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ABSTRACT 

         Inteins are protein segments interrupting polypeptides with the unique ability to excise 

from the host protein and link flanking protein fragments (exteins) to form a functional protein. 

Many of these proteins are involved in crucial processes such as DNA replication, DNA 

recombination, and DNA repair. The functionality of these elements in nature and applications in 

biotechnology necessitates the study of inteins. Pyrococcus horikoshii (Pho) provides an array of 

inteins to study, with a total of nine different proteins possessing inteins. Among the nine total 

inteins, the DNA repair and recombination protein RadA gained interest due to the speed and 

efficiency of splicing when flanked by non-native exteins. Curiously, RadA splices poorly within 

the native exteins in the absence of catalysts due to intein-extein interactions. Single-stranded 

DNA (ssDNA), which binds to RadA on the c-extein, vastly improves the speed and accuracy of 

splicing. ssDNA is not only a substrate of the RadA protein but also a signal indicating DNA 

damage and the need for recombinase activity. Given the observation that intein-extein 

interactions form to block splicing, we wondered how alternative intein insertion sites within the 

host protein would influence splicing. Observation and comparison of splicing speed and 

efficiency in natural and variant RadA proteins may help us further understand the phenomena of 

intein splicing, explain intein-extein relationships, and give insight on practical applications. 
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Introduction 

 Intervening proteins, or inteins, are polypeptides that interrupt host proteins and are 

removed through protein splicing. The first intein discovered was within Saccharomyces 

cerevisiae, a yeast species commonly used in fermenting alcoholic beverages and breadmaking 

(Basturea, 2020). While once believed to be biological anomalies, inteins are found in organisms 

from all three domains of life, as well as in viruses and phages. Most commonly found in archaea 

(47%) and bacteria (24%), but also present in single-celled eukaryotes (approximately 1%), 

inteins are widespread throughout the tree of life (Novikova et al., 2016).  

Inteins are most commonly present in DNA-binding proteins involved in replication, 

recombination, and repair of DNA. Within the bacterial and archaeal domains, around 60% of 

known inteins are present in replication, recombination, and repair proteins (Novikova et al., 

2016). Inteins were originally suspected to be parasitic, providing no benefit to the host protein. 

However, the presence of inteins in non-orthologous helicases of bacteria and archaea suggests 

that inteins can be selectively retained when beneficial to the host protein. Inteins are commonly 

found clustered within functional regions of DNA-binding proteins. Roughly 70% of inteins are 

located in ATP-binding domains, blocking the binding site of ATP (Novikova et al., 2016). 

Without ATP binding the protein lacks ATPase function. Therefore, if the intein splices, ATP 

can bind and the protein will function normally. The intein splicing reaction can be conditional 

on environmental stress or the introduction of the host protein substrate. (Lennon et al., 2017). 

The conditions required for intein splicing paired with the strategic clustering of inteins in the 

ATP-binding domains help create an effective post-translational protein regulation mechanism. 
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Proteins that contain these self-splicing inteins are precursor polypeptides. The host 

protein sequence that precedes the intein in the polypeptide chain is referred to as the N-extein 

while the protein sequence immediately following the intein is referred to as the C-extein. Once 

the intein undergoes autocatalytic excision, the two extein bodies are ligated to form a fully 

mature host protein.  

The majority of  inteins splice in a four-step mechanism with the intein autocatalytically 

excising itself from the host proteins (Figure 1). The first step in intein splicing is a nucleophilic 

(cysteine or serine) attack on the peptide bond preceding the intein. This attack creates a thioester 

linkage. Next, a nucleophile at the first position of the C-extein (cysteine, serine, or threonine) 

attacks the thioester, creating a branched intermediate. The third step begins when the branched 

intermediate releases the free intein from the exteins through the cyclization of the terminal 

intein residue, an asparagine. The reaction is completed by the thioester rearrangement, 

connecting the two exteins (N-extein and C-extein) to form a new peptide bond and a mature 

host protein. Off-pathway cleavage of the N- or C-extein can also occur, a reaction that can be 

conditional on the environment as well as useful in protein engineering applications. 

Approximately 150 amino acids contribute to the splicing of inteins, folding into a horseshoe 

shape and positioning the N-extein and C-extein in proximity to the excision site. 
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Figure 1: Splicing mechanism reaction of Class I Inteins. Adapted from Lennon and Belfort, 

2017 Current Biology. Pictured is the four-step splicing mechanism of inteins with color-
coordinated regions to identify the different components and reactions within the mechanism.  

 

 This mechanism of self-excision and post-splicing extein ligation is intriguing and has 

several applications across different fields of science. In protein engineering, intein cleavage 

and splicing reactions are used to mediate protein purification and protein labeling. The intein 

reaction places an affinity tag on the protein intended to be purified and can be removed via 

induced cleavage. Inteins can also be used to modify proteins by rearranging the present 

peptide bonds. A mutated intein can be moved to a non-native location and splicing can be 

induced, causing backbone cyclization, site specific labeling, or proteolysis, generating 

covalent modifications to the desired protein (Wood and Camarero, 2014).  

One example of the utility of inteins is modifications to the CRISPR/Cas9 system. The 

CRISPR/Cas9 system is the primary method of genome editing via insertion, deletion, or  
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modification of DNA. Changes in the genome can cause changes in the organism such as 

physical traits or reduced disease risks. The CRISPR/Cas9 system has limitations though due 

to the size of Cas9, impeding efficient delivery of Cas9. Inteins can be split and expressed as 

two polypeptides that splice upon reassembly, which can be used to deliver Cas9 as fragments 

that can reassemble. Intein-mediated split-Cas9 can be packaged, delivered and its nuclease 

activity reconstituted efficiently, improving the efficiency of the CRISPR/Cas9 system 

(Truong et. al, 2015). Inteins also have biomedical applications. As inteins are absent in 

humans, and present in essential genes of pathogens such as Mycobacterium tuberculosis, the 

causative agent of tuberculosis, specific protein splicing inhibitors could serve as novel 

antibacterials. 

 Pyrococcus horikoshii is an anaerobic, hyperthermophilic archaeon species first 

isolated from hydrothermal vents from the East China sea. The discovery of the RadA intein 

was a revolutionary find for understanding intein-based regulation as it possesses the first 

intein that is vulnerable to substrate-induced splicing. As a recombinase, RadA can detect 

DNA damage and initiate repair of damaged DNA through homologous recombination. In the 

natural extein context, extein-intein interactions block splicing. However, in foreign exteins, 

the RadA intein is able to excise rapidly (Topilina et al, 2015). This post-translational 

regulation mechanism allows the RadA intein to be synthesized and rest in an inactive state. 

Remarkably, introduction of single-stranded DNA (ssDNA), a substrate of RadA and signal 

that recombinase activity is needed by the cell, disrupts the intein-extein interactions, 

allowing the intein to self-excise with tremendous speed and accuracy  (Lennon et al., 2016, 

2018, 2019).   
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These findings suggest that RadA coevolved with the intein as means to respond to DNA 

damage, representing an exciting new form of post-translational regulation. 

 The objective of this study was to examine the splicing behavior of Pho RadA intein 

in several different non-native locations within native exteins, which is a topic that has yet to 

be explored. By relocating the intein to neighboring threonine residues, we determined if 

other threonines of RadA can be utilized as the +1 nucleophile to facilitate splicing. By 

further researching the Pho RadA system, new knowledge of post-translational regulation by 

inteins and major factors controlling intein site selection in natural and non-native systems 

may be discovered.  

Experimental Design 

 The Pho RadA intein requires a specific amino acid comtext in order to properly 

splice. RadA must have a nucleophile upstream in the +1 position which is the first amino 

acid located within the c-extein. In the case of Pho RadA, this is a threonine (Oeemig et al., 

2012). While several other internal and external factors have been attributed to the speed and 

accuracy of RadA splicing, the only necessary requirement for RadA splicing is the presence 

of a threonine as a +1 nucleophile (Topilina et al. 2015). To test the hypothesis of coevolution 

of Pho RadA and the intein as a means of post-translational protein regulation and further 

study site selection for the intein, the intein was moved from the native location to similar 

threonine containing sites within the RadA  gene. By examining the splicing activity of the 

intein in alternate sites, the importance of intein location within the RadA protein can be  

 

 

5 



 

 

assessed. Variants of Pho RadA gene with the intein artificially inserted at various positions 

in the DNA sequence, were previously cloned into a pET vector for their expression (Figure 

2).  

 

Figure 2: Locations of Pho RadA threonines (+1 nucleophile) within the primary protein 

sequence. Each section represents the location of an alternate threonine, which can act as a +1 

nucleophile in the case of intein relocation. The threonines are labeled T138, T142, T330, 

T353, T356, T408, T421, T462, T477, and T490, respectively. The blue section indicates the 

wild type N-extein, the red portion indicates the natural (wild type) location of the intein, 

while the green section indicates the wild type C-extein. 

The variant RadA proteins were overexpressed from plasmids in Escherichia coli and 

purified by nickel affinity chromatography. Post purification, the splicing competency was 

tested.  The pET vector used was a lab-designed plasmid that promotes protein expression 

specifically at the cloning region containing the target Pho RadA gene. The expression of the 

RadA gene is regulated by the Lac repressor, which can be induced via IPTG (Isopropyl β- d-

1-thiogalactopyranoside) and other lac operon regulatory mechanisms, allowing for RadA 

gene expression to occur when necessary. Each pET vector also included an antibiotic  
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resistance gene, 𝛽-Lactamase, allowing us to select only E. coli cells that retained the plasmid 

following transformation. The colonies were grown on ampicillin agar plates causing the 

death of any E. coli not containing the 𝛽-Lactamase antibiotic resistance gene. The pET 

vectors also contained genetic coding for a chain of 6 histidines upstream of the N-extein, 

which allows protein purification as it has high affinity for nickel resin.  

Materials and Methods 

TRANSFORMATION 

 In order to run different tests on the RadA variants, each plasmid must be transformed 

into a strain of E. coli, BL21(DE3). The purpose of transformation is to introduce the foreign 

DNA plasmid into the bacteria so that subsequently the RadA proteins can be expressed. 

Transformation begins with the thawing of BL21 (DE3) competent E. coli cells, which are 

stored at -80°C, on ice. Once thawed, 1μl of plasmid DNA (50 ng) was added to cell mixture 

and flicked to ensure proper mixing of cells and DNA. The mixture was then replaced on ice, 

heat shocked at 42°C, then replaced on ice again. 1mL of LB broth was added to the mixture 

as an outgrowth solution. The solution was then incubated at 37°C and shook vigorously (250 

rpm) for approximately an hour. After incubation, the solution was pipetted onto Luria-

Bertani (LB) agar plates with ampicillin and spread via the copacabana method to give 

isolated colonies of transformed E. coli. The plates were placed in the incubator at 37°C 

overnight to allow for proper growth. The transformed plasmid contained 𝛽-lactamase, an 

antibiotic-resistance gene. 
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The ampicillin present in the agar plates acted as a bacterial selector and killed any E. coli 

bacteria that did not retain the plasmid from the transformation. 

INDUCTION AND CELL GROWTH 

 Prior to continuing the experiment, the transformed cells must be grown at a high 

concentration. A 5 mL starter culture was inoculated with a colony from our transformation 

plate and incubated overnight. Using sterile technique, the starter culture was added to the 

growth media containing ampicillin at a 1:100 volume ratio (400mL total), and the flask was 

placed inside a shaking incubator set to 37°C, 250rpm. 

 Optical density was recorded using a spectrophotometer to measure cell growth. The 

spectrophotometer readings were recorded until the cell mixture reached an optical density of 

0.5, indicating the middle of log phase growth. The stage of bacterial growth known as log 

phase indicates exponential growth of the bacteria. During the log phase, the bacteria contain 

peak ribosome levels. The ribosomes are a key aspect in protein synthesis and overexpression 

of the specific intein carrying target protein. Once the log phase was reached, Isopropyl β- d-

1-thiogalactopyranoside (IPTG) was added to the mixture to induce the overexpression of the 

target protein.  

PROTEIN EXPRESSION AND PURIFICATION 

 Once overexpression of our target protein within the E. coli was completed, protein 

purification must occur. The process of protein purification involves separating the E.  
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coli cells containing our overexpressed protein from the growth media they were growing in. 

The first step requires separating the cells from the growth media is centrifuging. By placing 

the media mixture into a centrifuge tube and centrifuging at 3000xG, the cells form a pellet at 

the bottom of the tube, allowing for clean separation from the media. After decanting the 

media from the cell pellets, 20 mM Tris pH 8, 500 mM NaCl, and 10 mM Imidazole (Nickel 

Buffer A) was used to resuspend the pellet. The pellet was froze at -20°C overnight. 

 The separated cell cultures were removed from the freezer and placed on ice to thaw. 

The ice allows the cells to thaw but prevents denaturation due to excess heat produced by the 

sonicator. The sonicator probe is a device used to produce sound energy that agitates 

particles, causing the lysis of cells. The sonicator probe was placed into our solution and ran 

for intermittent periods of thirty seconds on, thirty seconds off. After sonication was 

completed, the lysate was once again centrifuged to separate the cell debris from the protein 

of interest. After centrifuging at 20,000xG, the supernatant was removed from cell debris via 

decanting.  

 The next stage of the purification process is to use a magnetic nickel resin. Nickel 

resin is used for immobilized metal affinity chromatography (IMAC) for the purification of 

recombinant proteins with a polyhistidine tag. Using a magnetic rack and the magnetic nickel 

beads, each RadA lysate was applied and allowed a short time period (approximately five 

minutes) to ensure proper binding. The polyhistidine tag present on the target protein binds to 

the nickel in the resin, allowing us to wash away any residual  
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proteins or cell matter with a buffer washing solution. Since the target protein contains an 

affinity His-tag, the RadA containing proteins remained bound. To dislodge the bound RadA 

proteins after washing, an eluate solution with a higher affinity for nickel was used. Due to 

the higher affinity of imidazole, the imidazole-based solution removed the RadA protein from 

the column and allowed for collection of the purified target protein.  

SPLICING ASSAY 

 After expression and purification of each of the target RadA proteins, a splicing assay 

was performed to determine the necessary conditions for the inteins to undergo splicing. Two 

variables were used in this experiment: temperature and single-stranded DNA (ssDNA) 

addition. Each mutant RadA protein sample was incubated at 63°C, 75°C, and 85°C for 

fifteen minutes with and without 188ng/μl of single-stranded DNA. 

SDS-PAGE  

 The final stage necessary to analyze the results of the experiment is to perform SDS 

PAGE. By loading our samples onto a gel and introducing an electric field the proteins can be 

separated by molecular weight. When proteins are separated in the gel by electrophoresis, the 

smaller proteins move faster due to less resistance in the gel.  In order to ensure size was the 

only main contributor to the rate of migration, sodium dodecyl sulfate (SDS) is used. Sodium 

dodecyl sulfate (SDS) is a detergent that has a strong protein-denaturing effect which binds to 

the protein backbone at a constant molar ratio regardless of protein size. The polymerized 

acrylamide gel forms a mesh-like matrix suitable for the  

 

10 



 

 

separation of proteins which is durable and easy to handle. When the proteins are exposed to 

the SDS and reducing agent, the proteins unfold into chains with negative charge proportional 

to the polypeptide chain length. A Tris-Glycine-SDS buffer was used in the electrophoresis 

chamber. A size marker ladder and samples were loaded into the gel cassette. Using a 

micropipette, twenty μl of each sample was loaded into their respective reservoir wells. The 

electrophoresis unit was connected to a power supply at 200 volts. Upon completion of 

electrophoresis, the gel cassette was opened and the gel was rinsed with distilled water and 

stained using coomassie dye. Protein staining allows visualization and imaging of the proteins 

present in the gel. The staining process was completed using an eStain L1 Protein Staining 

System, which provided fast, automatic, efficient, and reliable stains. After the staining 

process was completed, the stained gels were imaged using epi-illumination.  
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Results 

In order to evaluate the efficiency of intein splicing in non-native location within the 

host protein, the intein was relocated to use different threonine residues as the +1 nucleophile. 

The wild type intein was used as a base control to quantify splicing within the mutant Pho 

RadA inteins. The relocation of the intein to the threonines at T138, T477, T353, T408 was 

examined, with T325 as the natural position for reference. Each variant of the Pho RadA was 

initially monitored for splicing ability without the addition of heat or single-stranded DNA 

during purification, as some splicing should occur during this step. There were many 

characteristics noted for each variant prior to beginning the experiment, including the 

threonine position, -1 residue, and the secondary structure of where the intein is inserted 

(Table 1).   

 

Table 1: Table containing information regarding the threonine used as a +1 residue, the -1 

residue, predicted -1 splicing efficiency based on NMR and crystal structures of the Pyrococcus 

horikoshii RadA intein (Oeemig et al.,), and the secondary structure of the intein. T325 is 

marked as the native intein +1 nucleophile. 

Threonine as +1 

Nucleophile 

-1 Residue Predicted -1 Residue 

Splicing Efficiency 

Secondary Structure 

of Insertion 

138 Glutamic acid 40% Loop 

477 Proline 23% Unstructured 

353  Asparagine 95% Loop 

408 Asparagine 95% Loop 

325 (*) Lysine 97% Loop-Native Site 
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Analysis of the proteins through electrophoresis showed that the control wildtype Pho 

RadA spliced under all conditions, however, none of the mutants displayed splicing competence. 

(Figures 4 & 5). Furthermore, the T353 mutant, which had the highest expected splicing 

efficiency due to the loop positioning and asparagine at the -1 residue also showed no splicing 

(Figure 3).  

 

 

 

 

 

 

 

 

 

 

Figure 3: Splicing assays for wildtype (WT) Pho RadA and T353 mutant. This gel compares the 

splicing capability of Wild Type (WT) RadA and the 353 T+1 mutant under stated conditions. 

The ladder in the first column serves as reference for amino acid chain size.  
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Figure 4:  Splicing assay for T138 and T477 mutants compared to the wildtype (WT) Pho RadA 

at 75℃ for fifteen minutes. No splicing occurred in mutants, but splicing occurred for wildtype. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Splicing assay for T408 mutant at indicated temperature for fifteen minutes. No 

splicing occurred. 
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Preliminary results show that the wild type Pho RadA spliced under all conditions tested 

while the variants did not splice under any conditions, including the temperature changes and the 

addition of ssDNA. The equivalent threonine positions on Pho were modeled onto the structure 

of Pyrococcus furiosus RadA (Figures 6,7,8, and 9). 

 

 

Figure 6: T325 Equivalent position on Pyrococcus furiosus RadA (Native +1). 

 

Figure 7: T353 Equivalent position on Pyrococcus furiosus RadA. 
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Figure 8: T138 and T477 Equivalent positions on Pyrococcus furiosus RadA, respectively. 

 

 

Figure 9: T408 Equivalent position on Pyrococcus furiosus RadA. 
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Discussion 

Each variant protein was expressed using E. coli cells, purified using nickel resin 

pulldown chromatography, and tested under two additional treatment groups. The first treatment 

involved the addition of heat while the second treatment involved the addition of heat and 

ssDNA. Each sample group was heated and recorded at 63°C, 75°C, and 85°C, respectively. The 

overall results of the experiment were not expected. The splicing incompetence of each of the 

variant inteins is surprising, since all of the necessary conditions were met. Each variant of the 

Pho RadA intein had the same +1 nucleophile, and at least in two cases favorable residues in the 

-1 position. 

The splicing incompetence in the variant inteins could possibly be explained by the 

secondary structure of the precursor protein surrounding the active splicing site. However, this 

conclusion is inconsistent due to the splicing incapability of inteins located in the loop and 

unstructured sites. The T353 variant of the Pho RadA intein was especially intriguing due to the 

secondary structure and the asparagine -1 residue. This intein had great potential to splice but did 

not.  

Future directions to further understand the splicing behaviors of Pho RadA inteins and 

the variants include further research including changing the -1 residue to a lysine, the native -1. 

The electrophoresis gels showed stable precursors for all of the variants, but there were never 

ligated exteins, which is important. Unfortunately, due to the COVID-19 pandemic, we are 

currently unavailable to continue research regarding the splicing incompetence of the mutant Pho 

RadA inteins.  
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