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Summary 

 

During the last decades especially tropical regions suffered from degradation as well as 

transformation of landscapes into different land-use systems. Logged rainforest sites in 

Southeast Asia are often transformed into cash crop monocultures, especially oil palm and 

acacia plantations. Such transformation processes may threaten the functioning of 

ecosystems with the worldwide highest biodiversity and endemism. Effects of this 

transformation and degradation have mainly been studied for aboveground organisms 

whereas effects on the functioning and composition of soil invertebrate communities are 

little studied.  

This thesis focuses on the effects of land-use transformation along a land-use gradient, i.e. 

from secondary rainforest to plantations (jungle rubber, rubber and oil palm 

monoculture), on microarthropod communities, using oribatid mites as model organisms. 

Further, I investigated the effect of management strategies within oil palm plantations on 

macro- and mesofauna soil animals. The field studies were conducted within the 

interdisciplinary project “Ecological and socioeconomic functions of tropical lowland 

rainforest transformation systems (Sumatra, Indonesia)” (EFForTS), established in Jambi 

Province, southwest Sumatra (Indonesia) in 2013.  

In the first study, presented in Chapter 2, we investigated shifts in trophic niches of six 

soil-living oribatid mite species and their possible trophic plasticity with the conversion of 

lowland secondary rainforest into plantation systems (jungle rubber, rubber and oil palm 

monoculture plantations) in two regions of southwest Sumatra, Indonesia. Therefore, 

stable isotope ratios (13C/12C and 15N/14N) of single oribatid mite individuals were 

measured and, subsequently, we calculated shifts in stable isotope niches with changes in 
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land-use systems. On the basis of significant changes in stable isotope ratios in three of six 

studied oribatid mite species this study demonstrated that these species are able to shift 

their trophic niche in land-use transformation systems. Those shifts were either due to 

changes in trophic level (indicated by δ15N values) or due to changes in the use of basal 

resources (indicated by δ13C values) or both. Notably, the shifts were most pronounced 

between more natural systems (secondary rainforest and jungle rubber) on one side and 

monoculture plantation systems (rubber and oil palm plantations) on the other side; 

thereby indicating that the shifts were related to land-use intensity.  

In the second study, presented in Chapter 3, we investigated shifts in community-level 

trophic niches of soil-living oribatid mites with the conversion of lowland secondary 

rainforest into plantation systems (jungle rubber, rubber and oil palm monoculture 

plantations) in two regions of southwest Sumatra, Indonesia. Therefore, stable isotope 

ratios (13C/12C and 15N/14N) of pooled oribatid mite species were measured, and 

subsequently, we calculated shifts in community-level trophic niche with transformation 

of land-use systems. This study demonstrated that the community-level trophic niche of 

oribatid mites is larger in rainforests than in plantation systems, suggesting that the 

conversion of rainforest into plantation systems is associated with reduced availability of 

litter resources. Results of this study further demonstrated that community-level trophic 

niches in rainforest and jungle rubber are separated from those in monoculture plantation 

systems, indicating again that the trophic niche of oribatid mite communities shifts 

markedly with land-use change. Additionally, 15N/14N ratios of oribatid mite communities 

indicated that the diet of microarthropods shifts towards predation and/or scavenging 

with changing land-use systems. This may be due to the limited amount of litter and its 
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low quality in rubber and oil palm plantations. Further, exceptionally low 13C/12C ratios of 

oribatid mite communities in rubber plantations suggest that certain oribatid mite species 

in these land-use systems use resources which are lacking in the other studied ecosystems. 

Oribatid mite communities in plantation systems present an unusual high functional 

richness and uniqueness compared to natural systems.  

The results of the first two studies demonstrated that soil-living oribatid mite species are 

able to adapt to changing land-use systems and do not suffer to the same extent from 

these changes as many aboveground species. The third experiment, presented in Chapter 

4, focused on investigating the effect of ‘tree islands’ of different size (5 x 5, 10 x 10, 20 x 

20 and 40 x 40 m) and diversity level of planted native trees (0, 1, 2, 3 and 6) within oil 

palm plantations. Here we investigated the response of meso- and macrofauna species to 

the establishment of ‘tree islands’ three years after the experiment started. Neither the 

different diversity levels of native tree species nor the plot size significantly affected the 

abundance of soil invertebrate taxa. However, richness of soil invertebrate taxa was 

positively affected in ‘tree islands’ of diversity level 2. The result demonstrated that the 

diversity and abundance of plant communities little affect the structure and diversity of 

soil invertebrates three years after establishment suggesting soil invertebrates respond 

with a pronounced time lag to the experimental manipulations. Overall, by investigating 

the trophic ecology of oribatid mites and their response to changes in land-use systems 

the results of this thesis improved the understanding of how soil communities and 

individual species respond to the conversion of rainforest into intensively managed 

agricultural systems.  

  



 
 

 

  



 
 

 

Chapter I 

 

General Introduction 
 

 

 

 

 

  



 
 

 

  



General Introduction  

 

 
5 

Land-use change and different land-use systems 
 

The worldwide rapidly growing human population is leading to a rising need for food, fuel 

and fiber, and therefore transformation as well as degradation of landscapes is increasing 

(Dirzo and Raven, 2003; Foley et al., 2005; Gibbs et al., 2010; Newbold et al., 2015). It is 

estimated, that the worldwide population size will increase to 9.7 billion by 2050 (UN, 

2015) leading to an increase in the demand for food by 70 % (Godfray et al., 2010). These 

demands lead to high pressure on ecosystems worldwide, leading to a higher conversion 

of natural ecosystems into plantations, with more pressure on the production and yield of 

those agricultural systems (Godfray et al., 2010; Lambin and Meyfroidt, 2011; Tscharntke 

et al., 2012). Human activity strongly impacts natural ecosystems, directly e.g., via building 

infrastructure and houses, as well as indirectly e.g., via climate change and nutrient 

deposition (DeFries et al., 2004; Foley et al., 2005, 2011). About 40 % of the terrestrial 

surface has been transformed into agricultural systems, with an increasing proportion 

being degraded resulting in habitat loss and desertification e.g., due to erosion, due to 

construction of infrastructure and additionally due to human behavior (Bridges and 

Oldeman, 1999; Reynolds et al., 2007; Foley et al., 2011; Pavao-Zuckerman and Sookhdeo, 

2017; Francini et al., 2018). This is mainly caused by high levels of fertilizer application and 

atmospheric deposition. Additionally, external input of nitrogen and phosphorus has been 

increasing since the 19th centuries (Peñuelas et al., 2012).  

In the last decades, especially tropical regions suffered from degradation and 

transformation into land-use systems, such as oil palm or rubber plantations (Sodhi et al., 

2010; Wilcove et al., 2013; Meijide et al., 2018). In South East Asia these transformations 

are threatening ecosystems with the highest biodiversity and endemism worldwide 
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(Jones, 2013). Since the mid-20th century rainforests in Southeast Asia have been logged, 

often followed by the transformation of logged sites into cash crop monocultures, such as 

rubber, oil palm and acacia plantations (Koh and Wilcove, 2008; Wilcove and Koh, 2010; 

Drescher et al., 2016). The process of expanding as well as intensification of agricultural 

landscapes poses the greatest threat to biodiversity (Tilman et al., 2001; Donald, 2004; 

Green et al., 2005). In my thesis, a gradient of different land-use systems was studied. 

Rainforest sites were represented by ‘primary degraded forest’, classified after Margono 

(2014). Jungle rubber land-use systems were rubber agroforests systems (Hevea 

brasiliensis) that resemble secondary rainforest, where naturally occurring species of 

different trees were included (Beukema et al., 2007). Rubber monoculture plantations 

exclusively include rubber trees (Hevea brasiliensis), and oil palm monoculture plantations 

exclusively include oil palm trees (Elaeis guineensis) (Drescher et al., 2016). 

One of the agricultural land-use systems that is rapidly increasing are vegetable oils (Clay, 

2013), with oil palm as one of the most quickly expanding crops (Carter et al., 2007; 

Fitzherbert et al., 2008). Additionally, biofuel markets and rising food demand in the 

European Union as well as in Indonesia, India and China result in increasing global oil palm 

production, currently by about 9 % each year (European Comission, 2006; Clay, 2013), with 

Malaysia and Indonesia as the main producers of palm oil (Koh and Wilcove, 2007). Palm 

oil belongs to one of the versatile oils, which has not only many different functions and 

therefore is widely used but it is also one of the most efficient crops worldwide (Zimmer, 

2010; Ashraf et al., 2018). Moreover, it is the crop which produces the highest yield per 

land area (Zimmer, 2010; Ashraf et al., 2018).  
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Transformation of rainforest into agricultural systems strongly increased in Indonesia. 

Commercial oil palm cultivation in Indonesia started in 1911, with Sumatra as starting 

point (Abdullah and Nobukazu, 2007; Corley et al., 2008). After the 1980s oil palm 

plantations were also established in other parts of Indonesia (Abdullah and Nobukazu, 

2007; Corley et al., 2008). Oil palm as well as rubber plantations often were established 

on rainforest sites which were already logged or degraded by fire (Curran et al., 2004; 

Dennis et al., 2005; Fitzherbert et al., 2008; Drescher et al., 2016). Nevertheless, 

conversion of rainforest into oil palm plantations may account for 16 % of recent 

deforestation in Indonesia (Fitzherbert et al., 2008), whereas the conversion of rainforest 

into rubber plantations and therefore the production of natural rubber has increased 

more than 50 % since 2000 (Ahrends et al., 2015). 

In 2012, 0.84 million hectares rainforest were converted into agricultural systems in 

Indonesia, the highest rate worldwide (Margono et al., 2014; Drescher et al., 2016). One 

of the highest losses of primary forest occurred in Sumatra (Indonesia), with 0.40 million 

hectares per year between 2009 and 2011 (Laumonier et al., 2010; Miettinen et al., 2011; 

Margono et al., 2014). Oil palm plantations are known to hold less than half as many 

vertebrate species as primary rainforest (Danielsen et al., 2009). However, the effects of 

conversion of rainforest into plantation systems have been rarely studied for belowground 

arthropods (Newbold et al., 2015). 

 

Soil communities  
 

Agricultural production essentially depends on soil, and soils therefore are important for 

human welfare, e.g. food, fiber and fuel production (Nielsen, 2019). In fact, one of the key 
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factors for the survival of humankind relies on soils and soil processes which are based on 

the activity of soil biota. However, until today understanding of the structure of soil 

communities and the functioning of soil systems still is limited. 

Up to 90 % of the primary production of plants enters the soil system as leaf/wood detritus 

and rhizodeposits (McNaughton et al., 1989; Bardgett, 2005). Therefore, decomposition, 

together with primary production, is the most important process for terrestrial 

ecosystems. The presence or absence of specific soil animal species can modify the 

structure and functioning of soil systems, such as the turnover of organic matter and 

nutrient cycling (Bardgett, 2005; Nielsen et al., 2015). Additionally, certain functional 

types of soil fauna may enhance soil functioning or even modify soil food webs (Brussaard 

et al., 2007). Soil arthropods are part of any soil but the abundance and diversity varies 

strongly between different ecosystems, even within small spatial scales (Ettema and 

Wardle, 2002). This high spatial heterogeneity in the structure of soil communities is likely 

due to variations in biotic as well as abiotic factors, e.g. climate and litter type (Coûteaux, 

Marie-Madeleine Bottner and Berg, 1995; Wardle et al., 2006; Berg and McClaugherty, 

2008). Soil fauna is highly diverse and can be divided into functional size classes of micro-

, meso- and macrofauna (Swift et al., 1979). The trophic differentiation of micro- and 

macrofauna species has been long accepted and recent evidence based on stable isotope 

analysis underlined these assumptions (Potapov et al., 2019), whereas mesofauna taxa 

usually were taken as uniform trophic guild (De Ruiter et al., 1993; Berg and Bengtsson, 

2007; Moore and de Ruiter, 2012). Contrasting this assumption, recent studies based on 

stable isotopes documented a variety of trophic niches and trophic levels within major 

groups of mesofauna (Schneider et al., 2004; Chahartaghi et al., 2005; Maraun et al., 2011; 



General Introduction  

 

 
9 

Klarner et al., 2013). As Potapov et al. (2019) stated, different species within the same 

taxonomic group can belong to different trophic levels and may therefore provide 

different ecosystem services. The most abundant taxa for soil mesofauna are Collembola 

and Acari (Petersen and Luxton, 1982). Both groups represent a wide range of different 

life history traits, trophic positions, and therefore are likely to affect ecosystem functions 

in a variety of ways (Scheu, 2002; Schneider et al., 2004; Nielsen, 2019). 

 

Macrofauna  
 

Macro- and megafauna, due to their larger size, have different and more pronounced 

effects on ecosystems (Lal, 1988; Folgarait, 1998; Migge-Kleian et al., 2006). They play an 

important role for litter fragmentation as well as displacement, produce large amounts of 

faecal pellets and can enhance decomposition processes (David, 2014). Many macro- and 

megafauna species are considered ecosystem engineers, since they can modify the 

environment strongly, e.g. by feeding, burrowing, and the production of faecal pellets 

(Bonachela et al., 2015; Parr et al., 2016; Ashton et al., 2019). Additionally, macro- and 

megafauna produce lasting imprints on the environment, including the change of soil 

structure as well as organic matter distribution, and thus influence soil properties, soil 

biological assemblages, element cycling and ecosystem functioning more than other soil 

fauna (Migge-Kleian et al., 2006; Parr et al., 2016; Ashton et al., 2019; Nielsen, 2019).  

 

Oribatid mites  
 

With about 11,000 described species (Subías et al., 2018), and the true number of species 

likely exceeding 50,000 (Walter and Proctor, 2013), oribatid mites are the most diverse 
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soil microarthropods. Oribatid mites colonize a wide range of different habitats, e.g. 

temperate to tropical regions, deserts, tundras and aquatic habitats (Krantz et al., 2009). 

Densities of oribatid mites can reach up to 200,000 ind./m2 in forest soils of temperate 

regions whereas in tropical regions densities typically are in the range of 30,000-40,000 

ind./m² (Maraun and Scheu, 2000; Maraun et al., 2007; Scheu et al., 2008). Oribatid mites 

are trophically highly diverse and span over about three to four trophic levels, including 

lichen and algae feeders, fungal feeders, primary and secondary decomposer as well as 

predators/scavengers (Maraun et al., 2004; Schneider et al., 2004; Illig et al., 2005; 

Erdmann et al., 2007). Different life history traits, e.g. low fertility, slow development and 

long life cycles, leave oribatid mites sensitive to soil conditions and thereby changes in 

environmental conditions (Behan-Pelletier, 1999). Due to high population density and 

species richness oribatid mites have been proposed as indicator organisms for soil health 

(Bedano et al., 2011) and land use (Zhao et al., 2013), reflecting impacts of land use 

intensification, especially in tropical rainforest systems (Migge-Kleian et al., 2007; Gan et 

al., 2014; Hasegawa et al., 2014). 

 

Trophic ecology  
 

Trophic niches  
 

One of the most important concepts in ecology is the niche concept (Hutchinson, 1959; 

Chase and Leibold, 2003). Niche differentiation is considered to be the basis for species 

co-existence (Tokeshi, 2009). Organisms not only interact as an ecological ‘guild’, e.g. 

group of taxa that use the same class of resources in a comparable way (Root, 1967), or 

due to trophic relations, e.g. predator-prey interactions which can shape the process of 
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evolution but also contributes to the complexity of communities (Tokeshi, 2009), but also 

due to the use of habitats (Tokeshi, 2009). Therefore, two types of niches are 

differentiated, the ‘fundamental niche’ (Hutchinson, 1978) and the realized niche, 

describing the ‘role’ of the species within a community, focusing mainly on its trophic 

position (Elton, 1927). The fundamental niche is defined as the niche occupied by species 

in the absence of competition or other biotic interactions, whereas the realized niche is 

defined as the niche space occupied in presence of competition and biotic factors. Based 

on the interactions between species and/or populations different mechanisms are 

responsible for these interactions or effects on other organisms (Abrams, 1987). Six 

different interaction types are commonly distinguished, i.e. competition, predation, 

herbivory, parasitism, diseases and mutualism (Krebs, 1994). One of the important factor 

is the availability of resources for species, forming the basis of competitive interactions 

(White, 1993). There are two different types of competition as defined by Birch (1957). 

First, resource competition occurs when organisms (from the same or different species) 

indirectly interact by using the same resources which is scarce. Second, interference 

competition occurs when organisms directly interact for access to resources. Competition 

therefore can lead to changes in the population size of the competing species (Lotka-

Volterra equation; Lotka, 1925; Volterra, 1926) or lead to one species ‘winning’ and the 

extinction of the other or co-existing of species, based on the availability of resources 

(Tilman, 1977, 1986).  

There are different niche-related concepts. The first is environmental filtering, which 

implies that communities are assembled according to similarity of niches (Vellend, 2010; 

Kraft et al., 2015). The second is based on competition between species leading to niche 
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differentiation of species within communities (Macarthur et al., 1967; Violle et al., 2011), 

implying that the structure of communities evolves with the co-existence of species in a 

stable environment (Korotkevich et al., 2018). The trophic niche as dimension of the 

ecological niche implies effects of species on other species within communities, thereby 

being related to the role within the ecosystem of those species (Leibold, 1995; Chase and 

Leibold, 2003). Species with a broader trophic niche are predicted to more easily invade 

existing communities than those with a narrower niche, and to survive disturbances more 

easily (Bommarco et al., 2010; Dammhahn et al., 2017). There are few studies focusing on 

changes in trophic-niches in disturbed habitats, most of the conducted studies focused on 

the response of individual species and not the community (Korotkevich et al., 2018). 

Studies focusing on trophic-niche shifts at the community level are mostly based on 

aquatic systems (di Lascio et al., 2013; Hansen et al., 2018). One of the few studies 

analyzing shifts in trophic niches of soil invertebrates to changes in land use systems, 

regarding the response of individual species is Krause et al. (2019), with the results 

indicating trophic plasticity in oribatid mite species. Further, focusing on the community 

level Klarner et al. (2013) investigated the trophic structure of Mesostigmata in beech 

stands in Central Germany and showed that Mesostigmata predominantly feed on 

secondary decomposer. Notably, closely related taxa often had very different stable 

isotope values suggesting that trophic niche partitioning allowed the coexisting of 

morphological similar species (Klarner et al., 2013). 
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Trophic plasticity 
 

Trophic plasticity allows animals to react to changing environmental conditions, such as 

global warming, intensified land use or flooding. Organisms with generalist feeding habits 

are more flexible regarding their diet and therefore may be less affected by changing 

environmental conditions as compared to organisms with a more narrow diet. Until today, 

trophic plasticity mostly has been investigated in aquatic taxa, mainly in fish (Bowen and 

Allanson, 1982; Almeida et al., 2012; Drymon et al., 2012) and snails (Riera, 2010). 

Predominantly, these studies focused on changes in morphology and behavior due to 

changing environmental factors rather than on trophic plasticity. Juvenile Tilapiu 

mossumbica (Cichlidae. Teleostei) move daily from deep offshore waters to shallow 

littoral areas for feeding and back (Bowen and Allanson, 1982). This movement is linked 

to changes in physical and biological features of the littoral environment and therefore 

varies in time. Moreover, with changes in the lake water level there were also changes in 

the diet and behavior. Micropterus salmoides (Percomorphaceae; Teleostei) is known as 

an invasive species and trophic plasticity likely contributes to the success as invasive 

species (Almeida et al., 2012). Another important factor for trophic plasticity in one 

species could be regional variation of diet as shown for Rhizoprionodon terraenovae 

(Carcharhinidae, Selachii) as well as for Hydrobia ulvae (Hydrobiidae, Gastropoda) (Riera, 

2010; Drymon et al., 2012). Leal et al. (2015) showed that tropic plasticity can also be 

influenced by symbiosis.  

Only few studies investigated the trophic plasticity in the field in soil organisms and very 

few considered changes in trophic niches with changes in land use. One of the few field 

studies existing showed that centipede predators are able to switch their diet from feeding 
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on secondary decomposer in rainforest to less 13C enriched prey in oil palm plantations 

(Klarner et al., 2017). Results of another study on predation of centipedes showed that 

the management of different forest types in Germany does not affect the prey spectrum, 

but it varies with the depth of the litter layer and soil pH (Günther et al., 2014). Another 

study focused on oribatid mites from temperate systems (Gan et al., 2014), where oribatid 

mites were found to suffer from environmental changes, since those animals are assumed 

to be specialized regarding their diet (according to their 15N and 13C signature) and 

therefore likely to go extinct with changes in environmental conditions. Generally, 

laboratory studies with oribatid mites suggest that their food preferences are innate and 

little affected by learning (Brückner et al., 2018). 

 

Stable isotopes 
 

It is difficult to study the trophic interactions of soil animals (Pollierer et al., 2009). One 

major problem is the structure of the soil. Soil structure, e.g. pore size distribution, water 

infiltration, water holding capacity and/or chemical characteristic have a direct impact on 

the abundance and distribution of soil animals (Ducarme et al., 2004; Nielsen et al., 2008; 

Nielsen, 2019). Soil animals are often small, displace complex trophic levels and are not 

easy to identify (Sunderland et al., 2005; Potapov et al., 2019). Further, the feeding 

behavior of soil animals is also affected by biotic and abiotic soil conditions (Traugott et 

al., 2013). Models and simulations can provide insights into dynamics and structure of 

food webs, however, it is important to validate the trophic position of species/taxa with 

real-world data (Finlay-Doney and Walter, 2012). Recently, significant methodological 

advantages have been made studying trophic interactions (Traugott et al., 2013). Some of 
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the important methods for studying trophic interactions are stable isotope and fatty acid 

analysis which allow to detect resource allocation (Ruess and Chamberlain, 2010; 

Boecklen et al., 2011), whereas DNA-based techniques allow to link feeding interactions 

to taxonomic positions (Gariepy et al., 2007; Symondson, 2012). Advantages of DNA-based 

methods include for example that multiple individual samples can be pooled in e.g., NGS-

based techniques (Deagle et al., 2009) or gut-content analysis (Zaidi et al., 1999), however, 

there also are disadvantages. One of the most critical one is the high sensitivity of PCR, 

which may not only detect food and predator DNA but also DNA of contaminations 

(Traugott et al., 2013). Fatty acid analysis can be used to detect different diet due to 

specific fatty acid signatures of bacteria, fungi, algae and plants which animals are not able 

to synthesize (Ruess and Chamberlain, 2010). Fatty acids of consumers to a large extent 

originate from their diet as they are assimilated and incorporated without major change 

('dietary routing'; Ruess and Chamberlain, 2010; Traugott et al., 2013). Nevertheless, fatty 

acid analysis also has disadvantages, one is the intermediate specificity as well as the 

metabolic modification of fatty acid signatures in the consumer (Traugott et al., 2013). 

Stable isotope analysis is one of the most valuable tool for studying food webs (Ehleringer 

et al., 1986; Fry, 2006; Boecklen et al., 2011; Traugott et al., 2013) and has been adopted 

for long to also study soil food webs (Ponsard and Arditi, 2000; Scheu and Falca, 2000; 

Scheu, 2002). One of the disadvantages of this method is the rather large amount of 

material needed hampering the analysis of small species, this, however, has been 

overcome in part by recent advances in the analytical procedure (Langel and Dyckmans, 

2014).  
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Natural variations in 15N/14N and 13C/12C ratios allow to evaluate the trophic structure of 

animal communities (DeNiro and Epstein, 1978; Minagawa and Wada, 1984; Wada et al., 

1991). Stable isotope signatures of animal tissue provide information about the trophic 

position and trophic links of animals as well as on the basal resource used (Tiunov, 2007; 

Traugott et al., 2013). The use of stable isotopes for analyzing the structure of food webs 

started in the 1970s (DeNiro and Epstein, 1978) and increased ever since (Ehleringer et al., 

1986; Fry, 2006; Boecklen et al., 2011). 13C ratios are used to trace basal food resources, 

since 13C/12C ratios stay rather constant through food chains (Post, 2002). By contrast, 

isotopic fractioning leads to an enrichment in 15N from prey to consumer by 3.4 ‰ per 

trophic level (Post, 2002; Martínez Del Rio et al., 2009), thereby 15N values allow ascribing 

animals to different trophic levels and reflecting their feeding habits (DeNiro and Epstein, 

1978; Kreipe et al., 2015). However, estimation of the trophic position requires an isotopic 

baseline since 15N/14N and 13C/12C ratios vary in primary producers in time and space 

(Jardine et al., 2006). To establish the appropriate baseline, it is necessary to measure the 

isotopic signatures of carbon sources within the study site, i.e. by measuring the stable 

isotope ratio of leaf litter and soil (Casey and Post, 2011). Comparing isotope signatures 

of animals and the basal resource is a powerful tool to understand trophic interactions 

and dynamics of organic matter in soil (Potapov et al., 2019), processes otherwise very 

difficult to study in-situ (Tiunov, 2007). Dead plant material either is used for 

decomposition or incorporated into soil organic matter, processes which are essentially 

driven by the activity and/or interactions between soil organisms (De Ruiter et al., 1993; 

Nielsen et al., 2011; Filser et al., 2016; Potapov et al., 2019).  
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Stable isotopes cannot only be used to study the structure of food webs, but also to 

analyze the trophic ecology of specific taxonomic groups (Scheu and Falca, 2000; Halaj et 

al., 2005; Maraun et al., 2007, 2011; Tiunov, 2007). In soil, stable isotopes have been used 

to investigate trophic niches of species of earthworms, (Martin et al., 1992), ants 

(Blüthgen et al., 2003), but also smaller animals such as oribatid mites (Schneider et al., 

2004; Erdmann et al., 2007; Maraun et al., 2011), springtails (Chahartaghi et al., 2005) and 

mesostigmatid mites (Klarner et al., 2013). Blüthgen et al. (2003) showed that stable 

isotopes analysis is a powerful tool for investigating trophic niche partitioning and 

plasticity in complex and diverse communities. 

 

Management of oil palm plantations and the ‘Biodiversity 

Enrichment Experiment‘  
 

Natural ecosystems are affected by human activities, including conversion into plantations 

and management of ecosystems (Foley et al., 2005, 2011). Until today, about 40 % of the 

terrestrial surface has been transformed into agricultural systems (Foley et al., 2011). In 

part, however, these systems are not managed in a sustainable way. Rather, a 

considerable proportion of them is degraded; further habitat loss occurs due to 

construction of infrastructure and desertification processes (Bridges and Oldeman, 1999; 

Reynolds et al., 2007; Foley et al., 2011; Pavao-Zuckerman and Sookhdeo, 2017; Francini 

et al., 2018).  

Intensification of land use and the associated biodiversity loss affects the structure of 

ecological communities and therefore the functioning of above- and belowground 

systems (Sodhi et al., 2004; Erdmann et al., 2007; Wilcove et al., 2013; Barnes et al., 2014; 
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Edwards et al., 2014; Klarner et al., 2017). Reduced decomposer diversity may 

compromise decomposition processes as well as carbon and nutrient cycling (Handa et al., 

2014). The large scale transformation of rainforests into monoculture plantation systems, 

such as oil palm and rubber, is one of the main drivers for biodiversity loss, especially in 

South East Asia (Fitzherbert et al., 2008; Immerzeel et al., 2014; Teuscher et al., 2016). 

Effects of oil palm plantation management on aboveground biodiversity and ecosystem 

functioning is receiving increased interest (Nurdiansyah et al., 2016; Syafiq et al., 2016; 

Teuscher et al., 2016; Ashton-Butt et al., 2018), however, only few studies focused on 

consequences for the belowground systems (Bessou et al., 2017). As soil communities are 

linked to the diversity and abundance of plant communities (Eisenhauer et al., 2011; 

Thakur and Eisenhauer, 2015), conversion of rainforest into monoculture plantations is 

likely to strongly affect belowground biodiversity. Therefore, to protect biodiversity of 

tropical regions it is important to integrate the belowground system and to consider the 

management of plantation systems (Koh et al., 2009; Foster et al., 2011; Luskin and Potts, 

2011; Teuscher et al., 2015, 2016). Oil palm plantations may harbor a diverse understory 

(Foster et al., 2011), however, understory plants often compete with oil palms and 

therefore commonly are weeded (Tohiran et al., 2017). Removal of understory plants in 

oil palm plantations may be done by hand, but more commonly by the use of herbicides. 

However, the extensive use of herbicides may pollute water and thus provides a threat to 

the already endangered ecosystems (Schiesari and Grillitsch, 2011; Comte et al., 2012). In 

fact, the use of pesticides in agricultural land-use systems has been linked to the decline 

in biodiversity (Geiger et al., 2010; Beketov et al., 2013). A number of studies showed that 

the reduction in herbicide use and the associated increase in the coverage of understory 

vegetation in oil palm plantations may beneficially affect aboveground invertebrates, but 
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also the decomposer system (Chung et al., 2000; Ashraf et al., 2018; Ashton-Butt et al., 

2018; Spear et al., 2018; Darras et al., 2019). 
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Study site 
 

Studies of the presented theis formed part of the interdisciplinary project “Ecological and 

socioeconomic functions of tropical lowland rainforest transformation sytems (Sumatra, 

Indonesia) (Drescher et al., 2016) (Fig. 1).  

 

Figure 1. Location of study sites of EFForTS in Sumatra and the Jambi Province (Drescher et al., 

2016), core plots are located in the two landscapes near Bukit Duabelas National Park and Harapan 

Rainforest. 
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Two (Chapters 2 and 3) of the three studies reported were conducted at the EFForTS core 

plots established 2012 in two landscapes, Bukit Duabelas (2° 0’ 57” S, 120° 45’ 12” E) and 

Harapan (1° 55’ 40” S, 103° 15’ 33” E). The dominant soil type at both landscapes is Acrisol. 

At Bukit Duabelas soils with a clay texture predominate whereas Harapan soils are 

characterized by a sandy loam texture. In total, 32 core plots were established, four plots 

in each of four different land-use systems: lowland rainforest, jungle rubber, rubber and 

oil palm monoculture plantations. Rainforest plots represented “primary degraded forest” 

(classified by Margono et al., 2014), with signs of selective logging as well as extraction of 

non-timber products. Jungle rubber, represented smallholder rubber agroforest systems 

comprising previously logged rainforest enriched with rubber trees (Hevea brasiliensis). 

Both, rubber as well as oil palm plots were situated within smallholder monoculture 

plantations, varying between 7 to 16 years (rubber) and 8 to 15 years (oil palm) in 2012 

(Drescher et al., 2016). Each plot was 50 x 50 m and contained 5 x 5 m subplots at random 

positions within the plot (Drescher et al., 2016). The third study (Chapter 4) formed part 

of the “Biodiversity Enrichment Experiment” established in 2013 in the framework of 

EFForTS in the oil palm plantation of PT Humusindo Makmur Sejata (01.95° S and 103.25° 

E, 47±11 m a.s.l.) (Teuscher et al., 2016) (Fig. 2). The experiment was located in the 

Harapan landscape and the dominant soil type is loamy Acrisol (Allen et al., 2015). In 2016, 

the average age of planted oil palms was between 6 and 12 years. Management of the 

plantation contained fertilizer application, regular manual weeding of understory plants 

as well as removal of epiphytes. Herbicides were only applied if the manual weeding could 

not conducted due to lack of available workers (Teuscher et al., 2016). 
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Figure 2. Map of the study area of the EFForTS Project (Drescher et al., 2016, modified from 

Teuscher et al., 2016). The green star indicates the location of the enrichment experiment in the 

oil palm plantation of PT Humusindo Makmur Sejata.  

 

Within the oil palm plantation, tree islands of varying species diversity and compositions 

were established (Fig. 3). 52 plots of different plot size (5 × 5, 10 × 10, 20 × 20 and 40 × 40 

m) as well as different tree diversity levels (0, 1, 2, 3 and 6 species) were established, 

according to the random partitions design of Bell et al. (2009). Each tree species was 

selected only once at each species diversity level, therefore species composition within 

the tree islands was random. Additionally, four plots of the same size (10 x 10 m) and 
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management as usual were established as control plots (ctrl) (Teuscher et al., 2016), 

resulting in 56 plots total. For the enrichment of the tree islands six native trees were 

selected, i.e. three fruit trees (Parkia speciosa, and Archidendron pauciflorum, Fabaceae; 

Durio zibethinus, Malvaceae), and three timber trees (Peronema canescens, Lamiaceae; 

Shorea leprosula, Dipterocarpaceae), and one known to produces natural latex (Dyera 

polyphylla, Apocynaceae). Prior to tree planting, 40 % of the oil palms were removed from 

the experimental plots. Management of the established plots contained manual weeding 

in the first two years (preventing weeds to overgrow planted saplings; every three month) 

which was stopped after that to allow natural succession, i.e. interaction/competition with 

each other and oil palms. Application of fertilizers, herbicides and insecticides in the plots 

were stopped after tree planting. Samples for my thesis were taken in 2016 and therefore 

were without manual weeding.  
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Figure 3. Study design of the biodiversity experiment (Teuscher et al., 2016). (A) Tree island with 

varying tree diversity levels (0, 1, 2, 3 and 6 species), identity and composition and plot size (5 × 5, 

10 × 10, 20 × 20 and 40 × 40 m). Four control plots without treatment and with management as 

usual are represented by ctrl. In total, there are 56 plots. (B) Oil palms (OP) were cut in the plots 

to enhance the light conditions, planted trees are in a 2 x 2 m grid. (C) Planted trees 

interact/compete with each other and the oil palms. 

 

Objectives and chapter outline 
 

This thesis aims at improving the knowledge about the effects of land-use changes in 

South East Asia, Sumatra (Indonesia), i.e. more specifically the conversion of tropical 

rainforest to jungle rubber, rubber and oil palm monoculture plantations, on soil 

arthropod communities, especially oribatid mites, and their trophic ecology. Chapters 2 

to 4 report results from field experiments with Chapter 2 investigating the shift in trophic 
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niches of individual species of oribatid mites with the conversion of tropical rainforest into 

plantations, as indicated by stable isotopes (15N, 13C). Chapter 3 investigates the shift in 

trophic niches of oribatid mite communities, represented by the species making up 80 % 

of total oribatid mite individuals in the respective land-use system, as indicated by stable 

isotopes (15N, 13C). Chapter 4 investigates the effect of the enrichment of oil palm 

plantations with native tree species in ‘tree islands’ as well as varying island size on soil 

invertebrate communities as part of the ‘Biodiversity Enrichment Experiment’.  

The main hypotheses of this thesis are as follows: 

(1) Oribatid mite species cope with environmental changes in transformed 

ecosystems by shifting their trophic niches, with land-use system change inducing 

a shift in trophic levels and/or the use of basal resources indicating trophic 

plasticity.  

(2) The trophic niche of oribatid mite communities changes with land-use system 

being larger in more natural systems (rainforest, jungle rubber) than in plantation 

systems (rubber, oil palm). 

(3) The enrichment of oil palm plantations with native tree species increases the 

density and complexity of soil arthropod communities with the effect increasing 

with plot size.  

The content of the three chapters can be summarized as follows: 

In Chapter 2 we investigated shifts in trophic niches of six soil-living oribatid mite species 

(Plonaphacarus kugohi, Protoribates paracapucinus, Scheloribates praeincisus, 

Bischeloribates mahunkai, Rostrozetes cf. shibai, and Rostrozetes sp. 1) with the 

conversion of lowland secondary rainforest into plantation systems of different land use 
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intensity (jungle rubber, rubber and oil palm monoculture plantation) in two regions of 

southwest Sumatra, Indonesia. We measured stable isotope ratios (13C/12C and 15N/14N) 

of single oribatid mite individuals and inspected shifts in stable isotope niches with 

changes in land-use systems. Significant shifts in stable isotope ratios in three of the six 

studied oribatid mite species (S. praeincisus, R. cf. shibai and Rostrozetes sp. 1) indicated 

that these species in fact shift their trophic niches with environmental changes. The 

trophic niche of the other three studied species (B. mahunkai, P. kugohi and P. 

paracapucinus) did not differ significantly between the land-use systems, but generally 

followed a similar trend as in the other three species. Overall, the results suggest that 

colonization of very different ecosystems such as rainforest and intensively managed 

monoculture plantations by oribatid mite species likely is related to their ability to shift 

their trophic niches, i.e. to trophic plasticity. Notably, the shift was due to both changes in 

the use of basal resources as well as trophic levels. 

Chapter 3 investigated shifts in the community-level trophic niche of oribatid mites with 

the conversion of rainforest into rubber and oil palm plantations. We investigated 80 % of 

oribatid mite communities occurring in lowland secondary rainforest and plantation 

systems of different land use intensity (jungle rubber, rubber and oil palm monoculture 

plantation) in two regions of southwest Sumatra, Indonesia. We measured stable isotope 

ratios (13C/12C and 15N/14N) of pooled individuals of oribatid mite species and inspected 

shifts in community-level trophic niche with changes in land-use systems. Our results 

confirmed that the community-level trophic niche of oribatid mites in fact is wider in 

rainforest than in plantation systems. Between natural and plantation systems a clear 

separation of the community-level trophic niche occur, indicating that with natural and 
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plantation systems the community-level trophic niche of oribatid mites is totally different. 

As indicated by minimum and maximum of litter-calibrated isotopic signatures of oribatid 

mite community-level trophic niche, only oribatid mite isotopic signatures from oil palm 

or rubber were significantly different compared to rainforest and jungle rubber. This 

implies that within oil palm and rubber plantations, there are single species within oribatid 

mite communities which occupy trophic niches which are not present in rainforest and/or 

jungle rubber.   

The study reported in Chapter 4 was part of the ‘Biodiversity Enrichment Experiment’ (see 

above). This experiment aimed at enhancing biodiversity and ecosystem functioning in oil 

palm plantations via ‘tree islands’ with varying diversity level (0, 1, 2, 3 and 6 different tree 

species) and plot size (5 x 5, 10 x 10, 20 x 20 and 40 x 40 m). We investigated the effect of 

‘tree islands’ on macro- and mesofauna soil invertebrate taxa three years after the 

experiment was established. Our results demonstrated that neither the diversity level of 

the planted tree species nor plot size affected the abundance of soil invertebrate taxa but 

soil invertebrate richness varied with tree diversity. Notably, richness of soil invertebrates 

peaked at diversity level 2. As soil communities respond with a delay in time to soil forming 

process, we expect that the observed changes will increase in time.  
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Abstract  
 

Land-use change is threatening biodiversity worldwide, affecting above and below ground 

animal communities by altering their trophic niches. However, shifts in trophic niches with 

changes in land use are little studied and this applies in particular to belowground animals. 

Oribatid mites are among the most abundant soil animals, involved in decomposition 

processes and nutrient cycling. We analyzed shifts in trophic niches of six soil-living 

oribatid mite species with the conversion of lowland secondary rainforest into plantation 

systems of different land-use intensity (jungle rubber, rubber and oil palm monoculture 

plantation) in two regions of southwest Sumatra, Indonesia. We measured stable isotope 

ratios (13C/12C and 15N/14N) of single oribatid mite individuals and calculated shifts in stable 

isotope niches with changes in land use. Significant changes in stable isotope ratios in 

three of the six studied oribatid mite species indicated that these species shift their trophic 

niches with changes in land use. The trophic shift was either due to changes in trophic 

level (δ15N values), to changes in the use of basal resources (δ13C values) or to changes in 

both. The trophic shift generally was most pronounced between more natural systems 

(rainforest and jungle rubber) on one side and monoculture plantations systems (rubber 

and oil palm plantations) on the other, reflecting that the shifts were related to land-use 

intensity. Although trophic niches of the other three studied species did not differ 

significantly between land-use systems they followed a similar trend. Overall, the results 

suggest that colonization of very different ecosystems such as rainforest and intensively 

managed monoculture plantations by oribatid mite species likely is related to their ability 

to shift their trophic niches, i.e. to trophic plasticity. 
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Introduction 
 

Due to the worldwide growing human population and the associated rising need for food, 

fuel and fiber, transformation and degradation of landscapes rapidly increased over the 

last decades (Dirzo and Raven, 2003; Foley et al., 2005; Gibbs et al., 2010; Newbold et al., 

2015). This is especially true for tropical regions where rainforest is rapidly and 

continuously transformed into different land-use systems, such as oil palm and rubber 

plantations (Sodhi et al., 2010; Wilcove et al., 2013; Meijide et al., 2018). Within the humid 

tropics Southeast Asia is one of the hotspots of recent deforestation with the highest loss 

of primary rainforest occurring in Sumatra (Indonesia) on average 0.40 Mha per year 

between 2009 and 2011 (Laumonier et al., 2010; Miettinen et al., 2011; Margono et al., 

2014). Notably, these hotspots of deforestation are located in regions with the highest 

biodiversity and highest level of endemism worldwide (Myers et al., 2000; Sodhi et al., 

2010; Drescher et al., 2016). It has been shown that land-use intensification in the tropics 

affects diversity and biomass of soil animals including centipedes, earthworms and 

oribatid mites (Lavelle et al., 1997, 2006; Erdmann et al., 2007; Whalen and Sampedro, 

2010; Wilcove et al., 2013; Klarner et al., 2017), which in turn may affect decomposition 

and nutrient cycling provided by these organisms. Oribatid mites are among of the most 

abundant soil arthropods worldwide and involved in decomposition processes and 

nutrient cycling (Maraun and Scheu, 2000; Bardgett, 2005). There are more than 11,000 

described species (Subías et al., 2018) with the true number of species likely exceeding 

50,000 (Walter and Proctor, 2013). Oribatid mites can reach densities of up to 200,000 

ind./m2 in forest soils of temperate regions whereas in tropical regions densities typically 

are in the range of 30,000 - 40,000 ind./m² (Maraun and Scheu, 2000; Maraun et al., 2007; 



Chapter II: Trophic plasticity in orbatid mites 

 

 

42 

Scheu et al., 2008). Oribatid mites are trophically diverse and stable isotope analyses 

suggest that they span over about four trophic levels including lichen feeders, fungal 

feeders, primary and secondary decomposers as well as predators/scavengers (Schneider 

et al., 2004; Illig et al., 2005; Maaß et al., 2015). 

Trophic position and trophic interactions characterize species and their role in ecosystem 

functioning and services. For many ecosystem functions, such as decomposition, nutrient 

cycling, carbon sequestration, primary production and crop yield, the soil decomposer 

system is essential (Hooper et al., 2005; Powers et al., 2009). The trophic structure of 

animal communities can be evaluated by analyzing natural variations in 15N/14N and 

13C/12C ratios (Wada et al., 1991; Boecklen et al., 2011; Potapov et al., 2019). Animal tissue 

typically is enriched in 15N as compared to their food resource by about 3 and for 13C by 

about 1 δ unit per trophic level, however, the enrichment may vary between trophic guilds 

and also between taxa (Post, 2002; McCutchan et al., 2003; Potapov et al., 2019). Thereby, 

15N values allow estimating trophic levels (DeNiro and Epstein, 1978; Kreipe et al., 2015), 

whereas 13C is used to identify basal food resources since 13C values change little across 

trophic levels (Wada et al., 1991). Stable isotopes have been used widely to analyze 

trophic niches of soil invertebrates (Scheu and Falca, 2000; Halaj et al., 2005; Maraun et 

al., 2007, 2011; Tiunov, 2007) including earthworms (Martin et al., 1992), ants (Rosumek 

et al., 2018), springtails (Chahartaghi et al., 2005), gamasid mites (Klarner et al., 2013) and 

oribatid mites (Schneider et al., 2004; Erdmann et al., 2007; Maraun et al., 2011). 

However, until today stable isotopes rarely have been used to investigate how trophic 

niches of soil animal taxa are affected by changes in land-use (Lagerlöf et al., 2017; Minor 

et al., 2017).  
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Forest transformation and land-use intensification strongly affect animal and plant taxa, 

and the changes typically are associated by the loss of species (Koh and Wilcove, 2008; 

Flynn et al., 2009; Barnes et al., 2014). An important mechanism to cope with 

environmental alterations such as land-use change is to respond in a plastic way by shifting 

trophic niches and adapt to the resources available locally. Trophic plasticity, therefore, 

may prevent extinction and thereby support biodiversity in converted ecosystems. Until 

today ecological plasticity mostly has been investigated in aquatic taxa, such as fish 

(Bowen and Allanson, 1982; Almeida et al., 2012; Drymon et al., 2012) and gastropods 

(Riera, 2010). These studies, however, focused on changes in morphology and behavior 

due to changing environmental factors rather than on trophic plasticity. Few studies 

investigated trophic shifts in soil animals. Klarner et al. (2017) showed that centipede 

predators switch their diet from feeding on secondary decomposers in rainforest to less 

13C enriched prey in oil palm plantations. Investigating variations in stable isotope ratios 

in oribatid mites from temperate ecosystems Gan et al. (2014) found oribatid mite species 

numbers to decline in global change scenarios since trophic specialists will likely go extinct. 

However, these findings may have been biased as the stable isotope data they used were 

based on pooled individuals which reduced intraspecific variability. Measuring pooled 

individuals may reduce the variation in the data and thereby erroneously point to 

specialist feeding. These restrictions may be circumvented as recent improvements allow 

to measure stable isotope ratios of small samples (Langel and Dyckmans, 2014) including 

single individuals of soil microarthropod species.  

The current study formed part of the interdisciplinary project “Ecological and 

socioeconomic functions of tropical lowland rainforest transformation systems” 
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(EFForTS), established in Jambi Province, southwest Sumatra (Indonesia) (Drescher et al., 

2016). By measuring natural variations in 15N/14N and 13C/12C ratios of individual 

specimens, we analyzed trophic niches of six soil living oribatid mite species occurring in 

rainforest and three major rainforest-transformation systems in Southeast Asia, i.e. 

rubber agroforest (“jungle rubber”), and rubber and oil palm monoculture plantations. We 

will further refer to those four system in the following as the four land-use systems (rain 

forest, jungle rubber, rubber, oil palm). We hypothesized that (1) oribatid mite species 

adapt to environmental changes in transformed ecosystems by shifting their trophic niche, 

and that (2) the shifts are more pronounced in 13C than in 15N as changes in land-use 

systems more strongly affect basal resources (as indicated by 13C) than trophic levels (as 

indicated by 15N).  

 

Material and Methods 
 

Study sites 
 

Soil samples were taken in two regions of Jambi Province, Bukit Duabelas (2° 0’ 57” S, 120° 

45’ 12” E) and Harapan (1° 55’ 40” S, 103° 15’ 33” E). In each region four different land-

use systems were investigated: rainforest, jungle rubber, rubber and oil palm plantations 

(Drescher et al., 2016). Rainforest sites were secondary rainforest which had been 

selectively logged about 20 - 30 years ago. Jungle rubber originated from enrichment of 

rainforest with rubber trees (Hevea brasiliensis) and includes rainforest trees. Jungle 

rubber sites were used to represent rainforest conversion systems of low land-use 

intensity lacking fertilizer input and herbicide application. Rubber as well as oil palm 

(Elaeis guineensis) monocultures were intensively managed plantations of an average age 
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of 13 to 14 years. These systems were chosen to represent high land-use intensity 

plantation systems. Four replicates of each land-use system (rainforest, jungle rubber, 

rubber and oil palm plantations) in the two landscapes (Bukit Duabelas, Harapan) were 

established, resulting in 32 plots; in each plot samples were taken from three subplots, 

resulting in a total of 96 samples. Each plot spanned 50 x 50 m and the subplots 5 x 5 m 

(Drescher et al., 2016). For more details of the study site see Drescher et al. (2016). At 

both landscapes (Bukit Dubaelas, Harapan) acrisols dominated. Soils with a clay texture 

dominated in Bukit Duabelas, whereas soils with a sandy loam texture dominated in 

Harapan. All study sites were at similar altitudes varying between 50 and 100 m a.s.l. 

(Guillaume et al., 2015). 

 

Sampling, extraction and species determination 
 

Samples of 16 x 16 cm comprising the litter layer and the underlying 0 - 5 cm of the mineral 

soil were taken in October/November 2013. The two layers were separated, transported 

to the laboratory and extracted by heat (Kempson et al., 1963). Oribatid mites were 

determined to species/morphospecies level using Balogh & Balogh (Balogh and Balogh, 

2012) and ascribed to feeding guilds including lichen feeders, primary decomposer, 

secondary decomposer/fungal feeders and predators/scavengers based on Maraun et al. 

(2011). Species and morphospecies were documented by taking pictures, linked with 

morphological traits and species identification numbers (species ID), and included into 

Ecotaxonomy database (http://ecotaxonomy.org/). Animals were stored in 70 % ethanol 

until further analysis. 
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Stable isotope analysis 
 

The six most abundant oribatid mite species of 220 species overall (D. Sandmann, unpubl. 

data) occurring in each of the land-use systems in both landscapes were selected for stable 

isotope analysis, i.e. Plonaphacarus kugohi (Aoki, 1959) (Ecotaxonomy species ID 405729), 

Protoribates paracapucinus (Mahunka, 1988) (Ecotaxonomy species ID 405671), 

Scheloribates praeincisus (Berlese, 1910) (Ecotaxonomy species ID 405449), 

Bischeloribates mahunkai Subías, 2010 (Ecotaxonomy species ID 405450), Rostrozetes cf. 

shibai (Aoki, 1976) (Ecotaxonomy species ID 405389), und Rostrozetes sp. 1 (Ecotaxonomy 

species ID 405478). In total, 100 individuals of S. praeincisus, 75 of R. cf. shibai, 54 of P. 

paracapucinus, 44 of B. mahunkai, 19 of P. kugohi and 13 of Rostrozetes sp. 1 were 

analyzed.  

For calibration of oribatid mite stable isotope values we measured stable isotope values 

of leaf litter taken from the dried litter material after extraction of the animals (ca. 2.5 g 

per sample). Prior to stable isotope analysis the litter was dried at 60°C for 24 h and ground 

in a ball mill (Retsch Mixer Mill MM200, Haan, Germany). For measuring stable isotope 

values of Oribatida, single individuals were used. Oribatid mite specimens were dried at 

60°C for 24 h and weighed into tin capsules. Between one and three individuals from each 

of the transformation systems of both landscapes were measured (Table S1). Stable 

isotope values were determined by a coupled system of an elemental analyzer (NA 1500, 

Carlo Erba, Milan, Italy) and a mass spectrometer (MAT 251, Finnigan, Bremen, Germany) 

adopted for the analysis of small sample sizes (Langel and Dyckmans, 2014). The content 

of 13C and 15N was expressed using the δ notation with δX (‰) = (Rsample−Rstandard) / Rstandard 

x 1000, with X representing the target isotope (15N or 13C) and Rsample and Rstandard the 
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13C/12C and 15N/14N ratios, respectively. As standard for 13C and 15N analyses Vienna PD 

Belemnite (Coplen et al., 2002) and nitrogen in atmospheric air were used, respectively. 

Acetanilid was used as internal standard. 

 

Statistical analysis  
 

Means of δ13C and δ15N values of the three litter samples per plot were used as plot-

specific litter δ13C and δ15N values. Differences between plot-specific litter δ13C and δ15N 

values and the overall mean litter δ13C and δ15N values (across all plots, landscapes and 

land-use systems) were used to adjust individual δ13C and δ15N values of oribatid mites 

per plot which allowed direct comparison of stable isotope values of oribatid mites across 

plots. The procedure resembles the calculation of ∆ values but allows to present data 

relative to the overall mean litter δ13C and δ15N values. Calibrated data were used for all 

further analysis. Based on these values, average δ13C and δ15N values of oribatid mite 

species across plots, land-use systems and landscapes were calculated. Further variations 

in δ13C and δ15N values within species across the four different land-use systems were 

inspected using the standard deviation (SD) of stable isotope values within species per 

plot (Table S2). Oribatid mites were ascribed to trophic levels assuming a trophic 

enrichment of 15N by 3.4 ‰ per trophic level except for primary decomposers for which 

we used a value of 1.7 ‰ as they typically are less enriched than consumers of higher 

trophic level (Vanderklift and Ponsard, 2003; Potapov et al., 2019).  

Statistical analyses were performed using R v 3.5.2 (R Core Team, 2018) with R studio 

interface (RStudio, Inc.). Normality and variance homogeneity were inspected using 

diagnostic plots. We did not check for overfitting in the model with all species but as we 
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also inspected each species separately and found stable isotope values to vary significantly 

with land-use systems overfitting in the model with all species is unlikely. Differences in 

the variation of δ13C and δ15N values across land-use systems were inspected using a linear 

mixed effects model as implemented in the lme4 package (Bates et al., 2015). Fixed factors 

were species identity and land-use system, with ‘PlotID’ included as random factor. 

Significant differences between fixed factors were inspected using the Anova function. 

Differences in each δ13C and δ15N values between species were inspected using a linear 

mixed effects model as implemented in the nlme package (Pinheiro et al., 2007). Species 

identity and land-use systems were used as fixed factors and a random factor ‘PlotID’ was 

included to account for multiple sampling per plot. The significance of the fixed factors 

were inspected using the Anova function. Pairwise differences between the different land-

use systems were inspected using the glht package (Hothorn et al., 2008) with ‘Tukey’s 

pairwise contrasts’. Data provided in text and figures are given as means  ± 1 SD. 

 

Results  
 

Diagnostic plots of standard deviation against mean δ13C and δ15N showed that the data 

were distributed normally. Stable isotope values of the combined dataset differed 

significantly between the six oribatid mite species across land-use systems (χ2
5,3 = 60.56, 

p < 0.001 for 13C, and χ2
5,3 = 78.74, p < 0.0001 for 15N). Variation in stable isotope values 

within species differed significantly between land-use systems for 15N but not for 13C (χ2
3,4 

= 8.53, p = 0.036 and χ2
3,4 = 3.85, p = 0.279, respectively; Fig. S3-S4). Variations in δ15N 

values were similar in rainforest, jungle rubber and rubber plantations (SD of -0.10 ‰, -

0.67 ‰ and 0.76 ‰, respectively) but significantly higher in oil palm plantations (SD of 
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0.62 ‰). Individual mixed effects models for each δ13C and δ15N values in these species 

indicated that these shifts were due to changes in δ15N values in S. praeincisus and R. cf. 

shibai (χ2
3 = 17.14, p < 0.001 for S. praeincisus, χ2

3 = 10.36, p = 0.016 for R. cf. shibai), with 

δ15N values being lowest in rainforest and highest in rubber plantations in S. praeincisus, 

and being highest in jungle rubber and similarly low in rubber and oil palm plantations as 

well as in rainforest in R. cf. shibai (Tukey’s HSD test; rubber vs. rainforest p < 0.001 for S. 

praeincisus, jungle rubber vs. rainforest p = 0.025, jungle rubber vs. oil palm p = 0.040, 

jungle rubber vs. rubber p = 0.022 for R. cf. shibai; Fig. 1). 

 

Figure 1: Stable isotope (δ13C and δ15N) values of oribatid mite species [Scheloribates praeincisus 

(Berlese, 1910), Rostrozetes sp. 1 and Rostrozetes cf. shibai (Aoiki, 1976)] in the four land-use 

systems studied (rainforest, jungle rubber, rubber and oil palm plantations). Means with standard 
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deviations; numbers of measurements per species are given in brackets. The average stable 

isotope value of litter used for calibration (see Methods) is given as reference. Dashed horizontal 

lines reflect boundaries of trophic levels (primary decomposers, secondary decomposers and 

predators; see Methods). For statistical analysis see text. 

 

In addition to δ15N, shifts in the trophic niche of R. cf. shibai with land-use system also was 

due to changes in δ13C values and this was also true for Rostrozetes sp. 1 (χ2
3 = 28.59, p < 

0.001 for Rostrozetes sp. 1; χ2
3 = 13.77, p = 0.003 for R. cf. shibai). δ13C values of 

Rostrozetes sp. 1 in oil palm plantations were significantly lower than those in each of the 

other land-use systems, whereas δ13C values of R. cf. shibai were significantly lower in oil 

palm and rubber plantations than in jungle rubber and rainforest (Tukey’s HSD test; oil 

palm vs. rainforest p = 0.008, oil palm vs. jungle rubber p < 0.001, oil palm vs. rubber p = 

0.012 for Rostrozetes sp. 1; rubber vs. rainforest p = 0.018, rubber vs. jungle rubber = 0.018 

for R. cf. shibai). Although not significant, δ15N values for Rostrozetes sp. 1 also varied 

between land-use systems. Mean 15N values classified Rostrozetes sp. 1 as secondary 

decomposer in rainforest, jungle rubber and oil palm plantations, but as 

predator/scavenger in rubber plantations.  

Although stable isotope values of the other three studied oribatid mite species (B. 

mahunkai, P. kugohi and P. paracapucinus) did not differ significantly among the four land-

use systems (Anova; p > 0.05 for all three species), their position varied in isotope space 

in particular along the δ13C axis, resulting in a separation of rainforest and jungle rubber 

from rubber and oil palm plantations in each of the species thereby resembling the shift 

in Rostrozetes sp. 1 and R. cf. shibai (Fig. S1). 
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Discussion  
 

Based on stable isotope analysis trophic niches of oribatid mites – and soil arthropods in 

general – have been assumed to vary little at the landscape level (Scheu and Falca, 2000; 

Schneider et al., 2004; Illig et al., 2005; Erdmann et al., 2007; Pollierer et al., 2009; Fischer 

et al., 2010; Perdomo et al., 2012; Gan et al., 2014) as well as between forest types (Scheu 

and Falca, 2000; Schneider et al., 2004). The results of our study are in contrast to these 

earlier studies where oribatid mite trophic niches were proposed to be rather stable and 

narrow. 

 

Trophic niches of species 
 

The six studied oribatid mite species which occurred in each of the land-use systems 

spanned three trophic levels including primary and secondary decomposers as well as 

predators/scavengers, which is conform to earlier studies (Schneider et al., 2004; Illig et 

al., 2005; Maraun et al., 2011). Additionally, intraspecific variation in δ15N values were 

significantly higher in oil palm plantations than in the other three land-use systems. 

Presumably, this was due to the lack of primary decomposers in oil palm plantations 

(which only feed on one trophic level, plant litter) and the presence of only higher trophic 

level species such as secondary decomposers and predators/scavengers, which are more 

likely to engage in omnivory and intraguild predation. Bischeloribates mahunkai grouped 

as predator/scavenger in rainforest, rubber and oil palm plantations, but as secondary 

decomposer in jungle rubber. Protoribates paracapucinus grouped as secondary 

decomposer in rainforest and jungle rubber, but as predator in rubber and oil palm 

plantations. Scheloribates praeincisus and P. kugohi uniformly grouped as primary 
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decomposers in rainforest and as secondary decomposers in the other three land-use 

systems. Although predominantly grouped as secondary decomposers, Rostrozetes sp. 1 

and R. cf. shibai were grouped as predators/scavengers in rubber plantations and jungle 

rubber. Overall, the results confirm that oribatid mites predominantly function as 

secondary decomposers feeding on microorganisms, in particular fungi, however, they 

also indicate that in part they feed on animal prey, presumably nematodes (Heidemann 

et al., 2011, 2014), or live as scavengers. High trophic position in B. mahunkai is conform 

to the suggestion of Rockett (Rockett, 1980) that many species of Scheloribatida live as 

predators. However, lower trophic position of S. praeincisus suggests that this does not 

apply uniformly to Scheloribatida as indicated previously (Bluhm et al., 2015). Grouping of 

Rostrozetes sp. 1 and R. cf. shibai as secondary decomposers (and in part as predators) 

was unexpected since another species of Rostrozetes, R. ovulum, was shown to live as 

primary decomposer in a tropical montane rainforest in Ecuador (Illig et al., 2005). 

Plonaphacarus kugohi had the lowest 15N values and in part was grouped as primary 

decomposer indicating that this species feeds on litter and microorganisms confirming 

that Phthiracaridae/Euphthiracaridae often function as primary decomposers (Maraun et 

al., 2011). Primary decomposers are characterized by low fractionation of 15N which likely 

is related to “protein sparing”, i.e. the retaining of assimilated N in body tissue rather than 

excreting it due to low nitrogen supply in litter (Swift et al., 1979; Castellini and Rea, 1992; 

Gannes et al., 2007; Pollierer et al., 2009). However, recent laboratory studies question 

that this uniformly applies to oribatid mites (Heethoff and Scheu, 2016). Furthermore, 

high δ13C values of P. kugohi indicate that this species incorporates calcium carbonate in 

their exoskeleton (Norton and Behan-Pelletier, 1991; Pachl et al., 2012). 
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Shift in trophic niches with land use 
 

Conform to our hypotheses, the studied oribatid mite species shifted their trophic niche 

with transformation of rainforest into plantation systems, however, this was only 

significant in three (S. praeincisus, R. cf. shibai and Rostrozetes sp. 1) of the six studied 

species, but in trend it also applied to the other three species. This indicates that the ability 

of the studied oribatid mite species to colonize very different ecosystems at least in part 

is due to the fact that they are trophically plastic and adapt to the changed environmental 

conditions in converted ecosystems by shifting their trophic niche. Δ15N values of S. 

praeincisus and R. cf. shibai differed between the four land-use systems, e.g. δ15N values 

of S. praeincisus in rubber plantations were almost 4 ‰ higher than in rainforest, whereas 

δ15N values of R. cf. shibai in jungle rubber were almost 4 ‰ higher than in the other three 

land-use systems. This indicates that S. praeincisus as well as R. cf. shibai alter their 

resource use with conversion of rainforest/jungle rubber into plantations by shifting its 

trophic position. S. praeincisus altered its trophic position from primary decomposer in 

rainforest to secondary decomposer in plantations, presumably feeding almost exclusively 

on fungi in the latter. R. cf. shibai shifted its trophic position from secondary decomposer 

in rubber, oil palm and rainforest to predator/scavenger in jungle rubber. Notably, S. 

praeincisus and P. kugohi were the only species classified as primary decomposers and 

they only functioned as primary decomposers in rainforest. This is consistent with earlier 

studies stressing the lack or scarcity of primary decomposers among oribatid mite species 

in tropical forest ecosystems (Illig et al., 2005). The scarcity of primary decomposers likely 

is related to the poor litter quality in rainforest ecosystems (Butenschoen et al., 2014; 

Krashevska et al., 2017; Marian et al., 2017), and the results of this study indicates that 
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this is aggravated by conversion of rainforest into plantations as none of the species 

studied was classified as primary decomposer in plantations. This suggests that the 

conversion of rainforest into plantation systems aggravates the shortage and poor quality 

of litter resources for the decomposer community (Teuscher et al., 2016; Klarner et al., 

2017).  

Rostrozetes sp. 1 as well as R. cf. shibai responded in a similar way to the conversion of 

rainforest into plantation systems as indicated by the shift in δ13C values, i.e. changes in 

the basal resources they are using. In both species δ13C values were similar in rainforest 

and jungle rubber and different from that in oil palm (Rostrozetes sp. 1) and oil palm and 

rubber plantations (R. cf. shibai). Soil animals typically are enriched by 3-4 δ units in 13C as 

compared to litter due to the “detrital shift” (Pollierer et al., 2009; Potapov et al., 2019), 

and this also was true in the species studied. In Rostrozetes sp. 1 and R. cf. shibai this 

detrital shift was most pronounced in rainforest and jungle rubber. The more pronounced 

detrital shift in rainforest and jungle rubber likely reflects a shift in the use of plant litter 

carbon compounds towards compounds which are easy to access, such as sugars, proteins 

and (hemi)cellulose, rather than compounds which are difficult to access and have lower 

δ13C values such as lignin (Gleixner et al., 1993; Hobbie and Werner, 2004; Bowling et al., 

2008; Pollierer et al., 2009; Potapov et al., 2019).  

Although stable isotope values in the other three studied oribatid mite species (B. 

mahunkai, P. kugohi and P. paracapucinus) also varied, these variations were not 

significant suggesting that their shifts in trophic niches were less pronounced. Notably, in 

particular the trophic position of B. mahunkai, classified predominantly as predator, 

varied little between land-use systems suggesting that this species is unable to switch from 
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animal prey (or carcasses) to feeding on litter or microorganisms. Conform to the 

significant changes in trophic niches in S. praeincisus, Rostrozetes sp. 1 and R. cf. shibai, 

the trophic niches of B. mahunkai, P. kugohi and P. paracapucinus were more similar in 

rainforest and jungle rubber and separate from those in oil palm and rubber. Also, 

conform to the former three species, the detrital shift in δ13C in B. mahunkai, P. kugohi 

and P. paracapucinus was less pronounced in rubber and oil palm plantations suggesting 

that detritivores in these systems benefit from high quality litter of the herb layer (see 

above). Other studies of oribatid mite families and superfamilies showed results similar to 

our study on species-level (Minor et al., 2017). However, although changes in land use on 

the trophic structure of soil animals may also be detected at courser taxonomic lever than 

species, our results indicate that land-use change even affects trophic variability within 

species, suggesting that to fully appreciate changes in niche space with changes in land 

use needs high taxonomic resolution and even the level of individuals within species 

(Somerfield and Clarke, 1995; Hirst, 2006; Heino, 2014; Hanna et al., 2015). 

We assumed the shift in trophic niches to be mainly due to changes in the use of basal 

resources rather than trophic level. Contrary to this hypothesis, the significant shifts in 

trophic niches in S. praeincisus and Rostrozetes sp. 1 and R. cf. shibai were due to both 

changes in the use of basal resources (Rostrozetes sp. 1 and R. cf. shibai) as well as changes 

in trophic position (S. praeincisus and R. cf. shibai). Notably, the shift in δ15N values in both 

of the latter species occurred towards higher trophic positions suggesting that they 

switched towards including prey of higher trophic levels in converted ecosystems. Overall, 

this indicates that in particular in primary and secondary decomposers trophic plasticity 

plays an important role for their ability to colonize a wide range of habitats. 
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Conclusions 
 

Of the six species studied occurring across the four land-use systems we detected 

significant shifts in trophic niches in three of them, but trophic niches of the other three 

species also varied in a similar way. Notably, the shifts were due to both changes in trophic 

position (δ15N values) as well as changes in the use of basal resources (δ13C values) with 

the shift in trophic position towards higher trophic levels in transformed ecosystems. The 

observed shifts in trophic niches are conform to the view that oribatid mites are generalist 

feeders able to change their diet according to changes in resource availability. Notably, 

the shifts in trophic niches were most pronounced between more natural systems 

(rainforest and jungle rubber) and high intensity land-use systems (rubber and oil palm 

plantations). Overall, the results suggest that the ability of oribatid mite species to 

colonize a wide range of land-use systems including rainforest and monoculture 

plantations is likely based on trophic plasticity and the ability to shift both their trophic 

level and the basal resource they rely on. 
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Appendix  

 

Figure S1: Stable isotope (δ13C and δ15N) values of oribatid mite species [Bischeloribates mahunkai 

Subías, 2010, Plonaphacarus kugohi (Aoki, 1959) and Protoribates paracapucinus (Mahunka, 

1988)] in the four land-use systems studied (rainforest, jungle rubber, rubber and oil palm 

plantations). Means with standard deviation; numbers of measurements per species are given in 

brackets. The average stable isotope value of litter used for calibration (see Methods) is given as 

reference. Dashed horizontal lines reflect boundaries of trophic levels (primary decomposers, 

secondary decomposers and predators; see Methods). For statistical analysis see text. 

 



Chapter II: Trophic plasticity in orbatid mites 

 

 

65 

 

Figure S1: Plotwise standard deviation of mean stable isotope (δ13C and δ15N) values of oribatid 

mite species in the four land-use systems studied (rainforest, jungle rubber, rubber and oil palm 

plantations) plotted against their stable isotope values (δ13C and δ15N). For details see Table S2 in 

Appendix.  

 

Table S1: Absolute and calibrated (see methods) stable isotope values of oribatid mite individuals 

studied. Species ID in Ecotaxonomy database (http://ecotaxonomy.org/), species name, author, 

landscape, land-use system, absolute values of δ15N and δ13C values, and calibrated δ15N and δ13C 

values (all values are rounded to two decimal places). Mean δ15N and δ13C values of litter used for 

calibration of -0.24 and -30.23 ‰, respectively. 

species species author landscape land-use  absolute calibrated 

ID       system δ15N δ13C δ15N δ13C 

405450 Bischeloribates mahunkai  
Subías, 
2010 

Bukit Duabelas  jungle rubber 1.97 -26.69 3.90 -25.90 

    oil palm 1.68 -25.86 0.60 -25.86 
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     3.86 -26.23 2.77 -26.22 

     4.27 -28.71 3.19 -28.71 

     4.72 -27.31 3.64 -27.31 

     5.47 -26.96 4.39 -26.96 

     8.29 -29.06 7.20 -29.06 

     10.37 -27.37 9.29 -27.36 

    rainforest 3.68 -27.43 4.10 -26.37 

     4.67 -27.62 4.41 -26.05 

     6.64 -26.21 6.38 -24.63 

    rubber 1.86 -25.67 2.29 -26.34 

     1.75 -25.41 3.52 -25.93 

     2.80 -26.42 4.58 -26.95 

     3.91 -27.45 5.58 -27.92 

     6.01 -28.34 6.43 -29.01 

     5.05 -26.03 6.72 -26.50 

     6.84 -27.79 7.26 -28.46 

     5.74 -26.66 7.52 -27.19 

     6.11 -25.61 7.79 -26.09 

     6.38 -26.04 8.06 -26.52 

     6.51 -26.39 8.18 -26.87 

     8.00 -28.17 8.43 -28.85 

     7.54 -26.72 9.32 -27.24 

   Harapan  oil palm 3.44 -25.98 1.56 -26.63 

     6.93 -27.15 5.69 -28.55 

     6.96 -26.67 5.72 -28.06 

     8.57 -25.57 7.33 -26.97 

     9.18 -26.57 7.94 -27.96 

     9.93 -28.36 8.69 -29.76 

     11.76 -21.56 10.51 -22.96 

    rainforest 10.89 -27.22 10.45 -26.64 

     13.00 -28.27 12.56 -27.70 

    rubber 6.48 -30.93 4.32 -31.91 

     6.90 -29.64 4.74 -30.62 

     7.08 -27.00 4.92 -27.98 

     7.17 -25.97 5.01 -26.95 

     7.03 -26.71 5.72 -28.12 

     7.98 -24.16 5.82 -25.14 

     5.07 -25.10 6.12 -26.04 

     7.04 -26.23 8.08 -27.16 

     7.10 -27.79 8.15 -28.73 

     11.06 -30.14 8.90 -31.12 

     12.46 -28.40 10.30 -29.38 

405729 Plonaphacarus kugohi  
(Aoki, 
1959) 

Bukit Duabelas  jungle rubber -1.42 -23.83 1.07 -24.19 

     -0.04 -24.17 2.45 -24.52 

    oil palm 1.66 -28.09 0.15 -28.43 

     5.60 -27.71 4.09 -28.05 
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    rainforest -2.34 -26.70 -3.10 -25.26 

    rubber 0.59 -26.03 1.02 -26.71 

     2.40 -23.41 2.83 -24.08 

     1.82 -23.25 3.59 -23.77 

     3.90 -23.30 4.33 -23.97 

     4.37 -21.55 6.04 -22.03 

   Harapan  oil palm 1.75 -24.54 0.51 -25.93 

    rainforest 3.61 -24.62 3.17 -24.05 

    rubber -1.26 -26.42 -3.42 -27.40 

     0.41 -22.25 -0.90 -23.66 

     -0.52 -25.46 -0.36 -26.89 

     1.62 -22.75 0.31 -24.15 

     2.07 -22.76 0.76 -24.17 

     5.65 -23.14 3.49 -24.12 

     4.99 -24.46 3.68 -25.87 

     4.90 -32.58 5.06 -34.01 

405671 Protoribates paracapucinus  
(Mahunka, 

1988)  
Bukit Duabelas  jungle rubber -0.78 -27.14 1.14 -26.35 

     0.13 -26.76 1.54 -25.59 

     1.05 -26.30 2.97 -25.52 

     2.09 -25.01 3.50 -23.85 

     3.83 -26.20 5.75 -25.41 

     4.54 -24.22 6.47 -23.44 

     4.76 -26.02 7.25 -26.37 

     5.71 -25.45 7.63 -24.66 

    oil palm 0.75 -26.53 -0.33 -26.52 

     4.32 -32.45 3.24 -32.45 

     4.57 -26.20 3.49 -26.20 

     4.13 -25.75 3.60 -26.40 

     4.96 -26.85 3.88 -26.85 

     4.95 -23.57 4.41 -24.22 

     4.85 -26.58 4.80 -24.67 

     6.87 -26.83 5.79 -26.82 

     7.29 -25.64 6.76 -26.29 

    rainforest -1.06 -26.53 -1.32 -24.96 

     -0.54 -26.48 -1.25 -28.00 

     2.79 -28.05 2.54 -26.48 

     4.89 -24.53 4.63 -22.95 

     5.48 -26.93 5.23 -25.36 

     5.60 -26.45 5.34 -24.88 

     5.10 -26.16 5.52 -25.10 

     5.48 -25.76 5.90 -24.70 

    rubber -1.74 -25.42 -1.32 -26.09 

     1.48 -25.86 2.79 -26.08 

     2.44 -25.04 3.74 -25.26 

     5.25 -26.22 6.92 -26.69 
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     5.86 -25.92 7.16 -26.14 

     5.56 -26.55 7.24 -27.03 

     6.47 -26.79 7.77 -27.02 

     7.23 -26.39 8.90 -26.86 

     8.88 -26.32 10.55 -26.79 

    jungle rubber 0.72 -25.57 0.32 -25.69 

     0.82 -25.14 0.42 -25.25 

     2.87 -26.22 2.47 -26.34 

     3.73 -26.12 3.33 -26.24 

     7.47 -29.29 6.56 -28.72 

    oil palm 3.19 -24.95 1.32 -25.60 

     6.66 -26.06 4.79 -26.71 

     6.31 -25.79 6.29 -25.76 

     7.11 -28.32 7.09 -28.29 

     10.09 -26.34 8.21 -26.99 

     14.36 -27.65 12.49 -28.30 

    rainforest 2.05 -28.26 1.56 -27.73 

    rubber 1.82 -23.91 -0.34 -24.89 

     1.50 -25.93 1.67 -27.36 

     5.84 -25.66 3.68 -26.65 

     6.40 -26.08 5.09 -27.48 

     5.74 -25.13 5.91 -26.56 

     7.04 -25.79 7.20 -27.23 

     7.39 -25.61 7.56 -27.04 

     8.06 -25.65 8.23 -27.08 

405416 Rostrozetes cf. shibai  
(species 

Aoki, 
1976) 

Bukit Duabelas  jungle rubber -2.12 -25.68 -1.10 -23.46 

     2.70 -24.73 4.11 -23.57 

     3.28 -25.26 5.21 -24.47 

     2.85 -26.82 5.34 -27.18 

     6.17 -25.37 8.10 -24.58 

     6.32 -26.89 8.81 -27.24 

     7.51 -26.61 9.44 -25.83 

     8.94 -25.34 11.43 -25.69 

    oil palm -1.19 -27.33 -2.27 -27.33 

     0.12 -26.45 -0.97 -26.44 

     2.13 -26.12 1.05 -26.12 

     1.87 -25.69 1.83 -23.78 

     2.09 -26.97 2.04 -25.06 

     3.16 -30.29 2.08 -30.29 

     4.21 -26.81 3.13 -26.80 

     4.82 -26.03 3.30 -26.37 

     4.75 -26.81 3.67 -26.80 

     3.72 -26.68 3.67 -24.78 

     5.39 -26.35 4.86 -26.99 

     7.26 -25.85 6.18 -25.85 
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     8.74 -26.30 8.69 -24.40 

     12.31 -30.47 11.78 -31.12 

    rainforest -0.53 -26.48 -1.29 -25.04 

     -0.98 -24.72 -1.24 -23.15 

     -0.77 -26.60 -0.34 -25.54 

     1.40 -29.73 1.14 -28.16 

     0.81 -27.16 1.23 -26.10 

     2.90 -25.66 2.13 -24.22 

     2.92 -26.11 2.66 -24.54 

     3.28 -24.85 3.02 -23.28 

     3.33 -24.27 3.07 -22.70 

     4.02 -23.82 3.26 -22.38 

     3.20 -26.35 3.62 -25.29 

     4.44 -26.59 4.18 -25.01 

     4.62 -26.55 4.36 -24.98 

     5.45 -26.35 4.74 -27.87 

     5.46 -27.17 4.75 -28.69 

     4.87 -25.94 5.29 -24.88 

     5.68 -26.11 5.42 -24.54 

     6.05 -29.33 6.47 -28.28 

    rubber -3.17 -29.85 -1.87 -30.07 

     -2.54 -29.92 -0.76 -30.45 

     2.24 -28.19 4.02 -28.71 

     4.52 -25.94 6.29 -26.46 

   Harapan  jungle rubber 3.53 -25.70 4.25 -25.67 

     3.79 -25.90 4.51 -25.87 

     5.20 -26.47 5.92 -26.45 

    oil palm 0.50 -25.79 -0.28 -27.06 

     1.36 -26.46 0.11 -27.85 

     0.89 -27.13 0.11 -28.40 

     2.38 -25.87 0.50 -26.52 

     1.91 -28.68 0.67 -30.08 

     1.91 -25.86 0.67 -27.26 

     2.83 -24.83 0.96 -25.48 

     4.31 -27.23 3.54 -28.50 

     4.34 -25.55 3.56 -26.82 

     5.81 -27.25 3.94 -27.90 

     6.32 -25.82 4.44 -26.47 

     7.13 -26.35 5.26 -27.00 

     14.17 -27.11 13.40 -28.38 

    rainforest 0.44 -26.19 -0.09 -25.38 

     2.46 -26.97 1.96 -26.45 

     2.61 -25.62 2.17 -25.04 

     3.20 -25.52 2.67 -24.71 

     3.18 -26.15 2.91 -25.16 

     3.63 -26.58 3.14 -26.06 
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     4.99 -26.81 4.55 -26.24 

     5.65 -26.26 5.11 -25.45 

     6.81 -24.90 6.28 -24.08 

    rubber 0.45 -25.94 0.61 -27.37 

     2.02 -24.86 0.71 -26.27 

     2.11 -28.99 2.28 -30.43 

     3.98 -25.44 2.67 -26.85 

     2.69 -24.78 3.74 -25.72 

     5.05 -26.55 5.21 -27.98 

405478 Rostrozetes sp. 1   Bukit Duabelas  jungle rubber 1.45 -27.95 2.47 -25.74 

     1.56 -27.35 3.49 -26.56 

     1.06 -26.54 3.55 -26.90 

     2.83 -26.85 4.24 -25.68 

     2.20 -27.12 4.69 -27.47 

    oil palm 4.18 -29.57 3.10 -29.57 

     7.56 -28.80 6.05 -29.14 

    jungle rubber 7.67 -27.03 8.39 -27.00 

    rainforest 1.62 -28.47 1.18 -27.89 

     2.33 -27.30 1.89 -26.72 

     3.31 -27.59 2.87 -27.01 

    rubber 7.03 -27.33 8.34 -27.55 

   Harapan  rubber 5.38 -25.82 4.07 -27.23 

405449 Scheloribates praeincisus 
(Berlese, 

1910)  
Bukit Duabelas  jungle rubber -2.53 -26.90 -0.04 -27.25 

     0.33 -27.30 2.82 -27.65 

     2.76 -27.31 4.17 -26.15 

     3.60 -27.69 6.09 -28.05 

    oil palm -1.89 -25.56 -2.97 -25.56 

     -1.83 -27.84 -2.91 -27.84 

     -0.86 -28.79 -0.91 -26.88 

     1.18 -29.00 -0.34 -29.34 

     0.79 -28.85 -0.29 -28.85 

     1.32 -25.11 0.23 -25.11 

     2.32 -29.83 0.81 -30.17 

     2.32 -25.75 1.23 -25.75 

     3.20 -29.27 1.68 -29.62 

     3.59 -27.26 2.07 -27.61 

     3.93 -29.01 2.84 -29.00 

     4.53 -28.97 3.45 -28.97 

     3.71 -28.96 3.66 -27.06 

     5.10 -23.05 4.02 -23.04 

     6.82 -27.63 5.30 -27.97 

     5.76 -28.05 5.71 -26.14 

     8.93 -23.92 7.85 -23.92 

     9.93 -28.05 8.42 -28.39 

    rainforest -9.52 -26.49 -9.78 -24.92 
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     -1.41 -27.96 -2.17 -26.52 

     -2.12 -26.06 -1.69 -25.00 

     -1.24 -30.27 -1.50 -28.70 

     -1.18 -30.60 -1.44 -29.03 

     -1.10 -30.82 -1.36 -29.25 

     -0.98 -29.64 -1.24 -28.06 

     -0.46 -27.36 -1.23 -25.92 

     -0.66 -28.84 -0.92 -27.27 

     -0.42 -28.17 -0.68 -26.60 

     -0.24 -30.73 -0.50 -29.16 

     1.38 -28.14 0.61 -26.70 

     1.74 -28.43 1.48 -26.86 

     2.75 -26.32 1.98 -24.88 

     2.24 -27.99 1.98 -26.42 

     3.19 -26.82 2.42 -25.38 

     4.20 -26.60 3.43 -25.16 

     4.42 -27.42 4.84 -26.36 

     5.24 -30.60 4.98 -29.03 

     6.20 -25.98 6.63 -24.92 

    rubber -1.46 -25.47 0.22 -25.94 

     -1.45 -26.74 0.33 -27.26 

     0.46 -24.63 2.14 -25.10 

     1.35 -26.87 2.65 -27.09 

     2.07 -25.07 3.74 -25.54 

     2.56 -27.54 3.87 -27.76 

     3.13 -29.50 4.44 -29.72 

     3.29 -28.12 5.06 -28.64 

     6.62 -25.94 8.39 -26.46 

     7.99 -25.62 9.77 -26.14 

   Harapan  jungle rubber -1.30 -29.32 -2.21 -28.75 

     -1.66 -26.63 -0.93 -26.60 

     -0.04 -28.86 0.19 -29.39 

     -0.02 -22.01 0.71 -21.98 

     0.85 -27.87 1.58 -27.84 

     2.05 -26.97 2.77 -26.95 

     3.16 -28.39 3.88 -28.36 

     4.82 -28.18 5.54 -28.15 

    oil palm -2.70 -25.41 -4.57 -26.06 

     -0.09 -25.96 -0.86 -27.23 

     1.44 -23.86 -0.44 -24.51 

     1.04 -26.92 1.02 -26.89 

     2.38 -27.14 1.13 -28.54 

     3.07 -27.58 1.20 -28.23 

     2.79 -29.04 1.55 -30.44 

     4.44 -26.93 2.57 -27.58 

     4.53 -27.70 2.66 -28.35 
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     6.97 -25.57 5.10 -26.22 

     8.77 -25.39 8.00 -26.66 

     10.01 -23.36 8.77 -24.76 

    rainforest -6.15 -29.49 -6.69 -28.67 

     -1.71 -29.42 -2.24 -28.60 

     -1.75 -29.92 -2.19 -29.34 

     -1.38 -28.41 -1.87 -27.89 

     -1.30 -28.31 -1.79 -27.78 

     -0.89 -30.20 -1.42 -29.39 

     -0.29 -30.57 -0.83 -29.75 

     0.56 -27.76 0.11 -27.18 

     0.71 -30.67 0.21 -30.14 

     0.89 -28.15 0.36 -27.33 

     0.92 -28.79 0.48 -28.22 

     1.33 -28.29 0.89 -27.72 

     1.56 -29.59 1.03 -28.78 

     1.50 -30.43 1.06 -29.86 

     1.81 -30.33 1.36 -29.75 

     1.98 -27.93 1.49 -27.41 

     2.37 -28.40 1.88 -27.87 

     3.51 -28.36 2.98 -27.55 

    rubber -0.50 -26.68 -1.81 -28.09 

     -1.04 -25.24 -0.88 -26.67 

     1.41 -27.41 0.10 -28.81 

     2.80 -20.89 2.96 -22.32 

     2.83 -27.14 2.99 -28.57 

     3.22 -25.80 3.38 -27.24 

     3.34 -26.71 3.50 -28.15 

     3.62 -28.54 3.79 -29.97 

     3.74 -28.48 3.91 -29.91 

     4.02 -23.44 4.18 -24.87 

     5.58 -30.04 5.75 -31.47 

     11.36 -25.42 11.52 -26.86 
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Table S2: Standard deviation of mean stable isotope (δ13C and δ15N) values of oribatid mite 

species in the four land-use systems studied. Species ID in Ecotaxonomy database 

(http://ecotaxonomy.org/), species name, land-use system, plotID, replicate, standard deviation 

of δ13C and δ15N, mean stable isotope values of δ13C and δ15N. 

species species author land-use plotID sample SD mean 

ID 
  

system 
 

size δ15N δ13C δ15N δ13C 

405450 Bischeloribates 
mahunkai 

Subías, 2010 oil palm BO3 7 2.696 1.097 4.439 -27.353 

    HO3 6 1.686 2.143 7.647 -27.376 

   rainforest BF2 2 0.983 0.706 5.394 -25.339 

    HF1 2 1.054 0.529 11.506 -27.172 

   rubber BR1 5 0.987 0.623 7.266 -26.778 

    BR2 4 2.304 0.527 6.234 -26.828 

    BR4 4 2.315 1.070 6.102 -28.165 

    HR2 3 0.942 1.103 7.449 -27.309 

    HR3 7 2.168 2.263 6.286 -29.015 

405729 Plonaphacarus 
kugohi 

(Aoki, 1959) rubber BR4 3 1.353 1.264 2.724 -24.921 

    HR3 2 3.456 1.640 0.037 -25.757 

    HR4 4 1.683 0.837 0.964 -24.461 

405671 Protoribates 
paracapucinus 

(Mahunka, 
1988)  

jungle 
rubber 

BJ3 5 2.385 0.979 4.793 -25.076 

    BJ4 2 0.981 0.872 2.522 -24.719 

    HJ1 4 1.302 0.438 1.635 -25.880 

   oil palm BO2 3 1.339 1.003 4.923 -25.635 

    BO3 5 1.986 2.353 3.211 -27.769 

    HO1 4 4.136 0.960 6.704 -26.897 

    HO4 2 0.399 1.264 6.693 -27.025 

   rainforest BF2 5 2.513 1.138 3.281 -24.926 

   
 

BF4 2 0.192 0.203 5.712 -24.901 

   rubber BR1 4 1.450 0.122 8.403 -26.843 

    BR3 4 2.139 0.622 5.366 -26.122 

    HR1 5 2.347 0.272 6.112 -27.054 

    HR3 2 2.013 0.877 1.670 -25.769 

405399 Rostrozetes 
shibai 

(species Aoki, 
1976) 

jungle 
rubber 

BJ2 3 2.496 0.714 8.525 -26.703 

    BJ3 3 1.766 0.614 7.580 -24.959 

    HJ4 3 0.736 0.329 4.896 -25.998 

   oil palm BO2 2 3.462 2.062 8.318 -29.055 

    BO3 7 2.654 1.381 1.838 -27.091 

    BO4 4 2.769 0.480 4.058 -24.505 

    HO1 5 1.921 0.785 3.019 -26.675 

    HO2 5 4.942 0.732 4.069 -27.833 

    HO3 3 0.261 1.214 0.481 -28.396 

   rainforest BF1 2 0.003 0.410 4.745 -28.281 
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    BF2 8 1.949 1.598 2.825 -24.543 

    BF3 3 1.934 1.111 1.365 -23.881 

    BF4 5 2.517 1.197 3.256 -26.016 

    HF1 2 1.190 0.596 3.359 -25.639 

    HF3 4 2.443 0.554 3.495 -24.904 

    HF4 2 0.588 0.194 2.553 -26.252 

   rubber BR2 3 2.940 1.631 3.182 -28.538 

    HR1 3 1.901 1.320 2.702 -28.593 

    HR4 2 0.982 0.289 1.692 -26.557 

405478 Rostrozetes sp. 
1 

(Berlese, 
1910)  

jungle 
rubber 

BJ2 2 0.569 0.288 4.123 -27.183 

405449 Scheloribates  
praeincisus  

(Berlese, 
1910)  

jungle 
rubber 

BJ2 3 2.502 0.323 2.958 -27.650 

   
 

HJ4 6 2.111 2.180 2.259 -26.647 

   oil palm BO3 9 3.276 2.150 1.495 -26.449 

    BO4 3 2.770 0.396 2.822 -26.694 

    BO5 6 2.978 0.923 2.992 -28.849 

    HO1 6 3.032 1.366 1.086 -26.825 

    HO2 2 4.430 0.286 3.570 -26.947 

    HO3 3 3.504 2.362 3.817 -27.910 

   rainforest BF2 10 2.003 1.086 0.080 -28.037 

    BF3 6 1.997 0.680 0.840 -25.758 

    BF4 3 3.577 0.663 3.258 -25.428 

    HF1 6 1.179 1.029 0.284 -28.679 

    HF3 6 1.721 0.884 -0.018 -28.567 

    HF4 5 1.581 0.978 -0.015 -28.216 

   rubber BR1 3 1.441 0.344 2.034 -25.529 

    BR2 4 3.637 0.967 5.887 -27.126 

    BR3 3 0.744 1.118 3.653 -28.191 

    HR1 10 2.934 2.530 4.111 -27.602 

    HR4 2 0.954 0.363 -0.852 -28.452 
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Abstract  
 

Land-use change is threatening biodiversity worldwide and is predicted to increase in the 

next decades, especially in tropical regions. Most studies focused on the response of single 

or few species to land-use change, only few investigated the response of entire 

communities. In particular the response of belowground communities to changes in land 

use received little attention. Oribatid mites (Oribatida, Acari) are among the most 

abundant soil animals, involved in decomposition processes and nutrient cycling. Oribatid 

mite species span a wide range of trophic niches and are known to sensitively respond to 

changes in land use. Here, we investigated shifts in the community-level trophic niche of 

oribatid mites with the conversion of rainforest into rubber and oil palm plantations. Due 

to a wider range of resources in more natural ecosystems we expected the community-

level trophic niche to shrink with conversion of rainforest into plantations. As the 

conversion of rainforest into plantations is associated with reduced availability of litter 

resources we expected the average trophic level (indicated by the 15N/14N ratio) to be 

higher and the role of basal resources (indicated by the 13C/12C ratio) to shift towards living 

plant material in rubber and oil palm plantations. Our results confirm that the community-

level trophic niche of oribatid mites in fact is wider in rainforest than in plantation systems. 

Additionally, the results document that the community-level trophic niche in rainforest 

and rubber agroforest (“jungle rubber”) is separated from that in monoculture plantation 

systems, indicating that the trophic niche of oribatid mite communities shifts markedly 

with conversion of rainforest into plantation systems. Further, 15N/14N ratios indicate that 

oribatid mites in fact shift their diet towards predation and/or scavenging with 

transformation of rainforest into plantations, presumably due to the limited amount of 
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litter and its low quality in rubber and oil palm plantations. Exceptionally low 13C/12C ratios 

in rubber plantations suggest that certain oribatid mite species in this land-use system use 

resources non-existing in the other studied ecosystems. Oribatid mite communities in 

plantation systems therefore have an unusual high functional richness and uniqueness 

compared to natural systems. 
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Introduction 
 

The niche concept forms the basis of concepts explaining the coexistence of species 

(Hutchinson, 1959; Chase and Leibold, 2003). There are two different niche-related 

process, i.e. environmental filtering, assuming that the assemblage of communities is 

based on the similarity of niches of the species coexisting locally, and niche differentiation 

resulting from competition among species (Macarthur et al., 1967; Vellend, 2010; Violle 

et al., 2011; Kraft et al., 2015). At stable environmental conditions long-term coexistence 

of species results in distinct niches of the coexisting species and in predictable community 

composition with pronounced niche differentiation among coexisting species (Giller, 

1996). By contrast, in fragmented habitats or in systems with fluctuating environmental 

conditions communities are likely to be assembled at least in part at random, and 

therefore niches of species may overlap (Giller, 1996; Chesson, 2000; Caruso et al., 2012). 

Trophic niches define the impact of one species on other species based on the use of 

common resources and therefore are closely related to the role of species in ecosystems 

(Korotkevich et al., 2018). Species with broader trophic niches likely are able to better 

cope with disturbances, such as changes in land use or invading species, compared to 

species with narrower niches (Bommarco et al., 2010; Dammhahn et al., 2017). In contrast 

to the former, species with narrower niches are more likely to go extinct if environmental 

conditions and the availability of food resources change (Gan et al., 2014). The 

complement of trophic niches of coexisting species define the community level trophic 

niche which is likely to differ between ecosystems due to species turnover and changes in 

trophic niches of individual species (Tilman, 2004; Salles et al., 2009). These changes are 
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likely to be associated with changes in the functionality of communities (Korotkevich et 

al., 2018). 

Functional diversity, including functional richness, functional evenness and functional 

divergence, has been shown to increase the ecosystems functioning (Hulot et al., 2000; 

Pearson, 2001; Bremner et al., 2003). Moreover, it is related to certain characteristics of 

communities and ecosystems. Mechanisms responsible for diversity - ecosystem 

functioning relationships are based on the niches of species and their functional space 

(Tilman, 2001; Adler and Bradford, 2002). If the functional richness is low, part of the 

available resources remain unused by the local community, resulting in low productivity 

(Petchey, 2003). By contrast, increased ecosystem functioning due to efficient use of 

resources is based on high niche differentiation associated with low resource competition 

(Mason et al., 2005).   

The global demand for food, fuel and fiber is associated with the transformation and 

degradation of ecosystems, and this is increasing rapidly (Sodhi et al., 2010; Wilcove et al., 

2013; Meijide et al., 2018). Especially tropical regions are suffering (Sodhi et al., 2010; 

Wilcove et al., 2013; Meijide et al., 2018). Tropical forest ecosystems, characterized by the 

highest biodiversity and highest level of endemism worldwide, are shrinking and are 

transformed into intensively managed monoculture plantations at increasing rates (Myers 

et al., 2000; Sodhi et al., 2010; Drescher et al., 2016). Biodiversity in plantations typically 

is strongly reduced compared to rainforest due to reduced diversity of trees as well as 

more pronounced fluctuating environmental conditions (Wilcove and Koh, 2010). 

Reduced diversity in plantations may impair the functioning of these systems and this at 
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least in part is likely to be due to changes in trophic interactions and community level 

trophic niches (Potapov et al., 2019a). 

So far, most studies investigating shifts in trophic niches with changes in environmental 

conditions focused on the response of individual species to disturbances and habitat 

transformation, whereas changes at the level of communities have been little studied 

(Korotkevich et al., 2018). Further, only little is known on the effect of land-use change in 

tropical regions on soil organisms responsible for major ecosystem functions such as 

decomposition processes and nutrient cycling and this applies in particular to soil 

mesofauna such as oribatid mites (Maraun and Scheu, 2000; Bardgett, 2005). Oribatid 

mites are trophically diverse and span over four trophic levels including lichen feeders, 

fungal feeders, primary and secondary decomposers as well as predators/scavengers 

(Schneider et al., 2004; Illig et al., 2005; Maraun et al., 2011). Due to their high diversity 

and wide range of trophic niches oribatid mites are ideal model taxon for studying effects 

of land-use change on community functioning. 

Natural variations in 15N/14N and 13C/12C ratios provide insight into the trophic niches of 

animal species as well as the trophic structure of animal communities (Wada et al., 1991; 

Newsome et al., 2007; Boecklen et al., 2011), and are increasingly used for characterizing 

trophic niches of soil animal species (Tiunov, 2007; Potapov et al., 2019b). Animal tissue 

is enriched by 3.4 ‰ per trophic level in 15N, allowing to study changes in the trophic 

position of species with environmental changes (DeNiro and Epstein, 1978; Post, 2002; 

Pollierer et al., 2009; Potapov et al., 2019b). In contrast to 15N, 13C is little enriched in 

consumers as compared to their diet, allowing to trace basal food resources in food webs 

(DeNiro and Epstein, 1978; Spence and Rosenheim, 2005; Pollierer et al., 2009; Potapov 
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et al., 2019b). Stable isotopes have been used to analyze trophic niches of a wide range of 

soil invertebrates (Scheu and Falca, 2000; Halaj et al., 2005; Maraun et al., 2007, 2011; 

Tiunov, 2007). However, they have rarely been used to investigate how changes in trophic 

niches of soil organisms are affected by changes in land use (Lagerlöf et al., 2017; Minor 

et al., 2017; Korotkevich et al., 2018). Additionally, previous metrics for stable isotopes did 

not account for abundance and/or biomass of the studied species, e.g. all organisms were 

assumed to have the same importance or impact (Layman et al., 2007; Jackson et al., 

2011). Novel techniques allow accounting for these deficiencies but have rarely been used 

so far (Huxel and McCann, 1998; Cucherousset and Villéger, 2015). 

The current study formed part of the interdisciplinary project “Ecological and 

socioeconomic functions of tropical lowland rainforest transformation systems” 

(EFForTS), established in Jambi Province, southwest Sumatra, Indonesia (Drescher et al., 

2016). By measuring natural variations in 15N/14N and 13C/12C ratios, we analyzed changes 

in the trophic structure of oribatid mite communities with conversion of rainforest into 

plantation systems. Four major land-use systems in Southeast Asia were investigated, i.e. 

rainforest, rubber agroforest (“jungle rubber”), rubber and oil palm monoculture 

plantations. We focused on the niche structure and overall niche position at the level of 

communities rather than on the changes in trophic niches of individual species, which 

were addressed in an earlier study (Krause et al., 2019). We hypothesized (1) that the 

community-level trophic niche of oribatid mites is larger in close to natural ecosystems, 

such as rainforest and jungle rubber, than in intensively managed agricultural systems, 

such as rubber and oil palm plantations. Further, we hypothesized (2) that the community-

level trophic niche of oribatid mites is shifted in intensively managed agricultural systems 
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towards living plant-based resources due to lower availability of litter resources and more 

open canopy allowing more pronounced growth of understory plants and algae. In 

addition, we hypothesized (3) that functional richness and functional redundancy in 

rainforest are higher compared to plantation systems due to more complex resources and 

more species rich oribatid mite communities. 

 

Material and Methods 
 

Study sites 
 

Samples were taken in two landscapes of Jambi Province, Bukit Duabelas (2° 0’ 57” S, 120° 

45’ 12” E) and Harapan (1° 55’ 40” S, 103° 15’ 33” E). In each landscape, four different 

land-use systems were investigated: rainforest, jungle rubber, rubber and oil palm 

plantations (Drescher et al., 2016). Rainforest sites were ‘primary degraded forests’ 

(classified by Margono et al., 2014) and had been selectively logged at least once. Jungle 

rubber sites were established by planting rubber trees (Hevea brasiliensis) into rainforest 

and contain rainforest tree species. Jungle rubber sites represent low intensive land-use 

systems, lacking fertilizer input as well as herbicide application. By contrast, rubber as well 

as oil palm (Elaeis guineensis) monocultures represent high land-use intensity plantation 

systems managed by the addition of fertilizers as well as herbicides. More details on the 

study sites are given in Drescher et al. (2016). For each land-use system four replicates 

were established in each of the two landscapes, resulting in a total of 32 plots. Each plot 

spanned 50 x 50 m and included three randomly placed subplots of 5 x 5 m (Drescher et 

al., 2016). 
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Sampling, extraction and species determination 
 

In October 2013, samples (16 x 16 cm; including the litter layer and 0 – 5 cm of the mineral 

soil) were taken from each of the subplots, i.e. a total of 96 samples. The samples were 

transported to the laboratory and extracted by heat (Kempson et al., 1963). 

Determination of oribatid mites was done to species/morphospecies level using Balogh 

and Balogh (2012). Species and morphospecies were documented by pictures, linked with 

morphological traits and species identification numbers (species ID), and included into the 

Ecotaxonomy database (http://ecotaxonomy.org/). Oribatid mites were ascribed to 

trophic groups including lichen feeders, primary decomposer, secondary 

decomposer/fungal feeders and predators/scavengers based on Maraun et al. (2011). 

Until further analysis, species were stored in 70 % ethanol. For calibration of animal stable 

isotope values mixed litter samples were taken from the subplots (Klarner et al., 2017). 

 

Stable isotope analysis 
 

For each land-use system in the two landscapes (Bukit Dubaelas and Harapan) species for 

stable isotope analysis were selected based on their relative abundance; for each land-use 

system species representing 80 % of total oribatid mite individuals were analyzed (Table 

S1). These species were assumed to represent the functional niche of the community of 

oribatid mites of the respective land-use system. Three individuals (if present) were 

pooled for one sample (sample weight 0.02-0.19 mg). In total, 367 samples including all 

the species (117) contributing to 80 % of the individuals sampled were analyzed (out of 

the total of 220 species occurring at the study sites; D. Sandmann, unpubl. data). 
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Prior to stable isotope analysis samples were dried at 60°C for 24 h. Litter samples were 

grinded in a ball mill (Retsch Mixer Mill MM200, Haan, Germany) prior to stable isotope 

measurement. Samples were analyzed using a coupled system of an elemental analyzer 

(NA 1500, Carlo Erba, Milan, Italy) and a mass spectrometer (MAT 251, Finnigan, Bremen, 

Germany) adopted for the analysis of small sample sizes (Langel and Dyckmans, 2014). 

Stable isotope abundance (δX) was expressed using the δ notation with δX (‰) = 

(Rsample−Rstandard) / Rstandard x 1000, with X representing the target isotope (15N or 13C) and 

Rsample and Rstandard the respective target isotope ratio (15N/14N or 13C/12C). As standard for 

13C Vienna PD Belemnite and for 15N atmospheric nitrogen were used. Acetanilid was used 

for internal calibration. 

 

Statistical analysis  
 

Means of δ13C and δ15N values of litter samples across subplots were used for calibration 

of stable isotope values of oribatid mites of the respective plot. Calibrated δ13C and δ15N 

values were calculated as difference between the plot-specific litter δ13C and δ15N values, 

and the mean δ13C and δ15N value of oribatid mite species, and given as Δ13C and Δ15N 

values, respectively. Calibrated values were used for statistical analyses.  

For characterizing the trophic structure of communities we calculated ‘isotopic metrics’ 

(Layman et al., 2007; Cucherousset and Villéger, 2015). These metrics describe the 

position of species of a studied community within two-dimensional space, represented by 

δ15N and δ13C values and included, among others, the convex hull area, which is the 

‘smallest area’ that is filled by all species within the studied community (Layman et al., 

2007). Cucherousset and Villéger (2015) further developed metrics based on the ones 
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from Layman et al. (2007), by merging them with the functional diversity metrics 

suggested by Villéger et al. (2008) and Laliberté and Legendre (2010). These metrics are 

mathematically independent of the number of species and account for the abundance or 

biomass of the studied species (Cucherousset and Villéger, 2015). Additionally, they 

provide a process for scaling stable isotope axes, which allows to quantify isotopic 

diversity as well as the levels of potential isotopic overlap between species.  

Statistical analyses were performed using R v 3.5.2 (R Core Team, 2018) with R studio 

interface (RStudio, Inc.). We used the R script provided by Cucherousset and Villeger 

(2015) to scale two stable isotope axes and calculate isotopic metrics for each community. 

Δ13C and Δ15N values were scaled between 0 and 1 based on maximum and minimum 

across communities to ensure equal contribution of two isotopes in the multidimensional 

metric calculation. Before calculating community mean values and multidimensional 

metrics, species were weighted according to their contribution to the total community 

biomass per plot and therefore, those metrics were adjusted according to the functional 

relevance of the species. Individual body mass of oribatid mite species were calculated 

from individual measurements of body length and width (D. Sandmann, unpubl. data) 

using the allometric regression log P = 1.53 ⨯ log L + 1.53 ⨯ log l – 6.67, with P body mass, 

L body length and l body width (Lebrun, 1971). First, we calculated single-dimensional 

metrics – minimum, maximum, range and mean for Δ13C and Δ15N values for each 

community. Maximum as well as minimum Δ13C and Δ15N values were represented by one 

species with the most extreme values within the community. Second, we calculated five 

multidimensional metrics including isotopic divergence ('IDiv'), isotopic dispersion ('IDis'), 

isotopic evenness ('IEve'), isotopic uniqueness ('IUni') and isotopic richness ('IRic') 
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(Cucherousset and Villéger, 2015). In addition to the convex hull area (Layman et al., 2007) 

‘IDiv’ is weighting stable isotope values according to the biomass of species and showing 

the distance between all species as well as the center of the convex hull area. ‘IDiv’ values 

close to 0 indicate that species with the most extreme stable isotope values, e.g. primary 

decomposers and predators, are rare, whereas ‘IDiv’ values close to 1 indicate that species 

with the most extreme stable isotope values are among the dominant species. 'IDis’ 

reflects the convex hull area but also isotopic divergence and therefore can be interpreted 

as scaled multidimensional variance. ‘IDis’ is a generalized version of the ‘centroid 

distance’ (Layman et al., 2007) but accounts for the relative contribution of species to 

community biomass. 'IDis' approaches 1 when most stable isotope values are fare from 

the center of the group, i.e. species with contrasting stable isotope values but similar 

abundance, e.g. primary and high-level consumers, whereas ‘IDis’ approaches 0 if stable 

isotope values of the species differ little. In contrast to ‘IDiv’ and ‘IDis’, which do not 

consider the distance between species, ‘IEve’ quantifies the distribution of species in 

stable isotope space weighted by biomass. 'IEve' values close to 1 indicate that the isotope 

values of the species of the studied community are evenly distributed. By contrast, 'IEve' 

values close to 0 indicate that most stable isotope values of the studied species cluster 

together indicating e.g., that there are mostly herbivore and only few predator species. 

'IUni', is defined as the inverse of the average isotopic redundancy, which reflects the 

closeness of stable isotope values of the studied species within the community. 'IUni' 

equals 0 if stable isotope values of species among communities are similar indicating, e.g. 

that species of different communities occupy a similar isotope range. By contrast, 'IUni' is 

close to 1 if stable isotope values of species differ among communities indicating that e.g., 

the isotope values of species with high biomass are very different from those of the other 
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species of the community. Contrary to the latter, 'IRic' calculates community properties 

based on the size and position of isotope niches among species. ‘IRic’ represents the 

functional richness i.e., the functional space filled by the community (Villéger et al., 2008). 

For single trait approaches functional richness reflects the difference between the 

maximum and minimum trait values of the community (Mason et al., 2005). To calculate 

functional richness for multiple traits the convex hull area occupied by a community is 

used as multidimensional measure (Cornwell et al., 2006; Layman et al., 2007; Villéger et 

al., 2008). Functional richness does not have an upper limit as it represents a volume, 

which depends on the number of traits and their units, however, functional richness 

values may be limited by 0 and 1 due to standardization of the hull volume, e.g. the volume 

occupied by all studied species (Mason et al., 2005; Villéger et al., 2008).  

Data were analyzed using the aov (analysis of variance) function with landscape and land-

use system as factors followed by post-hoc comparison of means using HSD.test function 

to inspect differences between land-use systems. Results were displayed using the 

ggplot2 package (Wickham, 2016). The baseline was represented by zero (Figs. 2, 3). 

Communities were represented by points in graphs. Oribatid mites were ascribed to 

trophic levels assuming an enrichment of 15N by 3.4 ‰ per trophic level except for primary 

decomposer which were assumed to be only enriched in 15N by a maximum of 1.7 ‰ 

compared to litter (Vanderklift and Ponsard, 2003; Potapov et al., 2019b). 
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Results  
 

Trophic structure 
 

As indicated by 15N values, rainforest, jungle rubber and rubber plantations harbored 

species spanning over three trophic levels including primary and secondary decomposers 

as well as predators (Fig. S1a-c). By contrast, oil palm plantations lacked primary 

decomposers and only comprised secondary decomposers and predators (Fig. S1d). 

Additionally, rainforest and rubber plantations harbored species with stable isotope 

values lower than those of litter (Fig. S1a and S1c). In rubber plantations some oribatid 

mite species were highly depleted in 13C relative to the litter baseline (up to 6 ‰; Fig. S1c). 

Calibrated stable isotope values of oribatid mite communities of the four land-use systems 

separated the two more natural systems from the two monoculture plantations (Fig. 1). 

Notably, rainforest and jungle rubber as well as oil palm and rubber plantations 

overlapped widely.  
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Figure 1: Average Δ13C and Δ15N stable isotope values of oribatid mite communities in rainforest 

(green), jungle rubber (blue), rubber (red) and oil palm plantations (orange) (eight replicates each). 

Each point represent the average position of oribatid mite communities per replicate land-use 

system; for each land-use system eight replicates were studied (four in each of two landscapes). 

 

One-dimensional metrics 
 

Similar to the calibrated stable isotope values, the average community positions of Δ13C 

and Δ15N values (‘IPos’) indicated separation of more natural systems and plantation 

systems (Figs. 2a - e). The average community positions of both Δ13C and Δ15N values 

varied significantly between the land-use systems (F3,27= 7.09, p < 0.001 for Δ13C and F3,27= 

Land-use system 
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7.93, p = < 0.001 for Δ15N). Average community positions of Δ13C were similar in rainforest 

and jungle rubber, but significantly lower in rubber and oil palm plantations, on average 

by 1.58 ‰ (Fig. 2a; Table S2). By contrast, average community positions of Δ15N were 

similar in rubber and oil palm plantations, but significantly lower in jungle rubber, on 

average by 1.79 ‰, and in rainforest, on average by 3.03 ‰ (Fig. 2e; Table S2). 

Maximum Δ13C values, but not maximum Δ15N values, varied significantly with land-use 

system (F3,27 = 7.22, p = 0.001 for Δ13C and F3,27 = 0.41, p = 0.74 for Δ15N). Maximum Δ13C 

values were similar in rainforest, jungle rubber and rubber plantations, but significantly 

lower in oil palm plantations, on average by 2 ‰ (Fig. 2b; Table S2). Further, minimum 

Δ13C and Δ15N values varied significantly with land-use system (F3,27 = 19.51, p < 0.001 for 

Δ13C and F3,27 = 10.56, p = <0.001 for Δ15N). Minimum Δ13C were similar in rainforest, jungle 

rubber and oil palm plantations, but significantly lower in rubber plantations, on average 

by 4.46 ‰. By contrast, minimum Δ15N values were similar in rainforest, jungle rubber and 

rubber plantations, but significantly higher in oil palm plantations, on average by 4.15 ‰ 

(Fig. 2g; Table S2). 

Similar to the previous metrics, the range between maximum and minimum Δ13C and Δ15N 

values varied significantly between land-use system (F3,27 = 16.31 p = 0.005 for Δ13C and 

F3,27 = 5.18 p = 0.006 for Δ15N). The range in Δ13C values was similar in rainforest, jungle 

rubber and oil palm plantations, but significantly higher in rubber plantations, on average 

by 4.87 ‰ (Fig. 2d; Table S2). By contrast, the range in Δ15N values was similar in rainforest 

and rubber plantations, but significantly lower in jungle rubber, on average by 2.52 ‰, 

and in oil palm plantations, on average by 4.94 ‰ (Fig. 2h) (Table S2).  
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Figure 2. One-dimensional metrics for Δ13C (upper panel) and Δ15N values (lower panel) of oribatid 

mite communities. Average position (a, e), maximum (b, f), minimum (c, g) and range between 

minimum and maximum (d, h); means (circles) and confidence intervals. Each point represents 

one community. For the calculation of the metrics see Methods and Table S2. For the calculation 

of the average positions, species were weighted according to their contribution to the total 

community biomass per plot. Means, sharing the same letter are not significantly different 

(Tukey’s HSD test, P < 0.05). 

 

Multidimensional metrics 
 

For the multidimensional metrics Δ13C and Δ15N values were scaled between 0 and 1 

(without units). Isotopic dispersion (‘IDis’), isotopic divergence ('IDiv') and isotopic 

evenness ('IEve') did not differ significantly between the four land-use systems (Figs. 3a-c) 

a) b) 

e) 

c) d) 

g) 
 

h) f) 
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(‘IDis’ F3,27 = 1.65 p = 0.201; 'IDiv' F3,27 = 0.46 p = 0.714; 'IEve' F3,27 = 1.53 p = 0.228). By 

contrast, isotopic richness ('IRic') varied significantly between the land-use systems (F3,27 

= 8.1 p = < 0.001); it was similar in rainforest, jungle rubber and oil palm plantations, but 

significantly higher in rubber monoculture plantations, on average by 0.11 (Fig. 3d; Table 

S3). Further, isotopic uniqueness ('IUni') varied significantly with land-use system (F3,27= 

5.33 p = 0.005); it increased from rainforest to jungle rubber and rubber plantations to oil 

palm plantations, in total by 0.3 (Fig. 3e; Table S3). For detailed information on plot level 

metrics values see Appendix (Figs S2 – S9). 

 

Figure 3: Multidimensional isotopic metrics of oribatid mite communities of four land-use systems, 

rainforest (F), jungle rubber (J), rubber (R) and oil palm plantations (O) – (a) isotopic dispersion 

('IDis'), (b) isotopic divergence ('IDiv'), (c) isotopic evenness ('IEve'), (d) isotopic richness ('IRic') and 

(e) isotopic uniqueness ('IUni') Each point represents one community, means (circles) and 

confidence intervals. For calculations see Methods and Table S3. For the calculation of the metrics, 

species were weighted according to their contribution to the total community biomass per plot. 

Means sharing the same letter are not significantly different (Tukey’s HSD test, P < 0.05). 

  

a) c) d) e) b) 
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Discussion  
 

We investigated effects of land-use change on the trophic ecology of oribatid mite 

communities as model taxon of soil invertebrates and the decomposer food web. The 

study adds to the few existing studies investigating changes in community trophic niches 

and energy fluxes (Korotkevich et al., 2018; Susanti et al., 2019). We investigated shifts in 

the community-level trophic niche of oribatid mites with the conversion of rainforest into 

rubber and oil palm plantations. Oribatid mite communities were represented by the 

species accounting for 80 % of total oribatid mite individuals as functional community. The 

results indicate that the community niche of oribatid mites differs most between more 

natural (rainforest and jungle rubber) and monoculture plantation systems (rubber and oil 

palm plantations). Further, the results indicate that in rubber monoculture plantations 

oribatid mites use basal resources not existing in any of the other studied land-use 

systems. In addition, the results indicate that in oil palm plantations trophic chains are 

shorter than in the other land-use systems. 

 

One-dimensional metrics 
 

Generally, both Δ13C and Δ15N values were similar in rainforest and jungle rubber and 

distant from those in oil palm and rubber plantations, indicating that trophic niches in the 

more natural systems are similar and markedly different from those in the two plantation 

systems with trophic niches in the more natural as well as the two monoculture plantation 

systems differing little. This supports findings of Krause et al. (2019) who analyzed 

individual oribatid mite species and showed that trophic niches shifted most from 
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rainforest to monoculture plantation systems. These changes were due to both changes 

in the use of basal resources as well as trophic level and indicated trophic plasticity of 

oribatid mite species. Using fatty acids as trophic markers Susanti et al. (2019) found 

strong changes in the flux of energy through soil food webs with the conversion of 

rainforest into rubber and oil palm plantations. Changes in energy channels with land-use 

intensity suggest that soil fauna communities are able to response in a flexible way to 

changes in the availability of resources. In rainforest energy in soil food webs is channeled 

mainly to higher trophic levels via the bacterial energy channel, whereas in oil palm 

plantations the plant-based channel is more important (Susanti et al., 2019). Results of 

the study of Susanti et al. (2019) further suggest that in tropical ecosystems algae play an 

important role as food resource for Collembola and Oribatida. Furthermore, generalist 

predator such as centipedes (Chilopoda) have been shown to switch from decomposer 

prey to other prey, predominantly herbivore species, in monoculture plantations, 

presumably due to reduced or lacking litter layer in the latter two systems (Klarner et al., 

2017). The amount of leaf litter in the litter layer in natural ecosystems typically is higher 

than in planation systems (Hyodo et al., 2015), and this also applies to the ecosystems 

investigated the present study (Krashevska et al., 2017). In our study the litter layer in oil 

palm plantations was lacking or poorly developed, whereas in oil palm a dense herb layer 

of mostly introduced weeds was present (Drescher et al., 2016). Similar to the results of 

Susanti et al. (2019) the shift towards lower Δ13C values in oribatid mite communities in 

our study indicates that conversion of rainforest into plantation systems is associated with 

a strengthening of the plant-based energy channel in plantation systems. By contrast, high 

Δ13C values in rainforest and jungle rubber indicated that soil food webs in the natural 
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systems are predominantly based on microbial energy channels (Potapov et al., 2013, 

2019b). 

Maximum Δ13C values of oribatid mite communities (reflecting one species with the most 

extreme values from the community) were significantly lower in oil palm plantations 

compared to the other three land-use systems, indicating that compared to the other 

land-use systems oribatid mites in oil palm plantations lack certain basal resources and 

trophic niches. Presumably, this reflects the virtual absence of litter in oil palm plantations 

associated with the lack of primary decomposers, which is supported by the absence of 

species with low Δ15N values. Soil animals typically are enriched in 13C by 3-4 δ units 

compared to litter (“detrital shift”; (Pollierer et al., 2009; Potapov et al., 2019) and 

therefore, the lower maximum Δ13C values and associated less pronounced detrital shift 

in oribatid mites in oil palm plantations presumably again reflect that oribatid mites (as 

well as other detritivores, see above) predominantly rely on freshly fixed plant carbon 

rather than microbial energy channels. Labile litter compounds which are easy to digest, 

such as sugars and proteins, are more abundant in fresh plant material (including algae) 

than in litter, and are often enriched in 13C (Gleixner et al., 1993), whereas structural 

compounds which are difficult to digest, such as lignin and cellulose, are more depleted 

(Benner et al., 1987). 

Minimum Δ13C values of oribatid mite communities were significantly lower (reflecting 

one species with the most extreme values from the community) in rubber plantations (up 

to 6 ‰) than in the other three land-use systems, indicating that oribatid mites in rubber 

plantations use some basal resources with exceptionally low δ13C values not available in 

the other land-use systems. Potentially, this reflects the use of carbon from understory 
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plants and algae which assimilated CO2 originating from decomposing organic matter 

(canopy effect; (Van der Merwe and Medina, 1991). However, this is unlikely to explain 

the difference in minimum Δ13C values of oribatid mite communities between rubber 

plantations and the other land-use systems studied as neither the abundance of algae nor 

of understory plants is higher in rubber monoculture plantations than in the other land-

use systems studied (Rembold et al., 2017; Schulz et al., 2019; Susanti et al., 2019). 

Another possibility might be that low Δ13C values of oribatid mite communities reflect the 

use of plant compounds depleted in 13C such as lignin (Bowling et al., 2008; Pollierer et al., 

2009). However, the use of lignin as carbon source is also unlikely since - with very few 

exceptions - animals are unable to digest lignin (Berg and Ryszard, 2005).  

Due to the very low minimum Δ13C values in oribatid mites of rubber plantations the range 

of Δ13C values was significantly higher as compared to the other three land-use systems, 

again reflecting that in rubber plantations certain oribatid mite species use resources 

depleted in 13C which are not available in the other land-use systems. Very high 13C values 

in jungle rubber and rubber such as in Plonaphacarus kugohi presumably are due to the 

incorporation of calcium carbonate in their exoskeleton (Norton and Behan-Pelletier, 

1991; Maraun et al., 2011; Pachl et al., 2012).  

In contrast to maximum and minimum 13C values, maximum Δ15N values of oribatid mites 

did not significantly differ between land-use systems. However, minimum Δ15N values 

were significantly higher in oil palm plantations compared to the other three land-use 

systems reflecting the lack of primary decomposers in oil palm plantations (see above). 

Earlier studies also showed that in tropical ecosystems primary decomposers are scarce 



Chapter III: Shift in trophic communities 
 

 
97 

or lacking (Illig et al., 2005) and this likely is related to litter of poor quality (Butenschoen 

et al., 2014; Marian et al., 2017). 

Generally, trophic level enrichment in 15N in primary decomposers is lower than in 

secondary decomposers and predators (Scheu and Falca, 2000; Vanderklift and Ponsard, 

2003). Potentially, this is due to nitrogen limitation of primary decomposers (Yoneyama 

et al., 1997) and low litter quality (Cornejo et al., 1994). Oribatid mites may switch from 

feeding on detritus to scavenging or predation, e.g. by feeding on nematodes (Heidemann 

et al., 2011, 2014). For centipedes it has been shown that they switch from decomposer 

prey in rainforest to herbivore prey in oil palm presumably due to the rich understory in 

oil palm plantations, indicating that diet switching contributes to the colonization of very 

different land-use systems by soil animals (Klarner et al., 2017).  

 

Multidimensional metrics 
 

Isotopic dispersion (‘IDis’), isotopic divergence ('IDiv') and isotopic evenness ('IEve') did 

not differ significantly between the four land-use systems indicating that the oribatid mite 

communities in the studied land-use systems are rather balanced and lack species 

occupying extreme trophic positions. Presumably, at least in part this reflects the ability 

of oribatid mite species to adapt to local resources (Krause et al., 2019).  

In contrast to the three metrics above, isotopic richness ('IRic') was significantly higher in 

rubber plantations than in the three other land-use systems studied, confirming the 

results of isotopic ranges and reflecting a more tight functional space filling by oribatid 

mite communities of this system (Cucherousset and Villéger, 2015). Further, isotopic 

uniqueness ('IUni') in oil palm plantations exceeded that in the other three land-use 
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systems, with jungle rubber and rubber plantations being intermediate between oil palm 

plantations and rainforest. High ‘IUni’ values indicate that the community harbors species 

with very different stable isotope values, e.g. feeding exclusively on certain resources not 

or little consumed by other species (Cucherousset and Villéger, 2015). High values in oil 

palm plantations and low values in rainforest therefore suggest low functional redundancy 

in the former and high functional redundancy in the latter. This indicates that the loss of 

species is more likely to be associated with a loss of functions in oil palm plantations than 

in rainforest.  

 

Conclusions 
 

Our results document that oribatid mites in tropical ecosystems occupy a wide range of 

trophic niches allowing insight into changes in the structure and functioning of 

decomposer systems with changes in land use.  Changes in community-level trophic niches 

with conversion of rainforest into plantation systems were due to both changes in trophic 

position (Δ15N values) as well as the use of basal resources (Δ13C values). Notably, changes 

in the use of basal resources were more prominent and consistent than those in trophic 

positions, indicating that changes in resource use with transformation of rainforest into 

plantations are more pronounced than changes in trophic level. Oribatid mite 

communities in both monoculture plantation systems studied had lower Δ13C values 

indicating that the decomposer food web in these systems relies more heavily on plant-

based resources, whereas the decomposer food web in rainforest and jungle rubber is 

based predominantly on microorganisms and litter-based resources. Further, higher 

average Δ15N values in oribatid mites of monoculture plantation systems compared to 
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rainforest and jungle rubber indicate the scarcity or lack of primary decomposers in the 

former. High isotopic richness (‘IRic’) and exceptionally low Δ13C values in rubber 

plantations indicate that oribatid mite communities in this system are functionally diverse 

and use carbon resources not existing in the other land-use systems studied, but the 

identity of these resources remains enigmatic. High isotopic uniqueness (‘IUni’) in oil palm 

plantations suggest that in particular these plantations are susceptible to losses of 

function with the loss of species. Overall, the results document that conversion of 

rainforest into plantation systems is associated with pronounced shifts in community level 

trophic niches of detritivores, which are likely associated with changes in the functioning 

of the decomposer system and the channeling of energy through the decomposer food 

web. 
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Appendix  

Figure S1a: Mean stable isotope values of oribatid mite species of the four land-use systems 

studied: rainforest (a), jungle rubber (b), rubber (c) and oil palm (d). The average stable isotope 

value of litter used for calibration (see Methods) is given as reference. Dashed horizontal lines 

reflect boundaries of trophic levels (primary decomposers, secondary decomposers and 

predators; see Methods). For statistical analysis see text. 
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Figure S1b: Mean stable isotope values of oribatid mite species of the four land-use systems 

studied: rainforest (a), jungle rubber (b), rubber (c) and oil palm (d). The average stable isotope 

value of litter used for calibration (see Methods) is given as reference. Dashed horizontal lines 

reflect boundaries of trophic levels (primary decomposers, secondary decomposers and 

predators; see Methods). For statistical analysis see text. 
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Figure S1c: Mean stable isotope values of oribatid mite species of the four land-use systems 

studied: rainforest (a), jungle rubber (b), rubber (c) and oil palm (d). The average stable isotope 

value of litter used for calibration (see Methods) is given as reference. Dashed horizontal lines 

reflect boundaries of trophic levels (primary decomposers, secondary decomposers and 

predators; see Methods). For statistical analysis see text. 
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Figure S1d: Mean stable isotope values of oribatid mite species of the four land-use systems 

studied: rainforest (a), jungle rubber (b), rubber (c) and oil palm (d). The average stable isotope 

value of litter used for calibration (see Methods) is given as reference. Dashed horizontal lines 

reflect boundaries of trophic levels (primary decomposers, secondary decomposers and 

predators; see Methods). For statistical analysis see text. 
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Table S1: Absolute and calibrated (see methods) stable isotope values of oribatid mite individuals 

studied. Species ID in Ecotaxonomy database (http://ecotaxonomy.org/), sample, species name, 

author, landscape, land-use system, absolute values of δ15N and δ13C values, biomass per species 

percentage and Δ15N and Δ13C per community (weighted values accordingly to the percentage of 

species per plot).  

sample species species author absolute litter-calibrated Biomass   community 
 

 ID 
  

δ13C δ15N mean   mean  species Δ15N Δ13C 

            δ15N δ13C  %     

Bukit Duabelas                   

rainforest                    

BF1 405583 [B08] [114] Neoamerioppia 
sp. cf. Neoamerioppia 
longiclava (405583) 

 
-27.30 4.03 0.47 -28.72 0.02 0.10 -0.67 

BF2 
   

-28.75 4.22 0.02 -31.81 0.08 0.34 -2.32 

BF3 
   

-27.32 1.40 0.53 -31.67 0.17 0.24 -4.70 

BF4 
   

-27.56 7.53 -0.67 -31.29 0.04 0.33 -1.22 

BF2 
   

-27.62 4.46 0.02 -31.81 0.03 0.14 -0.84 

BF4 405652 [B08] [13] Pergalumna sp cf. 
Pergalumna annulata 
(405652) 

Mahunka, 
S., 1973 

-27.05 3.93 -0.67 -31.29 0.04 0.15 -1.02 

BF1 405456 [B08] [131] Malacoangelia 
remigera subsp. remigera 
(405456) 

 
-25.91 6.36 0.47 -28.72 0.01 0.08 -0.32 

BF2 
   

-26.53 2.69 0.02 -31.81 0.00 0.01 -0.10 

BF4 405876 [B08] [148] Pasocepheus sp. 
cf. Pasocepheus bako 
(405876) 

 
-25.39 1.90 -0.67 -31.29 #N/A #N/A #N/A 

BF2 405862  [B08] [184] Graptoppia sp. 
nov. 2 (405862) 

 
-28.08 1.71 0.02 -31.81 0.06 0.11 -1.75 

BF4 
   

-25.90 9.87 -0.67 -31.29 0.00 0.00 -0.01 

BF4 405715 [B08] [194] Protoribates 
prolamellatus (405715) 

Ermilov, 
Sandmann 
& Scheu, 
2019 

-26.57 2.87 -0.67 -31.29 0.01 0.03 -0.25 

BF3 405858 [B08] [205] Yoshiobodes 
irmayi (405858) 

 
-26.58 2.13 0.53 -31.67 0.00 0.00 -0.03 

BF4 
   

-25.14 3.70 -0.67 -31.29 0.02 0.06 -0.39 

BF1 405674  [B08] [36] Dolicheremaeus 
sumatranus (form 1) cf. 
Dolicheremaeus sumatranus 
(405674) 

 
-25.46 2.54 0.47 -28.72 0.09 0.22 -2.24 

BF2 
   

-25.95 10.87 0.02 -31.81 0.00 0.01 -0.03 

BF4 
   

-25.95 8.91 -0.67 -31.29 0.01 0.05 -0.15 

BF3 405678 [B08] [45] Eremobelba 
comtae  (405678) 

 
-26.44 4.64 0.53 -31.67 0.01 0.05 -0.26 

BF4 
   

-26.27 3.82 -0.67 -31.29 0.00 0.00 0.00 

BF1 405868 [B08] [47] Haplozetes 
bayartogtokhi (405868) 

Ermilov, 
Sandmann 
& Scheu, 
2019 

-26.79 0.16 0.47 -28.72 0.01 0.00 -0.36 

BF2 
   

-26.08 5.34 0.02 -31.81 0.02 0.08 -0.40 

BF1 405446 [B08] [62] Masthermannia 
sp. cf. Masthermannia 
mammillaris (405446) 

 
-26.68 1.11 0.47 -28.72 0.01 0.02 -0.37 
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BF2 
   

-26.69 0.93 0.02 -31.81 0.00 0.00 -0.04 

BF3 
   

-27.50 0.44 0.53 -31.67 0.02 0.01 -0.42 

BF4 
   

-27.07 0.81 -0.67 -31.29 0.01 0.01 -0.26 

BF1 405481  [B08] [82] Allozetes nov. sp. 
1 (405481) 

 
-26.46 3.67 0.47 -28.72 0.02 0.06 -0.46 

BF2 
   

-27.23 2.30 0.02 -31.81 0.02 0.04 -0.51 

BF3 405856 [B08] [88] Dolicheremaeus 
sp. 2 (405856) 

 
-26.70 2.40 0.53 -31.67 0.04 0.10 -1.09 

BF4 
   

-26.05 2.31 -0.67 -31.29 0.01 0.03 -0.35 

BF1 405885  [B08] [96] Afronothrus 
incisivus (405885) 

 
-25.88 2.80 0.47 -28.72 0.00 0.01 -0.07 

BF2 
   

-27.29 -0.07 0.02 -31.81 0.00 0.00 -0.05 

BF4 
   

-27.05 0.20 -0.67 -31.29 0.10 0.02 -2.60 

BF2 405633 Arcoppia vittata Hammer, 
1979 

-26.53 5.79 0.02 -31.81 0.09 0.52 -2.40 

BF1 405384 Dendrohermannia 
monstruosa  

Aoki, 1977 -27.05 3.27 0.47 -28.72 0.05 0.18 -1.48 

BF3 
   

-26.82 2.27 0.53 -31.67 0.04 0.09 -1.02 

BF4 
   

-27.96 1.72 -0.67 -31.29 0.01 0.01 -0.16 

BF1 405618 Eohypochthonius salicifolius  Hammer, 
1979 

-24.73 9.29 0.47 -28.72 0.01 0.05 -0.13 

BF2 
   

-27.37 1.17 0.02 -31.81 0.03 0.04 -0.94 

BF1 405626 Eremulus baliensis  Hammer,  
1982 

-26.55 4.19 0.47 -28.72 0.02 0.08 -0.49 

BF3 
   

-26.42 -2.93 0.53 -31.67 0.01 -0.02 -0.20 

BF4 
   

-26.62 7.12 -0.67 -31.29 0.01 0.10 -0.36 

BF1 405547 Galumna corpuzrarosae Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-26.92 2.25 0.47 -28.72 0.03 0.07 -0.86 

BF4 
   

-28.10 2.68 -0.67 -31.29 0.02 0.05 -0.50 

BF2 405638 Gehypochthonius 
rhadamanthus 

Jacot,  1936 -25.56 1.68 0.02 -31.81 0.27 0.45 -6.82 

BF1 405627 Hemileius perforatoides (Hammer, 
1979) 

-24.06 1.16 0.47 -28.72 0.01 0.01 -0.21 

BF2 
   

-25.96 1.44 0.02 -31.81 0.04 0.06 -1.03 

BF3 
   

-25.55 -0.13 0.53 -31.67 0.00 0.00 -0.06 

BF4 
   

-26.11 1.07 -0.67 -31.29 0.08 0.09 -2.11 

BF3 
   

-27.00 3.57 0.53 -31.67 0.00 0.01 -0.07 

BF4 
   

-25.64 2.22 -0.67 -31.29 0.01 0.03 -0.37 

BF3 405471 Indoribates hauseri  (Mahunka, 
1997) 

-27.31 2.53 0.53 -31.67 0.04 0.10 -1.09 

BF4 
   

-29.30 4.01 -0.67 -31.29 0.05 0.21 -1.50 

BF1 405530 Lamellobates orientalis  Csiszár, 
1961 

-27.42 1.24 0.47 -28.72 0.02 0.02 -0.51 

BF2 
   

-28.05 2.44 0.02 -31.81 0.02 0.05 -0.59 

BF3 
   

-27.61 0.03 0.53 -31.67 0.01 0.00 -0.39 

BF4 
   

-27.43 2.27 -0.67 -31.29 0.04 0.08 -1.00 

BF1 405472 Magyaria leonilae Ermilov, 
Sandmann 
& Scheu, 
2019 

-27.73 3.51 0.47 -28.72 0.19 0.67 -5.32 

BF2 
   

-27.53 1.43 0.02 -31.81 0.17 0.24 -4.64 

BF3 
   

-28.40 1.85 0.53 -31.67 0.04 0.08 -1.22 

BF4 
   

-27.60 2.24 -0.67 -31.29 0.07 0.16 -1.96 

BF1 405578 Meristacarus porcula  Grandjean, 
1934 

-26.56 1.32 0.47 -28.72 0.08 0.10 -2.10 

BF2 
   

-27.91 3.33 0.02 -31.81 0.03 0.10 -0.86 

BF3 
   

-26.53 5.21 0.53 -31.67 0.00 0.01 -0.06 

BF4 
   

-27.28 4.57 -0.67 -31.29 0.03 0.14 -0.85 

BF3 405439  Oribatella malaya Balogh & 
Mahunka, 
1974 

-27.01 1.22 0.53 -31.67 0.02 0.02 -0.49 
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BF4 
   

-26.86 5.26 -0.67 -31.29 0.05 0.29 -1.46 

BF1 405672 Parhypochthonius asiaticus  Mahunka, 
1997 

-27.08 4.01 0.47 -28.72 0.00 0.01 -0.04 

BF1 405548 Pergalumna paraindistincta  Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.22 3.05 0.47 -28.72 0.18 0.54 -4.79 

BF2 
   

-27.55 2.95 0.02 -31.81 0.08 0.24 -2.22 

BF3 
   

-26.99 1.95 0.53 -31.67 0.00 0.01 -0.11 

BF2 405470 [B08] [2] Phyllhermannia 
similis (405470) 

 
-27.01 0.62 0.02 -31.81 0.01 0.01 -0.24 

BF3 
 

 
 

-27.64 -1.38 0.53 -31.67 0.39 -0.54 -10.90 

BF4 
 

 
 

-27.58 -1.20 -0.67 -31.29 0.20 -0.23 -5.40 

BF1 
 

 
 

-26.67 0.70 0.47 -28.72 0.18 0.13 -4.87 

BF1 405671 Protoribates paracapucinus  (Mahunka, 
1988) 

-26.48 -0.54 0.47 -28.72 0.01 -0.01 -0.28 

BF2 
   

-26.50 3.54 0.02 -31.81 0.02 0.06 -0.48 

BF4 
   

-25.96 5.29 -0.67 -31.29 0.01 0.05 -0.26 

BF2 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-29.33 -0.56 0.02 -31.81 0.01 -0.01 -0.34 

BF3 
   

-27.20 1.61 0.53 -31.67 0.04 0.06 -1.00 

BF4 
   

-26.49 2.83 -0.67 -31.29 0.01 0.03 -0.32 

BF2 405668   Suctotegeus tumescitus Mahunka, 
1987 

-27.77 7.15 0.02 -31.81 0.00 0.02 -0.08 

BF1 405457  Tectocepheus minor  Berlese, 
1903 

-26.59 -0.39 0.47 -28.72 0.01 0.00 -0.19 

BF2 
   

-27.03 1.27 0.02 -31.81 0.00 0.00 -0.05 

BF3 
   

-26.16 16.63 0.53 -31.67 0.02 0.37 -0.58 

BF4 
   

-26.63 5.39 -0.67 -31.29 0.01 0.05 -0.25 

BF1 405389 Trachyoribates shibai (Aoki, 1976) -26.76 5.45 0.47 -28.72 0.01 0.04 -0.19 

BF2 
   

-26.42 1.86 0.02 -31.81 0.01 0.02 -0.22 

BF3 
   

-25.32 2.13 0.53 -31.67 0.01 0.03 -0.35 

BF4 
   

-27.07 2.83 -0.67 -31.29 0.03 0.08 -0.73 

BF1 405642  Zetorchestes novaguineanus Krisper, 
1987 

-25.45 0.79 0.47 -28.72 0.03 0.03 -0.87 

BF3 
   

-28.26 1.84 0.53 -31.67 0.12 0.22 -3.44 

BF4 
   

-28.09 2.02 -0.67 -31.29 0.14 0.28 -3.82 

jungle rubber                   

BJ2 405652 [B08] [13] Pergalumna sp cf. 
Pergalumna annulata 
(405652) 

Mahunka, 
S., 1973 

-28.01 1.48 -2.73 -29.88 0.01 0.01 -0.18 

BJ3 
   

-22.96 0.18 -2.17 -31.02 0.01 0.00 -0.20 

BJ2 405873 [B08] [141] Neoribates sp. 1 
(405873) 

 
-26.95 1.42 -2.73 -29.88 0.16 0.23 -4.30 

BJ4 405701 [B08] [146] Apoplophora 
phalerata (405701) 

 
-25.75 3.79 -1.65 -31.40 0.11 0.42 -2.89 

BJ2 
   

-24.49 1.85 -2.73 -29.88 0.00 0.00 -0.03 

BJ3 
   

-25.52 0.42 -2.17 -31.02 0.11 0.05 -2.77 

BJ4 
   

-24.71 -0.47 -1.65 -31.40 0.00 0.00 -0.06 

BJ5 
   

-24.74 3.70 -1.26 -32.45 0.00 0.00 -0.03 

BJ3 405704 [B08] [164] Dampfiella sp. 1 
(405704) 

 
-26.17 -0.39 -2.17 -31.02 0.03 -0.01 -0.78 

BJ4 
   

-25.85 -2.47 -1.65 -31.40 0.02 -0.05 -0.47 

BJ3 405897 [B08] [173] cf Prototritia sp. 
1 (405897) 

 
-25.24 4.07 -2.17 -31.02 0.00 0.01 -0.07 

BJ4 
   

-24.97 3.25 -1.65 -31.40 0.01 0.04 -0.27 

BJ5 
   

-24.63 3.26 -1.26 -32.45 0.04 0.12 -0.88 

BJ2 405729 [B08] [30] Plonaphacarus 
kugohi (405729) 

Aoki, 1959 -24.00 -0.73 -2.73 -29.88 0.03 -0.02 -0.80 

BJ2 405478 [B08] [4] Rostrozetes sp. 7 
(405478) 

 
-26.83 1.63 -2.73 -29.88 0.00 0.00 -0.07 

BJ3 
   

-27.35 1.56 -2.17 -31.02 0.00 0.00 -0.04 
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BJ4 
   

-26.85 2.83 -1.65 -31.40 0.02 0.06 -0.54 

BJ5 
   

-27.95 1.45 -1.26 -32.45 0.00 0.00 -0.02 

BJ3 405877   [B08] [49] Phyllochthonius 
sp. cf. Phyllochthonius aoutii 
(405877) 

 
-23.96 -0.57 -2.17 -31.02 0.06 -0.03 -1.34 

BJ4 405866 [B08] [55] Idiozetes sp. cf. 
Idiozetes javensis (405866) 

 
-25.32 3.28 -1.65 -31.40 0.01 0.03 -0.24 

BJ5 
   

-30.23 -0.21 -1.26 -32.45 0.00 0.00 -0.12 

BJ3 405675 [B08] [8] Dolicheremaeus 
sumatranus (form 2) cf. 
Dolicheremaeus sumatranus 
(405675) 

 
-25.57 1.09 -2.17 -31.02 0.01 0.01 -0.33 

BJ2 405525 [B08] [85] Megalotocepheus 
crinitus (405525) 

(Berlese, 
1905) 

-25.01 0.89 -2.73 -29.88 0.00 0.00 -0.01 

BJ4 
   

-24.66 2.38 -1.65 -31.40 0.19 0.44 -4.61 

BJ3 405885  [B08] [96] Afronothrus 
incisivus (405885) 

 
-25.95 -0.56 -2.17 -31.02 0.04 -0.02 -1.06 

BJ2 405539 Allogalumna indonesiensis Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-26.12 -1.13 -2.73 -29.88 0.00 0.00 -0.06 

BJ3 434473 Allogalumna nov. sp. 2 
 

-26.88 1.32 -2.17 -31.02 0.08 0.11 -2.27 

BJ2 405541  Cosmogalumna areticulata Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-26.04 0.81 -2.73 -29.88 0.00 0.00 -0.10 

BJ5 405393 Cyrthermannia tuberculata Balogh, 
1958 

-25.91 2.22 -1.26 -32.45 0.06 0.14 -1.58 

BJ3 405618 Eohypochthonius salicifolius  Hammer, 
1979 

-28.88 4.86 -2.17 -31.02 0.02 0.11 -0.66 

BJ2 405620 Eremulus densus Hammer,  
1979 

-26.23 1.36 -2.73 -29.88 0.00 0.00 -0.01 

BJ3 
   

-26.47 3.25 -2.17 -31.02 0.02 0.08 -0.61 

BJ2 405544 Galumna indonesica Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-26.62 4.08 -2.73 -29.88 0.00 0.01 -0.03 

BJ5 
   

-26.89 1.49 -1.26 -32.45 0.08 0.12 -2.12 

BJ4 405679 Galumnopsis reducta (Mahunka, 
1995) 

-25.69 3.96 -1.65 -31.40 0.01 0.06 -0.38 

BJ3 405638 Gehypochthonius 
rhadamanthus 

Jacot,  1936 -27.04 3.84 -2.17 -31.02 0.00 0.02 -0.13 

BJ2 405627 Hemileius perforatoides (Hammer, 
1979) 

-26.27 0.25 -2.73 -29.88 0.02 0.01 -0.62 

BJ5 
   

-25.94 2.15 -1.26 -32.45 0.43 0.92 -11.10 

BJ2 405573  Hoplophorella cucullata (Ewing, 
1909) 

-25.11 2.47 -2.73 -29.88 0.01 0.01 -0.15 

BJ3 
   

-25.63 5.09 -2.17 -31.02 0.01 0.06 -0.31 

BJ4 405875  Kalloia gerdweigmanni Ermilov, 
Sandmann 
& Scheu, 
2019 

-24.56 0.38 -1.65 -31.40 0.01 0.00 -0.23 

BJ3 405454 Lamellobates misella (Berlese, 
1910) 

-25.70 3.92 -2.17 -31.02 0.01 0.05 -0.33 

BJ2 405530 Lamellobates orientalis  Csiszár, 
1961 

-28.13 3.94 -2.73 -29.88 0.10 0.38 -2.73 

BJ3 
   

-29.13 -1.69 -2.17 -31.02 0.06 -0.11 -1.88 

BJ4 
   

-28.54 3.92 -1.65 -31.40 0.08 0.33 -2.42 

BJ5 
   

-28.64 0.15 -1.26 -32.45 0.17 0.03 -4.84 
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BJ2 405472 Magyaria leonilae Ermilov, 
Sandmann 
& Scheu, 
2019 

-28.18 0.59 -2.73 -29.88 0.13 0.08 -3.61 

BJ3 
   

-28.67 1.34 -2.17 -31.02 0.13 0.18 -3.86 

BJ4 
   

-28.83 1.70 -1.65 -31.40 0.04 0.06 -1.08 

BJ5 
   

-27.89 -1.62 -1.26 -32.45 0.22 -0.35 -6.08 

BJ2 405470 [B08] [2] Phyllhermannia 
similis (405470) 

 
-28.73 -1.70 -2.73 -29.88 0.51 -0.87 -14.68 

BJ3 405470  

 
-26.64 -2.04 -2.17 -31.02 0.29 -0.59 -7.75 

BJ4 405470  

 
-27.52 -0.29 -1.65 -31.40 0.33 -0.10 -9.20 

BJ2 405671 Protoribates paracapucinus  (Mahunka, 
1988) 

-26.02 4.76 -2.73 -29.88 0.00 0.01 -0.04 

BJ3 
   

-25.86 2.87 -2.17 -31.02 0.04 0.12 -1.05 

BJ4 
   

-25.88 1.11 -1.65 -31.40 0.03 0.04 -0.86 

BJ2 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-27.30 0.47 -2.73 -29.88 0.01 0.00 -0.22 

BJ4 
   

-27.31 2.76 -1.65 -31.40 0.11 0.30 -2.96 

BJ2 405524 Tegeozetes tunicatus Berlese, 
1913 

-24.68 -5.48 -2.73 -29.88 0.00 0.00 -0.01 

BJ3 
   

-25.76 4.62 -2.17 -31.02 0.02 0.09 -0.52 

BJ4 
   

-26.20 2.25 -1.65 -31.40 0.01 0.02 -0.27 

BJ5 
   

-25.80 2.88 -1.26 -32.45 0.00 0.00 -0.04 

BJ2 405389 Trachyoribates shibai (Aoki, 1976) -26.35 6.03 -2.73 -29.88 0.01 0.08 -0.35 

BJ3 
   

-25.75 5.65 -2.17 -31.02 0.03 0.16 -0.71 

BJ4 
   

-24.73 2.70 -1.65 -31.40 0.01 0.02 -0.16 

BJ5 
   

-25.68 -2.12 -1.26 -32.45 0.00 0.00 -0.06 

rubber plantation                   

BR2 405455 [B08] [111] Lamellobates 
molecula mol (405455) 

 
-33.63 5.54 -2.02 -29.71 0.10 0.57 -3.47 

BR2 405639 [B08] [13] Pergalumna sp cf. 
Pergalumna annulata 
(405652) 

 
-29.25 1.35 -2.02 -29.71 0.51 0.69 -15.04 

BR1 405379 [B08] [17] Rostrozetes cf 
shibai cf. Rostrozetes shibai 
(405379) 

 
-33.82 -1.00 -1.92 -29.76 0.06 -0.06 -1.87 

BR1 405450 [B08] [20] Bischeloribates 
mahunkai (405450) Subías 2010 

-26.30 5.59 -1.92 -29.76 0.17 0.94 -4.41 

BR2 
  

 -26.31 4.46 -2.02 -29.71 0.10 0.45 -2.64 

BR4 
  

 -27.49 5.68 -0.67 -29.56 0.62 3.52 -17.03 

BR1 405729 [B08] [30] Plonaphacarus 
kugohi (405729) 

Aoki, 1959 -21.55 4.37 -1.92 -29.76 0.01 0.04 -0.22 

BR2 
   

-23.25 1.82 -2.02 -29.71 0.03 0.05 -0.65 

BR4 
   

-24.25 2.30 -0.67 -29.56 0.14 0.31 -3.30 

BR1 405390 [B08] [74] Rostrozetes cf 
florens cf. Trachyoribates 
florens (405390) 

(Balogh, 
1970) 

-35.49 -2.67 -1.92 -29.76 0.02 -0.05 -0.66 

BR1 405381 Archegozetes longisetosus Aoki, 1965 -27.63 4.07 -1.92 -29.76 0.58 2.36 -16.03 

BR4 
   

-28.16 2.88 -0.67 -29.56 0.00 0.01 -0.13 

BR1 405393  Cyrthermannia tuberculata Balogh, 
1958 

-29.18 0.80 -1.92 -29.76 0.01 0.01 -0.36 

BR3 
   

-36.38 -5.51 -1.55 -30.01 0.02 -0.11 -0.75 

BR1 405620 Eremulus densus Hammer,  
1979 

-34.45 -3.62 -1.92 -29.76 0.02 -0.08 -0.80 

BR1 405664 Galumna sabahna Mahunka,  
1995 

-29.12 7.25 -1.92 -29.76 0.01 0.09 -0.37 

BR2 
   

-29.39 2.06 -2.02 -29.71 0.06 0.13 -1.85 

BR4 
   

-29.80 4.99 -0.67 -29.56 0.18 0.88 -5.27 

BR1 405638 Gehypochthonius 
rhadamanthus 

Jacot,  1936 -35.33 2.45 -1.92 -29.76 0.05 0.12 -1.70 

BR2 
   

-27.86 10.24 -2.02 -29.71 0.05 0.51 -1.38 

BR1 405386 Otocepheus heterosetiger Aoki, 1965 -29.04 1.94 -1.92 -29.76 0.00 0.01 -0.08 

BR4 
   

-25.51 2.88 -0.67 -29.56 0.04 0.11 -1.01 
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BR1 405671 Protoribates paracapucinus  (Mahunka, 
1988) 

-26.37 6.73 -1.92 -29.76 0.05 0.33 -1.29 

BR3 
   

-25.90 4.06 -1.55 -30.01 0.75 3.06 -19.51 

BR4 
   

-25.42 -1.74 -0.67 -29.56 0.02 -0.04 -0.59 

BR1 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-25.06 0.36 -1.92 -29.76 0.00 0.00 -0.11 

BR2 
   

-26.60 4.11 -2.02 -29.71 0.09 0.38 -2.44 

BR3 
   

-27.97 2.35 -1.55 -30.01 0.19 0.44 -5.28 

BR1 405524 Tegeozetes tunicatus Berlese, 
1913 

-26.36 1.59 -1.92 -29.76 0.02 0.03 -0.41 

BR2 
   

-25.53 4.23 -2.02 -29.71 0.03 0.15 -0.89 

BR3 
   

-26.33 1.87 -1.55 -30.01 0.01 0.02 -0.33 

BR2 405389 Trachyoribates shibai (Aoki, 1976) -28.02 1.41 -2.02 -29.71 0.01 0.02 -0.42 

BR3 
   

-29.85 -3.17 -1.55 -30.01 0.02 -0.08 -0.73 

oil palm plantation                 

BO2 405718 [B08] [107] Rostrozetes  sp. 
1 (405718) 

 
-27.83 5.15 0.29 -29.59 0.19 0.99 -5.33 

BO3 
   

-27.98 6.20 0.84 -30.24 0.00 0.01 -0.06 

BO4 
   

-27.89 3.14 -0.19 -32.14 0.05 0.16 -1.39 

BO5 
   

-25.78 4.28 1.27 -29.89 0.02 0.07 -0.42 

BO3 405450 [B08] [20] Bischeloribates 
mahunkai (405450) Subías 2010 

-27.36 5.52 0.84 -30.24 0.11 0.61 -3.03 

BO2 405446 [B08] [62] Masthermannia 
sp. cf. Masthermannia 
mammillaris (405446) 

 
-26.59 13.55 0.29 -29.59 0.26 3.58 -7.03 

BO3 
   

-31.95 4.33 0.84 -30.24 0.07 0.32 -2.39 

BO5 
   

-29.39 13.53 1.27 -29.89 0.00 0.06 -0.13 

BO2 405506 Allonothrus russeolus Wallwork, 
1960 

-27.48 5.42 0.29 -29.59 0.12 0.64 -3.26 

BO3 
   

-28.28 4.13 0.84 -30.24 0.31 1.28 -8.77 

BO5 
   

-29.48 4.83 1.27 -29.89 0.76 3.69 -22.52 

BO3 405381 Archegozetes longisetosus Aoki, 1965 -29.42 1.11 0.84 -30.24 0.35 0.39 -10.39 

BO4 
   

-31.78 7.51 -0.19 -32.14 0.36 2.70 -11.43 

BO5 405634 Galumna flabellifera Hammer,  
1979 

-26.56 6.16 1.27 -29.89 0.13 0.82 -3.52 

BO3 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-26.45 2.58 0.84 -30.24 0.12 0.30 -3.05 

BO4 
   

-28.60 2.87 -0.19 -32.14 0.34 0.97 -9.68 

BO5 
   

-28.51 4.51 1.27 -29.89 0.01 0.06 -0.39 

BO2 405389 Trachyoribates shibai (Aoki, 1976) -28.41 8.85 0.29 -29.59 0.43 3.77 -12.09 

BO3 
   

-27.09 2.92 0.84 -30.24 0.03 0.10 -0.91 

BO4 
   

-26.41 4.11 -0.19 -32.14 0.25 1.03 -6.66 

BO5 
   

-26.03 4.82 1.27 -29.89 0.07 0.33 -1.80 

Harapan                   

rainforest                    

HF1 405473 [B08] [12] Meristacarus nov. 
sp. 1 (405473) 

 
-26.59 2.11 0.20 -30.81 0.00 0.01 -0.09 

HF2 
   

-26.89 0.90 0.03 -31.22 0.03 0.03 -0.78 

HF3 
   

-27.75 1.35 0.29 -31.05 0.01 0.01 -0.15 

HF4 405585 [B08] [120] Suctobelbella sp. 
cf. Suctobelbella reticulata 
(405585) 

 
-26.73 0.99 0.25 -30.76 0.08 0.08 -2.22 

HF1 405652 [B08] [13] Pergalumna sp cf. 
Pergalumna annulata 
(405652) 

Mahunka, 
S., 1973 

-28.36 2.61 0.20 -30.81 0.08 0.20 -2.21 

HF3 
   

-29.29 1.85 0.29 -31.05 0.23 0.43 -6.76 

HF4 
   

-27.76 2.41 0.25 -30.76 0.18 0.44 -5.06 

HF1 405508 [B08] [34] Scheloribates sp. 
cf. Scheloribates fimbriatus 
javensis (405508) 

 
-26.80 3.69 0.20 -30.81 0.01 0.02 -0.16 

HF4 
   

-25.60 4.00 0.25 -30.76 0.02 0.10 -0.64 

HF1 405709 [B08] [38] Neoliodes sp. 1 
(405709) 

 
-27.40 -3.64 0.20 -30.81 0.01 -0.02 -0.16 
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HF2 
   

-28.36 -3.74 0.03 -31.22 0.04 -0.17 -1.27 

HF3 
   

-28.24 -2.71 0.29 -31.05 0.04 -0.10 -1.07 

HF4 
   

-27.50 -4.63 0.25 -30.76 0.01 -0.07 -0.39 

HF1 405478 [B08] [4] Rostrozetes sp. 7 
(405478) 

 
-27.78 2.42 0.20 -30.81 0.00 0.01 -0.13 

HF3 405446 [B08] [62] Masthermannia 
sp. cf. Masthermannia 
mammillaris (405446) 

 
-26.42 1.59 0.29 -31.05 0.01 0.01 -0.21 

HF4 
   

-26.65 2.04 0.25 -30.76 0.06 0.11 -1.50 

HF1 405675 [B08] [8] Dolicheremaeus 
sumatranus (form 2) cf. 
Dolicheremaeus sumatranus 
(405675) 

 
-26.97 2.11 0.20 -30.81 0.05 0.11 -1.43 

HF4 434366 Cultroribula lata Aoki, 1961 -27.00 2.08 0.25 -30.76 0.02 0.03 -0.41 

HF1 405626 Eremulus baliensis  Hammer,  
1982 

-27.27 3.98 0.20 -30.81 0.01 0.04 -0.28 

HF3 
   

-26.67 3.95 0.29 -31.05 0.00 0.00 -0.03 

HF1 405547 Galumna corpuzrarosae Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.32 1.37 0.20 -30.81 0.01 0.02 -0.38 

HF1 405627 Hemileius perforatoides (Hammer, 
1979) 

-26.46 1.34 0.20 -30.81 0.02 0.03 -0.53 

HF2 
   

-25.34 0.06 0.03 -31.22 0.08 0.00 -2.00 

HF3 
   

-26.57 4.13 0.29 -31.05 0.27 1.11 -7.12 

HF4 
   

-26.13 2.39 0.25 -30.76 0.01 0.01 -0.15 

HF3 405641 Javacarus jocelynae Judson, 
1991 

-26.50 3.25 0.29 -31.05 0.01 0.04 -0.34 

HF1 405530 Lamellobates orientalis  Csiszár, 
1961 

-27.16 4.16 0.20 -30.81 0.03 0.12 -0.77 

HF2 
   

-26.84 0.72 0.03 -31.22 0.21 0.15 -5.62 

HF3 
   

-24.75 6.22 0.29 -31.05 0.02 0.10 -0.41 

HF4 
   

-26.14 3.15 0.25 -30.76 0.15 0.46 -3.82 

HF1 405472 Magyaria leonilae Ermilov, 
Sandmann 
& Scheu, 
2019 

-27.26 1.70 0.20 -30.81 0.06 0.11 -1.75 

HF2 
   

-27.54 -1.04 0.03 -31.22 0.25 -0.26 -6.98 

HF4 
   

-26.81 1.17 0.25 -30.76 0.01 0.01 -0.15 

HF3 405439  Oribatella malaya Balogh & 
Mahunka, 
1974 

-27.28 1.68 0.29 -31.05 0.11 0.19 -3.08 

HF4 
   

-27.32 1.30 0.25 -30.76 0.04 0.06 -1.16 

HF1 405548 Pergalumna paraindistincta  Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.40 2.56 0.20 -30.81 0.12 0.32 -3.41 

HF2 
   

-27.01 -0.18 0.03 -31.22 0.02 0.00 -0.59 

HF3 
   

-25.69 2.35 0.29 -31.05 0.00 0.00 -0.04 

HF4 
   

-27.53 2.43 0.25 -30.76 0.01 0.03 -0.35 

HF3 405470 [B08] [2] Phyllhermannia 
similis (405470) 

 
-28.31 -2.39 0.29 -31.05 0.13 -0.31 -3.65 

HF1 
 

 
 

-27.96 -1.05 0.20 -30.81 0.29 -0.31 -8.16 

HF2 
 

 
 

-28.34 -2.09 0.03 -31.22 0.27 -0.56 -7.54 

HF4 
 

 
 

-28.54 -2.43 0.25 -30.76 0.22 -0.54 -6.40 

HF1 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-29.25 0.73 0.20 -30.81 0.25 0.18 -7.33 

HF3 
   

-29.38 0.51 0.29 -31.05 0.05 0.02 -1.34 

HF4 
   

-28.74 0.48 0.25 -30.76 0.15 0.07 -4.38 

HF1 405389 Trachyoribates shibai (Aoki, 1976) -26.21 3.80 0.20 -30.81 0.01 0.04 -0.24 

HF2 
   

-26.15 3.18 0.03 -31.22 0.01 0.03 -0.28 
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HF3 
   

-25.72 4.03 0.29 -31.05 0.03 0.12 -0.76 

HF4 
   

-26.78 3.04 0.25 -30.76 0.00 0.01 -0.12 

HF1 405642  Zetorchestes novaguineanus Krisper, 
1987 

-29.07 1.01 0.20 -30.81 0.04 0.04 -1.06 

HF2 
   

-29.11 0.76 0.03 -31.22 0.09 0.06 -2.50 

HF3 
   

-28.51 3.72 0.29 -31.05 0.10 0.38 -2.89 

HF4 
   

-28.90 1.34 0.25 -30.76 0.03 0.04 -0.89 

jungle rubber                   

HJ2 405650 [B08] [33] Apoplophora 
pantotrema cf. Apoplophora 
cristata (405650) 

 
-27.10 3.86 0.67 -30.80 0.31 1.20 -8.39 

HJ4 
   

-26.61 6.06 -0.97 -30.26 0.01 0.04 -0.16 

HJ4 405447 [B08] [66] Trachyoribates 
ampulla (405447) 

 
-26.96 1.66 -0.97 -30.26 0.20 0.33 -5.38 

HJ2 405856 [B08] [88] Dolicheremaeus 
sp. 2 (405856) 

 
-26.86 1.24 0.67 -30.80 0.11 0.14 -2.92 

HJ4 405885  [B08] [96] Afronothrus 
incisivus (405885) 

 
-26.71 1.09 -0.97 -30.26 0.05 0.05 -1.34 

HJ2 405539 Allogalumna indonesiensis Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.85 -2.54 0.67 -30.80 0.06 -0.15 -1.67 

HJ3 
   

-26.29 2.85 -0.47 -29.70 0.01 0.02 -0.14 

HJ4 
   

-26.63 1.86 -0.97 -30.26 0.01 0.02 -0.32 

HJ1 405381 Archegozetes longisetosus Aoki, 1965 -26.68 2.31 0.16 -30.12 0.07 0.17 -1.98 

HJ2 
   

-28.05 0.90 0.67 -30.80 0.02 0.01 -0.44 

HJ3 
   

-26.73 -0.59 -0.47 -29.70 0.49 -0.29 -13.12 

HJ4 
   

-26.98 -0.15 -0.97 -30.26 0.04 -0.01 -0.95 

HJ1 405541  Cosmogalumna areticulata Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-25.75 1.93 0.16 -30.12 0.01 0.03 -0.36 

HJ2 
   

-27.13 1.90 0.67 -30.80 0.00 0.01 -0.08 

HJ2 434366 Cultroribula lata Aoki, 1961 -26.69 8.70 0.67 -30.80 0.11 0.98 -3.01 

HJ3 
   

-27.18 -3.19 -0.47 -29.70 0.07 -0.22 -1.88 

HJ4 
   

-26.63 -0.45 -0.97 -30.26 0.06 -0.03 -1.49 

HJ1 405626 Eremulus baliensis  Hammer,  
1982 

-26.59 3.09 0.16 -30.12 0.05 0.14 -1.23 

HJ2 
   

-26.93 1.29 0.67 -30.80 0.03 0.04 -0.89 

HJ3 
   

-26.73 4.43 -0.47 -29.70 0.02 0.10 -0.61 

HJ4 
   

-27.24 3.59 -0.97 -30.26 0.06 0.21 -1.60 

HJ1 405547 Galumna corpuzrarosae Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.03 6.23 0.16 -30.12 0.23 1.43 -6.21 

HJ2 405875  Kalloia gerdweigmanni Ermilov, 
Sandmann 
& Scheu, 
2019 

-25.59 1.61 0.67 -30.80 0.07 0.12 -1.83 

HJ4 
   

-26.54 -1.67 -0.97 -30.26 0.05 -0.08 -1.24 

HJ1 405530 Lamellobates orientalis  Csiszár, 
1961 

-26.53 0.27 0.16 -30.12 0.11 0.03 -2.89 

HJ3 
   

-26.88 2.89 -0.47 -29.70 0.24 0.69 -6.40 

HJ4 
   

-28.24 2.45 -0.97 -30.26 0.09 0.22 -2.52 

HJ1 405386 Otocepheus heterosetiger Aoki, 1965 -24.73 2.41 0.16 -30.12 0.07 0.17 -1.72 

HJ2 
   

-25.10 1.60 0.67 -30.80 0.01 0.01 -0.20 
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HJ1 405548 Pergalumna paraindistincta  Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-25.52 4.89 0.16 -30.12 0.03 0.17 -0.89 

HJ2 
   

-27.50 0.61 0.67 -30.80 0.07 0.04 -1.91 

HJ4 
   

-26.67 1.65 -0.97 -30.26 0.06 0.10 -1.61 

HJ4 405529 Pergalumna pterinervis (Canestrini, 
1898) 

-26.00 2.85 -0.97 -30.26 0.04 0.11 -1.04 

HJ1 405470 [B08] [2] Phyllhermannia 
similis (405470) 

 
-26.39 0.19 0.16 -30.12 0.02 0.00 -0.45 

HJ3 
 

 
 

-28.93 -2.08 -0.47 -29.70 0.01 -0.02 -0.34 

HJ4 
 

 
 

-27.39 -1.27 -0.97 -30.26 0.05 -0.06 -1.40 

HJ1 405671 Protoribates paracapucinus   (Mahunka, 
1988) 

-25.76 2.03 0.16 -30.12 0.02 0.04 -0.44 

HJ2 
   

-29.29 7.47 0.67 -30.80 0.09 0.68 -2.65 

HJ2 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-29.32 -1.30 0.67 -30.80 0.04 -0.05 -1.23 

HJ3 
   

-28.86 -0.04 -0.47 -29.70 0.12 -0.01 -3.42 

HJ4 
   

-27.61 1.85 -0.97 -30.26 0.22 0.40 -5.94 

HJ1 405524 Tegeozetes tunicatus Berlese, 
1913 

-26.96 1.49 0.16 -30.12 0.17 0.25 -4.47 

HJ3 
   

-26.97 2.99 -0.47 -29.70 0.04 0.13 -1.18 

HJ4 405389 Trachyoribates shibai (Aoki, 1976) -26.02 4.17 -0.97 -30.26 0.05 0.22 -1.39 

HJ1 405642  Zetorchestes novaguineanus Krisper, 
1987 

-27.09 1.10 0.16 -30.12 0.22 0.25 -6.03 

HJ2 
   

-28.37 0.25 0.67 -30.80 0.08 0.02 -2.15 

HJ4 
   

-27.52 0.28 -0.97 -30.26 0.03 0.01 -0.75 

rubber plantation                   

HR1 405455 [B08] [111] Lamellobates 
molecula mol (405455) 

 
-24.65 3.39 -0.41 -28.80 0.01 0.02 -0.15 

HR2 
   

-26.54 -3.24 -1.29 -29.30 0.01 -0.02 -0.14 

HR3 
   

-25.39 6.22 1.92 -29.25 0.31 1.92 -7.84 

HR4 
   

-25.90 7.71 1.07 -28.83 0.04 0.34 -1.15 

HR1 405445 [B08] [152] Hoplophorella 
sp. cf. Hoplophorella vitrina 
(405445) 

 
-27.57 3.46 -0.41 -28.80 0.01 0.05 -0.38 

HR2 405450 [B08] [20] Bischeloribates 
mahunkai (405450) Subías 2010 

-26.37 6.40 -1.29 -29.30 0.38 2.42 -9.97 

HR3 
  

 -28.03 8.45 1.92 -29.25 0.16 1.39 -4.61 

HR4 
  

 -26.71 7.03 1.07 -28.83 0.08 0.58 -2.20 

HR1 405729 [B08] [30] Plonaphacarus 
kugohi (405729) 

Aoki, 1959 -27.90 5.68 -0.41 -28.80 0.07 0.39 -1.93 

HR3 
   

-24.78 2.20 1.92 -29.25 0.03 0.06 -0.71 

HR4 
   

-23.05 2.27 1.07 -28.83 0.29 0.66 -6.67 

HR1 405650 [B08] [33] Apoplophora 
pantotrema cf. Apoplophora 
cristata (405650) 

 
-30.79 -1.42 -0.41 -28.80 0.17 -0.24 -5.29 

HR1 405540 Allogalumna 
paranovazealandica 

Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-26.39 1.31 -0.41 -28.80 0.00 0.00 -0.04 

HR2 
   

-27.44 2.00 -1.29 -29.30 0.31 0.62 -8.54 

HR1 405506 Allonothrus russeolus Wallwork, 
1960 

-28.74 1.14 -0.41 -28.80 0.22 0.25 -6.34 

HR4 
   

-32.54 1.01 1.07 -28.83 0.06 0.06 -2.06 

HR2 405381 Archegozetes longisetosus Aoki, 1965 -27.33 0.98 -1.29 -29.30 0.06 0.06 -1.68 

HR3 
   

-23.73 6.79 1.92 -29.25 0.09 0.62 -2.17 

HR4 
   

-24.86 9.19 1.07 -28.83 0.05 0.46 -1.25 

HR1 405619 Epilohmannoides wallworki Hammer, 
1979 

-27.89 0.75 -0.41 -28.80 0.09 0.06 -2.39 
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HR1 405620 Eremulus densus Hammer,  
1979 

-31.13 -2.65 -0.41 -28.80 0.02 -0.06 -0.73 

HR2 
   

-31.18 -6.90 -1.29 -29.30 0.05 -0.35 -1.58 

HR1 405664 Galumna sabahna Mahunka,  
1995 

-29.19 3.44 -0.41 -28.80 0.07 0.24 -2.05 

HR2 
   

-26.19 4.38 -1.29 -29.30 0.10 0.45 -2.67 

HR2 405548 Pergalumna paraindistincta  Ermilov, 
Sandmann, 
Klarner, 
Widyastuti 
& Scheu, 
2015 

-27.35 4.68 -1.29 -29.30 0.09 0.42 -2.46 

HR1 405671 Protoribates paracapucinus   (Mahunka, 
1988) 

-25.62 5.95 -0.41 -28.80 0.03 0.17 -0.71 

HR3 
   

-24.79 3.83 1.92 -29.25 0.05 0.18 -1.18 

HR4 
   

-26.08 6.40 1.07 -28.83 0.18 1.15 -4.67 

HR1 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-26.17 3.95 -0.41 -28.80 0.19 0.75 -4.94 

HR4 
   

-27.04 0.46 1.07 -28.83 0.02 0.01 -0.53 

HR1 405524 Tegeozetes tunicatus Berlese, 
1913 

-27.49 1.82 -0.41 -28.80 0.11 0.20 -3.08 

HR3 
   

-27.72 -2.52 1.92 -29.25 0.36 -0.90 -9.95 

HR4 
   

-29.15 11.99 1.07 -28.83 0.08 0.98 -2.39 

HR1 405389 Trachyoribates shibai (Aoki, 1976) -27.16 2.54 -0.41 -28.80 0.01 0.02 -0.25 

HR2 
   

-24.78 2.69 -1.29 -29.30 0.00 0.00 -0.03 

HR4 
   

-25.15 3.00 1.07 -28.83 0.19 0.57 -4.77 

oil palm plantation                 

HO1 405718 [B08] [107] Rostrozetes  sp. 
1 (405718) 

 
-26.91 4.28 1.63 -29.59 0.22 0.94 -5.92 

HO3 
   

-25.87 4.25 1.00 -28.84 0.09 0.38 -2.34 

HO4 
   

-27.35 4.89 -0.22 -30.27 0.03 0.15 -0.86 

HO1 405450 [B08] [20] Bischeloribates 
mahunkai (405450) Subías 2010 

-25.98 3.44 1.63 -29.59 0.01 0.05 -0.34 

HO3 
  

 -26.86 8.32 1.00 -28.84 0.41 3.40 -11.00 

HO2 405506 Allonothrus russeolus Wallwork, 
1960 

-28.17 0.12 0.53 -28.96 0.40 0.05 -11.14 

HO4 
   

-28.05 7.55 -0.22 -30.27 0.04 0.29 -1.07 

HO1 405381 Archegozetes longisetosus Aoki, 1965 -28.28 4.52 1.63 -29.59 0.43 1.95 -12.21 

HO3 
   

-27.46 4.48 1.00 -28.84 0.39 1.73 -10.59 

HO4 
   

-28.70 1.94 -0.22 -30.27 0.92 1.79 -26.48 

HO1 405449 Scheloribates praeincisus  (Berlese, 
1910) 

-26.33 4.09 1.63 -29.59 0.04 0.16 -1.03 

HO2 
   

-25.67 4.34 0.53 -28.96 0.03 0.11 -0.64 

HO3 
   

-26.51 5.06 1.00 -28.84 0.07 0.33 -1.75 

HO4 
   

-26.92 1.04 -0.22 -30.27 0.01 0.01 -0.21 

HO1 405389 Trachyoribates shibai (Aoki, 1976) -26.02 4.89 1.63 -29.59 0.30 1.45 -7.70 

HO2 
   

-26.42 2.51 0.53 -28.96 0.58 1.45 -15.31 

HO3 
   

-27.00 1.72 1.00 -28.84 0.05 0.08 -1.30 
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Table S2: Single-dimensional metrics of oribatid mite community - average position (‘IPos’), 

maximum, minimum and range (max-min). Variable (Δ13C and Δ15N), land-use system, value and 

the letter (a/b/ab) representing the significances. Δ13C and Δ15N values were scaled between 0 and 

1 based on maximum and minimum across communities to ensure equal contribution. Maximum 

as well as minimum of Δ13C and Δ15N values were represented by one species with the most 

extreme values within the whole community. For calculation see Materials and Methods, for 

statistical analysis see text. 

  variable land-use 
system 

value letter 

average position 
Δ13N 

jungle rubber 0.69 a 

average position 
Δ13N 

rainforest 0.67 a 

average position 
Δ13N 

rubber 
plantation 

0.58 b 

average position 
Δ13N 

oil palm 
plantation 

0.57 b 

average position 
Δ15N 

rubber 
plantation 

0.45 a 

average position 
Δ15N 

oil palm 
plantation 

0.44 a 

average position 
Δ15N 

jungle rubber 0.37 ab 

average position 
Δ15N 

rainforest 0.31 b 

maximum 
Δ13N 

jungle rubber 0.84 a 

maximum 
Δ13N 

rainforest 0.83 a 

maximum 
Δ13N 

rubber 
plantation 

0.81 a 

maximum 
Δ13N 

oil palm 
plantation 

0.69 b 

maximum 
Δ15N 

rubber 
plantation 

0.63 a 

maximum 
Δ15N 

rainforest 0.62 a 

maximum 
Δ15N 

oil palm 
plantation 

0.61 a 

maximum 
Δ15N 

jungle rubber 0.56 a 

minimum 
Δ13N 

rainforest 0.57 a 

minimum 
Δ13N 

jungle rubber 0.57 a 

minimum 
Δ13N 

oil palm 
plantation 

0.48 a 

minimum 
Δ13N 

rubber 
plantation 

0.24 b 

minimum 
Δ15N 

oil palm 
plantation 

0.34 a 

minimum 
Δ15N 

jungle rubber 0.20 b 

minimum 
Δ15N 

rubber 
plantation 

0.16 b 

minimum 
Δ15N 

rainforest 0.14 b 

range (max-min) 
Δ13N 

rubber 
plantation 

0.57 a 

range (max-min) 
Δ13N 

jungle rubber 0.28 b 

range (max-min) 
Δ13N 

rainforest 0.25 b 
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range (max-min) 
Δ13N 

oil palm 
plantation 

0.21 b 

range (max-min) 
Δ15N 

rainforest 0.48 a 

range (max-min) 
Δ15N 

rubber 
plantation 

0.47 a 

range (max-min) 
Δ15N 

jungle rubber 0.37 ab 

range (max-min) 
Δ15N 

oil palm 
plantation 

0.27 b 

 

Table S3: Multi-dimensional metrics of oribatid mite community - isotopic dispersion (‘IDis’), 

isotopic divergence (‘IDiv’), isotopic evenness (‘IEve’), isotopic richness (‘IRic’), isotopic uniqueness 

(‘IUni’). Land-use system, value and the letter (a/b/ab) representing the significances. Δ13C and 

Δ15N values were scaled between 0 and 1 based on maximum and minimum across communities 

to ensure equal contribution. Maximum as well as minimum of Δ13C and Δ15N values were 

represented by one species with the most extreme values within the whole community. For 

calculation see Materials and Methods, for statistical analysis see text.  

multidimensional 
metrics 

land-use system value letter 

‘IDis’ oil palm plantation 0.47 a 

‘IDis’ jungle rubber 0.47 a 

‘IDis’ rubber plantation 0.37 a 

‘IDis’ rainforest 0.32 a 

‘IDiv’ rainforest 0.73 a 

‘IDiv’ jungle rubber 0.71 a 

‘IDiv’ rubber plantation 0.71 a 

‘IDiv’ oil palm plantation 0.67 a 

‘IEve’ oil palm plantation 0.65 a 

‘IEve’ jungle rubber 0.53 a 

‘IEve’ rainforest 0.49 a 

‘IEve’ rubber plantation 0.47 a 

‘IRic’ rubber plantation 0.13 a 

‘IRic’ jungle rubber 0.07 b 

‘IRic’ rainforest 0.06 b 

‘IRic’ oil palm plantation 0.02 b 

‘IUni’ oil palm plantation 0.61 a 

‘IUni’ jungle rubber 0.46 ab 

‘IUni’ rubber plantation 0.43 ab 

‘IUni’ rainforest 0.31 b 
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Abstract  

 

The transformation and degradation of landscapes is rapidly increasing worldwide. Due to 

the increase in the human population and increased resource demand, pressure on 

ecosystems is increasing strongly. Especially tropical regions are suffering. In south East 

Asia rainforest is increasingly transformed into cash crop monoculture plantations such as 

rubber, oil palm and acacia. In particular oil palm is one of the fasted expanding crops, and 

therefore, effects of oil palm plantation management on biodiversity and ecosystem 

functioning are of increasing interest. However, in particular studies on the belowground 

system are rare. The structure and functioning of soil systems are essential for the 

functioning of ecosystems. This study formed part of the ‘Biodiversity Enrichment 

Experiment’ within the interdisciplinary project “Ecological and socioeconomic functions 

of tropical lowland rainforest transformation systems” (EFForTS), located in southwest 

Sumatra, Indonesia. In this experiment ‘tree islands’ of varying species diversity (0, 1, 2, 3 

and 6 tree species) and plot sizes (5 x 5, 10 x 10, 20 x 20 and 40 x 40 m) were established 

in oil palm plantations. We investigated the effect of these ‘tree islands’ on the soil macro- 

and mesofauna three years after the experiment started. Neither the different diversity 

levels of trees nor plot size significantly affected the abundance of soil invertebrate taxa. 

However, the richness of soil invertebrate taxa was increased in plantations with two tree 

species. Overall, the results indicate that diversity and abundance of plant communities 

little affects the structure and diversity of soil invertebrates in the short term. However, 

soil animal communities are likely to respond to the enrichment of plantations by trees at 

later stages and this needs further investigation. 
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Introduction 
 

Transformation as well as degradation of landscapes is rapidly increasing worldwide. This 

is driven predominantly by the growing human population and increased use of resources; 

by 2050 the worldwide population size will increase to 9.7 billion people (UN, 2015). This 

in turn will lead to an increase in the demand of food, fuel and fiber (Dirzo and Raven, 

2003; Foley et al., 2005; Gibbs et al., 2010; Newbold et al., 2015). Such demands, however, 

lead to high pressure on ecosystems worldwide regarding the production and yield of 

agricultural landscapes (Godfray et al., 2010; Lambin and Meyfroidt, 2011; Tscharntke et 

al., 2012). Until today 40 % of the terrestrial surface is managed for agricultural purposes 

or transformed into agricultural systems; (Bridges and Oldeman, 1999; Reynolds et al., 

2007; Foley et al., 2011; Pavao-Zuckerman and Sookhdeo, 2017; Francini et al., 2018).  

Especially tropical regions suffer from degradation and transformation into different land-

use systems, e.g. oil palm or rubber plantations (Sodhi et al., 2010; Wilcove et al., 2013; 

Meijide et al., 2018). Those transformations are threatening ecosystems with the highest 

rates of biodiversity and endemism worldwide (Jones, 2013). One of the rapidly increasing 

agricultural land-use system are vegetable oils (Clay, 2013), in particular oil palm. This is 

not only one of the fastest expanding crops but also one of the most versatile oils (Carter 

et al., 2007; Fitzherbert et al., 2008; Zimmer, 2010; Ashraf et al., 2018). In consequence of 

its versatility, palm oil is widely used, beyond that it is the oil seed crop that produces the 

highest yield of oil per land area (Zimmer, 2010; Ashraf et al., 2018). In Indonesia, 

transformation of rainforest into agricultural systems strongly increased in the last 

decades. Oil palm plantations were often established on rainforest sites which were 

previously logged or degraded by fire (Curran et al., 2004; Dennis et al., 2005; Fitzherbert 
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et al., 2008; Drescher et al., 2016). In 2012, 0.84 million hectares of rainforest were 

converted into agricultural systems in Indonesia; the highest rate worldwide (Margono et 

al., 2014; Drescher et al., 2016).  

Conversion of rainforest into plantations and intensification of land use are known to 

affect diversity and biomass, and therefore ecosystem functioning of above- and 

belowground animals and plants (Sodhi et al., 2004; Fitzherbert et al., 2008; Wilcove et 

al., 2013; Barnes et al., 2014; Edwards et al., 2014; Klarner et al., 2017). In particular, the 

reduction of decomposer diversity may reduce decomposition rates as well as carbon and 

nutrient cycling (Handa et al., 2014). Decomposition is one of the most important 

processes for terrestrial ecosystems, since about 90 % of the primary production of plants 

enters the soil system as leaf and wood detritus or rhizodeposits (McNaughton et al., 

1989; Bardgett, 2005). Soil structure and thereby the functioning of soil systems, e.g. the 

turnover of organic matter and nutrient cycling, can be modified by the presence of soil 

animal species (Bardgett, 2005; Nielsen et al., 2015). Soil animals contribute to soil 

functioning and energy fluxes (Brussaard et al., 2007). Even within small spatial scales the 

abundance and diversity of soil arthropods varies, since organisms are not distributed 

uniformly due to environmental gradients (Legendre and Fortin, 1989; Ettema and 

Wardle, 2002). Additionally, active dispersal and movement of soil organisms is limited, 

depending on the species from few millimeters to centimeters per day (Ettema and 

Wardle, 2002). Variations in abiotic as well as biotic factors, e.g. climate and litter type, 

are major determinants of the high spatial variability of the structure of soil communities 

(Coûteaux et al., 1995; Wardle et al., 2006; Berg and McClaugherty, 2008). Spatial 

variability of soil animals also is related to the variability in the composition and diversity 
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of plant communities (Scherber et al., 2010; Eisenhauer et al., 2011; Thakur and 

Eisenhauer, 2015). This might be due to variations in plant species richness but also to the 

identity of individual plant species (Spehn et al., 2000; Wardle et al., 2006; Viketoft et al., 

2009; Eisenhauer et al., 2010, 2011). The decline in plant diversity and thereby the loss of 

litter and root resources negatively impacts the density, diversity and functioning of soil 

organisms (Hooper et al., 2000; Scherber et al., 2010; Eisenhauer et al., 2011). However, 

studies investigating the response of soil biota to changes in plant diversity and identity 

for longer periods of time (Eisenhauer et al., 2009, 2011; Viketoft et al., 2009) and 

considering a wide range of taxonomic and functional groups are scare (Hedlund et al., 

2003; Scherer-Lorenzen and Leadley, 2003; Milcu et al., 2008; Viketoft et al., 2009; 

Eisenhauer et al., 2011).  

An option for restoring the diversity and functioning of decomposer communities is the 

planting of native trees (Chazdon, 2008; Teuscher et al., 2016). Planted tree islands form, 

among others, local areas of recovery which then might enhance or initiate natural 

succession not only within the tree islands but also for the surrounding environment 

(Yarranton and Morrison, 1974; Corbin and Holl, 2012; Teuscher et al., 2016). Increased 

diversity in tree islands may be due to the fact that larger area is associated with increased 

species richness (MacArthur and Wilson, 1963, 1967; Jonsson et al., 2009). However, the 

most effective island size (economically and ecologically) is still debated (Mendenhall et 

al., 2014; Teuscher et al., 2016). Generally, management strategies of intensively managed 

oil palm plantations targeting at increasing biodiversity but maintaining productivity are 

virtually lacking until today (Teuscher et al., 2016).  
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To protect biodiversity of tropical regions it is important to integrate the belowground 

system and to consider the management of plantation systems (Koh et al., 2009; Foster et 

al., 2011; Luskin and Potts, 2011; Teuscher et al., 2015, 2016). The effects of oil palm 

plantation management on aboveground biodiversity and ecosystem functioning is 

receiving increased interest (Nurdiansyah et al., 2016; Syafiq et al., 2016; Teuscher et al., 

2016; Ashton-Butt et al., 2018), however, so far studies on belowground systems are 

scarce (Bessou et al., 2017; Krause et al., 2019; Potapov et al., 2019; Susanti et al., 2019). 

The current study formed part of the interdisciplinary project “Ecological and 

socioeconomic functions of tropical lowland rainforest transformation systems” 

(EFForTS), established in Jambi Province, southwest Sumatra, Indonesia (Drescher et al., 

2016). The aim of the ‘Biodiversity Enrichment Experiment’ was to enhance biodiversity 

and ecosystem functioning in oil palm plantations by ‘tree islands’ of varying diversity level 

of planted tree species and plot size. We hypothesized that the abundance, diversity and 

community of belowground soil invertebrate taxa will increase with both increasing plot 

size and increasing diversity of planted tree species. 

 

Material and Methods 
 

Study sites 
 

The ‘Biodiversity Enrichment Experiment’, was established in 2013 in the oil palm 

plantation of PT Humusindo Makmur Sejata (01.95° S and 103.25° E, 47±11 m a.s.l.; see 

also paragraph “study design” of the general introduction; Fig. 2) (Teuscher et al., 2016). 

Loamy Acrisol is the dominant soil type (Allen et al., 2015). Within the existing oil palm 

plantation, ‘tree islands’ of varying diversity level (0, 1, 2, 3 and 6 planted tree species) 
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and plot size (5 × 5, 10 × 10, 20 × 20, 40 × 40 m) were established (see Fig. 3 of the 

paragraph “study design” of the General Introduction). Following the random partitions 

design of Bell et al. (2009), 52 ‘tree island’ were established. Additionally, four control 

plots (“ctrl”, 10 x 10 m) without any experimental treatment, i.e. with management-as-

usual, were established resulting in 56 ‘tree islands’ in total. Species composition within 

the ‘tree island’ was random and each tree species was selected only once at each species 

diversity level (Teuscher et al., 2016). Prior to the tree planting, 40 % of the oil palms within 

the ‘tree islands’ were cut. For the enrichment of the ‘tree islands’ six native trees were 

selected including three fruit trees (Parkia speciosa, and Archidendron pauciflorum, 

Fabaceae; Durio zibethinus, Malvaceae), two timber trees (Peronema canescens, 

Lamiaceae; Shorea leprosula, Dipterocarpaceae), and one tree used for the production of 

latex (Dyera polyphylla, Apocynaceae). Management of the ‘tree island’ plots contained 

manual weeding in the first two years (preventing weeds to overgrow planted saplings; 

done every three months). Manual weeding was stopped thereafter to allow natural 

succession as well as interaction/competition of native trees with each other and oil 

palms. Application of fertilizer, herbicides and pesticides in ‘tree island’ plots was stopped 

after tree planting. More details on the study sites and experimental design are given in 

Teuscher et al. (2016). Samples for soil invertebrate extraction were taken in 2016 after 

manual weeding was finished. 

 

Sampling, extraction and species determination 
 

In October to November 2016, four soil samples (16 x 16 cm, litter layer and 0 – 5 cm of 

mineral soil) were taken randomly from a 5 x 5 m subplot established in each plot, i.e. a 
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total of 224 samples were taken. In the 5 x 5 m plot the full plot area was used for taking 

samples. The samples were transported to the laboratory and extracted by heat (Kempson 

et al., 1963). Soil invertebrates were transferred into ethanol (70 %) and sorted to high 

rank taxa including Oribatida, Collembola, Annelida and Chilopoda (Table S1). The taxa 

were assigned to size classes of meso- and macrofauna (Table S1 and S2). 

 

Statistical analysis  
 

The numbers of individuals of the four samples per subplot were summed up and given as 

number of individuals per square meter. Further, the number of meso- and macrofauna 

taxa of the four samples per subplot were summed up to obtain the total number of meso- 

and macrofauna taxa of the area sampled, i.e. 1024 cm². Meso- and macrofauna were 

analyzed separately due to large differences in density. Statistical analyses were 

performed using R v 3.5.2 (R Core Team, 2018) with R studio interface (RStudio, Inc.). 

Normality and homogeneity of variance were inspected using diagnostic plots and this 

indicated that preconditions for parametric data analysis were met. Effects of diversity 

level of planted tree species and plot size were assessed using linear models (Wilkinson 

and Rogers, 1973; Chambers and Hastie, 1992). Significance was evaluated using the 

anova function (Chambers and Hastie, 1992). Data were visualized using ggplot in the 

ggplot2 package (Wickham, 2016).  

Additionally, principal components analysis (PCA) was used to analyze and present 

graphically the response of the different taxa to tree diversity levels. Here, the response 

variables (different taxa) were log-transformed to improve homogeneity of variances. The 

different tree diversity levels (0, 1, 2, 3, 6 planted tree species) were included as 



Chapter IV: Enrichment Project 

 

 

138 

passive/supplementary variables not affecting the ordination. PCA was performed using 

CANOCO 5 (Microcomputer Power, Ithaca, USA, 2012). 

 

Results  
 

The abundance of mesofauna was higher than the abundance of macrofauna with an 

overall averages of 3645 ind./m2 and 828 ind./m2, respectively. Additionally, the richness 

of mesofauna was higher than the richness of macrofauna with overall averages of 160 ± 

26 ind./m2 and 153  ± 45 ind./m2, respectively. Among macrofauna groups, Diplopoda and 

Coleoptera (larve) had the highest abundance with averages of 223 and 166 ind./m², 

respectively. Among mesofauna taxa, Collembola and Oribatida had the highest 

abundance with averages of 1706 and 1339 ind./m², respectively. For more detailed 

information see Table S1.  

 

Abundance of total macro- and mesofauna  
 

Tree diversity neither significantly affected the abundance of macro- nor mesofauna (F1,50 

= 1.53, p = 0.2219 and F1,50 = 0.68, p = 0.4122, respectively). Although not significant, 

macrofauna abundance was similar at diversity level 0, 1 and 2 and lower at diversity level 

3 and 6 (Figure 1a; for detailed information see Table S3). Abundance of mesofauna was 

highest at diversity level 2, 3 and 6 and lowest at diversity level 0 (Figure 1b; for detailed 

information see Table S3). 
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Figure 1: Abundance of macrofauna (a) and mesofauna (b) at the five tree diversity levels (0, 1, 2, 

3 and 6). Note the different scales. Differences between means in both analyses were not 

significant, anova p > 0.05.  

 

Plot size also did not significantly affect the abundance of macro- and mesofauna (F3,48 = 

1.19, p = 0.3244 and F3,48 = 1.23, p = 0.3092, respectively). Although not significant, 

macrofauna abundance was similar in 20 x 20 and 40 x 40 m and lower in 10 x 10 and 5 x 

5 m plots (Figure 2a; for detailed information see Table S4). Mesofauna abundance was 

similar in each of the plots of different size (Figure 2b; for detailed information see Table 

S4). 
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Figure 2: Abundance of macrofauna (a) and mesofauna (b) at the four plot sizes (5 x 5, 10 x 10, 20 

x 20 and 40 x 40 m). Note the different scales. Differences between means in both analyses were 

not significant, anova p > 0.05. 

 

Richness of macro- and mesofauna taxa  
 

Richness of macrofauna taxa varied significantly with tree diversity (F1,50 = 4.29; p = 0.027), 

whereas richness of mesofauna taxa were not significant (Figure 3; for detailed 

information see Table S5). Macrofauna richness was highest at diversity level 2, lowest at 

diversity level 6 and intermediate at diversity levels 0, 1 and 3 (Figure 3a). Mesofauna 

richness was similar at all diversity levels (Figure 3b).  

 



Chapter IV: Enrichment Project 

 

 

141 

Figure 3: Richness of macrofauna (a) and mesofauna (b) at five tree diversity levels (0, 1, 2, 3 and 

6) of the area sampled per plot, i.e. 1024 cm². Means with standard deviation.  

 

Macro- and mesofauna richness did not vary significantly with plot size (F3,48 = 0.71, p = 

0.55 and F3,48 = 1.53, p = 0.219, respectively) (Figure 4; for detailed information see Table 

S6). Although not significant, macrofauna richness was highest at plot size 20 x 20 m, 

similar at plot size 40 x 40 m, 10 x 10 m and 5 x 5 m (Figure 4a). Mesofauna richness of soil 

invertebrate taxa was similar at plot size 5 x 5 m and 20 x 20 m and slightly lower at plot 

size 10 x 10 m and 40 x 40 m (Figure 4b). 

 



Chapter IV: Enrichment Project 

 

 

142 

Figure 4: Richness of macrofauna (a) and mesofauna (b) at the four plot sizes (5 x 5, 10 x 10, 20 x 

20 and 40 x 40 in m) of the area sampled per plot, i.e. 1024 cm². Means with standard deviation.  

 

Community structure 
 

In total, 21,270 individuals of 25 taxa (Table S2) were identified. Only Collembola and 

Oribatida occurred at each diversity level of planted trees and plot size. None of the taxa 

occurred exclusively at only one tree diversity level.  

The first two axes of the PCA accounted for a total of 39.2 % of the variation in taxa data 

(Figure 5). The first axis (PC1) accounted for the majority of the variability (21.0 %) and 

separated diversity level 2 from the other four diversity levels (0, 1, 3 and 6). The second 

axis (PC2) accounted for 18.2 % and separated diversity levels 2 and 1 from diversity levels 

0, 3 and 6. Taxa associated with diversity level 2 were mostly decomposers, including 

Collembola, Oribatida, Symphyla and Diplopoda, and two predatory taxa, i.e. 

Mesostigmata and Chilopoda. Taxa associated with the other four diversity levels of 

planted tree species (0, 1, 3 and 6) were mostly predators, including predatory Coleoptera, 

Opiliones and Schizomida, and one decomposer taxon, i.e. Annelida. Along the second axis 

diversity level 1 was mostly associated with predators, including Pseudoscorpiones, 
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Araneae and Diplura (Campodidae) and one decomposer taxon, i.e. Annelida. By contrast, 

diversity level 2 was mostly associated with decomposer taxa, including Oribatida, 

Collembola and Symphyla. Taxa associated with diversity level 3 were Opiliones and 

Schizomida, with diversity level 6 it was predatory Coleoptera and with diversity level 0 is 

was Thysanoptera.  

 

Figure 5: Principal components analysis (PCA) of the community composition of soil invertebrate 

taxa. Tree diversity levels (0, 1, 2, 3 and 6) were included as passive variables (red). The first axis 

(PC1) represents 20.9 % and the second (PC2) 18.2 % of the variability in taxa data; the length of 

gradient is 1.2. Data were log-transformed prior to the analysis. 
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Discussion  
 

Abundance of macro- and mesofauna  
 

Neither the diversity of planted tree species nor plot size significantly affected the 

abundance of macro- and mesofauna taxa. These findings contrast results of earlier 

studies showing that increased coverage of plants, due to a reduction of herbicide use, 

beneficially affects aboveground invertebrates (Chung et al., 2000; Ashton-Butt et al., 

2018; Spear et al., 2018; Darras et al., 2019). In contrast to these results, bird diversity and 

bird abundance have been shown to increase with increasing number of planted trees in 

oil palm plantations (Teuscher et al., 2015). However, plant diversity effects have been 

found to dampen at higher trophic level and with the degree of omnivory of consumers, 

and this was true for both abundance and richness of above- and belowground organisms 

(Scherber et al., 2010). Results of the study of Scherber et al. (2010) further showed the 

response of belowground organisms to plant diversity to be less pronounced compared to 

that of aboveground organisms. In particular herbivore species responded more strongly 

to changes in plant diversity than predator and omnivore species. Also, alley-cropping, i.e. 

planting a mosaic of tree, grass and/or shrubs species into cropland (Gold and Garrett., 

2009), has been shown to impact aboveground arthropod diversity; larger numbers of 

predators and decomposers occurred at sites with alley-cropping (Ashraf et al., 2018). 

Plant diversity effects on soil biota have been shown to strongly depend on time and only 

occur after a pronounced time lag of four to six years after manipulating plant species 

diversity (Eisenhauer et al., 2011). This suggests that three years after the establishment 

of plant communities of different diversity in the present study might have been too short 

for macro- and mesofauna soil invertebrate taxa to respond to the established 
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experimental treatments. Castillo et al. (2018) showed that abundance and species 

richness of oribatid mites changed due to reforestation of pastureland in tropical montane 

forest in Ecuador after seven years, but the changes still were little pronounced. 

Supporting the conclusion that soil invertebrates respond to changes in plant community 

composition with a pronounced lime lag, Teuscher et al. (2016) found significant effects 

of planting trees as well as plot size on bird and aboveground invertebrate species one 

year after the establishment of the experiment. Aboveground invertebrates associated 

with the herb-layer increased slightly compared to the control plots. Further, contrasting 

the findings of the present study, aboveground invertebrates also responded to plot size 

already one year after the establishment of the experiment (Teuscher et al., 2016). This 

likely reflects the more close association of aboveground animals, in particular herbivores, 

with plant species and associated changes in environmental factors and habitat structure 

(Tscharntke et al., 2011; Pywell et al., 2012; Teuscher et al., 2016). Supporting our findings, 

earlier studies showed that physical habitat characteristics might be more important 

drivers for belowground soil invertebrate communities than the diversity and identity of 

planted trees (Ducarme et al., 2004; Nielsen et al., 2010; Bluhm et al., 2019). However, 

physical habitat characteristics also change with changes in tree diversity and identity but 

these changes are slow and need to be investigated in long-term studies (Bluhm et al., 

2019).  

 

Richness of macro- and mesofauna taxa  
 

Confirm to our hypothesis, the richness of macrofauna taxa varied with the diversity of 

planted tree species; it was at a maximum at diversity level 2, whereas it was at a minimum 



Chapter IV: Enrichment Project 

 

 

146 

at diversity level 6. Similar to these findings, it has been demonstrated that aboveground 

arthropod diversity and richness increase in oil palm plantations with alley-cropping 

(Azhar et al., 2014; Ashraf et al., 2018). Alley-cropping includes a variety of crop plants and 

trees which increase habitat heterogeneity, soil fertility, water quality as well as carbon 

and nutrient cycling (Fahrig et al., 2011; Torralba et al., 2016; Ashraf et al., 2018). 

Additionally, it enhances the complexity of the vegetation and thereby the number and 

size of microhabitats (Lawton, 1983; Jose, 2009). Oil palm plantations generally lack a 

diverse understory, and herbicides as well as fertilizer use is high (Ismail et al., 2009). 

Similar to Alley-cropping, the enrichment of oil palm plantations with native tree species 

and the reduced fertilizer and herbicide use may increase resource availability and thereby 

increase the diversity of micohabitats.  

Richness as well as abundance of macro- and mesofauna taxa did not significantly respond 

to variations in plot size. These findings are consistent with results of earlier studies 

indicating that species richness may not vary in a consistent way with island area (Brose, 

2003; Báldi, 2008; Jonsson et al., 2009). The study of Brose (2003) demonstrated that 

habitat area did not affect species richness of wetland carabid beetle communities in 

agricultural landscapes in northern Germany. Báldi (2008) demonstrated that habitat 

heterogeneity may in fact decrease with habitat size and species-area relationship were 

not significant for nine out of eleven studied taxa including Collembola, Oribatida and 

Chilopoda. Jonsson et al. (2009) also found the diversity of belowground invertebrates of 

the boreal zone of northern Sweden to be rather insensitive to changes in island size or 

isolation.  
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Community structure 
 

Community analysis showed that taxa associated with diversity level 2 and 1 were 

primarily decomposers, whereas taxa associated with diversity levels 0, 3 and 6 were 

primarily predators. This suggests that decomposer invertebrates benefitted from 

increased litter input and the formation of a litter layer in plantations of low tree species 

richness. Potentially, higher tree diversity counteracted the accumulation of litter in the 

litter layer by facilitating litter decomposition. In fact, it has been shown that litter 

mixtures may decompose much faster than single litter species or mixtures of low species 

richness (Hättenschwiler et al., 2005; Benbow et al., 2015). On the contrary, predator taxa 

such as cursorial spiders may benefit from more open habitats facilitating prey capture 

(Wise, 1995; Lawrence and Wise, 2000). If true, this implies that low diversity levels of tree 

species are associated with low nutrient recycling hampering primary production with 

important feedbacks to the belowground system. Potentially, in the long-term tree 

plantations of low diversity may be associated by a depauperated soil biota community 

(Wardle, 2006; Wardle et al., 2006). However, the traits of plant and litter species 

responsible for changes in soil animal communities associated with changes in plant 

species are little understood (Wardle, 2006), but the changes are likely driven by changes 

in litter quality (Díaz et al., 2004; Wardle, 2006) but also by changes in the physical 

structure of litter (Hansen, 1999; Wardle, 2006; Wardle et al., 2006). Supporting our 

conclusion that predators may benefit from more open habitats with shallow litter layers, 

results of earlier studies on Oribatida and Chilopoda indicate that monoculture 

plantations, such as rubber and oil palm, favor predators and/or scavengers (Klarner et 

al., 2017; Krause et al., 2019, A. Krause unpublished data 2020). Another study showed 
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that soil porosity and pH are the main drivers of oribatid mite abundance and richness, 

indicating that physical habitat characteristics might override food resources as driving 

factors for soil animal communities (Ducarme et al., 2004). 

Overall, the results of the present study indicate that the enrichment of oil palm plantation 

with native trees may contribute to the formation of more complex decomposer 

communities, but further long-term studies with a wider range of tree species are needed 

to explore the factors responsible for changes in soil communities increasing the 

functioning of plantation systems. Enrichment of oil palm plantations with native trees is 

a promising option to enhance biodiversity of existing monoculture plantations and to 

develop more sustainable management strategies.  

 

Conclusions 
 

The decline in biomass of arthropod species in temperate and tropical regions are driven 

in the first place by changes in land use. Alternative management practices of agricultural 

systems therefore are receiving increased attention. However, since soil formation 

processes are slow, effects of the enrichment of plantation systems with native trees for 

soil invertebrate taxa are likely to be delayed. Three years after the establishment of 

enrichment planting soil invertebrate abundance did not change significantly. However, 

soil invertebrate richness increased at intermediate tree diversity level, indicating that 

resource availability peaks at intermediate diversity level. Presumably, additive mixture 

effects increase litter decomposition thereby increasing food quality for litter feeding 

macrofauna. Long-term experiments are needed to more fully explore the response of soil 
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animal communities to the enrichment of plantation systems with native trees species and 

the feedbacks to the functioning of the plantations. 
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Appendix  
 

Table S1: Size class of soil taxa and their mean abundance per m2.  

size class soil taxa  mean 
abundance per 

m2 

macrofauna Annelida 20 

macrofauna Araneae 13 

macrofauna Blattodea 15 

macrofauna Chilopoda 62 

macrofauna Coleoptera 
(herbivore)  

29 

macrofauna Coleoptera (larvae) 166 

macrofauna Coleoptera 
(predator) 

45 

macrofauna Dermaptera 30 

macrofauna Diplopoda 223 

macrofauna Diptera 57 

macrofauna Hirudinea 10 

macrofauna Hymenoptera 43 

macrofauna Isopoda 56 

macrofauna Opiliones 15 

macrofauna Schizomida 11 

macrofauna Thysanoptera 33 

mesofauna Collembola 1706 

mesofauna Diplura (Campodea) 32 

mesofauna Diplura (Japygidae) 88 

mesofauna Mesostigmata 212 

mesofauna Oribatida 1339 

mesofauna Protura 10 

mesofauna Pseudoscorpiones 29 

mesofauna Psocoptera 18 

mesofauna Symphyla 211 

 

Table S2: Size class and numbers of individuals summed up for the four samples taken, i.e. per 

1024 cm². Plot ID, diversity level of planted tree species (0, 1, 2, 3 and 6), plot size (5 x 5, 10 x 10, 

20 x 20, 40 x 40) in m, size class (meso-, macrofauna) and number of individuals.  

plotID diversitylevel plot size in m size class abundance 

1 1 40 x 40 macrofauna 108 

      mesofauna 324 

2 3 20 x 20 macrofauna 41 

      mesofauna 226 
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3 2 20 x 20 macrofauna 59 

      mesofauna 503 

4 1 10 x 10 macrofauna 45 

      mesofauna 723 

5 1 40 x 40 macrofauna 73 

      mesofauna 299 

6 1 5 x 5 macrofauna 37 

      mesofauna 171 

7 3 40 x 40 macrofauna 23 

      mesofauna 183 

8 1 5 x 5 macrofauna 9 

      mesofauna 163 

9 3 10 x 10 macrofauna 65 

      mesofauna 398 

10 0 20 x 20 macrofauna 91 

      mesofauna 292 

11 1 10 x 10 macrofauna 10 

      mesofauna 65 

12 1 20 x 20 macrofauna 42 

      mesofauna 303 

13 1 10 x 10 macrofauna 28 

      mesofauna 710 

14 1 10 x 10 macrofauna 74 

      mesofauna 535 

15 1 20 x 20 macrofauna 55 

      mesofauna 403 

16 3 5 x 5 macrofauna 23 

      mesofauna 426 

17 1 20 x 20 macrofauna 90 

      mesofauna 455 

18 2 5 x 5 macrofauna 28 

      mesofauna 301 

19 6 20 x 20 macrofauna 21 

      mesofauna 80 

20 1 10 x 10 macrofauna 52 

      mesofauna 235 

21 6 10 x 10 macrofauna 36 

      mesofauna 597 

22 2 5 x 5 macrofauna 90 

      mesofauna 258 

23 6 40 x 40 macrofauna 28 

      mesofauna 402 

24 2 40 x 40 macrofauna 37 

      mesofauna 421 

25 1 5 x 5 macrofauna 30 
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      mesofauna 192 

26 2 40 x 40 macrofauna 51 

      mesofauna 415 

27 2 10 x 10 macrofauna 41 

      mesofauna 363 

28 1 5 x 5 macrofauna 26 

      mesofauna 410 

29 3 40 x 40 macrofauna 47 

      mesofauna 361 

30 1 20 x 20 macrofauna 15 

      mesofauna 93 

31 1 5 x 5 macrofauna 85 

      mesofauna 393 

32 2 10 x 10 macrofauna 31 

      mesofauna 748 

33 3 20 x 20 macrofauna 21 

      mesofauna 333 

34 2 10 x 10 macrofauna 52 

      mesofauna 465 

35 0 40 x 40 macrofauna 68 

      mesofauna 158 

36 2 20 x 20 macrofauna 73 

      mesofauna 487 

37 0 10 x 10 macrofauna 11 

      mesofauna 79 

38 1 20 x 20 macrofauna 99 

      mesofauna 456 

39 2 5 x 5 macrofauna 44 

      mesofauna 502 

40 0 5 x 5 macrofauna 36 

      mesofauna 384 

41 1 10 x 10 macrofauna 43 

      mesofauna 351 

42 1 5 x 5 macrofauna 21 

      mesofauna 338 

43 1 40 x 40 macrofauna 44 

      mesofauna 224 

44 3 5 x 5 macrofauna 164 

      mesofauna 482 

45 1 40 x 40 macrofauna 68 

      mesofauna 260 

46 2 40 x 40 macrofauna 47 

      mesofauna 499 

47 2 20 x 20 macrofauna 149 

      mesofauna 497 
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48 3 10 x 10 macrofauna 25 

      mesofauna 366 

49 1 40 x 40 macrofauna 45 

      mesofauna 174 

50 6 5 x 5 macrofauna 12 

      mesofauna 343 

51 1 20 x 20 macrofauna 53 

      mesofauna 188 

52 1 40 x 40 macrofauna 55 

   mesofauna 615 

 

Table S3: Mean and standard deviation (sd) of the abundance of macro- and mesofauna per square 

meter in plots varying in planted tree species (0, 1, 2, 3 and 6).  

diversitylevel size class mean m2 sd m2 

0 macrofauna 503 298 

  mesofauna 2229 1151 

1 macrofauna 491 262 

  mesofauna 3288 1713 

2 macrofauna 571 313 

  mesofauna 4443 1159 

3 macrofauna 499 440 

  mesofauna 3387 909 

6 macrofauna 237 86 
 

mesofauna 3472 1804 

 

Table S4: Mean and standard deviation (sd) of abundance of macro- and mesofauna (size class) 

per square meter varying with plot size (5 x 5, 10 x 10, 20 x 20, 40 x 40 m).  

plot size in m size class mean m2 sd m2 

5 x 5 macrofauna 454 404 

  mesofauna 3277 1060 

10 x 10 macrofauna 385 178 

  mesofauna 4233 2125 

20 x 20  macrofauna 608 356 

  mesofauna 3242 1410 

40 x 40  macrofauna 521 208 
 

mesofauna 3256 1282 
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Table S5: Variations in mean and standard deviation (sd) of soil invertebrate taxa richness per 

sampled area (1024 cm²) with diversity level of planted tree species (0, 1, 2, 3 and 6).  

diversit ylevel size class mean taxa per 
area sampled  

sd taxa per 
area sampled 

0 macrofauna 6.50 2.50 

  mesofauna 5.75 0.83 

1 macrofauna 7.88 1.79 

  mesofauna 5.42 0.81 

2 macrofauna 8.67 1.11 

  mesofauna 5.33 1.11 

3 macrofauna 7.38 1.22 

  mesofauna 5.13 0.60 

6 macrofauna 5.00 1.87 
 

mesofauna 4.75 0.43 

 

Table S6: Variations in mean and standard deviation (sd) of soil invertebrate taxa richness per 

sampled area (1024 cm²) with plot size (5 x 5, 10 x 10, 20 x 20, 40 x 40 m). 

diversit ylevel size class mean taxa per 
area sampled  

sd taxa per 
area sampled 

5 x 5  macrofauna 7.31 2.16 

  mesofauna 5.62 0.92 

10 x 10  macrofauna 7.38 2.13 

  mesofauna 5.15 0.66 

20 x 20  macrofauna 8.31 1.81 

  mesofauna 5.54 1.08 

40 x 40  macrofauna 7.62 1.21 

  mesofauna 5.00 0.55 
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The human population is rapidly growing worldwide and in parallel the demand for food, 

fuel and fibre (Dirzo and Raven, 2003; Foley et al., 2005; Gibbs et al., 2010; Newbold et al., 

2015). Satisfying these demands puts high pressure on ecosystems worldwild (Dirzo and 

Raven, 2003; Foley et al., 2005; Gibbs et al., 2010; Newbold et al., 2015) and results in 

increased conversion of natrual ecosystems into plantations as well in more intensively 

managed production systems (Godfray et al., 2010; Lambin and Meyfroidt, 2011; 

Tscharntke et al., 2012). In the past decades, especially tropical regions suffered from the 

transformation of landscapes (Sodhi et al., 2010; Wilcove et al., 2013; Meijide et al., 2018; 

see Chapter 1). This thesis aimed at improving understanding how the conversion of 

rainforest and jungle rubber into monoculture plantation systems (rubber and oil palm 

monoculture plantations) affects soil arthropods, especially oribatid mites and their 

trophic ecology in tropical lowland regions in South East Asia. The investigated land-use 

systems represented a gradient of different intensively managed systems, from more 

natural systems, represented by secondary rainforest and jungle rubber, to intensively 

managed systems, represented by rubber and oil palm monoculture plantations. Further, 

we investigated if the enrichment of oil palm plantations with native tree species planted 

in ‘tree islands’ of varying tree diversity and plot size beneficially affects soil invertebrates.  

In Chapter 2 we investigated shifts in the trophic niches of six soil-living oribatid mite 

species (Plonaphacarus kugohi, Protoribates paracapucinus, Scheloribates praeincisus, 

Bischeloribates mahunkai, Rostrozetes cf. shibai, and Rostrozetes sp. 1). Therefore, we 

measured stable isotope ratios (13C/12C and 15N/14N) of single oribatid mite individuals. For 

three of the six studied species (S. praeincisus, R. cf. shibai and Rostrozetes sp. 1) 

significant shifts of the trophic level (represented by 15N) and of the use of basal resources 
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(represented by 13C) were shown, indicating that at least these species change their 

trophic niches with changing environment. The other three studied species (B. mahunkai, 

P. kugohi and P. paracapucinus) did not differ significantly, however, their trophic shifts 

followed the same trend. Additionally, the trophic niches of all species separated between 

more natural systems, i.e. rainforest and jungle rubber, and monoculture plantation 

systems, i.e. rubber and oil palm plantation. These results contrast earlier studies, which 

assumed trophic niches of oribatid mite species to be stable and narrow. The investigated 

oribatid mite species spanned over three trophic levels, including primary and secondary 

decomposers and predators/scavengers, which is conform to earlier studies (Schneider et 

al., 2004; Illig et al., 2005; Maraun et al., 2011). Notably, changes in trophic niches of 

species were due to both changes in the trophic position (indicated by 15N values) as well 

as the use of basal resources (indicated by 13C values) with the shifts in transformed 

ecosystems occurring towards higher tropic levels. This indicates that oribatid mite species 

switched towards prey of higher trophic levels in converted ecosystems, presumably to 

animal prey such as nematodes (Heidemann et al., 2011, 2014). Decomposer species were 

virtually lacking in oil palm plantations, but were also scarce in the other land-use systems, 

which is conform to another study in tropical ecosystems (Illig et al., 2005). By contrast, 

higher tropic level species, such as secondary decomposers and predators/scavengers, 

were present in each of the land-use systems. The scarcity of primary decomposer likely 

is related to poor litter quality (Butenschoen et al., 2014; Krashevska et al., 2017; Marian 

et al., 2017) and this is aggravated by the conversion of rainforest into plantation systems 

(Teuscher et al., 2016; Klarner et al., 2017). In fact, none of the studied oribatid mite 

species were identified as primary decomposer in plantation systems. Typically soil 

animals are enriched by 3-4 δ units in 13C compared to litter and this has been termed 
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“detrital shift” (Pollierer et al., 2009; Potapov et al., 2019); this also was true in the present 

study. However, the detrital shift was more pronounced in rainforest and jungle rubber 

than in monoculture plantations, which likely reflects changes in the usage of plant litter 

carbon compounds, i.e. form difficult accessible ones with lower δ13C values, e.g. lignin, 

towards easy accessible ones, e.g. sugar and proteins (Gleixner et al., 1993; Hobbie and 

Werner, 2004; Bowling et al., 2008; Pollierer et al., 2009; Irawan et al., 2019). Additionally, 

primary decomposer are characterized by low fractionation of 15N, presumably related to 

“protein sparing”, i.e. the retaining of assimilated N in body tissue rather than excreting it 

due to low nitrogen supply in litter (Swift et al., 1979; Castellini and Rea, 1992; Gannes et 

al., 2007; Pollierer et al., 2009). In conclusion, our results indicate that oribatid mites 

predominantly function as secondary decomposers feeding on microorganisms, in 

particular fungi, however, they also indicate that in part they feed on animal prey or live 

as scavengers. Results of this study further indicate that oribatid mite species are able to 

colonize different ecosystems and this at least in part is due to trophic plasticity and the 

shift in the use of basal resources with conversion of rainforest into plantation systems.  

Chapter 3 investigated shifts in the community-level trophic niche of oribatid mites. Here, 

we investigated 80 % of oribatid mite communities of rainforest and monoculture 

plantation systems of oil palm and rubber. Different to the first study, we measured stable 

isotopes ratios (13C/12C and 15N/14N) of pooled individuals. Results of this study confirmed 

that the community-level trophic niche of oribatid mites is broader in rainforest than in 

plantation systems. The results further indicated that community-level trophic niche are 

clearly separated between natural and plantation systems. Further, confirming results of 

the study presented in Chapter 1, 15N/14N ratios indicated that oribatid mites shift their 
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diet towards predation and/or scavenging in monoculture plantation systems, presumably 

due to low amounts and low quality of litter in plantations. Additionally, very low 13C/12C 

ratios in rubber plantations indicated that certain oribatid mite species in these systems 

use resources which do not exist in the other systems. However, the identity of those 

resources used remained unclear as neither the abundance of algae nor of understory 

plants is higher in rubber plantations than in the other three land-use systems studied 

(Rembold et al., 2017; Schulz et al., 2019; Susanti et al., 2019). Additionally, it is unlikely 

that oribatid mite communities use plant compounds depleted in 13C such as lignin 

(Bowling et al., 2008; Pollierer et al., 2009), as animals in general are unable to digest lignin 

(Berg and Ryszard, 2005). However, the results in general suggest that oribatid mite 

communities in rubber plantations are functionally more diverse than in the other three 

land-use systems studied. The high uniqueness in oil palm plantations, however, 

suggested that the loss of species in these systems is associated with a loss of function. 

Additionally trophic chains in oil palm plantations were shorter as in the other three land-

use systems. Again, primary decomposer were lacking supporting the conclusion of the 

study presented in Chapter 2, that the quality of litter in the studied ecosystems is poor 

(Butenschoen et al., 2014; Krashevska et al., 2017; Marian et al., 2017). Additionally, 

parallel to the results presented in Chapter 2, the use of resources of oribatid mite 

communities changed with changing land-use systems. Changes in the flux of energy 

trough soil food webs with changes in land-use demonstrate that soil fauna communities 

are able to respond in a flexible way to changes in the availability of resources (Susanti et 

al., 2019). The study of Susanti et al. (2019) further indicated that in tropical ecosystems 

algae play an important role as food resource for Collembola and Oribatida. Similar to the 

results of Susanti et al. (2019), results of this study indicate that the conversion of 
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rainforest into plantation systems likely is associated with the strengthening of the plant-

based energy channel in plantation systems. Moreover, high 13C values in rainforest and 

jungle rubber indicate that in these systems soil food webs are predominantly based on 

the microbial energy channel (Potapov et al., 2013, 2019). Further, generalist predators, 

such as Chilopoda, have been shown to switch from decomposer prey to predominantly 

herbivore prey in monoculture plantations (Klarner et al., 2017). These shifts 

predominantly were due to reduced or lacking litter layer in plantation systems (Klarner 

et al., 2017). In natural ecosystems the thickness of the litter layer generally is higher than 

in plantation systems (Hyodo et al., 2015). As in the study presented in Chapter 2, the 

trophic niche of communities of oribatid mites differed most between more natural 

systems, i.e. rainforest and jungle rubber, and monoculture plantations, i.e. rubber and oil 

palm plantations. 13C and 15N values further indicated that community-level trophic niches 

of oribatid mites are similar in more natural ecosystems, and markedly different from 

those in plantation systems. Notably, oribatid mite communities showed similar trends as 

in the study presented in Chapter 2, indicating that the conversion of rainforest into 

plantation systems is associated with pronounced shifts in the decomposer system and 

the channeling of energy trough the decomposer food web.   

Results of the first two studies indicated that soil-living oribatid mites are able to adapt to 

changing environmental conditions with changes in land-use contrasting most species of 

the aboveground system (Teuscher et al., 2015; Darras et al., 2019). The study presented 

in Chapter 4 investigated the response of meso- and macrofauna species in ‘tree islands’ 

with varying diversity level planted native tree species (0, 1, 2, 3 and 6) and plot size (5 x 

5, 10 x 10, 20 x 20 and 40 x 40 m2). Three years after the establishment of the experiment 
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we found little evidence that the enrichment of oil palm plantations in ‘tree islands’ 

affected the abundance of meso- and macrofauna soil invertebrates. However, the 

richness of soil invertebrate taxa benefited from ‘tree islands’ of diversity level 2. The 

results contrast earlier studies reporting that a more pronounced understory in plantation 

systems beneficially impacts aboveground invertebrates (Chung et al., 2000; Ashton-Butt 

et al., 2018; Spear et al., 2018; Darras et al., 2019). Additionally, bird diversity and bird 

abundance were increasing with increasing numbers of planted trees at the experimental 

site (Teuscher et al., 2015). However, it has been demonstrated that the response of 

belowground organisms to variations in plant diversity generally are less pronounced than 

the response of aboveground species (Scherber et al., 2010). Another management 

strategy beneficially affecting aboveground arthropod diversity is Alley-cropping, i.e. 

planting trees, grasses and/or shrubs into monoculture crop plantations (Gold and 

Garrett., 2009; Ashraf et al., 2018). Further, arthropod habitat size may be enhanced by 

increasing the complexity of vegetation and therefore microhabitat diversity (Lawton, 

1983; Jose, 2009), which in turn may benefit arthropod diversity. Increased diversity of 

crop plants and trees might result in an increase in habitat heterogeneity, soil fertility, 

water quality as well as carbon and nutrient cycling (Fahrig et al., 2011; Torralba et al., 

2016; Ashraf et al., 2018). However, decomposer species of grassland ecosystems have 

been shown to respond to changes in the diversity of plant communities with a delay of 

four to six years (Eisenhauer et al., 2011). This might explain why we did not find changes 

in the abundance of macro- and mesofauna three years after establishment of the 

‘Enrichment experiment’. Additionally, physical habitat characteristics, such as pH and soil 

porosity, have been assumed to more strongly affect soil communities than plant diversity 

(Ducarme et al., 2004; Nielsen et al., 2010; Bluhm et al., 2019). Again, changes in physical 
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habitat characteristics are slow and might be difficult to detect in short term experiments 

(Bluhm et al., 2019). Further, the use of herbicides and the associated reduced herb layer 

in oil palm plantations may affect animal communities (Ismail et al., 2009), even after 

treatments have has been terminated (Teuscher et al., 2016). However, the enrichment 

of oil palm plantations with ‘tree islands’ and the reduced fertilizer and herbicide use likely 

increased resource availability and habitat diversity. An earlier study at the experimental 

site demonstrated that aboveground invertebrate species were less affected by ‘tree 

islands’ than vertebrate species, such as birds (Teuscher et al., 2016). Presumably, the 

planted trees and the associated new habitats, and the parallel ceasing of fertilizer and 

pesticide application exerted positive effects on birds (Tscharntke et al., 2011; Pywell et 

al., 2012; Teuscher et al., 2016).  

Plot size of the ‘tree islands’ generally did not significantly affect the richness and 

abundance of soil invertebrate taxa. This is consistent with results of earlier studies 

demonstrating that species richness and abundance may vary little with island size or 

connectivity (Brose, 2003; Báldi, 2008; Jonsson et al., 2009). However, in most studies 

plant diversity and habitat heterogeneity were identified as major drivers of the richness 

and abundance of species (Báldi, 2008; Jonsson et al., 2009).  

The analysis of the community structure showed that taxa associated with diversity level 

1 and 2 were mostly decomposers, whereas taxa associated with the other diversity level 

were mainly predators. It has been shown that the response of belowground animal 

species to variations in plant species is less pronounced than that of aboveground species 

(Wardle et al., 2006; Scherber et al., 2010; Eisenhauer et al., 2011). Until now, however, 

effects of plant species on soil animal species are little understood, but the differential 



Chapter V: General Discussion 

 

 171 

response is likely to be related to different traits of plant species in particular those 

affecting plant litter quality (Díaz et al., 2004; Wardle, 2006).  

 

Conclusions 
 

Overall, our studies confirmed our hypothesis that at least some oribatid mite species are 

able to cope with environmental changes in transformed ecosystems by shifting their 

tropic niches, i.e. by trophic plasticity. Additionally, the community-level trophic niche of 

oribatid mite changed with changing land-use systems. This, however, contradicted our 

hypothesis that oribatid mite communities are trophically broader in more natural 

ecosystems. Especially in rubber plantations oribatid mite communities are functionally 

diverse and use carbon resources not occurring in the other land use systems studied. The 

results further indicate that in particular in oil palm plantations the loss of species is 

associated with a loss of function. Notably, results of the studies presented in Chapter 2 

and 3 indicated that changes in the use of basal resources (indicated by 13C) were more 

prominent and consistent than those in trophic position (indicated by 15N). This suggests 

that the transformation of rainforest into plantations changes the resource use of soil 

invertebrate species but in part also their tropic level. Furthermore, it indicates that 

colonization of different land-use systems by oribatid mites in part is due to trophic 

plasticity.  

Three years after the enrichment of oil palm plantations with ‘tree islands’ the density and 

complexity of soil invertebrate communities was little affected. Presumably, this was due 

to the delayed response of soil invertebrate communities to changes in plant community 

composition and tree planting. The diversity and abundance of plant communities will 
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likely have stronger effects later in time, but this needs further investigation in particular 

in tropical ecosystems. 
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