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Abstract: This paper describes a methodology for processing spectral raw data from Micro Rain 
Radar (MRR), a K-band vertically pointing Doppler radar designed to observe precipitation profiles. 
The objective is to provide a set of radar integral parameters and derived variables, including a 
precipitation type classification. The methodology first includes an improved noise level 
determination, peak signal detection and Doppler dealiasing, allowing us to consider the upward 
movements of precipitation particles. A second step computes for each of the height bin radar 
moments, such as equivalent reflectivity (Ze), average Doppler vertical speed (W), spectral width 
(σ), the skewness and kurtosis. A third step performs a precipitation type classification for each bin 
height, considering snow, drizzle, rain, hail, and mixed (rain and snow or graupel). For liquid 
precipitation types, additional variables are computed, such as liquid water content (LWC), rain rate 
(RR), or gamma distribution parameters, such as the liquid water content normalized intercept (Nw) 
or the mean mass-weighted raindrop diameter (Dm) to classify stratiform or convective rainfall 
regimes. The methodology is applied to data recorded at the Eastern Pyrenees mountains (NE 
Spain), first with a detailed case study where results are compared with different instruments and, 
finally, with a 32-day analysis where the hydrometeor classification is compared with co-located 
Parsivel disdrometer precipitation-type present weather observations. The hydrometeor 
classification is evaluated with contingency table scores, including Probability of Detection (POD), 
False Alarm Rate (FAR), and Odds Ratio Skill Score (ORSS). The results indicate a very good 
capacity of Method3 to distinguish rainfall and snow (PODs equal or greater than 0.97), satisfactory 
results for mixed and drizzle (PODs of 0.79 and 0.69) and acceptable for a reduced number of hail 
cases (0.55), with relatively low rate of false alarms and good skill compared to random chance in 
all cases (FAR < 0.30, ORSS > 0.70). The methodology is available as a Python language program 
called RaProM at the public github repository. 

Keywords: Doppler radar; noise level; precipitation type classification; rainfall parameters; spectral 
processing 
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1. Introduction 

Precipitation is a key component of the hydrological cycle and a precise knowledge of the 
precipitating hydrometeor type is essential for remote quantitative precipitation estimates either 
from scanning or from vertically pointing ground-based or spaceborne radars. Precipitation 
observations of vertically pointing Doppler radars allow us to estimate the fall speed of hydrometeor 
particles which, in general, are the sum of their terminal fall speed and vertical air velocity (Atlas et 
al. [1], Hauser and Amayenc [2]). As it is well known, radar sensitivity to smaller particle detection 
increases with shorter wavelengths but, on the other hand, attenuation by intense precipitation, 
particularly rainfall, increases. Thus, a compromise exists between sensitivity and attenuation effects 
regarding the choice of operating frequency, a crucial aspect in radar design for different applications 
and platforms (Battaglia et al. [3], Kollias et al. [4]). 

Unlike usual ground-based scanning precipitation weather radars operating at cm frequencies 
(S, C or X-band), Doppler radar profilers do not provide the precipitation field over a wide area, but 
a high spatial and temporal resolution vertical profile over the radar location. This approach has been 
employed for decades to study fine-scale vertical precipitation characteristics, for instance with the 
NOAA Aeronomy Laboratory S-band Doppler profiler (Ecklund et al. [5]), the X-band Precipitation 
Occurrence Sensor System (POSS, Sheppard [6]), the K-band Micro Rain Radar (MRR, Löffler-Mang 
et al. [7], Peters et al. [8]), and more recently, with shorter wavelength radars traditionally used for 
cloud studies, such as the Ka-band ARM zenith radar (Chandra et al. [9]) or the Milešovka 
observatory Ka-band cloud radar (Sokol et al. [10,11]), used to derive a hydrometeor classification, 
including four precipitation types. A related application has been the use of lidar observations from 
the NASA MPLNET network to resolve weak precipitation profiles (Lolli et al. [12,13]), particularly 
suited for light rain, drizzle and virga, as if more intense precipitation exists, attenuation becomes 
too important. 

Among the above-mentioned Doppler radar profilers, the MRR stands out. This has been 
extensively used for a wide range of applications, including microphysical analysis of rainfall 
characteristics using collocated ground disdrometers (Adirosi et al. [14,15], Chang et al. [16], 
Gonzalez et al. [17], Jass et al. [18], Luo et al. [19], Tokay et al. [20]), diurnal and precipitation 
characteristics at low-latitude mountains (Bendix et al. [21], Seidel et al. [22]), orographic effects and 
low-level seeder-feeder processes (Arulraj and Barros [23]), bright-band (BB) radar signatures (Cha 
et al. [24], Brast and Markmann [25]), or the monitoring of absolute calibration of C-band polarimetric 
weather radars (Frech et al. [26]). Many of these applications rely on the separation of the liquid to 
solid precipitation phase, for example above and below the BB, which is crucial for accurate 
quantitative precipitation estimates (Fabry and Zawadzki [27], Sanchez-Diezma et al. [28], Bordoy et 
al. [29]). A recent study by Makino et al. [30] described the use of MRR to predict the hydrometeor 
type at ground level. However, to our best knowledge, no methodology based on MRR data to 
partition precipitation profiles in different hydrometeor types has yet been described. Such 
methodologies have been developed and improved in recent years for polarimetric scanning 
precipitation radars (see, for instance, Ryzhkov et al. [31], Park et al. [32], Schuur et al. [33], Dolan et 
al. [34], Chandrasekar et al. [35], Besic et al. [36]). 

MRR units produce so-called raw data files, with spectral Doppler density data, which may be 
processed with the MRR manufacturer software (Metek [37], hereafter Method1) to obtain derived 
products, such as radar reflectivity Z, Doppler fall speed w or spectral width σ. Alternatively, 
researchers may develop their own MRR raw data processing, such as the methodology by Maahn 
and Kollias [38] which improves sensitivity and Doppler dealiasing and is suited for snowfall 
precipitation. This methodology is freely available as a Python program, called ImproToo (hereafter 
Method2). 

The objective of this article is threefold. First, to present a novel MRR processing methodology, 
called RaProM (hereafter Method3), which includes enhanced spectral processing and Doppler 
dealiasing, a simplified novel hydrometeor classification scheme based on the assumption that the 
air vertical velocity is negligible compared to the precipitation particle speed, including drizzle, rain, 
snow, and hail, plus additional variables depending on the precipitation type. Second, to illustrate 
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the methodology with a detailed case study, where results are compared with those from Method1 
and Method2 and other co-located instruments, such as a Particle Size and Velocity (Parsivel) 
disdrometer or a microwave radiometer. Third, an evaluation of the hydrometeor type classification 
at the lowest MRR height bin compared with Parsivel present weather precipitation type 
observations recorded in 32 days. 

The rest of the article is organized as follows. Section 2 introduces the instruments and location 
considered in this study, on the Eastern Pyrenees (NE Spain). Section 3 describes the new 
methodology proposed, dealing with spectral data processing with a multi peak detection procedure 
and details the derivation of spectral moments, hydrometeor classification and derived parameters. 
Section 4 presents a case study comparing, in detail, previous MRR processing methodologies and 
data from additional instruments and also provides the evaluation of the hydrometeor precipitation 
classification using contingency table scores and, finally, Section 5 presents a discussion and 
conclusion of the achievements and limitations of the proposed methodology and ideas for further 
research. 

2. Instruments and Site Description 

A Micro Rain Radar (MRR) is a compact frequency modulated continuous wave (FMCW) 
vertically pointing Doppler radar operating at 24.23 GHz, manufactured by Meteorologische 
Messtechnik GmbH (Metek) [37], which recently is manufacturing a newer version, the MRR-PRO. 
A summary of technical features of the MRR used here is given in Table 1. In this study, an MRR2 
model was used and the range gate resolution was set to 100 m so observations extended up to 3.1 
km above ground level. The unit was equipped with a heated antenna which prevented the 
accumulation of snow. Due to the relatively high operating frequency, possible attenuation by 
precipitation had to be checked for the data set analyzed. 

Table 1. Main features from MRR. 

Frequency (GHz) 24.23 
Radar Type FMCW 

Number of range gates 32 
Number of spectral bins 64 

Range resolution (m) 10–200 
Frequency sampling (kHz) 125 

Other instruments used here were a laser-optical disdrometer OTT Parsivel, a microwave 
radiometer RPG HATPRO (MWR) and two Automatic Weather Stations (AWSs) of the 
Meteorological Service of Catalonia [39]—see Supplementary Materials Table S1. All these 
instruments were deployed for the Cerdanya-2017 field campaign at the Das aerodrome (OACI code: 
LECD) in the Eastern Pyrenees mountain massif from December 2016 to April 2017. Part of the study 
makes use of additional data collected at the same site during the period 2018 and 2019 by the MRR 
and Parsivel disdrometer. The location is a relatively wide valley oriented west to east, with limited 
radar coverage due to orographic beam blockage (Bech et al. [40], Trapero et al. [41]) so most of the 
MRR beam cannot be directly compared with existing ground-based weather radar observations. The 
Cerdanya-2017 field campaign aimed at studying various complex terrain phenomena, including 
cold pool formation, mountain waves and orographic precipitation—see Gonzalez et al. [17]; Udina 
et al. [42] for more details. 

The disdrometer records hydrometeor fall speed and size spectra at ground level and other 
derived variables, such as hydrometeor type (e.g., rain or snow), radar reflectivity factor and 
precipitation intensity for liquid precipitation, among others. The microwave radiometer provides 
air temperature vertical profiles so the freezing level and other isotherm levels can be calculated. The 
two AWS are located close or near the MRR location (at the same aerodrome and nearby but a higher 
altitude, see Figure S1 in Supplementary Materials) and provide independent measurements of 
temperature, precipitation and snow depth level. 



Remote Sens. 2020, 12, 4113 4 of 25 

 

3. New Methodology Proposed 

The methodology has two different sections. The spectral data processing is detailed in the first 
section, and the equations and hypotheses are treated in the second section. 

3.1. Spectral Data Processing 

The initial processing stage of Method3 consists in the MRR spectral data processing and follows 
the flow chart described in Figure 1. The first step is to transform the original signal backscattered by 
hydrometeors to spectral reflectivity (ƞ) following the equation proposed by the manufacturer (Metek 
[37]): 

𝜂𝜂(𝑛𝑛, 𝑖𝑖) = 𝑓𝑓(𝑛𝑛, 𝑖𝑖) ∙ 𝑖𝑖2

𝑇𝑇𝑇𝑇(𝑖𝑖)
∙ 𝐶𝐶∙∆ℎ
1020

 , (1) 

where i is the range gate number (i = 0, …, 31), n is Doppler bin number (n = 0, …, 63), f(n,i) is the 
original MRR signal saved in the so-called raw data files, TF(i) is a transfer function specific for each 
height, C is the radar calibration constant and Δh is the range resolution in m. The spectral reflectivity 
ƞ(n,i) has units of m−1 and TF(i) and C are stored in the original raw data files. 

 
Figure 1. Flowchart of the MRR spectral data processing. 
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The innovations introduced in Method3 are the modification of the integration time, the average 
of spectra and the determination of maxima (peaks) in the signal. The integration time, usually set to 
60 s, is now selectable by the user. Method3 performs the averaging of the spectrum checking that at 
least 50% of spectra contain a minimum valid signal. The 50% threshold is a value modifiable by the 
user on the code of Method3. The signal is considered valid if it verifies the Hildebrand and Sekhon 
[43] criterion: 

𝜂𝜂�2

𝑣𝑣𝑣𝑣𝑣𝑣(𝜂𝜂)
 =  

�∑𝜂𝜂(𝑛𝑛)
𝑁𝑁 �

2

∑(𝜂𝜂−𝜂𝜂�)2
𝑁𝑁

< 60 , (2) 

where var(ƞ) is the spectral reflectivity variance and N the number of Doppler bins considered. 
The detection of the maxima of the signal at a given height consists in using all Doppler bins of 

the spectrum except the first and the last one, therefore all possible fall speed values are used, except 
the lowest and the highest. This approach allows us to recover more than one single peak of the signal 
more easily and provides more detail about the hydrometeor fall speed distribution potentially 
affected by noise in the lowest range bin, the closest one to the ground, which is excluded, as in 
Method1. Note that Method2, instead, excludes part of the highest and lowest Doppler bins, and 
discards the 3 lowest-range bins. The noise level is calculated for each height following the scheme 
detailed by the manufacturer [37], which implies subtracting the noise level to the signal. 

Figure 2 shows two examples of noise subtraction and peak detection using Method3 applied to 
the lowest processed range bin (i = 1, here from 100 to 200 m a. g. l.) and the ninth range bin (i = 10, 
from 900 to 1000 m a.g.l.). Figure 2a,b display a single peak detection and Figure 2c,d a two peak 
detection. Note that these detections could not be possible with Method2, as it discards the 100 m to 
200 m bin height (panels a and b) and does not consider all Doppler bins processed by Method3. 

  

Figure 2. Examples of Method3 noise subtraction and signal detection: single peak (a,b panels) and 
multi-peak (c,d panels). (a,c) show the original Doppler signal from raw file and (b,d) show the noise 
subtraction and signal detection. The (a) case was recorded at the first height bin (100 to 200 m a.g.l.) 
and the (c) case at the ninth height bin (900 to 1000 m a.g.l.). 

The next step is the conversion of the reflectivity spectra from n Doppler bins to velocity v 
according to Equation (3). Note that this transformation depends on specific MRR2 data acquisition 
features, such as wavelength or sampling frequency: 

𝜂𝜂(𝑣𝑣, 𝑖𝑖)  =  𝜂𝜂(𝑛𝑛, 𝑖𝑖) ∙ �
𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2∙𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚∙𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
∙ 𝜆𝜆
2
�
−1

, (3) 

where fsampling is 125 kHz, nmax is 64, imax is 32 and λ is the wavelength (~1.24 cm). 
The last step in the spectral processing of Method3 implements a dealiasing scheme, partly based 

on Kneifel et al. [44] who noticed that in some snowfall cases, MRR2 provided unrealistically high 
values of hydrometeor fall speed, much higher than terminal snowflake fall speeds. This was due to 
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two assumptions of the original manufacturer software: (i) precipitation observed was always in 
liquid form, so there was an inherent dependence between hydrometeor terminal fall speed versus 
particle diameter and (ii) only downward velocities were allowed, which is the most usual situation 
but is not always the case for snowflakes or convective rainfall. The snowfall case is discussed in 
Maahn and Kollias [38] and a dealiasing system to solve it is implemented in Method2. The dealiasing 
scheme proposed in Method3 consists in, for a given height, combining information from spectra of 
adjacent (upper and lower) height levels to determine the hydrometeors’ fall speeds to extend the 
original speed range from 0 to 12 m/s to a dealiased range of −12 to 24 m/s. The lower-level spectra 
are used to expand the speed range to −12 to 0 m/s and the upper one to 12 to 24 m/s. The vertical 
continuity of the speed profile is used to provide the dealiased speed spectra, as illustrated in the 
example displayed in Figure 3. The Method2 dealiasing scheme works well for snowfall and finds 
possible snowflake upward movements but does not work properly for cases of intense rainfall with 
hydrometeor falling velocities greater than 8 m/s, unlike the proposed scheme implemented in 
Method3. 

 
Figure 3. Spectral reflectivity after noise extraction of Doppler spectrum with Method3 on 27 March 
2017 12:18 UTC. (a) Original spectral reflectivity after peaks and noise determination. (b) Extended 
spectral reflectivity from height bin i − 1, i and i + 1. (c) Dealiased Method3 spectral reflectivity. The 
blue symbol thickness is proportional to their contribution to the total Doppler spectrum for each 
height bin. The red dashed vertical lines indicate the original Nyquist velocity interval (from 0 to 12 
m/s). 

3.2. Parameters Calculation 

Once Method3 spectral processing is completed, data are ready to proceed with the calculation 
of subsequent parameters, which is divided in two parts. The first part computes the basic Doppler 
radar parameters: the Doppler velocity, which is assumed here to be the hydrometeor fall speed, and 
the radar equivalent reflectivity factor. The second part provides an estimation of hydrometeor type 
and based on this, the calculation of derived parameters, such as precipitation rates for different 
precipitation types. Figure 4 provides an overview of parameters calculations. 
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Figure 4. Flowchart of parameters calculation (effective reflectivity, fall speed, spectral width, 
skewness and kurtosis) and subsequent estimation without assuming any hypothesis between 
terminal fall speed and particle diameter of precipitation type into snow, m, drizzle/rain—hail and 
unknown. 

3.2.1. Basic Parameters 

The term basic parameters are applied here to integral parameters which can be calculated 
independent of the type of hydrometeor as they only depend on the spectral reflectivity. The 
parameters are the radar equivalent reflectivity (Ze), the Doppler velocity, which here corresponds to 
the mean fall speed of hydrometeors (𝑤𝑤� ), and higher order moments of the Doppler speed 
distributions: Doppler spectral width (σ), skewness and kurtosis as described in Equations (4)–(8): 

𝑍𝑍𝑒𝑒  =  1018 ∙ λ
4

π5
∙ 1

|𝐾𝐾|2
∙ ∆𝑣𝑣 ∙ ∑ 𝜂𝜂(𝑣𝑣), (4) 

𝑤𝑤�  =  
∑𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ 𝑣𝑣(𝑖𝑖)
∑𝜂𝜂(𝑣𝑣, 𝑖𝑖)

  (5) 

𝜎𝜎 =  �
∑𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ (𝑣𝑣(𝑖𝑖) − 𝑤𝑤)2

∑ 𝜂𝜂(𝑣𝑣, 𝑖𝑖)
 (6) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
∑𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ (𝑣𝑣(𝑖𝑖) − 𝑤𝑤)3

∑ 𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ 𝜎𝜎3
  (7) 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 =  
∑𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ (𝑣𝑣(𝑖𝑖) − 𝑤𝑤)4

∑𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ 𝜎𝜎4
  (8) 

Note that the calculation of the radar equivalent reflectivity does not take into account possible 
attenuation effects which may be relevant for high precipitation rates, considering that MRR operates 
at the K-band. However, this can be handled in the case of liquid hydrometeors, where the path 
attenuation is calculated (see Section 3.2.4). 
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3.2.2. Hydrometeor Type Classification 

As mentioned earlier, there are a number of hydrometeor classification algorithms developed 
mainly for scanning polarimetric weather radars, some considering up to 10 different precipitation 
species. Here, a simplified approach is adopted aiming to distinguish, for each height bin, 5 possible 
precipitation types: drizzle, rain, snow, mixed and hail. For the purpose of this paper, we consider 
either wet snow, a mixture of snow and rain, or graupel in the mixed category. 

The classification is based on a decision tree, considering empirical relations between 
hydrometeor fall speed and equivalent radar reflectivity, size and particle diameter characteristics 
for different hydrometeors and the existence or absence of the bright band. As a starting point, the 
empirical relations reported by Atlas et al. [1], linking radar reflectivity and fall speeds of rain (vRain) 
and snow (vSnow) in the absence of bright band, are considered: 

𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  =  2.65 ∙ 𝑍𝑍𝑍𝑍0.114  (9) 

𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.817 ∙ 𝑍𝑍𝑍𝑍0.063  (10) 

These relationships are used to compute, given Ze, vRain and vSnow, which are the average fall speed 
expected for each precipitation type on those two cases. Additional parameters considered are the 
mean Doppler fall speed 𝑤𝑤� , the Doppler spectral width σ and the Skewness Sk, calculated for each 
height bin. Moreover, a BB detection scheme is used (Cha et al. [24]). In case there is BB, then the 
existence and height of its top (BBTop) and bottom (BBBottom) levels are computed, following the 
methodology described by Wang et al. [45]. From all the above, the decision tree can be grouped in 
three main branches with additional conditions (Figure 4): 

1. If vSnow is within the interval 𝑤𝑤�  ± σ and vRain exceeds 𝑤𝑤�  + σ, then: 

• If the bin height is lower than the BBBottom, the hydrometeor is classified as: 
Drizzle/Rain—Hail. 

• If the bin height is equal or above the BBBottom or BBBottom is not present: 
Mixed: if Sk > −0.5 and 𝑤𝑤�  > vSnow; 
Snow: otherwise. 

2. If vRain and vSnow are within the interval 𝑤𝑤�  ± σ, then: 

• If the bin height is below the BBBottom or BBBottom is not present: 
Drizzle/Rain—Hail. 

• If the bin height is above the BBBottom: 
Mixed: if the Sk > −0.5 and the 𝑤𝑤�  > vSnow; 
Snow: otherwise. 

3. If vRain is within the interval 𝑤𝑤�  ± σ and vSnow is lower than 𝑤𝑤�  − σ, then: 

• If the bin height is below the BBTop or BBTop is not present: 
Drizzle/Rain—Hail. 

• If the bin height is above the BBTop: 
Mixed: if the Sk > −0.5 and the 𝑤𝑤�  > vSnow; 
Snow: otherwise. 

4. Cases not included in any of the previous categories are labelled as unknown. 

The category “Drizzle/Rain—Hail” is further disaggregated considering additional conditions 
(Figure 5). The basic criteria stem from the precipitation hydrometeor definitions. Drizzle and rain 
are formed only by liquid particles AMS (2020) [46,47] and are here distinguished by their skewness 
Sk in their fall speed distribution and for Ze differences (ΔZe) between levels. According to 
Acquistapace et al. [48], if skewness (Sk) is lower than or equal to −0.5 and ΔZe ≥ 1 dBZ, then the 
hydrometeor is classified as drizzle and otherwise as rain. Hail is defined in the function of the 
maximum diameter on the Doppler velocity spectrum, considering here a threshold of maximum 
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diameters greater than 5 mm. Snow and mixed class are stratified when the height is below the 
BBBottom as described by Kalesse et al. [49]. 

 
Figure 5. Flowchart of parameter calculation assuming Mie backscattering regime and the estimation 
of precipitation type (hail, drizzle and rain). 

3.2.3. Snowfall Rate 

Despite solid precipitation presents a greater variability than liquid precipitation, Matrosov and 
Heymsfield [50] studied the relation between equivalent radar reflectivity and snowfall rate at 
different wavelengths and proposed empirical relations between those variables. In particular, 
snowfall rate (SR) can be estimated from Ze by inverting the Ze–SR power–law relationship: 

𝑆𝑆𝑆𝑆 = �
𝑍𝑍𝑒𝑒
𝑎𝑎
�
1/𝑏𝑏

 (11) 

where SR is in mm/h, Ze in mm6 m−3, a and b are the coefficients from the corresponding Ze-SR relation 
and their values, for K band, are 56.00 and 1.20. It should be noted that the estimated SR might differ 
from actual values, given the high variability of the mass–size relation of different snow particles, as 
discussed in Souverijns et al. [51]. 

3.2.4. Rainfall Parameters from Drizzle/Rain 

Rainfall parameters can be calculated if hydrometeors are in liquid phase. Section 3.2.2 details 
that the Drizzle/Rain types are liquid hydrometeors, thus on these types the rainfall parameters are 
calculated, but it is also necessary to introduce a dependence between the hydrometeor terminal fall 
speed and the diameter of the hydrometeor, which implies the hydrometeor particle size distribution 
(N) for each n Doppler bin and height level i: 

𝑁𝑁𝑛𝑛,𝑖𝑖(𝐷𝐷𝑛𝑛)  =  
𝜂𝜂(𝐷𝐷)
𝜎𝜎𝑛𝑛,𝑖𝑖

  (12) 
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where ƞ(D) is the spectral reflectivity as a function of the diameter and σn,i is the Mie backscattering 
cross section for liquid spherical particles. Note that the initial spectral reflectivity is only a function 
of the fall speed using the relation between Doppler bins n. The spectral reflectivity as a function of 
the raindrop diameter is determined using the Gunn and Kinzer [52] expression, which relates the 
fall speed with the raindrop diameter plus a correction factor for the fall speed δv(h) that takes into 
account air density changes with height: 

𝜂𝜂(𝐷𝐷, 𝑖𝑖)[ms−1mm−1]  =  𝜂𝜂(𝑣𝑣, 𝑖𝑖) ∙ 6.18 ∙ 𝛿𝛿𝛿𝛿(𝑖𝑖 ∙ ∆ℎ) ∙ 𝑒𝑒−0.6 mm−1∙𝐷𝐷[mm] (13) 

where D is expressed in mm and ƞ(D,i) is in m s−1 mm−1. The correction factor δv(h) is computed 
assuming the US Standard Atmosphere and a second order approximation following Foote and Du 
Toit [53] 

𝛿𝛿𝛿𝛿(ℎ)  =  (1 + 3.68 ∙ 10−5 ∙ ℎ + 1.71 ∙ 10−9 ∙ ℎ2)  (14) 

So, the corrected terminal fall speed as a function of drop diameter and height is: 

𝑣𝑣(𝐷𝐷)[m/s]  =  𝛿𝛿𝛿𝛿(ℎ) ∙ �9.65 − 10.3 ∙ 𝑒𝑒−0.6 mm−1∙𝐷𝐷[mm]�   for 0.109 mm ≤  D ≤  6 mm (15) 

After the drop size distribution is determined, the Path Integrated Attenuation (PIA) is 
determined using the approach detailed in Metek [37], wherein the single particle extinction 
coefficient is necessary. The result is the drop size distribution with attenuation correction (Na(D,i)) 
which allows us to calculate the reflectivity (Z), the liquid water content (LWC), and the rain rate 
(RR): 

𝑍𝑍 =  �𝑁𝑁𝑁𝑁𝑛𝑛 ∙ 𝐷𝐷𝑛𝑛6 ∙ ∆𝐷𝐷  (16) 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝜌𝜌𝑤𝑤 ∙
𝜋𝜋
6
∙�𝑁𝑁𝑁𝑁𝑛𝑛 ∙ 𝐷𝐷𝑛𝑛3 ∙ ∆𝐷𝐷  (17) 

𝑅𝑅𝑅𝑅 =  
𝜋𝜋
6
∙�𝑁𝑁𝑁𝑁𝑛𝑛 ∙ 𝐷𝐷𝑛𝑛3 ∙ 𝑣𝑣(𝐷𝐷) ∙ ∆𝐷𝐷  (18) 

Following Thurai et al. [54], Method3 implements the calculation of the mean mass-weighted 
raindrop diameter (Dm) and the intercept parameter of the gamma distribution normalized to the 
liquid water content (Nw), where it is assumed that D0 is equal to Dm: 

𝐷𝐷𝑚𝑚  =  
∑𝑁𝑁𝑁𝑁𝑛𝑛 ∙ 𝐷𝐷𝑛𝑛4 ∙ ∆𝐷𝐷
∑𝑁𝑁𝑁𝑁𝑛𝑛 ∙ 𝐷𝐷𝑛𝑛3 ∙ ∆𝐷𝐷

  (19) 

𝑁𝑁𝑤𝑤  =  
256
𝜋𝜋 ∙ 𝜌𝜌𝑤𝑤

∙
𝐿𝐿𝐿𝐿𝐿𝐿
𝐷𝐷𝑚𝑚4

 (20) 

These parameters are useful for discriminating between convective and stratiform rainfall, as 
discussed later. 

4. Results 

The results are divided into two parts. The first part examines a case study to assess the 
characteristics of Method3, compared with Method1 and Method2. In the second part, an objective 
validation of the hydrometeor classification is performed to show the performance of Method3 to 
distinguish different types of precipitation. 
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4.1. Case Study 

The performance of the new methodology proposed (Method3) is assessed during a 
precipitation event, mostly stratiform, that took place on 27 March 2017. The event produced rainfall 
at Das AWS (4.9 mm) and 6.3 mm of equivalent rainfall amount, which fell as snow, at Malniu AWS 
located 1100 m aloft. These precipitation amounts are relatively modest in terms of daily amounts for 
the season and region (Gonzalez and Bech [55]). As the freezing level was about 750 m above ground, 
a substantial part of the profile observed was snow, which allows us to illustrate different features of 
Method3. The results are compared with Method1, Method2 and with data from other instruments—
see Supplementary Materials Table S1. Comparisons may include different data subsets; for example, 
Method2 vs. Method3 profiles or Method3 lowest bin gate vs. disdrometer estimates. 

4.1.1. Fall Speed 

Precipitation fall speed profiles estimated with Method3 are displayed in Figure 6, overlaid with 
isotherm heights (0 °C, −10 °C and −20 °C levels), plus Parsivel fall speed at ground, indicating the 
consistency between the observations derived from the three independent instruments. On the one 
hand, a sharp increase in Method3 fall speed is generally observed below the 0 °C level, as expected 
when solid precipitation changes to liquid precipitation. On the other hand, the lowest Method3 
height bin (100 m a.g.l.) presents fall speed values and temporal trends comparable to the Parsivel 
ones. 

 
Figure 6. Fall speed height time indicator obtained from Method3 corresponding to 27 March 2017 
overlaid with microwave radiometer derived isotherm levels of 0 °C, −10 °C and −20 °C and fall speed 
calculated from Disdrometer shown at bottom level (0 to 50 m a.g.l.). Downward fall speeds are 
defined positive. 

The lowest range bin (100 m height) estimated with Method3 is compared with Parsivel 
measurements (Figure 7a). Some discrepancies are expected due to the different measurement 
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principle of each instrument and also the different heights compared. Both data sets compare 
reasonably well for speeds up to 8 m/s, and particularly well for 3 to 6 m/s fall speeds (note the higher 
density of data for that range, as shown in Figure 7a). All Method3 speeds are below 8 m/s, whereas 
disdrometer data exceed 12 m/s, so major discrepancies occur for disdrometer speeds above 8 m/s. 
This discrepancy could be partly due to raindrop coalescence in the lowest 100 m above ground level. 

 
Figure 7. (a) Scatter plot of the proposed method (Method3) fall speed from the first height versus fall 
speed from disdrometer. (b) Fall speed comparison of the lowest three height bins between Method3 
and Method1. (c) Scatter plot of fall speed from Method2 and Method3. (d) Similar to (c) but indicating 
different precipitation hydrometeor types. Color scales of panels (a,c) represent data density. 

An analysis of the first three height bins obtained with Method3 is performed with a comparison 
with Method1 (Figure 7b). Note that Method2 cannot be included in this comparison as it discards 
the two lowest height bins. All negative fall speeds detected by Method1 are discarded according to 
the manufacturer approach, which assumes only positive values. The agreement found is generally 
good, with a few cases where Method3 overestimates Method1. 

A comparison of profiles except for the lowest two bins not processed by Method2 is performed 
between Method2 and Method3 (Figure 7c). As displayed by the data density the fall speed 
agreement is generally good (R2 of 0.995); however, a few cases present discrepancies, typical of the 
order of 1 m/s. Figure 7d shows a scatter plot between Method2 and Method3 where data are labelled 
to hydrometeor type classified by Method3 and illustrates that the largest discrepancies shown in 
Figure 7c are originated by snow and mixed cases. 

The fall speed difference between the two methods, expressed here as: 
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∆𝑤𝑤 =  𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜3 − 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜2, (21) 

is further examined in terms of hydrometeor type according to the new hydrometeor classification 
methodology performed by Method3 and fall speed range, considering the different speed classes 
(Table 2). It can be seen that, for all classes, the absolute value of the mean error is equal or lower than 
0.02 m/s. Moreover, a few snow and mixed cases present speed differences above 1 m/s. Root mean 
square errors are similar for all hydrometeor classes. 

The distinct behavior of snow cases is also seen in Figure S2 in the Supplementary Materials, 
which shows the difference in distribution for the four hydrometeor types, shown in Table 2. Rain 
and mixed cases present similar quasi symmetric distribution patterns, while drizzle is much more 
leptokurtic and snow is platykurtic. The systematic differences between Method2 and Method3 may 
be due to differences in the spectral processing of the methods. However, note that these differences 
are very small in absolute value. 

Table 2. Fall speed differences Δw between Method3 and Method2 stratified by speed values and 
hydrometeor type. Hail, mixed and unknown values were not found so only four hydrometeor classes 
(Rain, Drizzle, Mixed and Snow) are considered. Values listed correspond to number of height bins 
for each fall speed and hydrometeor class and mean error (ME) and root mean squared error (RMSE). 

(m/s) Rain Drizzle Mixed Snow 
|∆𝑤𝑤| < 1 1142 88 1057 7441 

1 ≤ |∆𝑤𝑤| ≤ 2 0 0 0 4 
|∆𝑤𝑤| > 2 0 0 2 1 

ME −0.01 −0.02 0.00 0.01 
RMSE 0.06 0.03 0.16 0.08 

4.1.2. Equivalent Reflectivity 

Equivalent reflectivity (Ze) profiles obtained with Method3 are displayed with selected 
temperature levels (0 °C, –10 °C and –20 °C) retrieved from the microwave radiometer (MWR) and 
the reflectivity observed at ground-level by the disdrometer (Figure 8). It can be seen that the 0 °C 
level, around 750 m A.G.L., matches approximately with an abrupt increase in Ze consistent with a 
bright band signature caused by the change from solid to liquid hydrometeors and an increase in the 
fall speed (shown previously). The disdrometer reflectivity is also consistent with the profiles and 
reproduces particularly well the timing of the local maxima (>25 dBZ). 

A comparison of the reflectivities provided by Method3 at the lowest bin and the disdrometer is 
shown in Figure 9a, which indicates an overall agreement but a slight overestimation of the 
disdrometer compared to Method3 for values lower than 20 dBZ. The three lowest height bins 
provided by Method1 and Method3 present generally similar values (Figure 9b); however, some 
discrepancies are found in a few cases, mainly due to Method3 overestimating Method1. These 
variations appear because Method1 does not apply the dealiasing. Figure 9c shows a scatter plot 
comparing Method3 and Method2, which also show a good global agreement between the two 
methods (R2 of 0.993), except in a few cases. 
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Figure 8. Equivalent reflectivity obtained from Method3 corresponding to 27 March 2017 overlaid 
with microwave radiometer-derived isotherm levels of 0, −10 and −20 °C and equivalent reflectivity 
calculated from Disdrometer, shown at bottom level (0 to 50 m a.g.l.). 

 
Figure 9. (a) Scatter plot of equivalent reflectivity (dBZ) from the Method3 lowest height bin and 
disdrometer data. (b) Comparison of equivalent reflectivity (dBZ) for the three lowest height bins 
from Method3 and Method1. (c) Scatter plot of equivalent reflectivity obtained with Method2 and 
Method3. (d) As (c) but indicating different precipitation hydrometeor types. Color scales of panels 
(a,c) represent data density. 
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Those discrepancies are examined in more detail by considering the difference ΔZe between the 
two methods: 

∆𝑍𝑍𝑒𝑒 = 𝑍𝑍𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜3 − 𝑍𝑍𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜2 (22) 

Aside from a few isolated snow and mixed cases, both snow and rain provide similar differences 
in terms of RMSE (~1 dB) and ME (~–0.40 dB), so Method3 provides slightly lower reflectivity values 
than Method2—see Table 3. Despite these similarities, the distribution of differences present distinct 
patterns, as highlighted in Figure S3 in the Supplementary Materials: they all present a mode value 
close to 0 dB but it is much less marked for snow than for others types. 

Table 3. As Table 2 but for reflectivity differences ΔZe between Method3 and Method2. 

(dBZ) Rain Drizzle Mixed Snow 
|∆𝑍𝑍𝑒𝑒| < 1 1003 88 1023 6518 

1 ≤ |∆𝑍𝑍𝑒𝑒| ≤ 5 135 0 32 914 
|∆𝑍𝑍𝑒𝑒| > 5 4 0 4 14 

ME −0.38 −0.01 −0.14 −0.45 
RMSE 1.28 0.04 0.75 0.80 

4.1.3. Hydrometeor Classification 

The evolution of the hydrometeor classification provided by Method3 is shown in Figure 10, 
overlaid with temperature levels (0, –10, –20 °C) from radiometer and Parsivel hydrometeor 
classification at ground level. Parsivel classification is derived from the World Meteorological 
Observations standard code 4677 used in surface synoptic observations (SYNOPs), grouped here as 
rain, drizzle, mixed, snow and hail (see details in Supplementary Materials Table S2). 

 
Figure 10. Hydrometeor precipitation type obtained from Method3 corresponding to 27 March 2017 
overlaid with microwave radiometer derived isotherm levels of 0, −10 and −20 °C and present weather 
data from Disdrometer, shown at bottom level (0 to 50 m a.g.l.). 

Figure 10 shows clearly that the 0 °C level is slightly above the rain level, which may be 
explained by the local cooling caused by heat exchange with the environment due to snow melting. 
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From 12 to 15 UTC the freezing level increases, as does the rain level, and later decreases, a trend also 
followed by the rain level. It can also be seen that the disdrometer hydrometeor classification detects 
rain and drizzle, consistently with Method3. About 17:30 UTC a short precipitation event with liquid 
precipitation over the freezing level is observed. In this case, no bright band was detected and both 
MRR Doppler fall speed and spectrum width did not change along the precipitation profile 
substantially (not shown), which is consistent with the fact that it was a brief shallow convective 
event. 

The Malniu station, located about 1100 m above ground level from Das, recorded mostly air 
temperatures below 0 °C and an increase in snow depth at the time the precipitation occurred (Figure 
S4 in Supplementary Material), confirming that, at that height, precipitation was falling as snow, as 
indicated by the Method3 hydrometeor classification. On the other hand, Das station—where, 
initially, there was no snow on the ground—did not record any increase in snow height, as expected 
for a rain event. 

4.1.4. Rain Rate 

Rain rate obtained from the lowest bin height (100 m a.g.l.) provided by Method3 is compared 
to ground level rain rate, calculated with disdrometer and AWS data located at Das. Disdrometer 
rain rate was calculated using the raindrop number concentration per unit volume of air following 
Friedrich et al. [56]. The smallest raindrops detected by the disdrometer had diameters about 0.312 
mm, which limits the capacity of the instrument to measure weak precipitation formed by small 
raindrops. This is reflected in Figure 11, which shows a comparison of concurrent 1 min rain rates 
obtained with Method3 and Parsivel; the latter considerably underestimates Method3 values for rates 
below 0.1 mm/h, but overestimates them for some cases above 1 mm/h. 
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Figure 11. (a) Scatter plot of rain rate from disdrometer and the first height bin (100 m above 
disdrometer) from Method3. (b) Particle number concentration per unit volume from Method3 first 
height bin. (c) As (b) but obtained from the disdrometer. 

Another comparison is performed considering 30 min averages, which is the AWS time 
resolution, shown in Figure 12. It displays the first (lowest) and third height bin provided by Method3 
(which is the first bin available for Method2) and the AWS and disdrometer rain rates. It shows a 
substantial agreement between the disdrometer and the AWS data and some variability when 
compared to Method3 rain rates. 
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Figure 12. Rain rates during the 27 March 2017 event obtained from Method3 (first and third height 
bin), AWS Das and disdrometer. 

4.1.5. Stratiform vs. Convective Rain 

Following the criteria proposed by Thurai et al. [54], two parameters of the fitted gamma 
raindrop size distribution (Dm and Nw described in Section 4) are used by Method3 to classify bins 
identified as rainfall into three possible regimes: convective, stratiform or transition. Figure 13a 
illustrates the classification in the Dm and Nw space calculated from Method3 processing for all heights 
where rainfall is detected, confirming the predominantly stratiform character of the episode, with 
some periods of convective rain. Figure 13b shows a similar scatterplot comparing the lowest MRR 
height bin (100 m a.g.l.) and the values obtained with the disdrometer, where it is apparent that both 
instruments share a similar pattern but with differences that can be explained by the fact that the 
disdrometer has a detection limit on the smallest raindrops (~0.25 mm) and a much smaller sampling 
volume. This is particularly evident for log(Nw) values below 2 m−3 mm−1. The agreement between 
these instruments is consistent with the recent results obtained by Adirosi et al. [15]. 

 
Figure 13. (a) Nw versus Dm for stratiform, convective and transition regimes computed for all heights 
during the 27 March 2017 event. (b) as (a) but only for the lowest Method3 height bin and disdrometer. 
As a reference, the dashed black line indicates separation between convective and stratiform regimes 
according to the criteria of Thurai et al. [54] with −1.6 and 6.3 for c1 and c2, respectively. 
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4.2. Hydrometeor Classification Verification 

4.2.1. Verification Data and Methodology 

The quality of Method3 hydrometeor classification is assessed by comparing the lowest height 
bin (from 100 to 200 m a.g.l.) with Parsivel present weather precipitation type at 1 min intervals. This 
high temporal resolution may easily introduce double penalty effects in the case of rapidly changing 
precipitation types, so a fuzzy verification approach is required considering neighborhoods either on 
the observations or on the forecast—see, for example, Ebert [57] or Trapero et al. [58] for two 
dimensional fuzzy verification procedures. Here, this is evaluated as a one-dimensional data set so 
the neighborhood is simply a time interval around the observation time. 

To choose the interval length, two aspects are considered. First, the time required for 
hydrometeor particles to reach the ground due to their fall speed. Second, the precipitation drift 
caused by horizontal wind, which hampers matching the radar observation with ground records 
(Collier [59], Sandford [60]). To illustrate the first aspect, we may consider that the smallest raindrop 
detected by Parsivel (~0.25 mm) at 200 m a.g.l., which takes about 4.5 min to reach the ground so at 
least a 5 min window after the observation time should be considered—other precipitation particles 
as snowflakes may take even more. In the case of horizontal wind, the situation is more complex, as 
it may be impossible to observe aloft the same observation particle recorded on the ground, 
particularly for the long drifts possible for winter precipitation types (Thériault et al. [61]). Moreover, 
the relative position (upwind or downwind) from the ground record requires us to consider positive 
and negative time intervals (i.e., time windows centered on the observation time). Considering these 
aspects, a time window of ± 20 min was considered for evaluation.  

A data set of 32 different days from January 2017 to October 2019 was selected (45,384 min), 
representing a wide variety of precipitation types and coverage of every season according to local 
climatology. The seasonal day distribution was: 5 winter days, 19 in spring, 4 in summer and 4 in 
autumn. Two examples of verification days are shown in Figure 14, a ground level transition from 
rain to snow, and a warm season convective event with some minutes of hail. 

Verification scores based on a contingency table were calculated for each individual 
hydrometeor type, in particular the Probability of Detection (POD), the False Alarm Rate (FAR) and 
the Odds Ratio Skill Score (ORSS), which assess how good a forecast is compared to random chance 
(see Appendix A). 

4.2.2. Verification Results  

Table 4 shows for each precipitation type the value of POD, FAR and ORSS plus the total number 
of minutes of each type in the Method3 and disdrometer data sets, which share generally a similar 
proportion. Note that the number of hail minutes is rather limited; however, it is included to illustrate 
the relatively good results achieved. During the verification of the lowest bin, no cases of Method3 
unclassified precipitation type arose, but they are marginally present in some bins aloft.  

POD values indicate that both rain and snow, and also no precipitation, are the classes best 
detected (above 0.93), rain being the highest (0.99) and hail the lowest (0.55). F ranges from 0.29 (rain) 
to 0.01 (hail) and 0.05 (no precipitation). ORSS values indicate the substantial skill of Method3 
hydrometeor classification, starting drizzle from 0.72 and yielding rain, snow, and no precipitation, 
the best results (0.99). Overall, these results illustrate that Method3 provides a reasonable 
classification of the precipitation types considered. 
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Table 4. Verification scores comparing Method3 precipitation type with Parsivel observations. 

Class POD FAR ORSS Method3 
(min) 

Method3 
(%) 

Disdrometer 
(min) 

Disdrometer 
(%) 

Rain 0.99 0.29 0.99 7095 15.6 7173 15.8 
Drizzle 0.69 0.26 0.72 3502 7.7 3108 6.8 

Hail 0.55 0.01 0.98 49 0.1 88 0.2 
Snow 0.97 0.14 0.99 3700 8.2 3897 8.6 
Mixed 0.79 0.17 0.89 1001 2.2 933 2.1 

No 
precipitation 

0.94 0.05 0.99 30,037 66.2 30,185 66.5 

 
Figure 14. Hydrometeor classification by Method3 and Parsivel present weather (ground level) for: 
(a) 24 March 2018 and (b) 28 June 2018. 

5. Discussion and Conclusions 

A new methodology has been presented for processing K-band vertically pointing Doppler 
radar data recorded with Micro Rain Radar (MRR) systems. The methodology, referred to here as 
Method3, has been compared with two previously existing processing systems, Method1 (from the 
manufacturer) and Method2 (detailed in Maahn and Kollias [38]), using a vertical resolution of 100 
m and time resolution of 1 min. 

Method3 processes as input data spectral reflectivity (MRR raw data files) and produces as 
output data a number of fields. The first part of Method3 processing deals with spectral density 
processing and includes a new peak signal selection and noise treatment approach, considering all 
Doppler bins but the first and the last one. Then, a dealiasing method allowing for upward velocities, 
similar to the one included in Method2, is applied. With this new spectral processing, Method3 is 
able to extend the precipitation profile to the second lowest height level; in this case 100 to 200 m 
above ground. Moreover, the new methodology allows us to select the integration time (set here to 
60 s), for example to improve sensitivity. 

In Method3, the second processing part produces different variables, which include equivalent 
reflectivity (Ze), Doppler fall speed and derived parameters, such as spectral width, skewness, and 
kurtosis, plus a simplified precipitation-type classification. The precipitation classes considered are 
drizzle, rain, snow, mixed, and hail. For liquid precipitation, Mie backscattering is assumed, which 
allows us to provide integral parameter reflectivity (Z), liquid water content (LWC), rainfall rate (RR) 
and a gamma drop size distribution fit, including the computation of the normalized intercept 
parameter with respect to the liquid water (Nw), and the mean mass-weighted raindrop diameter 
(Dm). Snow rate is also calculated for snow precipitation type. Compared to previously existing MRR 
processing methodologies, Method3 provides a comprehensive set of variables to study precipitation 
profiles to support precipitation microphysics analysis. 

Method3 is illustrated with a case study comparing the results with Method2, Method3, 
microwave radiometer derived temperature profiles and ground data provided by a Parsivel 
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disdrometer and two AWS, yielding consistent results. The comparison with Method2 denotes a high 
correlation for W and Ze (R2 of 0.995 and 0.993, respectively) with some exceptions for low reflectivity 
values, which may arise from differences in the signal detection and dealiasing. Comparisons with 
Method2 indicate that Method3 provides very similar patterns of fall speed and reflectivity. 

Additionally, the Method3 precipitation type classification is compared with Parsivel present 
weather observations using contingency table scores. Results indicate a very good capacity of 
Method3 to distinguish rainfall and snow (PODs equal or greater than 0.97), satisfactory results for 
mixed and drizzle (PODs of 0.79 and 0.69) and acceptable for a reduced number of hail cases (0.55), 
with relatively low rate of false alarms and good skill compared to random chance in all cases (FAR 
< 0.30, ORSS > 0.70). 

The methodology presented in this article has been implemented in Python and is freely 
available in the repository github as RaProM (https://github.com/AlbertGBena/RaProM). The 
parameters calculated in Method3 and the new hydrometeor classification proposed will facilitate 
the analysis of precipitation profiles for the MRR data-user community. Future work planned 
includes the extension of Method3 to process MRR-PRO data and the application to a larger data set 
to further verify the results presented here. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/24/4113/s1. 
Figure S1: Location of the study area, Figure S2: Histograms of differences in fall speed between Method3 and 
Method2 for different hydrometeor types, Figure S3: As Figure S2 but for equivalent reflectivity, Figure S4: 
Temperature and snow depth from two AWS (Malniu and Das), Table S1: Summary of details of instruments 
used, and Table S2: WMO precipitation type classification grouping criteria. 
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Appendix A 

The comparison between Method3 precipitation type and disdrometer present weather 
observations is performed considering a contingency table for each precipitation type, where “hits” 
represent the number of events (precipitation type) forecast by Method3 and observed by the 
disdrometer, “misses” the events not forecast, “false alarms” the forecast events that did not occur 
and “correct negatives” the events that did not occur correctly forecast. Scores used are Probability 
of Detection (POD), indicating the fraction of correct forecast events, False Alarm Rate (FAR), 
indicating fraction of “no event”’ incorrectly forecast, and Odds ratio skill score (ORSS), indicating 
forecast skill compared to random chance, which are given by: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
ℎ𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 (A1) 

𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (A2) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  =   
ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
ℎ𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑣𝑣𝑒𝑒𝑒𝑒 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (A3) 
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where best (worst) score values are, respectively, 1, 0, and 1 (0, 1, and 0). 
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