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Abstract
Approximately 800, 000 surgical repairs are performed annually in the U.S. for debilitating injuries
to ligaments and tendons of the foot, ankle, knee, wrist, elbow and shoulder, presenting a
significant healthcare burden. To overcome current treatment shortcomings and advance the
treatment of tendon and ligament injuries, we have developed a novel electrospun Tissue
ENgineered Device (TEND), comprised of type I collagen and poly(D,L-lactide) (PDLLA)
solubilized in a benign solvent, dimethyl sulfoxide (DMSO). TEND fiber alignment, diameter and
porosity were engineered to enhance cell infiltration leading to promote tissue integration and
functional remodeling while providing biomechanical stability. TEND rapidly adsorbs blood and
platelet-rich-plasma (PRP), and gradually releases growth factors over two weeks. TEND further
supported cellular alignment and upregulation of tenogenic genes from clinically relevant human
stem cells within three days of culture. TEND implanted in a rabbit Achilles tendon injury model
showed new in situ tissue generation, maturation, and remodeling of dense, regularly oriented
connective tissue in vivo. In all, TEND’s organized microfibers, biological fluid and cell
compatibility, strength and biocompatiblility make significant progress towards clinically
translating electrospun collagen-based medical devices for improving the clinical outcomes of
tendon injuries.

1. Introduction

Tendon and ligament injury and pathology present a
significant burden to healthcare systems worldwide.
Approximately 30million injuries occur annually that
could potentially benefit from regenerative thera-
peutics and tissue engineered tendon repair augment-
ation [1]. Althoughmany ligament and tendon injur-
ies may heal with satisfactory outcomes, others do
not. Suboptimal outcomes resulting from soft-tissue
injury, disruption and repair is often multi-factorial,
however, inadequate healing response, poor tissue
quality and tissue loss contributes to poor outcomes

in this group [2, 3]. In order to address these
deficiencies and improve outcomes, there is likely
a significant role for biological augmentation, tis-
sue regeneration, and modification of the healing
response. Implantable biologic grafts will likely be a
key component to tissue augmentation and regenera-
tion going forward in order to improve upon the cur-
rent outcomes.

Autografts and allografts are often used in the
repair of tendon and ligaments. Autografts have
been associated with more pain and more physical
limitations for up to six months when compared to
allografts [4]. The leading allografts for tendon repair
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Figure 1. Schematic of TEND Production. Schematic showing the engineering designs, production and translation of 3D
microfibrous TEND for application in tendon and ligament repair.

by volume are from human cadaveric decellularized
dermis [5–7]. Cadaveric dermis does not mimic the
structure of the aligned extracellular matrix (ECM)
arrangement or the growth factor composition of ten-
don tissue [8]. Moreover, cadaveric dermis was asso-
ciatedwith chronic inflammation, poor cellular infilt-
ration and partial material degradation [7]. Further,
allografts are supply-limited, promote scar forma-
tion, may inhibit tendon healing [9], and lack clinical
evidence supporting their use for tendon repair with
tissue healing.

Tendons and ligaments are mainly comprised of
type I collagen fibrils in an intricate, anisotropic array
[8, 10]. Therefore, advanced manufacturing meth-
ods of generation of three-dimensional (3D) materi-
als with controlled and tailorable properties are being
explored. Biomanufacturing by electrospinning of
microfibers is of particular interest in the field of
tendon tissue engineering and may be advantage-
ous due to its bottom-up manufacturing method,
which offers capability to formmaterials with aligned,
ordered fibrous structures that can be altered to
closely mimic the structure of native tendon ECM
[11–13]. Thus, biomanufacturing customized scaf-
folds which both replicate and regenerate tissue with
anisotropic collagen patterns may be highly desirable
with great potential for therapeutic use [14, 15].

Despite decades of research, to date there are no
known electrospun grafts cleared by the FDA as sur-
gical meshes for the management and augmentation
of tendon injuries. Lack of clinical translation of

electrospun products for musculoskeletal and other
disorders has been largely beset by poor cellular infilt-
ration into the graft [16, 17] and limited remodel-
ing potential of the commonly-produced electrospun
graft with densely packed fibers [18]. Many poten-
tial biomaterials for musculoskeletal indications lack
type I collagen [19], which is the dominant matrix
material in tendons and most musculoskeletal tis-
sues, essential for cell and growth factor attachment,
and has shown to inhibit the inflammatory response
common to grafts made with purely synthetic poly-
mers [20, 21]. Thus, despite great promise, collagen-
containing, electrospun grafts have not yet been com-
mercialized, due partly to various biomanufacturing
limitations.

Among the more limiting issues in scaling elec-
trospinning for biomedical use is presence of toxic
solvents [17] such as hexafluoroisopropanol (HFP),
trifluoroacetic acid, and dichloromethane, com-
monly used to produce electrospun materials [22].
These solvents are difficult to remove from the final
product [17], making most common electrospinning
solvents ill-suited for clinical translation, as they have
low allowable residual limits per USP < 467 > . In
contrast, DMSO is non-toxic and has been used as a
pharmacological agent for human use since at least
1978 [23]. The high dielectric constant of DMSO is
favorable for fiber formation [24] and has been used
in electrospinning of polymers [24–26], and collagen
type I [27] as a co-solvent. However, DMSO has pre-
viously been mixed with toxic solvents such as HFP,
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chloroform, and tetrahydrofuran to make it volatile
to allow efficient electrospinning [24, 26]. Electro-
spinning from 100%DMSO is deemed important for
progressing medical device translation [28] as it is
non-toxic and does not completely breakdown colla-
gen [27]. Despite enthusiasm for its use, DMSO alone
has not been reported for electrospinning collagen or
collagen-biopolymer blended grafts.

While collagen can be electrospun from other
benign solvents [27, 29, 30], the resulting fibers are
mechanically weak and unstable in aqueous solutions
[27]. Many studies have demonstrated that using
a biocompatible co-polymer blended with collagen
offersmany advantages by combiningmechanical sta-
bility of the polymer and the biocompatibility of col-
lagen [20, 31–33]. One such biopolymer used in cur-
rently marketed medical devices cleared by FDA for
tendon indications is PDLLA. PDLLA is a combina-
tion of two optical isomers: L-lactic acid and its mir-
ror imageD-lactic acid [34] that is biocompatible, has
shown to support the growth of cells, and degrades
to CO2 and H2O (within 9–12 months) in vivo
[35–38].

Overcoming the limits of existing grafts and tech-
nological limitations of translating additivemanufac-
turing methods to the orthopedics and sports medi-
cine graft biomanufacturing, the intent of this invest-
igation was to engineer a biocompatible microfibrous
construct composed of collagen type I and ultrahigh
molecular weight PDLLA electrospun from DMSO
and to determine its ability to support connective
tissue regeneration. We hypothesize that the fiber
alignment and porosity of this Tissue Engineered
Device (TEND) will promote rapid cell infiltra-
tion and alignment as well as induction, matura-
tion, and remodeling of host tissue in an in vivo
tendon injury model. Additionally, we hypothesize
that the novel design of TEND will act as a carrier
for bioactive products such as platelet-rich-plasma
(PRP) and mesenchymal stem cells, further potenti-
ating its biomimetic activity and serve as a delivery
vehicle for biologics of interest for clinical use in ten-
don, ligament and other soft-tissue surgical repairs
(figure 1).

2. Materials andmethods

2.1. Electrospinning setup
Aligned TEND was produced by dissolving type
I collagen (Collagen Solutions, Eden Prairie, MN)
and UHMW PDLLA (Corbion, Amsterdam, Nether-
lands) in 100% DMSO (Gaylord Chemical, Slidell,
LA) at a final concentration of 100 mg ml−1

(30 mg ml−1 collagen and 70 mg ml−1 PDLLA)
for 24 h. This polymer blend was electrospun
onto a spoked-wheel collector in a vertical electro-
spinning setup. Evaporating the nonvolatile DMSO
was accomplished by a hybrid form of electrospin-
ning and pneumatospinning [39], providing constant

pressure laminar airflow from a fan at the emitter dir-
ected towards the collector, and exhausting the air
from directly above the collector. The surface speed
of the drum was 18 m s−1. The distance between the
needle and the collecting drum was 130 mm. A 25-
gauge needle was used, and the solution flow rate was
set to 1 ml hr−1. Humidity was maintained between
45%–50% and temperature was between 23 ◦C–
26 ◦C. Upon completion of the electrospinning pro-
cess, TEND was removed and placed under vacuum
for 24 h at ambient temperature to aid with removal
of any residual DMSO. Throughout this manuscript
term ‘TEND’ has been used to address all electro-
spun grafts in general. Term ‘as-electrospun TEND’ is
used when this condition is compared to the annealed
TEND as explained in section 2.2.

2.2. Post-processing of TEND by annealing
Most electrospun materials significantly shrink due
to thermally induced relaxation of stretched amorph-
ous chains [40]. However, thermal annealing of
many polymers [41–44] has led to improvements
in their mechanical stability by changing micro-
structural properties and their degree of crystallin-
ity. Here, as-electrospun TEND was gripped in alu-
minum frames and held under tension during post-
processing. The framed sheets were annealed under
vacuum at various temperatures and durations for
optimization. TEND annealed at 65 ◦C for 18 h
demonstrated highest degree of stability compared
to all the temperatures and durations tested, there-
fore, for the remainder of experiments all TEND
were annealed under these conditions. Throughout
this manuscript the electrospun grafts that have been
annealed are referred to as ‘annealed TEND’.

2.3. Scanning electronmicroscopy (SEM)
SEM was performed at Jefferson Labs (Newport
News, VA) using a JEOL JSM-6060 LV microscope
(JEOL Ltd., Tokyo, Japan) with a 20 kV beam intens-
ity. The SEM images were analyzed with ImageJ soft-
ware (NIH Shareware, Bethesda, MD) to determ-
ine fiber diameter and fiber alignment of annealed
and as-electrospun TEND at day 0 and after a 14-
day incubation in Dulbecco’s modified eagle medium
(DMEM) at 37 ◦C with 5% CO2.

2.4. Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)
SDS-PAGE was comparatively used to identify the
alpha I and II chains present in monomeric triple
helical collagen feedstock (Collagen Solutions), and
in annealed and as-electrospun TEND. Samples were
run onNuPAGE 3%–8% tris-acetate gels at 150kV on
PowerEase 300 W. The gel was removed and stained
with SimplyBlue gel stain for 1 h and then rinsed with
deionized water for 1 h. All items were from Thermo
Fisher Scientific.

3



Biomed. Mater. 16 (2021) 025025 Y Maghdouri-White et al

2.5. Fourier transform infrared spectroscopy
(FTIR)
FTIR was performed on Platinum ATR (Brucker,
Billercia, MA) at Old Dominion University (ODU)
(Norfolk, VA) to confirm the presence of the three
amide bonds characteristic of type I collagen at 1235,
1560, and 1650 nm wavelengths. Bond peaks of elec-
trospun and annealed TEND were compared to col-
lagen and PDLLA feedstocks.

2.6. Gas chromotographymass spectrometry
(GCMS)
Mass spectrometry was used to analyze the presence
of DMSO in TEND after 0, 2, 4, 6, and 24 h under
vacuum. After vacuum, approximately 20 mg of test
material was suspended in 3ml ofDimethylacetamide
and heated to 60 ◦C with agitation for 24 h. Super-
natants were collected for GCMS analysis. Replicate
extracts were prepared for each sample. A second
extraction was conducted to confirm complete recov-
ery of residual DMSO. The extracts were run on Agi-
lent 7890 A GC. The GCMS testing was performed by
InVision Biomedical Group, Inc. (Irvine, CA).

2.7. Thermogravimetric analysis (TGA)
TGA analysis was performed to assess the presence
of residual DMSO within TEND. TGA data of as-
electrospun TEND samples placed under vacuum for
0 and 24 h was obtained from a TGA Q5000 (TA
instruments, New Castle, DE) at ODU. Data was col-
lected at a rate of 5 ◦C min−1 from 21 ◦C to 300 ◦C.

2.8. Porosity/void measurements
Mercury intrusion porosimetry was performed at
Quantachrome Instruments (subsidiary of Anton
Paar, Boynton Beach, FL) on triplicate samples of as-
electrospun and annealed TEND on a PoreMaster 60,
with analyses performed blinded to sample identity.
Gas sorption was also performed at Quantachrome
on triplicate samples of as-electrospun or annealed
TEND on an AutoSorb IQ, with analyses performed
blinded to sample identity, including calculation of
mean Brunauer–Emmett–Teller (BET) surface area.

2.9. Sterilization
TEND used for these studies were cut into the
required sizes and inserted into Tyvek pouches (4MD
Medical Solutions, Lakewood, NJ). Tyvek pouches
were sealed with a heat sealer and sent for electron
beam sterilization (Steri-Tek, Fremont, CA) using a
20± 2kGy target dose. Mechanical testing and chem-
ical characterization of TENDwere performed before
e-beam sterilization.

2.10. Mechanical stability of TEND in culture
E-beam sterilized as-electrospun and annealed TEND
were incubated in DMEM with 1% antibiotic-
antimycotic (ABAM) (Thermo Fisher Scientific, San
Diego, CA) at 37 ◦C with 5% CO2 for seven

days. After seven days, their mechanical proper-
ties were tested by uniaxial tensioning in the dir-
ection of aligned fibers at room temperature using
an MTS Criterion Model 42 (Eden Prairie, MN) at
a rate of 1 mm s−1. As-electrospun and annealed
TEND soaked in Dulbecco’s phosphate buffered
saline (DPBS) (Fisher Scientific, Hampton, NH) for
30 min were used as Day 0 controls. The dimensions
of the samples at day 0 andday 7were used to calculate
the percentage of material shrinkage. The fiber dia-
meters assessed using SEM images were used to cal-
culate percentage of material swelling.

2.11. Blood absorption
Human blood with anticoagulant heparin and cit-
rate dextrose (ACD-A) was purchased from Biolo-
gical Specialty Corporation (Colmar, PA). A calcium
chloride (CaCl2) (Fisher Scientific) concentration of
1.25% was found required to initiate coagulation in
clotting blood supplemented with ACD-A. Annealed
TEND samples (40 × 40 × 1 mm) were immersed
in clotting blood (ACD-A+CaCl2) and heparanized,
non-clotting blood. Soaked samples were weighed in
intervals of 5 min to calculate the amount of blood
absorbed. Volume of absorbed blood was calculated
by using density of 1 ml of blood. Dimensional
changes after blood hydration was calculated by snap
freezing the samples in liquid nitrogen and measur-
ing the size using calipers (n= 3). Samples immersed
in blood as above and in a fresh draw from a rabbit
ear vein were fixed in 2.5% glutaraldehyde in 0.1 M
Sodium cacodylate buffer, pH 7.4 (Electron Micro-
scopy Sciences, Hatfield, PA) at 4 ◦C. Fixed samples
were washedwith 3X phosphate buffered saline (PBS)
(Thermo Fisher Scientific) for ten minutes, placed
in 100% hexamethyldisilazane (HMDS) (Electron
Microscopy Sciences, Hatfield, PA) for 3 min, and
then air dried. Samples were further imaged by SEM.

2.12. PRP activation and lysate isolation
Human PRP with anticoagulant citrate dextrose
(ACD-A) (ZenBio, Research Triangle Park, NC) was
stored at 4 ◦C for 30 min, then calcium chloride
(CaCl2) (Fisher Scientific) was added to reach a final
concentration of 22 mM. The PRP solution was
mixed and placed at 37 ◦C for 1 h to activate. After
clotting, the lysate was collected for use on annealed
TEND. Annealed TEND (10 × 10 mm) (n = 4) and
size-matched rabbit Achilles tendon (n = 4) were
soaked in 1 ml of PRP lysate for 6 min followed
by placement in 600 µl of modified eagle medium
(MEM) (Fisher Scientific) with 2% ABAM). Negat-
ive controls consisted of annealed TEND soaked for
6 min in MEM with 2% ABAM only. Samples were
incubated at 37 ◦C with 5% CO2. After 30 min, 4, 8,
24 h, and 3, 7 and 14 d, MEMwas collected from each
well and stored at−80 ◦C.MEMwas replenished after
each time point.
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2.13. Enzyme linked immunoabsorbent assay
(ELISA)
TENDS’s binding and release of growth factors typic-
ally found in high concentrations in PRPwas assessed
using ELISA’s specific for TGF-β1 and PDGF-BB
(R&D Systems, Minneapolis, MN and RayBiotech,
Norcross, GA). The elution kinetics of TGF- β1 and
PDGF-BB from the electrospun grafts and native tis-
sue was assessed per the manufacturer’s instructions
at the timepoints per section 2.12.

2.14. Mechanical properties of PRP coated TEND
Two sets of annealed TENDwere cut into 10× 30mm
(n= 6 per group). One set of samples were soaked in
PRP for 10 min. PRP soaked TEND and a second set
of non-coated TENDwere placed in grips under static
tension and remained in culture at 37 ◦C and 5%
CO2 for up to seven days. The samples were removed
from the grips after 3 and 7 d in culture and their
mechanical properties were tested at room temperat-
ure by uniaxial tensioning in the direction of aligned
fibers using an MTS Criterion Model 42 at a rate of
1 mm s−1. Annealed TEND soaked in DPBS (Fisher
Scientific) for 30 min were used as Day 0 controls.

2.15. Cell culture
Human tenocytes (ZenBio) were cultured in tenocyte
culture medium (ZenBio). Human bone marrow-
derived MSCs (RoosterBio®, Ballenger Creek, MD)
were cultured and maintained in serum-free, xeno-
freemedia (RoosterBio®). All cell cultures weremain-
tained under physiological conditions at 37 ◦C and
5% CO2.

2.16. Cell viability, morphology and infiltration
To assess human tenocyte cell proliferation on TEND,
one set of each as-electrospun or annealed gripped
TEND (10× 30 mm) (n= 6) and one set of each as-
electrospun or annealed loose TEND (10 × 30 mm)
(n = 3) were seeded with 2.5 × 104 human teno-
cytes per TEND to allow sufficient surface area for
cell growth over the course of two weeks. Cellu-
lar activity was assessed after 1, 7 and 14 d in cul-
ture. The alamarBlue® metabolic activity assay (Bio-
Rad) was used per the manufacturer’s protocol to
test cellular viability and proliferation. Cell infilt-
ration and morphology was assessed over 14 d in
culture. One set of each as-electrospun or annealed
gripped TEND (n = 3) and one set of each as-
electrospun or annealed loose TEND (n = 3) were
seeded with 1 × 105 cells/construct. Cellular infilt-
ration was assessed after 1, 7 and 14 d in cul-
ture. Cells were fixed in 4% paraformaldehyde and
stained with 4′,6-diamidino-2-phenylindole (DAPI)
(Fisher Scientific) nucleic stain. Cellular infiltration
from the surface of TEND was measured with a
Zeiss Axio Observer Z1 confocal microscope (Zeiss,
Oberkochen, Germany). Five fields of view per TEND
were investigated. At each field of view,multiple 5µm

thick z-scan slices were captured, and the total depth
of cell infiltration was calculated based on the num-
ber of cell-containing slices captured. The total depth
was averaged for the five fields of view. To visualize cell
morphology and elongation, all TEND cultured with
human tenocytes were fixed in 4% paraformalde-
hyde and stained for nuclei and actin filaments using
DAPI nucleic stain and Alexa Fluor® 594 phalloidin
(Thermo Fisher Scientific), respectively. The stained
samples were imaged using a Zeiss Axio Observer
Z1 confocal microscope. Percentage of cell elongation
was determined based on the average calculated nuc-
lei aspect ratio by measuring the length and width of
twenty cell nuclei using ImageJ FIJI (NIH Shareware).
Measurements were performed using confocal images
taken at 40X magnification.

2.17. Mechanical testing of cellularized and
acellular annealed TEND
To compare mechanical stability of acellular and cel-
lularized TEND, one set of each (n= 12)was placed in
custom grips and held under static tension (gripped)
to prevent shrinkage and promote further fiber align-
ment. A second set of annealed TEND (n = 12) was
placed in ultra-low cell binding culture plates without
tension (loose). Half of each set of TEND, gripped
(n = 6) or loose (n = 6), were seeded with 1 × 105

human tenocytes per side for a total of 2 × 105

cells per TEND. All samples remained in culture for
7 and 14 d. At each time point, the samples were
removed from the wells and pulled to failure under
uniaxial tension in the direction of the aligned fibers.
Annealed TEND at day 0 (controls) were hydrated in
DPBS for 30 min prior to testing. All samples, cel-
lularized and acellular, were mechanically tested at
room temperature using an MTS Criterion Model 42
(Eden Prairie, MN) at a rate of 1 mm s−1. Thickness
was measured with a Mitutoyo 547–526 S (Takatsu-
ku, Kawasaki, Japan) thickness gauge.

2.18. Bioreactor culture
Annealed TEND (n = 6) were pre-coated with
human PRP for 10 min. Clinical grade mesen-
chymal stem cells derived from human bone mar-
row (RoosterBio®) were seeded on the PRP coated
TEND at 5 × 105 cells/TEND. One half of the con-
structs (n = 3) were placed in a custom designed
cyclic-loading bioreactor. The spring-driven load on
the bioreactor had a spring constant of 0.125Nmm−1

and was cycled between 0 and 8 mm resulting in
a 0–1 N sinusoidal wave. The bioreactor chamber
contains 316 stainless steel, polyether ether ketone
(PEEK) and medical grade silicone. The polycarbon-
ate window provided two ports for gas exchange. A
second set of cell seeded constructs (n = 3) were
placed in static grips and kept under static tension.
Cultures were maintained with defined media for
three days prior to qPCR analysis.
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2.19. Quantitative PCR
RNA extraction was performed by pooling n= 2 or 3
individual TEND samples and lysing the cells within
TEND directly in complete lysis buffer from the
RNEASY Plus mini prep kit (Qiagen, Valencia, CA).
TEND samples were cut into small pieces and then
vortexed vigorously for 10 min. RNA was extracted
following the manufacturer’s protocol. The amount
of RNA extracted was measured using a NanoDrop
spectrophotometer. Up to 750 ng of total RNA was
converted to cDNA using the protocol described in
the SuperScript™ III First-Strand Synthesis SuperMix
kit (Life Technologies, Grand Island, NY). 40–50ng of
cDNAwas used in qPCR reactions following theman-
ufacturer’s protocol for the SoFast™ Evagreen® Super-
mix (Bio-Rad, Hercules, CA) and primers specific to
the target human geneswere obtained frompublished
references [45–50]. Reactions were run in triplicates
on the CFX Connect™ Real-Time PCRDetection Sys-
tem (Bio-Rad) on 96 well plates, using 39 cycles with
an annealing temperature of 56 ◦C. A single amp-
licon product was confirmed by the detection of a
single peak on themelt curve. mRNA transcript levels
were normalized to corresponding glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) values. Res-
ults were consolidated and analyzed using the instru-
ment’s supporting software (CFX Maestro Software,
BioRad).

2.20. Rat surgical implantation
All surgical procedures were conducted according to
a protocol approved by Institutional Animal Care and
Use Committee (IACUC), Old Dominion University.
Per ISO 10 993–6, n = 6 grafts of TEND and allo-
graft dermis (Wright Medical, Memphis, TN) were
implanted for 2, 4, 8 and 16-weeks in a pool of male
and female Sprague Dawley rats. Rats were anesthet-
ized with isoflurane inhalation. Flanks were shaved,
andNair depilatory creamwas applied to remove hair
from the surgical site. Incisions were made dorsally
in the flank area and a hemostat was used to create
a pocket for implants. Once grafts were implanted in
the pocket, the incision was closed using suture. After
the designated time points, the rats were humanely
euthanized for tissue collection.

2.21. Rabbit surgical implantation
All surgical procedures were conducted according
to a protocol developed based on studies by Van
Kampen et al [51] and approved by Institutional
Animal Care and Use Committee (IACUC), East-
ern Virginia Medical School. TEND grafts were
implanted for 4, 16 and 52-weeks in the Achilles ten-
don of male New Zealand White Rabbits and com-
pared with sham (suture alone). Rabbits were admin-
istered with Acepromazine and anesthesia induced
using isoflurane. Clippers and Nair depilatory cream
were used to remove hair fromhind legs. Surgical sites

were cleaned and aseptically prepared with altern-
ating passes of betadine and 70% alcohol. The cal-
caneal tendon was exposed through paratendineal
incision of the cutis, subcutis and fascia. Using a num-
ber 10 scalpel blade, three full thickness incisions
(1 incision per bundle) approximately 7 mm long
were made in the coronal plane of the calcaneal-
Achilles tendon, midsubstance between the calcaneus
and the gastrocnemius. Annealed TENDwas circum-
ferentially placed around the Achilles tendon defects
(similar to the implantation in the cadaver model
shown in figure 12) and sutured into place using 4–
0 Mersilene®. The peritenon was closed using 4–0
Vicryl® suture. The incision site was closed with a 4–0
Vicryl® running suture. For sham, sutures were placed
in identical pattern as the graft using 4–0 Mersilene®

and 4–0 Vicryl® to close the peritenon. After surgery,
antibiotic was placed on the incisions and the oper-
ated legs wrapped with surgical gauze and cotton roll.
Vet wrap was used to wrap the leg and hold it in
place. Surgical gauze, cotton roll and Vet wrap were
removed after 24 h. Animals were fed using a food
hopper from inside the cage after surgery. The rab-
bits were not allowed outside of their cages for 14 d
post-op in order to restrict theirmovements to ensure
proper healing of the defect. At the endpoint, the
animals were euthanized by deep anesthesia with iso-
flurane inhalation followed by barbiturate overdose
(1cc per 10 pounds) with confirmation of death with
a bilateral thoracotomy.

2.22. Histology
Harvested graft explants were fixed in 4% paraform-
aldehyde (Alfa Aesar, Haverhill, MA) for 24 h then
transferred to PBS. Samples were sectioned to 5 µm
thickness and serial sections were stained with Mas-
son’s trichrome and H&E at IDEXX (West Sacra-
mento, CA). QuPath, an open source software, was
used to quantify the number of cells on the histology
sections. Three H&E slides of each graft types were
chosen, and images taken using 10Xmagnification. A
representative image of the graft from each slide was
selected to run onQuPath. Polarized lightmicroscopy
was used to image newly produced collagen within
TEND implants and sham controls. The alignment of
the deposited collagen was assessed using Direction-
ality function of ImageJ software.

2.23. Cadaver surgical implantation
Cadaveric implantation was performed in the prone
position through a posterior transverse 3-centimeter
incision at a level 4–6 centimeters from the superior
margin of the calcaneus. The Deep Fascia and Para-
tenon were incised and maintained for later closure.
An irregular cut was made full thickness through the
Achilles tendon to mimic a clinical rupture. A min-
imally invasive repair technique was performed with
a suture passer using suture tape passed along each
side of the proximal tendon to the level of the rupture.
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The suture was then passed through the distal ten-
don rupture using a suture retriever, passed through a
transverse bone tunnel in the calcaneus, tensioned to
bring the ruptured ends together and tied with a sur-
geon’s knot. TEND was then properly oriented and
passed via the plastic inserter under and around the
Achilles tendon repair site. It was fixated with stand-
ard 3–0 Vicryl suture to the host tendon. A 22-gauge
needle was used to make multiple passes through
TEND and into the Achilles tendon to mimic the use
of PRP injection augmentation. The Paratenon and
Deep Fascia was closed with 3–0 Vicryl. Skin was
sutured with 3–0 Nylon. The ankle was then taken
through a range ofmotion to check the integrity of the
repair with TEND in place. Inspection of the repair
and TEND was then performed by careful dissection
of the surrounding skin and subcutaneous tissue.

2.24. Statistics
Data analysis was performed on Prism 8 software. All
parameters are expressed as mean± S.E.M. Two-way
ANOVA followed by the post-hoc Tukey’s Multiple
Comparison Test and Unpaired t tests were used to
assess the differences in mechanical properties and
fiber diameters. The Kolmogorov-Smirnov test was
used to assess the differences in TEND fiber align-
ment and newly formed collagen alignment in vivo.
Paired t test was used to assess the differences in PRP
release kinetics. The chi-square test was used to assess
the differences in frequency distribution of cellular
alignment. Two-way ANOVA followed by the post-
hoc Tukey’s Multiple Comparison Test was used to
assess the differences in in vitro cell elongation, cell
attachment, proliferation, and infiltration, mechan-
ical properties of the cellularized and acellular TEND,
and cell quantification of rat subcutaneous implants.
An unpaired t-test and ordinary one-wayANOVA fol-
lowed by the post-hoc Dunnett’s Multiple Compar-
ison Test was used to assess the differences in gene
expression. A priori, p values below 0.05 were defined
as significant in all studies.

3. Results

3.1. Physical andmechanical properties of
annealed and as-electrospun TEND
Hybrid pneumatospinning—electrospinning setup
allowed manufacturing of highly aligned colla-
gen:PDLLA fibrous grafts from 100% DMSO. The
resulting as-electrospun TEND exhibit an aver-
age peak stress of 13.6 ± 0.26 MPa, modulus of
152.2± 15.85MPa, and could withstand 8.4± 1.77N
load. In order to improve the porosity and void frac-
tion of TEND, as-electrospun TEND were heated
above their glass transition temperature for anneal-
ing. As demonstrated in figures 2(A) and (B), the
annealing process caused TEND to expand in thick-
ness, hence increasing the void fraction within the
construct. The physical and mechanical properties

of annealed and as-electrospun TEND where tested
in culture and compared to assess the effects of
annealing. The structure and alignment of both as-
electrospun and annealed TEND at day 0 and 14 d
in culture are shown in figures 2(C)–(F). Anneal-
ing under tension resulted in significantly smaller
fiber diameters (p < 0.01) and higher degree of fiber
alignment (p < 0.05) compared to as-electrospun
TEND at day 0 or after 14 d in culture (figures
2(G) and (H)). The higher degree of loss of fiber
alignment resulting in formation of disorganized
fibers in as-electrospun TEND after remaining in
culture is due to shrinkage of TEND. It was demon-
strated that annealing resulted in significantly smaller
amount of TEND shrinkage in culture compared to
as-electrospun TEND (figure 2(I)). Uniaxial tensile
testing of TEND revealed that there was no significant
difference in the peak stress andmodulus of annealed
and as-electrospun TEND at day 0 (figures 2(J) and
(K)). Although both annealed and as-electrospun
TEND exhibited a significant decrease in their peak
stress and modulus after 7 d in culture, it was shown
that annealed TEND retained significantly higher
peak stress (2X higher) and modulus (11x higher)
compared to as-electrospun TEND (figures 2(J) and
(K)). Furthermore, at day 7 there was no signific-
ant decrease in the load bearing capability of TEND
compared to Day 0 (figure 2(L)). Day 0 samples
used for mechanical testing were pre e-beam ster-
ilization, however TEND tested post sterilization
exhibited no significant difference in its mechanical
properties (Data not shown). Since annealing sig-
nificantly increased the thickness of as-electrospun
TEND, we tested if the internal void fraction of
TEND was altered pre- vs. post-processing. Mercury
intrusion porosimetry analysis showed that anneal-
ing process increases the average pore size of aligned
fibers from 7.1 µm to 100.7 µm (figure 2(M)). Gas
sorption showed that annealed TEND’s ‘pore’ struc-
ture throughout the graft was large slit-shaped, per
the adsorption-desorption hysteresis curves (figure
2(N)). Additionally, annealing increased the graft
surface area significantly, as validated by gas adsorp-
tion methods (figure 2(O)).

3.2. Chemical analyses of TEND
SDS-PAGE gel electrophoresis was used to exam-
ine the impact of electrospinning and heat on col-
lagen protein in TEND. Collagen starting material
and annealed TEND were dissolved in acetic acid
and run on a gel (figure 3(A)). Distinct bands vis-
ible around 238kD and 117kD confirm the presence
of alpha and beta regions, respectively within TEND.
Moreover, lack of smearing or laddering below 117kD
showed collagen did not molecularly breakdown due
to manufacturing. The difference in band intensity
between collagen raw material and annealed TEND
is due to different amounts of collagen loaded as
the raw material is 100% collagen and the same
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Figure 2. Annealing Significantly Enhances Physical andMechanical Properties of TEND. As-electrospun TEND restrained in
frames were heated above their glass transition temperature to promote molecular alignment and improve stability. The annealing
process resulted in formation of thicker constructs (B) with improved fiber alignment (D), which retained their fiber orientation
after 14 d in culture (F). (G) and (H) Fiber Alignment and Diameter, annealed TEND exhibited significantly smaller fiber
diameters and higher degree of fiber alignment at day 0 and after 14 d in culture (∗∗p < 0.01 and ∗p < 0.05) compared to
as-electrospun TEND, which lost their aligned fiber orientation and became highly disorganized. (I) Shrinkage and Swelling,
annealed TEND exhibited significantly smaller amount of shrinkage after 7 d in culture (p < 0.05). (J) and (K) Peak stress and
Modulus, After 7 d in culture annealed TEND exhibited significantly higher peak stress and modulus (p < 0.05). (L) Peak Load,
there were no significant differences in the peak load between annealed and electrospun TEND at day 0 or after 7 d in culture
(p > 0.05). (M) Changes in TEND Porosity, As-electrospun TEND had an average pore size of 7.1 µm compared to the average
pore size in annealed TEND at 100.7 µm, as assessed by mercury intrusion porosimetry. (N) Gas Adsorption of annealed TEND
revealed large slit-like channels present throughout annealed TEND, with (O)mean BET surface area shown to be significantly
increased in the annealed electrospun TEND compared to conventionally electrospun scaffolds.
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Figure 3. TENDCollagen Biochemical Analysis and Residual DMSO Testing. (A) SDS-PAGE gel shows collagen α chains in the
α and β region. 1) Ladder. 2) Collagen starting material. 3) Annealed TEND. (B) Degree and intensity of peaks of starting
material compared to electrospun and annealed TEND on XRD graph indicates that electrospinning and annealing does not
impact crystallinity. (C) Presence of amide I, amide II, amide A and B indicates the presence of collagen after electrospinning and
annealing on the FTIR graph. ∗ shows the location of amide bonds which are the fingerprint of collagen. (D) TGAAnalysis shows
the reduction of DMSO in TEND after vacuum. Dashes indicate temperature points where TEND lost 95% of their weight. (E)
Mass spectroscopy results demonstrate that after 24 h of vacuum there was a significant drop in residual % DMSO by weight
present in TEND (∗p < 0.05).

amount of TEND in weight only contains 30%
collagen. The lower band intensity due to smaller
amount of collagen is not suggestive of denatura-
tion into gelatin, as alpha, beta and gamma chains
are all present in TEND as in the starting mater-
ial, while there is no laddering effect that migrates
faster than the alpha chain. TEND fiber crystallinity
assessed by XRD showed collagen feedstock with a
broad peak at approximately 20 degrees, as seen in
as-electrospun and annealed TEND with a sharper
peak within the same region (figure 3(B)), indicat-
ing that TENDmaintained collagen crystallinity post-
processing. FTIR results indicate that as-electrospun
and annealed TEND had amide I (~1650 cm-1) and
amide II (~1560 cm-1) which are the fingerprints
of collagen, as well as amide A (~3285 cm-1) and
amide B (~2917 cm-1) (figure 3(C)). The presence
of amides I, II, A, and B confirmed collagen pres-
ence in TEND post-annealing. TGA was run on as-
electrospun TEND before and after vacuuming. After
24 h under vacuum, 95% of the weight lost is closer
to 250 ◦C rather than with negligible loss at 189 ◦C,
the boiling point for DMSO (figure 3(D)), indicat-
ing DMSO was removed during the manufacturing
process. Removal of DMSOwas further confirmed by
mass spectrometer. GCMS results indicate that after
24 h of vacuum, average percent by weight of DMSO
in TEND dropped from 1.74% to 1.48% (figure 3(E))
which is > 1/1000th of the 50 mg day−1 allowed in

an implant per USP < 467 > . SDS-PAGE of TEND
post e-beam sterilization also showed the presence of
collagen α chains (Data not shown).

3.3. TEND blood absorption
As patient blood is commonly drawn for precondi-
tioning surgical implants and may be either heparin-
ized or non-heparinized, the blood absorption cap-
ability of TEND was measured by soaking in clot-
ting blood and comparing it to heparinized blood.
After 35 min on average, TEND soaked in clot-
ting blood absorbed more than twice the volume
(3.95 ± 0.43 ml) compared to TEND soaked with
heparinized blood (1.93 ± 0.12 ml) (figure 4(A)).
After soaking in blood for 45 min, the length, width
and thickness of each sample was measured. The per-
cent change in volume between the heparinized and
clotting blood-soaked TEND were found to be insig-
nificant (p > 0.05). SEM images of the human blood-
soaked TEND showed red blood cell and platelet
attachment on the samples (figure 4(B)).

3.4. Growth factor release kinetics andmechanical
properties of PRP coated TEND
The PRP release kinetics results demonstrated that
annealed TEND sequester and controllably release
PRP over 14 d, as measured by release of PDGF-BB
and TGFβ1 (figures 5(A) and (B)). Overall, TEND
binds and releases significantly higher amounts of
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Figure 4. TENDBlood Absorption Analysis. Annealed TEND was immersed in human clotting or non-clotting blood to assess its
capability to absorb biological fluids. (A) Blood absorption comparison showed that TEND absorbed twice the volume of clotting
blood than heparinized blood. (B) SEM image after blood immersion showed red blood cells and platelets attachment to TEND.

PRP-derived growth factors compared to native ten-
don (figures 5(A) and (B)). Moreover, TEND coated
in PRP and incubated under static tension exhibit
improved mechanical stability and tensile strength
in culture demonstrated by significantly higher peak
stress and modulus (figures 5(C) and (D)) as related
to changes in graft thickness in PRP. There were
no significant differences observed in peak load over
time (figure 5(E)), showing high graft stability upon
use. Additionally, PRP-coated TEND exhibited lower
strain at break than non-coated TEND, although this
differencewas significant only at the 3-day time point.
The lower strain at break within the PRP-coated
TEND is representative of the increase in modulus
(∗∗p < 0.01) (figure 5(F)).

3.5. Cytocompatibility, cellular morphology and
elongation
Cellular morphology and elongation of human teno-
cytes on as-electrospun or annealed TEND were
assessed. The direction of actin filaments (red),
shown in the confocal images (figures 6(A)-a and
(A)-b) demonstrated cell elongation on the gripped
annealed and gripped as-electrospunTENDalong the
direction of the fibers (figures 6(A)-e and (A)-f). The
random morphology of actin filaments in the cells
on loose TEND (figures 6(A)-c and (A)-d) demon-
strated the loss of fiber alignment within these con-
structs. This random morphology is confirmed by
SEM images of the fibers shown in figures 6(A)-g
and h. Cell aspect ratio measurements demonstrated
that overall, human tenocytes had a higher percentage
of elongation within the gripped TEND compared
to the loose TEND (p < 0.01) (figure 6(B)). This is
due to the higher degree of fiber alignment and ten-
sion within the gripped TEND (figure 6(C)), resem-
bling gripping in surgical graft fixation. On the con-
trary, within loose TEND there was significant loss of
fiber alignment due to the absence of tension (figure

6(C)). Although loss of fiber alignment was observed
within loose samples, it was shown that annealed
TENDwas still significantlymore aligned than the as-
electrospun TEND after 14 d in culture (figure 6(C))
highlighting the importance of the annealing process.

3.6. Mechanical properties of cellularized and
acellular annealed TEND
As annealing led to improved tensile, material and
‘porosity’ properties of TEND, only annealed TEND
was used for the remaining in vitro studies. Gripped
and loose TEND were seeded with human teno-
cytes to assess the effects of cells on their mechan-
ical strength and physical properties. After 7 and
14 d in culture, the samples were pulled to failure
in the direction of aligned fibers. Overall, after 7 or
14 d, all TEND in culture lost a significant amount
of strength and modulus compared to the control
groups (p < 0.05). However, gripped TEND was
significantly stronger and stiffer than loose TEND
regardless of the presence or absence of cells (p < 0.05)
(figures 7(A) and (B)). TENDwithout cells was signi-
ficantly stronger than TEND with cells when gripped
for 7 d in culture (p < 0.05) (figure 7(A)). However,
after 14 d, the mechanical strength of TEND was
maintained in the presence of cells (p < 0.05) (figure
7(A)). Although TEND in culture showed lower peak
stress andmodulus, there were no significant changes
in the amount of load they could withstand (p > 0.05)
(figure 7(C)). As load remained consistent and the
dimensions of TEND changed while in culture, all
effects on the calculated mechanical properties can
be attributed to the swollen cross section leading to
an increased cross-sectional area. After 14 d in cul-
ture, loose TEND had significantly higher strain at
break than the other conditions tested (p < 0.05).
Overall, all TEND in culture had significantly
higher strain at break than controls (p < 0.05)
(figure 7(D)).
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Figure 5. PRP-coated TENDGrowth Factor Release Kinetics andMechanical Properties. (A) and (B) PDGF-BB and TGF-β1
release kinetic demonstrate annealed TEND absorb and release growth factors over time. TEND binds and releases significantly
higher amounts of PRP-derived growth factors compared to rabbit tendon (∗∗∗∗p < 0.01) (C) and (D)) Peak Stress and
Modulus, TEND coated in PRP and under static tension exhibit improved mechanical strength compared to non-coated TEND
(∗p < 0.001). (E) Peak Load, no significant differences were observed in peak load. (F) Strain at Break, PRP coated TEND exhibit
significantly lower strain at break, which is representative of the increase in stiffness and modulus (∗∗p < 0.01).

3.7. Tenogenic gene expression of mesenchymal
stem cells (MSCs) on TEND
TEND was coated with PRP to simulate prospective
clinical use as a biological delivery vehicle with
patient-derived PRP or other blood-based products.
Clinical grade human MSCs grown on PRP-coated
TEND in both static and bioreactor cultures for 3 d
showed statistically significant upregulation of colla-
gen type I, collagen type III, and tenascin C genes
compared to the same cells cultured on tissue cul-
ture plates alone or supplemented with BMP-12 to
induce tenogenic differentiation (figure 8). This sug-
gests upregulation of tendon-like matrix synthesis

and induction of tenogenic differentiation from cul-
tured stem cells on TEND. Ki67 downregulation
in stem cells grown on PRP-coated TEND further
indicated that stem cells proliferation was reduced
suggesting exiting of the cell-cycle due to lineage
commitment.

3.8. Biocompatibility of TEND in vivo
As-electrospun and annealed TEND were implanted
subcutaneously in rats to assess biocompatibility, cel-
lular infiltration and remodeling between the groups
with different porosities/bulk densities yet otherwise
identical grafts. At 2, 4, 8, and 16 weeks TEND
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Figure 6. Cellular Elongation, Alignment, and Spreading on TEND. TEND was either gripped and kept under static tension or
was left without tension in cell culture wells. All samples were seeded with human tenocytes and cellular spreading, elongation,
and alignment was assessed after 14 d in culture. (A) Cell Spreading, gripped and loose TEND cultured with human tenocytes for
up to 14 d were stained with DAPI nucleic stain (blue) and Alexa Fluor® 594 phalloidin actin filament stain (red), and imaged by
confocal microscopy at 40x magnification. Scale bar= 20 µm. The direction of cell alignment does not match fiber direction in
the SEM images as the images were taken using different microscopes and orientation. (B) Cell Elongation, both annealed and
as-electrospun gripped TEND supported significantly higher percent cell elongation compared to the loose TEND (∗∗p < 0.0001
and ∗p < 0.01). (C) Fiber Alignment, loose as-electrospun TEND significantly lost their fiber alignment compared to tensioned
grafts after 14 d in culture (∗p < 0.0001).

and decellularized human dermis were explanted,
sectioned and stained with hematoxylin & eosin
(H&E).Histology results and analyses of cell numbers
within grafts at different time points showed that a
higher number of cells infiltrated TEND in annealed
groups compared to as-electrospun TEND (figure
9). Annealed TEND showed significantly higher
cellular infiltration after 2 weeks (figure 9(B)). Allo-
graft dermis exhibited an intense early inflammat-
ory response at 2 weeks (figure 9(C)) with primar-
ily mononuclear cells. Annealed TEND showed
increased cellularization after 4 and 8 weeks (figures

9(E) and (H)) whereas allograft dermis progressed to
fibrotic encapsulation shown at 8 weeks (figure 9(I)).
Annealed TEND showed histological evidence of
graft remodeling into dense host connective tissue by
16weeks (figure 9(K)) while persistent fibrotic encap-
sulation was still present around allograft dermis
(figure 9(L)).

Annealed TEND was further tested in a clinic-
ally relevant tendon injury model by implantation
around a Achilles tendon defect in rabbits (figure 10)
to assess cellular infiltration, remodeling, and regen-
eration. TENDs were explanted at 16 and 52 weeks
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Figure 7. TENDMechanical Stability in Culture. TEND was either gripped and kept under static tension or was left without
tension in cell culture wells. Half of the samples were seeded with human tenocytes. Mechanical properties of TEND were assessed
after 7 and 14 d in culture. TEND hydrated in DPBS for 30 min were used as controls. (A) Peak Stress and (B) Modulus, All
TEND in culture lost a significant amount of strength and modulus compared to the day 0 controls (∗∗p < 0.05). TEND without
cells was significantly stronger than TEND with cells when gripped for 7 d in culture (#p < 0.05). However, after 14 d, the
mechanical strength of TEND was maintained in the presence of cells (+p < 0.05). Overall, gripped TEND were significantly
stronger and stiffer than loose TEND regardless of presence or absence of cells (∗p < 0.05). (C) Peak Load, There were no
significant changes in the peak load. (D) Strain at Break, After 14 d in culture, loose TEND had significantly higher percentage of
strain at break than the other conditions (∗p < 0.05). Overall, TEND in culture had significantly higher percentage of strain at
break than controls (∗∗p < 0.05).

and stained with H&E and Masson’s trichrome. His-
tology images of suture only (sham) explants showed
inflammatory cells at 16 weeks (figure 11(A)) and
disorganized collagen formation (figures 11(B) and
(C)). On the contrary, it was shown that annealed
TEND was cellularized and started remodeling by
16 weeks (figures 11(D)–(F)). By 52 weeks, histo-
logy images indicate that TEND had fully remodeled
and new collagen was formed. It was shown that
the newly formed collagen in the sham group was
randomly orientated (figures 11(G)–(I)) whereas
highly organized, aligned collagen was formed within
TEND (figures 11(J)–(L)). Collagen alignment was
assessed by directionality function of ImageJ and
it was shown that collagen formed in the presence
of TEND, had significantly higher degree of align-
ment when compared to suture-only sham. This
higher degree of alignment is denoted by the narrower
width and higher peak of the histogram shown in
figure 11(M).

3.9. Human cadaver surgical implantation of
TEND in rotator cuff and achilles tendon
Current surgical repair of the ruptured Achilles ten-
don is performed through either an open approach
(10–14 centimeter incision) or more commonly
through a minimally invasive (3–4 centimeter
incision) surgical technique in order to avoid the
common postoperative wound complications. There
are two commonly used grafts in the repair of Achilles
tendons. Human decellularized cadaveric dermis and
various forms of human preserved amniotic placental
membrane. Both of these grafts have problems with
implantation or fixation to the host tendon. Cada-
ver surgical implantation of TEND was performed
with aminimally invasive technique that allowed easy
graft orientation (colored fibers, figure 12) and deliv-
ery with its plastic inserter. TEND showed excellent
handleability and suture fixation to the native ten-
don. These inherent characteristics of TEND should
aid surgeons in clinical practice.
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Figure 8. Tenogenic Gene Upregulation of MSCs on TEND. qPCR analysis showed significant upregulation of collagens I (A)
and III (B) and Tenascin C (C) in MSCs grown on PRP-coated TEND in both static and bioreactor culture relative to MSCs grown
on tissue culture plates, suggesting initiation of tenogenic differentiation. MSCs exposed for 24 h to BMP-12 showed significant
upregulation of Tenascin C on tissue culture plates as a positive control. Reduction of Ki67 (D) in the MSCs on PRP-coated TEND
groups suggest lineage commitment from the MSCs (∗p < 0.05). All gene expression levels have been normalized to the negative
control.

4. Discussion

In a bioinspired design based on the orderly lin-
ear anatomy of ligaments and tendons [8, 10],
and with clinical translation in mind, we have
developed a collagen-based electrospun TEND for
the repair of musculoskeletal tissues. Electrospin-
ning is a widely used method for the production
of aligned microfibrous constructs that can exhibit
matrix structures analogous to the tendon ECM [11,
12, 52]. However, partly due to the usage of harm-
ful solvents, poor cellular infiltration, use of non-
clinical grade polymers and lack of standards for fiber
characterizations to more clearly define product crit-
ical quality attributes [53], electrospun constructs
have not been FDA approved or cleared as sur-
gical mesh medical devices for ligament or tendon
repair [17, 54]. This work shows significant progress
towards overcoming these challenges. Designed for
future clinical translation and human use, we have

pioneered an electrospinning process that allows scal-
able generation of collagen-based microfibrous con-
structs for tendon and ligament tissue repair using
a biologically benign solvent. This process combined
with thermal annealing generates a biomaterial highly
absorbent of blood and PRP with improved poros-
ity and mechanical properties compared to conven-
tionally electrospun grafts, overcoming major chal-
lenges inherent to clinical scale biomanufacturing via
electrospinning.

Hybrid pneumatospinning-electrospinning allo-
ws the electrospinning of collagen and a wide array
of possible stabilizing co-polymers, in particular
PDLLA, from a benign solvent. This process has
enabled us to engineer stable, strong, electrospun
collagen-based constructs for tendon regeneration,
while eliminating the use of toxic solvents. We fur-
ther developed electrospinning and post-processing
techniques to sufficiently remove residual solvent and
improve stability in culture. Fiber diameters were
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Figure 9. Histological Cellular Progression of TEND and Allograft dermis. Cellular infiltration through grafts after 2, 4, 8 and
16 weeks. (A)-(L)Histology sections of as-electrospun TEND, annealed TEND, and allograft dermis explanted at different time
points. At 16 weeks, annealed TEND was fully infiltrated with cells and had some indication of remodeling as seen with change in
eosin stain compared to allograft dermis. (M) Annealed TEND at all time points had significantly higher number of cells
compared to the as-electrospun TEND (# p < 0.05) except the 8 weeks annealed TEND was not significantly different from the
2 weeks as-electrospun TEND (marked as ∗). Number of cells in allograft dermis at 2 weeks was significantly higher than the 8
and 16-weeks, annealed TEND at 2, 4 and 8-weeks, as well as the as-electrospun TEND at all time points (∗∗p < 0.05).
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Figure 10. Tendon Injury Model Tested in Rabbits. TEND grafts were tested in vivo in the Achilles tendon of male New Zealand
White Rabbits. To create the injury model prior to TEND implantation the calcaneal tendon was exposed through paratendineal
incision of the cutis, subcutis and fascia. Three full thickness incisions (1 incision per bundle) approximately 7 mm long were
made in the coronal plane of the Achilles tendon, midsubstance between the calcaneus and the gastrocnemius.

significantly smaller in annealed vs. as-electrospun
TEND, likely related to themechanical drawing forces
imparted to the graft, which may have contributed
to the stability and retained alignment upon hydra-
tion. Fiber diameter engineered into TEND may fur-
ther be important for tendon repair in that electro-
spun microfibers larger than one micron, as found in
TEND, have previously [55] been reported to upreg-
ulate mature tendon genes and tendon extracellular
matrix production from human rotator cuff-derived
cells.

Additionally, we showed that the internal void
fraction of as-electrospun TEND can be significantly
increased by low-temperature thermal annealing, as
a putative mechanism for improved in vivo graft
performance. As-electrospun TEND exhibited 7 µm
diameter pores compared to over 100 µm pores in
annealed TEND. This is significant when the aver-
age diameter of a mesenchymal cell at ~35 µm is
considered, and may directly relate to limitations of
conventionally electrospun implants showing typical
poor cell infiltration in vivo [16, 17] rather than a
direct function of electrospun fiber size as previ-
ously believed [56, 57]. Post-processing of electro-
spun materials by thermal annealing is thus a robust,
simple, scalable method whereby electrospun grafts
can be biomanufactured to improve cellular infiltra-
tion potential, presenting a marked advancement for
improving porosity or void-fraction within a fiber-
based tissue engineered medical product (TEMP).
Thermal annealing of TEND further led to enhanced
mechanical stability in culture while maintaining
molecular alignment and crystallinity. Our results are
in agreement with studies by Fu et al that demon-
strated the annealing process increased crystallinity
and stability of poly(glycolide-co-lactide) [58]. We
postulate that this annealing approach is not unique
to collagen/PDLLA, but will be effective in increasing

the average pore size distribution and improving
tensile properties in other electrospun grafts using
other biological and synthetic polymers as well under
appropriate conditions.

In biochemical analyses, SDS-PAGE showed the
presence of alpha, beta and gamma chains in TEND
as in the starting material. Additionally, the absence
of laddering effect below 117kDa confirms that the
low-temperature annealing process performed under
vacuum did not result in collagen molecular break-
down. Similarly, previous studies have shown that
dehydrothermal crosslinking of collagen, which is
performed at high temperatures (over 100 ◦C) under
vacuum does not result in molecular breakdown of
collagen [59, 60]. FTIR was used to confirm the pres-
ence of collagen amide bonds I and II in electro-
spun and annealed TEND. However, amide III could
not be easily distinguished because PDLLA has the
same FTIR fingerprint as collagen in that region. As
residual processing solvents are an important consid-
eration for manufacturing of medical devices inten-
ded for human use, we further tested for residual
DMSO solvent in TEND and showed levels 1000
times below the suggested dose limit per USP
< 467.

Additionally, we demonstrated TEND rapidly
absorbed blood and PRP. This is important for
implant preconditioning as blood and PRP have
been used commonly as biologics for improving
rotator cuff, Achilles, and other tendon repairs and
are believed to improve clinical outcomes [61].
Moreover, TEND soaked with PRP demonstrated
improved mechanical strength, and also released
growth factors present in PRP over two weeks at
doses five times higher than native tendon tis-
sue’s release kinetics. Similar to our observations,
Diaz-Gomez et al demonstrated increased stiffness
of polycaprolactone nanofibers after coating with
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Figure 11. Rabbit Achilles Tendon Repair and Alignment of Newly Produced Collagen In Vivo. (A), (D), (G), (J) H&E and (B),
(E), (H), (K) Masson’s trichrome stains of sham and annealed TEND explanted at 16 and 52 weeks showed the progression of
remodeling, from cell infiltration to collagen deposition. (C), (F), (I), (L) Polarized light microscopy showed an increase of
aligned collagen fibers from 16 weeks to 52 weeks in the presence of TEND while the collagen fibers in sham were disorganized at
16 weeks as well as at 52 weeks. Tendon is denoted as T, TEND as G and Achilles tendon-graft interface where TEND has started
remodeling as ∗. (M) Degree of collagen alignment and assessment of polarized light microscopy images of collagen produced in
vivo 52 weeks after repairing rabbit Achilles tendons with or without TEND. It was shown that TEND promoted the deposition of
collagen with significantly higher degree of alignment when compared to sham (∗p < 0.05). This higher degree of alignment is
denoted by narrower width and higher peak of the histogram.

PRP [62]. However, the mechanism of action res-
ulting in higher stiffness of the PRP coated TEND
needs further investigation.The higher growth factor

release kinetics observed in TEND compared to nat-
ive tendon is resulted from higher absorption levels
of PRP by TEND due to the higher surface area and
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Figure 12. Simulated Human TEND Implantation.Human cadaveric implantation of TEND in a minimally invasive surgical
Achilles tendon repair and arthroscopic rotator cuff repair procedures are shown to validate graft size, fitment and fixation.

porosity of TEND compared to native tendon. It is
important to note that the release of growth factors
fromTEND at significantly higher levels compared to
native tendon is crucial as these levels are comparable
to the growth factor levels present in PRP when dir-
ectly injected into the tendon repair site [63, 64].High
levels of PRP absorption and growth factor release by
TEND and its mechanical strength suggest its suitab-
ility for ligament and tendon therapies as a carrier for
these endogenous reparative factors.

As biological implants may be coated with PRP
bedside, prior to implantation clinically, we tested
the ability of our graft coated with PRP in the pres-
ence of stem cells in culture. PRP-coated TEND
grown with clinical grade MSCs upregulated teno-
genic differentiation markers and tendon-like extra-
cellular matrix production. The expression of teno-
genic genes is further significantly upregulated in
TEND + PRP + MSCs cultured under cyclic load-
ing in bioreactor cultures. Our results are in agree-
ment with observations by Xu et al and Subramanian
et al, which showed tenogenic differentiation of stem
cells and upregulation of ECM under cyclic tension-
ing [65, 66]. This is significant in that TEND pre-
treated with patient blood or PRP, or implanted
into a bleeding tendon or tendon-bone defect, can
rapidly absorb growth factors present, which may
together promote new tendon tissue formation in
vivo as another possible tendon healing mechanism.
The bioreactor culture used to cyclically load the
graft may further be representative of simulating use
(physical therapy) of the repaired tissue, which we
showed to further improve tenogenic gene upregula-
tion with MSCs grown on PRP-coated TEND. Addi-
tionally, the upregulation of collagens type I and type
III may be important in tendon tissue engineering
applications, as in natural tendon healing response,
an increase in collagen type III synthesis followed by

higher proportions of collagen type I synthesis at later
stages of healing is observed [67].

Cytocompatibility of anisotropic TEND was
demonstrated through the attachment and organ-
ized morphology of human tendon cells. The results
showed cellular elongation along the direction of
aligned fibers within TEND. Cellular alignment is an
intrinsic feature of native tendon and ligament tissue.
Cellular alignment is shown to be imparted to cells
grown on TEND by the structure-function relation-
ship of the aligned substrate, which is not present
in isotropic (disordered) matrices. Aligned fibers, as
engineered into TEND, have previously been shown
to promote tendon-like matrix synthesis, may mit-
igate adverse fibroblast (scarring) response [68] and
is important for reducing the inflammatory immune
response from unaligned fiber-based constructs [69].
Moreover, the organization of aligned fibers, as in
TEND, is an important feature for promoting cellu-
lar alignment [70] with the secretion of extracellu-
lar matrix for in vivo tissue regeneration [71]. Fiber
alignment is thus an important feature in a tendon-
repair graft yet is an attribute missing in currently
marketed medical devices such as acellular allograft
dermis.

Simulating surgical fixation of a graft for use in
tendonmanagement, protection or augmentation, we
further demonstrated that TEND gripped under ten-
sion, with or without cells, exhibited significantly
higher strength over time compared to loose TEND.
On average, the gripped TEND held upwards of
7.55 ± 0.6 MPa in peak stress and 83.9 ± 19.5 MPa
modulus, after a 7-day culture. These tensile prop-
erties are comparable to the tensile properties of the
middle (6.0± 2.6MPa) and posterior (4.1± 1.3MPa)
portions of human supraspinatus tendons [72], fur-
ther supporting the use of TEND in rotator cuff and
other tendon injuries.
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Moreover, annealed TEND exhibits marked
improvements in in vivo cellular infiltration, which
has been a pervasive challenge for traditionally elec-
trospun materials [73–78]. Additionally, in a rab-
bit Achilles tendon injury model, developed based
on studies by Van Kampen [51], TEND is shown to
remodel by 52 weeks into dense, regularly oriented
tendon-like tissue, showing an increased amount of
tendon-like tissue growth, improved fiber alignment,
and reduced tissue adhesions compared to surgical
sham operated tendons. The cellular response to
TEND in vitro and in vivo makes it an ideal bio-
material for a prospective clinical tendon repair graft
where synthesis and conduction (‘tenoconduction’)
of new, aligned dense collagen is needed to augment,
regenerate or promote healing of the damaged tissue.

Finally, as TEND has been developed for and
intended use in a clinically relevant medical device
for tendon repair, handleability of this device during
surgical implantation is of great importance. There-
fore, in completion of TEND testing the handleability
and surgical delivery of TENDwas assessed in human
cadaveric surgical implantation. TEND implanted
with open, mini-open and minimally invasive tech-
niques showed excellent handling, rapid and simple
delivery and fixation to the native tendon, highlight-
ing its applicability in clinical repair of tendon injury.

5. Conclusion

These studies provide the preclinical evidence on
the suitability of TEND in safe and effective ten-
don repair and healing. Manufactured with benign
solvents, clinical-grade materials and post-processing
annealing, TEND exhibits near-native mechanical
and material properties, cellular response and regen-
erative potential. This work overcomes current chal-
lenges in electrospinning for tendon and ligament
repair by producing an aligned, collagen-based graft
from benign solvents with high capacity to rapidly
wick blood and other biological fluids, and cellular
remodeling in vivo. These advancements allow for
the biomanufacturing of an anisotropic biomaterial
with near-native mechanical strength. This biocom-
patible and cytocompatible device is promotive of in
situ tissue remodeling, which may improve clinical
outcomes in tendon and ligament repair indications.
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