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ABSTRACT In this paper we consider the concept of KM -fuzzy metric spaces and we introduce a novel
concept of KM -single valued neutrosophic metric graphs based on KM -fuzzy metric spaces. Then we
investigate the finite KM -fuzzy metric spaces with respect to KM -fuzzy metrics and we construct the KM -
fuzzy metric spaces on any given non-empty sets. We try to extend the concept of KM -fuzzy metric spaces
to a larger class of KM -fuzzy metric spaces such as union and product of KM -fuzzy metric spaces and in
this regard we investigate the class of products of KM -single valued neutrosophic metric graphs. In the final,
we define some operations such as tensor product, Cartesian product, semi-strong product, strong product,
union, semi-ring sum, suspension, and complement of KM -single valued neutrosophic metric graphs.

INDEX TERMS (Derivable) KM -single valued neutrosophic metric graph, KM -fuzzy metric space,
triangular-norm (conorm).

I. INTRODUCTION
Classical theory is a pure concept and without quality or
criteria, so it is not attractive to use in our world, that’s
why we use the neutrosophic sets theory as one of a gen-
eralizations of set theory in order to deal with uncertain-
ties, which is a key action in the contemporary world intro-
duced by Smarandache for the first time in 1998 [22] and
in 2005 [23]. This concept is a new mathematical tool for
handling problems involving imprecise, indeterminacy, and
inconsistent data. This theory describes an important role
in modeling and controlling unsure hypersystems in nature,
society and industry. In addition, fuzzy topological spaces as
a generalization of topological spaces, have a fundamental
role in construction of fuzzy metric spaces as an extension
of the concept of metric spaces. The theory of fuzzy metric
spaces works on finding the distance between two points
as non-negative fuzzy numbers, which have various appli-
cations. The structure of fuzzy metric spaces is equipped
with mathematical tools such as triangular norms and fuzzy
subsets depending on time parameter and on other vari-
ables. This theory has been proposed by different researchers
with different definitions from several points of views
([3]–[5], [12]), and that this study was applied to the notion of
KM-fuzzy metric space introduced in 1975 [4] by Kramosil
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and Michalek. Fuzzy graphs, introduced by Rosenfeld, are
finding an increasing number of applications in modelling
real time systems where the level of information inher-
ent in the system varies with respect to different levels of
precision. Fuzzy models are becoming useful because of
their aim in reducing the difference between the traditional
numerical models used in engineering and sciences [19].
The generalization of the concept of a fuzzy graph is
noticed by some researchers on more subjects, such as fuzzy
graph based on t-norm, intuitionistic fuzzy threshold graphs,
m-polar fuzzy graphs and single-valued neutrosophic graphs.
Mordeson et al. [17] generalized the definition of a fuzzy
graph by replacing minimum in the basic definitions with an
arbitrary t-norm. They developed a measure on the suscepti-
bility of trafficking in persons for networks by using a t-norm
other than minimum [17]. Recently, F. Smarandache, intro-
duced a new concept as a generalization of hypergraphs to
n-SuperHypergraph, Plithogenic n-SuperHypergraph {with
super-vertices (that are groups of vertices) and hyper-edges
{defined on power-set of power-set. . . } that is the most gen-
eral form of graph as today}, and n-ary HyperAlgebra, n-ary
NeutroHyperAlgebra, n-ary AntiHyperAlgebra respectively,
which have several properties and are connected with the real
world [24]. Further materials regarding graphs, single-valued
neutrosophic metric graphs, hypergraphs, intuitionistic fuzzy
set, n-SuperHypergraph and Plithogenic n-SuperHypergraph,
and NeutroAlgebras {Smarandache generalized the classical
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algebraic structures to neutro algebraic structures (or Neu-
tro Algebras) [whose operations and axioms are partially
true, partially indeterminate, and partially false] as extensions
of PartialAlgebra, and to AntiAlgebraic structures (or Anti
Algebras) [whose operations and axioms are totally false],
and in general, he extended any classical structure, in no
matter what field of knowledge, to a Neutro structure and an
Anti structure}. All these are available in the literature too [2],
[7]–[10], [13], [18], [20], [21], [25]–[29].

Regarding these points, we introduce the concept of
KM-single valued neutrosophic metric graphs based on the
concept of KM-fuzzy metrics. One of the main motivations
of KM-single valued neutrosophic metric graphs is obtained
from the fuzzy graphs and so we want to use this concept
to model many decision making problems in uncertain envi-
ronment. We need to construct the KM-single valued neutro-
sophic metric graphs based on finite or infinite sets, so we
develop the concept of KM-fuzzy metric on any nonempty
set and prove that for every given set with respect to the
concept of C-graphable sets one can construct a KM-metric
space. It is a natural generalization of the fuzzy graphs to
the single-valued neutrosophic metric graphs, so it shows our
main motivation for introducing the notion of the KM-single
valued neutrosophic metric graphs. This notion is based on
one of the fundamental concepts of fuzzymathematics, which
includes tools such as t-norms, t-conorms, and fuzzy sub-
sets. We apply the notation of KM-fuzzy metric spaces to
generate the finite KM-single valued neutrosophic metric
graphs. We have extended some production operations on
the KM-fuzzy metric spaces to the KM-single valued neu-
trosophic metric graphs.

II. PRELIMINARIES
In this section, we recall some definitions and results, which
we use in what follows.
Definition 1 ( [11], [14]): Let G1 = (V1,E1), G2 =

(V2,E2) be simple graphs, (x1, x2), (y1, y2) ∈ V1×V2, where
V1 × V2 is the vertex set of the following graphs:

(i) categorical(tensor, direct, cardinal, Kronecker) product
graph G1 × G2:
E(G1×G2) = {(x1, x2)(y1, y2) | x1y1 ∈ E1 and x2y2 ∈ E2};
(ii) Cartesian product graph G1 ⊗ G2:
E(G1 ⊗ G2) = {(x1, x2)(y1, y2) | (x1 = y1 and x2y2 ∈

E2) or (x1y1 ∈ E1 and x2 = y2)};
(iii) semi-strong product graph G1 · G2:
E(G1 · G2) = {(x1, x2)(y1, y2) | (x1 = y1 and x2y2 ∈

E2) or (x1y1 ∈ E1 and x2y2 ∈ E2)};
(iv) strong product (symmetric composition) graph

G1 � G2:
E(G1 � G2) = E(G1 ⊗ G2) ∪ E(G1 × G2);
(v) lexicographic product (composition)graph G1 ◦

G2(G1.G2,G1[G2]):
E(G1 ◦ G2) = {(x1, x2)(y1, y2) | (x1y1 ∈ E1) or (x1 =

y1 and x2y2 ∈ E2)};
(vi) union graph G1 ∪ G2:

V (G1∪G2) = V (G1)∪V (G2); and E(G1∪G2) = E(G1)∪
E(G2);
(vii) join product graph G1 + G2:
E(G1 +G2) = E(G1)∪ E(G2)∪ E ′, where E ′ is the set of

all line joining V1 with V2.
Definition 2 [16]: A fuzzy graph G = (V , σ, µ) is an

algebraic structure of non-empty set V together with a pair
of functions σ : V → [0, 1] and µ : V × V → [0, 1] such
that for all x, y ∈ V , µ(x, y) ≤ σ (x) ∧ σ (y). It is called σ as
fuzzy vertex set and µ as fuzzy edge set of G.
Definition 3 [1]: A single valued neutrosophic graph

(SVN–G) is defined to be a form G = (V ,E,A,B) where
(i) V = {v1, v2, . . . , vn}, TA, IA,FA : V −→ [0, 1] denote

the degree of membership, degree of indeterminacy and
non–membership of the element vi ∈ V ; respectively,
and for every 1 ≤ i ≤ n, we have 0 ≤ TA(vi)+ IA(vi)+
FA(vi) ≤ 3.

(ii) E ⊆ V × V , TB, IB,FB : E −→ [0, 1] are called degree
of truth–membership, indeterminacy–membership and
falsity–membership of the edge (vi, vj) ∈ E respectively,
such that for any 1 ≤ i, j ≤ n, we have TB(vi, vj) ≤
min{TA(vi),TA(vj)}, IB(vi, vj) ≥ max{IA(vi), IA(vj)},
FB(vi, vj) ≥ max{FA(vi),FA(
vj)} and 0 ≤ TB(vi, vj)+ IB(vi, vj)+FB(vi, vj) ≤ 3. Also
A is called the single valued neutrosophic vertex set of V
and B is called the single valued neutrosophic edge set
of E .

Definition 4 [15]: A triplet (X , ρ,T ) is called a
KM -fuzzy metric space, if X is an arbitrary non–empty set,
T is a left-continuous t-norm and ρ : X2

× R≥0 → [0, 1]
is a fuzzy set, such that for each x, y, z,∈ X and t, s ≥ 0,
we have:

(i) ρ(x, y, 0) = 0,
(ii) ρ(x, x, t) = 1 for all t > 0,
(iii) ρ(x, y, t) = ρ(y, x, t)(commutative property),
(iv) T (ρ(x, y, t), ρ(y, z, s)) ≤ ρ(x, z, t + s)(triangular

inequality),
(vi) ρ(x, y,−) : R≥0→ [0, 1] is a left-continuous map,
(vii) lim

t→∞
ρ((x, y, t)) = 1,

(viii) ρ(x, y, t) = 1,∀ t > 0 implies that x = y.
If (X , ρ,T ) satisfies in conditions (i)–(vii), then it is called

KM -fuzzy pseudo metric space and ρ is called a KM -fuzzy
pseudo metric. a fuzzy version of the triangular inequality.
The value ρ(x, y, t) is considered as the degree of nearness
from
Theorem 1 [15]: Let (X , ρ,T ) be a KM -fuzzy metric

space. Then ρ(x, y,−) : R≥0 → [0, 1] is a non-decreasing
map.

Proof 1: See [15].

III. FINITE KM-FUZZY METRIC SPACE
In this section, we apply the concept of KM -fuzzy metric
spaces and construct a new class of KM -fuzzy metric spaces
under operation product and union of KM -fuzzy metric
spaces. In addition, for any given non-empty set we construct
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KM -fuzzy metric space with respect to α-discrete metric,
where α ∈ R+. From now on, for all x, y ∈ [0, 1] we
consider Tmin(x, y) = min{x, y}, Tpr (x, y) = xy,Tlu(x, y) =

max(0, x + y − 1),Tdo(x, y) =
xy

x + y− xy
and CT = {T :

[0, 1]× [0, 1]→ [0, 1] | T is a left-continuous t-norm}.
Theorem 2: If (X , ρ,Tmin) is aKM -fuzzymetric space and

T ∈ CT . Then (X , ρ,T ) is a KM -fuzzy metric space.
Proof 2: Let x, y, z ∈ X , r, s ∈ R≥0 and T ∈ CT .

Since for all x, y ∈ [0, 1],T (x, y) ≤ Tmin(x, y), we get
that T (ρ(x, y, t), ρ(y, z, s)) ≤ Tmin(ρ(x, y, t), ρ(y, z, s)) ≤
ρ(x, z, t + s). Hence (X , ρ,T ) is a KM -fuzzy metric space.

Let X be an arbitrary set and α ∈ R+. For all x, y ∈ X ,
define dα : X × X → R by dα(x, y) = 0, where x = y and
dα(x, y) = α, where x 6= y as an α-discrete metric. So we
have the following theorem.
Theorem 3: Let X be an arbitrary set and |X | ≥ 2. Then

there exists a fuzzy set ρ : X2
× R≥0 → [0, 1], such that

(X , ρ,Tmin) is a KM -fuzzy metric space.
Proof 3: Let |X | ≥ 2 and α ∈ R+ be a fixed element.

Clearly (X , dα) is a metric space, now for all x, y ∈ X , 0 6=
m, s, t ∈ R≥0, define ρ : X2

×R≥0→ [0, 1] by ρ(x, y, 0) =

0 and ρ(x, y, t > 0) =
ϕ(t)

ϕ(t)+ mdα(x, y)
, where ϕ : R≥0 →

R≥0 is an increasing continuous function and for all x, y ∈ X ,
we have ϕ(t)+mdα(x, y) 6= 0 and ϕ(t) −→ 0, whence t −→ 0.
Now, we show that (X , ρ,Tmin) is a KM -fuzzy metric space.
We prove only the triangular inequality and for all x, y, z ∈ X ,
consider the five cases x = y = z, x = y 6= z, x = z 6= y, x 6=
y = z and x 6= y 6= z. In all cases for 0 ∈ {t, s} is clear,
now for 0 6∈ {t, s} we investigate it. For x = y 6= z, since
ϕ(t + s) ≥ ϕ(s), we have ϕ(t + s)(ϕ(s) + mα) − ϕ(s)(ϕ(t +

s) + mα) ≥ 0 and so
ϕ(s)

ϕ(s)+ mα
≤

ϕ(t + s)
ϕ(t + s)+ mα

. If x 6=

y 6= z, then dα(x, y) = dα(z, y) = dα(x, z) = α. Since ϕ is
an increasing map, we get that mαϕ(t) ≤ mαϕ(t + s) and it
implies that ϕ(t)(ϕ(t+s)+mα) ≤ ϕ(t+s)(ϕ(t)+mα) and so
ϕ(t)

ϕ(t)+ mα
≤

ϕ(t + s)
ϕ(t + s)+ mα

, which means that ρ(x, y, t) ≤

ρ(x, z, t + s). By a similar way, ρ(z, y, s) ≤ ρ(x, z, t + s) and
so Tmin(ρ(x, y, t), ρ(z, y, s)) ≤ ρ(x, z, t + s).

The other cases, are proved in a similar way and so
(X , ρ,Tmin) is a KM -fuzzy metric space.
Corollary 1: Let X be an arbitrary set and |X | ≥ 2. Then

there exists a fuzzy set ρ : X2
× R≥0 → [0, 1], such that for

all T ∈ CT , (X , ρ,T ) is a KM -fuzzy metric space.

A. FINITE KM-FUZZY METRIC SPACE BASED ON METRIC
In this subsection, we apply the concept of finite metric
for constructing of KM -fuzzy metric space on any given
non-empty set.
Definition 5: Let X be a finite set. We say that X is a

C-graphable set, if G = (X ,E) is a connected graph, where
E ⊆ X ×X and G = (X ,E) is called an X -derived graph. Let
GX be the set of all connected graphs which are constructed
on X as the set of vertices, so we have the following results.

Let G = (X ,E) be a connected graph. For all
x, y ∈ X , define dg(x, y) = min{|Px,y| where Px,y is a
path between x, y}. Obviously, dg is a metric on X .
Theorem 4: Let X be a finite set and |X | ≥ 2. Then there

exists a non-discrete metric d on X such that (X , d) is a metric
space.

Proof 4: Let |X | ≥ 2. Clearly, X is a C-graphable set and
so there exists a graph G = (X ,E) ∈ GX . For all x, y ∈ X ,
define d(x, y) = dg(x, y). Clearly (X , dg) is a metric space.
Corollary 2: Let n ∈ N,X be a set and |X | = n.

(i) If G = (X ,E) ∼= Kn is the complete graph, then for
metric spaces (X , dg) and (X , d1), we have dg = d1.

(ii) If G = (X ,E) ∼= Cn is the cycle graph, then for metric
spaces (X , dg) and (X , d1), we have d1 ≤ dg ≤ dbnc

2

.

Theorem 5: Let X be a non-empty set. Then there exists a
fuzzy subset ρ : X2

× R≥0 → [0, 1], such that (X , ρ,Tpr ) is
a KM -fuzzy metric space.

Proof 5: Let |X | ≥ 2. Then clearly, X is a C-graphable
set and by Theorem 4, (X , dg) is a metric space. For all x, y ∈
X and for all 0 6= m, t ∈ R≥0, define ρ(x, y, 0) = 0 and

ρ(x, y, t > 0) =
ϕ(t)

ϕ(t)+ mdg(x, y)
, where ϕ : R≥0 → R≥0

is an increasing continuous function, ϕ(t) + mdg(x, y) 6= 0
and ϕ(t) −→ 0, whence t −→ 0. Now, we show that (X , ρ,Tpr )
is a KM -fuzzy metric space and in this regard, only prove
triangular inequality property. Let x, y, z ∈ X . For 0 ∈ {t, s}
is clear, now for 0 6∈ {t, s} we investigate it. Since for all
s, t,m ∈ R+,

ϕ(t + s)ϕ(s)mdg(x, y)+ ϕ(t + s)ϕ(t)mdg(y, z)

≥ ϕ(t)ϕ(s)mdg(x, y)+ ϕ(s)ϕ(t)mdg(y, z)

≥ ϕ(s)ϕ(t)mdg(x, z),m2dg(y, z)dg(y, z)ϕ(t + s) > 0,

we get that Tpr (
ϕ(t)

ϕ(t)+ mdg(x, y)
,

ϕ(s)
ϕ(s)+ mdg(y, z)

) ≤

ϕ(t + s)
ϕ(t + s)+ mdg(x, z)

.

It follows that Tpr (ρ(x, y, t), ρ(y, z, s)) ≤ ρ(x, z, t+ s) and
so (X , ρ,Tpr ) is a KM -fuzzy metric space.
Corollary 3: Let X be a non-empty set. Then there exists

a fuzzy subset ρ : X2
× R≥0 → [0, 1], such that for all

left-continuous t-norm T ≤ Tpr , (X , ρ,T ) is a KM -fuzzy
metric space.

B. OPERATIONS ON KM-FUZZY METRIC SPACES
In this subsection, we extend KM -fuzzy metric spaces
to union and product of KM -fuzzy metric spaces. Let
(X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy metric spaces,
(x1, y1), (x2, y2) ∈ X1 × X2 and t ∈ R≥0. For an arbitrary
T ∈ CT , define T (ρ) : (X1 × X2)2 × R≥0 → [0, 1]
by T (ρ)

(
(x1, y1), (x2, y2), t

)
= T (ρ1(x1, x2, t), ρ2(y1, y2, t)).

So we have the following theorem.
Theorem 6: Let (X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy

metric spaces. Then (X1 × X2,Tmin(ρ),T ) is a KM -fuzzy
metric space.
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Proof 6: Let (x1, y1), (x2, y2), (x3, y3) ∈ X1 × X2 and
t, s ∈ R≥0.
(i) Since for all x1, x2 ∈ X1, y1, y2 ∈ X2, ρ1(x1, x2, 0) = 0

and ρ2(y1, y2, 0) = 0, have Tmin(ρ)
(
(x1, y1), (x2, y2), 0

)
= 0.

(ii) Tmin(ρ)
(
(x1, y1), (x2, y2), t

)
= 1 if and only

if Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)) = 1 if and only if
ρ1(x1, x2, t) = ρ2(y1, y2, t) = 1 if and only if (x1, y1) =
(x2, y2).

(iii) It is clear that Tmin(ρ) is a commutative map.
(iv)

T
(
Tmin(ρ)((x1, y1), (x2, y2), t),Tmin(ρ)((x2, y2), (x3, y3), s)

)
= T

(
Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)),

Tmin(ρ1(x2, x3, s), ρ2(y2, y3, s))
)
≤ Tmin(T

(
ρ1(x1,

x2, t), ρ1(x2, x3, s)
)
,T
(
ρ2(y1, y2, t), ρ2(y2, y3, s)

)
))

≤ Tmin(ρ1(x1, x3, t + s), ρ2(y1, y3, t + s))

= Tmin(ρ)((x1, y1), (x3, y3), t + s).

(v) Since ρ1, ρ2 are left-continuous maps, we get that ρ is
a left-continuous map.

(vi) Clearly lim
t→∞

Tmin(ρ1(x1, x2, t), ρ2(y1, y2, t)) =

Tmin( lim
t→∞

ρ1(x1, x2, t), lim
t→∞

ρ2(y1, y2, t)) = Tmin(1, 1) = 1.
Thus (X1 × X2,Tmin(ρ),T ) is a KM -fuzzy metric space.
is easy to check that (X1, ρ1,Tlu) and (X2, ρ2,Tlu) are KM -

fuzzymetric spaces and by Theorem 6, (X1×X2,Tmin(ρ),Tlu)
is a KM -fuzzy metric space.

where ρ1(x, y, t) =
min(x, y)+ t
max(x, y)+ t

and ρ2(x, y, t) =

min(x, y)
max(x, y)

. Applying Theorem 6, (R≥0 × N, ρ,Tpr ) is a

KM -fuzzy metric space, where ρ((x1, y1), (x2, y2), t) =

min{
min(x1, x2)+ t
max(x1, x2)+ t

,
min(y1, y2)
max(y1, y2)

}.

Let X1 ∩ X2 = ∅, (X1, ρ1,T ) and (X2, ρ2,T ) be KM -
fuzzy metric spaces, x, y ∈ X1 ∪ X2 and t ∈ R≥0. Consider
ε(x, y, t) =

∧
x,u∈X1 y,v∈X2

(ρ1(x, u, t) ∧ ρ2(y, v, t))), define

ρ1 ∪ ρ2 : (X1 ∪ X2)2 × R≥0→ [0, 1] by

(ρ1 ∪ ρ2)(x, y, t) =


ρ1(x, y, t) if x, y ∈ X1,
ρ2(x, y, t) if x, y ∈ X2,
ε(x, y, t) if x ∈ X1, y ∈ X2, .

So we have the following theorem.
Theorem 7: Let (X1, ρ1,T ) and (X2, ρ2,T ) be KM -fuzzy

metric spaces. Then (X1∪X2, ρ1∪ρ2,T ) is aKM -fuzzymetric
space, where X1 ∩ X2 = ∅.

Proof 7: Let x, y, z ∈ X1 ∪ X2 and t, s ∈ R≥0. We only
prove the triangular inequality property and other cases are
immediate. Let x, y ∈ X1(for x, y ∈ X2, one can prove in a
similar way), then T

(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
=

T
(
ρ1(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
. If z ∈ X1, then T

(
(ρ1 ∪

ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)
)
= T

(
ρ1(x, y, t), ρ1(y, z, s)

)
≤

ρ1(x, z, t + s) = (ρ1 ∪ ρ2)(x, z, t + s). If z ∈ X2, then
T
(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
= T

(
ρ1(x, y, t), ε

)
≤

ε = (ρ1 ∪ ρ2)(x, z, t + s). Let x ∈ X1, y ∈ X2.

Then T
(
(ρ1 ∪ ρ2)(x, y, t), (ρ1 ∪ ρ2)(y, z, s)

)
= T

(
ε, (ρ1 ∪

ρ2)(y, z, s)
)
. If z ∈ X2, since x ∈ X1 and y ∈ X2, we get that

(ρ1 ∪ ρ2)(x, z, t + s) = ε and so T
(
ε, (ρ1 ∪ ρ2)(y, z, s)

)
=

T
(
ε, ρ2(y, z, s)

)
≤ ε = (ρ1 ∪ ρ2)(x, z, t + s). If z ∈ X1, since

x ∈ X1 and y ∈ X2, we get that (ρ1 ∪ ρ2)(x, z, t + s) 6= ε and
so T

(
ε, (ρ1∪ρ2)(y, z, s)

)
= T

(
ε, ε

)
≤ ε ≤ ρ1(x, z, t+ s)

)
=

(ρ1 ∪ ρ2)(x, z, t + s). It follows that (X1 ∪ X2, ρ1 ∪ ρ2,T ) is
a KM -fuzzy metric space.

IV. KM-SINGLE VALUED NEUTROSOPHIC METRIC GRAPH
In this section, we introduce a novel concept as KM -single
valued neutrosophic metric graphs and analyse some their
properties.
Definition 6: Let (V , ρ,T ) be a fuzzy metric space

and G∗ = (V ,E) be a simple graph. Then G =(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ,T , S

)
is called

a KM -single valued neutrosophic metric graph (a strong
KM -single valued neutrosophic metric graph) on G∗, if there
exists some time t ∈ R≥0 (for t = 0, we call starting time)
such that for all xy ∈ E , we have

(i) the functions TV : V → [0, 1], IV : V →

[0, 1] and FV : V → [0, 1] represent the degree
of truth-membership, indeterminacy-membership and
falsity-membership of the element x ∈ V , respectively.
There is no restriction on the sum of TV (x), IV (x) and
FV (x), therefore 0 ≤ TV (x)+ IV (x)+ FV (x) ≤ 3 for all
x ∈ V .

(ii) the functions TE : E ⊆ V × V → [0, 1], IE :
E ⊆ V × V → [0, 1] and FE : E ⊆ V × V →
[0, 1] are defined by T

(
TE (xy),T (TV (x),TV (y))

)
≤

ρ(x, y, t)
(
T (TE (xy),T (TV (x),TV (y)) = ρ(x, y, t)

)
),

S
(
IE (xy), S(IV (x), IV (y))

)
≥ ρ(x, y, t)(

S
(
IE (xy), S(IV (x), IV (y))

)
= ρ(x, y, t)

)
and S

(
FE (xy),

S(FV (x),FV (y))
)
≥ ρ(x, y, t)(

S
(
FE (xy), S(FV (x),FV (y))

)
= ρ(x, y, t)

)
, where S is a

triangular conorm as a dual of triangular norm T , via a
negation η.

We call X as a KM -single valued neutrosophic metric vertex
set of G and Y is KM -single valued neutrosophic edge set
of G.

In definition of KM -single valued neutrosophic metric
graph, if t → ∞, then for all x, y ∈ V , ρ(x, y, t) → 1
and so it follows that FE (xy) = S(FV (x),FV (y)) = IE (xy) =
S(IV (x), IV (y)) = ρ(x, y, t) and TE (xy),T (TV (x),TV (y)) can
be any given fuzzy values. The concept of KM -single valued
neutrosophic metric graph is a generalization of KM -fuzzy
metric graph, where is introduced by M. Hamidi et.al [6].
Theorem 8: Let (V , ρ,T ) be a fuzzymetric space andG =

(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E). Then for starting time:

(i) for all xy ∈ E, TE (xy) = 0 or TV (x) = 0 or TV (y) = 0.
(ii) |Range(IE ))| = |Range(IV ))| = |Range(FE ))| =
|Range(FV ))| = |[0, 1]|.

Proof 8: (i) Let xy ∈ E . Since G = (X ,Y , ρ,T , S) is a
KM -single valued neutrosophic metric graph G∗ = (V ,E),
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we get that T
(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, 0). Hence

T
(
TE (xy),T (TV (x),TV (y))

)
= 0 and so TE (xy) = 0 or

TV (x) = 0 or TV (y) = 0.
(ii) It is immediate by Definition.
Example 1: Let V = {1, 2, 3, 4} and x, y ∈ X . Con-

sider a fuzzy subset ρ(x, y, 0) = 0 and ρ(x, y, t >

0) =
min{x, y} + t
max{x, y} + t

. We take the negation η(m) = 1 −

m(m ∈ [0, 1]) and obtain a KM -single valued neutro-
sophic metric graph G = (V ,

(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ,Tmin, Smax
)
) on the cycle graph C4 for t = 1,

in Figure 1.

FIGURE 1. KM-single valued neutrosophic metric graph
G = (X ,Y , ρ, Tmin,Smax ).

Let (V , ρ,T ) be a fuzzy metric space and G =

(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E) and α, β, γ ∈ [0, 1]. Define T αV =
{x ∈ V | TV (x) ≥ α}, IβV = {x ∈ V | IV (x) ≤ β},
FγV = {x ∈ V | FV (x) ≤ γ }, T

α
E = {xy ∈ E | TE (x) ≥ α},

IβE = {xy ∈ E | IE (x) ≤ β}, F
γ
E = {xy ∈ E | FE (x) ≤ γ },

X (α,β,γ )
= {x ∈ V | TV (x) ≥ α, IV (x) ≤ β,FV (x) ≤ γ } and

Y (α,β,γ )
= {xy ∈ E | TE (x) ≥ α, IE (x) ≤ β,FE (x) ≤ γ }.

Theorem 9: Let (V , ρ,T ) be a fuzzymetric space andG =
(X ,Y , ρ,T , S) be a KM -single valued neutrosophic metric
graph on G∗ = (V ,E) and α, β, γ ∈ [0, 1]. Then X (α,β,γ )

=

T αV ∩ I
β
V ∩ F

γ
V and Y (α,β,γ )

= T αE ∩ I
β
E ∩ F

γ
E .

Proof 9: Let x ∈ X (α,β,γ ). Then TV (x) ≥ α, IV (x) ≤ β
and FV (x) ≤ γ implies that x ∈ T αV ∩I

β
V ∩F

γ
V and conversely.

In similar a way, one can see that Y (α,β,γ )
= T αE ∩ I

β
E ∩ F

γ
E .

Let G = (X ,Y , ρ,T , S) be a KM -single valued
neutrosophic metric graph on G∗ = (V ,E). Con-
sider αmin =

∧
xy∈E

T
(
TE (xy),T (TV (x),TV (y))

)
, βmax =∨

xy∈E

S
(
IE (xy), S(IV (x), IV (y))

)
, γmax =

∨
xy∈E

S
(
FE (xy),

S(FV (x),FV (y))
)
. Thus we have the following theorem.

Theorem 10: Let (V , ρ,T ) be a fuzzy metric space and
G = (X ,Y , ρ,T , S) be a KM -single valued neutrosophic
metric graph on G∗ = (V ,E). Then For any α ≤ αmin, β ≥
βmax , γ ≥ γmax ,G(α,β,γ )

=
(
X (α,β,γ ),Y (α,β,γ )

)
is a subgraph

of G∗ = (X ,Y ). parameters of R+.

Proof 10: Let xy ∈ E . Since T
(
TE (xy),T (TV (x),

TV (y))
)
≤ Tmin

(
TE (xy),T (TV (x),TV (y))

)
, we get that

TE (xy) ≥ αmin ≥ α. So for any α ≤ αmin, TEα ⊆ E . Also
since S

(
IE (xy), S(IV (x), IV (y))

)
≥ Smax

(
IE (xy), S(IV (x), IV

(y))
)
, we get that IE (xy) ≤ βmax ≤ β. So for any β ≥ βmax ,

IEβ ⊆ E . In a similar way, can see that FEβ ⊆ E . Using The-
orem 9, Y (α,β,γ )

⊆ E and so G(α,β,γ )
=
(
X (α,β,γ ),Y (α,β,γ )

)
is a subgraph of G∗ = (X ,Y ).
Theorem 11: Let (V , ρ,T ) be a KM -fuzzy metric space

and G∗ = (V ,E) be a simple graph.
(i) If TE ≤ ρ, IE ≥ ρ and FE ≥ ρ then G =

(X ,Y , ρ,T ) is a KM -single valued neutrosophic met-
ric graph on G∗.

(ii) If G = (X ,Y , ρ,Tmin, Smax) is a KM -single valued
neutrosophic metric graph on G∗ and TE > ρ, IE < ρ

and FE < ρ, then G = (X ,Y ) is not a single valued
neutrosophic graph on G∗.

(iii) If G = (X ,Y , ρ,Tmin, Smax) is a strong KM -single
valued neutrosophic metric graph on G∗, then G =
(X ,Y ) is a KM -single valued neutrosophic graph on
G∗ if and only if ρ(x, y, t) ≥ TE (xy), ρ(x, y, t) ≤
IE (xy) and ρ(x, y, t) ≤ FE (xy).

Proof 11: Let x, y ∈ V . Then for some t ∈ R≥0:
(i) Since T

(
TE (xy),T (TV (x),TV (y))

)
≤ TE (xy), S

(
IE (xy),

S(IV (x), IV (y))
)
≥ IE (xy) and S

(
FE (xy), S(FV (x),FV (y))

)
≥

FE (xy) then TE ≤ ρ, IE ≥ ρ and FE ≥ ρ imply that
T
(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, t), S

(
IE (xy), S(IV (x),

IV (y))
)
≥ ρ(x, y, t) and S

(
FE (xy), S(FV (x),FV (y))

)
≥

ρ(x, y, t). So G = (X ,Y , ρ,T ) is a KM -single valued neu-
trosophic graph metric graph on G∗.
(ii) Let G = (X ,Y ) be a single valued neutrosophic graph

on G∗. For all xy ∈ E, since G = (X ,Y , ρ,Tmin, Smax) is
a KM -single valued neutrosophic metric graph on G∗, using
TE (xy) ≤ Tmin(TV (x),TV (y)), IE (xy) ≥ Smax(IV (x), IV (y))
and FE (xy) ≥ Smax(FV (x),FV (y)), we get that TE (xy) = Tmin(
TE (xy),Tmin(TV (x),TV (y))

)
≤ ρ(x, y, t), IE (xy) = Smax(

IE (xy), Smax(IV (x), IV (y))
)
≥ ρ(x, y, t) and FE (xy) =

Smax
(
FE (xy), Smax(FV (x),FV (y))

)
≥ ρ(x, y, t) which it is a

contradiction.
(iii) G = (X ,Y ) is a single valued neutrosophic

graph on G∗ if and only if for all xy ∈ E,
TE (xy) ≤ Tmin(TV (x),TV y)), IE (xy) ≥ Smax(IV (x), IV (y))
and FE (xy) ≥ Smax(FV (x),FV (y)). Then G =

(X ,Y ) is a KM -single valued neutrosophic graph on G∗

if and only if Tmin(TE (xy)(xy),Tmin(TV (x),TV (y))) =

TE (xy), Smax(IE (xy)(xy), Smax(IV (x), IV (y))) = IE (xy) and
Smax(FE (xy)(xy), Smax(FV (x),FV (y))) = FE (xy) if and
only if ρ(x, y, t) ≥ TE (xy), ρ(x, y, t) ≤ IE (xy) and
ρ(x, y, t) ≤ FE (xy).
Corollary 4: Let G = (X ,Y , ρ,T , S) be a KM -fuzzy

metric connected graph on G∗ = (V ,E). Then for starting
time G = (X ,Y ) is not a single valued neutrosophic graph
on G∗.
Theorem 12: Let (V , ρ,T ) be a KM -fuzzy metric space,

G∗ = (V ,E) be a simple graph and xy ∈ E . Then for
TV , IV ,FV : V → [0, 1] and TE , IE ,FE : E → [0, 1],
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(i) If TV (x) + TV (y) ≤ 1, IV (x) + IV (y) = 1 and FV (x) +
FV (y) = 1 then G = (X ,Y , ρ,Tlu, Slu) is a KM -single
valued neutrosophic metric graph on G∗.

(ii) If TE (xy) + 1 ≤ TV (xy) + TV (x) + TV (y) ≤ 2, IV (x) +
IV (y) = FV (x)+FV (y) = 1, thenG = (X ,Y , ρ,Tlu, Slu)
is a KM -single valued neutrosophic metric graph on G∗.
Proof 12: Let x, y ∈ V . Then for some t ∈ R≥0:

(i) W have

Tlu(TE (xy),Tlu(TV (x),TV (y))

= max
(
0,TE (xy)+ Tlu(TV (x),TV (y))− 1

)
= max

(
0,TE (xy)+max(0,TV (x)+ TV (y)− 1)− 1

)
.

If TV (x) + TV (y) ≤ 1, then Tlu(TE (xy),Tlu(TV (x),TV (y)) =
max

(
0,TE (xy) − 1

)
= 0, since for all x, y ∈ V we have

TE (xy) ≤ 1. It concludes that for any time t ∈ R≥0 get
that Tlu(TE (xy),Tlu(TV (x),TV (y)) ≤ ρ(x, y, t). In addition,
IV (x)+ IV (y) = 1, implies that

Slu(IE (xy), Slu(IV (x), IV (y))

= min
(
1, IE (xy)+ Slu(IV (x), IV (y))

)
= min

(
1, IE (xy)+min(1, IV (x)+ IV (y))

)
= min

(
1, IE (xy)+ 1

)
= 1 ≥ ρ(x, y, t).

In a similar way, one can prove that Slu(FE (xy), Slu(FV (x),
FV (y)) ≥ ρ(x, y, t) and so G = (X ,Y , ρ,Tlu, Slu) is a
KM -single valued neutrosophic metric graph on G∗.
(ii) Because TE (xy) + 1 ≤ TE (xy) + TV (x) + TV (y) ≤

2, we get that TV (x) + TV (y) ≥ 1 and by item (i), have
Tlu(TE (xy),Tlu(TV (x),TV (y)) = Tlu(0,TE (xy) + TV (x) +
TV (y) − 2) = 0. Moreover, IV (x) + IV (y) = FV (x)+
FV (y) = 1, implies that

Slu(FE (xy), Slu(FV (x),FV (y))

= min
(
1,FE (xy)+ Slu(FV (x),FV (y))

)
= min

(
1,FE (xy)+min(1,FV (x)+ FV (y))

)
= min

(
1,FE (xy)+ 1

)
= 1 ≥ ρ(x, y, t).

KM -fuzzy metric graph on G∗. It follows that G =

(X ,Y , ρ,Tlu, Slu) is a KM -single valued neutrosophic metric
graph on G∗.

A. OPERATIONS ON KM-FUZZY METRIC GRAPHS
In this section, for any given two KM -single valued
neutrosophic metric graphs, define some product opera-
tions and show that the product of KM -single valued
neutrosophic metric graphs is a KM -fuzzy metric graph.
From now on, we consider G1 = (X1 = (T (1)

V , I (1)V ,

F (1)
V ),Y1 = (T (1)

E , I (1)E ,F (1)
E ), ρ1,T , S), G2 = (X2 =

(T (2)
V , I (2)V ,F (2)

V ),Y2 = (T (2)
E , I (2)E ,F (2)

E ), ρ2,T , S) as KM -
single valued neutrosophic metric graphs on simple graphs
G∗1 = (V1,E1) and G∗2 = (V2,E2), respectively.
Definition 7: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the categorical product (tensor product) of

fuzzy subsets X1 × X2 = (T (1)
V × T (2)

V , I (1)V × I (2)V ,F (1)
V ×

F (2)
V ),Y1×Y2 = (T (1)

E ×T
(2)
E , I (1)E × I

(2)
E ,F (1)

E ×F
(2)
E ), where

T (1)
V ×T

(2)
V , I (1)V × I

(2)
V ,F (1)

V ×F
(2)
V : V (G

∗

1×G
∗

2)→ [0, 1] by

(T (1)
V × T

(2)
V )(x1, x2) = Tmin(T

(1)
V (x1),T

(2)
V (x2)),

(I (1)V × I
(2)
V )(x1, x2) = Smax(I

(1)
V (x1), I

(2)
V (x2)),

(F (1)
V × F

(2)
V )(x1, x2) = Smax(F

(1)
V (x1),F

(2)
V (x2)),

and T (1)
E ×T

(2)
E , I (1)E ×I

(2)
E ,F (1)

E ×F
(2)
E : E(G

∗

1×G
∗

2)→ [0, 1]
by

(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)) = Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)), (I

(1)
E × I

(2)
E )((x1, x2)(y1, y2)) = Smax

(I (1)E (x1y1), I
(2)
E (x2y2), (F

(1)
E × F

(2)
E )((x1, x2)(y1, y2))

= Smax(F
(1)
E (x1y1),F

(2)
E (x2y2).

Theorem 13: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 × G2 = (X1 × X2,Y1 × Y2,Tmin(ρ),T , S) is
a KM -single valued neutrosophic metric graph on G∗1 × G

∗

2.
Proof 13: Firstly, by Theorem 6, (V1×V2,Tmin(ρ),T ) is

a KM -fuzzy metric space. Let (x1, x2)(y1, y2) ∈ E(G∗1 ×G
∗

2).
SinceG1 is aKM -single valued neutrosophic metric graph on
G∗1 and G2 is a KM -single valued neutrosophic metric graph
on G∗2, for some t1, t2 ∈ R≥0, we get that

T
(
(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)),T

(
(T (1)
V × T

(2)
V )

(x1, x2), (T
(1)
V × T

(2)
V )(y1, y2)

)
= T

(
Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)),T

(
(Tmin(T

(1)
V (x1),T

(1)
V (x2)), (Tmin

(T (1)
V (y1),T

(2)
V (y2))

))
≤ T

(
T (1)
E (x1 y1),T

(
T (1)
V (x1),

T (1)
V (y1)

))
≤ ρ1(x1, y1, t1) and

T
(
(T (1)
E × T

(2)
E )((x1, x2)(y1, y2)),T

(
(T (1)
V × T

(2)
V )

(x1, x2), (T
(1)
V × T

(2)
V )(y1, y2)

)
= T

(
Tmin(T

(1)
E (x1y1),

T (2)
E (x2y2)),T

(
(Tmin(T

(1)
V (x1),T

(2)
V (x2)), (Tmin(T

(1)
V

(y1),T
(2)
V (y2))

))
≤ T

(
T (2)
E (x2 y2),T

(
T (2)
V (x2),

T (2)
V (y2)

))
≤ ρ2(x2, y2, t2).

Consider t = max{t1, t2}, so by Theorem 1, we obtain

T
(
(T (1)
E × T

(2)
E ((x1, x2)(y1, y2)),

T
(
(T (1)
V × T

(2)
V )(x1, x2), (T

(1)
V × T

(2)
V )(y1, y2)

)
≤ Tmin

(
ρ1(x1, y1, t1), ρ2(x2, y2, t2)

)
≤ Tmin(ρ)((x1, x2), (y1, y2), t).

I addition,

S
(
(I (1)E × I

(2)
E )((x1, x2)(y1, y2)),

S
(
(I (1)V × I

(2)
V )(x1, x2), (I

(1)
V × I

(2)
V )(y1, y2)

)
= S

(
Smax(I

(1)
E (x1y1), I

(2)
E (x2y2)), S

(
(Smax(I

(1)
V (x1),

I (1)V (x2)), (Smax(I
(1)
V (y1), I

(2)
V (y2))

))
≥ S

(
I (1)E (x1 y1), S

(
I (1)V (x1), I

(1)
V (y1)

))
≥ ρ1(x1, y1, t1)
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and S
(
(I (1)E × I

(2)
E )((x1, x2)(y1, y2)), S

(
(I (1)V × I

(2)
V )

(x1, x2), (I
(1)
V × I

(2)
V )(y1, y2)

)
= S

(
Smax(I

(1)
E (x1y1),

I (2)E (x2y2)), S
(
(Smax(I

(1)
V (x1), I

(2)
V (x2)), (Smax(I

(1)
V

(y1), I
(2)
V (y2))

))
≥ S

(
I (2)E (x2 y2), S

(
I (2)V (x2), I

(2)
V (y2)

))
≥ ρ2(x2, y2, t2).

Consider t = min{t1, t2}, so by Theorem 1, we obtain

S
(
(I (1)E × I

(2)
E ((x1, x2)(y1, y2)),

S
(
(I (1)V × I

(2)
V )(x1, x2), (I

(1)
V × I

(2)
V )(y1, y2)

)
≥ Smax

(
ρ1(x1, y1, t1), ρ2(x2, y2, t2)

)
≥ Smax(ρ)((x1,

x2), (y1, y2), t).

In a similar way, can see that S
(
(F (1)

E ×F
(2)
E ((x1, x2)(y1, y2)),

S
(
(F (1)

V × F (2)
V )(x1, x2), (F

(1)
V × F (2)

V )(y1, y2)
)
≥ Smax

(ρ)((x1, x2), (y1, y2), t). Thus G1 × G2 = (X1 × X2,Y1 ×
Y2,Tmin(ρ),T , S) is a KM -single valued neutrosophic metric
graph on G∗1 × G

∗

2.
Definition 8: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the Cartesian product (or product) fuzzy subsets
X1 ⊗ X2 = (T (1)

V ⊗ T (2)
V , I (1)V ⊗ I (2)V ,F (1)

V ⊗ F (2)
V ),Y1 ⊗

Y2 = (T (1)
E ⊗ T (2)

E , I (1)E ⊗ I (2)E ,F (1)
E ⊗ F (2)

E ), where T (1)
V ⊗

T (2)
V , I (1)V ⊗ I (2)V ,F (1)

V ⊗ F (2)
V : V (G∗1 × G∗2) → [0, 1]

by (T (1)
V ⊗ T (2)

V )(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V ⊗

I (2)V )(x1, x2) = Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V ⊗F

(2)
V )(x1, x2) =

Smax(F
(1)
V (x1),F

(2)
V (x2)), and T (1)

E ⊗ T (2)
E , I (1)E ⊗ I (2)E ,

F (1)
E ⊗ F (2)

E : E(G∗1 × G∗2) → [0, 1] by (T (1)
E ⊗ T (2)

E )
((x, x2)(x, y2)) = Tmin(T

(1)
V (x),T (2)

E (x2y2)), (T
(1)
E ⊗ T (2)

E )
((x1, y)(y1, y)) = Tmin(T

(2)
V (y),T (1)

E (x1y1)), (I
(1)
E ⊗I

(2)
E )((x, x2)

(x, y2)) = Smax(I
(1)
V (x), I (2)E (x2y2)), (I

(1)
E ⊗ I (2)E )((x1, y)(y1,

y)) = Smax(I
(2)
V (y), I (1)E (x1y1)), (F

(1)
E ⊗ F

(2)
E )((x, x2)(x, y2)) =

Smax(F
(1)
V (x),F (2)

E (x2y2)), (F
(1)
E ⊗F

(2)
E )((x1, y)(y1, y)) = Smax

(F (2)
V (y),F (1)

E (x1y1)).
Example 2: Consider the KM -fuzzy metric spaces

(V1 = {1, 2}, ρ1,Tmin), (V2 = {3, 4, 5}, ρ2,Tmin), where
ρ1(1, 1, t > 0) = 1, ρ1(2, 2, t > 0) = 1, ρ1(1, 2, t > 0) =
1+ t
2+ t

, ρ1(x, y, 0) = 0, x, y ∈ V1 and for all x, y ∈ {3, 4, 5},

ρ2(x, y, t) =


min{x, y} + t
max{x, y} + t

if t > 0

0 if t = 0

. We take the negation η(m) = 1− m(m ∈ [0, 1]) and obtain
the KM -single valued neutrosophic metric graphs G1 =

(V1,
(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ1,Tmin, Smax

)
)

in unit time t1 = 1 and G2 = (V2,
(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ2,Tmin, Smax
)
) in unit time t2 = 1 on G∗1

and G∗2 in Figure 2, where A = (0.6, 0.4, 0.2),B =

(0.5, 0.1, 0.3),C = (0.3, 0.5, 0.7),D = (0.5, 0.6, 0.2),E =
(0.1, 0.2, 0.5),AB = (0.5, 0.97, 0.95),CE = (0.1, 0.96,
0.91) ,ED = (0.5, 0.98, 0.99) and DC = (0.3, 0.93, 0.96).
Now, we obtain the KM -fuzzy metric graph G1 × G2 in

FIGURE 2. KM-single valued neutrosophic metric graphs G1 and G2 for
t = 1.

FIGURE 3. KM-single valued neutrosophic metric graph G1 ⊗G2 for t = 1.

Figure 3, where a = (0.1, 0.4, 0.5), b = (0.1, 0.4, 0.5),
c = (0.5, 0.6, 0.2), d = (0.5, 0.6, 0.3), e = (0.3, 0.5, 0.7),
f = (0.3, 0.5, 0.7), ab = (0.1, 0.97, 0.95), dc = (0.5, 0.97,
0.95), ef = (0.3, 0.97, 0.95), bd = (0.5, 0.98, 0.99), df =
(0.3, 0.93, 0.96), ac = (0.5, 0.98, 0.99), ce = (0.3, 0.93,
0.96), bf = (0.1, 0.96, 0.961) and ae = (0.1, 0.96, 0.91).
Theorem 14: Let G1 and G2 be KM -single valued neu-

trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively.
(i) If (G∗1 ⊗G

∗

2,T (ρ),T ) is a KM -fuzzy metric space, then
T (ρ) = ρ1 or T (ρ) = ρ2, where T ∈ CT .

(ii) G1 ⊗ G2 = (X1 ⊗ X2,Y1 ⊗ Y2,Tmin(ρ),T , S) is a
KM -single valued neutrosophic metric graph on
G∗1 ⊗ G

∗

2.
Proof 14: (i) Let (x1, x2), (y1, y2) ∈ E(G∗1 ⊗ G∗2).

Then x1 = y1 and x2y2 ∈ E(G∗2) or x2 = y2 and
x1y1 ∈ E(G∗1). If x1 = y1 and x2y2 ∈ E(G∗2), then
T (ρ)

(
(x1, x2), (x1, y2), t

)
= T (ρ1(x1, x1, t), ρ2(x2, y2, t)) =

T (1, ρ2(x2, y2, t)) = ρ2(x2, y2, t). If x2 = y2 and
x1y1 ∈ E(G∗1), then T (ρ)

(
(x1, x2), (y1, x2), t

)
=

T (ρ1(x1, y1, t), ρ2(x2, x2, t)) = T (ρ1(x1, y1, t), 1) =

ρ1(x1, y1, t).
(ii) Firstly, by Theorem 6, (V1 × V2,Tmin(ρ),T ) is a KM -

fuzzy metric space. Let (x1, x2), (y1, y2) ∈ E(G∗1⊗G
∗

2). Since
G1 is a KM -single valued neutrosophic metric graph on G∗1
and G2 is a KM -single valued neutrosophic metric graph on
G∗2, for some t1, t2 ∈ R≥0, give t = max{t1, t2}, so by item
(i) and Theorem 1, we get that

T
(
(T (1)
E ⊗ T

(2)
E )((x, x2)(x, y2)),T

(
(T (1)
V ⊗ T

(2)
V )(x,

x2), (T
(1)
V ⊗ T

(2)
V )(x, y2)

)
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= T
(
Tmin(T

(1)
V (x),T (2)

E (x2y2)),T
(
Tmin(T

(1)
V (x),T (2)

V

(x2)),Tmin(T
(1)
V (x),T (2)

V (y2))
))

≤ T
(
T (2)
E (x2 y2),T

(
T (2)
V (x),T (2)

V (y2)
))
≤ ρ2(x2, y2, t2)

≤ Tmin(ρ)((x, x2)(x, y2), t) and

T
(
(T (1)
E ⊗ T

(2)
E )((x1, y)(y1, y)),T

(
(T (1)
V ⊗ T

(2)
V )(x1, y),

(T (1)
V ⊗ T

(2)
V )(y1, y)

)
= T

(
Tmin(T

(2)
V (y),T (1)

E (x1y1)),T
(
Tmin(T

(1)
V (x1),T

(2)
V

(y)),Tmin(T
(1)
V (y1),T

(2)
V (y))

))
≤ T

(
T (1)
E (x1y1),T

(
T (1)
V (x1),T

(1)
V (y1)

))
≤ ρ1(x1, y1, t1)

≤ Tmin(ρ)((x1, y)(y1, y), t)

Now, give t = min{t1, t2}, so by item (i) and Theorem 1,
we get that

S
(
(I (1)E ⊗ I

(2)
E )((x, x2)(x, y2)),

S
(
(I (1)V ⊗ I

(2)
V )(x, x2), (I

(1)
V ⊗ I

(2)
V )(x, y2)

)
= S

(
Smax(I

(1)
V (x), I (2)E (x2y2)), S

(
Smax(I

(1)
V (x), I (2)V (x2)),

Smax(I
(1)
V (x), I (2)V (y2))

))
≥ S

(
I (2)E (x2 y2), S

(
I (2)V (x), I (2)V (y2)

))
≥ ρ2(x2, y2, t2)

≥ Smax(ρ)((x, x2)(x, y2), t) andS
(
(I (1)E ⊗I

(2)
E )((x1, y)(y1, y)),

S
(
(T (1)
V ⊗ I

(2)
V )(x1, y), (T

(1)
V ⊗ I

(2)
V )(y1, y)

)
= S

(
Smax(I

(2)
V (y), I (1)E (x1y1)),T

(
Smax(I

(1)
V (x1), I

(2)
V (y)),

Smax(I
(1)
V (y1), I

(2)
V (y))

))
≥ S

(
I (1)E (x1y1), S

(
I (1)V (x1), I

(1)
V (y1)

))
≥ ρ1(x1, y1, t1)

≥ Smax(ρ)((x1, y)(y1, y), t).

In a similar way, can see that S
(
(F (1)

E ⊗F
(2)
E ((x1, x2)(y1, y2)),

S
(
(F (1)

V ⊗ F (2)
V )(x1, x2), (F

(1)
V ⊗ F (2)

V )(y1, y2)
)
≥ Smax(ρ)

((x1, x2), (y1, y2), t). Thus G1 ⊗ G2 = (X1 ⊗ X2,Y1 ⊗
Y2,Tmin(ρ),T , S) is a KM -single valued neutrosophic metric
graph on G∗1 ⊗ G

∗

2.
Definition 9: Let G1, G2 be KM -single valued neu-

trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively.
Define the semi-strong product of fuzzy subsets X1 ·

X2 = (T (1)
V · T (2)

V , I (1)V · I (2)V ,F (1)
V · F (2)

V ),Y1 · Y2 =
(T (1)
E · T

(2)
E , I (1)E · I

(2)
E ,F (1)

E · F
(2)
E ), where T (1)

V · T
(2)
V , I (1)V ·

I (2)V ,F (1)
V · F

(2)
V : V (G∗1 × G∗2) → [0, 1] by (T (1)

V · T
(2)
V )

(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V · I (2)V )(x1, x2) =

Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V · F

(2)
V )(x1, x2) = Smax(F

(1)
V (x1),

F (2)
V (x2)), and T (1)

E · T
(2)
E , I (1)E · I

(2)
E ,F (1)

E · F
(2)
E : E(G∗1 ×

G∗2) → [0, 1] by (T (1)
E · T (2)

E )((x, x2)(x, y2)) = Tmin
(T (1)
V (x),T (2)

E (x2y2)), (T
(1)
E · T (2)

E )((x1, x2)(y1, y2)) = Tmin
(T (1)
E (x1y1)),T

(2)
E (x2y2)), (I

(1)
E · I

(2)
E )((x, x2)(x, y2)) = Smax

(I (1)V (x), I (2)E (x2y2)), (I
(1)
E · I

(2)
E )(x1, x2)(y1, y2)) = Smax(I

(1)
E

(x1y1)), I
(2)
E (x2y2)), (F

(1)
E ·F

(2)
E )((x, x2)(x, y2))=Smax(F

(1)
V (x),

F (2)
E (x2y2)), (F

(1)
E · F

(2)
E )((x1, x2)(y1, y2)) = Smax(F

(1)
E (x1y1),

F (2)
E (x2y2)).

Example 3: Consider the KM -single valued neutrosophic
metric graphs G1 and G2 in Example 2. So we obtain
the KM -fuzzy metric graph G1 · G2 in Figure 4, where
a = (0.1, 0.4, 0.5), b = (0.1, 0.4, 0.5), c = (0.5, 0.6, 0.2),
d = (0.5, 0.6, 0.3), e = (0.3, 0.5, 0.7), f = (0.3, 0.5, 0.7),
be = (0.1, 0.97, 0.95), bc = (0.5, 0.98, 0.99), af = (0.1,
0.97, 0.95), bd = (0.5, 0.98, 0.99), df = (0.3, 0.93, 0.96),
ac = (0.5, 0.98, 0.99), ce = (0.3, 0.93, 0.96), bf = (0.1,
0.96, 0.961), cf = (0.3, 0.97, 0.96), de = (0.3, 0.97, 0.96),
ad = (0.5, 0.98, 0.99) and ae = (0.1, 0.96, 0.91).

FIGURE 4. KM-single valued neutrosophic metric graph G1 · G2 for t = 1.

Theorem 15: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 · G2 = (X1 · X2,Y1 · Y2,Tmin(ρ),T , S) is a
KM -single valued neutrosophic metric graph on G∗1 · G

∗

2.
Proof 15: It is similar to Theorems 13 and 14.

Definition 10: Let G1, G2 be KM -single valued neu-
trosophic metric graphs on simple graphs G∗1 and G∗2,
respectively. Define the strong product of fuzzy subsets
X1 � X2 = (T (1)

V � T (2)
V , I (1)V � I (2)V ,F (1)

V � F (2)
V ),Y1 �

Y2 = (T (1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E � F (2)

E ), where T (1)
V �

T (2)
V , I (1)V � I (2)V ,F (1)

V � F (2)
V : V (G∗1 × G∗2) → [0, 1]

by (T (1)
V � T (2)

V )(x1, x2) = Tmin(T
(1)
V (x1),T

(2)
V (x2)), (I

(1)
V �

I (2)V )(x1, x2) = Smax(I
(1)
V (x1), I

(2)
V (x2)), (F

(1)
V �F

(2)
V )(x1, x2) =

Smax(F
(1)
V (x1),F

(2)
V (x2)), and T

(1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E �

F (2)
E : E(G∗1 × G∗2) → [0, 1] by (T (1)

E � T (2)
E )

((x, x2)(x, y2)) = Tmin(T
(1)
V (x),T (2)

E (x2y2)), (T
(1)
E �T

(2)
E )((x1,

y)(x2, y)) = Tmin(T
(2)
V (y),T (1)

E (x1y1)), (T
(1)
E � T (2)

E )((x1, x2)
(y1, y2)) = Tmin(T

(1)
E (x1y1)),T

(2)
E (x2y2)), (I

(1)
E � I (2)E )((x, x2)

(x, y2)) = Smax(I
(1)
V (x), I (2)E (x2y2)), (I

(1)
E � I (2)E )((x1, y)(x2,

y)) = Tmin(I
(2)
V (y), I (1)E (x1y1)), (I

(1)
E � I (2)E )(x1, x2)(y1, y2)) =

Smax(I
(1)
E (x1y1)), I

(2)
E (x2y2)), (F

(1)
E � F (2)

E )((x, x2)(x, y2)) =
Smax(F

(1)
V (x),F (2)

E (x2y2)), (F
(1)
E �F

(2)
E )((x1, y)(x2, y)) = Tmin

(F (2)
V (y),F (1)

E (x1y1))(F
(1)
E � F (2)

E )((x1, x2)(y1, y2)) = Smax
(F (1)

E (x1y1),F
(2)
E (x2y2)).

Example 4: Consider the KM -fuzzy metric spaces (V1 =
{1, 2}, ρ1,Tmin), (V2 = {3, 4, 5}, ρ2,Tmin), where for all
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x, y ∈ {1, 2}, ρ1(x, y, 0) = 0, ρ1(x, y, t > 0) =
min{x, y} + t
max{x, y} + t

and for all x, y ∈ {3, 4, 5},

ρ2(x, y, 0) = 0, ρ2(x, y, t > 0) =

1 if x = y
5+ t
10+ t

if x 6= y.

We take the negation η(m) = 1 − m(m ∈ [0, 1]) and obtain
the KM -single valued neutrosophic metric graphs G1 =

(V1,
(
X = (TV , IV ,FV ),Y = (TE , IE ,FE ), ρ1,Tmin, Smax

)
)

in unit time t1 = 2 and G2 = (V2,
(
X = (TV , IV ,FV ),Y =

(TE , IE ,FE ), ρ2,Tmin, Smax
)
) in unit time t2 = 1 on G∗1

and G∗2 in Figure 5, where A = (0.1, 0.5, 0.4),B =

(0.2, 0.3, 0.3),C = (0.3, 0.4, 0.5),D = (0.4, 0.6, 0.5),E =
(0.5, 0.2, 0.1),AB = (0.5, 0.97, 0.95),DE = (0.5, 0.98,
0.99) and DC = (0.3, 0.93, 0.96). Now, we obtain the

FIGURE 5. KM-single valued neutrosophic metric graphs G1,G2 for
t1 = 2, t2 = 1.

KM -single valued neutrosophic metric graph G1 � G2 in
Figure 6, where a = (0.1, 0.5, 0.5), b = (0.1, 0.6, 0.5), c =
(0.1, 0.5, 0.4), d = (0.2, 0.4, 0.5), e = (0.2, 0.6, 0.5), f =
(0.2, 0.3, 0.3), ab = (0.1, 0.93, 0.96), bc= (0.1, 0.98, 0.99),
de = (0.2, 0.93, 0.96), ef = (0.2, 0.98, 0.99), ad =

(0.3, 0.97, 0.95), be = (0.4, 0.97, 0.95), cf = (0.5, 0.97,
0.95), ae = (0.3, 0.97, 0.96), bf = (0.5, 0.98, 0.99), bd =
(0.3, 0.97, 0.96), ce = (0.5, 0.98, 0.99).

FIGURE 6. KM-single valued neutrosophic G1 � G2 for t = 2.

Theorem 16: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Then G1 �G2 = (X1 � X2,Y1 � Y2,Tmin(ρ),T , S) is
a KM -single valued neutrosophic metric graph on G∗1 � G

∗

2.
Proof 16: It is similar to Theorems 13 and 14.

Definition 11: Let G1, G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the union of fuzzy subsets X1 ∪ X2 = (T (1)

V ∪

T (2)
V , I (1)V ∪ I (2)V ,F (1)

V ∪ F (2)
V ),Y1 ∪ Y2 = (T (1)

E ∪ T (2)
E ,

I (1)E ∪ I (2)E ,F (1)
E ∪ F (2)

E ), where T (1)
V ∪ T (2)

V , I (1)V ∪ I (2)V ,

F (1)
V ∪ F

(2)
V : (V1 ∪ V2)→ [0, 1] by

(T (1)
V ∪ T

(2)
V ) (x1, x2)

=


T (1)
V (x) if x ∈ V1 \ V2
T (2)
V (x) if x ∈ V2 \ V1
Tmin(T

(1)
V (x),T (2)

V (x)) if x ∈ V2 ∩ V1,

(I (1)V ∪ I
(2)
V )(x1, x2)

=


I (1)V (x) if x ∈ V1 \ V2
I (2)V (x) if x ∈ V2 \ V1
Smax(I

(1)
V (x), I (2)V (x)) if x ∈ V2 ∩ V1,

(F (1)
V ∪ F

(2)
V )(x1, x2)

=


F (1)
V (x) if x ∈ V1 \ V2
F (2)
V (x) if x ∈ V2 \ V1
Smax(F

(1)
V (x),F (2)

V (x)) if x ∈ V2 ∩ V1

and T (1)
E ∪T

(2)
E , I (1)E ∪I

(2)
E ,F (1)

E ∪F
(2)
E : (E1∪E2)→ [0, 1], by

(T (1)
E ∪ T

(2)
E )(xy)

=


T (1)
E (xy) if xy ∈ E1 \ E2
T (2)
E (xy) if xy ∈ E2 \ E1
Tmin(T

(1)
E (xy),T (2)

E (xy)) if xy ∈ E2 ∩ E1,

(I (1)E ∪ I
(2)
E )(xy)

=


I (1)E (xy) if xy ∈ E1 \ E2
I (2)E (xy) if xy ∈ E2 \ E1
Smax(I

(1)
E (xy), I (2)E (xy)) if xy ∈ E2 ∩ E1,

(F (1)
E ∪ F

(2)
E )(xy)

=


F (1)
E (xy) if xy ∈ E1 \ E2
F (2)
E (xy) if xy ∈ E2 \ E1
Smax(F

(1)
E (xy),F (2)

E (xy)) if xy ∈ E2 ∩ E1.

Example 5: Consider the KM -single valued neutrosophic
metric graphs G1 and G2 in Example 4. It is easy to see that
KM -single valued neutrosophic metric metric graph G1 ∪G2
with t = 2 in Figure 4.
Theorem 17: Let G1 = (X1,Y1, ρ1,T , S), G2 =

(X2,Y2, ρ2,T , S) be KM -single valued neutrosophic metric
graphs on simple graphs G∗1 = (V1,E1) and G∗2 = (V2,E2),
respectively. If G∗1 = (V1,E1) and G∗2 = (V2,E2) are two
simple graphs, where V1 ∩ V2 = ∅, then G1 ∪ G2 = (X1 ∪
X2,Y1∪Y2, ρ1∪ρ2,T , S) is aKM -single valued neutrosophic
metric graph on G∗1 ∪ G

∗

2.
Proof 17: Firstly, by Theorem 7, (V1 ∪ V2,Tmin(ρ),T )

is a KM -fuzzy metric space. Let xy ∈ E(G∗1 ∪ G
∗

2). Since
G∗1 = (V1,E1) and G∗2 = (V2,E2) are two simple graphs,
xy ∈ E1 \ E2 implies that (x, y ∈ V1 \ V2) and xy ∈ E2 \ E1
implies that (x, y ∈ V2 \V1). Since G1 is a KM -single valued
neutrosophic metric graph on G∗1 and G2 is a KM -single val-
ued neutrosophic metric graph on G∗2, for some t1, t2 ∈ R≥0,
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take t = max{t1, t2} so by Theorems 1 and 7, if xy ∈ E1 \E2,
we have

T
(
(T (1)
E ∪ T

(2)
E )(xy),T

(
(T (1)
V ∪ T

(2)
V )(x), (T (1)

V ∪ T
(2)
V )(y)

)
= T

(
T (1)
V (xy),T

(
T (1)
V (x),T (1)

V (y)
)

≤ ρ1(x, y, t) ≤ (ρ1 ∪ ρ2)(x, y, t).

In a similar way, if xy ∈ E2 \ E1, one can see that
Tmin

(
(T (1)
E ∪T

(2)
E (xy),Tmin

(
(T (1)
V ∪T

(2)
V )(x), (T (1)

V ∪T
(2)
V )(y)

)
≤

ρ2(x, y, t) = (ρ1 ∪ ρ2)(x, y, t). Other cases is similar to.
Now consider t = min{t1, t2} so by Theorems 1 and 7,

if xy ∈ E1 \ E2, we have

S
(
(I (1)E ∪ I

(2)
E )(xy), S

(
(I (1)V ∪ I

(2)
V )(x), (I (1)V ∪ I

(2)
V )(y)

)
= S

(
I (1)V (xy),T

(
I (1)V (x), I (1)V (y)

)
≥ ρ1(x, y, t) ≥ (ρ1 ∪ ρ2)(x, y, t).

In a similar way, if xy ∈ E2 \ E1, one can see that S
(
(I (1)E ∪

T (2)
E (xy), S

(
(I (1)V ∪ I

(2)
V )(x), (I (1)V ∪ I

(2)
V )(y)

)
≥ ρ2(x, y, t) =

(ρ1 ∪ ρ2)(x, y, t). Other cases is similar to and in a sim-
ilar way, we can prove that S

(
(F (1)

E ∪ F
(2)
E )(xy), S

(
(F (1)

V ∪

F (2)
V )(x), (F (1)

V ∪F
(2)
V )(y)

)
≥ (ρ1∪ρ2)(x, y, t). ThusG1∪G2 =

(X1 ∪ X2,Y1 ∪ Y2, ρ1 ∪ ρ2,T , S) is a KM -single valued
neutrosophic metric graph on G∗1 ∪ G

∗

2.
Definition 12: Let G1, G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the semi-ring sum of fuzzy subsets X1 � X2 =
(T (1)
V � T (2)

V , I (1)V + I (2)V ,F (1)
V � F (2)

V ),Y1 � Y2 = (T (1)
E �

T (2)
E , I (1)E + I (2)E ,F (1)

E + F (2)
E ), where T (1)

V � T (2)
V , I (1)V �

I (2)V ,F (1)
V � F (2)

V : (V1 � V2) → [0, 1] by (T (1)
V � T (2)

V )
(x1, x2) = (T (1)

V ∪ T
(2)
V )(x1, x2) , (I

(1)
V � I

(2)
V )(x1, x2) = (I (1)V ∪

I (2)V )(x1, x2) , (F
(1)
V � F (2)

V )(x1, x2) = (F (1)
V ∪ F

(2)
V )(x1, x2)

and T (1)
E � T (2)

E , I (1)E � I (2)E ,F (1)
E � F (2)

E : (E1 � E2) →
[0, 1], by

(T (1)
E � T

(2)
E )(xy) =


T (1)
E (xy) if xy ∈ E1 \ E2
T (2)
E (xy) if xy ∈ E2 \ E1

0 if xy ∈ E2 ∩ E1,

(I (1)E � I
(2)
E )(xy) =


I (1)E (xy) if xy ∈ E1 \ E2
I (2)E (xy) if xy ∈ E2 \ E1
1 if xy ∈ E2 ∩ E1,

(F (1)
E � F

(2)
E )(xy) =


F (1)
E (xy) if xy ∈ E1 \ E2
F (2)
E (xy) if xy ∈ E2 \ E1

1 if xy ∈ E2 ∩ E1.

Theorem 18: Let G1 and G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. IfG∗1 andG

∗

2 are two simple graphs, whereV1∩V2 = ∅,
then G1 � G2 = (X1 � X2,Y1 � Y2, ρ1 ∪ ρ2,T , S) is a
KM -single valued neutrosophic metric graph on G∗1 ∪ G

∗

2.
Proof 18: It is similar to Theorem 17.

Definition 13: Let G1, G2 be KM -single valued neutro-
sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. Define the join(or suspension) of fuzzy subsets

X1 + X2 = (T (1)
V + T (2)

V , I (1)V + I (2)V ,F (1)
V + F (2)

V ),Y1 +
Y2 = (T (1)

E + T (2)
E , I (1)E + I (2)E ,F (1)

E + F (2)
E ), where T (1)

V +

T (2)
V , I (1)V + I (2)V ,F (1)

V + F (2)
V : (V1 � V2) → [0, 1] by

(T (1)
V + T (2)

V )(x1, x2) = (T (1)
V ∪ T (2)

V )(x1, x2) , (I
(1)
V �

I (2)V )(x1, x2) = (I (1)V ∪ I
(2)
V )(x1, x2) , (F

(1)
V � F (2)

V )(x1, x2) =
(F (1)

V ∪ F
(2)
V )(x1, x2) and T

(1)
E + T

(2)
E , I (1)E + I

(2)
E ,F (1)

E + F
(2)
E :

(E1 � E2)→ [0, 1], by

(T (1)
E + T

(2)
E )(xy)

=

{
T (1)
E (xy) ∪ T (2)

E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

(I (1)E + I
(2)
E )(xy)

=

{
I (1)E (xy) ∪ I (2)E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

(F (1)
E + F

(2)
E )(xy)

=

{
F (1)
E (xy) ∪ F (2)

E (xy) if xy ∈ E1 ∪ E2
(ρ1 ∪ ρ2)(x, y, t) if xy ∈ E ′(x ∈ V1, y ∈ V2),

where E ′ is the set of all edges joining the vertices of V1 and
V2 and t ∈ R≥0.
Theorem 19: Let G1 and G2 be KM -single valued neutro-

sophic metric graphs on simple graphs G∗1 and G∗2, respec-
tively. IfG∗1 andG

∗

2 are two simple graphs, whereV1∩V2 = ∅,
then G1 + G2 = (X1 + X2,Y1 + Y2, ρ1 ∪ ρ2,T , S) is a
KM -single valued neutrosophic metric graph on G∗1 + G

∗

2.
Proof 19: Let xy ∈ E(G∗1 + G∗2). Then xy ∈ E1 \

E2, xy ∈ E2 \ E1 or xy ∈ E ′. We only consider xy ∈ E ′

and other cases are similar to Theorem 17. Since xy ∈ E ′,
we get that (x ∈ V1 \ V2, y ∈ V2 \ V1) or (y ∈ V1 \
V2, x ∈ V2 \ V1). If x ∈ V1 \ V2, y ∈ V2 \ V1(y ∈
V1 \ V2, x ∈ V2 \ V1 is proved in a similar way), for some
t1, t2 ∈ R≥0, take t = max{t1, t2} so by Theorem 1, we have
T
(
(T (1)
E + T

(2)
E )(xy),T

(
(T (1)
V + T

(2)
V )(x), (T (1)

V + T
(2)
V )(y)

)
≤

T
(
(ρ1 ∪ ρ2)(x, y, t),T

(
T (1)
V (x),T (1)

V (y)
)
≤ (ρ1 ∪ ρ2)(x, y, t).

Now, consider t = min{t1, t2} so by Theorem 1, we have
S
(
(I (1)E + I (2)E )(xy), S

(
(I (1)V + I (2)V )(x), (I (1)V + I (2)V )(y)

)
≥

S
(
(ρ1∪ρ2)(x, y, t), S

(
I (1)V (x), I (1)V (y)

)
≥ (ρ1∪ρ2)(x, y, t) and

S
(
(F (1)

E + F (2)
E )(xy), S

(
(F (1)

V + I (2)V )(x), (F (1)
V + F (2)

V )(y)
)
≥

S
(
(ρ1 ∪ ρ2)(x, y, t), S

(
F (1)
V (x),F (1)

V (y)
)
≥ (ρ1 ∪ ρ2)(x, y, t).

It follows thatG1+G2 = (X1+X2,Y1+Y2, ρ1∪ρ2,T , S) is
a KM -single valued neutrosophic metric graph on G∗1 + G

∗

2.
Definition 14: Let (V , ρ,T ) be a KM -single valued neu-

trosophic metric space and G∗ = (V ,E) be a simple
graph. If G = (X ,Y , ρ,T , S) is a KM -fuzzy met-
ric graph on G∗, then define the complement of fuzzy
subsets X = (TV , IV ,FV ),Y = (TE , IE ,FE ), where
TV , IV ,FV : V → [0, 1] and TE , IE ,FE : E → [0, 1]
by TV (x) = TV (x), IV (x) = IV (x),FV (x) = FV (x) and
TE (xy) = ρ(x, y, t) − T

(
TE (xy),T (TV (x),TV (y))

)
, IE (xy) =

S
(
IE (xy), S(IV (x), IV (y))

)
,FE (xy) = S

(
FE (xy), S(FV (x),

FV (y))
)
, where x, y ∈ V . We will denote the comple-

ment of a KM -single valued neutrosophic metric graph
G = (X ,Y , ρ,T , S), by G = (X ,Y , ρ,T , S).
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Theorem 20: Let (V , ρ,T ) be a KM -fuzzy metric space
and G∗ = (V ,E) be a simple graph. If G = (X ,Y , ρ,T , S)
is a KM -single valued neutrosophic metric graph on G∗, then
G = (X ,Y , ρ,T , S) is a KM -single valued neutrosophic
metric graph.

Proof 20: Let x, y ∈ V . Since G is a KM -single valued
neutrosophic metric graph on G∗, for some t ∈ R≥0,

T
(
TE (xy),T

(
TV (x),TV (y))

)
= T

(
ρ(x, y, t)− T

(
TE (xy),T (TV (x),TV (y))

)
,T
(
TV (x),

TV (y))
)
≤ ρ(x, y, t)− T

(
TE (xy),T (TV (x),TV (y))

)
≤ ρ(x, y, t).

In addition,

S
(
IE (xy), S

(
IV (x), IV (y))

)
= S

(
S
(
IE (xy), S(IV (x), IV (y))

)
, S
(
IV (x), IV (y))

)
≥ S

(
IE (xy), S(IV (x), IV (y))

)
≥ ρ(x, y, t).

In a similar way, it is easy to see that S
(
FE (xy), S

(
FV (x),

FV (y))
)
≥ ρ(x, y, t). It follows that G = (X ,Y , ρ,T , S) is a

KM -single valued neutrosophic metric graph.
Example 6: Consider the KM -single valued neutrosophic-

metric graph G in Example 1. So obtain a KM -single valued
neutrosophic metric graph G on the cycle graph C4 for t = 1,
in Figure 7.

FIGURE 7. KM-single valued neutrosophic metric graph G.

V. CONCLUSION
The current paper has introduced a novel concept fuzzy
algebra as KM -single valued neutrosophic metric graph and
a new generalization of graphs based on KM -fuzzy metric
spaces. This work extended and obtained some properties
in KM -fuzzy metric spaces. Also it showed that every non
empty set converted to a KM -fuzzy metric space, the product
and union of KM -fuzzy metric spaces is a KM -fuzzy metric
space, the extended KM -fuzzy metric spaces are constructed
using the some algebraic operations on KM -fuzzy metric
spaces, the concept of complement of KM -single valued
neutrosophic metric graph is defined and investigated some
its properties. We hope that these results are helpful for
further studies in theory of graphs. In our future studies,
we hope to obtain more results regarding intuitionistic met-
ric graphs, neutrosophic metric graphs, KM -single valued

neutrosophic metric hypergraphs, bipolar KM -single valued
neutrosophic metric graphs, automorphism KM -single val-
ued neutrosophic metric graphs and their applications.
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