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ABSTRACT 

A NOVEL NON-ENZYMATIC GLUCOSE BIOFUEL CELL WITH MOBILE GLUCOSE 

SENSING 

 

Ankit Baingane  

Old Dominion University, 2020 

Director: Dr. Gymama Slaughter 

 

Herein, we report a novel non-enzymatic glucose biofuel cell with mobile glucose sensing. 

We characterized the power generation and biosensing capabilities in presence of glucose analyte. 

This system was developed using a non-enzymatic glucose biofuel cell consisting of colloidal 

platinum coated gold microwire (Au-co-Pt) employed as an anode and the cathode which was 

constructed using a Gas diffusion electrode (GDE) with a platinum catalyst. The non-enzymatic 

glucose biofuel cell produced a maximum open circuit voltage of 0.54 V and delivered and a 

maximum short circuit current density of 1.6 mA/cm2 with a peak power density of 0.226 mW/cm2 at 

a concentration of 1 M glucose. The non-enzymatic glucose biofuel cell produced an open circuit 

voltage of 0.38 V and delivered and a short circuit current density of 0.225 mA/cm2 with a peak 

power density of 0.022 mW/cm 2 at a concentration of 5 mM glucose.  These findings showed that 

glucose biofuel cells can be further investigated in the development of a self-powered glucose 

biosensor. When used as self-powered glucose sensor, the system showed a good sensitivity of 

0.616 μA mM−1 and linear dependence with a correlation coefficient of 0.995 in the glucose 

concentration range of 2 mM to 50 mM.  

The system was further characterized by testing the performance of the system at various 

temperature, pH and amidst various interfering and competing chemical species such as uric acid, 

ascorbic acid, fructose, maltose and galactose. A charge pump circuit consisting of a blinking LED 

was connected to the biofuel cell to amplify the input voltage to power small electronic devices. The 



 

 

blinking frequency of the LED corresponds to the glucose concentration. An android mobile phone 

camera application was used to measure this LED blinking frequency which was in turn converted 

into the glucose concentration readings using image processing in MATLAB. The user was notified 

via text message and an email.  
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CHAPTER 1 

INTRODUCTION 

 

Background 

Blood glucose is the main type of sugar found in the blood and is the main source of energy. 

Glucose comes from the food that an individual eats and is also made in the liver and muscles. Blood 

carries glucose to all the body’s cells to use for energy. The pancreas - an organ, located between the 

stomach and spine, helps with digestion and releases a hormone called insulin into the blood [1]. 

Insulin helps the blood carry glucose to all the body’s cells. Sometimes an individual’s body does 

not make enough insulin, or the insulin does not work the way it should [2,3]. Glucose then stays in 

the blood and does not reach the cells. If blood glucose levels get too high, it can cause the disease, 

diabetes, or prediabetes. Over time, having too much glucose in the blood can cause health problems. 

Table I represents normal levels of blood glucose for non-diabetic and diabetic individuals.  

 

Table I. Normal blood glucose levels for non-diabetic and diabetic people 

Non-diabetic people Diabetic people 

Test Blood glucose (mg/dL) Test Blood glucose(mg/dL) 

Normal 79.2-110 Pre-meal 90-130 

Fasting 70-100 Post-meal < 180 

 

 

Prediabetes is when the amount of glucose in the blood is above normal yet not high enough 

to be called diabetes [3]. With prediabetes, the chances of getting type 2 diabetes, heart disease, and 
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stroke are higher. With some weight loss and moderate physical activity, an individual can delay or 

prevent type 2 diabetes. The typical signs and symptoms of diabetes are: 

● being very thirsty  

● urinating often 

● feeling very hungry 

● feeling very tired 

● losing weight without trying 

● sores that heal slowly 

● dry, itchy skin 

● feelings of pins and needles in your feet 

● losing feeling in your feet 

● blurry eyesight 

However, some people with diabetes do not have any of these signs or symptoms. There are three 

main types of diabetes: type 1, type 2, and gestational diabetes. People can develop diabetes at any 

age.  

Type 1 diabetes 

Type 1 diabetes, which used to be called juvenile diabetes, develops most often in young 

people; however, type 1 diabetes can also develop in adults [1,2]. In type 1 diabetes, the body no 

longer makes insulin or enough insulin because the body’s immune system, which normally protects 

the body from infection by getting rid of bacteria, viruses, and other harmful substances, has attacked 

and destroyed the beta cells that make insulin [3].  This type of diabetes is less common and mostly 

diagnosed in young adults and children and accounts for 5% of the total diabetes cases [1,3]. 

Treatment for type 1 diabetes includes: 

● taking injections of insulin 
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● sometimes taking medicines by mouth 

● making healthy food choices 

● being physically active 

● controlling blood pressure levels 

● controlling cholesterol levels  

Type 2 diabetes  

Type 2 diabetes also known as adult-onset diabetes, can affect people at any age, even 

children. However, type 2 diabetes develops most often in middle aged and older people [1,2,3,4,5]. 

People who are overweight and inactive are also more likely to develop type 2 diabetes. Type 2 

diabetes usually begins with insulin resistance - a condition that occurs when fat, muscle, and liver 

cells do not use insulin to carry glucose into the body’s cells to use for energy. As a result, the body 

needs more insulin to help glucose enter cells. At first, the pancreas keeps up with the added demand 

by making more insulin. Over time, the pancreas does not make enough insulin when blood sugar 

levels increase, such as after meals. If the pancreas can no longer make enough insulin, the individual 

will need to get treated for type 2 diabetes. Type 2 is the most common form of diabetes accounting 

for 90 – 95% of the total diabetes cases [1]. Treatment for type 2 diabetes includes:  

● using medication 

● making healthy food choices  

● being physically active  

● controlling blood pressure levels  

● controlling cholesterol levels 

Gestational diabetes  

Gestational diabetes can develop when a woman is pregnant. Pregnant women make 

hormones that can lead to insulin resistance [3,4,5]. All women have insulin resistance late in their 
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pregnancy. If the pancreas does not make enough insulin during pregnancy, a woman develops 

gestational diabetes. Overweight or obese women have a higher chance of gestational diabetes. Also, 

gaining too much weight during pregnancy may increase your likelihood of developing gestational 

diabetes. Gestational diabetes usually goes away after the baby is born. However, a woman who has 

had gestational diabetes is more likely to develop type 2 diabetes later in life. Babies born to mothers 

who had gestational diabetes are also more likely to develop obesity and type 2 diabetes. The 

prevalence of gestational diabetes was as high as 9.2% according to CDC report from 2014 [6]. 

Other diabetes  

Other forms of diabetes include congenital diabetes, cystic fibrosis-related diabetes, steroid 

diabetes, and several forms of monogenic diabetes are also common. Congenital diabetes is a result 

of genetic defects of insulin secretion and steroid diabetes is induced by high doses of 

glucocorticoids. These other types of diabetes accounts for 1 – 5% of the total diabetes cases [4,5,6]. 

According to a 2014 report, from the Centers for Disease Control (CDC), 29.1 million people 

or 9.3% of the population suffer from diabetes in the United States (US) alone, and the cost incurred 

to keep diabetes under control was 245 billion US dollars [6]. Over time, diabetes can lead to serious 

problems with blood vessels, the heart, nerves, kidneys, the mouth, eyes, and feet. These problems 

can lead to an amputation of a limb. The most serious problem caused by diabetes is heart disease. 

When a person has diabetes, they are more than twice as likely as people without diabetes to have 

heart disease or a stroke. With diabetes, the person may not have the usual signs or symptoms of a 

heart attack.   

Continuously checking and recording blood glucose levels can help monitor and better manage 

diabetes. If the blood has too much or too little glucose, the person may need a change in diet, physical 

activity, or medication to have a stress-free and healthy lifestyle. 

https://en.wikipedia.org/wiki/Cystic_fibrosis
https://en.wikipedia.org/wiki/MODY
https://en.wikipedia.org/wiki/MODY
https://en.wikipedia.org/wiki/Glucocorticoid
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The most commonly available methods for an individual with diabetes to monitor and maintain 

normal blood glucose levels are: 

• Finger prick test using a test strip and a glucometer 

• Continuous glucose monitoring (CGM) system 

The finger prick test involves pricking the finger using a lancet and extracting the blood drop 

with a disposable glucose test strip, which is then placed in the glucometer to measure the blood 

glucose level as shown in Figure 1.  

 

 
 

Figure 1.  Example of most commonly available methods for individual with diabetes to monitor and 

maintain normal blood glucose levels [8] 

 

 

The disposable test strip consists of a glucose selective enzyme such as glucose oxidase. The 

glucose selective enzyme oxidizes the glucose in the blood to produce gluconic acid and release 

electrons. These released electrons are proportional to the glucose concentration, which is converted 

into variable voltages using analog to digital converters. The meter then displays the level in the units 

of mg/dl or mmol/l. The test strips used in glucometer are expensive. The consumer cost for each 

glucose strip ranged from about $0.35 to $1.00. Manufacturers often provide meters at little to no 
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cost to create a demand for the use of the profitable test strips. Individuals with type 1 diabetes may 

test as often as 4 to 10 times a day due to the dynamics of insulin adjustment, whereas with type 2 

typically, tests are less frequent, especially when insulin is not part of treatment [7,8]. These strips 

are also affected by external factors like humidity, temperature, and altitude. For different batches of 

the test strips, the glucometer requires recalibration. Additionally, the blood glucose reading can drift 

by as large as 4 mmol/dL or 72 mg/dL which can prove to be fatal in blood glucose monitoring 

[7,8,9]. Therefore, close monitoring of  blood glucose levels may involve pricking the finger multiple 

times a day, which may prove painful and tedious. 

To reduce finger pricking frequency, continuous glucose monitoring systems (CGMs) were 

developed. A continuous glucose monitoring system (CGM) can consist of a disposable sensor 

placed under the skin, a transmitter connected to the sensor and a reader that receives and displays 

the measurements [10,11,12] as shown in Figure 2. 

 

 

Figure 2. A continuous glucose monitoring system with implanted sensor and data reader. [12] 

 

  The sensor can be used for several days before it needs to be replaced [11-13]. The devices 

provide real-time measurements and reduce the need for finger prick testing. A drawback is that the 

meters are not as accurate because they read the glucose levels in the interstitial fluid which lags the 
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levels in the blood. Also, CGMs are powered by an external power source such as a battery, thereby 

rendering the device bulky. CGM devices often requires recalibration every 12 hours after the first 

day.  

A lot of research has been conducted to improve the quality and efficiency of CGMs. 

Companies like Medtronic and Dexcom are at the forefront of glucose monitoring research as it is a 

very valuable market for them, but the CGM devices developed by both Medtronic and Dexcom, 

have a bulky receiver, often making them cumbersome to carry. This is mainly because these systems 

are powered by external power sources such as batteries and are very difficult to miniaturize. Also, 

one must calibrate the receiver for accurate blood glucose measurements which takes nearly 2 hours 

and demonstrates a maximum lifetime of just one week [11-13]. Although these devices show 

promising results, the quest to maintain normal blood glucose levels and improving  quality of life for 

individuals with diabetes remains a challenge. It is imperative that there is a closed loop system that 

would be minimally invasive, flexible, and easy to use and where the data is easily accessible to the 

end user and service providers.  To solve this problem, a lot of research has been done on making 

these monitoring devices as non-invasive and small as possible and the development of miniaturized 

alternative power sources to batteries.  

Whenever a need for small and portable power source arises, alternative fuel sources other 

than batteries are needed. Alternative fuel source offers flexibility when energy needs cannot be met 

by traditional means due to location, emergency power loss and lack of space. The market for 

rechargeable batteries is projected to grow at a rate of 7% per year through 2027 [14].  Despite their 

many advantages, batteries are hindered by the limited lifetime of the materials used to construct the 

battery. In addition, many batteries use hazardous chemicals that can potentially leak, can cause 

poisoning if not disposed of properly or even explode [15]. Also, batteries are limited by size as they 

cannot be miniaturized after a certain point due to limitations in achieved power densities. Therefore, 
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there is a high demand for alternate power sources that can compete with current battery 

technologies.   

The first conventional fuel cell was introduced by Neidrach and Grubb from General Electric 

for NASA [16]. The fuel cell consisted of platinum as a noble metal electrocatalyst, which oxidizes 

hydrogen and reduces oxygen. Oxidation of hydrogen produces protons and electrons which moved 

through the electrolyte and then the external circuit. This flow of electrons in the system results in 

the generation of electricity. Oxygen is reduced at the cathode when the electron in the system 

recombines with the oxygen present in the system. This reaction produce water as a byproduct. A 

platinum metal catalyst is used because of its efficiency for oxidizing hydrogen. However, in large-

scale applications, the use of platinum in fuel cells is limited due to its expensive and nonrenewable 

nature. In addition, hydrogen fuel is susceptible to carbon contamination and a continuous supply of 

hydrogen fuel is needed to generate electrical power continuously. These complicate the oxidation 

process due to carbon monoxide poisoning of the electrocatalyst. The high cost of noble metal 

electrocatalyst, carbon monoxide poisoning and need for continuous supply of hydrogen results in 

the unsustainability of hydrogen fuel cells as an ideal power source for implantable bioelectronic 

devices. The glucose biofuel cell has been looked upon as an alternative to powering implantable 

bioelectronic devices. 

The main motivation for the extensive research in the field of glucose biofuel cell technology 

is attributed to the search for an alternative sustainable fuel source that is cost-effective and can meet  

increasing global energy demands and recent advancements in microelectronics [17]. Many 

researchers are working to use glucose biofuel cells in powering implantable bioelectronic devices.   

Conventional fuel cell assembly consists of an anode, a cathode and an electrolyte and relies on the 

conversion of the chemical energy into electrical energy. In a fuel cell, mainly two types of reactions 

occur: 1) oxidation and 2) reduction reaction. The complete reaction is called a redox reaction. The 
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oxidation reaction occurs at the anode, and the reduction reaction occurs at the cathode. When the 

fuel is oxidized due to the redox reaction, electrons are released in the electrolyte, which then travels 

through an external circuit to the cathode producing electricity. In traditional batteries, two or more 

solid reactants undergo a chemical reaction which converts chemical energy into electrical energy 

by consuming one of the reactants. When the disposable reactant is completely consumed, the battery 

cannot produce any more electrical energy.  Once the battery is discharged i.e., the reactant is 

completely consumed, the battery either must be recharged in case of rechargeable batteries or 

replaced (traditional batteries). In the case of a glucose fuel cell, the electrical energy is produced 

due to the chemical reaction occurring between liquid and/or gaseous reactants as long as there is a 

continuous supply of glucose and the enzymes remain active, in the case of an enzymatic biofuel 

cell. Glucose is a simple sugar which is mainly produced by plants and algae using water and carbon 

dioxide from the atmosphere in the presence of sunlight. During this reaction, oxygen is produced as 

a byproduct and released in the atmosphere. Along with carbon dioxide and sunlight, the reaction 

also involves Adenosine Triphosphate (ATP) and Nicotinamide Adenine Dinucleotide Phosphate 

(NADPH) [18]. Scientists have found that this produced glucose can be used as a fuel in glucose 

biofuel cells since one molecule of glucose upon complete oxidation to CO2, generates 24 electrons 

to produce electrical energy. This glucose fuel is then oxidized into gluconolactone in the presence 

of oxygen, releasing electrons which in turn reduces the oxygen to produce electricity. Glucose 

biofuel cell can be differentiated from any other electrochemical energy sources based on the anodic 

catalysts used for the oxidation of the fuel. A major advantage of glucose biofuel cells over 

conventional fuel cells is that it employs cheap and environmentally friendly fuel and materials. This 

makes glucose biofuel cells a great alternative to conventional fuel cells. Also, glucose biofuel cells 

have high conversion efficiency at ambient temperatures and pH conditions. This electrical energy 

produced by glucose biofuel cells can be potentially used to power small bioelectronic devices like 
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pacemakers and continuous glucose monitors. Therefore, great interest has been shown in the field 

of developing a highly efficient glucose biofuel cell that can generate large amount of electrical 

energy to power small devices. These glucose biofuel cells can also be employed as a self-powered 

glucose biosensing system with the addition of a sensing circuit.  

As mentioned above, diabetes is one of the most common and debilitating diseases in the 

world, and it happens due to increased levels of glucose in the blood. Elevated concentrations of 

glucose in the body are considered one of the important parameters that represent the different states 

of disorder [19,20]. Continuous glucose monitoring is the best way to minimize the complications 

arising from increased glucose levels in the body. Implantable glucose biosensors that have 3 

electrochemical sensors have continued to attract significant attention because of their unique 

advantages, such as ease of fabrication, rapid response time, low limit of detection, high selectivity, 

and sensitivity [20-21, 25]. Electrochemical sensors can convert chemical or biological information 

rapidly, ranging from the concentration of a specific analyte to the total composition analysis, into 

an electrical signal [22-24]. 

Most of the biosensors aimed at detection of various analytes consist of an array of electrodes 

immobilized with enzymes, aptamers, or antibodies [20,23]. It has been observed that, the enzymes 

denature after some time of continuous use and their performance is widely affected by the 

surrounding pH and temperature. Also, the enzyme immobilization process must be performed in a 

controlled environment. To improve on these limitations, materials like carbon nanotubes [20,21], 

metal oxides [22,23], nano-structured conducting polymers [24-26], graphene [27], etc., have been 

considered as an alternative. Moreover, interest has been shown in the utilization of noble metals 

such as gold, platinum, and silver nanoparticles/ nano features in general because of their unique 

electrochemical properties [28,30]. These nanoparticles improve the direct electron transfer, signal 

transduction, and efficiency of the sensor. Platinum nanoparticles have been shown to have the 
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capacity to directly electro-oxidize glucose even in the absence of enzymes and mediators [30]. The 

large surface area and good biocompatibility of nanoparticles makes nanoparticles and 

nanocomposites attractive for the construction of biosensor [30,31]. 

Gas diffusion electrodes (GDE) are electrodes with a conjunction of a solid, liquid and 

gaseous interface, and an electrical conducting catalyst supporting an electrochemical reaction 

between the liquid and the gaseous phase [38-42]. GDEs are typically used in fuel cells, where 

oxygen and hydrogen react at the gas diffusion electrodes, to form water, while converting the 

chemical energy into electrical energy. Usually the GDEs are porous and the catalyst is fixed in a 

porous foil, so that the liquid and the gas can interact. Besides these characteristics, the gas diffusion 

electrode must, of course, offer optimal electric conductivity, in order to enable electron transport 

with low ohmic resistance [33-36]. 

 

Problem statement 

The goal of this work is to develop a self-powered continuous glucose monitoring system 

with wireless data access and monitoring capabilities. The developed system will not need a battery 

and will work under physiological conditions. The system is designed to exhibit high sensitivity and 

selectivity towards glucose analyte and have a wide linear range. It is also able to act as a power 

source for small electronic devices if the need arises. The data obtained can be forwarded to doctors 

or health care providers, so that they can have a detailed record of the user’s health and act when any 

kind of anomalies are observed. The fabricated system is equipped with a wireless data access and 

monitoring system.   

https://en.wikipedia.org/wiki/Electrode
https://en.wikipedia.org/wiki/Catalyst
https://en.wikipedia.org/wiki/Electrochemical_reaction
https://en.wikipedia.org/wiki/Fuel_cells
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Electrical_energy
https://en.wikipedia.org/wiki/Electric_conductivity
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Electrical_resistance
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Figure 3. Schematic of a self-powered continuous glucose monitoring system with wireless data access and 

monitoring 

 

Dissertation contribution 

In this dissertation, we developed a novel non-enzymatic glucose biofuel cell consisting of 

an anode made up of gold microwire electrodeposited with colloidal platinum and a cathode made 

up of a platinum catalyst layer on carbon cloth GDE substrate. The power output of the biofuel cell 

is directly proportional to the glucose concentration level. This biofuel can then be used to power a 

small charge pump circuit. The charge pump circuit consists of a blinking LED whose blinking 

frequency is directly proportional to the power produced by a biofuel cell. By incorporating the 

charge pump circuit, a complete glucose biosensing system was realized. An android application was 

developed, which uses a mobile camera to measure the blinking frequency using image processing 

in MATLAB and converts it into glucose concentration. Then a text message is sent to the user 

containing their body glucose level. 

 We also performed cyclic voltammetry characterization of the non-enzymatic biofuel cell in 

the absence and presence of glucose and purged oxygen. Current-Voltage characteristics (IV) tests 

were carried out to study the power characteristics of the glucose biofuel cell. The performance of 
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the glucose biofuel cell was verified at different pH and temperature conditions to find the optimal 

working conditions for the glucose biofuel cell along with interference characterization. 

Amperometry was also carried out to further study the performance of the biosensor. 

Scope of dissertation 

 The purpose of chapter 2 is to provide background to the thesis and introduce the reader to 

the electrical and bioelectrical concepts that govern the workings of a basic fuel cell and biofuel cells. 

The chapter also sheds light on the types of electron transfer methods used in biofuel cells, which 

constitutes how current flow in a biosensing system occurs. 

Chapter 3 focuses on the glucose biosensor in general. This chapter sheds a light on different 

types and generations of glucose biosensors. It also explains continuous glucose monitoring systems 

and the current trends in research and development. 

Chapter 4 focuses on the charge pump circuit and its operating principle.  This chapter 

provides a detailed explanation of the S882Z charge pump IC and general operation. 

Chapter 5 focuses on the different electrochemical characterization methods used.  

Chapter 6 focuses on the discussion of the fabricated non-enzymatic glucose biosensing 

system. The manufacturing methods, materials used in the preparation of the bioelectrodes and 

charge pump circuit are explained. It also reviews the ESP8266 microcontroller, MATLAB and the 

developed android application.   

Chapter 7 describes all the experimental data, the characterization methods, interference 

studies and results obtained by the self-powered glucose monitoring system. 

Chapter 8 summarizes the studies performed. The result and path forward of the novel 

glucose biosensing system are also discussed. 
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CHAPTER 2 

 BIOFUEL CELL 

 

Fuel cell 

Fuel cells are electrochemical devices that convert chemical energy in fuels into electrical 

energy, thereby promising power generation with high efficiency and low environmental impact [43]. 

Because the intermediate steps of producing heat and mechanical work of most conventional power 

generation methods are avoided, fuel cells are not limited by thermodynamic limitations of heat 

engines such as the Carnot efficiency. In addition, because combustion is avoided, fuel cells produce 

power with minimal pollutants. However, unlike batteries the reductant and oxidant in fuel cells must 

be continuously replenished to allow continuous operation. Fuel cells bear significant resemblance 

to electrolyzers [43,44]. In fact, some fuel cells operate in reverse as electrolyzers, yielding a 

reversible fuel cell that can be used for energy storage. Though fuel cells could, in principle, process 

a wide variety of fuels and oxidants, of most interest today are those fuel cells that use common fuels 

(or their derivatives) or hydrogen as a reductant, and ambient air as the oxidant.  A hydrocarbon fuel 

cell is  illustrated in 4. This system is characterized by a non-polluting and silent technology.  

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532013001200002#f1
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Figure 4. Hydrocarbon Fuel Cell Representation  

 

In general, traditional fuel cells use noble metal catalysts to generate electrons from fuel 

oxidation (typical fuels are hydrogen or small organic molecules such as methanol, ethanol, etc.). 

After the oxidation step, an external circuit transfers the electrons to the cathode side where the 

electrons react with an oxidant molecule (usually oxygen) and generate electrical work as well as 

water and heat. 

Fuel cells can vary from tiny devices producing only a few watts of electricity, right up to 

large power plants producing megawatts of power. All fuel cells are based around a central design 

using two electrodes separated by a solid or liquid electrolyte that carries electrically charged 

particles between them [43]. A catalyst is often used to speed up the reactions at the electrodes. Fuel 

cell types are generally classified according to the nature of the electrolyte they use. Each type 

requires materials and fuels that are suitable for different applications [44]. 

Basic Fuel cells can be differentiated into various types, depending on the type of electrolyte 

and operation temperature. Proton exchange membrane fuel cells (PEMFC), Direct methanol fuel 
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cells (DMFC), Phosphoric acid fuel cells (PAFC), Alkaline fuel cells (AFC) and Solid oxide fuel 

cells (SOFC) are some of the main types of fuel cells produced [45]. Fuel cell technology offers 

considerable advantages over other processes, such as high conversion efficiency and generation of 

substantial power density. Although fuel cells yield good results, some factors limit their large-scale 

application: high cost and future scarcity of noble metal catalysts (e.g., platinum) employed as a base 

catalyst in many fuel cell devices, issues regarding electrode passivation, and inability to oxidize 

some of the byproducts  generated. Furthermore, hydrogen production, purification, and storage also 

pose major technical challenges. 

In laboratory and commercial settings,  acids, alcohol, oxides and hydrogen are used as the 

fuel source. In the case of portable and implantable electronics, the fuel needs to be readily available  

inside  human body. A standard fuel cell cannot be applied in this situation. To solve this problem, 

biofuel cells (BFCs) can be looked upon as the ideal power source for portable and implantable 

electronics. On average there is >100 W of power contained as chemical energy in human body. 

Biofuel cells transform chemical energy into electrical energy from molecules presents in a living 

organism. The difference between biofuel cells and batteries is that in BFCs the concentration of the 

reactants is continually re-established by the body fluids. The constant presence and availability of 

the fuel directly from the body makes external recharging mechanisms or replacement unnecessary 

and provides a theoretical capability for operating indefinitely, as long as there is a constant supply 

of fuel. 
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Biofuel cell 

Biofuel cells are structurally and functionally similar to conventional fuel cells as seen in Figure 

5, but their catalysts are biological entities such as enzymes, microbes, and organelles [46]. Biofuel 

cells can be abiotic, enzymatic, microbial, or mammalian type depending on the catalysts used for the 

oxidation and reduction reactions. The development and fabrication of biofuel cells depend on 

multidisciplinary research that requires conceptual understanding of the metabolic pathways of 

microorganisms, catalysts, material sciences, fabrication, and bioelectronics [47,48]. Presently, 

researchers are focusing on the development of biofuel cells that can be implanted in living organisms 

to power medical devices and biosensors. Moreover, biofuel cells can also be a better alternative to 

batteries and conventional fuel cells.  

Using biological catalysts gives biofuel cells some unique properties: room temperature 

operation, catalyst-fuel specificity, membrane-less (no separation between the anode and cathode), and 

finally, there are a wide range of possible fuels owing to the multitude of biological catalysts that can 

be used. Biofuel cell fuels (commonly referred to as substrates) include alcohols, sugars, wastewater, 

and biological fluids such as blood, sweat, and tears. The abundance and sustainable nature of these 

fuels make biofuel cells a renewable energy option, although it has recently been shown that biofuel 

cells can even operate using JP-8 aircraft fuel [48]. The choice of electrodes and biocatalysts are the 

main factors that affect the power generation of a biofuel cell. 
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 Figure 5. Biofuel cell schematic showing its major components and basic operation. In this example, 

the anodic electron transfer occurs through a mediator while at the cathode it occurs directly through a 

biological catalyst. 

 

 Enzymatic biofuel cells consist of enzyme catalysts that have been isolated from a biological 

source and placed on either the anode, cathode, or both electrodes. Because the enzymes have been 

removed from their natural environment, they can communicate with mediators or electrodes directly, 

so they typically have higher power density than microbial or organelle biofuel cells. However, 

removing the enzymes from their native environment also lowers their stability [49]. Microbial biofuel 

cells, on the other hand, employ microbial catalysts that are grown directly on the electrodes and remain 

intact during operation. This greatly increases catalyst lifetime [50,51] but insulates enzymatic reaction 

sites, making electron transfer to the electrodes more difficult. Regarding the third type of biofuel cell 
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utilizing organelles, they are in their infancy compared to their enzymatic and microbial counterparts. 

As a result, they have neither the power output of enzymatic biofuel cells nor the stability of microbial 

biofuel cells. Organelles, such as mitochondria, can be isolated from living cells and immobilized 

directly on an electrode [52]. Mitochondria contain a series of membrane-bound enzymes that form an 

electron transport chain that can communicate directly with an electrode. Because the enzymes are 

membrane-bound, they are theoretically more stable than those found in an enzymatic biofuel cell, and 

because the mitochondria are not surrounded by cellular walls, they should be capable of faster electron 

transfer than a microbial fuel cell. There is a wealth of research for each of these biofuel cell classes, but 

the focus from this point forward will be on enzymatic biofuel cells.  

In enzymatic biofuel cell (EBFC), isolated enzymes are used for oxidation and reduction 

reactions at the anode and cathode, respectively [53-56]. The interest in EBFCs has increased due to 

implantable medical devices and biosensors for physiological substances. Besides the health-care 

applications, enzyme-based biofuel cells have also been used to power various portable and low-power 

devices. Because of their specificity and selectivity, enzymes are preferred biocatalysts where mixed 

fuel or reactants are to be used. Practically, the lifetime of EBFCs is limited and researchers have focused 

on different possible solutions for long-term operational stability of EBFCs. These possibilities include 

enzyme immobilization, genetic engineering of enzymes, and process development to replenish the 

enzyme level at the electrodes. The operation of an EBFC resembles the functioning of a conventional 

fuel cell [54,55]. A biofuel cell generates electricity from carbohydrates (sugar) utilizing enzymes as the 

catalysts through the principles of power generation present in living organisms. The EBFC incorporates 

an anode consisting of carbohydrate-digesting enzymes and a mediator and a cathode comprising 

oxygen-reducing enzymes and a mediator on either side of a separator membrane. The anode extracts 

electrons and hydrogen ions from the sugar (glucose) through enzymatic oxidation. At the cathode, the 

hydrogen ions and electrons combine with oxygen and produce water as seen in Figure 6.  
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Figure 6. Schematic representation of enzymatic biofuel cell. 

 

Due to the selective reactivity of the enzymes at each electrode, no cross-reaction occurs between 

the anode and the cathode. In general, the EBFC could be classified into many types based on fuel 

containment, fuel and catalyst sources, origin of the catalytic enzymes, and method of electron transfer 

between the reaction site and the electrode [55,56]. Similarly, the enzymes generally used in biofuel 

cells can also be divided into three groups depending on the location of the enzyme active centers and 

type of electron transfer between the enzyme and the electrode. These groups are:  

(1) enzymes having nicotinamide adenine dinucleotide (NADH/NAD+) or nicotinamide adenine 

dinucleotide phosphate (NADPH/NADP+) redox centers (these redox centers are weakly 

bound to the enzyme protein),  

(2) enzymes having redox centers at near surface or peripheral locations, and  

(3) enzymes having strongly bound redox centers or enzymes where redox centers are located 
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deep in the protein or glycoprotein shell.  

The enzymes described in points (1) and (2) carry out DET between the electrode surface and 

enzyme active centers, while enzymes in group (3) are not able to perform the DET with the electrode 

surface. Therefore, electron transfer to the electrode surface can be achieved by the use of electron 

transfer mediators. These mediator molecules (either electron donor or acceptor) can be accepted by the 

redox enzymes used in biofuel cells, and therefore, MET-based EBFCs were focused on by different 

research groups worldwide [56]. 

 An oxidoreductase enzyme can oxidize carbohydrates, alcohols, lactate, or even amino acids, 

and transfer electrons from the fuel to the electrode surface. Depending on the fuels mentioned above, 

it is possible to prepare anode-based electrodes by immobilizing different types of enzymes. For sure, 

glucose oxidase has been the most often employed enzyme since the first description of a biofuel cell. 

Its in vivo application is desirable because of different human physiological fluids, such as blood, 

plasma, saliva, and tears, that contain sugar (glucose). Scientists are also testing other enzymes, 

depending on the target fuel. As for enzyme-based cathodes, laccase or bilirubin oxidase usually 

perform the oxygen reduction reaction. 

The difference between the thermodynamic potential of the cathode and the anode (ΔEc-Ea) 

expresses the cell voltage, but this value can decrease by several orders of magnitude due to 

overvoltage (Δη). Δη results from (i) slow electron transfer occurring at both electrode sides; (ii) 

ohmic drop (∑Ω), associated with all the resistances in the system (film diffusion, membrane, 

supporting electrolyte); and (iii) electrode wear out (Δ£), a parameter that reflects electrode 

degradation described in Equation 1: 

Ecell = Δ Ec-Ea - Δη - ΣΩ - Δ£         (1) 

This provides important information that can be applied to any enzymatic electrode. 

Maximizing the so-called thermodynamic potential window (Ec - Ea) yields better biofuel cell 
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performance [57]. Therefore, enzymatic biofuel cell researchers aim to prepare/achieve bioelectrodes 

that facilitate the catalyzed reactions, to increase the open cell voltage (OCV). Moreover, these 

researchers target better cell design and prototypes that can reduce the overall resistances, making the 

electric current flow more easily through the system. To produce commercial devices, it is also 

necessary to keep Δ£ as low as possible. 

Another crucial parameter associated with the performance of any fuel cell is the power 

density that this system provides. This parameter reflects the electron generation rate in the enzyme-

catalyzed reactions. Unlike traditional fuel cells, which afford power densities of the order of milli to 

kilowatts, enzymatic biofuel cells generate power densities in the order of micro to a few milliwatts, 

which is sufficient for applications in portable low-powered electronic devices. The representative 

scheme in Figure 7 shows the power range of some of the alternative methods of energy production 

[58]. 

 

 

Figure 7. Schematic reference of power range that some of the alternative energy production methods 

provide 
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Despite the various advantages and possible applications of enzymatic biofuel cells, to achieve 

an efficient practical device, it is necessary to consider some crucial factors when developing this type 

of system. The first major challenge is the fact that enzymes are proteins; therefore, these biomolecules 

display a weak three-dimensional structure that must be maintained to ensure that its catalytic activity is 

retained. Although enzymes are highly specific and efficient catalysts, they have a limited lifetime in 

solution. Hence, their use in biofuel cells requires a critical step: immobilizing the enzyme onto an 

electrode surface. Achieving electrical contact between the enzyme and the electrode is also fundamental 

because this is one of the most important processes in the field of bioelectrochemistry. Achieving a high 

electron transfer rate from the active site of an immobilized enzyme to the electrode surface is probably 

the most critical point when constructing an enzymatic biofuel cell. Most research analyzing glucose in 

blood or serum focuses on enzymatic amperometric sensors owing to their simple design and 

performance. Amperometric enzyme biosensors rely on the measurement of current on the application 

of a potential between working and reference electrodes. The magnitude of this current depends on the 

concentration of a redox-active reagent or product in an enzymatic reaction.  

Amperometric enzymes based glucose biosensors suffer from complex and complicated enzyme 

immobilization strategies, critical operating conditions (temperature and pH), high cost and instability 

of the enzyme over a long period of time [59]. The activity of enzymes is very largely affected by the 

temperature, pH, humidity, and the presence of toxic chemicals [60]. To address these limitations, 

enzyme-free sensors, as seen in Figure 8, have been investigated to improve the electrocatalytic activity 

and selectivity toward the oxidation of glucose. Non-enzymatic biofuel cells use abiotic catalysts like 

platinum or other noble metals to carry out the electrooxidation of biofuel. Inert metals (Pt, Au, and 

Ni)  metal alloys containing Pt, Au, Pb, Ir, Ru, Cu, and Pd and metal-dispersed carbon nanotubes (CNTs) 

frameworks in which Pt, Pb, Pd, or Au are mixed with CNTs to form nanocomposites have been 

explored for glucose catalysis [59,60].  
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Figure 8. A model of a non-enzymatic biofuel cell 

 

 

An abiotic glucose fuel cell converts the chemical energy of glucose and oxygen into electric 

power using noble metals as the catalysts. The general electrode reactions of an abiotic biofuel cell 

involve oxidation of glucose to gluconic acid at a platinum-based anode catalyst, and oxygen is reduced 

to water at the cathode. Released protons travel from the anode to the cathode through a proton-

conducting membrane or electrolyte and generate electric power. The biofuel may be glucose, methanol, 

and ethanol [59]. Glucose is used more commonly as biofuel. Though in recent decades much attention 

has been paid to enzymatic, microbial, and whole cell/organism-based bio-fuel cells for implantable 

devices, abiotic biofuel cells also possess some advantages over biotic biofuel cells. Though the use of 

noble catalysts results in a more expensive biofuel cell system, abiotic biofuel cells promise tolerance to 

high temperatures during steam sterilization or a wide range of pH values. An abiotic cells also promise 

for long-term stability at operative and physiological conditions. Moreover, abiotic biofuel cells may 

also perform better at physiological concentrations of glucose [60]. Abiotic glucose fuel cell exhibits 
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higher stability and a longer life span as compared to EBFC.  

Due to increasing research and development in the field of biofuel cells, abiotic fuel cells can be 

seen as an alternative to sconventional fuel cells based on metal catalysts. These devices constitute a 

system that can directly transform chemical energy into electricity through reactions involving 

biochemical steps, or even a system in which the activity of the cell (or part of it) stems from the action 

of biocatalysts. The connection between biology and electricity and the concept of a biofuel cell have 

been known since 1911, when MC Potter noted that a culture of the bacterium E. coli produced 

electricity in half-cell studies employing platinum electrodes [61]. During the height of the Space race, 

the interest in this technology increased. The United States space program decided to use the biofuel cell 

in two entirely different ways. The first was to treat the waste originating from the spacecraft, and the 

second was to obtain electricity from the treated waste using the reactions involving the biofuel cell. 

Motivated by the possible in vivo application of this device, Yahiro et al. were the first to describe a 

biofuel cell that used isolated enzymes on the surface of an electrode and to show that it was possible to 

produce electricity using the enzyme glucose oxidase (GOx) [62]. The main advantages of the biological 

fuel cells are as follows:  

1. The use of clean and renewable catalysts (enzymes or microorganisms), 

2. The ability to operate at mild temperatures (20-40 °C) and physiological pH 

conditions, 

3. The possibility to use several fuels because enzymes and microorganisms offer 

diversity and specificity, 

4. Scaling up the use of biocatalysts tends to reduce production costs, which is not 

possible for non-renewable metallic catalysts.  

All these advantages point to an economically viable process, as judged from the growing 

research in this field all over the world.  
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CHAPTER 3 

 

GLUCOSE BIOSENSOR  

 

  A biosensor is an analytical device, used for the detection of a chemical substance, that 

combines a biological component with a physicochemical detector. A biosensor consists of an active 

region that is modified with the enzyme for the detection of the chemical constituent of interest. A 

transducer converts the chemical signal resulting from the interaction of the analyte with the biological 

element, into an electrical signal that is processed using a signal processing unit into a readable form 

[63, 65]. The active region can incorporate biorecognition elements such as receptors, enzymes, 

antibodies, nucleic acids, microorganisms, and lectins [63,64,65].  A glucose biosensor is a device that 

senses the concentration of glucose in a complex mixture. A blood glucose sensor measures the 

concentration of glucose in the blood by breaking down the glucose molecules to produce electrons 

with the help of a glucose selective enzyme. On complete oxidation of glucose, the current generated 

correlates to the glucose concentration. Thus, the biorecognition enzyme element is immobilized on a 

transducer, which in turn transduces the chemical signal into an electrical signal that can be read by a 

read-out circuit. Since the enzymes act as catalysts, they are not consumed in the oxidation reaction of 

glucose, thereby making them reusable. Also, the enzymes provide an alternate route for the glucose 

oxidation reaction with a lower activation energy, which allows the reaction to be thermodynamically 

favorable. The chemical constituent of interest in this study, is the glucose analyte and it is detected 

commonly via amperometric detection principle.  

A plethora of glucose biosensors have been developed to provide diagnostic information 

regarding a patient’s health status. As a cure for diabetes is yet to be developed, managing the life 

impeding conditions of this disease is currently the most successful means for its control. Monitoring 

glucose levels in blood, as a biomarker, has proven to prolong life expectancy by enabling diabetics to 
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manage episodes of hypo or hyperglycemia, hence providing better control over their condition and 

preventing some of the debilitating side effects [66,67]. In addition, glucose monitoring can be used to 

optimize patient treatment strategies, and provide insight into the effect of medications, exercise and 

diet on the patient [68]. Although blood-glucose monitoring is the gold standard medium for glucose 

sampling, measurements carried out in this fluid are invasive [66,69].  

 

Glucose monitoring in blood 

Blood-glucose concentrations are typically in the range of 4.9–6.9 mM for healthy patients, 

increasing to up to 40 mM in diabetics after glucose intake [66–72]. The first generation of glucose 

biosensors proposed by Clark and Lyons at the Children’s Hospital in Cincinnati in 1962 [73]. These 

sensors were based on an electrochemical approach, which used the enzyme glucose oxidase (GOx) 

[68]. Electrochemical sensors were chosen for blood-glucose measurements due to their high 

sensitivity, on the order of µM to mM, good reproducibility and ease of fabrication at relatively low 

cost [66]. GOx was employed as the enzyme for the sensor, due to its high selectivity for glucose, high 

tolerance towards extreme changes in pH, temperature and ionic strength in comparison with other 

enzymes such as hexokinase and glucose-1- dehydrogenase [74-77]. A thin layer of the GOx enzyme 

was placed on a platinum electrode via a semipermeable dialysis membrane to fabricate the sensor. 

This sensor measured the decrease in oxygen concentration and the liberation of hydrogen peroxide, 

which was proportional to the glucose concentration. GOx catalyzes the oxidation of glucose to 

gluconolactone in the presence of oxygen, while producing hydrogen peroxide (H2O2) and water as by-

products as seen in Figure 9 [66]. Gluconolactone further undergoes a reaction with water to produce 

the carboxylic acid product, gluconic acid. GOx requires a redox cofactor to carry out this oxidation 

process, where flavin adenine dinucleotide (FAD+) is employed. FAD+ is an electron acceptor which 

becomes reduced to FADH2 during the redox reaction [78]. Subsequent reaction with oxygen to 
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produce H2O2 regenerates the FAD+ cofactor. This reaction occurs at the anode, where the number of 

transferred electrons can be correlated to the amount of H2O2 produced and, hence, the concentration 

of glucose. 

 

Figure 9. Conversion of glucose to gluconic acid using glucose oxidase. 

 

 

The main obstacle to overcome with this approach is the interference of other electroactive 

species present in blood, such as ascorbic acid and urea [68,79]. In the design of these sensors, oxygen 

was employed as the electron-acceptor, which can result in errors from variations in oxygen tension and 

limitations, known as the oxygen deficit [80]. In order to overcome these challenges, oxygen was 

replaced with a synthetic electron redox mediator in second generation sensors [30].  

The evolution of this sensing approach also led to the development of disposable enzyme 

electrode strips, which were accompanied by a pocket-size blood-glucose meter [81,82]. Each strip 

housed miniaturized screen-printed working and reference electrodes, where the working electrode was 

coated with the required sensing components; glucose oxidase, an electron-shuttle redox mediator, 

stabilizer and crosslinking agent. Currently, the most widely used self-monitoring method is the ‘finger-

pricking’ approach which involves using a test strip to sample blood from a finger via pricking,  which 

is then analyzed via a glucometer as seen in Figure 10 [83-92]. The effectiveness of this method relies 

on strict compliance, which can be negatively influenced by time constraints, pain, and inconvenience 

[93]. It is also not a continuous monitoring approach and needs to be carried out at multiple intervals 
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throughout the day to help manage elevated glucose levels [88-94], especially after meals, exercise and 

dosing of insulin medication [94,95]. Moreover, a non-continuous method such as this can overlook 

periods of hyper- or hypoglycemia which occur outside of the sampling window [93]. Recent 

developments in implantable sensors, on the other hand, can be used to incorporate insulin pumps, which 

allow for instant insulin administration [92,93,95]. 

 
 

 Figure 10. Illustration of a A) Glucometer [86] and B) Continuous glucose monitor (CGM). [102]. 

 

In the early 1970s, Albisser et al. and Shichiri et al. first introduced the in vivo continuous 

glucose monitoring system using an artificial pancreas [98,99]. The artificial pancreas design was 

based on continuous glucose monitoring, where the device would remove blood from the body to an 

external benchtop analyzer that was connected to an insulin pump. As the name suggests, the device 

was not implanted and therefore not portable, although it was named the ‘artificial pancreas’. This led 

to the development of a third generation of glucose biosensor, which was subcutaneously implanted 

as seen in Figure 9. 

 Although the device could analyze glucose concentrations in blood using GOx, this was 

considered an invasive method [100]. The first commercially available personalized in vivo glucose 

A B 
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monitor was launched by Medtronic Minimed Inc. in the 1990s [79]. Unfortunately, the device could 

not provide real-time information, with data being accessed by a physician every 3 days [68]. Although 

implantable glucose monitoring systems offer regular glucose level readings, this approach isn’t 

recommended for all diabetics, due to its invasive nature [68] and some continuous glucose monitoring 

methods have been reported to show inaccuracies of up to 21% [101]. These inaccuracies are often 

attributed to sensor drift, caused by changes in the catalytic performance of the enzyme. This requires 

the device to be periodically recalibrated via the finger-pricking method [102]. Despite current 

commercially available glucometers, such as the Freestyle-Navigator by Abbott (Abbott Park, IL, 

USA), providing real-time measurements every 1–5 min, the longest working model without 

calibration is approximately two weeks. There is high consumer demand for a continuous glucose 

monitoring system which can quantify glucose concentrations without frequent calibration. Although 

blood remains the most studied body fluid for such measurements, other more accessible biological 

fluids such as interstitial fluid, ocular fluid, sweat, breath, saliva or urine have been investigated as 

alternative sample media for noninvasive continuous monitoring (Table 2) [66–69].  

 

Table 2. Glucose concentration in physiological fluids for healthy and diabetic patients in mM 

Physiological 

Fluid 

Biomarker Concentration 

for Healthy 

Patients’ 

Concentration for 

Diabetic Patients’ 

pH 

Blood Glucose 4.9–6.9 mM 2–40 mM 7.35–7.45 

Interstitial Fluid Glucose 3.9–6.6 mM 1.99–22.2 mM 7.2–7.4 

Urine Glucose 2.78–5.55 mM >5.55 mM 4.5–8 

Sweat Glucose 0.06–0.11 mM 0.01–1 mM 4.5–7 

Saliva Glucose 0.23–0.38 mM 0.55–1.77 mM 6.2–7.6 

Ocular Fluid Glucose 0.05–0.5 mM 0.5–5 mM 6.5–7.6 
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Glucose monitoring in alternative physiological fluids 

Interstitial fluid is the extracellular fluid which surrounds tissue cells. It has significant 

potential for medical diagnostics as it possesses a similar composition of several clinically important 

biomarkers to blood [103,104]. Blood and the surrounding vascularized tissue readily exchange 

biological analytes and small molecules by diffusion with the interstitial fluid [104]. As a result, 

interstitial fluid can offer valuable information about a patient’s health and has been used for minimally 

invasive determination of inherited metabolic diseases, organ failure or drug efficacy.  

Sode et al. have also developed a self-powered implantable continuous monitoring device 

called the BioRadioTransmitter for use in an artificial pancreas [68]. In this instance, the device is 

composed of a capacitor, radio transmitter and receiver. In the presence of glucose, the capacitor of 

the BioRadioTransmitter device discharges a radio signal, which is received and amplified by the radio 

receiver. The change in transmission frequency is then related to the glucose concentration [105]. 

Microneedles and microneedle arrays have also garnered a lot of interest over recent years for 

interstitial fluid sensing, since this approach can offer minimally invasive methods for biosensing. This 

concept was used in the development of a glucose-sensing patch by Jina et al. [106]. The device was 

designed in two compartments: the first containing the microneedle array and glucose biosensor with 

the second containing the electronics as illustrated in Figure 11. 
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Figure 11. Schematic of the microneedle glucose-sensing patch on the forearm [69]. 

 

 

 A microneedle patch platform allows the device to be in constant contact with the skin, 

providing permanent access to the interstitial fluid, and enabling this device to operate continuously 

[69]. In this particular case, the short length of the microneedles means that penetration is optimal for 

interstitial fluid sampling. Currently, the device must be recalibrated daily by the finger-prick 

approach [106]. Potential clogging of the microneedles and the distortion of their shape upon 

penetration of the skin can also affect the dynamics of sampling. Despite these shortcomings, this 

novel device holds great potential for non-invasive continuous glucose monitoring. 

Urine has been used as a diagnostic fluid for diabetes since the 1980s due to its easy and non-

invasive collection [107]. Urine is composed of metabolites, such as glucose, proteins and nitrates, 

as well as other dissolved salts, such as sodium and potassium. As a result, the pH of urine fluctuates 

between acidic pH 4.5 to basic pH 8 [108]. Due to the intermittent nature of this fluid, where 

collection is required for sampling, it cannot be incorporated into a continuous glucose-monitoring 

device.  

Sweat is one of the most accessible body fluids. Eccrine glands that excrete sweat can be found 

all over the body [110]. Sweat has been used for the detection of disease markers such as sodium, 
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potassium, calcium, phosphate and glucose. The reported glucose level in sweat for healthy patients 

is between 0.06 and 0.11 mM and between 0.01 and 1 mM for diabetics [109]. The fluctuations in 

analyte concentrations result in a broad pH range of sweat, typically between pH 4.0–6.8 during 

exercise [111,112], which can impact the effectiveness of chemical sensing or biosensing techniques 

chosen for disease diagnosis or monitoring. 

A non-invasive and continuous wearable glucose sweat sensing device was recently reported 

by Gao et al. [113]. It detects skin temperature, sodium, potassium, lactate and glucose concentrations 

in sweat [113]. An advantage of this approach is the use of multiple sensors which overcomes 

limitations of single, stand-alone sensors by providing a more comprehensive profile of sweat 

composition and enables data cross-comparisons. It is known that the potassium concentration in 

sweat is very stable during basal and exercising states. As a result, potassium levels can be used as a 

reference for comparing the fluctuating concentrations of other analytes, such as glucose, for 

performing concentration calculations. This sensor showed good correlations to the normal 

concentration ranges in sweat during exercise, but the drawback is that the glucose and lactate sensing 

units had to be changed every 2 hours to get continuous monitoring. Also, a minimum 10 µL of sweat 

was required to do sweat analysis. The sensors were placed close to the skin, to allow for immediate 

analysis of sweat as it emerged. The illustration can be seen in Figure 12. 

 

 

Figure 12.  A) Flexible glucose sensor. B) Glucose sensor integrated into a wearable wristband for 
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noninvasive sensing in sweat [113]. 

 

Microsoft has collaborated with Drew Evans’ group from the University of South Australia 

(Mawson Lakes, SA, Australia) to design hydrophilic organic electrodes that could be incorporated 

into flexible hydrogels, such as a contact lens [114]. In their approach, they have fabricated conductive 

polymeric coatings that were engineered to be biocompatible and could be grown directly on to a 

contact lens. The conductive polymer poly-(3,4-ethylene-dioxythiophene (PEDOT) was deposited on 

to the lens using oxygen plasma techniques. This lens was designed to advance the development of 

silicone hydrogels with technologically relevant properties, such as conductivity and pave the way for 

conductive hydrogel electrodes [114]. Ultimately, this lens would self-report relating optical changes 

to glucose concentrations. An advantage of this passive device is that no batteries or wireless 

connections are required to receive and transmit crucial information. 

Wearable sensors have the potential to play a major role in the continuous and non-invasive 

monitoring of biomarkers for diabetes and other disease conditions. The interest of companies such as 

Google, Novartis and Microsoft suggest there is a significant market potential for new approaches to 

self-monitoring and disease diagnosis. Glucose biosensors are constantly evolving as per the demand 

and there is a need for a self-powered glucose biosensing microsystem which will eliminate the 

dependence of batteries as the power source, glucometers and CGM devices, thereby improving the 

standard of living of people suffering from diabetes.
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CHAPTER 4 

CHARGE PUMP CIRCUIT 

 

Charge pump circuit 

A charge pump circuit is a type of DC to DC converter that uses capacitors for energetic charge 

storage to raise or lower voltage [115-117]. It is a very common challenge in circuits to need to convert 

an available DC source to a lower or higher voltage. For AC voltages, usually a transformer is used 

which converts the lower voltage to higher voltages, but transformers cannot be used with a DC power 

source. The best approach, then, is to “chop” the low-voltage DC using an oscillator of some sort, pass 

the chopped AC-like waveform through a step-up transformer, and then rectify and filter it at the 

secondary-side output. This approach can be very successful, and enhanced versions of it are the basis 

for switching power supplies used to both increase (boost) and decrease (buck) the voltage between a 

DC source and a supply rail. 

The key issue in the method mentioned above is the need for the transformer, an inductive 

component which is a relatively large and costly component compared to the rest of the power-

conversion circuitry it supports.  While some power converters prefer or even mandate a transformer 

due to the inherent galvanic isolation it provides, that benefit is often not needed in low-voltage circuits 

or localized sub-circuits [116]. A transformer-based design’s performance and cost are more suited for 

DC/DC converters above about 1 to 5 A output, but it is generally not an attractive solution at the low 

end below a few hundred mA. 

To solve this problem, circuit designers have developed a topology called the charge pump, 

which is difficult to implement with discrete components, but is very integrated circuit (IC) friendly. 

The charge pump uses capacitors as the energy-storage element. In this power-conversion technique, 

https://en.wikipedia.org/wiki/DC_to_DC_converter
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Voltage
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current (charge) is alternately switched and directed between two capacitors arranged so the circuit 

output is twice the input and thus functioning as a voltage-doubling boost converter. For these reasons, 

the charge-pump converter is also known as a switched-capacitor design. 

The charge pump circuit works on the fundamental principle of physics: charge flowing back 

and forth in a closed circuit is not lost but instead can be transferred via switching between charge-

storage elements [115-117]. In a charge-pump concept, diodes can be used to control the flow of current; 

in actual practice, the switches are usually switched metal–oxide–semiconductor field-effect transistors 

(MOSFETs), and the capacitors are external ceramic or electrolytic devices depending on the amount of 

capacitance needed. 

Figure 13 illustrates a two-step charge-discharge cycle where capacitor C1 charges, then 

discharges into C2.  First, the clock drives the output of inverter 1 low, so D1 is forward-biased, thus 

charging capacitor C1 to the supply voltage +Vdc, where D2 is off. 

 
 

Figure 13. Two-step charge discharge cycle 

 

Next, the clock drives the output of inverter 1 high, and the charge on C1 is now in series with 

+Vdc from inverter 1. As the output of inverter 2 is low, D2 becomes forward-biased and C2 charges to 

twice Vdc. The voltage thus seen across the load is 2 × Vdc, minus the diode forward-voltage drops and 
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any losses in the inverters. In practical designs using discrete components, Schottky diodes are usually 

used instead of conventional diodes because of their lower forward-voltage drop. However, IC-based 

charge pumps do not use diodes; instead, they use MOSFET switches with low on-resistance RDS(ON). 

Charge pump efficiency is high, in the range of 90 to 95% [117]. When MOSFET switches are used, 

the capacitor is sometimes called a “flying capacitor.” This is a designation which is a holdover from 

early days of electronics when a similar arrangement was used to sample a sensor voltage. The sensor 

output would charge a capacitor, and then the capacitor would be disconnected from the sensor and 

switched to a voltage-reading circuit. In effect, the capacitor would “fly” between the sensor and 

electronics, but there was no electrical path between the two sides. These capacitors can be small-value 

ceramic devices, or larger electrolytic ones, depending on the amount of current, the energy-storage 

needed, and the switching speed. The interplay among these parameters is also determined by the 

amount of output current to be charged into, and discharged from, the capacitors. 

While the basic arrangement for charge pump provides voltage doubling, it is possible to instead 

convert a positive voltage to a negative one, or vice versa, by clever rearrangement of the components, 

as seen in Figure 14. Further, if more switch and capacitor segments are added, the output voltage can 

be triple or quadruple the input (and go even higher). For this reason, charge pumps are sometimes called 

voltage multipliers [116,117]. Charge pumps can double voltages, triple voltages, halve voltages, invert 

voltages, fractionally multiply or scale voltages and generate arbitrary voltages by quickly alternating 

between modes, depending on the controller and circuit topology.  A simulation of an ideal charge pump 

can be found in Appendix A. 

 

 



 

 

38 

 
 

Figure 14. Reconfiguring of the basic boost-converter charge pump results in a circuit which converts a positive 

rail to a negative one needed for biasing or providing an offset voltage [116]. 

 

The charge-pump clock generally operates in the 10-kHz to 2-MHz range with some clocks now 

reaching 4 MHz. The use of a higher frequency minimizes the amount of capacitance required, as less 

charge needs to be stored and then dumped due to a shorter time cycle. However, there are higher losses 

and other negatives associated with switching at higher frequency. Some charge pumps use a clock with 

low or moderate accuracy and stability (e.g. 555 timer) and yield looser regulation specifications; while 

others use a more precise, fully controllable clock for more consistent performance and other benefits. 

Charge pumps are available with no need for an external clock – the user supplies it – as well as with 

embedded clocks for lowest parts count. The choice is made based on output regulation needs, system-

level tradeoffs, bill of materials (BOM) concerns, and cost. 

The pulsing nature of the higher-voltage output is smoothed by adding an output capacitor plus 

other components, in a standard filtering approach. Their output voltage is load dependent, where higher 

loads result in lower average voltages. The charge-pump regulates the pulsing by adjusting the duty 

cycle of the clock thus; the ratio of the two parts of the charge/discharge cycle and the output voltage 
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can be closely regulated. This clock adjustment is dynamically controlled by a feedback loop from the 

output. A well-designed charge-pump with clock control can maintain regulation to within about 1%, 

which is more than sufficient for most applications. Charge pumps with tighter regulation can also be 

available with some additional design techniques. 

Charge pumps are very effective solutions for lower-current ranges of under about 100 to 500 

mA, and they are best when the design needs just a small amount of current at a voltage that is not 

already available or locally regulated rail is needed for best performance. However, they are not a good 

choice at higher current levels. With some additional circuitry, switches, and more-involved architecture, 

they can implement a merged buck/boost regulator design with seamless transition between modes. For 

example, this boost/buck mode is needed where output of a Li-ion battery can range from 3.6 V when 

fully charged, down to 1.5 V when drained, yet the output must be maintained at 3.0 V. The combined 

buck boost converter starts in buck mode, then transitions to boost mode as the battery drops below the 

3.0 V level; all the while, the converter output is a steady, glitch-free rail. 

Charge-pump designs are available as standalone ICs which can be used to provide power rails 

for ICs, or just to develop low-current bias voltages for displays, among other applications. Charge-

pump functionality can also be embedded within ICs or be offered as separate devices. 

For example, an RS-232 IC may need only a low voltage such as 3 V or 5 V for its internal 

functions, but also needs a higher DC voltage of 12 V to meet the interface standard’s requirements. 

Rather than supplying two distinct rails to the RS-232 IC, a single low-voltage rail is used, and it is 

boosted by an internal charge pump within the RS-232 IC to the higher voltage for the I/O interface. The 

same technique is used in many large-scale digital ICs, which use a low voltage internally, but need a 

higher voltage for their many interface and I/O pins. 

They are commonly used in low-power electronics (such as mobile phones) to raise and lower 

voltages for different parts of the circuitry - minimizing power consumption by controlling supply 



 

 

40 

voltages carefully. 

Charge pumps are used in H-bridges in high-side drivers for gate-driving high-side n-channel 

power MOSFETs and insulated-gate bipolar transistors (IGBTs) [115,117]. When the center of a half 

bridge goes low, the capacitor is charged through a diode, and this charge is used to later drive the gate 

of the high-side FET a few volts above the source voltage so as to switch it on. This strategy works well, 

provided the bridge is regularly switched and avoids the complexity of having to run a separate power 

supply and permits the more efficient n-channel devices to be used for both switches. This circuit 

(requiring the periodic switching of the high-side FET) may also be called a "bootstrap" circuit. 

 

S882Z charge pump IC 

The S-882Z Series is a charge pump IC for step-up DC-DC converter startup, which differs from 

conventional charge pump ICs, in that it uses fully depleted SOI (Silicon on Insulator) technology to 

enable ultra-low voltage operation [118]. The IC is capable of stepping up an extremely low input 

voltage of 0.3 V. This series enables the efficient use of very low energy levels. The stepped-up electric 

power is stored in a startup capacitor, and it is discharged as the startup power of the step-up DC-DC 

converter when the startup capacitor reaches the discharge start voltage level. Moreover, a built-in 

shutdown function is also provided, so that when the output voltage of the connected step-up DC-DC 

converter rises above a given value, the operation is stopped, thereby achieving significant power saving 

and battery life extension. The S-882Z Series chips come in a small SOT-23-5 package, allowing high-

density mounting. The S-882Z has the following features: 

• Operating input voltage 0.3 to 0.35 V  

• Current consumption during operation: 0.5 mA max. (at VIN = 0.3 V) 

• Current consumption during shutdown: 0.6 μA max. (at VIN = 0.3 V)  

• Discharge start voltage 1.8 to 2.4 V (selectable in 0.2 V steps)  

https://en.wikipedia.org/wiki/H_bridge
https://en.wikipedia.org/wiki/Gate_driver
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• Shutdown voltage Discharge start voltage + 0.1 V (fixed)  

• Oscillation frequency 350 kHz (at VIN = 0.3 V)  

• External component Startup capacitor (CCPOUT), 1 unit*1  

The S-882Z has a variety of applications, where it is capable of stepping up low-voltage power 

supply such as solar cells and fuel cells, stepping up internal power supply voltage of RF tag, and 

providing intermittent power supply to an intermittently operating system. A schematic of the fabricated 

charge pump circuit with S-882Z IC is shown in Figure 15. 

 

 

Figure 15. Schematic of charge pump circuit designed in Eagle 

 

The S-882Z Series operate when a voltage of 0.3 V or higher is input to the VIN pin; the 

oscillation circuit starts operation and the CLK signal is output from the oscillation circuit as shown in 

Figure 16. This causes the charge pump circuit to be driven by this CLK signal, and the power of the 

VIN pin is converted to the stepped-up electric power in the charge pump circuit. The stepped-up electric 

power output from the charge pump circuit is then gradually charged to the startup capacitor (CCPOUT) 
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connected to the CPOUT pin and the voltage of the CPOUT pin gradually rises. When the CPOUT pin 

voltage (VCPOUT) reaches or exceeds the discharge start voltage (VCPOUT1), the output signal of the 

comparator (COMP1) changes from high level to low. As a result, the discharge control switch (M1), 

which was off, turns on. At this point, the step up electric power charged to CCPOUT is discharged from 

the OUT pin and the VCPOUT declines to the level of the discharge stop voltage (VCPOUT2). As the 

result of the discharge, M1 switches off, and the discharge is stopped. When the VM pin voltage (VVM) 

reaches or exceeds the shutdown voltage (VOFF), the output signal (EN−) of the comparator (COMP2) 

changes from low level to high. As a result, the oscillation circuit stops operation, and the shutdown 

state is entered. Additionally, when VVM does not reach VOFF or more, the stepped-up electric power 

from the charge pump circuit is recharged to CCPOUT and the cycle repeats. 

 

 

Figure 16. Internal operation of charge pump IC 
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CHAPTER 5 

 

ELECTROCHEMICAL CHARACTERIZATION  

 

Cyclic voltammetry 

Cyclic Voltammetry (CV) is an electrochemical technique that measures the current that 

develops in an electrochemical cell under conditions where voltage is more than that predicted by the 

Nernst equation. A CV system consists of an electrolysis cell, a potentiostat, a current-to-voltage 

converter, and a data acquisition system. The electrolysis cell consists of a working electrode, counter 

electrode, reference electrode, and electrolytic solution. The working electrode’s potential is varied 

linearly with time, while the reference electrode maintains a constant potential. The counter electrode 

conducts electricity from the signal source to the working electrode. The purpose of the electrolytic 

solution is to provide ions to the electrodes during oxidation and reduction. The potentiostat is an 

electronic device that uses a dc power source to produce a potential that can be maintained and 

accurately determined, while allowing small currents to be drawn into the system without changing 

the voltage. The current-to-voltage converter measures the resulting current, and the data acquisition 

system produces the resulting voltammogram. 

CV is performed by cycling the potential of a working electrode and measuring the resulting 

current [128]. The potential of the working electrode is measured against a reference electrode which 

maintains a constant potential, and the resulting applied potential produces an excitation signal such 

as that of Figure 19. In the forward scan of Figure 19, the potential first scans negatively, starting 

from a greater potential (a) and ending at a lower potential (d). The potential extrema (d) is called the 

switching potential and is the point where the voltage is sufficient enough to have caused an oxidation 

or reduction of an analyte. The reverse scan occurs from (d) to (g) and is where the potential scans 
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positively. Figure 17 shows a typical reduction occurring from (a) to (d) and an oxidation occurring 

from (d) to (g). It is important to note that some analytes undergo oxidation first, in which case the 

potential would first scan positively. This cycle can be repeated, and the scan rate can be varied. The 

slope of the excitation signal gives the scan rate used. 

 

Figure 17.  CV excitation signal showing a a typical reduction occurring from (a) to (d) and an oxidation 

occurring from (d) to (g). 

 

Figure 18 shows a cyclic voltammogram resulting from a single electron reduction and 

oxidation. Considering the following reversible reaction: 

M+ + e−⇌  M 
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Figure 18. Voltammogram of a single electron oxidation-reduction 

 

In an unstirred solution, mass transport of the analyte to the electrode surface occurs by 

diffusion alone. Fick’s Law for mass transfer diffusion relates the distance from the electrode (x), 

time (t), and the reactant concentration (CA) to the diffusion coefficient (DA). 

(∂cA / ∂t) = DA (∂2cA / ∂x2)  (2) 

During a reduction, current increases until it reaches a peak: when all M+ exposed to the 

surface of an electrode has been reduced to M. At this point additional M+ to be reduced can travel 

by diffusion alone to the surface of the electrode, and as the concentration of M increases, the distance 

M+ must travel also increases [129]. During this process, the current which has peaked, begins to 

decline as smaller and smaller amounts of M+ approach the electrode. It is not practical to obtain 

limiting currents Ipa and Ipc in a system in which the electrode has not been stirred because the 

currents continually decrease with time. 
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In a stirred solution, a Nernst diffusion layer ~10-2 cm thick, lies adjacent to the electrode 

surface. Beyond this region is a laminar flow region, followed by a turbulent flow region that contains 

the bulk solution. Because diffusion is limited to the narrow Nernst diffusion region, the reacting 

analytes cannot diffuse into the bulk solution; therefore, Nernstian equilibrium is maintained, and 

diffusion-controlled currents can be obtained [129]. In this case, Fick’s Law for mass transfer 

diffusion can be simplified to give the peak current 

ip = (2.69 x 105) n3/2 S DA1/2 V1/2 CA∗     (3) 

Here, (n) is equal to the number of electrons gained in the reduction, (S) is the surface area of the 

working electrode in cm², (DA) is the diffusion coefficient, (v) is the sweep rate, and (CA) is the molar 

concentration of A in the bulk solution [128,129]. 

Figure 20 shows that the reduction process occurs from (a) the initial potential to (d) the 

switching potential. In this region, the potential is scanned negatively to cause a reduction. The 

resulting current is called cathodic current (ipc). The corresponding peak potential occurs at (c) and is 

called the cathodic peak potential (Epc). The Epc is reached when all the substrate at the surface of 

the electrode has been reduced. After the switching potential has been reached (d), the potential scans 

positively from (d) to (g). This results in anodic current (Ipa) and oxidation. The peak potential at (f) 

is called the anodic peak potential (Epa) and is reached when all the substrate at the surface of the 

electrode has been oxidized. 

Cyclic Voltammetry can be used to study qualitative information about electrochemical 

processes under various conditions, such as the presence of intermediates in oxidation-reduction 

reactions, the reversibility of a reaction. CV can also be used to determine the electron stoichiometry 

of a system, the diffusion coefficient of an analyte, and the formal reduction potential, which can be 

used as an identification tool. In addition, because concentration is proportional to current in a 
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reversible, Nernstian system, concentration of an unknown solution can be determined by generating 

a calibration curve of current vs. concentration. 

 

Chronoamperometry 

  Chronoamperometry is an electrochemical technique in which the potential of the working 

electrode is stepped and the resulting current from faradaic processes occurring at the electrode 

(caused by the potential step) is monitored as a function of time [130]. Chronoamperometry is used 

to study the kinetics of chemical reactions, diffusion processes, and adsorption. In this technique, a 

potential step is applied to the electrode and the resulting current vs. time is observed [131]. The 

functional relationship between current response and time is measured after applying single or double 

potential step to the working electrode of the electrochemical system. Limited information about the 

identity of the electrolyzed species can be obtained from the ratio of the peak oxidation current versus 

the peak reduction current. However, as with all pulsed techniques, chronoamperometry generates 

high charging currents, which decay exponentially with time as any resistor-capacitor (RC) circuit. 

The Faradaic current, which is due to electron transfer events and is most often the current component 

of interest decays as described in the Cottrell equation: 

it = n F A C0 D0 ½  / π 1/2 t1/2             (4) 

where, 

n = stoichiometric number of electrons involved in the reaction; F = Faraday’s constant (96,485 

C/equivalent), A = electrode area (cm2), C0 = concentration of electroactive species (mol/cm3), 

and D0 = diffusion constant for electroactive species (cm2/s). 

In most electrochemical cells, this decay is much slower than the charging decay-cells with 

no supporting electrolyte and are notable exceptions. Most commonly a three-electrode system is 
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used. Since the current is integrated over relatively longer time intervals, chronoamperometry gives 

a better signal to noise ratio in comparison to other amperometric techniques.  

Chronoamperometry experiments are most commonly either single potential step, in which 

only the current resulting from the forward step is recorded, or double potential step, in which the 

potential is returned to a final value (Ef) following a time period, usually designated as τ, at the step 

potential (Es). The most useful equation in chronoamperometry is the Cottrell equation, which 

describes the observed current (planar electrode) at any time following a large forward potential step 

in a reversible redox reaction (or to large overpotential) as a function of t-1/2. The current due to double 

layer charging also contributes to the total current seen following a potential step. By nature, however, 

this capacitive current, iC that decays as a function of 1/t and is only significant during the initial 

period (generally a few ms) following the step. It can be easily recorded by performing the experiment 

in a cell containing only electrolyte and digitally subtracted. Usually it can be avoided altogether by 

only considering i-t data taken during the last 90% of the step time. 

Chronoamperometry lends itself well to the accurate measurement of electrode area (A) by 

use of a well-defined redox couple (known n, C0, and D0). With a known electrode area, measurement 

of either n or D0 for an electroactive species is easily accomplished. The double potential step method 

is often applied in the measurement of rate constants for chemical reactions (including product 

adsorption) occurring following the forward potential step. 
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Current-Voltage characteristics  

The Current-Voltage (I-V) characteristic curves of an electrical device or component are a set 

of graphical curves used to define its operation within an electrical circuit. As its name suggests, I-V 

characteristic curves show the relationship between the current flowing through an electronic device 

and the applied voltage across its terminals. I-V characteristic curves are generally used as a tool to 

determine and understand the basic parameters of a component or device and which can also be used 

to mathematically model its behavior within an electronic circuit as with most electronic devices, 

however there are an infinite number of I-V characteristic curves representing the various inputs or 

parameters and as such we can display a family or group of curves on the same graph to represent the 

various values. For example, the “current-voltage characteristics” of a bipolar transistor can be shown 

with various amounts of base drive or the I-V characteristic curves of a diode operating in both its 

forward and reverse regions. 

The static current–voltage characteristics of a component or device need not be a straight line, 

though take for example the characteristics of a fixed value resistor; it is expected to be reasonably 

straight and constant within certain ranges of current, voltage and power as it is a linear or ohmic 

device. There are, however, other resistive elements such as light dependent resistors (LDR’s), 

thermistors, varistor’s, and even the light bulb, whose I-V characteristic curves are not straight or 

linear lines but instead are curved or shaped and are therefore called non-linear devices because their 

resistances are non-linear resistances. If the electrical supply voltage, V, applied to the terminals of 

the resistive element R was varied, and the resulting current, I, was measured, this current would be 

characterized as: I = V/R, being one of Ohm’s Law equations. From Ohm’s Law, the voltage across 

the resistor increases as does the current flowing through it. Thereby, it would be possible to construct 

a graph to show the relationship between the voltage and current as shown with the graph representing 
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the volt-ampere characteristics (i-v characteristic curves) of the resistive element. Consider the circuit 

shown in Figure 19. 

 

 

Figure 19. Resistor i-v characteristic curve 

 

The above i-v characteristic curve defines the resistive element. If any voltage value is applied 

to the resistive element, the resulting current is directly obtainable from the I-V characteristics. As a 

result, the power dissipated (or generated) by the resistive element can also be determined from the 

I-V curve. If the voltage and current are positive in nature, then the I-V characteristic curves will be 

positive in quadrant Ι. If the voltage and the current are negative in nature, then the curve will be 

displayed in quadrant ΙΙΙ as shown. In a pure resistance condition, the relationship between voltage 
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and current is linear and constant at a constant temperature, such that the current ( i ) is proportional 

to the potential difference V times the constant of proportionality 1/R giving i = (1/R) x V. Then the 

current through the resistor is a function of the applied voltage and can be demonstrated visually using 

an I-V characteristics curve. 

In this example, the current I, against the potential difference V, is a straight line with constant 

slope 1/R as the relation is linear and ohmic. However, practical resistors may exhibit non-linear 

behavior under certain conditions as for example, when exposed to high temperatures. Many 

electronic components and devices have non-linear characteristics, that is their V/I ratio is not 

constant.  

In the case of a biofuel cell, the I-V characteristics follow the same pattern as for an ideal 

electronic circuit component, i.e. it follows Ohm’s law. When we look into any electrochemical 

system, however more losses like kinetic loss (charge-transfer), activation loss, mass transport loss 

(concentration) and ohmic loss (ion and electron transport) are introduced. These losses affect the I-

V characteristics curve because the V/I ratio is not always constant. This can be seen in the 

simulations performed in Appendix B. 

 

pH and temperature characteristics 

pH is a scale used to specify the acidity or basicity of a water-based solution. Acidic solutions 

have a lower pH, while basic solutions have a higher pH. At room temperature (25°C or 77°F), pure 

water is neither acidic nor basic and has a pH of 7. The pH scale is logarithmic and inversely indicates 

the concentration of hydrogen ions in the solution (a lower pH indicates a higher concentration of 

hydrogen ions). This is because the formula used to calculate pH approximates the negative of the 

base 10 logarithm of the molar concentration [a] of hydrogen ions in the solution. More precisely, pH 

is the negative of the base 10 logarithm of the activity of the hydrogen ion. The neutral value of the 
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pH depends on the temperature, being lower than 7 if the temperature increases. The pH value can be 

less than 0 for very strong acids, or greater than 14 for very strong bases. 

The glucose biosensor in this work was developed to be implanted and work in the human 

body. The normal pH of human blood lies between 7.35 – 7.48. So it is important to check the 

characteristics of the developed glucose biosensor at those pH levels as well as at both extreme ends 

of the scale to verify whether it will work in the physiological conditions. 

The temperature characteristic study includes observation of the sensor behavior at different 

temperatures. Usually the sensor characteristics are observed by keeping all other parameters constant 

and just varying the temperature and measuring the current and voltage of the sensor. In this work, 

the biosensor was developed to work at physiological conditions. The average normal body 

temperature is generally accepted as 98.6°F (37°C). Some studies have shown that the "normal" body 

temperature can have a wide range, from 97°F (36.1°C) to 99°F (37.2°C). A temperature over 100.4°F 

(38°C) most often means you have a fever caused by an infection or illness. For the sensor data to be 

robust and reliable, it is necessary to observe its behavior at different temperatures and make sure that 

it doesn’t give false results at both low and high extremities. To become an implantable biosensor, 

the sensor has to perform optimally between the temperature of 97°F (36.1°C) to 100.4°F (38°C).  
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CHAPTER 6 

MATERIALS AND METHODS 

 

Materials 

The gas diffusion electrodes (GDE) obtained from the Fuel Cell Store (College Station, TX, 

USA). Gold microwire (ϕ = 250 μm), isopropyl alcohol (IPA), D (+) glucose, potassium phosphate 

monobasic, glycol-chitosan, bilirubin oxidase (BOD) were obtained from Sigma-Aldrich.  

Buckypaper, a compressed network of multi-walled carbon nanotubes (MWCNTs) was purchased 

from Nanotech Labs (Yadkinville, NC). The platinizing solution was purchased from YSI Inc. 

(Yellow Springs, USA). All the solutions were prepared with 18.2 MΩ cm Milli-Q water. The 

Platinum counter electrode and Ag/AgCl reference electrode were obtained from BASI Inc. 

Palmsense4 was used to perform the characterization study of the biofuel cell.  The S882Z charge 

pump IC was obtained from Seiko electronics. The developed android application was installed on 

one Google Pixel 2XL mobile phone for sensing. 

 

Electrode fabrication 

A 3 cm long (ϕ = 250 μm) old microwire was used as the electrode material for fabrication of 

the anode. The gold microwire was folded in half and twisted. The electrode was then cleaned with 

IPA for 5 minutes and dried with nitrogen gas to remove any impurities from the surface. The gold 

microwire was coated with colloidal platinum using a three-electrode configuration consisting of the 

clean twisted gold microwire working electrode, platinum counter electrode, and Ag/AgCl reference 

electrode. These electrodes were then immersed in a platinizing solution, and colloidal platinum was 

electrodeposited on the gold microwire surface at an applied potential of −225 mV vs. Ag/AgCl for 
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1500 s. The electrode was then washed with DI water and dried at 260 °C for 5 minutes, followed by 

cooling in ambient air. 

The cathode was prepared using a gas diffusion electrode (GDE) with a platinum catalyst. The 

GDE was first cut into a size of 0.5 cm X 0.3 cm. Then a tungsten wire was attached to the edge of 

the GDE electrode using polyamide to have an external connection point. This enabled easy handling 

and connections to the measurement devices. The electrode with the wire was then left in the 

desiccator to dry for 24 hrs. The electrode was then washed with IPA and then with 10 mM PBS for 

10 minutes each. Figure. 20 shows the fabricated anode and cathode. 

 

 

Figure 20. Fabricated Au-co-Pt anode on left and GDE cathode on the right. 

 

The oxidation of glucose occurs in the presence of colloidal platinum (Au-co-Pt), a non-

enzymatic catalyst, to result in the production of adsorbed hydrogen [132]. Au-co-Pt anode acts as 

the dehydrogenation site wherein the Au surface facilitates the regeneration of colloidal Pt from 

poisoning due to adsorbed intermediates from the oxidation of glucose. The reaction mechanism is 

provided below: 

Glucose + Au-co-Pt → Gluconolactone + 2H+ + 2e- 
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where glucose is oxidized to produce gluconolactone and release electrons. At the cathode, oxygen 

in the solution moves across the hydrophobic gas diffusion layer of the GDE towards the platinum 

catalytic layer. On the opposite side of the GDE, hydrogen ions released from the oxidation of glucose 

move across a hydrophilic layer towards the catalytic layer [133-140]. At the catalytic layer gas and 

liquid reactants can interact. In the presence of the platinum catalyst, oxygen is reduced with the free 

electrons oxidized from glucose and bonds with hydrogen to form H2O as a byproduct. The reaction 

mechanism is described by the chemical equation below: 

O2 + H+ + 2e− → H2O 

The electrochemical measurements were performed using Palmsense4 electrochemical 

workstation using a three-electrode configuration at room temperature.  

 

Charge pump circuit fabrication 

The anode and cathode were assembled together to realize a biofuel cell. The electrical voltage 

produced by this single biofuel cell was supplied as the input voltage for the charge pump integrated 

circuit (IC). The circuit was etched on a copper coated PCB using AZ440K developer and ferric 

chloride etchant. The circuit design was first printed on a transparency sheet and then placed on the 

photosensitive PCB surface. The PCB was then kept under ultraviolet (UV) light for 8 seconds. The 

PCB was then washed with a 3:1 AZ400K solution till the time the etched pattern appears. The PCB 

was then placed into a ferric chloride bath and etched until only the printed circuit remains. The PCB 

was then wiped with a concentrated AZ400K solution and then dipped in DI water followed by air 

drying. The S882Z charge pump IC, LED and capacitor were soldered on the etched PCB. The 

S882Z Ic starts operation at 280 mV. The nominal input voltage as low as 300 mV provided by the 

biofuel cell  was excited up to 1.8 V via the capacitor functioning as the transducing element. The 
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charging/discharging frequency of the capacitor is correlated to the changes in glucose 

concentration. By monitoring the capacitor frequency, the exact concentration of the analyte can be 

deduced.  

  The analyte concentration data that was retrieved from the charge pump circuit in the form of 

a sawtooth waveform frequency as seen in Figure 21 is the result of the capacitor charge/ discharge 

of the capacitor. This capacitor output is used to drive the LED circuit turning the LED ON and 

generating a blinking frequency that correlates to the capacitor charge/ discharge frequency. 

 

Figure 21. Sawtooth frequency obtained from charge pump circuit in A) 3mM glucose concentration B) 

10mM glucose concentration 

 

  This sawtooth waveform is the charging and discharging frequency of the capacitor in the 

charge pump circuit which is directly proportional to the concentration. If the concentration of analyte 

B 
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increases, the charging and discharging frequency of the capacitor also increases. As seen in Figure 

20A, for a glucose concentration of 3 mM, the number of peaks obtained in a window of 1000 ms are 

3. This is because there is less glucose available for the entire surface area of anode to oxide, hence 

electrons are released which in turns charges the capacitor in the charge pump circuit slowly. In the 

case of Figure 20B, 10mM glucose concentration, more raw glucose is available as fuel for the anode 

to oxidize, resulting in more electrons being released. This charges the capacitor faster; therefore, we 

have a higher number of peaks. In this way, the change in concentration can be correlated with a 

change in capacitor frequency.  

 

ESP8266 microcontroller 

Traditional oscilloscopes display the change of an electrical signal over time, with voltage and 

time as the y- and x-axes, respectively on a calibrated scale. The waveform can then be analyzed for 

properties such as amplitude frequency, rise time, time interval, distortion among other parameters 

[119]. In the development of this self-powered glucose biosensor, an oscilloscope is needed to monitor 

the charging/ discharging frequency of the capacitor in the charge pump circuit which in turn correlates 

to the concentration of glucose employed as fuel in the biofuel cell [120-124]. 

The current limitations of the conventional and handheld oscilloscopes are price, size, and 

accessibility [119, 125-126]. Additionally, handheld oscilloscopes have features than their 

conventional counterparts. In order to monitor sensed glucose readings remotely, an ESP8266 

microcontroller is coded to function as an electronic oscilloscope (e-oscilloscope). The complete e-

oscilloscope costs less than $10 and enables data to be accessed either by connecting it to a computer 

or through a server. As the e-oscilloscope is programmable, it can be easily customized by 

programming it to extract the data from the biosensing system, process the frequency readings and 

correlate the frequency readings to glucose concentrations.  
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Figure 22 . An ESP8266 Wi-Fi module 

 

The ESP8266 Wi-Fi Module is a self-contained SOC with an integrated TCP/IP protocol stack 

that can give any microcontroller access to a Wi-Fi network as seen in Figure 22. The ESP8266 is 

capable of either hosting an application or offloading all Wi-Fi networking functions from another 

application processor. The ESP8266 module is an extremely cost-effective board that can be easily 

configured to meet the desired needs. It has the capability of acting as a standalone device. It is coded 

using Arduino IDE software which is a cross-platform application (for Windows, macOS, Linux) that 

is written in Java. The Arduino IDE employs the program avrdude to convert the executable code into 

a text file in hexadecimal encoding that is loaded into the board by a loader program in the board's 

firmware. Sample code is shown in Figure 23 below. The code converts the analog values received by 

ESP8266 from the charge pump circuit and plots it by converting it to a digital value. 

 

int sensor =A0; 

void setup ( ) 

{ 



 

 

59 

Serial.begin (115200); 

delay (10); 

pinMode (sensor, INPUT); 

Serial.println (“E-oscilloscope”); 

} 

uint32_t  x = 0; 

void loop ( ) 

{ 

int f_value = analogRead (sensor); 

delay (2000); 

Serial.println (f_value); 

} 

Figure 23. Sample code for ESP8266 programming which takes the analog values coming from charge 

pump and plots it versus time. 

Android application and MATLAB 

  Android is a mobile operating system based on a modified version of the Linux kernel and 

other open source software, designed primarily for touchscreen mobile devices such as smartphones 

and tablets. Android is developed by a consortium of developers known as the Open Handset 

Alliance, with the main contributor and commercial marketer being Google [127]. 

  The core Android source code is known as Android Open Source Project (AOSP), which is 

primarily licensed under the Apache License. This has allowed variants of Android to be developed 

on a range of other electronics, such as game consoles, digital cameras, personal computers (PCs) 
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and others, each with a specialized user interface. Some well-known derivatives include the Android 

TV for televisions and Wear OS for wearables, both developed by Google. 

  Android's source code has been used as the basis of different ecosystems, most notably that 

of Google, which is associated with a suite of proprietary software called Google Mobile Services 

(GMS) [127] that frequently comes pre-installed on said devices. This includes core apps such as 

Gmail, the digital distribution platform Google Play, the associated Google Play Services 

development platform, and apps such as the Google Chrome web browser. These apps are licensed 

by manufacturers of Android devices certified under standards imposed by Google. Other competing 

Android ecosystems include Amazon.com's Fire OS or LineageOS. Software distribution is generally 

offered through proprietary application stores like the Google Play Store or the Samsung Galaxy 

Store, and open source platforms like Aptoide, or F-Droid, which use software packages in the 

application package (APK) format. 

  Applications ("apps"), which extend the functionality of devices, are written using the 

Android software development kit (SDK) and, often, the Java programming language. Java may be 

combined with C/C++ together with a choice of non-default runtimes that allow better C++ support. 

The SDK includes a comprehensive set of development tools, including a debugger, software 

libraries, a handset emulator based on QEMU, documentation, sample code, and tutorials. Initially, 

Google's supported integrated development environment (IDE) was Eclipse using the Android 

Development Tools (ADT) plugin. In December 2014, Google released Android Studio, based on 

IntelliJ IDEA as its primary IDE for Android application development.  

  Due to the open nature of Android, a number of third-party application marketplaces also exist 

for Android, either to provide a substitute for devices that are not allowed to ship with the Google 

Play Store, provide applications that cannot be offered on the Google Play Store due to policy 

violations, or for other reasons. Examples of these third-party stores have included the Amazon 
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Appstore, GetJar, and SlideMe. F-Droid, another alternative marketplace, seeks to only provide 

applications that are distributed under free and open source licenses. This allows for any person with 

the source code to edit the code and use it according to their need. 

 MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and 

proprietary programming language developed by MathWorks. MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs written in other languages. Although MATLAB is intended 

primarily for numerical computing, an optional toolbox uses the MuPAD symbolic engine allowing 

access to symbolic computing abilities.  
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CHAPTER 7 

RESULTS AND DISCUSSION 

 

The non-enzymatic biofuel cell was constructed from Au-co-Pt anode and GDE cathode, as 

illustrated in Figure 24.  

 

 

Figure 24. Assembled biofuel cell setup with voltage measurement. 

 

The oxidation of glucose to gluconolactone by the colloidal platinum (Pt) was observed to 

occur at an open circuit potential of 500 mV as observed from Figure 26, where the Pt-OH surface 

species form and oxidize the poisoning intermediates derived from the electro-absorption of glucose, 

thereby exposing free Pt active sites for the direct oxidation of glucose. This further indicates the 



 

 

63 

strong catalysis of colloidal Pt on the direct oxidation of glucose [141]. In comparison, the bare 

braided gold microwire exhibited no electrocatalytic activity in response to glucose, and this is 

attributed to the fact that gold microwire surfaces do not facilitate hydrogen adsorption [142]. 

Therefore, the modification of colloidal Pt on the surface of gold microwire significantly improved 

the electrocatalytic activity towards the oxidation of glucose. The SEM image of the bare and 

platinum coated gold electrode is shown in Figure 25 below. 

 

 

Figure. 25. Scanning electron microscopy (SEM) images of (A) Braided Au microwire, (B) high-resolution 

SEM image of Au-co-Pt abiotic anode and (C) Au-co-Pt abiotic anode. 
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Electrodeposition of colloidal Pt on braided gold microwire takes advantage of the 

electrocatalytic activity and high surface area of colloidal Pt and provides a straightforward way to 

prepare nanostructured-based electrodes. The electrons generated from the oxidation reaction travel 

through the external circuitry whilst the cations travel through the electrolyte containing glucose and 

recombine at the cathode to reduce molecular oxygen to water, thereby producing a stable electrical 

current. 

 

Figure 26. Cyclic voltammetry performed on the Au-co-Pt showing linear increase in current with increase 

in glucose concentration. 

 

To further evaluate the electrocatalytic activity of the anode, cyclic voltammetry (CV) was 

performed on the Au-co-Pt anode under different glucose concentration levels. According to the 



 

 

65 

measurements acquired in Figure 26, the intensity in the reaction peak increased in the presence of 

increasing glucose concentrations from 1 mM to 28 mM at an oxidation onset potential of 0.5 V vs. 

Ag/AgCl. This showed that oxidation of glucose was happening at the anode resulting in the 

generation of electrons which then flows through the external circuit to the cathode forming water. 

 

 

Figure 27. Internal layers of GDE electrode 

 

To evaluate the electrocatalytic activity of the GDE cathode, cyclic voltammetry (CV) curves 

were measured under different levels of purged oxygen as shown in Figure 28. It was observed that 

the cathodic current increased with an increase in the amount of purged oxygen. 
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Figure 28. Cyclic voltammetry performed on the GDE cathode showing linear increase in current with 

increase in purged oxygen. 

 

IV test was performed on the non-enzymatic biofuel cell to determine the power 

characteristics of the biofuel cell (BFC). Voltage and current measurements were taken at different 

resistances ranging from 1K Ohm to 1M Ohm. The resistance at which the BFC is most efficient to 

generate maximum power can be obtained from the IV curves. A circuit can be designed to have the 

same internal resistance, thus getting the most power output from the BFC. The IV and power curves 

for the non-enzymatic glucose biofuel cell are depicted in Figures 29 and 30. The non-enzymatic 

glucose biofuel cell produced maximum open circuit voltage of 0.54 V and delivered and the highest 

short circuit current density of 1.6 mA/cm 2 with a peak power density of 0.226 mW/cm 2 at a 
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concentration of 1 M glucose and an open circuit voltage of 0.38 V and delivered and a short circuit 

current density of 0.225 mA/cm 2 with a peak power density of 0.022 mW/cm 2 at a concentration of 

5mM glucose.    

 

Figure 29. Polarization curve obtained from the non-enzymatic biofuel cell from glucose concentration of 

1mM to 1M. 

 

Furthermore, the peak power was observed to be directly proportional to glucose 

concentration as shown in Figure 29. further depicting the behavior of the oxidation reaction of an 

adsorbed glucose layer upon the formation of the hydrogen adsorption layer. These results suggested 
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that the non-enzymatic cell exhibited a linear peak power-concentration relationship at the 

concentration ranging from 1mM to 50 mM with a linear coefficient of 0.991 as shown in Figure 31. 

 

 

Figure 30. Power curve obtained from the non-enzymatic biofuel cell from glucose concentration of 

1mM to 1M. 

 

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400

C
u

rr
e

n
t 
d

e
n

s
it
y
 (

u
A

/c
m

2
)

Voltage (mV)

1mM

5mM

10mM

20mM

30mM

40mM

50mM

100mM

150mM

200mM

500mM

1000mM



 

 

69 

 

Figure 31. Power-concentration curve from 1mM to 50mM glucose. Error bars = ± standard deviation of 

triplicate measurements.   

The non-enzymatic glucose biofuel cell was examined under different temperatures and pH 

conditions in order to obtain the optimal operating conditions. The power output of the non-enzymatic 

glucose biofuel cell was measured at each point under no load condition. The output of the non-

enzymatic glucose biofuel cell was directly connected to a multimeter to measure voltage and current. 

For evaluating the performance of the non-enzymatic biofuel cell at different temperatures, power 

output was measured in a standard glucose solution (5 mM, pH 7.4) as the temperature was increased 

from 20 oC - 50 oC by an increment of 5 oC. Similarly, for testing the performance under different pH 

from 4.7 to 10, the temperature of the 5 mM standard glucose solution was maintained at 37 o C. As 

shown in Figure 32 and Figure 33, the non-enzymatic biofuel cell exhibited an optimal performance 

at a neutral pH of 7.0 and showed an increase in power output with an increase in temperature.  
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Figure 32. Effect of pH on the frequency of the non-enzymatic glucose biosensing system operating in 5 

mM glucose at 37 o C. 

 

Figure 33. Effect of temperature on the frequency of the non-enzymatic glucose biosensing system 

operating on 5 mM glucose at a pH of 7.4. 
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Glucose sensing application 

For the amperometry sensing application, the Au-co-Pt electrode was evaluated by measuring 

current response at a fixed potential with sequential addition of the glucose analyte. Figure 34 displays 

the amperometry response of the Au-co-Pt electrode to successive addition of 2 mM glucose in a 

0.1 M PBS solution after every 50 seconds at a fixed potential of 0.5 V. 

 

Figure 34. Amperometry response of the Au-co-Pt electrode to successive addition of 2 mM glucose in 

0.1 M PBS solution after every 50 seconds interval. 

 

 As expected, the bare braided gold microwire electrode exhibited no response to the addition 

of glucose (not shown). In contrast, the Au-co-Pt electrode showed an enhanced linear response to 

the changes of glucose concentration, producing steady-state oxidation current signals as illustrated 

in Figure 32. The Au-co-Pt electrode gives a linear dependence with a correlation coefficient of 
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0.9953 in the glucose concentration range of 2 mM to 50 mM with a sensitivity of 0.616 μA mM−1, 

as depicted in Figure 35, which was in agreement with previously reported work [154-163].  

 

Figure 35. Calibration curve derived from the linear response of the sensor to change in glucose 

concentration. 

 

Sensing the change in glucose concentration only represents part of the process of making a 

biosensing system as another critical task involves the correct measurement of the glucose 

concentration values along with continuous monitoring of the glucose concentration level and 

communication of the sensed glucose readings to the user, treating specialists and/or caregivers. In 

the literature, Ali. et al. [164] reported a prototype wireless system using an existing General Packet 

Radio Service (GPRS)/Global System for Mobile Communications (GSM) network and a 

communication protocol that facilitates remote data collection using Short Message Service (SMS) 

for monitoring glucose using a Programmable Interface Controllers (PIC) microcontroller directly 
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connected to a mobile phone, thereby rendering the entire system bulky. Soni et al. [165] developed 

a non-invasive optical glucose biosensor using saliva samples and a smartphone. The strip changes 

color upon reaction with glucose present in saliva, and the color changes were detected using a 

smartphone camera through red, green, blue (RGB) profiling but it still was not a continuous glucose 

monitoring system. As a solution to this continuous glucose monitoring problem, we employed the 

non-enzymatic biofuel cell as a power source as well as a glucose sensing element along with a charge 

pump circuit with an LED acting as a transducer and  an android application to read and convey the 

data to the end user and treating specialists and/ or caregivers, making an integrated self-powered 

continuous glucose monitoring system. 

The Au-co-Pt anode and the GDE cathode were assembled to realize a biofuel cell. The 

electrical voltage produced by this single biofuel cell was supplied as the input voltage for the charge 

pump integrated circuit (IC). The entire system can be seen in Figure 36. The fabricated biofuel cell 

generated voltage in the range of 300- 600 mV.  

 

 

Figure 36. IC circuit with glucose biofuel cell as power source 
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The circuit consists of three main parts: (1) S882Z charge pump IC (2) A 10 nF capacitor (3) 

An ultra-low powered LED. The S882Z IC was obtained from Seiko electronics. This IC can work at 

a nominal input of 300 mV and amplify the input voltage up to 1.8 V. The IC is constructed from 

multiple stages of capacitors and switches, and the output voltage is governed by the following 

equation: 

VOUT=N(VIP).             (5) 

where N is the number of stages and VIP represents the input voltage. 

 

Figure 37. The construction of the self-powered glucose biosensor via a charge pump integrated circuit 

and a capacitor functioning as a transducer. 

 

The input voltage, Vi , generated by the biofuel cell was applied to the first stage of the charge 

pump, where ‘φ1’ and ‘φ2’ are the clock cycles, which are complementary to each other and have the 

same amplitude as the input voltage as seen from Figure 37. When φ1 is ON, odd number stages 

operate, and the capacitor ‘C1’ gradually charges. At this time instant, clock φ2 is in the OFF state 

and the charge accumulates at node ‘N1’. When φ2 switches ON, even numbered stages are active, 
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carrying the built-up voltage at stage 1 to stage 2. At this time instant, the clock signal from φ1 is 

OFF, and the charge accumulates at node ‘N2 ’. This charge is carried towards the output capacitor 

which results in the amplified output voltage as observed from equation 5.  

The capacitor functions as a transducing element, where the charging/ discharging frequency 

of the capacitor is directly correlated to the changes in glucose concentration. By monitoring the 

capacitor frequency, the exact concentration of the analyte can be deduced. This use of frequency to 

calculate concentration in biosensors was first presented by Slaughter et al. [166] and then further 

characterized by Kulkarni et al. [167].  

 

 

Figure 38. Charge pump circuit with LED blinking. 

 

The capacitor in the designed charge pump circuit discharges through the LED turning it on 

as seen in Figure 38. It was observed that the LED blinking frequency is directly proportional to the 

capacitor charging/discharging frequency. The LED blinking can be considered as a visual 

representation of the glucose concentration and can be used to calculate the concentration using image 
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processing. Thus, in this work, we developed an android mobile application that uses a mobile camera 

to monitor and calculate the LED blinking frequency and then sends the data wirelessly to a 

MATLAB station where the blinking frequency is converted to glucose concentration and a message 

containing the current glucose level is received by the user. 

A representation of the entire biosensing system consisting of the non-enzymatic biofuel cell 

and the charge pump circuit along with mobile glucose sensing is shown in Figure 39.  

 

 

Figure 39. A model of a novel self-powered glucose monitoring biosystem with data acquisition using 

mobile camera. 

 

   The android application was developed based on OpenCV with Android Studio which uses 

the mobile camera to recognize the blinking LED and converts the observed blinking frequency into 

glucose concentration readings using MATLAB.  The live video feed from the android application 

was wirelessly accessed in MATLAB using a custom MATLAB script which did continuous image 

processing on the video feed. The script works by first converting the live video into 100 image 

frames. Then each frame is analyzed individually. At first, the image is converted into a grayscale 
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image. Then the red component of the image is deleted from the grayscale. This is done to find out 

for how many frames the LED was turned ON. Then a median filter is used to reduce the noise. After 

all the frames are analyzed, the total number of red pixels is calculated. The total number of red pixels 

gives direct correlation to the LED blinking frequency. This frequency is then converted into the 

corresponding glucose concentration using a calibration curve.  

After the glucose concentration is calculated, the MATLAB script then sends a text message 

and an email to the user with the present glucose level as seen in Figure 40. This message can be sent 

to any healthcare provider, doctor, or a user’s family free of cost. It just requires a basic internet 

connection to work. 

 

 

Figure 40. Received text message and email by the user containing information about their blood glucose 

level. 

 

The waveform obtained from the capacitor output of the charge pump circuit can also be 

analyzed for properties such as amplitude frequency, rise time, time interval, and distortion among 

other parameters [168]. In the development of this self-powered glucose biosensor, a portable  

oscilloscope can be used to monitor the charging/ discharging frequency of the capacitor in the charge 
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pump circuit which in turn correlates to the concentration of glucose employed as fuel in the biofuel 

cell [169,170]. For this application, an ESP8266 microcontroller was employed. 

The non-enzymatic biofuel cell was connected to the charge pump as illustrated in Figure 39, 

wherein the output from the charge pump is connected to the ADC input of the ESP8266. The ESP is 

then connected to the computer/laptop via a cable as shown in Figure 41.  

 

 

Figure 41.  A model of miniaturized continuous glucose monitoring system with remote access and 

monitoring using E-oscilloscope (ESP8266) 

 

The data obtained from the ESP can be viewed in the custom program called ‘e-oscilloscope’ 

which converts the data and plots it continuously as shown in Figure 42.  
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Figure 42. Capacitor charge/discharge rate obtained from glucose biosensing system operating in the 

absence (blue curve) and in the presence of 5 mM glucose (black curve) using the e-oscilloscope program. 

 

For remote access of the biosensor data, a server was employed from io.adafruit.com. The 

microcontroller was programmed using Arduino IDE to convert the incoming data from the biosensor 

into waveform and then send waveform using Wi-Fi or ethernet to the server with a delay of 1500 

ms. The server was then accessed remotely via computer, iPad or mobile phones. The live data feed 

is shown in Figure 43. The current limitation on the system is the data rate. Currently, the adafruit 

server allows just 30 data points per minute. This results in the generation of a rough waveform when 

compared to the one obtained from the wired e-oscilloscope. However, the use of an ESP module is 

a cost-effective approach that enables caregivers to have remote access to the sensed glucose data 

caregiver to monitor changes in glucose levels. 

TIME 
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Figure 43. Adafruit live feed of the capacitor charge/discharge rate obtained from glucose biosensing system 

operating in the presence of 5 mM glucose using the e-oscilloscope program. 

 

Figure 44 provides the calibration plot obtained for operating the self-powered glucose 

biosensors in various concentrations of glucose. A linear dynamic range of 1 mM – 25 mM was 

observed. As illustrated, the output frequency of the biosensor increased with increasing glucose 

concentrations, with a correlation coefficient, r2 = 0.9939 and a sensitivity of 1.18 Hz/mM cm2, which 

were in agreement with previously reported work [171-172, 178]. 

 

Figure 44. Calibration curve of hybrid glucose biosensing system operating in various glucose concentration 

using the e-oscilloscope. Error bars = ± standard deviation of triplicate measurements. 
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To further determine the selectivity of the self-powered glucose biosensing system, it was 

characterized in the presence of various interfering species such as ascorbic acid and uric acid along 

with competing analytes such as fructose, maltose, and galactose. The performance of the glucose 

biosensor was found to determine the impact of these interfering species and competing analytes 

[143-146] on the biosensing system. Various semipermeable membranes such as glycol-chitosan, 

nafion and p-hydroxyethyl methacrylate (p-HEMA) have been employed to coat the active regions 

of the bioelectrodes, which in turn improves the performance of the  bioelectrodes [147-149] by 

selectively screening against these species and extending the lifetime of the bioelectrodes by 

minimizing the leeching out of enzymes [150].  

Two sets of experiments were performed to determine the performance of our self-powered 

glucose biosensing system in the presence of interfering analytes at their physiological concentration 

(≤ 0.42 mM) [151]. The first experiment was conducted by observing the charge/discharge frequency 

of the capacitor when operating in the presence of 5 mM glucose and 5 mM glucose + 0.3 mM 

interfering analytes (maltose (Mal), fructose (Fru), galactose (Gal), ascorbic acid (AA), uric Acid 

(UA)). Figure 45, shows the charge/discharge frequency of the capacitor in the presence of 5 mM 

glucose plus the respective 0.3 mM interfering analyte. The observed frequency was 17 Hz in the 

presence of 5 mM glucose. No significant change in the charge/discharge frequency was observed 

upon introducing 5 mM glucose plus the respective 0.3 mM interfering analyte.  
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Figure 45. The charge/discharge frequency of the capacitor in the presence of 5 mM glucose and 0.3 mM 

interfering species 

 

The second set of experiments focused on monitoring the charge/discharge frequency of the 

capacitor in the presence of the respective interfering analyte independent of glucose. As shown 

in Figure 46, the interfering analytes resulted in no electrical power generation; hence, no 

charge/discharge frequency was observed. 5 mM glucose was introduced in between each interfering 

analyte trial to show that the system was only selective towards glucose and the rest of the interference 

species had not impact on the charge/discharge frequency obtained from the self-powered glucose 

biosensor.  
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Figure 46. The charge/discharge frequency of the capacitor in the presence of the respective interfering 

analyte independent of glucose 

 

As demonstrated, the self-powered glucose biosensor’s performance remains unaffected by 

the introduction of interfering species such as ascorbic acid and uric acid because these interfering 

species often interfere at a potential of +0.6 to +0.7 V against Ag/AgCl reference electrode [152]. 

However, the biofuel cell used to construct the self-powered glucose biosensor does not generate 

voltage in that range, which is necessary to decompose ascorbic acid and uric acid, thereby causing 

these two non-competing analytes to have no effect on the performance of self-powered glucose 

biosensor. Additionally, glycol-chitosan was used to coat the surface of the bioelectrodes due to its 

ability to selectively screen against interfering species [153]. The competing analytes at their 

physiological concentration were also found to be ineffective at producing the minimum voltage of 

0.3 V required to drive the energy amplification circuit, thereby having no effect on the overall 

performance of the self-powered glucose biosensor. 
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For the stability study of the designed biosensor, the sensors power output was observed daily 

for a period of 20 days. The power was measured at a glucose concentration of 10 mM. It was 

observed that the power output remained constant in the range of 22 -24 µW/cm² for 20 days as seen 

in Figure 47. 

 

Figure 47. Stability study performed for 20 days at 10 mM glucose concentration. 
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CHAPTER 8 

CONCLUSION 

 

In conclusion, we demonstrated a non-enzymatic glucose biofuel cell with glucose sensing 

and data acquisition using mobile android application and MATLAB. The non-enzymatic glucose 

biofuel cell system consists of Au-co-Pt anode and GDE cathode, a charge pump circuit as voltage 

amplifier and with an LED, which acted as a visual representation of glucose concentration. A linear 

dynamic range of 1 mM – 54 mM glucose with a sensitivity of 0.616 μA mM−1 was observed.  The 

Android application used a mobile camera to determine the LED blinking frequency and send the live 

video feed to the MATLAB workstation. The custom MATLAB script then converted the frequency 

to the exact glucose concentration using image processing. After the calculation performed, the script 

sent out a text message to the user. The text message contains details about the user’s glucose 

concentration level. The glucose concentration could also be monitored using the ESP8266 

microcontroller as a portable oscilloscope as well as from remote locations using the adafruit server. 

The non-enzymatic biofuel cell was also tested under different pH and temperature values to find the 

most favorable operating conditions. It was observed that the non-enzymatic biofuel cell performs 

best at a neutral pH of 7.0 and generates more power output at higher temperatures. The designed 

system was also tested in the presence of different interfering and competitive species. The results 

showed that the performance of the biofuel cell was not affected by the presence of these interfering 

and competitive species.  

In future, the system can be tested in real world environments through animal testing to 

observe the biocompatibility of the sensor. More focus can be given to the development of flexible 

circuits and sensors that could be placed on the skin instead of implanting in the body. More work 
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can be done to improve the stability of these biosensors. A lot of research has been focused on 

designing a wireless system using near field communication (NFC). As NFC is a passive system; it 

does not need power from the biofuel cell and can be powered using mobile phones in the vicinity. 

This can open new ventures in the biosensing field.  

In conclusion, this developed non-enzymatic glucose biofuel cell and sensing system can 

provide a cost-effective and easy to use power source for small electronic devices and medical 

implants and can also be used as glucose concentration measuring tool. 
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APPENDIX A 

IDEAL CHARGE PUMP SIMULATION 

 

 
 

Figure 48. Ideal charge pump circuit 

 

 

A simulation of an ideal multistage charge pump circuit was performed, wherein a charge 

pump circuit amplifies the input voltage to a level needed by the user (see Figure 48). The 

amplification level depends on the number of stages used in the charge pump circuit. An input 

voltage of 0.4 V was used to simulate the circuit under different load conditions ranging from 1 K 

ohm to 100 K ohm. Vphase0 and Vphase1 are two square waves that are the opposite of one 

another. That is, when Vphase0 is high, Vphase1 is low and vice versa. C1 to C4 are 47 F each. 

 The input voltage is applied to drive the circuit, and initially C1 is empty and Vphase0 is 

low. C1 will charge through D1 until it is at voltage Vin. Then Vphase0 goes high. The capacitor 

stores energy so it cannot just go to zero volts. In fact, when C1 will charge to Vin, the voltage 

across the capacitor will charge to Vin and since Vphase0 is now at Vin, the voltage across C1 is 
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still Vin and the voltage from the junction of D1, C1, and D2 will be twice Vin: 

Vin from Vphase0 and another Vin from C1. 

The process repeats with the next stage. C2 charges to 2 x Vin while Vphase1 is low and 

then jumps to 3 x Vin when Vphase1 goes high. In theory, multiple stages can be added to get an 

integer multiple of your input voltage. The final capacitor, C5, does not add any voltage because 

it connects to ground, but it smooths out the output. 

 

 

Figure 49. Output voltage across different load resistance level of 1, 10 and 100 K ohms. 

 

In figure 49 above, the final output voltage across different load resistance levels is 

presented. The green curve represents 1 K ohm, the blue curve represents 10 K ohm and the red 

curve represents 100 K ohm load resistance. With an increase in load resistance, an increase in 
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output voltage is observed. The bigger C5 and the higher RL, the longer it will take to charge to 

the final value. 

 

 

Figure 50. Output waveforms at different nodes and stages in the circuit. 

 

 Figure 50 shows the output waveforms at different nodes and stages of the circuit. V(n004) 

and V(n005) shows the stage output  for 2 and 3 stages. With an increase in the number of stages, 

higher output voltages are attained. V(n006) and V(n007) show the clock input which is out of 

phase with each other. V(out) shows the final smooth output DC voltage without any noise. 
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APPENDIX B 

POLARIZATION AND CALIBRATION CURVE SIMULATIONS 

1) IV Characteristics 
 

clear 
clc 

 
%% ideal system %% 

  
% Electrode surface area is 0.12 sq-mm 
x = input (' Enter the glucose concentration in mM: '); 
SA = input (' Enter the surface area of the electrode: '); 

  
r = [1 5 15 25 50 100 200 300 500 700 1000]; % resistance values for IV 

  
xi = []; % Initialize array/vector 
for i=1:11 
  xii =  input('Enter the observed voltage values: '); 
 if xii==1000 
  break 
 else 
  xi(end+1)=xii; 
 end 
end 

  
I = xi./r; 
P = xi.*I; 
PD = P/SA; 
CD = I/SA; 

  
figure (1);  
plot (xi, PD, '*g') 
xlabel('Output voltage in mV') 
ylabel('Output power density in µW/sq-cm') 

  
figure (2);  
plot (xi, CD, '*g') 
xlabel('Output voltage in mV') 
ylabel('Output current density in µA/sq-cm') 

 

 

 

Additionally, the IV test simulation was performed to determine the power characteristics 

of the biofuel cell (BFC). Voltage and current measurements were taken at different resistances 

ranging from 1K Ohm to 1M Ohm. Current decreases with an increase in resistance, and voltage 

increases with an increase in resistance. The resistance at which the BFC is most efficient to 
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generate maximum power can be obtained from the IV curves. The output power density versus 

the output voltage curve is an inverted curve, and the output current density versus output voltage 

results in a straight line with negative linear slope. Experimental conditions results in non-ideal 

curves because of the different losses in the circuit and the reactions (e.g., ohmic losses, 

thermodynamic loss, etc).  A circuit can be designed to have the same internal resistance, thus 

getting the most power output from the BFC. 

Code execution began with the input of the concentration values for which the IV test is 

performed. The power and current density depends on the surface area of the electrode. In this 

stimulation, a surface area of 0.12 sq-cm was employed. Different resistances ranging from 1 K 

ohm to 1M ohm were used. The voltage and current across each resistance was measured, and then 

the user entered the observed voltages. The code then calculated the output current density and 

power density using ohms law and then ploted the graphs. 

 

Figure 51. Power curve obtained from the simulation 
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Figure 51 shows the power curve obtained from the performed MATLAB simulation. A 

decrease in the output current value was observed with an increase in resistance and voltage. 

 

Figure 52. Polarization curve obtained from the MATLAB simulation. 

 

Figure 52 shows the polarization curve obtained from the performed MATLAB simulation. An 

increase in power was observed with an increase in resistance and voltage. As shown, the power 

increases gradually until maximum power is attained. Afterwards the power output starts 

decreasing. 

 

2) Calibration curve 

clear 
clc 
% y = mx + c  , equation of line 
% x = glucose concentration, y = current, m = slope of the line , c = 

constant 
% From our results y = 0.9728x + 9.1564 
% Electrode surface are 0.12 sq-mm 
SA = input (' Enter the surface area of the electrode: '); 
x = [1 5 10 20 30 40 50];% glucose concentration 
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m = 0.9728; 
c = 9.1564; 
P = m*x + c; 
PD = P/SA;% Power density 
figure (1);  
plot (x, PD, 'm*') 
xlabel('Glucose concentration in mM') 
ylabel('Output power density in µW/sq-cm') 

 

The above code uses the line equation of the calibration curve that was generated from the 

experimental data employing the biofuel cell. The equation used is y = 0.9728x + 9.1564. Different 

glucose concentrations ranging from 1 mM to 50 mM were set. First the surface area of the 

electrode is entered. Then the code calculates the power density and plots the results. With an 

increase in glucose concentration, an increase in output power density is attained. 

 

Figure 53. Calibration curve obtained from the MATLAB simulation. 

 

Figure 53 shows the calibration curve for glucose concentration ranging from 1 mM to 50 

mM. With increasing concentration there was a linear increase in power generated. 
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