) = ∧m∈[m]RF

+
A (m),

T−
A

(m) = ∧m∈[m]RT
−
A (m), C−

A
(m) = ∧m∈[m]RC

−
A (m), I−

A
(m) = ∨m∈[m]RI

−
A (m),

F−
A

(m) = ∨m∈[m]RF
−
A (m),

where 0 ≤ T+
A (m)+C+

A (m)+I+
A (m)+F+

A (m) ≤ 4,−4 ≤ T−A (m)+C−A (m)+I−A (m)+F−A (m) ≤ 0,

0 ≤ T+
A

(m) + C+
A

(m) + I+
A

(m) + F+
A

(m) ≤ 4, −4 ≤ T−
A

(m) + C−
A

(m) + I−
A

(m) + F−
A

(m) ≤ 0

and ∨,∧ mean “max” and “min” operators respectively, TA(m), CA(m), IA(m), FA(m) are the

respective membership function of m w.r.t A. L(A) and L(A) are two bipolar QSVN sets in

X. The pair (L(A), L(A)) is called BQSVNR set in (X,R).

Example 2.2. Consider the case where four economists m1,m2,m3,m4 were asked to give

their opinion on the statement “Rate of economical growth of India in 2020 will cross the

rate of economic growth in the year 2019”. Each economists will give concern in terms of

degree of agreement, agreement or disagreement both, neither agreement nor disagreement,

disagreement together with positive and negative aspects respectively. Let R1 be a set on U

of all economists which may be considered as follows:

m,n ∈ U,mR1n iff m and n

both belongs to same organization i.e. IMF, London school of economics etc.

The aggregate of their opinion can be very well expressed into the following equivalent class

R1 as following:

U/R1 = {{m1,m2}, {m3}, {m4}}

We can develop a BQSVN set A on the basis of the economists opinion as follows:

A = {(m1, (0.8, 0.6, 0.2, 0.2,−0.4,−0.5,−0.3,−0.7)),

(m2, (0.4, 0.6, 0.6, 0.8,−0.6,−0.5,−0.4,−0.8)),

(m3, (0.5, 0.5, 0.7, 0.1,−0.8,−0.6,−0.4,−0.6)),

(m4, (0.6, 0.7, 0.4, 0.1,−0.5,−0.3,−0.6,−0.4))}.
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Now by Definition 2.1, we have,

L(A) = {(m1, (0.4, 0.6, 0.6, 0.8,−0.4,−0.5,−0.4,−0.8)),

(m2, (0.4, 0.6, 0.6, 0.8,−0.4,−0.5,−0.4,−0.8)),

(m3, (0.5, 0.5, 0.7, 0.1,−0.8,−0.6,−0.4,−0.6)),

(m4, (0.6, 0.7, 0.4, 0.1,−0.5,−0.3,−0.6,−0.4))}

L(A) = {(m1, (0.8, 0.6, 0.2, 0.2,−0.6,−0.5,−0.3,−0.7)),

(m2, (0.8, 0.6, 0.2, 0.2,−0.6,−0.5,−0.3,−0.7)),

(m3, (0.5, 0.5, 0.7, 0.1,−0.8,−0.6,−0.4,−0.6)),

(m4, (0.6, 0.7, 0.4, 0.1,−0.5,−0.3,−0.6,−0.4))}

Hence (L(A), L(A)) provides the rate of growth of India in 2020 in comparison with the rate

of growth in 2019.

Definition 2.3. Suppose A be a BQSVN set in (X,R). If

(i) L(A) = L(A), then (L(A), L(A)) is called constant BQSVNR set in (X,R).

(ii) ∀m ∈ [m]R ∩ L(A)(and L(A)), T+
A (m) = 1 = C+

A (m), I+
A (m) = F+

A (m) = 0, T−A (m) =

0 = C+
A (m), I−A (m) = F−A (m) = 1, then (L(A), L(A)) is called an unit BQSVNR set

in (X,R).

(iii) ∀m ∈ [m]R ∩ L(A)(and L(A)), T+
A (m) = 0 = C+

A (m), I+
A (m) = F+

A (m) = 1, T−A (m) =

1 = C+
A (m), I−A (m) = F−A (m) = 0,, then (L(A), L(A)) is called zero BQSVNR set in

(X,R) and it is denoted by Φ.

Now some set-theoretic operations on BQSVNR set over (X,R) will be studied.

Definition 2.4. Consider L(A) = (L(A), L(A)) is a BQSVNR set in (X,R). We define

complement BQSVNR set Lc(A) of L(A) as Lc(A) = ((L(A))c, (L(A))c), where

(L(A))c = {〈x, F+
A (m), 1− I+

A (m), 1− C+
A (m), T+

A (m),

F−A (m), 1− I−A (m), 1− C−A (m), T−A (m)〉|m ∈ [m]R ⊆ X}

(L(A))c = {〈x, F+
A

(m), 1− I+
A

(m), 1− C+
A

(m), T+
A

(m),

F−
A

(m), 1− I−
A

(m), 1− C−
A

(m), T−
A

(m)〉|m ∈ [m]R ⊆ X}

Definition 2.5. Suppose A = (L(A), L(A)) and B = (L(B), L(B)) are two BQSVNR set over

X. We say A ⊆ B if L(A) ⊆ L(B), L(A) ⊆ L(B) i.e.

T+
A (m) ≤ T+

B (m), C+
A (m) ≤ C+

B (m), I+
A (m) ≥ I+

B (m), F+
A (m) ≥ F+

B (m), T−A (m) ≥
T−B (m), C−A (m) ≥ C−B (m), I−A (m) ≤ I−B (m), F−A (m) ≤ F−B (m),
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T+
A

(m) ≥ T+
B

(m), C+
A

(m) ≥ C+
B

(m), I+
A

(m) ≤ I+
B

(m), F+
A

(m) ≤ F+
B

(m), T−
A

(m) ≤
T−
B

(m), C−
A

(m) ≤ C−
B

(m), I−
A

(m) ≥ I−
B

(m), F−
A

(m) ≥ F−
B

(m) ∀m ∈ [m]R ⊆ X.

Definition 2.6. Suppose A = (L(A), L(A)) and B = (L(B), L(B)) are two BQSVNR

set over X. Then the union of A,B i.e. A ∪ B = (L(A) ∪ L(B), L(A) ∪ L(B)) is

defined as: T+
A (m) ∨ T+

B (m), C+
A (m) ∨ C+

B (m), I+
A (m) ∧ I+

B (m), F+
A (m) ∧ F+

B (m), T−A (m) ∧
T−B (m), C−A (m) ∧ C−B (m), I−A (m) ∨ I−B (m), F−A (m) ∨ F−B (m), T+

A
(m) ∧ T+

B
(m), C+

A
(m) ∧

C+
B

(m), I+
A

(m) ∨ I+
B

(m), F+
A

(m) ∨ F+
B

(m), T−
A

(m) ∨ T−
B

(m), C−
A

(m) ∨ C−
B

(m), I−
A

(m) ∧
I−
B

(m), F−
A

(m) ∧ F−
B

(m) ∀m ∈ [m]R ⊆ X.

Definition 2.7. Suppose A = (L(A), L(A)) and B = (L(B), L(B)) are two BQSVNR

set over X. Then the intersection of A,B i.e. A ∩ B = (L(A) ∩ L(B), L(A) ∩ L(B)) is

defined as: T+
A (m) ∧ T+

B (m), C+
A (m) ∧ C+

B (m), I+
A (m) ∨ I+

B (m), F+
A (m) ∨ F+

B (m), T−A (m) ∨
T−B (m), C−A (m) ∨ C−B (m), I−A (m) ∧ I−B (m), F−A (m) ∧ F−B (m), T+

A
(m) ∨ T+

B
(m), C+

A
(m) ∨

C+
B

(m), I+
A

(m) ∧ I+
B

(m), F+
A

(m) ∧ F+
B

(m), T−
A

(m) ∧ T−
B

(m), C−
A

(m) ∧ C−
B

(m), I−
A

(m) ∨
I−
B

(m), F−
A

(m) ∨ F−
B

(m) ∀m ∈ [m]R ⊆ X.

Proposition 2.8. Consider three BQSVNR sets Θ1,Θ2,Θ3 in (X,R). Then for all for

BQSVNR sets over X we have the following:

(i) Θ1 ∪Θ2 = Θ2 ∪Θ1; Θ1 ∩Θ2 = Θ2 ∩Θ1.

(ii) Θ1 ∪ (Θ2 ∪Θ3) = (Θ1 ∪Θ2) ∪Θ3; Θ1 ∩ (Θ2 ∩Θ3) = (Θ1 ∩Θ2) ∩Θ3

(iii) Θ3 ∩ (Θ3 ∪Θ2) = Θ3; Θ3 ∪ (Θ3 ∩Θ2) = Θ3.

(iv) (Θc
1)c = Θ1.

(v) (Θ1 ∪Θ2)c = Θc
1 ∩Θc

2; (Θ1 ∩Θ2)c = Θc
1 ∪Θc

2

(vi) Θ1 ∪Θ1 = Θ1; Θ1 ∩Θ1 = Θ1.

We omit the proof of the Proposition 2.8 as it is very straight forward.

3. Different similarity measures of BQSVNR sets

Consider an universal set X 6= φ and denote the set of BQSVNR set over (X,R) by B(X).

Definition 3.1. A mapping s : B(X) × B(X) → [0, 1] is called a similarity measure iff for

W1,W2 ∈ B(X),

(i) s(W1,W2) = s(W2,W1)

(ii) 0 ≤ s(W1,W2) < 1 and s(W1,W2) = 1 iff W1 = W2.

(iii) for any W1,W2,W3 ∈ B(X), W1 ⊂W2 ⊂W3, s(W1,W3) ≤ s(W1,W2) ∧ s(W2,W3).

Although in Definition 3.1 the condition (iii) exists but some familiar similarity measure

techniques i.e. weighted similarity measure, cosine similarity measures etc fail to satisfy it.

On the other hand these similarity techniques has a wide application in real world discission
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making problems. Thus it is essential to introduce a new definition of similarity measure say

“Quasi Similarity Measure” which omits the condition (iii) of Definition 3.1.

Definition 3.2. Consider B(X), the set of BQSVNR sets over an universe X. Then a function

s′ : B(X)× B(X)→ [0, 1] is called a quasi similarity measure iff for W1,W2 ∈ B(X),

(i) s(W1,W2) = s(W2,W1)

(ii) 0 ≤ s(W1,W2) < 1 and s(W1,W2) = 1 iff W1 = W2.

3.1. Distance measures between two BQSVNR sets

Definition 3.3. A function db : B(X)×B(X)→ R+ is called a distance measure for BQSVNR

sets iff for W1,W2,W3 ∈ B(X),

(i) db(W1,W2) = db(W2,W1)

(ii) db(W1,W2) ≥ 0 and db(W1,W2) = 0 iff W1 = W2.

(iii) db(W1,W2) ≤ db(W1,W3) + db(W3,W2).

Clearly db is a metric on B(X). Suppose Θ,Γ ∈ B(X) over an universal set X =

{x1, x2, . . . , xn}.

Definition 3.4. The Hamming distance h(Θ,Γ) between two BQSVNR sets Θ and Γ is defined

as

h(Θ,Γ) = min
{
{h(Θ,Γ)}, {h(Θ,Γ)}

}
where,

h(Θ,Γ) = {
n∑
j=1

|T+
Θ (xj)− T+

Γ (xj)|+ |C+
Θ (xj)− C+

Γ (xj)|+ |I+
Θ (xj)− I+

Γ (xj)|+

|F+
Θ (xj)− F+

Γ (xj)|+ |T−Θ (xj)− T−Γ (xj)|+ |C−Θ (xj)− C−Γ (xj)|+

|I−Θ (xj)− I−Γ (xj)|+ |F−Θ (xj)− F−Γ (xj)|}

h(Θ,Γ) = {
n∑
j=1

|T+
Θ

(xj)− T+
Γ

(xj)|+ |C+
Θ

(xj)− C+
Γ

(xj)|+ |I+
Θ

(xj)− I+
Γ

(xj)|+

|F+
Θ

(xj)− F+
Γ

(xj)|+ |T−Θ (xj)− T−Γ (xj)|+ |C−Θ (xj)− C−Γ (xj)|+

|I−
Θ

(xj)− I−Γ (xj)|+ |F−Θ (xj)− F−Γ (xj)|} ∀xj ∈ X.

Definition 3.5. The Normalized Hamming distance between Θ and Γ is defined as hN (Θ,Γ) =

1
8n(h(Θ,Γ)).
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Definition 3.6. The Euclidean distance E(Θ,Γ) is defined as follows:

E(Θ,Γ) = min{{E(Θ,Γ)}, {E(Θ,Γ)}} where,

E(Θ,Γ) = {
n∑
j=1

|T+
Θ (xj)− T+

Γ (xj)|2 + |C+
Θ (xj)− C+

Γ (xj)|2 + |I+
Θ (xj)− I+

Γ (xj)|2 +

|F+
Θ (xj)− F+

Γ (xj)|2 + |T−Θ (xj)− T−Γ (xj)|2 + |C−Θ (xj)− C−Γ (xj)|2 +

|I−Θ (xj)− I−Γ (xj)|2 + |F−Θ (xj)− F−Γ (xj)|2}
1
2

E(Θ,Γ) = {
n∑
j=1

|T+
Θ

(xj)− T+
Γ

(xj)|2 + |C+
Θ

(xj)− C+
Γ

(xj)|2 + |I+
Θ

(xj)− I+
Γ

(xj)|2 +

|F+
Θ

(xj)− F+
Γ

(xj)|2 + |T−
Θ

(xj)− T−Γ (xj)|2 + |C−
Θ

(xj)− C−Γ (xj)|2 +

|I−
Θ

(xj)− I−Γ (xj)|2 + |F−
Θ

(xj)− F−Γ (xj)|2}
1
2 ∀xj ∈ X.

Definition 3.7. The normalized Euclidean distance Q(Θ,Γ) is defined as follows:

Q(Θ,Γ) =
1

2
√

2n
E(Θ,Γ).

Gradually distance measurement process which gives an idea about the similarities between

two BQSVNR sets becomes the main attraction among the researchers. Also different MCDM

problems can be solved using similarity measures technique [20,21]. On the other hand many

mathematicians have used a variety of distance-based operators say induced weighted aggre-

gation distance (IOWAD) operators, an extended version of common OWA operators to solve

various problems [11,13,15]. However we will only concentrate only on the following distance

oriented similarity measures.

3.2. Distance oriented similarity measure between two BQSVNR sets

Consider two BQSVNR set Θ1,Θ2 over B(X). Based on all previously defined distances

two new similarity measures S1(Θ1,Θ2),S2(Θ1,Θ2) for a pair of BQSVNR set Θ1,Θ2 can be

defined:

S1(Θ1,Θ2) =
1

1 + h(Θ1,Θ2)
, S2(Θ1,Θ2) = e−α.h(Θ1,Θ2),

where α ∈ R+ is the steepness measure of S2(Θ1,Θ2). In a similar way using Euclidian

distance, we define another pair of similarity measure S′1(Θ1,Θ2), S′2(Θ1,Θ2) as follows:

S′1(Θ1,Θ2) =
1

1 + E(Θ1,Θ2)
, S′2(Θ1,Θ2) = e−β.E(Θ1,Θ2).

where β ∈ R+ is the steepness measure of S′2(Θ1,Θ2). one can easily seen that

S1(Θ1,Θ2),S2(Θ1,Θ2),S′1(Θ1,Θ2),S′2(Θ1,Θ2) satisfies the axioms of Definitions 3.1 for two

BQSVNR sets Θ1,Θ2.
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3.3. Cosine similarity measure of BQSVNR sets

Here we will discuss the cosine similarity measure, a basic similarity measure technique

between two BQSVNR sets. To obtain this similarity measure we represent two BQSVNR sets

as vectors. We illustrate our proposed new cosine similarity measure CBQSV NR of BQSVNR

sets as following:

Definition 3.8. Consider A,B ∈ B(X). For each xj ∈ X, j = 1, 2, . . . , n, we define

CBQSV NR(A,B) =
1

n

n∑
j=1

S1

S2.S3
, where,

S1 = ∂TA(xj)∂TB(xj) + ∂CA(xj)∂CB(xj) + ∂IA(xj)∂IB(xj)+

∂FA(xj)∂FB(xj),

S2 =

√
∂TA(xj)

2 + ∂CA(xj)
2 + ∂IA(xj)

2 + ∂FA(xj)
2,

S3 =

√
∂TB(xj)

2 + ∂CB(xj)
2 + ∂IB(xj)

2 + ∂FB(xj)
2,

where ∂T+
X (xj) =

T+
X (xj) + T+

X
(xj)

2
, ∂T−X (xj) =

T−X (xj) + T−
X

(xj)

2

∂C+
X(xj) =

C+
X(xj) + C+

X
(xj)

2
, ∂C−X(xj) =

C−X(xj) + C−
X

(xj)

2

∂I+
X(xj) =

I+
X(xj) + I+

X
(xj)

2
, ∂I−X(xj) =

I−X(xj) + I−
X

(xj)

2

∂F+
X (xj) =

F+
X (xj) + F+

X
(xj)

2
, ∂F−X (xj) =

F−X (xj) + F−
X

(xj)

2

∂TX(xj) =
∂T+

X (xj) + ∂T−X (xj)

2
, ∂CX(xj) =

∂C+
X(xj) + ∂C−X(xj)

2

∂IX(xj) =
∂I+

X(xj) + ∂I−X(xj)

2
, ∂FX(xj) =

∂F+
X (xj) + ∂F−X (xj)

2
,

where X ∈ {A,B}.

Theorem 3.9. CBQSV NR(A,B) is a similarity measure between two BQSVNR sets A,B ∈
B(X).

We omit the proof as it is very simple.
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3.4. Similarity measures of BQSVNR sets based on membership values

Consider A,B ∈ B(X). For each xj ∈ X, j = 1, 2, . . . , n and for k = 1, 2, . . . , 4 define the

functions hk
+, hk

−, hk
+
, hk
−

: X → [0, 1] respectively as

h1
±(xj) = |T±A (xj)− T±B (xj)|,

h2
±(xj) = |F±A (xj)− F±B (xj)|,

h3
±(xj) =

1

3

(
h±1 (xj) + h±2 (xj) + |C±A (xj)− C±B (xj)|

)
,

h4
±(xj) = |I±A (xj)− I±B (xj)|,

h1
±

(xj) = |T±
A

(xj)− T±B (xj)|,

h2
±

(xj) = |F±
A

(xj)− F±B (xj)|,

h3
±

(xj) =
1

3

(
h±1 (xj) + h±2 (xj) + |C±

A
(xj)− C±B (xj)|

)
,

h4
±

(xj) = |I±
A

(xj)− I±B (xj)|

Now based on the above functions a new similarity measure S̃(A,B) can be defined as follows:

S̃(A,B) = 1− 1

4n
[
n∑
j=1

4∑
k=1

hk
+

(xj) +
n∑
j=1

4∑
k=1

hk
−

(xj) +
n∑
j=1

4∑
k=1

hk
+(xj)+

n∑
j=1

4∑
k=1

hk
−(xj)].

The following theorem is obvious:

Theorem 3.10. S̃(A,B) is a similarity measure between A,B ∈ B(X).

Proof. For a BQSVNR set all the positive membership values of T ,C, I, F ,

T , C, I, F lie between [0, 1] and the negative membership values of T ,C, I, F ,

T , C, I, F lie between [−1, 0]. Among all these quantities, all has maximum value 1 and the

minimum value −1. As a result 0 ≤ S̃(A,B) ≤ 1. Again S̃(A,B) = 1 implies that

T+
A (xj) = T+

B (xj), C
+
A (xj) = C+

B (xj), I
+
A (xj) = I+

B (xj), F
+
A (xj) = F+

B (xj),

T−A (xj) = T−B (xj), C
−
A (xj) = C−B (xj), I

−
A (xj) = I−B (xj), F

−
A (xj) = F−B (xj),

T+
A

(xj) = T+
B

(xj), C
+
A

(xj) = C+
B

(xj), I
+
A

(xj) = I+
B

(xj), F
+
A

(xj) = F+
B

(xj),

T−
A

(xj) = T−
B

(xj), C
−
A

(xj) = C−
B

(xj), I
−
A

(xj) = I−
B

(xj), F
−
A

(xj) = F−
B

(xj)

∀xj ∈ X.

Lastly for A,B,C ∈ B(X) we suppose that A ⊆ B ⊆ C. Now by the Definition 2.5 we have

∀ xj ∈ X, ∀ j = 1, 2, . . . , 4

S̃(A,C) < S̃(A,B) ∧ S̃(B,C).
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Hence the result follows.

3.5. Weighted similarity measure

The weighted similarity measure between A,B ∈ B(X) is defined as follows:

Sw(A,B) = 1− 1
4n [
∑n

j=1

∑4
k=1wjhk

+
(xj) +

∑n
j=1

∑4
k=1wjhk

−
(xj) +∑n

j=1

∑4
k=1wjhk

+(xj) +
∑n

j=1

∑4
k=1wjhk

−(xj)]
1
l .

where l is any integer defined to be the order of similarity, wi are the weights corresponding

with xj , j = 1, 2, . . . , n s.t.
∑n

j=1wj = 1. Using the same proof procedure of the Theorem 3.10,

Sw(A,B) is also a measure of similarity between the two BQSVNR sets A,B ∈ B(X).

4. An application of BQSVNR sets

By using a BQSVNR set model a real world medical diagnosis problem can be represented

very well. To solve these type of medical problem similarity measure technique between two

BQSVNR set is quite powerful procedure. Using these similarity measure technique anyone

can detect whether a patient is being suffered with a disease or not. In between June to

September it is seen that H1N1 virus spreads out rapidly in Kolkata and its sub-urban area

of West Bengal India. The patient of these particular virus effected decease has primarily 4

symptoms, namely headache, high fever, cough, red rashes in the body. But in every patient

the primary symptoms are not clearly visible. Also in many different viral infections these

symptoms are common. The process of classification of patients by considering a variety of

symptoms is a difficult task. Our similarity measurement technique which considers patients

versus symptoms record provides an approximate way to treat a patient. The basic feature of

our study considers only the positive as well as negative value of truth, ignorance, contradiction

and false value respectively of each element of the BQSVNR sets.

Suppose P2 and P3 be two persons who are suspected to be infected by H1N1 virus. Let

D = {headache, high fever, cough, red rashes in the body} be a set of symptoms. Consider P1

is a model patient who are infected by H1N1 virus. Our solution is to examine the condition of

P2, P3 w.r.t. the symptoms of P1 in BQSVNR environment. We have represented our problem
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as a BQSVNR set model as follows:

P1 = (N(P1), N(P1))

= 〈(0.6, 0.4, 0.2, 0.4,−0.4,−0.5,−0.1,−0.8), (0.8, 0.6, 0.7, 0.1,−0.4,−0.3,−0.4,−0.5)〉/x1

+ 〈(0.5, 0.5, 0.6, 0.4,−.4,−0.3,−0.2,−0.9), (0.7, 0.4, 0.4, 0.1,−0.3,−0.2,−0.7,−0.6)〉/x2

+ 〈(0.7, 0.5, 0.6, 0.8,−0.5,−0.4,−0.8,−0.7), (0.6, 0.5, 0.5, 0.4,−0.2,−0.4,−0.6,−0.8)〉/x3

+ 〈(0.8, 0.6, 0.7, 0.1,−0.4,−0.2,−0.6,−0.3), (0.5, 0.6, 0.2, 0.3,−0.1,−0.4,−0.6,−0.9)〉/x4.

P2 = (N(P2), N(P2))

= 〈(0.4, 0.3, 0.3, 0.4,−0.5,−0.6,−0.1,−0.6), (0.4, 0.6, 0.6, 0.2,−0.4,−0.4,−0.4,−0.5)〉/x1

+ 〈(0.6, 0.5, 0.4, 0.3,−.4,−0.3,−0.1,−0.8), (0.6, 0.6, 0.3, 0.2,−0.4,−0.2,−0.5,−0.4)〉/x2

+ 〈(0.8, 0.5, 0.5, 0.6,−0.6,−0.6,−0.6,−0.5), (0.6, 0.4, 0.5, 0.5,−0.3,−0.5,−0.4,−0.6)〉/x3

+ 〈(0.7, 0.7, 0.6, 0.2,−0.4,−0.3,−0.8,−0.3), (0.5, 0.6, 0.4, 0.5,−0.5,−0.7,−0.4,−0.2)〉/x4.

P3 = (N(P3), N(P3))

= 〈(0.7, 0.8, 0.9, 0.1,−0.4,−0.4,−0.5,−0.2), (0.6, 0.4, 0.7, 0.6,−0.5,−0.1,−0.9,−0.7)〉/x1

+ 〈(0.9, 0.2, 0.3, 0.7,−.1,−0.4,−0.7,−0.8), (0.5, 0.6, 0.7, 0.2,−0.4,−0.4,−0.7,−0.6)〉/x2

+ 〈(0.1, 0.4, 0.8, 0.7,−0.4,−0.5,−0.5,−0.6), (0.4, 0.7, 0.4, 0.2,−0.5,−0.6,−0.4,−0.1)〉/x3

+ 〈(0.5, 0.6, 0.4, 0.8,−0.1,−0.4,−0.6,−0.9), (0.6, 0.4, 0.7, 0.4,−0.2,−0.6,−0.5,−0.2)〉/x4.

Now from Definition 3.4 to Definition 3.7 respectively, we have

h(P1, P2) = 3.2, h(P1, P3) = 7.1

hN (P1, P2) = 0.1, hN (P1, P3) = 0.845

E(P1, P2) = 0.693, E(P1, P3) = 1.609

Now we calculate the following measures (as given by Section 3.2) between the pair of persons

P1, P2 and P1, P3 as follows:

S′1(P1, P2) = 0.591, S′1(P1, P3) = 0.621

Since any effected area the probability of infecting a healthy people by H1N1 virus is 80% [?]

hence we have taken the steepness measure i.e. α, β as 0.8. From this we have,

S′2(P1, P2) = 0.574, S′2(P1, P3) = 0.76

Since in between any two BQSVNR sets there must be similarity thus we restrict ourselves

if the similarity measure is > 0.6. Thus from the similarity measures S′1, S
′
2 we can conclude

that the patient P3 has a higher chance to be infected by H1N1 virus than the patient P2.
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5. Conclusion

The fuzzy set theory (FST) [1] was introduced almost 55 years ago. After its invention, in

next half a decade time, many generalizations of FST has been proposed such as intuitionistic

fuzzy sets, interval valued fuzzy sets, hesitant fuzzy sets, bipolar fuzzy sets etc and also many

other new theories like rough sets, soft sets, neutrosophic sets etc. has came into existence. The

chief purpose of all these theories is to model real life situations under different uncertainties

using available tools. But it is now a well established fact that no single theory is capable of

modeling all different types of uncertainty. For example, fuzzy set can’t model uncertainty

due to incompleteness; intuitionistic fuzzy sets can’t handle para consistent information, rough

set is not suitable for handling situations with graded belongingness, soft set is not useful in

modeling situations with vague boundaries. Therefore it is a common practice to combine

two or more such sets to form a hybrid set. Hybrid set possesses the characteristics of more

than one set and therefore has greater capabilities in handling uncertain situations. On the

other hand four valued logic has multiple uses in many areas such as digital circuits and data

transmission. The QSVN sets utilize the power of four valued logic in modeling uncertainty.

We here introduced and investigated a new type of hybrid set called BQSVNR. The BQSVNR

set is an extended version of QSVN set, bipolar set as well as rough set. It can handle

uncertain situation arisen due to factors like fuzziness, incompleteness, vagueness, haziness,

para compactness and bipolarity. Therefore our set is more capable of modeling uncertainty

in a better way than any other existing set. In future, one can apply our newly developed

hybrid set to model different real life problems. Also one may try to extend our set to bipolar

multi-partitioned single valued neutrosophic rough sets and study its properties.
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