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Summary 

The upsurge in advocacy for food security in SSA implies the urgent need for improved 

sustainable adaptation measures that can boost food-crop production. This is of utmost 

concern, because, over the past decades, food security targets in SSA have remained unmet 

due to food-crop production limitations. One of the key adaptation measures which is 

identified to address these food-crop production limitations has been the urgent call for DSM. 

DSM is essential to address concerns on site-specific soil information that guides fertilizer 

application, improve data availability of soil fertility parameters and fill the gaps of spatially 

explicit soil maps. SSA is one of the regions in the world with a large terra incognita ahead of 

its DSM initiatives. Thus far, there is a paucity of data omission on seasonal SM and SWS, which 

reflect the size of water reservoir of agricultural soils and its water storage adequacy. It is 

imperative that such critical soil information is made available. This is because, studies have 

demonstrated that in rain-fed agriculture, which dominates the agricultural landscape of SSA, 

~50% of total crop yield loss can be implicated by weather-induced water stress. Already, 

studies are reporting declining crop yields due to water-deficit conditions. Against this 

backdrop, meeting the globally-projected 60% increase in food demand by 2050, of which SSA 

is deemed to play a pivotal role, is recognized as a major challenge. 

This thesis fills the knowledge gap by employing state of the art approaches on spatio-

temporal scale analyses in order to complement existing DSM initiatives, which guide 

sustainable agriculture, crop intensification, modelling agricultural systems and site-specific 

farm management recommendations. We investigated and modelled the spatio-temporal 

seasonal SM and SWS of arable benchmark soils of the Guinea savannah zone of Ghana. The 

Guinea savannah zone is of importance because, it is a key reminiscent of the arable 

landscapes of SSA. To make our findings useful to the SSA region, this research specifically 

targeted smallholder farming communities, as they constitute ~80% of the farmers in the 

region. Also, these farmers have farm sizes < 1 ha that can easily adopt improved management 

practices. Here, we selected major arable benchmark soils along three main soil 

toposequences of the Guinea savannah zone. Specific objectives undertaken to fill the 

knowledge gap were to: (1)  design a new soil sampling stratification that adequately 

represented the soil toposequences, defined local structures and accounted for localized 

spatial autocorrelation in explaining SM and SWS variability, (2) analyze and assess the spatio-
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temporal dynamics of SM of soils of the area, (3) investigate the potentials for using high-

spatial and -temporal resolution remote sensing images to estimate SM at detailed scale and 

(4) functionally map, at 100 m spatial resolution, the four-dimensional root zone SWS of soils 

of the Guinea savannah zone. 

Addressing these specific objectives, key implications that can improve food-crop production, 

especially for the Guinea savannah zone, are recommended. Firstly, SM and SWS in the 

shallow soil depths (≤ 15 cm) were highly variable, unstable and consistently dry  as compared 

to the bottom soil layers (≥ 20 cm). These observed high temporal instability were as a result 

of, on the one hand, the influence of internal soil factors such as clay and silt contents, and 

bulk density, and on the other hand, external factors such as slope, precipitation and 

evapotranspiration. In the bottom layer soils, clay content increased with increasing soil depth 

which kept SM and SWS for longer periods by promoting time-stable wet cluster of locations. 

Secondly, time-stable locations where crop water requirements can be met during crop 

growing periods is explicitly identified for use. An outcome of this research is that almost all 

benchmark soils of the Guinea savannah zone (except for the Kumayili series) have SWS 

potentials that match the water requirements of at least some drought-tolerant crops of the 

area. Furthermore, we found that the use of high spatial resolution multi-temporal radar and 

optical remote sensing images opens new perspective to estimate and adequately understand 

the spatio-temporal variabilities of SM in sparse in situ measurements network. This finding 

brings the advantage over existing SM and SWS point-based analysis and also improves the 

use of SM and SWS information in semi-arid farming landscapes. Also, the estimation of SM 

at detailed spatio-temporal global scales while preserving a short revisit time is possible. 

Through this thesis, we connected several scales of analyses and initiatives regarding an 

improved food-crop production system in SSA. Possible adoptable recommendations drawn 

from this thesis include, e.g., the possibility and practicability to either prolong the existing 

major single farming window and the identification of locations and durations where 

additional crop-specific farming is applicable. In addition, the outcomes of the thesis can be 

used to enhance the adaptive capacity of smallholder farmers to increase food-crop 

production, yields, income and diversify livelihood alternatives of the local farming 

communities. Therefore, the findings from this thesis forms a core support system that is 

necessary to guide the implementation of drought-adaptation measures, dual farming system 

and complement existing DSM initiatives around the world. 
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Chapter 1: Introduction 

1.1 General background and justification 

It is widely known that the agricultural sector continues to play a pivotal role in many national 

economies of sub-Sharan Africa (SSA) – either ensuring food security or providing other 

livelihood alternatives for the region (Xie et al. 2018; AGRA 2017). Although SSA has over 50% 

of the world’s arable lands (Hengl et al. 2017b), improved food-crop production is highly 

challenged by poor adoption of integrated soil fertility management principles (Guilpart et al. 

2017) and inherent low soil fertility (Bado and Bationo 2018). Despite strong advocacy to 

boost crop production, these production limitations still linger and are far from reaching an 

improved state (AGRA 2017). Consequently, meeting the globally-projected 60% increase in 

food demand by 2050, of which SSA is deemed to play a critical role, is recognized as a major 

challenge (Godfray et al. 2010). Also, across SSA and other parts of the globe, there is an 

increase in advocacy efforts geared towards underscoring the importance of food security 

targets – the key being the policy on sustainable development goals (Griggs et al. 2013). 

However, external factors such as limited site-specific soil information, upsurge in land 

grabbing earmarked for agriculture due to population increase and price volatility of crops 

continue to undermine the food security targets (van Ittersum et al. 2016; Koning et al. 2008). 

Nevertheless, future climate projections which indicates ~40% reduction in rainfall and an 

increase in severe drought conditions will exacerbate the challenges to reaching the targets 

of food security (Howell 2001). Although the implementation of existing adaptation measures 

such as irrigation schemes could address some of these challenges, only 3% supplemental 

irrigation is currently being practiced in SSA, due to high cost of operation and 

implementation (van Ittersum et al. 2016; Adeboye et al. 2017). Hence, farmers adaptive 

capacities that could couple the rainy and dry season farming windows to boost food-crop 

production is largely decreasing (Armah et al. 2011; Adolwa et al. 2017). These backdrops 

coupled with the teeming human population further exacerbate the uncertainties associated 

with rainfed agriculture and food demand in SSA (Fisher et al. 2015; Xie et al. 2018). Thus, it 

places SSA in a highly vulnerable state and limits the prospects for its economic development. 

On the global scale, these crop production limitations and its adverse effects appear 

enormous, especially in SSA. However, studies have rather suggested to meet the global food 

demands at the national level (Foley et al. 2011; Tilman et al. 2011; Pradhan et al. 2015). 
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Consequently, adopting measures that can close actual and potential yield gaps of existing 

smallholder farming communities would be a key step to addressing these global constraints. 

This is mainly because, e.g. in SSA alone, smallholder farmers make up ~80% of the population 

and have farm sizes < 1 ha, which can easily adopt improved management practices (Lowder 

et al. 2016; Leenaars et al. 2018). It is therefore highly important to curtail food-crop 

production limitations at the smallholder farming scales in order to meet food security targets 

and limit vulnerabilities of SSA. 

Recently, the number of adaptation options in SSA have increased. For instance, a number of 

African countries have accented to the Abuja Declaration on fertilizer intended to tackle 

problems of soil fertility. While other key adaptation option has been the recent flagship 

projects of SSA, i.e. the Africa Soil Information Service project (AfSIS; http://africasoils.net/), 

the West African Agricultural Productivity Program (WAAPP; https://www.waapp-ppaao.org) 

and the Global Yield Gap Atlas project (GYGA; http://www.yieldgap.org/), which address site-

specific soil information gaps and accelerate the adoption of improved farming technologies. 

Despite the importance and contributions of these improved food-crop production initiatives 

in SSA, one thing that is clear is the paucity of data on seasonal soil moisture (SM), the size of 

water reservoir of agricultural soils and its water storage adequacy (Vågen et al. 2010; Dewitte 

et al. 2013; Hengl et al. 2017b; Leenaars et al. 2018). The missing data on root zone SM could 

be detrimental to the attainment of food security targets in SSA. This is because, in Rossato 

et al. (2017) and IPCC (2007), it was reported that in rain-fed agriculture ~50% of total crop 

yield loss can be implicated by weather-induced water stress, which suggests a strong 

contribution to the yield losses recorded over the past decades in SSA (Adeboye et al. 2017; 

Leenaars et al. 2018). Thus far, no regional initiative or study has developed spatial-temporal 

information on SM and soil water storage (SWS) of root zone of soils to address water 

requirements of crops in SSA, especially for the water deficit-landscapes (Chivenge et al. 2015; 

Leenaars et al. 2018). This observation raises farmers concern on where (spatial location), 

when (temporal), quantity (requirements) and stability of seasonal SM and SWS of the root 

zone of soils to support crop production and, also to inform other on-farm water management 

schemes (Dai et al. 2004; Armah et al. 2011; Chivenge et al. 2015). Furthermore, there is little 

evidence in SSA about the spatio-temporal variabilities of SM and SWS, how its occurrence is 

being influenced by soil-environmental factors, and how its potentials can be tapped to boost 
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food-crop production. Indeed, rain-fed agriculture would be severely hit in a water-stressed 

and nutrient deficient SSA. Already, studies are demonstrating and reporting declining crop 

yields and short falls due to water-deficit conditions (Jayne et al. 2010; Hengl et al. 2017b). In 

addition, there is decrease in dry season farming practices due to limited site-specific 

information, which can supplement yield losses and production deficits of the main rainy 

cropping season (Armah et al. 2011). Given that rainfed agriculture will continue to play a 

pivotal role in the foreseeable future of SSA, the availability of such critical site-specific soil 

information will be an important contribution to support other on-going adaptation options, 

which thrive to improve food-crop production. 

The case of the Guinea savannah is indifferent to those of SSA and it is of utmost concern in 

terms of food security targets and smallholder livelihood empowerment (Armah et al. 2011; 

Adolwa et al. 2017; Antwi-Agyei et al. 2018; Williams et al. 2018). This is mainly because, not 

only does it has a vast prospect for commercial agriculture in Africa, but also, it has accounted 

for about 60% of the total value of agricultural outputs for the past two decades (Morris et 

al. 2009; OECD 2016). In addition, the Guinea savannah region is the breadbasket of many 

arable lands of SSA. It is therefore imperative to enhance existing adaptation options such as 

digital soil mapping initiatives, which can adequately support the cultivation of drought 

tolerant crops and the implementation of sustainable dual-farming systems in SSA. 

In this thesis, we focused on bridging the knowledge gap on the missing data on the size of 

water reservoir of the root zone of agricultural soils and its water storage adequacy. For this 

purpose, we develop the first spatio-temporally explicit seasonal root zone SM and SWS 

information of soils of the Guinea savannah zone, which can guide site-specific sustainable 

agriculture, crop intensification and the modelling of agricultural systems. This thesis brings 

an additional advantage of an improved site-specific soil information package for arable soils, 

which forms part of the needed adaptation options identified to partly address food-crop 

production limitations in SSA. We used spatio-temporal scale analyses coupled with empirical 

and secondary datasets, which bring an advantage over point-based analysis and the 

practicability of understanding seasonal SM and SWS trends in water deficit landscapes. Due 

to large amounts of small farm sizes in the study area, which is reminiscent of the general 

farm size of SSA (Lowder et al. 2016), we use high spatial resolution multi-temporal radar and 

optical remote sensing images to infer secondary datasets for use in our analyses. The use of 
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remote sensing images also addresses the limitation of sparse in situ measurements network, 

which is a challenge of adequate data representation of SM statuses at the regional scale. As 

a preliminary test of methodologies and applications, we focused on the Guinea savannah 

semi-arid zone of Ghana, which is suggestive of the arable landscapes of SSA and its agro-

ecological zones (Figure 1.1) (Sebastian 2009). 

 

Figure 1.1. Map showing the extent of the Guinea savannah zone  (i.e. covers the arid, semi-

arid, sub-humid and part of the humid tropics) of SSA. Modified from Sebastian (2009).
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1.2 Research objectives 

The main goal of this thesis was to investigate and model the spatio-temporal seasonal SM 

and SWS of benchmark soils of the Guinea savannah zone of Ghana. In this context, two 

specific objectives were undertaken to; 

1. Investigate the spatio-temporal variability of root zone SM of soils and how it is being 

influenced by soil-environmental factors. This objective was achieved by two main 

research tasks: 

a. develop a new soil sampling stratification approach that adequately represent 

the soil toposequences, define local structures and account for localized 

spatio-temporal autocorrelation in explaining SM variability (Study 1; Chapter 

4). 

b. analyze and assess the spatial and temporal dynamics of SM of key benchmark 

soils of the Guinea savannah zone of Ghana (Study 2; Chapter 5). 

2. Explicitly model surface SM and map the four-dimensional (i.e. space, soil depth and 

time) distribution of root zone SWS. Two main research tasks were used to achieve 

this objective: 

a. investigate the potentials of using high-spatial and -temporal resolution 

remote sensing imagery to estimate SM at fine spatio-temporal global scale 

(Study 3; Chapter 6). 

b. assimilate and functionally map, at 100 m spatial resolution, the four-

dimensional root zone SWS potentials of the Guinea savannah zone (Study 4; 

Chapter 7).



 

 10 



 

 11 

Chapter 2: Study area and methods 

2.1 Overview of agriculture in Ghana 

Similar to most economies of SSA, the agricultural sector is one of the mainstays of Ghana’s 

economy and employs over 50% of the working population (World Bank 2017b). It contributes 

about 20–25% of Ghana’s gross domestic product (World Bank 2017b). The agricultural sector 

has been estimated to grow, in the medium term, at an average of ~3.3% yearly (Ghana 

Ministry of Finance 2017), as against the proposed growth rate of 6–8% (Banson et al. 2016). 

In Ghana, agricultural outputs vary with agro-ecological zones, however, smallholder farmers 

(~80% of the total agriculture chain) are discernable throughout the arable landscapes as 

compared to those involved in commercial agriculture. It is these smallholder farmers that 

are also noted for traditional and rain-fed agriculture, and the low use of improved 

agricultural technologies (Chamberlin 2008). For example, only 0.2% of the 42.4% arable lands 

are under irrigation (World Bank 2017a), and thus, makes improved crop production a major 

challenge throughout the year. 

Tree and cash crops, i.e., cocoa (Cacao), oil palm (Elaeis guineensis), tobacco (Nicotiana 

tabacum) and rubber (Ficus elastica), are significant in the southern part of Ghana. Whereas, 

in the middle to the northern belt, food crops are significant with maize (Zea mays), legume 

(Leguminosae), plantain (Musa paradisiaca), rice (Oryza glaberrima), cocoyam (Xanthosoma 

sagittifolium), cassava (Manihot esculenta) and yam (Dioscorea abyssinica) being of particular 

importance. Specifically, the northern sector is also well-known for cotton (Gossypium), 

groundnut (Arachis hypogaea), sorghum (Sorghum bicolor) and millet (Panicum miliaceum). 

Rice is cultivated throughout the country. Amongst these cultivated food crops, maize and 

rice are the largest-staple caloric intake in Ghana (SRID 2016). Farming practices are diverse, 

with the prominent being inter-cropping due the large smallholder farming communities 

(Adolwa et al. 2017). 

Within the agro-ecological zones of Ghana, the Guinea savannah zone, which is categorized 

as the breadbasket of Ghana (Bourne Jr 2014), is the dominant. On the one hand, it is within 

this region where most farming activities are undertaken, and on the other hand, agricultural 

challenges are very prominent in the area and beset crop production potentials (Acheampong 

et al. 2014; Amekudzi et al. 2015). The main challenge is the adverse effect of the single 
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farming window that limits crop production (Abass 2015). For instance, Ghana currently 

stands at 8–10 t ha-1 (maize), 40 t ha-1 (cassava), 6–8 t ha-1 (rice) and 2.5 t ha-1 (soybean), 

compared to the overall crop yield potentials of SSA and the world (Alidu et al. 2016; World 

Bank 2017b). Some other significant constraints to sustainable agricultural production in 

Ghana are low incorporation of integrated soil fertility management technologies, low rainfall 

and nutrient depletion. Currently, nutrient depletion rates of 35 kg N ha-1 yr-1, 4 kg P ha-1 yr-

1and 20 kg K ha-1 yr-1 have been reported (Fening 2016). It is in this light that Ghana continues 

to miss its food security targets. 

Recognizing these facts and to achieve self-sufficiency in food-crop production, the 

Government of Ghana is putting in adaptation measures to spur economic growth in order to 

curtail the challenges faced by smallholder farmers. Instituted adaptation measures include 

the E-Agricultural initiative, the Medium-Term Agricultural Sector Investment Plan and the 

Planting for Food and Jobs Program (Asuming-Brempong 2013; Mohammed Tanko et al. 

2019). These recent flagship initiatives are geared towards boosting food-crop production, 

food security and reduction of food imports (Mohammed Tanko et al. 2019). Within these 

policies, farm inputs and adaption measures outlined includes access to updated site-specific 

soil information, improved seed, irrigation schemes, fertilizer and sustainable farming 

practices. 

It is against this backdrop that this thesis complements ongoing adaptation efforts (i.e. 

enhancing site-specific soil information) to address existing crop production challenges in the 

Ghanaian agriculture chain, especially for the Guinea savannah zone of Ghana. 

 

2.2 Characteristics of the study area 

All research tasks of this thesis, i.e. study 1–4, were conducted at the same study area of the 

Guinea savannah zone and followed a single sampling approach. Hence, I only report the 

settings of the study area, sampling design and in situ measurements in these subsequent 

sections of the introduction and not with the manuscripts of this thesis. 

The Guinea savannah zone experiences erratic rainfall patterns, which is characterized by high 

evaporation loss and low rate of runoff conservation (Acheampong et al. 2014). For this thesis, 

we selected the Tamale enclave (Figure 2.1) due to large farming communities, suitable arable 
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soils for crop production and good accessibility. The study extent covered a 150 x 80 km area 

between Daboya (westward), Sang (eastward), Gaa (northward) and Fufulsu (southward). 

 

Figure 2.1. Location maps showing the Guinea savannah zone  (B and C) and in situ 

measurement locations (D) overlaid on the digital elevation model of the study area. 

 

2.2.1 Climatic conditions 

The Guinea savannah zone experiences a semi-arid climatic condition with mean annual 

precipitation varying from 900 mm to 1100 mm (1985–2018). Compared to the defined dry 

season (255 ± 5 days; September–March), the rainy season is shorter (110 ± 5 days; April–

August) (Amekudzi et al. 2015) and it is within this period where all major farming activities 

are undertaken. Daily, relative humidity varies between 18% and 97% while temperature vary 

from a minimum of 32 °C in August to a maximum of 43 °C in March. Evapotranspiration of 

the Guinea savannah zone is ~3-times the daily average precipitation of the area (range = 4.9 

mm day-1). Retrospective and current climatic information reported in this thesis was 

obtained from a weather station located in the study area (Figure 2.1D). 
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2.2.2 Land use/Land cover 

Elephant grass (Pennisetum purpureum) dominates the vegetation types of the Guinea 

savannah zone with few interspersed occurrences of Borassus aethiopum (Borassus palm), 

Khaya senegalensis (Senegal mahogany) and Vitellaria paradoxa (Shea tree). Due to large 

river networks and low vegetation cover, flooding events are rampant especially in the rainy 

season. In the Guinea savannah, notable food-crops cultivated includes Oryza glaberrima 

(upland rice), Zea mays (maize), Solenostemon rotundifolius Poir (potatoes), Pennisetum 

americanum (millet), Vigna unguiculata (cowpea), Dioscorea (yam) and Manihot esculenta 

(cassava). Other land uses of the area includes irrigated vegetable cropping, dryland farming 

and pastures. 

 

2.2.3 Geomorphology, geology and soils 

While ploughing activities from smallholder farming systems mainly drives the surface 

roughness of soils of the area, the topography and soil surface is generally flat and relatively 

homogenous. The highest altitude of the study area varies between 255 m a.s.l. to 39 m a.s.l. 

with a gentle topography with slope inclination ranging from 0.5% (minimum) to 5% 

(maximum). In situ measurements within the 150 x 80 km study area covered seven key 

benchmark soils of the Guinea savannah zone (Figure 2.2), which are distinguished along 

three soil toposequences (Adu 1995). On the upper slopes occur Eutric Plinthosols 

(Kpelesawgu series, in the Ghanaian soil classification system). Chromic Lixisols (Kumayili 

series), Gleyic Planosols (Lima series) and Petric Plinthosols (Changnalili series) covers the 

middle to lower slopes. The toe slopes are covered by Plinthic Lixisols (Siare series), Gleyic 

Fluvisols (Dagare series) and Fluvic Gleysols (Volta series). The underlying geology from which 

these benchmark soil types are developed mainly consists of sandstones, shales, mudstones, 

quartzites and alluvial sediments of the Voltain platforms (Junner 1940). See Adu (1995) for 

details on these benchmark soils. 
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Figure 2.2. Key benchmark soil types of the Guinea savannah zone  distinguished  along three 

soil toposequences. Soil names are in Ghanaian soil classification system. Chart not drawn to 

scale. Source: Nketia et al. (2019). 

 

2.3 Sampling stratification 

The sampling stratification used for all research tasks of this thesis (i.e. study 1–4), followed 

the approach of Nketia et al. (2019). In the sampling design, we combined the global weighted 

principal component analysis with a cost-constrained conditioned Latin hypercube algorithm 

to select locations that represented the soil toposequences and landscape heterogeneities of 

the study area (Figure 2.1D). While the global weighted principal component analysis 

captured defined local structures and localized spatio-temporal autocorrelation at a point 

scale, the cost-constrained conditioned Latin hypercube algorithm optimized the selection of 

representative locations that highly explained the variability of SM for our case study areas. 

In addition, the sampling stratification suppressed the representation and selection of 

locations that had minimal influence on the variability of SM in the study area. See Nketia et 

al. (2019) for further description on the sampling stratification. 
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2.4 In situ SM measurement and soil sampling 

At each sampling location and along the three topographical units, we inserted an access tube 

into the soil to a depth of 100 cm for SM measurements (Figure 2.3A–C). From each access 

tube, SM was measured at six soil depth intervals (i.e. 0–10, 10–20, 20–30, 30–40, 40–60 and 

60–100 cm) with the use of a calibrated moisture probe (PR2/60, Delta-T Devices) (Figure 

2.3D). In each PR2/60 SM measurement, the probe was turned clockwise ~45°, and thus, it 

represented a quadrant of measurement for the volumetric SM. An average of four repetitive 

in situ SM measurement represented each measuring soil depth at each location. This ensured 

a reduction in field-scale uncertainties in the measured SM. In total, we obtained 10-sets of 

measurements at a time interval of 12 days from February to June 2018. The temporal 

resolution of 12 days was designed to coincide with Sentinel-1 satellite overpass time for the 

study area, which was also part of our objectives to assimilate SM in the root zone of soils 

through Sentinel-1 and -2 satellite images. 

We collected undisturbed soil samples from a soil profile, with a depth of 60 cm, at close 

proximity (~1 m away) to each model selected sampling location. The undisturbed soil 

samples were collected at five soil depth intervals (i.e. 0–10, 10–20, 20–30, 30–40 and 40–60 

cm) at each sampling location. We took soil samples, vertically, in a stainless-steel cylinder 

with a volume of 110.78 cm3 (Figure 2.3E–F). Soil samples from the 60–100 cm depth interval 

were not included due to inherent petro-plinthite soil layer, which made sampling impossible. 

In total, we collected 170 soil samples and analyzed for gravimetric SM, bulk density and 

particle size distribution. 
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Figure 2.3. In situ SM measurement and undisturbed soil sampling.  A–C represents the 

installation of PR2/60 capacitance profile probe access tube (Delta‐T Devices) to a depth of 

100 cm. D – Three-dimensional representation of soil profile with installed access tube and 

PR2/60 capacitance profile probe. E and F shows soil sampling with a stainless-steel cylinder 

at specific soil depths. PR2/60 image source: Delta‐T Devices. 
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Chapter 3: Thesis structure and included publications 

3.1 Structure of the following parts of the thesis 

This thesis is a compilation of methods, results and findings from four main research tasks, 

which contributes to the reliability of using in situ SM, remote sensing imagery and soil 

predictive models to develop root zone SM and SWS information critical for improved food-

crop production in water deficit landscapes. This thesis is further structured with two main 

sections: (B) publications and manuscripts and (C) general conclusions and outlook. 

The other two sections are described as: 

• Section B is categorized into two sub-sections: (1) research and (2) data. The research sub-

section presents synthesis studies from the four specific research tasks while the data sub-

section describes the associated open-source data repositories for both raw and analyzed 

datasets used for the specific research tasks: 

o Research: 

▪ Study 1 (Chapter 4) focuses and summarizes the results from a case study that was 

used to validate a newly designed soil sampling method, which was necessary to 

assess the spatio-temporal variability of SM and SWS of our case study area. 

▪ Study 2 (Chapter 5) investigates whether there are any unused potentials (in this 

case SM and SWS reserves) that can be tapped for food-crop production in the 

Guinea savannah zone, especially during the dry-season. 

▪ Study 3 (Chapter 6) presents and illustrates results from an improved remote 

sensing SM estimation technique via integrated remote sensing data sources and 

machine-learning algorithms. 

▪ Study 4 (Chapter 7) combines approaches, methods and datasets from research 

task 2 and 3 to innovatively assimilate SM information from 0 cm to 100 cm soil 

depth in order to explicitly map the four-dimensional distribution of root zone SWS 

at 100 m spatial resolution. 

o Data: 

▪ Data repository 1 (Chapter 8) describes and make publicly available the datasets 

on the spatio-temporal in situ SM and laboratory analyzed results, i.e. gravimetric 

SM and physical soil properties for the sampling locations.  
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▪ Data repository 2 (Chapter 9) also describes and make publicly available the 

spatio-temporal root zone SWS datasets also for the sampling locations. 

• Section C summarizes scientific contributions made, recommendations for improve food-

crop production and their associated implications for policy advice. In addition, limitations 

that necessitates future research for this thesis are provided. 

In order to ensure consistent presentation format and style for our findings throughout this 

thesis, we edited and reformatted scientific publications and manuscripts, which may differ 

from the styles of the journals. However, publications and manuscripts are duly 

acknowledged. Editing and modifications includes: 

1. Layout of text, fonts and tables, 

2. Numbering of pages, sections, figures and tables, and 

3. Citations and references style. 

 

3.2 Contributions to publications and manuscripts 

From section B (Chapter 4–9), various contributions were made and they are described in 

Table 3.1–3.6. 

 

Table 3.1. Contributions to study 1 (Chapter 4) 

Title: A new method for selecting sites for soil sampling, coupling global weighted principal 
component analysis and a cost-constrained conditioned Latin hypercube algorithm 

Authors Contributions to study 

Kwabena Abrefa Nketia1, 3 Conceptualized and designed study, field campaign, data 
organization and analysis, manuscripts structure and writeup. 

Stephen Boahen Asabere1 Reviewed draft manuscript.  
Stefan Erasmi2 Reviewed draft manuscript. 
Daniela Sauer1 Conceptualized and designed study, and reviewed draft 

manuscript. 

Current status: published DOI: 10.1016/j.mex.2019.02.005 
1Physical Geography Dept. University of Göttingen, Germany, 2Department Cartography, GIS 
and Remote Sensing, Institute of Geography, University of Göttingen. 3Council for Scientific 
and Industrial Research-Soil Research Institute, Kumasi-Ghana. 

https://doi.org/10.1016/j.mex.2019.02.005
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Table 3.2. Contributions to study 2 (Chapter 5) 

Title: Spatial and temporal dynamics of soil moisture in benchmark soils of the Guinea savannah 
zone of Ghana - is there an unused potential for food-crop production? 

Authors Contributions to study 

Kwabena Abrefa Nketia1, 4 Conceptualized and designed study, field campaign, data 
organization and analysis, manuscripts structure and writeup. 

Joscha Becker2 Reviewed draft manuscript. 
Stephen Boahen Asabere1 Reviewed draft manuscript. 
Stefan Erasmi3 Reviewed draft manuscript. 
Daniela Sauer1 Conceptualized and designed study, and reviewed draft 

manuscript. 

Current status: under review To be submitted to SOIL 
1Physical Geography Dept. University of Göttingen, Germany, 2Institute of Soil Science, 
Universität Hamburg, Germany, 3Thünen-Institute of Farm Economics, Braunschweig, 
Germany. 4Council for Scientific and Industrial Research-Soil Research Institute, Kumasi-
Ghana. 
 

Table 3.3. Contributions to study 3 (Chapter 6) 

Title: Estimating soil moisture from integrated Sentinel-1, -2 and DEM-derived datasets using an 
ensemble of forest, neuron and vector-based machine-learning algorithms 

Authors Contributions to study 

Kwabena Abrefa Nketia1, 3 Conceptualized and designed study, field campaign, data 
organization and analysis, manuscripts structure and writeup. 

Stefan Erasmi2 Reviewed draft manuscript. 

Daniela Sauer1 Conceptualized and designed study, and reviewed draft 
manuscript. 

Current status: under review To be submitted to Remote Sensing of Environment 
1Physical Geography Dept. University of Göttingen, Germany, 2Thünen-Institute of Farm 
Economics, Braunschweig, Germany. 3Council for Scientific and Industrial Research-Soil 
Research Institute, Kumasi-Ghana. 
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Table 3.4. Contributions to study 4 (Chapter 7) 

Title: Spatio-temporal mapping of soil water storage in a semi-arid landscape of Northern Ghana 

Authors Contributions to study 

Kwabena Abrefa Nketia1, 5 Conceptualized and designed study, field campaign, data 
organization and analysis, manuscripts structure and writeup. 

Amanda Ramcharan2 Reviewed draft manuscript and supported data analysis. 
Stephen Boahen Asabere1 Reviewed draft manuscript. 
Steffen Herbold3 Reviewed draft manuscript and checked mathematical syntax. 
Stefan Erasmi4 Reviewed draft manuscript. 
Daniela Sauer1 Conceptualized and designed study, and reviewed draft 

manuscript. 

Current status: under review To be submitted to Geoderma 
1Physical Geography Dept. University of Göttingen, Germany, 2Penn State University, United 
States, 3Institute of Computer Science. University of Göttingen, Germany, 4Thünen-Institute 
of Farm Economics, Braunschweig, Germany. 5Council for Scientific and Industrial Research-
Soil Research Institute, Kumasi-Ghana. 
 

Table 3.5. Contributions to data archiving 1 (Chapter 8) 

Title: Data on seasonal soil moisture and physical soil properties from the breadbasket of Ghana 

Authors Contributions to data archiving 

Kwabena Abrefa Nketia1, 2 Conceptualized and designed data repository, data 
organization, manuscripts structure and writeup. 

Daniela Sauer1 Reviewed draft manuscript. 

Current status: under review To be submitted to Data in Brief 
1Physical Geography Dept. University of Göttingen, Germany. 2Council for Scientific and 
Industrial Research-Soil Research Institute, Kumasi-Ghana. 
 

Table 3.6. Contributions to data archiving 2 (Chapter 9) 

Title: Data on the spatio-temporal root zone soil water storage – the Guinea savannah zone of 
Ghana 

Authors Contributions to data archiving 

Kwabena Abrefa Nketia1, 2 Conceptualized and designed data repository, data 
organization, manuscripts structure and writeup. 

Daniela Sauer1 Reviewed draft manuscript. 

Current status: under review To be submitted to Data in Brief 
1Physical Geography Dept. University of Göttingen, Germany. 2Council for Scientific and 
Industrial Research-Soil Research Institute, Kumasi-Ghana.  
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Chapter 4: A new method for selecting sites for soil sampling, coupling GWPCA and cLHC        

algorithms 

This manuscript is published as: 
Nketia KA, Asabere SB, Erasmi S, Sauer D. A new method for selecting sites for soil sampling, coupling global 
weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm. 
MethodsX 2019; 6:284–99. DOI: 10.1016/j.mex.2019.02.005. 

 
Abstract 

 

Analyzing spatial patterns of soil properties in a landscape requires a sampling strategy that 
adequately covers soil toposequences. In this context, we developed a hybrid methodology 
that couples global weighted principal component analysis (GWPCA) and cost-constrained 
conditioned Latin hypercube algorithm (cLHC). This methodology produces an optimized 
sampling stratification by analyzing the local variability of the soil property, and the influence 
of environmental factors. The methodology captures the maximum local variances in the 
global auxiliary dataset with the GWPCA, and optimizes the selection of representative 
sampling locations for sampling with the cLHC. The methodology also suppresses the 
subsampling of auxiliary datasets from areas that are less representative of the soil property 
of interest. Consequently, the method stratifies the geographical space of interest in order to 
adequately represent the soil property. We present results on the tested method (R2 = 0.90 
and RMSE = 0.18 m) from the Guinea savannah zone of Ghana. 
 

Keywords: auxiliary dataset; cLHC; GWPCA; localized spatial soil variability; optimized soil 
sampling design

https://doi.org/10.1016/j.mex.2019.02.005
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4.1 Method details 

Sampling designs aim at representing either the investigated soil property or the geographical 

space of a study area, or both (Hengl et al. 2003; Minasny and McBratney 2006). However, 

there are still shortcomings in the geographical-space sampling designs (Biswas and Zhang 

2018). Minasny and McBratney (2006) proposed the conditioned Latin hypercube (cLHC) 

method as a feature-sampling approach, to address the shortcomings of the geographical-

space sampling design. To ensure that a sampling strategy adequately represents both the 

geographical and the feature space, Minasny and McBratney (2006) recommended 

considering the whole range of auxiliary data available for a study area. Based on this 

suggestion, Levi and Rasmussen (2014) proposed a hybrid approach, in which they coupled an 

iterative principal component analysis (iPCA) with the cLHC. However, the iPCA hardly 

accounted for local spatial effects in their auxiliary datasets. The iPCA algorithm generally 

obscured the localized spatial effects in the auxiliary datasets (Harris et al. 2011; Kumar et al. 

2012; Harris et al. 2015). Generally, the iPCA algorithm is unable to correlate the measured 

soil property and its local environment, which depicts the geographic variations in the soil and 

environmental characteristics across space. Hence, iPCA ignores spatial characteristics. 

Therefore, several authors suggested to correct this shortcoming by including a localized 

weighted spatial auto-correlated principal component analysis (Harris et al. 2011; Harris et al. 

2015; Comber et al. 2016). However, even coupling iPCA with cLHC still does not account for 

geographical weightings that provide principal component scores and loadings at all data 

locations (Kumar et al. 2012). Therefore, in this paper we propose a global weighted principal 

component analysis (GWPCA) as an alternative to the iPCA. The advantage of the GWPCA is 

that it is able to recover the known dimensional spatial structures. Hence, it accounts for 

localized spatial autocorrelations in the algorithm that can explain the variability of auxiliary 

datasets (Charlton et al. 2010). Consequently, we propose a new method, in which we couple 

GWPCA and a cost-constrained cLHC, to optimize the representation of both the feature and 

the geographical space (Figure 4.1). 

Similar to the scorpan concept (McBratney et al. 2003), auxiliary datasets, represented as 

indices, were used to explain the local spatial heterogeneities and the soil property of interest 

at the selected sampling locations. We evaluated all localized spatial effects, trends and 

variabilities in the auxiliary datasets by GWPCA, adopting an automatic bandwidth in the 

GWPCA calibration. Next, using the selected GWPCA principal components as model input 
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parameters, we selected optimal sampling locations using the cLHC algorithm executing 

1e+04–5e+04 iterations. We incorporated a cost layer in the cLHC algorithm to suppress 

subsampling from areas that had only minor influence on the soil variable. Finally, we 

evaluated the model selections using root mean square error and correlation coefficient 

between model selected and actual locations. We chose SM to test the method. In all stages 

of the proposed hybrid approach, we used  software (R Core Team 2017), specifically the  

packages  (Kassambara and Mundt 2016),  (Brenning et al. 2018),  (Revelle 2018) and  (Roudier 

et al. 2012). Source codes (i.e.  scripts) for full method implementation is publicly accessible 

on DOI: 10.5281/zenodo.3662411. 

 

Figure 4.1. Methodological flowchart of the ensembled global weighted  principal component 

analysis and a cost-constrained conditioned Latin hypercube algorithm. 

 

4.1.1 GWPCA 

The GWPCA is an add-on to the standard principal component analysis (Harris et al. 2011; 

Kumar et al. 2012; Harris et al. 2015). We evaluated all localized spatial effects, trends and 

variabilities in the auxiliary datasets by the GWPCA. Geographical weights (GW) used in the 

GWPCA were determined by a bi-square function (Equation 4.1). 

https://zenodo.org/badge/latestdoi/239761009
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𝐺𝑊𝑖𝑗 = [1 − (
𝑑𝑖𝑗

𝑏
)

2

]
2

         (4.1) 

where 𝑑𝑖𝑗  is the distance between the spatial location i and j at a bandwidth b in determining 

the kernel size of the PCA. 

Finally, we estimated the global weighted principal components at each location (xi, yi) 

(Equation 4.2). 

𝐿𝑉𝐿𝑇| (𝑥𝑖, 𝑦𝑖 ) =  ∑(𝑥𝑖, 𝑦𝑖)          (4.2) 

where 𝐿𝑉𝐿 is the local eigenstructure, and ∑(𝑥𝑖, 𝑦𝑖) is the GW variance-covariance matrix for 

location (𝑥𝑖, 𝑦𝑖). 

We used a component matrix of the loadings to explore the local variations in the auxiliary 

data used in this study. Positive/negative signs associated with the loadings indicate, how each 

auxiliary data is associated with other auxiliary data. The geographically weighted standard 

deviation of auxiliary datasets was estimated by equation 4.3. 

√𝜎𝑖 = [∑ (𝑥1 − 𝑥̅1)2𝑛
𝑗=1 𝐺𝑊𝑖𝑗]

0.5
        (4.3) 

where 𝑥1 −  𝑥̅1is the auxiliary data and its mean and 𝐺𝑊𝑖𝑗  is the geographical weights 

between the spatial location i and j. 

 

4.1.2 cLHC algorithm 

A cost layer was introduced into the simulated annealing process within the cLHC algorithm 

(Roudier et al. 2012) as equation 4.4. The cost layer suppressed the subsampling of selected 

PCs of the GWPCA auxiliary data from areas that had only minor influence on SM in the cLHC 

algorithm outputs. 

𝐶𝑐𝑜𝑠𝑡(𝑗)
=  𝑒( − 

∆𝑐𝑜𝑠𝑡𝑗

𝑇
)          (4.4) 

where ∆𝑐𝑜𝑠𝑡(𝑗) = 𝑐𝑜𝑠𝑡(𝑗) − 𝑐𝑜𝑠𝑡(𝑗 − 1). Within the sampling schemes, 𝐶𝑐𝑜𝑠𝑡(𝑗)
was the sum 

of the cost layers of individual locations at j iterations in the simulated annealing. Details on 

applying the standard and cost-constrained cLHC algorithms can be obtained from the studies 

of Minasny and McBratney (2006) and Roudier et al. (2012). 

 

4.1.3 Evaluation of the accuracy of the model selected sampling locations in the field 

We tested the performance of the hybrid approach in the field, using six covariates, including 

soil type, parent material, landform, drainage, effective soil thickness, and the possibility to 
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fix access tubes without impedance (Table 4.1). The selection of these indicators was 

corroborated by studies of Adu (1995) and Adu and Asiamah (2003) in the Guinea savannah 

zone. We evaluated each model selected sampling location in the field, by assigning either a 

value of 0 (= unsuitable) or 1 (= suitable) to each of the six parameters. Subsequently, the total 

score of each selected sampling location was averaged and expressed as percentage. For the 

selected sampling locations, the root mean square error (RMSE) and the correlation between 

the predicted and actual location was estimated. In this way, we evaluated the average error 

and the suitability of the model to select representative sampling locations (Equation 4.5). 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ [𝑃𝑡 −  𝐴𝑡]2𝑛

𝑖=1         (4.5) 

where P is the model selected sampling location at a feature space t, n is the number of model 

selected sampling locations and A is the confirmed/actual in situ sampling location. 

 

Table 4.1. Evaluation form to confirm the suitability of predicted  sampling location 

Locations Field Conditions 
 

Soil type Geology Land 
form 

Possibility to 
fix access tube 

Drainage Effective soil 
depth > 100 cm 

0 | 1 
Score 

AT01        

AT02        

…        

…        
…        

AT38        

 

4.2 Validation of the proposed hybrid methodology 

4.2.1 Auxiliary datasets used in the study 

We selected twenty auxiliary datasets, which we considered to represent factors that 

contribute to the local spatial variability of SM. We thus expected these datasets to be suitable 

to explain the SM dynamics at the model selected sampling locations. They were also included 

in the modelling process, in order to optimize the selection of sampling locations. Collinearity 

between the auxiliary datasets was accounted for with the GWPCA algorithm (Harris et al. 

2011). Table 4.2 and Figure 4.2 present summaries of the auxiliary datasets used in this study. 

Each auxiliary dataset was either sourced or resampled at 100 m resolution via the cubic spline 



 

 32 

model of the 𝐺𝐷𝐴𝐿 package (Mitchell and Developers 2014). DEM-derived surfaces were 

obtained in 𝑅 via the 𝑆𝐴𝐺𝐴- 𝐺𝐼𝑆 morphometry and hydrology functions (Conrad et al. 2015). 

 

Table 4.2. Auxiliary datasets used in the study 

Abbreviation Description Remarks Units 

DEM Digital elevation model Representation of the terrain surface, 
steepness, wetness and to represent 
other geomorphological parameters  

m 
Slope Slope inclination degree 
SAVI Soil adjusted vegetation index - 
TWI SAGA topographic wetness 

index 
- 

Landforms USGS topographical landform 
classes 

- 

AWC Available water content Legacy information on moisture 
content 

% 

BD Bulk density restriction to root growth, infiltration, 
percolation and the ability of roots to 
reach moist zones in the soil 

Mg m-

3 

Bedrck Depth to bedrock Depth to impenetrable layer cm 
Clay Clay content of the soil Legacy information on clay content % 
Sand Sand content of the soil Legacy information on sand content % 
Silt Silt content of the soil Legacy information on silt content % 
Drainage FAO soil drainage classes - - 
Geology Geological formation - - 
Lithology FAO lithological classes - - 
Riverdist River distance  km 
Temp Spatial pattern of temperature - oC 
Precip Spatial pattern of precipitation - mm 
Sent1A_VH Calibrated sigmaO Sentinel-1A 

radar backscatter coefficients in 
VH polarization 

Proxy for SM dB 

Sent1A_VV Calibrated sigmaO Sentinel-1A 
radar backscatter coefficients in 
VV polarization 

Proxy for SM dB 

Soil_types Mapping units at series level - - 
WatBal Water balance - % 
WatCov Spatial coverage of hydrology 

networks 
- ha 
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Figure 4.2. Extract from list of auxiliary datasets used to analyze  the soil-landscape 

heterogeneity in representing SM. AWC = available water content, BD = bulk density, Clay = 

clay content, Sent1A_VV = calibrated Sentinel-1 radar backscatter coefficient in VV 

polarization, Precip = precipitation, Bedrck = depth to bedrock, Riverdist = river distance. 

 

4.2.2 Selecting bandwidth for the GWPCA 

Selecting an optimal bandwidth was the key to achieve an optimized GWPCA algorithm. 

Following the approach of Harris et al. (2015), we adopted an automatic bandwidth selection 

process. The stack of auxiliary datasets had dimensions of 315, 579 and 21 (number of rows, 

columns and layers respectively) and 182,385 pixels. It was thus impossible within a 

reasonable time-span to automatically select a bandwidth using the entire auxiliary datasets, 

which had GWPCA loadings at each 182,385 pixel sites. This challenge was related to the 

required computing power and processing time in the cross-validation algorithm, because 

each observation omitted was reconstructed using the principal components (PC) derived 

from the observations of the entire stack of auxiliary datasets. Therefore, we randomly 

selected 10% of the auxiliary datasets for use in the automatic bandwidth selection process. 

The selection of 10% of the datasets was guided by a series of cross validation evaluations. 
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We identified an adaptive bandwidth of 16.2 km at k = 10 (principal components) as the 

optimum minimized fit between the score and auxiliary data. 

 

4.2.3 Development of the cost layer and the cost-constrained cLHC algorithm 

In the cLHC annealing simulation process, model optimization was implemented by executing 

1e+04–5e+04 iterations (increments of 1e+04). Because the user can define the number of 

cLHC selection outputs, we defined 38 locations in this study, as this was the maximum 

number of access tubes we had for the SM measurements. Thus, depending on the objectives 

and resources available for a particular study, users of this methodology can assign any 

maximum number of outputs. Roudier et al. (2012) used rough terrain, surface gradient and 

distance to road or trail network as criteria to design their cost constraint in simulating the 

annealing process. In this study, we used a similar approach but a different key criterion, 

namely the topographic wetness index (TWI), as a suitable constraint indicator directly 

affecting SM. The TWI is generated with an upslope contribution area (Western et al. 1999) 

and accounts for water redistribution within crest, ridges and depressions in an area (Ballerine 

2017). The TWI gives an indication of the potential SM contribution areas within the top and 

bottom soil layers (Huang et al. 2016) and quantifies the spatial scale effects on hydrological 

processes (Grabs et al. 2009; Lei et al. 2016). In the TWI, slope inclination is classified at very 

short ranges to account even for slight changes in topography and local slope. In this study, 

low values represented crests and ridges, whereas high values represented depressions. We 

assumed that rainfall, infiltration, percolation and flooding by rivers during the rainy season 

are the only means by which SM is replenished in the soil layers of the study area. This 

assumption is based on the fact that in the study area, there is an inherent strong plinthic to 

petro-plinthic horizon at ~60–100 cm depth, which largely hinders contribution of ground 

water to SM (Adu 1995; Asiamah and Dedzoe 1999). Hence, we chose the TWI as cost-

constraint criterion for assessing SM in the study area in the cLHC annealing simulation. Using 

the 𝑟𝑠𝑎𝑔𝑎 package (Brenning et al. 2018), we developed a TWI layer at a 100 m resolution 

(Figure 4.3). 
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Figure 4.3. SAGA-TWI layer assigned  as cost in the cLHC, simulating annealing at cooling 

temperature at iteration j. 

 

4.3 Method implementation and outputs 

4.3.1 GWPCA 

Only PCs that accounted for eigenvalues ≥ 1 were considered. Temperature showed the 

strongest positive correlation, followed by bulk density, silt and clay contents (Figure 4.4). 

Increasingly negative correlations were found for water balance < precipitation < DEM < 

drainage < sand content < available water content and sentinel-1A. Within the rotational 

matrix of the global weighted PCs, available water content always showed the largest 

contribution in the list of auxiliary datasets, whereas sand content contributed least. Thus, we 

conclude that most of the variation was explained by available water content. 

PC1 to PC6 together explained 91.5% of the observed variance (see appendix Table S4.1). 

Generally, the highest positive loading of 0.552 was recorded for PC5 and the lowest negative 

loading of -0.453 was recorded for PC6. Together, PC1 and PC2 accounted for 74.7% of the 

local variation in the list of auxiliary datasets used. These findings suggest that AWC, clay and 

silt content are the key factors that need to be considered to explain local variability of SM. 
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By adding PC3, the explained variability reached 82.1%. PC4 explained an additional 3.5% of 

the observed local variation. In PC4, soil type showed the highest positive loading of 0.446, 

whereas river distance exhibited the lowest negative loading of -0.445. We thus conclude that 

the local soil types, affected by their distance to rivers, markedly influence the spatial 

variability of SM. Adding PC5 and PC6 resulted in a cumulative explained variability of 88.1% 

and 91.5%, respectively. River distance exhibited the lowest negative loadings in PC4, PC5 and 

PC6. AWC showed maximum positive loadings in the GWPCA two times. Thus, among the list 

of auxiliary datasets used in this study, AWC and river distance showed the strongest influence 

on the spatial variability of SM. The reason for the important role of distance to a river that 

we found in this case may be the dense river network and the generally low elevation within 

the area that leads to a far-reaching riparian influence. 

 

Figure 4.4. Correlation of the variation of list of auxiliary datasets in the feature  space used in 

the GWPCA. AWC = available water content, BD = bulk density, Clay and Silt = clay and silt 

contents respectively, Sent1A_VV and Sent1A_VH = calibrated Sentinel-1 radar backscatter 

coefficient in VV and VH polarization respectively, Precip = precipitation, Bedrck = depth to 

bedrock, DEM = digital elevation model, WatBal = water balance, Watercov = water cover, 

Soil_type = soil mapping units and Temp = temperature. 
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While the PCs showed the observed variances in the auxiliary datasets, it also indicated the 

collinearity between the auxiliary datasets (appendix Table S4.1). The larger or smaller the 

first or last PC, respectively, the stronger the collinearity between the auxiliary datasets (Harris 

et al. 2011). Hence, local variables that caused the local collinearity in the auxiliary datasets 

was identified and eliminated via the multivariate glyph cartogram plot prior to its use in the 

cLHC (Harris et al. 2011). The local spatial variability was analyzed in the GWPCA using a 16.2 

km bandwidth window around each data point in the auxiliary datasets. This bandwidth is 

equivalent to half of the maximum distance from river networks (minimum = 0 km, maximum 

= 32.3 km). The selected automatic bandwidth interprets as ~50% of the entire auxiliary 

datasets were retained each time in the cross-validation algorithm to calibrate the GWPCA. 

Thus, ~50% of the auxiliary datasets were used each time to explain the localized spatial 

variabilities of the study area. In addition, the automatic bandwidth ensured a balance 

between the local variation and locations with less influence on the spatial variability, as 

reported by Kumar et al. (2012). Our findings suggest that the use of GWPCA will account for 

the local influences and collinearity of each auxiliary datasets on the proposed SM 

measurements with regards to their locality. The final output of the cLHC ensures that the 

proposed sampling locations cover 91.5% of the locally occurring site conditions, represented 

by the auxiliary datasets. 

 

4.3.2 The cost-constrained cLHC algorithm 

To implement the cLHC, the algorithm analyzed the selected PCs of the GWPCA to identify 

points in the landscape representing a Latin hypercube, similar to the approach of Minasny 

and McBratney [54]. In the subsequent series of iterations of this spatial representation of site 

conditions, the level of optimization of the objective function of the cLHC was shown at each 

iteration. Perturbations were recorded in both the objective and the cost-function 

optimization processes at < 5e+03 iterations, similar to what Roudier et al. (2012) reported. 

Contrary to the findings of Roudier et al. (2012), our results showed a clear full model 

optimization after 5e4 iterations, both in the evolution and in the cost functions of the cLHC 

algorithm (Figure 4.5). Between 1e+04 and 22e+03 iterations of the objective function, the 

optimization steadily increased until 5e+04 iterations were completed. 

A comparison of the subsamples drawn from the selected PCs of the GWPCA used in the cLHC 

simulating annealing process is presented in appendix Figure S4.1. Generally, the subsamples 
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were within the first and third quartiles of the selected PCs of the auxiliary datasets. Only very 

small subsamples were drawn at locations with low TWI (ridges and crests). At sites with high 

TWI (depressions), large subsamples were drawn for use in the cLHC simulating annealing 

process. The reason for this difference is that the cLHC simulating annealing process 

suppressed sampling of locations with little or no influence on spatial SM variability in the 

study area (in this case, from ridges and crests). Thus, the probability of model selected 

sampling locations on ridges and crests was low. 

 

Figure 4.5. Evolution of the objective (A) and cost function (B) for the cLHC  simulation from 

1e4–5e4 iterations. 

A single realization of the cLHC output shows that the cost layer in the cLHC influenced the  

selection of sampling locations (Figure 4.6). The cost-constrained cLHC stratified the selected 

sampling locations, based on the influence of TWI (similar to results reported by Levi and 

Rasmussen (2014)). In our study, the selected sampling locations represented the soil property 

of interest and in the geographical space, as also reported by Hengl et al. (2003). Locations 

selected by unconstrained cLHC algorithms were dispersed across the entire study area 

(Figure 4.6). The reason is that the cLHC optimization process accounted for all key landscape 

heterogeneities that occurred within the study area. The wide spatial distribution of sampling 

locations indicates that the cLHC effectively selected sampling locations, in terms of both the 
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soil property of interest and the geographic space (Figure 4.6). However, some locations were 

selected similarly under both the unconstrained and the cost-constrained cLHC algorithms. 

This hybrid approach enables a scientist to assess the local variability of a soil property of 

interest and to derive adequate sampling designs for analyzing that soil property across a 

defined study area. 

 

Figure 4.6. Single realization of the cLHC algorithm overlaid on a five-point  ‘z’ exaggerated 

digital elevation model. Green circles represent the cost-constrained cLHC and black triangles 

represent unconstrained cLHC. 

 

4.3.3 Accuracy assessment 

The highest (1) and lowest (0.3) average scores were achieved by 71% and 2.63%, respectively, 

of the model selected sampling locations. Test of the method showed a RMSE of 0.18 m with 

a correlation coefficient (R2) between actual and model selected location of 0.90. Our findings 

indicates that the model selected sampling locations were very close to the in situ sampling 

locations. AT14 and AT21 were found not suitable probably due to the main input dataset in 

the GWPCA, which affected the output of the cLHC algorithm. Although 91.5% of the observed 

local variability in the auxiliary dataset was explained by the GWPCA, it must be emphasized 

that incorrect input parameters can limit the performance of the cLHC. 
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4.4 Conclusion 

In this paper, we have presented a new approach for selecting soil sampling locations that 

adequately represent both the soil property of interest and the geographical space across a 

study area. We implemented the proposed hybrid approach under a cost-constrained 

conditioned Latin hypercube algorithm, by using inputs from a global weighted principal 

component analysis. This method defines the local structure and accounts for localized spatial 

autocorrelation in explaining soil-landscape variability. The method also suppresses the 

occurrence of model-selected sampling locations in areas that are less representative of the 

soil property of interest. In addition, the method provides an appropriate base for selecting 

adequate sites for a given number of possible measurements. The proposed approach can 

guide the selection of adequate sites for soil measurements and installations of soil-

monitoring stations, in the context of scientific studies and agricultural interventions. 
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Spatial and temporal dynamics of soil moisture in benchmark soils of the Guinea 

savannah zone of Ghana - is there an unused potential for food-crop production? 



 

 42 

 

  



 

 43 

Chapter 5: Spatial and temporal dynamics of SM in benchmark soils, of the Guinea                         

savannah zone of Ghana - is there an unused potential for food-crop production? 
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Vol. 21, EGU2019-13853-1, 2019: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-13853-1.pdf  

 
Abstract 

 

The demand for increased crop production and food security in arid and semi-arid landscapes 
of Africa implies the need for adopting sustainable drought-adaptation measures by 
subsistence smallholder farmers. The efficiency of these adaptation measures strongly relies 
on local soil moisture (SM) conditions. However, spatio-temporal SM information is still 
missing in large areas of semi-arid Africa. Hence, the challenge to cope with long dry-spells 
and the implementation of drought-adaptation measures have yet remained unresolved. In 
this paper, we report spatio-temporal SM variability, measured over the dry season in the 
Guinea savannah zone of Ghana. Through this work, we aimed at assessing the potential of 
certain soils to provide enough SM for utilizing also part of the dry season for crop production, 
in order to satisfy the demand for increased crop production. With a calibrated PR2/60 
moisture probe, we measured SM at six soil depths (0–100 cm) of 34 soil profiles, representing 
seven key benchmark soil types. In situ measurements were at 12-day intervals from February 
to June 2018 (𝑛 = 1,920). For each soil profile and depth, we further analyzed for gravimetric 
SM, bulk density (BD) and particle size distribution. We analyzed the influence of internal 
factors such as BD, clay and silt contents, and external factors such as slope, topographic 
wetness index, antecedent precipitation index (API) and evapotranspiration (ETo). Multi-factor 
relationships, as well as direct and indirect interactions between SM and the internal-external 
factors were also analyzed. SM was low only in the sandy upper parts of the soils (≤ 10 cm), 
while in the lower parts of the soils (≥ 20 cm), clay content increased with soil depth and SM 
was kept for longer periods. Internal factors had stronger influence on SM variability than 
external factors. Clay and silt contents accounted for 91% of SM variability, while BD 
accounted for 11%. ETo was about three times the daily mean precipitation. Temporally, ETo 
influenced SM only in the sandy top soils and showed a strong negative relationship with SM 
(R2 = 0.77). API strongly influenced SM at ≥ 20 cm soil depth, exhibiting a strong positive 
relationship with SM (R2 = 0.83). The lowest SM (found at all soil depths) occurred in the 
beginning of March, whereas the highest SM occurred in the end of April. The main outcome 
of this work is that almost all soil types in the study area (except for the Kumayili soil series) 
below 10 cm depth have soil water storage potentials that match the water requirements of 
at least some drought-tolerant crops (> 9 mm day-1). We conclude that most benchmark soils 
of the area hold the potential for implementing a dual farming system that can enhance 
agricultural productivity and increase the income of local farming communities. 
 

Keywords: soil moisture, PR2/60 profile probe, semi-arid, spatio-temporal variability, soil 
water storage, Guinea savannah zone, food security, West Africa

https://meetingorganizer.copernicus.org/EGU2019/EGU2019-13853-1.pdf
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5.1 Introduction 

Soil moisture (SM) is an important factor that influences environmental processes such as the 

exchange of energy, water and carbon between the atmosphere and land (Brocca et al. 2017; 

Mohanty et al. 2017). SM also plays an important role in the control of the physical, chemical 

and biological soil processes within the soil system, which influences agricultural productivity 

(Weil and Brady 2016; Rossato et al. 2017). Particularly, it is a principal limiting factor in rainfed 

agriculture and its fluxes heavily drive landscape processes such as ground water recharge, in-

soil lateral water movement, erosion, surface runoff and evapotranspiration (Tallon and Si 

2015). 

In tropical arid and semi-arid regions, climatic conditions are mainly characterized by high 

temperatures, high evaporation and low rainfalls, which makes water availability a critical 

input in the rainfed agricultural systems (Cafarelli et al. 2015; Greenland et al. 2018). 

Corroborating this observation, many studies have demonstrated that in water deficit periods, 

weather induced water stress can result in up to 50% decrease of total crop yields (Hall et al. 

1982; Rossato et al. 2017). Although the importance of SM is widely recognized and 

underscored, future climate change projections which indicates an increase in dry days, 40% 

decrease in precipitation and rising risk of severe drought (Antonino et al. 2000), pose severe 

threat to the sustainability of crop production in these arid and semi-arid landscapes. Thus, it 

is evident that the prospect of improved crop production and food security in tropical arid and 

semi-arid regions under changing climatic conditions depends on the sustainable 

implementation of drought-adaptation measures. 

The efficiency of most on-farm drought-adaption measures strongly relies on local SM 

conditions (Geng et al. 2015).  However, an adequate localized spatio-temporal SM 

information of the root zone of soils is still missing in large areas of semi-arid landscapes of 

sub-Saharan Africa (SSA) (Vågen et al. 2010). SSA is of concern because, not only does it has 

~80% of the population being smallholder farmers, but also, it has over 50% of the world’s 

arable lands (Bourne Jr 2014; Guilpart et al. 2017; Xie et al. 2018). Due to the paucity of data 

omission on SM, the challenge to cope with the long dry-spells and the implementation of 

drought-adaptation measures have yet remained unresolved. Among such drought-

adaptation measures is the implementation of irrigation schemes (Howell 2001) and the 

cultivation of drought tolerant crops (Fisher et al. 2015). In order to adequately and 

sustainably implement such drought-adaptation measures, it is critical to understand the 
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spatial and temporal variability of SM of the root zone of soils of these landscapes (Megersa 

and Abdulahi 2015). For instance, the implementation of irrigation technologies such as drip 

and cover irrigation in order to adapt to the impacts of agricultural drought in semi-arid 

regions of other parts of the world was guided by SM variability information (Veste et al. 2008; 

Megersa and Abdulahi 2015; Smilovic et al. 2015; Frisvold et al. 2018; Greenland et al. 2018). 

Even in the absence of SM information, one key challenge SSA still face with irrigation schemes 

is the implementation and operational cost, hence, only 3% is currently practiced (van 

Ittersum et al. 2016). While another critical consideration to boost crop productivity in tropical 

arid and semi-arid regions is the resilience of cultivated crops to drought conditions (El-

Sharkawy 1993; Fisher et al. 2015). The main challenge for these drought tolerant crop 

varieties is the available SM information that is needed to support them through their growing 

season (Critchley et al. 1991; Chivenge et al. 2015). It is therefore a fundamental step in the 

implementation of drought-adaptation measures to have a detailed understanding of the 

spatio-temporal variability of root zone SM, particularly in resource poor arid and semi-arid 

regions of SSA and Asia (Mashnik et al. 2017). 

One region where sustaining crop production and human livelihood under water stress 

conditions is challenging is the Guinea savannah agro-ecological zone of Ghana (Armah et al. 

2011; Adolwa et al. 2017; Antwi-Agyei et al. 2018), which is a reminiscent of the arable 

landscapes of West Africa and SSA at large (Morris et al. 2009). The Guinea savannah zone is 

of specific importance because, over the years, it has accounted for about 60% of agricultural 

outputs of SSA, and also, has the largest prospects for commercial agriculture in SSA (Morris 

et al. 2009; OECD 2016). The case of Ghana, in terms of rainfed agriculture, is indifferent to 

those of SSA (Adolwa et al. 2017). Ghanaian agriculture is dominated by resource poor 

subsistence smallholder farmers with farm sizes < 1 ha (Chamberlin 2008). These smallholder 

farmers produce ~80% of the total agriculture output and are mainly located in the Guinea 

savannah zone (Chamberlin 2008). Despite the high crop production potentials, high rural 

workforce, market potentials and an upsurge in advocacy for the adoption of integrated soil 

fertility management principles in the area, crop yields still fall short of their potential (Fening 

et al. 2006; SRID 2016). Partly because farming activities within the Guinea savannah zone are 

mainly limited to a single cropping season. This single season farming window limits livelihood 

options of these subsistence smallholder farming communities (Abass 2015; SRID 2016). 

Hence, identifying and utilizing parts of the dry season, as suggested by Abass (2015), to grow 
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some suitable drought tolerant crops may be a key step to supplement crop production short 

falls of the main cropping season. Also, such an initiative could provide an option to increase 

livelihood for the rural communities of the Guinea savannah zone. However, no study has 

provided baseline information on the spatio-temporal variability of SM of the root zone of 

soils to support such drought-adaptation measures in the area. In addition, it is important to 

also investigate whether there is an unused potential (i.e. SM reserves) that can be tap to 

support food-crop production during water-deficit periods, especially in the dry season. The 

availability of such detailed spatio-temporal variability SM information of the root zone of soils 

may also help to adapt agricultural management practices, select suitable areas and periods 

where additional dry-season cropping is applicable. Furthermore, such an information will be 

useful to either prolong the single farming season or advocate for a dual farming system to 

boost agricultural productivity, which can be replicated for the other parts of Guinea savannah 

zone of SSA. 

In this study, it is aimed to investigate the spatial and temporal variability of SM of the root 

zone of agricultural benchmark soils of the Guinea savannah zone of Ghana during the dry 

season. A plethora of studies have investigated the variability of SM in other parts of the world 

and have suggested that the spatio-temporal variability of SM is driven by several localized 

soil-environmental factors (Rawls et al. 2003; Baskan et al. 2013; Gutierrez-Lopez et al. 2014; 

Wang et al. 2016). In these studies, the frequently reported factors include soil texture, 

effective soil depth, land use, evapotranspiration, geomorphology and precipitation. One 

thing that was clear in these studies is that these multiple factors are site-specific, hence, we 

also identify and systematically investigate how SM is influenced by these soil-environmental 

factors for our case study areas. We simultaneously test the direct and indirect interactions 

between SM and the soil-environmental factors. We individually test both the spatial and 

temporal dependencies of SM variability as influenced by local soil types and by soil depths. 

In order to make recommendations for improved crop production, we further quantify the soil 

water storage potentials of the key benchmark soil types of the area at specific soil depths at 

different stages of the dry season. Thus, to indicate where crop water requirements for 

notable crops grown in the area can be met. 
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5.2 Materials and methods 

5.2.1 Estimating PAWC in soils under maize 

We adopted the methodology of Burk and Dalgliesh (2013) to investigate the thresholds of 

SM demands by maize crops (Zea mays) in the dry season for the case of our study areas. We 

selected maize as a test crop because it is the commonly cultivated crop in the area. Here, we 

quantified the PAWC in soils under maize through its critical stages, i.e. at anthesis and at 

maturity in two main stages: (1) estimating the drain upper limit via a soil profile wetting 

experiment and (2) estimating the crop lower limit via a rain exclusion experiment. 

In the wetting experiment, we selected an area with a 5 x 5 m dimension, cleared it and 

created a trench of 10 cm depth around the boundaries of the plot. We laid a drip-irrigating 

tube (25 m long) that was connected to a water tank in a coil across the plot area to ensure 

the soil profile was wet uniformly from 0 cm to 100 cm (Figure 5.1A and 5.1B). We covered 

the laid-out drip-irrigating tube with a black plastic sheet to prevent evaporation from the 

surface soil layer (Figure 5.1C). The edges of the plastic sheet were placed into the trenches 

and back-filled with soil (Figure 5.1D). After the wetting process, the soil profile was allowed 

to drain, and undisturbed soil samples were collected at six soil depth intervals (i.e. 0–10, 10–

20, 20–30, 30–40, 40–60 and 60–100 cm) at the center of the plot in order to characterize for 

the drain upper limit and bulk density. 

While we undertook the wetting experiment, we also erected a rain exclusion tent on a maize 

plot with a 2 x 3 m dimension in order to exclude rain that might prevent maize extracting 

water to crop lower limit within the anthesis and maturity period (Figure 5.1E). To avoid a 

microclimate within the tent, parts of the tent were left open. We collected undisturbed soil 

samples also at six soil depths at close proximity (~1 m away) from the rain exclusion tent at 

maize anthesis and at the center of the rain exclusion plot at maize maturity. Undisturbed soil 

samples were further characterized for crop lower limit at anthesis and at maturity. 
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Figure 5.1. Soil profile wetting experiment (A — D) and the rain exclusion tent  experiment (E) 

that were used to quantify PAWC from 0 — 100 cm soil depth under maize plant at its anthesis 

and maturity stages. 

 

5.2.2 Datasets used in the study 

In this study, we considered empirically measured variables as internal factors and those that 

were derived from other data sources as external factors. The internal factors included 

gravimetric SM (SMg), PR2/60 moisture probe SM (SMp), clay and silt contents and bulk density 

(BD). External factors also included local slope (LS), topographic wetness index (TWI), 

antecedent precipitation index (API) and evapotranspiration (ETo). See Table 5.1 for a detailed 

description of all parameters used in explaining the spatio-temporal variability of SM in the 

study area.
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Table 5.1. Parameters used in explaining the spatio-temporal  variability of soil moisture in the 

different soil types of the study area and its implication for dry season farming 

Parameters Abbreviation Description Units 

Spatial variability analysis 

Gravimetric soil 
moisture 

SMg 
Volumetric soil moisture by gravimetric 
method  

% 

Bulk density BD Bulk density of soil samples g cm-3 
Clay content Clay Percentage clay content of soil samples % 
Silt content Silt Percentage silt content of soil samples % 

Soil depth intervals Depth 
Standard depth intervals corresponding 
to PR2 profile probe measuring depths  

cm 

Local slope LS Slope surface degree 
Topographic wetness 
index 

TWI SAGA topographic wetness index - 

Temporal variability analysis 

PR2 soil moisture SMp 
Volumetric soil moisture by PR2 
capacitance moisture probe 

% 

Antecedent 
precipitation index 

API 
Daily mean antecedent precipitation 
index corresponding to SMg and SMp 
measurement day 

mm 

Evapotranspiration ETo 
Daily mean evapotranspiration 
corresponding to SMg and SMp 
measurement day 

mm day-1 

Implication for dry season farming 

Plant available water 
content 

PAWC 
Plant available water content for a 90-
day maize plant both at anthesis and at 
maturity 

mm 

Soil water storage SWS 
Soil water storage estimated at 
standard depth intervals for the 
different soil types 

mm 

 

5.2.2.1 Internal factors 

SMg, clay and silt contents, and BD were determined for each SM measurement depth from 

each soil profile. We weighed fresh soil samples and afterwards oven dried at 105 °C for 48 h. 

We weighed the samples intermittently during the drying process until a constant dry weight 

was obtained. SMg was calculated by subtracting the dry weight from the fresh weight. The 

profile BD and volumetric SMg of each soil sample were calculated following Reynolds (1970) 

and Black and Hartge (1986) respectively. By following standard soil analytical procedures, we 

determined the soil texture (i.e. sand, silt and clay contents) using the hydrometer method 

(Bouyoucos 1962). 

 



 

 50 

5.2.2.2 External factors 

The Shuttle Radar Topographic Mission digital elevation model (DEM) with a spatial resolution 

of 1 arc-second was used to derive the LS for the study area. LS represented ground surface 

steepness, slightest change in topography and landforms. TWI, also calculated from the DEM, 

was used to explain the local flow accumulation, water distribution and accumulation within 

depression and ridges of the study area. Estimated daily  from February 2010 to June 2018 

was used to evaluate the changes of SM and soil water storage from the top to bottom soil 

layers due to gravity drainage over preceding days of rainfall events within the study area.  is 

expressed by equation 5.1. 

𝐴𝑃𝐼 = 𝑘 ∗  𝐴𝑃𝐼𝑑−1 +  𝑃𝑑        (5.1) 

where 𝐴𝑃𝐼𝑑  is the antecedent precipitation index for a day 𝑑, 𝑘 is an empirical decay factor 

and 𝑃𝑑 is rainfall for day 𝑑. 

To assess SM loss from the surface soil layers, we also estimated the daily reference ETo 

(Equation 5.2) of the study area from February 2010 to June 2018. ETo was estimated by the 

FAO Penman-Monteith equation (Allen et al. 1998). 

𝐸𝑇𝑜 =
0.408∆(𝑅𝑛−𝐺)+ 𝛾

900

𝑇+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+ 𝛾(1+0.34𝑢2)
       (5.2) 

where ∆ is the slope vapour pressure curve, 𝑅𝑛 is the net radiation at the crop surface, 𝐺 is 

the soil heat flux density, 𝛾 is the psychrometric constant, 𝑇 is the mean daily air temperature 

at 2 m height, 𝑢2 is the wind speed at 2 m height, 𝑒𝑠 is the saturation vapour pressure, 𝑒𝑎 is 

the actual vapour pressure and 𝑒𝑠 − 𝑒𝑎 is the saturation vapour pressure deficit. 

The external factors described above were developed in software (R Core Team 2017) using 

the 𝑆𝐴𝐺𝐴 morphometry and hydrology functions (Conrad et al. 2015) and 𝑅 packages 𝑟 −

𝑔𝑑𝑎𝑙 (Mitchell and Developers 2014), 𝑝𝑙𝑦𝑟 (Wickham 2018) and 𝑟 − 𝑠𝑎𝑔𝑎 (Brenning et al. 

2018). 

 

5.2.2.3 SWS 

For each effective soil thickness, the SWS was calculated. In this way, we eliminated the effect 

of soil depth on SM in order to quantify and relate SM to the available crop water 

requirements at the six soil depth intervals (Equation 5.3).  

𝑆𝑊𝑆𝑖 = 0.1 ∗ 𝑆𝑀 ∗ 𝐵𝐷𝑖 ∗ ℎ𝑖        (5.3) 
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where 𝑆𝑀 is the soil moisture, 𝐵𝐷𝑖 is the bulk density and ℎ𝑖 is the soil thickness of a particular 

soil depth interval. 

 

5.2.3 Statistical data analysis 

We tested both the spatial and temporal dependencies of SM variability individually, under 

two main scenarios: (1) SM as influenced by the local soil types, and (2) SM as influenced by 

the soil depth intervals. We explained the spatial variability of SM using SMg and BD, Clay, Silt, 

Depth, LS and TWI (Table 5.1). In the temporal data analysis, SM variability was explained with 

SMp, 𝐴𝑃𝐼 and 𝐸𝑇𝑜 (Table 5.1). A set of least square mean algorithm (Lenth 2016), correlation 

coefficients, standard deviations and ranges were used to support the explanation of the 

causal relationships and interactions that existed between SM and the internal-external 

factors. Individually, we quantified how each internal and external factor influenced the 

variability of SM at the local soil types and at the soil depth intervals. For each case, spatial 

covariance was considered (Lark and Marchant 2018). 

In addition, we used a set of linear mixed-effect models (LME) (Bates et al. 2014) to also relate 

the spatial (SMg) and temporal (SMp) measurements under the two main data analysis 

scenarios. In this way, the individual and interactive importance of the internal-external 

factors in the spatio-temporal measurements were further evaluated. In addition, this allowed 

us to account for long-term trends, time of measurement impact and seasonality in the in situ 

measurements (Bates et al. 2014; Hengl et al. 2018). We implemented the LME model under 

a two-stage approach: (1) an initial model (Null) that included only the random intercept for 

SMp and (2) a full model (Full) which included the additive and interactive effects of key 

explanatory variables such as clay and silt contents. We executed the LME model under three 

model options: (1) varying intercept nested by the random effects of soil types and standard 

soil depth intervals, (2) varying intercept and slope by standard soil depth intervals while 

grouping by their respective soil types, and (3) intercepts that vary at different levels by the 

influence of soil type and the standard depth intervals. Under a 500 parametric bootstrap 

simulation, we estimated the fixed effect coefficients and associated profile 95% confidence 

intervals (CI) for the Full model using maximum likelihood estimation. Positive CIs indicated a 

significant influence on the relationship between SMg and SMp, and vice versa. In addition, the 

range of CIs indicated the reliability of the calibration LME model. The LME model selection 

was tested by the Akaike information criterion (AIC) (Akaike 2011). We estimated the variance 
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explained by both the fixed and random effect using the conditional R2 performance metric 

and the variance explained by only the fixed effects via the marginal R2 performance metric. 

By these approaches, we quantified the ‘goodness of fit’ of our LME model. At all stages of the 

statistical analysis and graphical representations, we used 𝑅 software (R Core Team 2017) and 

𝑅 packages 𝐿𝑠𝑚𝑒𝑎𝑛𝑠 (Lenth 2016), 𝑀𝑢𝑚𝑙𝑛 (Barton 2018) and 𝐿𝑚𝑒4 (Bates et al. 2014). 𝑅 

scripts and full datasets used to draw the conclusions for this study are open-sourced and are 

accessible on the DOI: 10.5281/zenodo.3662411 

 

5.3 Results 

5.3.1 Spatial variability of SMg in the different soil types at  different soil depths 

Along the three main topographical units, mean SMg ranged from 8.11 ± 1.14% (least square 

mean ± standard error) to 19.67 ± 2.35% with raw SMg in the range of 0.97 to 42.74% 

(appendix Table S5.1). Toe slope soils recorded substantially higher SMg followed by middle 

to lower slope soils and the upper slope soil. The highest and lowest mean SMg were both 

recorded in the toe slope soils. Variability of SMg was low in middle to lower slope (range = 

3%) as compared to the toe slope (range = 12%). In addition, variability of SMg in all soil types 

were low except in Siare series, where a change of 11.57% was recorded in mean SMg (Figure 

5.2). The mean of all soil series had their model CI above zero both at the soil type level and 

at soil depth intervals (appendix Figure S5.1). The lowest CI range (1.7%) was recorded in Lima 

series as compared to the highest of 9.3% recorded in Siare series. 

The highest mean SMg of 12.6% was recorded at 60 cm depth and the lowest (7.97 ± 0.86%) 

recorded at 30 cm depth. Mean SMg along soil depth increased in the order: 30 < 10 < 40 < 20 

< 60 cm (appendix Table S5.2). Within the 10–30 cm depth interval across all soil types, 

variability recorded in mean SMg was < 6% except in Siare series, where a variability of 22% 

mean SMg was recorded. At 40 cm depth, variability in mean SMg ranged from 5.01% (Dagare 

series) to 42.74% (Siare series). SMg in all soil types were responsive to changes in soil depth 

and increased with increasing depth. These increases in mean SMg with increasing soil depth 

was prominent in the > 30 cm depth, particularly in Siare and Changnalili series (Figure 5.2). 

Mean SMg in the lower depth (≥ 20 cm) was always higher than the upper depths (≤ 10 cm) 

except in Dagare series where the reverse was observed. Spatial variability of SMg across the 

different topographical units with regards to depth intervals was high in the < 20 cm and low 

in the > 30 cm depth intervals, but changed conspicuously between the 20–30 cm depth 

https://zenodo.org/badge/latestdoi/239761009
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interval (Figure 5.2). The mean SMg at 60 cm depth was highly variable across the different 

soil types. 

 

Figure 5.1. Soil profile distribution of mean soil moisture by gravimetric  method (SMg) at 

standard soil depths for the different soil types. Dagare = Gleyic Fluvisols, Volta = Fluvic 

Gleysols, Siare = Plinthic Lixisols, Kumayili = Chromic Lixisols, Changnalili = Petric Plinthosols, 

Kpelesawgu = Eutric Plinthosols and Lima = Gleyic Planosols. 

 

5.3.2 Influence of internal factors on spatial variability of SMg 

5.3.2.1 Clay and silt contents 

The particle size distribution of the analyzed soil samples distributed within eight main soil 

texture classes as illustrated in Figure 5.3. Most of the soil samples fell within the sandy loam, 

loamy sand and silty loam textural classifications which makes them sandy textured in general. 

Mean clay content (± standard error) ranged from 7.02 ± 2.07% to 16.19 ± 2.49%, with raw 

value range of 4 to 44% (appendix Table S5.1). Silt content also ranged from 14.3 ± 5.8% to 

36.09 ± 1.27%, with raw value range of 4% to 60% (appendix Table S5.1). 
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Figure 5.2. Particle size distribution of soil samples of the study area and their  textural classes. 

Size of circles indicates each soil sample’s SMg. 

Spatial variability of mean clay content was low (range = 9%) as compared to variability of silt 

content (range = 22%) in the different soil types (Figure 5.4). Compared with the toe slopes, 

mean clay and silt contents were lower in the middle to lower slopes followed by the upper 

slope soil. At the different depth intervals, clay and silt contents were inconsistent, as clay 

content increased with increasing soil depth, the reverse was observed with silt content 

(Figure 5.4). The highest mean clay content (14.79 ± 0.96%) was recorded at the 60 cm depth 

and the lowest (7.1 ± 0.88%) recorded at the 10 cm depth (appendix Table S5.2). At 30 cm 

depth, the highest mean silt content (30.30 ± 2.51%) was recorded and the lowest (27.68 ± 

2.96%) recorded at 60 cm depth. Comparing the entire soil profile depth (i.e. 0–60 cm), spatial 

variability of clay and silt contents were similar (range = 7.7 and 7.4 respectively). Raw silt 

content values were always higher than raw clay content values at all standard depth intervals. 

All CIs of clay and silt contents were above zero, with silt content recording the largest CI 

(range = 13.6) as compared to the smallest in clay content (range = 11.3), particularly at the 

standard depth intervals (appendix Figure S5.2). 
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Figure 5.3. Soil profile distribution of mean SMg, silt content  (Silt), clay content (Clay) and bulk 

density (BD) at soil depths for the different soil types. On the upper slopes is Kpelesawgu series 

(A), middle to lower slopes includes Lima series (B), Changnalili series (C) and Kumayili series 

(D) and on the toe slopes also includes Volta series (E), Siare series (F) and Dagare series (G). 

In total, clay and silt contents accounted for 91% of the investigated relationships between 

SMg and the physical soil properties. Clay content accounted for 68% of the relationship 

between soil texture and SMg, while 23% was accounted by silt content. At each change in clay 
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content at a specific depth interval, a corresponding change in SMg was also recorded (Figure 

5.4). Thus, clearly marked consistent variabilities were observed between SMg and clay 

content. In addition, at standard depth intervals where clay bulges were observed, a 

corresponding increase in SMg was also recorded. SMg and clay content increased with 

increasing depth across all soil types in the different topographical units (Figure 5.4). 

 

5.3.2.2 Bulk density 

Mean BD (± standard error) ranged from 1.38 ± 0.05 g cm-3 to 1.54 ± 0.03 g cm-3 (by soil type) 

and 1.42 ± 0.02 g cm-3 to 1.50 ± 0.02 g cm-3 (by soil depth) (appendix Tables S3.1 and S3.2 

respectively). BD decreased along the topographical units in the order: upper slopes > middle 

to lower slopes > toe slopes. Spatial variability was high in the toe slope soils (range = 0.12 g 

cm-3) as compared with the middle to lower slope soils (range = 0.1 g cm-3). Mean BD increased 

with increasing soil depth. The highest mean BD (1.5 ± 0.02 g cm-3) was recorded at 60 cm 

depth and the lowest (1.42 ± 0.02 g cm-3) recorded at 10 cm depth (appendix Table S5.2). 

Spatial variability of BD was uniform from the upper to the lower soil depths of the soil profile 

across the different soil types (Figure 5.4). However, CI from the estimated means varied 

slightly with increasing soil depth (appendix Figure S5.2). Eleven percent of the investigated 

relationships between SMg and the physical soil properties was accounted by BD. 

 

5.3.3 Influence of LS and TWI on spatial variability of SMg 

Spatial variability was similar for both the LS (range = 1.35°) and the TWI (range = 3.9) 

(appendix Table S5.3) across the study area. High SMg corresponded with high TWI across the 

different soil types of the different topographical units, however, the reverse was observed 

with LS (Figure 5.5). The highest LS (1.45 ± 0.2 °) was recorded in Kpelesawgu series and the 

lowest (0.1 °) recorded in Dagare series. Also, the lowest TWI (11.3 ± 0.1) was recorded in 

Kumayili series with the highest (15.2) recorded in Siare series. Comparing the topographical 

units, TWI was high in the order of toe slope soils > middle to lower slope soils > upper slope 

soil but the reverse was observed with LS. 
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Figure 5.4. Comparing mean value of local slope (LS), topographic wetness index  (TWI) and 

soil moisture (SMg) in different soil types. 

 

5.3.4 Soil profile characteristics of PAWC 

The lowest and highest PAWC were recorded at 20–30 cm and 60–100 cm depth respectively. 

At the anthesis stage, PAWC ranged from 13.69 mm to 63.77 mm. At the maturity stage, PAWC 

ranged from 5.38 mm to 12.52 mm (appendix Table S5.4). PAWC exhibited a high-low-high 

trend from 0–100 cm at the anthesis and maturity stages (Figure 5.6). Decreases observed in 

PAWC in soils under both the anthesis and the maturity stages mainly occurred between the 

20–40 cm depth intervals. Variability of PAWC down the soil profile was low (range = 3.5 mm) 

at the 0–40 cm depth and high (range = 28.6 mm) at the 40–100 cm depth. 
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Figure 5.5. Soil profile distribution of PAWC in soils under a 90-day maize at 100 cm soil depth 

through a single growing season. PAWC was calculated from crop lower limits: ‘a’ – at anthesis 

and ‘m’ – at maturity stages of maize crop. 

 

5.3.5 Relationships between SMg and SMp as influenced by soil  type and depth 

The LME model designed by intercepts varying at different levels by the influence of soil type 

and depths was selected as the optimal model option to relate SMg to SMp (∆AIC = 5.7; Full 

model and 0.96; Null model) (Table 5.2). The Full model showed a better fit to the datasets 

with regards to the model’s fixed and random effects (R2 = 0.51; marginal and 0.74; 

conditional) as compared to the Null model (Table 5.2). The influence of clay and silt content 

and SMp on the relationship between SMg and SMp indicated that the AIC of the Full LME 

model was 14 units more optimal than the AIC of the Null LME model. There were strong 

trends associated with a positive effect of clay and silt content on the relationship between 

SMg and SMp. Model estimates indicated that the relationship between SMg and SMp 

increased with increase in clay and silt contents (appendix Figure S5.3). Weaker interaction 

between clay content and SMp decrease the strength of the relationship between SMg and 

SMp. All model estimates and their CIs were above zero and showed low variability within its 

fixed effects (range = 0.4). However, the interactive effect of SMp and clay, recorded a slightly 

below zero model estimate (-0.003) with lower CI of -0.01 (appendix Figure S5.3). Overall, the 
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selected LME model showed that the relationship between SMg and SMp is better explained 

when there is increase in clay and silt contents but with little or no interaction between SMp 

and the fixed effects (in this case, clay and silt contents). 

 

Table 5.2. Goodness of fit for mixed effect model options for models of relationships between 

SMg and SMp 

Model 
R2 

AIC 
Marginal Conditional 

Null 

Model 1 0.27 0.70 1052.96 
Model 2 0.30 0.71 1052.73 

Model 3 (*) 0.31 0.70 1052.00 
Full 

Model 1 0.43 0.72 1043.50 
Model 2 0.50 0.74 1043.42 

Model 3 (*) 0.51 0.74 1037.82 

R2 represents the mixed effect model variances explained by the fixed effects (marginal R2) 
and model variances explained by both the fixed and the random effects (conditional R2). Null 
= results of the model fit of the random effect only. Full = results of the model fit of the 
combined fixed and random effects and interactions. AIC = Akaike information criterion (the 
lower, the better). 𝑛 = 170 and ‘*' represent selected LME model option. 
 

5.3.6 Temporal variability of SM 

5.3.6.1 Temporal variability of SM of the different soil types  at different soil depths 

Along the three main topographical units, differences in mean SMp over the measurement 

period (February–June 2018) were observed in all soil types and also at the different standard 

depths (appendix Table S5.5). In the different soil types, Siare series recorded the highest 

mean SMp at the different soil depths throughout the measuring period (Figure 5.7). However, 

the lowest mean SMp changed with increasing soil depth across the different soil types. In 

order of increasing soil depths, the lowest mean SMp was recorded by Kpelesawgu series at 

10 cm, followed in the order: Kumayili series (20, 30 and 100 cm) and Dagare series (40 and 

60 cm). SMp increased with increasing soil depth throughout the measurement period. 

The lowest mean SMp (0.05%) was recorded in the second set of measurement at 10 cm depth 

with the highest (25.13%) recorded in the sixth set of measurement. Compared with the first 

set of measurement, SMp at 10 cm was inconsistent with the other sets of measurements and 

increased in the order of 2nd < 5th < 3rd < 9th < 4th < 8th < 10th < 7th and 6th (Figure 5.7A).  At 20 

cm depth, the lowest mean SMp (0.13%) was also recorded in the second set of measurement 
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and the highest mean SMp of 39.48% recorded in the seventh set of measurement (Figure 

5.7B). At 20 cm depth, mean SMp increased in the order: 2nd < 1st < 5th < 3rd < 10th < 4th < 9th < 

6th < 8th and 7th. Again, the second set of measurement at 30 cm depth recorded the lowest 

mean SMp of 4.76% with the highest (47.1%) recorded in the sixth set of measurement. Mean 

SMp increased in the order: 2nd < 1st < 5th < 10th < 9th < 3rd < 4th < 8th < 7th and 6th at the 30 cm 

depth (Figure 5.7C). Similarly, the lowest mean SMp was recorded in second and sixth set of 

measurements respectively, at the 40 cm depth similar to the 30 cm depth. Mean SMp 

increased in the order of 2nd < 5th < 1st < 10th < 3rd < 8th < 4th < 9th < 7th and 6th at the 40 cm 

depth (Figure 5.7D). At 60 cm depth, the trend for both the lowest and highest mean SMp 

changed from the second and sixth set of measurements to the third and eighth respectively. 

The lowest mean SMp recorded was 12.35% and the highest (67.55%) was recorded at the 60 

cm depth. At the 60 cm depth, the order of increasing mean SMp were: 3rd = 4th < 5th < 2nd < 

1st < 9th < 8th < 7th < 6th and 10th (Figure 5.7E). At 100 cm depth interval, the lowest mean SMp 

(58.9%) was again recorded in the second set of measurement as observed in the 10, 30 and 

40 cm soil depths and the highest (64.9%) recorded in the first set of measurement. Also, the 

order of increasing mean SMp at the 100 cm depth were: 2nd < 3rd < 5th < 4th < 8th < 7th < 10th < 

9th < 6th and 1st (Figure 5.7F). Compared with the upper soil layers (< 20 cm), temporal 

variability was high in the lower depths (> 20 cm) throughout the measurement period. 

Temporal variability (range) was high in the order: 60 cm (55.2%) > 100 cm (48.9%) > 40 cm 

(43.93%) > 30 cm (42.84%) > 20 cm (39.34%) and 10 cm (25.08%). 

Along the three main topographical units, mean SMp increased with increasing depth, 

however, in Kpelesawgu and Kumayili series, lower mean SMp was recorded at the 100 cm soil 

depth (appendix Table S5.5). The low mean SMp recorded at the 100 cm depth was prominent 

from the second to the tenth set of measurements. Across the three main topographical units, 

the tenth set of measurement recorded the highest mean SMp (onset of heavy rains), whilst 

the lowest mean SMp was recorded in the first set of measurements (peak of dry season). 

Kpelesawgu series recorded the lowest mean SMp in its top soils (i.e. 10 cm) throughout the 

measuring period as compared to the rest of the soil types, however, the reverse was 

observed in Siare series. Though incomplete set of measurements were obtained for Dagare 

series, its variability was similar to the rest of the toe slope soils (i.e. Siare and Volta series). 
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Figure 5.6. Temporal variability of SMp at standard soil depths  of 10 cm (A), 20 cm (B), 30 cm 

(C), 40 cm (D), 60 cm (E) and 100 cm (F) for the different soil types against antecedent 

precipitation index (API) and evapotranspiration (ETo) from February to June 2018. On Dagare 

series, SMp measurements were incomplete (i.e. only measurements from 1st to 5th) due to 

destruction of the installed access tube. 
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5.3.6.2 Influence of API and ETo on temporal variability of SM 

ETo was about three times the daily mean precipitation (range = 4.9 mm day-1), particularly 

during the measurement period of this study (Table 5.3). Daily mean precipitation also ranged 

from 0 mm day-1 to 8.08 mm day-1. The highest API (48.80 mm day-1) was recorded on the 

eighth set of measurement (15th May) whilst the lowest (7.35 mm day-1) occurred on the 

second set of measurement (4th March). API peaked, in the order of the set of measurements: 

8th > 7th > 10th > 9th > 6th > 5th > 4th > 1st > 3rd and 2nd before decaying on days with no 

precipitation (Table 5.3). High precipitation corresponded with high API and vice versa. 

Temporal variability of API was high (range = 41.45 mm day-1) as compared with the temporal 

variability of ETo (range = 2.15 mm day-1) during the measurement period. 

 

Table 5.3. Daily mean values of temporal antecedent precipitation index and 

evapotranspiration from 2010 — 2018 of the study area 

Date  
(2018) 

Set of measurement ETo Prep API 

12 – day interval mm day-1 

20th February 1 6.24 5.51 12.38 
4th March  2 6.96 - 7.35 

16th March 3 7.16 - 9.56 
28th March  4 6.43 - 16.98 

9th April 5 6.19 0.56 21.61 
21st April  6 5.71 1.14 27.89 
3rd May  7 5.50 1.20 48.56 

15th May  8 5.04 8.08 48.80 
27th May  9 5.25 - 40.02 
8th June  10 5.01 0.15 46.59 

ETo = evapotranspiration, Prep = precipitation and API = antecedent precipitation index.   

Although there were strong linear relationship between mean SMp and ETo, and, SMp and API, 

variations in mean SMp in the different soil types at the soil depth intervals were not always 

consistent with the variations in API and ETo for our case study areas (Figure 5.7). Mean SMp 

of the 10 cm depth of the different soil types highly varied with changes in API and ETo. With 

SMp and ETo, there was a strong negative relationship (R2 = 0.77) which was explained by the 

linear regression equation SMp = 7.06 – 0.01*ETo. With SMp and API, a strong positive 

relationship (R2 = 0.83) was exhibited and explained by the linear regression equation SMp = 

2.9 + 0.12*API. From the sixth set of measurements, where a substantial increase and 

decrease were recorded in API and ETo respectively, mean SMp across the different soil types 
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also increased, particularly, in the lower depths (≥ 20 cm). With regards to the < 100 cm depth 

intervals, variability in mean SMp at 100 cm depth was steady in all soil types, particularly from 

the second to the tenth set of measurements (Figure 5.7). At 100 cm, SMp was slightly 

influenced by the variabilities of API and ETo. 

 

5.3.6.3 Influence of API and ETo on temporal variability of SWS 

SWS was consistent with the variations of mean SMp across the different soil types and at the 

different depth intervals. Inconsistencies reported earlier on the variability of mean SMp, as 

influenced by variations of API and ETo, were different for the temporal variability of SWS. 

SWS, which is highly influenced by layer thickness, increased with increasing API and 

decreasing ETo (appendix Table S5.6). SWS increased with increasing depth across the 

different soil types. Comparing the three topographical units, SWS was on average highest in 

the toe slope soils (Siare > Volta > Dagare series), followed by the middle to the lower slope 

soils (Lima > Changnalili > Kumayili series) and the upper slope soil (Kpelesawgu series). Low 

and high SWS across the different soil types at different standard depth intervals were 

consistent with temporal variations of API and ETo. With regards to SWS, soils in the middle to 

lower slope followed by the upper slope soil were very responsive to changes in API and ETo 

as compared to toe slope soils. In upper slope soil (Kpelesawgu series), SWS ranged from 0.08 

mm (early March; peak of dry season) to 110.5 mm (end of April; unset of rains). In the middle 

to lower slope soils, the highest SWS (222.96 mm; Lima series) was recorded in the early June 

(10th set of measurement) and the lowest (0.11 mm) recorded in both Kumayili and Changnalili 

series in the late February and March (1st and 4th set of measurements respectively). In the 

toe slope soils, the highest SWS of 388.88 mm was recorded in Volta series in late February 

(1st set of measurement; peak of dry season) and the lowest (1.12 mm) recorded in Siare series 

in early March (2nd set of measurement). Siare series recorded a substantial increase in SWS 

within the 10–20 cm depth interval from the 5th to 9th set of measurements. This increase in 

SWS corresponded with an increase in API from the 5th (April; on set of rains) to 9th (late May) 

set of measurements (Table 5.3). Temporal variability was always high in the bottom soil layers 

as compared to the top soil layer of the different soil types. However, low temporal variability 

was observed with increasing set of measurements throughout the SMp measurement period. 
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5.4 Discussion 

5.4.1 Spatial and temporal variability of SM within the soil landscape 

SM was low only in the sandy upper parts of the soils (≤ 10 cm), while in the lower parts of the 

soils (≥ 20 cm), clay content increased with increasing soil depth and kept SM for longer 

periods. Wherever there was clay build ups and bulges within the soil profiles, a corresponding 

increase in SM was observed. Throughout the dry season, the lowest SM (found at all soil 

depths) occurred in the beginning of March – peak of dry season, whereas the highest SM 

occurred in the end of April – unset of rains. 

SM is primarily controlled by soil texture (Korres et al. 2015), and thus the sandy upper parts 

of the soils supported decreased water holding capacity and loss of SM under drought 

conditions (high ETo and low API). However, as clay content increased in the lower parts of the 

soils, SM increases even under similar drought conditions. Baskan et al. (2013) demonstrated 

similar observations. Despite the variability of SM was highly driven by the dynamics of soil 

texture, our results showed some general inconsistencies in the variability of SM on Dagare 

and Siare series. Siare series is developed over colluvio-alluvial sediments in depression 

bottoms and valleys along the Volta river of the Guinea savannah zone (Adu 1995). The 

proximity of Siare series to the Volta river is a strong influence on its SM dynamics even in the 

dry season. It was, therefore, consistent that SM increased in Siare series throughout the dry 

season irrespective of its soil texture. However, Dagare series is developed over periodically 

deposited alluvial sediments on the banks of small tributaries of the Volta river (Adu 1995). 

These tributaries may dry-up or recede during the drought season. Such situations suggest 

that the influence of the Volta river on the SM dynamics of Dagare series is less as compared 

to those of the Siare series. Thus, under similar conditions, SM of Dagare series decreased as 

compared to those of Siare series. This observation makes Dagare series behave like the upper 

slope soil (i.e. Kpelesawgu series). 

Our findings indicate that BD is a critical soil property that contributed to the high SM in the 

lower parts of the soils. This is because high BD affects soil infiltration rates (Li et al. 2009). 

Our results show that the ideal BD of soils of the study area facilitate root growth, SM 

infiltration and percolation and, can also support water uptake by plant roots (Hazelton and 

Murphy 2016; Weil and Brady 2016). Hence, we suggest that the consistent high SM in the 

lower soil depth of the different soil types are probably due to the ideal BD observed for our 

case study areas, making infiltration process driven by gravity drainage easier. 
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From the field soil sampling campaign, inherent petro-plinthite layers were observed in the 

lower soil depths of the different soil types at 70–100 cm, as also reported in Asiamah and 

Dedzoe (1999). Due to this petro-plinthite layer, SM in the above 100 cm depth is cut off from 

ground water. Consequently, water seepage beyond the 100 cm is inhibited and almost 

impossible percolation (Asiamah and Dedzoe 1999). In inference, SM stagnates above the 100 

cm depth of the different soil profiles. This observation explains why our results always 

showed consistent high SM in the lower soil depths of the different soil types. Furthermore, 

Asiamah and Dedzoe (1999) suggested that SM is mainly recharged through rainfall events 

and river outflow. This observation also corroborates our results, which showed that high SM 

was always consistent with high precipitation and API. 

Our findings show that external factors had a site-specific localized influence on the spatial 

and temporal variability of SM, particularly along the three main topographical units. Our 

findings extend those of Baskan et al. (2013), Gutierrez-Lopez et al. (2014) and Wang et al. 

(2016). The influence of the external factors on SM variability is high in soils with subtle LS and 

high TWI (i.e. toe slope soils) and vice versa (i.e. upper slope soils). The reason is that lateral 

SM flow driven by topographic positions influences SM variability, especially, when the 

different soil types record uniform soil texture at their depth intervals (Kim 2012; Huang et al. 

2016). This observation further indicates that the uniform soil texture supports the lateral flow 

of SM in the study area, similar to what was demonstrated by Kim (2012) and Huang et al. 

(2016). SM in the toe slope soils are generally expected to be higher than SM in the middle to 

lower slope and the upper slope soils. Comparing the influence of internal and external factors 

on the spatial and temporal variability of SM, our findings reveal that localized internal factors 

such as clay and silt contents, and BD highly influence SM variability than external factors such 

as LS and TWI (Biswas and Si 2011; Baskan et al. 2013; Gwak and Kim 2017). 

In the absence of rainfall, ETo is one key means by which SM returns to the atmosphere (Daly 

and Porporato 2005). On purview of this, the 0–10 cm depth interval showed varying results 

in each SM measurement day through the dry season. The possible explanation is due to the 

sandy top soils. Thus, at high ETo and low API, the upper parts of the soils of the study area 

easily lose SM (Daly and Porporato 2005). In addition, the high variability of SM in the top soils 

can be implicated by the abundant elephant grass’ roots. A slight increase in API promotes 

root water uptake and might have contributed to these SM fluxes (Seneviratne et al. 2010). In 

inference, the upper parts of the soils (≤ 10 cm) supports low percolation at high ETo and low 
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API. In contracts to the top soil layer, SM is highly influenced by only API in the lower parts of 

the soil profiles (≥ 20 cm). Thus, with continual increase in API coupled with the sandy top 

soils, SM tends to drain easily by gravity. This reason explains why high SM correlated with 

high API in the lower parts of the soils throughout the measurement period, especially when 

gradual increases were observed with API. Furthermore, the upper parts of the soils served as 

a protection layer (i.e. a mulch) for the lower parts of the soils in order to prevent the loss of 

SM. This observation promoted infiltration into the far-lower parts of the soils during and after 

rainfall events (at high API). Similar observations were reported for the landscapes of 

Watkinsville, United States by Franzluebbers (2002). The low and high SM trends in the upper 

and lower parts of the soils respectively, of the soil profiles also corroborate this finding. While 

the sandy upper parts of the soils protected loss of SM and supported infiltration into the 

lower parts of the soils, clay content build-up in the lower parts of the soils kept SM for longer 

periods. Our results further reveal that the continual high API increases infiltration and 

percolation to the very lower depths of the different soil types. This observation shows, 

particularly, from end of April when the study area started recording some amounts of 

precipitation. 

While we demonstrated the spatial and temporal variability of SM, some observations on the 

capability of the PR2/60 moisture probe in the SM measurement of the area are important to 

make. Our findings from investigating the relationship between SMg and SMp suggest that 

accurate SM measurement can be achieved in clay enriched-moist soil types with the PR2/60 

moisture probe. Conversely, soil types with high sand content and at drought conditions were 

less sensitive to the PR2/60 moisture probe measurement. This observation was shown on 

Kpelesawgu series (dry and sandy textured) and Siare series (moist and clay textured). In 

addition, loose soil structure, air pockets and coarse materials in the coarse textured soil 

types, particularly Kpelesawgu and Changnalili series, negatively influenced the performance 

of the PR2/60 moisture probe. Alternatively, using a combination of the PR2/60 moisture 

probe and integrating its measurements with the gravimetric method, as demonstrated in this 

study, provided accurate estimation of SM. In this way, robust spatio-temporal SM monitoring 

exercise can be achieved to support SM prediction activities. 
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5.5 Implications of study for dry season farming and conclusion 

The main outcome of this work is that almost all soil types in the study area (except for the 

Kumayili soil series) below 10 cm depth have SWS potentials that match the water 

requirements of at least some drought-tolerant crops (> 9 mm day-1) (Critchley et al. 1991). 

Kumayili series is limiting because crop adequate SWS levels can be assessed at > 30 cm depth, 

which is not ideal planting depth for notable crops grown in the Guinea savannah zone 

(Sheaffer and Moncada 2012). Although we investigated the possibility to cultivate maize in 

the study, our findings indicated that the SWS at depth at which maize can be sown is 

inadequate to support its cultivation (Molatudi and Mariga 2009). However, there are still 

potentials for some other staple crops such as cowpea, cassava, and potatoes that can be 

cultivated at soil depths where the crop water requirements can be met (Kumar et al. 2015; 

Ogundare 2017; Buakum et al. 2018). These crops also have the potential to tap into such SWS 

rich zones. Amongst the potential crops, cowpea (Bengpla cultivar) (Asafo-Adjei and Singh 

2005) has the shortest maturity duration (i.e. 52–60 days). In addition, Bengpla cultivar has a 

potential yield of 1.5 t ha-1 and susceptible to a variety of disease reported in the Guinea 

savannah zone (Asafo-Adjei and Singh 2005). From Critchley et al. (1991), legume’s crop water 

requirements average at 6.32 mm day-1, which our results provide the evidence that the lower 

parts of the soils (≥ 20 cm) of the area have SWS > 9 mm day-1 throughout the dry season. 

Consequently, we make a research proposal for the cultivation of Bengpla cultivar particularly 

from the middle of March to end of April where the rate of ETo successively decrease with a 

corresponding increase in API throughout the dry season. Soil fertility improvement is another 

important trade-off from the proposed legume crop rotation (Kermah et al. 2017). Residual 

effects from cowpea is important for the successive rainy season food-crop production 

(Bohlool et al. 1992; Belane and Dakora 2009), particularly for maize (Kermah et al. 2017). For 

instance, cowpea can fix large amounts of net atmospheric nitrogen to improve the fertility of 

soils of the area (Yusuf et al. 2009; Schilt-van et al. 2017). In addition, studies have suggested 

that sequential cropping, for example cassava and cowpea, can improved soil fertility to the 

point where applications of manure and mineral fertilizer could be reduced up to 50%, with 

no yield loss (Adjei-Nsiah et al. 2007; Adjei-Nsiah 2008; Ezui et al. 2016). Hence, our research-

proposed legume-crop rotation is an important practice to maintain soil fertility of soils for 

the local communities of the Guinea savannah zone. The cowpea grain can be use as food and 
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nutritional supplements as suggested by Abass (2015). Cowpea residue after crop harvest can 

also be used to improve mulching or used as feed for livestock. 

This study is the first to demonstrate how SM varies throughout the dry season of the Guinea 

savannah zone of Ghana. SM from 34 soil profiles at six soil depths (0–100 cm) were 

intensively measured throughout the dry season to investigate its spatial and temporal 

variability. This paper investigated and demonstrated the multi-factor relationships, as well as 

direct and indirect interactions between SM and the internal-external factors. Throughout the 

dry season, SM was low only in the sandy upper parts of the soils (≤ 10 cm). In the lower parts 

of the soils (≥ 20 cm), clay content increased with soil depth, and SM was kept for longer 

periods. Localized internal factors such as clay and silt content and BD had stronger influence 

on the spatial and temporal variability of SM than external factors such as LS, TWI, ETo and API 

in the study area. BD observed in this study imply good conditions for root developments, SM 

infiltration and percolation within the soil profiles. Temporally, ETo influenced SM only in the 

sandy top soils while API strongly influenced SM at ≥ 20 cm soil depth. A positive and negative 

correlation existed between API and SM and, ETo and SM respectively. Thus, these observation 

gives an insight to improve soil surface mulching in order to conserve SM in the profiles of the 

soils for food-crop production, particularly, in the dry season. We conclude that most 

benchmark soils of the area hold the potential for implementing a dual farming system that 

can enhance agricultural productivity and increase the income of local farming communities. 

Future studies are, however, needed to validate our recommendations for the Guinea 

savannah zone of Ghana. 
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Chapter 6: Estimating SM from integrated Sentinel-1, -2 and DEM -derived datasets using      

an ensemble of forest, neuron and vector-based MLAs 

This manuscript is under review as:  
Nketia KA, Erasmi S, Sauer D. Estimating soil moisture from integrated Sentinel-1, -2 and DEM-derived datasets 
using an ensemble of forest, neuron and vector-based machine-learning algorithms. 
 
Conference presentation at Living Planet Symposium 2019, Milan: 
A4.12: HR Soil Moisture Poster Session, Area C - Board 247. https://lps19.esa.int/NikalWebsitePortal/living-
planet-symposium-2019/lps19/Agenda/AgendaItemDetail?id=c0a22eed-5857-4f99-a55e-d8204e419ad3  

 
Abstract 

 
Inconsistent algorithm performances and optimal model selection challenges persist in 
estimating soil moisture (SM) from satellite images with machine-learning algorithms (MLA). 
In this paper, we propose an innovative ensemble-based model (EBM) that couples random 
forest regression (RFR), support vector regression (SVR) and artificial neural network (ANN) to 
estimate SM from integrated Sentinel-1, -2 and auxiliary datasets for the semi-arid landscapes 
of Ghana. In order to train and validate the SM estimates, we used in situ SM (SMp), measured 
with a calibrated PR2/60 moisture probe (0–10 cm depth) at 34 locations on key benchmark 
soils from February to June 2018 (𝑛 = 340). Validation locations were stratified with a hybrid 
methodology that coupled the global weighted principal component analysis and a cost-
constraint conditioned Latin hypercube algorithm. At the low to extremely low SMp levels, 
Sentinel-2 derived indices showed higher sensitivity to SMp than Sentinel-1 derived variables 
alone. While Sentinel-2 indices accounted for specific clusters of measured SMp, Sentinel-1 
variables rather accounted for the entire variability of SMp and effects due to incidence angle. 
In addition, terrain-derived variables disentangled ambiguities caused by landscape 
heterogeneities. With the optimal model input variables, the MLAs estimated SM with RMSEs 
(Vol. SMp): 0.18% (ANN), 1.14% (SVR) and 0.15% (RFR), while their ensemble estimated SM 
with an error of 0.12%. One main outcome indicates that ANN estimated “false” SM at 
minimum thresholds of 0.38% Vol SMp. Overall, the EBM rather presented the optimum 
alternative between over- or underestimated SM and “false” estimated SM as compared to 
the individual MLAs. A close agreement is rather observed between SMp and estimated SM 
via the EBM and thus, highlights a viable alternative to estimate SM than using individual 
MLAs. 
 

Keywords: artificial neural network, auxiliary datasets, ensemble-based machine learning, 
random forest regression, Sentinel-1, Sentinel-2, soil moisture, support vector regression
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6.1 Introduction 

Due to the importance of spatio-temporal soil moisture (SM) information in various 

environmental processes (Srivastava et al. 2016), the Global Climate Observing System 

through the Climate Change Initiative program has recently identified SM as an Essential 

Climate Variable and as a High Priority Variable (Wagner et al. 2012). Unfortunately, the 

estimation of SM through classical point-based measurements for use in environmental 

process applications is challenging. This is because, not only are point-based measurement 

stations sparse in nature across the globe, but also, are time and labor intensive, expensive 

and practically impossible at spatio-temporal global scales (Liujun et al. 2019). These direct-

field measurements are moreover impractical due to high spatio-temporal variability of the 

target variables at these global scales and requires repetitive measurements to estimate 

temporal dynamics. 

An increasing body of studies have recognized and identified the combination of point-based 

measurements and remote sensing (RS) as an alternative to up-scale SM information on 

spatio-temporal global scales (Ali et al. 2015; Peng and Loew 2017; Liakos et al. 2018). For this 

reason, active and passive RS instruments in the microwave domain have frequently been 

coupled with point-based measurements for SM estimation (Rosich et al. 2003; Entekhabi et 

al. 2010; Liujun et al. 2019). Despite their high temporal resolution (i.e. 1–3 days), which makes 

them highly suitable for SM estimation, they rather operate and deliver images at low spatial 

resolution (~50 km) (Mohanty et al. 2017). Hence, their spatial resolution limits its usage at 

local-field scales. The estimation of SM at local scales is critical to assess and manage SM 

resources in semi-arid landscapes, which is essential to support regional, national and global 

SM monitoring initiatives (Wigneron et al. 2003; Colliander et al. 2017). In addition, one 

success of SM estimation from RS is largely driven by the quality and the ability to detect small 

changes at such scales necessary to support agriculture (Gao et al. 2017). In view of this 

bottleneck, advances made in SM estimation from ESAs-Sentinel-1 and -2 missions offers a 

balance between spatial and temporal resolutions (Torres et al. 2012). Therefore, Sentinel-1, 

-2, and other related upcoming satellite sensors, such as the NASA-Indian Space Research 

Organization Synthetic Aperture Radar (NISAR) mission, opens new perspective for estimating 

SM at detailed spatio-temporal global scales (Agrawal et al. 2016). 

Estimating SM from microwave sensors is challenging and not straightforward (Ali et al. 2015; 

Liujun et al. 2019). The challenges are mainly due to ambiguities that affect the microwave 
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sensor’s signal, the high variability both in time and space of target variables, and the non-

linearity and complexity of the estimation (Pasolli et al. 2014). Hence, expected accuracies in 

SM estimation are hardly achieved (Zribi et al. 1997; Alexakis et al. 2017). For instance, the 

variability of physic-chemical properties of target variables determine the absorption, 

transmission, emission and reflection of the microwave and its parameter ambiguity (Ulaby et 

al. 1982; 2014). Consequently, this results in a complex and non-linear relationship between 

target variables and RS measurements (Haboudane et al. 2004). These notwithstanding, Ali et 

al. (2015) and Liakos et al. (2018) pointed out additional ambiguities that affect the microwave 

signal backscattering. Among others are those caused by site-specific landscape 

heterogeneities such as SM, surface roughness, vegetation cover and topography, which 

makes the process of distinguishing backscattering coefficient from SM difficult. It is worth 

noting that SM estimation is heavily driven by surface roughness, particularly when 

monitoring changes over global scales, and it is one of the most difficult parameters to 

estimate (Loew et al. 2006). It is therefore key to consider advanced estimation approaches 

that can account for these multiple non-linearity and complexities associated in the SM 

estimation. 

Against this backdrop, the use of physical models such as the water cloud model, change 

detection methods and the advanced integral equation models have proven to be efficient 

(Graham and Harris 2003; Piles et al. 2009; Choker et al. 2017). In addition, non-parametric 

and parametric models (such as artificial neural network, random forest and regressions) have 

also been used extensively to address the aforementioned challenges (Ali et al. 2015; Amazirh 

et al. 2018). However, due to observational incidence angle and landscape heterogeneities 

such as SM, surface roughness, soil properties and vegetation cover, these models have a 

certain range of validity (Fung et al. 1992; Karam et al. 1992; Amazirh et al. 2018). In this paper, 

we focus on the use of non- and parametric models in SM estimation (referred here as 

machine learning algorithms (MLA)). With MLAs, some added-on benefits are however 

achieved: (1) fast to implement without strict data analytical programming (Liakos et al. 2018), 

(2) the ability to learn from training data and these multiple non-linearity and complexity 

associated in the SM estimation (Ahmad et al. 2010; Ali et al. 2015; Liakos et al. 2018), and (3) 

provides improved approximations in non-linear systems (Breiman 2001; Bisgin et al. 2018). 

Given that SM affects radar backscatter, stability of SM patterns leads to stability in radar 

backscatter patterns (Wagner et al. 2008). Hence, at low and extremely low SM levels, radar 
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energy penetrates the soil, resulting in low radar backscatter at the satellite system (Ulaby et 

al. 1982; 2014). It is therefore expected that at such low SM conditions, radar backscatter is 

also highly influenced by the effects of landscape heterogeneities (Gao et al. 2017). 

Consequently, the use of MLAs, which is highly recommended for non-linear systems and is 

also a promising approach for operational SM estimation, would be an effective alternative to 

learn from the complex remote-sensing landscape interactions (Breiman 2001; Pasolli et al. 

2015). Moreover, MLAs can adequately discriminate various SM levels and disentangle many 

associated ambiguities in the SM estimation (Pasolli et al. 2012; Liakos et al. 2018). These 

notwithstanding, MLAs can adequately and easily integrate large amounts of data sources 

necessary to discriminate and estimate SM (Liakos et al. 2018). For example, terrain-derived 

variables, from digital elevation model (DEM), are essential to disentangle ambiguities due to 

topography and surface roughness (Pasolli et al. 2012; Pasolli et al. 2014). Whereas soil and 

water indices from optical images (e.g. Sentinel-2), can also distinguish different SM levels 

(Torres et al. 2012). 

Current research directions indicate rising interest in the use of MLAs, however, very few 

guidelines are available for their use in SM estimation (Liakos et al. 2018). Thus far, no study 

has also presented or tested the minimum in situ SM thresholds at which the widely used 

MLAs are efficient to estimate SM, particularly for semi-arid landscapes. In recent years, MLAs 

that have been frequently used in SM estimation from RS have mainly been compared, where 

the optimized and the efficient MLA was selected for estimating the target variable (Ali et al. 

2015). The most widely used MLAs include artificial neural network (ANN), support vector 

regression (SVR) and random forest regression (RFR) (Liakos et al. 2018). However, 

contradictory algorithm performances and model selection challenges have been frequently 

reported (Pasolli et al. 2015; Holtgrave et al. 2018; Liakos et al. 2018). In addition, only in very 

few studies, MLAs have been combined, to address their individual inefficiencies in order to 

optimize SM estimation (Liakos et al. 2018). For example, Kumar et al. (2018) reported 

conflicting algorithm performances for both RFR and SVR under different agricultural fields 

when they compared RFR, SVR and ANN in estimating SM from Sentinel-1. In comparing SVR, 

ANN and multivariate linear regression model, higher performances were also shown by the 

SVR over the others (Ahmad et al. 2010). Pasolli et al. (2011) suggested a similar conclusion 

when SVR was compared with ANN in estimating SM. The SVR, using a multiscale active radar 

images, underscored a strong relationship between predicted and measured SM (R2 = 0.8–0.9) 
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(Pasolli et al. 2015). Although ANN was demonstrated as the least performing algorithm in 

some SM estimation studies (Ahmad et al. 2010; Kumar et al. 2018), Notarnicola et al. (2008) 

and Paloscia et al. (2013) rather reported a greater compromise and trade-off between SM 

estimation processing time, stability and estimation accuracy with the ANN. In Paloscia et al. 

(2013), an accuracy of < 4% Vol. SM was reported with the ANN when SM algorithm and 

preliminary validation was undertaken for the ESA-GMES Sentinel-1 characteristics. Similarly, 

a high coefficient of determination (R2 = 0.9) was obtained with the ANN when Alexakis et al. 

(2017) estimated SM for use in a hydrologic modelling system. Though these individual MLAs 

have proven to be efficient and robust to estimate SM at high accuracy, even at plot scales 

(Attarzadeh et al. 2018), it is critical to establish the minimum in situ SM thresholds at which 

these MLAs are efficient to estimate SM. Furthermore, it is important to investigate their 

combined performance in order to optimize the overall SM estimation. For instance, it was 

demonstrated that using an ensemble-based model (EBM) rather improve the predictive 

performance of the model fitting techniques due to the linear combination of the base MLAs 

(Liakos et al. 2018). Similarly, improved prediction results were demonstrated for sub-Saharan 

Africa (Hengl et al. 2017b) as compared to earlier predicted soil property maps (Hengl et al. 

2015). That notwithstanding, the use of EBM was proven to deal with complex high-

dimensional data (Piao et al. 2014), which is similar to the SM estimation. 

On purview of the above, this study fills the gaps – we evaluate and validate an EBM to 

estimate SM from the synergy of Sentinel-1, -2 and other auxiliary datasets. In addition, we 

test the minimum in situ SM thresholds at which the widely used MLAs are efficient to 

estimate SM. RFR, SVR and ANN are ensembled in this study. In this EBM, we integrate key 

auxiliary datasets that compounds the ambiguities and complexities in the SM estimation. This 

builds on the integrated radar-optical-DEM datasets to utilize the high spatio-temporal 

resolution of Sentinel-1 and -2 missions. We extend, modify and ensemble the methodologies 

of Paloscia et al. (2013) and Alexakis et al. (2017) (ANN), Pasolli et al. (2014; 2015) (SVR) and 

Kumar et al. (2018) (RFR). Additionally, we investigate whether the EBM can improve the 

individual inefficiencies of the base MLAs in order to decrease the overall SM estimation error. 

We analyze the testing of the minimum in situ SM thresholds and the technical 

implementation of the proposed EBM, its validation and variability, for the semi-arid 

landscapes of Ghana. 
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6.2 Methods 

6.2.1 Sentinel-1 data acquisition and processing 

We obtained Level-1 ground range detected Sentinel-1A image product with 10 m pixel 

spacing from ESAs Copernicus open access hub (https://scihub.copernicus.eu/dhus/#/home) 

(Table 6.1). Corresponding Sentinel-1B image products were not available for the study area 

timely consistent with SMp measurements. The images used were detected, multi-looked and 

projected to ground range. For our choice of Sentinel-1 overpass times, we used 

Interferometric Wide Swath Mode image products in dual polarization (i.e. VH and VV) with 

incidence angles between 38.3° and 45.7° in ascending orbit. 

We processed the image products with ESAs desktop Sentinel Application Platform (SNAP) 

version 6.0.5 with the use of the Sentinel-1 Toolbox version 6.0.5. Processing was in two main 

stages: 1) radiometric correction and 2) geometric corrections. Prior to the two-stage image 

processing, we applied an orbit file with a three-degree polynomial in order to update the 

orbit state vectors in the abstract metadata of the image products. 

 

Table 6.1. Sentinel-1 and -2 acquisition dates 

No. 

Sentinel-1A Sentinel-2A 

Acquisition dates 
(mm/dd/yy) 

Sensing 
start time 

(UTC) 
Polarization 

Acquisition 
dates 

(mm/dd/yy) 

Sensing 
start time 

(UTC) 
Band 

1 02/20/2018 6:18:54 PM VH, VV 02/21/2018 10:20:31 AM 1–12, 8A 
2 03/04/2018 6:18:54 PM VH, VV 03/03/2018 10:20:21 AM 1–12, 8A 
3 03/16/2018 6:18:54 PM VH, VV 03/13/2018 10:20:21 AM 1–12, 8A 
4 03/28/2018 6:18:54 PM VH, VV 03/23/2018 10:20:21 AM 1–12, 8A 
5 04/09/2018 6:18:55 PM VH, VV 04/12/2018 10:20:21 AM 1–12, 8A 
6 04/21/2018 6:18:55 PM VH, VV 04/22/2018 10:20:31 AM 1–12, 8A 
7 05/03/2018 6:18:56 PM VH, VV 05/02/2018 10:20:31 AM 1–12, 8A 
8 05/15/2018 6:18:56 PM VH, VV 05/12/2018 10:20:31 AM 1–12, 8A 
9 05/27/2018 6:18:57 PM VH, VV 05/22/2018 10:20:31 AM 1–12, 8A 

10 06/08/2018 6:18:58 PM VH, VV 06/11/2018 10:20:21 AM 1–12, 8A 

No. = Sets of measurements from February to June 2018. 

In the radiometric correction (Figure 6.1), we removed thermal noise in each polarization with 

the use of a bi-linear interpolation algorithm. The image products were then calibrated to the 

backscatter coefficient σ0 (appendix Equation S6.1). Prior to geometric correction, we co-

registered the images and applied multi-temporal speckle filtering to reduce speckle noise in 

the images, which are originated by the coherent nature of Sentinel-1 sensor (Quegan and Yu 



 

 77 

2001; Ulaby et al. 2014). This filter requires the estimation of the local mean intensity, where 

various spatial filters can be used (Quegan and Yu 2001; Schlund et al. 2018). We used a Lee 

Sigma filter with Sigma = 0.9 and a target window size of 3 x 3 for the estimation of the local 

mean intensity. 

In the geometric correction (Figure 6.1), we mainly corrected for distortions in the images due 

to topographical variations and tilt of topographic slopes with respect to the Sentinel-1 sensor 

via the Range Doppler Terrain Correction operator of SNAP. We used a bicubic interpolation-

resampling algorithm for both the images and the Shuttle Radar Topographic Mission (SRTM) 

DEM with 1 arc-second resolution. 

Radiometric and geometric corrected outputs obtained from the image processing included  

𝜎𝑉𝐻
0  and 𝜎𝑉𝑉

0  (in dB; appendix Equation S6.2), DEM and incidence angles (i.e. local and 

ellipsoid). 

 

Figure 6.1. Flowchart of the Sentinel-1 image post-processing. dB = decibels. 

 

6.2.2 Sentinel-2 data acquisition and processing 

We also obtained Sentinel-2A Level-1C image product from ESAs Copernicus open access hub 

(https://scihub.copernicus.eu/dhus/#/home) at ± 1–5 days to Sentinel-1 acquisition dates 
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(Table 6.1). We only used Sentinel-2A image products to ensure commonality with Sentinel-

1A images. The images were radiometrically and geometrically processed, including ortho-

rectification and spatial registration on a global reference system. We processed the Top-Of-

Atmosphere Level 1C image products by applying atmospheric correction via the 𝑆𝑒𝑛2𝑐𝑜𝑟 

processor plugin to produce Level-2A Bottom-Of-Atmosphere reflectance image products. 

While applying atmospheric corrections, terrain correction was also applied with the use of 

the DEM data to compensate for distortions due to topographic variations of the image scene 

and tilt of the satellite sensor. 

From the processed Sentinel-2 image products, we derived water and soil indices for use in 

the SM estimation, i.e. the Tasseled Cap Wetness index (TCWI) (Nedkov 2017), the second 

Normalized Difference Water index (NDWI2) and Color index (CI). We calculated the TCWI 

(Equation 6.1) with the use of band math operator. NDWI2 (Equation 6.2) and CI (Equation 

6.3) were estimated with the use of Sentinel-2 Toolbox water and soil radiometric indices 

respectively. All stages of water and soil indices estimation were executed in the SNAP desktop 

software. 

𝑇𝐶𝑊𝐼 = [0.0649 ∗ 𝐵1 +  0.1363 ∗ 𝐵2 +  0.2802 ∗ 𝐵3 +  0.3072 ∗ 𝐵4 +

 0.5288 ∗ 𝐵5 +  0.1379 ∗ 𝐵6 −  0.0001 ∗ 𝐵7 −  0.0807 ∗ 𝐵8 −  0.0302 ∗ 𝐵9 +

 0.0003 ∗ 𝐵10 −  0.4064 ∗ 𝐵11 −  0.5602 ∗ 𝐵12 −  0.1389𝐵8𝐴]        (6.1) 

where 𝑇𝐶𝑊𝐼 is the tasseled cap wetness index and 𝐵 are the various channels of Sentinel-2A 

image (i.e. 1–12 and 8A). 

𝑁𝐷𝑊𝐼2 =  
(𝐺𝐹 ∗ 𝐵3 − 𝐼𝑅𝐹 ∗ 𝐵8) 

(𝐺𝐹 ∗ 𝐵3 + 𝐼𝑅𝐹 ∗ 𝐵8)
       (6.2) 

where 𝑁𝐷𝑊𝐼2 is the second normalized difference water index, 𝐺𝐹 is the green factor, 𝐵 

means the various channels of Sentinel-2A image (i.e. 3 – green and 8 – near infra-red) and 

𝐼𝑅𝐹 is the infra-red factor. 

𝐶𝐼 =  
(𝑅𝐹 ∗ 𝐵4 − 𝐺𝐹 ∗ 𝐵3) 

(𝑅𝐹 ∗ 𝐵4 + 𝐺𝐹 ∗ 𝐵3)
        (6.3) 

where 𝐶𝐼 is the soil colour index, 𝑅𝐹 is the red factor, 𝐵 means the various channels of 

Sentinel-2A image (i.e. 3 – green and 4 – red) and 𝐺𝐹 is the green factor. 

 

6.2.3 Auxiliary datasets 

More accurate SM estimates could be achieved with the integration of auxiliary datasets (Ali 

et al. 2015; Klinke et al. 2018). Consequently, we considered key auxiliary datasets that may 
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affect the microwave signal. For bare soils, Sentinel-1 backscatter is strongly influenced by the 

variability of target variables (in this case SM) and landscape heterogeneities such as surface 

roughness and local incidence angle (Lievens and Verhoest 2011; Pasolli et al. 2014). As key 

auxiliary datasets, we considered an extensive stack of spatial layers, which were used as 

proxies to explain the variabilities of SM and the associated landscape heterogeneities (Table 

6.2). The stack of auxiliary datasets were classified as process-based, dynamic and static 

features. Process-based features included 𝑆𝐴𝐺𝐴 topographic wetness index and other DEM-

terrain variables. We calculated the DEM-terrain variables with the use of 𝑆𝐴𝐺𝐴 morphometry 

and hydrology functions (Conrad et al. 2015) in 𝑅 software (R Core Team 2017). Static features 

also included physical soil properties such as clay, silt and sand contents, bulk density, soil type 

and buffer-distances. Following the approach of Hengl et al. (2018), buffer-distances were 

derived via the geographical locations of the validation locations, which were used to account 

for spatial relations and closeness between a validation location and the others (Hengl et al. 

2018). In addition, we accounted for the spatio-temporal autocorrelation in the SM estimation 

using estimated cumulative days (CUM) and day of the year (DOY) of the in situ measurement 

dates (Hengl et al. 2018). Both CUM and DOY also represented the temporal-distances of in 

situ measurements at the validation locations in the time domain, which moreover addressed 

site-specific effects due to seasonality, time of day and long-term trends that occurred at the 

validation locations (Hengl et al. 2018). The CUM and DOY forms part of the list of features 

classified as dynamic features, and also included precipitation and evapotranspiration. All 

auxiliary datasets were resampled via a bicubic-interpolation algorithm to match the Sentinel-

1 image’s spatial resolution in order to ensure image compatibility.
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Table 6.2. List of datasets used in the study 

Parameters Abbreviation Description Units 

Sentinel-1 derived variables 

Backscatter coefficients σ 
Calibrated backscatter coefficients 
represented as VH () and VV () polarizations. 

dB 

Local incidence angle LIA 
The local angle between the incident Sentinel-
1 radar beam and the normal line to the soil 
surface. 

degree 

Sentinel-2 water and soil derived indices 

Tasseled cap wetness 
index 

TCWI 
Tasseled cap wetness developed from 
Tasseled cap coefficients for Sentinel-2 bands 
(1 – 12 and 8A). 

- The second Normalized 
Difference Water Index  

NDWI2 
The second normalized difference water index 
used to detect surface water and extent. 

Color index CI 
Color index to differentiate soil types of an 
area. 

SRTM-DEM derived variables 

Topographic wetness 
index 

TWI 
SAGA topographic wetness developed from 
Shuttle Radar Topographic Mission (SRTM)-
DEM. 

- 

Local slope SLP 
Slope indicating steepness of a location on the 
soil surface. 

degree 
Aspect ASP 

Aspect indicating the direction in which a 
location’s slope faces. 

Surface roughness SurfR 
Surface roughness indicating the soil surface 
texture which influences the radar 
backscattering. 

- 

In situ measurements from validation locations 

Soil moisture SMp 
In situ volumetric SM by calibrated PR2/60 
capacitance moisture probe. 

% 

Clay content Clay Percentage clay content of soil samples.  
Silt content Silt Percentage silt content of soil samples.  
Sand content Sand Percentage sand content of soil samples.  
Bulk density BD Bulk density of soil samples. g cm-3 
Soil type Soil_type Mapping units at series level. - 
Other derived variables    

Cumulative days CUM Cumulative day of the date of in situ SM 
measurement. 

- 

Day of the year DOY Day of the year for each in situ SM 
measurement 

- 
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6.2.4 Influence of integrated datasets in SM estimation 

6.2.4.1 Feature selection for use in SM estimation 

We used the random-forest recursive feature elimination (RF-RFE) model to subset the stack 

of auxiliary datasets (Kuhn 2018). This enrichment step was critical to reduce dimensionality 

and, remove redundant and irrelevant features in the stack of auxiliary datasets (Table 6.2). 

In the RF-RFE, the Gini index was used to rank the stack of auxiliary datasets. Here, with expert 

knowledge as documented in the literature for SM estimation and the RF-RFE model, auxiliary 

datasets that were highly correlated were eliminated while selecting those with high 

importance. In this way, we improved computational efficiency, increased MLAs learning 

accuracy and reduced the generalization error of the MLAs used as inputs in the EBM 

(Hounkpatin et al. 2018). Choosing the optimal set of feature combination was moreover 

relevant to ensure same model input datasets for all base MLAs. In the stack of auxiliary 

datasets, we only considered 𝜎𝑉𝑉
0  polarimetric backscatter from Sentinel-1. This was because, 

for the case of our study areas, 𝜎𝑉𝐻
0  polarimetric backscatter values were all below the Noise 

Equivalent Sigma Zero of Sentinel-1 data (Torres et al. 2012). In addition, 𝜎𝑉𝑉
0  has also been 

demonstrated to improve SM estimation than 𝜎𝑉𝐻
0  (Amazirh et al. 2018) or the use of both  

𝜎𝑉𝑉
0  and 𝜎𝑉𝐻

0  (El Hajj et al. 2017; Kumar et al. 2018). The optimal feature combination by the 

RF-RFE model was selected based on the cumulative R2. We assumed that the selected 

features represented the optimal regression matrix, used as inputs, for the base MLAs. By 

evaluating sets of RF-RFE model fitting parameter configurations, we implemented the 

iterative RF-RFE model with a repeated cross validation (CV). In the optimal RF-RFE model 

parameter configuration, RF-RFE model was implemented under 16 resampling iterations and 

at 5 CV-folds. We executed all stages of the RF-RFE in 𝑅 software (R Core Team 2017) using  

𝑐𝑎𝑟𝑒𝑡 𝑅 package (Kuhn 2018). 

 

6.2.4.2 Relationship between SMp and optimal feature combination 

As adequately demonstrated in the literature, Sentinel-1 backscatter values are sensitive to 

medium and high SM values under bare or vegetated fields (Pasolli et al. 2015; Alexakis et al. 

2017; Holtgrave et al. 2018; Klinke et al. 2018). However, very little is reported on low and 

extremely low SM conditions and the behavior of Sentinel-1 backscatter and other auxiliary 

datasets under similar landscape conditions (Paloscia et al. 2013; Urban et al. 2018). 

Consequently, we investigated the direct linear relationship between SMp and integrated 
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Sentinel-1, -2, and other auxiliary variables at the validation locations of the study area. In this 

way, we assessed the relationship between 𝜎𝑉𝑉
0  with SMp and how other integrated auxiliary 

datasets optimized the SM estimation. These notwithstanding, there was the need to identify 

which auxiliary dataset accounted for which range of SMp values in order to address their 

respective ambiguities and influences in the SM estimation (Pasolli et al. 2012). To help 

interpret the results, we standardized the values of all auxiliary datasets (due to their wide 

different ranges) in order to obtain a 𝑧 − 𝑠𝑐𝑜𝑟𝑒 unit (Mohamad and Usman 2013). 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑠 

were calculated based on their mean and standard deviations via the 𝑠𝑐𝑎𝑙𝑒 function in R 

software (R Core Team 2017). Subsequently, we assessed their variability in discriminating 

SMp levels in the SM estimation. From expert knowledge, SMp values were cluster along three 

main SM ratings, i.e. SMp > 10% Vol (medium), 5 ≤ SMp ≥ 10% Vol (low) and SMp < 5% Vol 

(extremely low) (Grote et al. 2010; Cooper 2016). 

 

6.2.5 SM estimation 

6.2.5.1 Deriving EBM input dataset 

In each of the base MLAs, the SM estimation was mainly executed under a training and a 

validation phase. The MLAs train the relationships between the independent variables, which 

is represented by Sentinel-1 and -2 derived parameters and selected auxiliary datasets, and 

the dependent variable, represented by SMp (Table 6.2). We partitioned input datasets into 

80% (training) and 20% (validation) sub-samples (Kuhn 2018). By applying 𝑘-fold CV, on the 

one hand, we used 𝑘 − 1 sub-samples, iteratively, to train the SM estimation MLAs, and on 

the other hand, used the remaining sub-samples for MLAs validation. Through the -fold CV, 

we averaged the performance of the validation sub-samples to ensure an improved accuracy 

and robustness of an optimized MLAs for use in the EBM. The 𝑘-fold CV considered reference 

sample for training SM predictors and tuning its free parameters (Kuhn 2018). In this way, all 

dataset observations in the integrated Sentinel-1, -2 and other auxiliary datasets were 

considered in the training and validation of the base MLAs. 

With the ANN algorithm, the best compromise between computational time and SM 

estimation accuracy can be achieved (Paloscia et al. 2013). The ANN consists of an input, a 

hidden and an output layer. Through the interconnected hidden neurons of the ANN, input 

datasets were converted to output datasets (Paloscia et al. 2013). In the ANN model (Figure 

6.2A), we varied the number of neurons in the hidden layer, trained the ANN with the training 
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sub-samples and tested the trained outputs with the validation sub-samples. The ANN model 

optimization was achieved with the use of a Bayesian Regularization algorithm. Through the 

ANN model fine-tuning, we additionally minimized the ANN input-output RMSE in order to 

obtain an optimal ANN architecture. Optimized ANN training parameter configuration was 

achieved with 10 neurons at 1e+03 epochs. The SM estimation with ANN was implemented 

with the 𝑏𝑟𝑛𝑛 − 𝑅 package (Pérez and Gianola 2018). 

SVR is a supervised learning model that non-linearly generalizes unseen data adequately – 

mainly developed in the framework of classification and regression problems using kernel-

based learning systems (Keerthi and Lin 2003; Ahmad et al. 2010). In the SM estimation with 

SVR, similar training and validation processes, as implemented for the ANN was undertaken. 

Here, we used the Radial Basic Function, which has been demonstrated to outperform other 

kernel functions in SVR model (Keerthi and Lin 2003; Pasolli et al. 2011). We used a grid search 

in designing the parameter configuration for an optimized SVR model (Figure 6.2A). Optimized 

SVR training parameter configuration was achieved with an epsilon regression with 0.1 𝜀 

(insensitive-loss function), a hyper-parameter of 0.05 𝜎 (RBF kernel width) and a 10 cost of 

constraints violation (∁; regularization parameter) to obtain an optimal SVR model. The SVR 

was implemented via the 𝑘𝑒𝑟𝑛𝑙𝑎𝑏 − 𝑅 package (Karatzoglou et al. 2018). 

Random forest is a bootstrap sampler, random feature selector, out-of-bag error estimator 

and a full-depth decision tree grower (Breiman 2001). In random forest, prominence is given 

to the iterative training of its algorithm in order to produce a strong learning result instead of 

formulating the statistical model (Hengl et al. 2018). Also, the RFR model followed similar 

training and validation processes as in ANN and SVR. In the RFR model, random sub-samples 

were drawn from the training sub-sample with replacements. Each regression result was 

generated from a sub-decision tree constructed by a sub-sample. Consequently, the outputs 

of individually generated decision trees from the training sub-samples were combined to 

optimize the RFR model (Breiman 2001). SM was estimated by averaging the estimation 

outputs of the full-depth individual decision trees in the RFR model (Pal 2005). We configured 

the RFR via the 𝑐𝑎𝑟𝑒𝑡 − 𝑅 wrapper package (Kuhn 2018). Optimized model parameter 

configuration was obtained with a grid search training control. Resampling of the training sub-

samples across the RFR tuning parameters was achieved with a 10 − 𝑓𝑜𝑙𝑑 CV that was 

repeated 10-times (Figure 6.2A). 
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Further details are reported in Haykin (2011) for the ANN, Smola and Schölkopf (2004) for the 

SVR and Breiman (2001) for the RFR algorithms. All stages of the SM estimation were 

implemented in 𝑅 software (R Core Team 2017). 

 

Figure 6.2. Methodological diagram of the SM estimation process using inputs  from in situ 

SM, Sentinel-1 and -2 images and other auxiliary datasets. The diagram summarizes the 

ensemble modelling framework with the use of base MLAs, i.e. Artificial Neural Network (ANN; 

A), Support Vector Regression (SVR; A) and Random Forest Regression (RFR; A), and a linearly 

combined EBM (B). 

 



 

 85 

6.2.5.2 EBM 

We linearly combined the outputs of the base MLAs in the EBM in order to develop a SM 

estimate, which held prior estimated SM values as compared to the independent SM 

estimates of the base MLAs (Figure 6.2B). In this way, we synthesized the outputs of the 

individual MLAs into a single score in order to find a balance between over- or underestimated 

SM and also reduce the overall estimation error (Klinke et al. 2018). Following the approach 

of Reid and Grudic (2009), we applied an Elastic-Net Generalized Linear model on the inputs 

to ensemble the estimates of the base MLAs. Again, an 80-20 training-validation data split was 

executed (Kuhn 2018). Optimized parameter configurations used for the EBM were obtained 

with a grid search and tune parameters with a 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 response model type, 0.1 𝛼 (elastic-

net mixing parameter) and 0 𝜆 (lambda sequence). The EBM was implemented in 𝑅 software 

(R Core Team 2017) using 𝑐𝑎𝑟𝑒𝑡 (Kuhn 2018) and 𝑔𝑙𝑚𝑛𝑒𝑡 (Friedman et al. 2017) 𝑅 packages. 

 

6.2.5.3 Accuracy assessment of the SM estimation 

The performance of the base MLAs, in estimating SM was assessed by using a -fold CV. This 

was because, Holtgrave et al. (2018) demonstrated that MLAs results varied per iterations due 

to data partitioning. Consequently, following the approach of Kuhn (2018), we re-fitted each 

MLA 10-times using 80% (test sub-samples) of the datasets and estimated with the remaining 

20% (validation sub-samples). In this approach, model stability and reliability of model outputs 

were ensured by the estimated standard deviations. For each estimated SM (SMe), the 

variations explained by the models (R2) and the average error of the models (RMSE) were 

derived (appendix Equations S6.3 and S6.4 respectively). In addition, we also considered the 

percent bias (Pbias; appendix Equations S6.5) to assess the over- or underestimation of SM by 

the base MLAs and the EBM. Optimal PBias is zero, with negative values indicating model-

underestimating bias, whereas positive values indicated the reverse. We implemented 

accuracy assessments in 𝑅 software (R Core Team 2017). Prior to SM estimation and model 

performance assessment, SMp values were log-transformed due to its skew distribution. 

Consequently, we report model performances on a log scale. 

 

6.2.5.4 Estimation framework 

All 𝑅 processes were implemented on the GWDG’s high performance computing clusters of 

the University of Göttingen. We provide detailed workflow of the SM estimation on a publicly 
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accessible repository (DOI: 10.5281/zenodo.3662411). Publicly available resources include 𝑅 

scripts, metadata and readme files, which also promotes open and reproducible science. Full 

datasets used for the present study are also available on the same DOI. 

 

6.3. Results and discussion 

6.3.1 Variability of integrated datasets used for estimating SM 

Figure 6.3 shows the temporal patterns of SMp, 𝜎𝑉𝑉
0 , TCWI, NDWI2, and CI along soil 

toposequences of the study area. SMp was extremely low (0.99 ± 0.26% Vol; mean ± standard 

error) and medium (10.77 ± 1.05% Vol) at February 20, 2018 (peak of the dry season) and at 

June 8, 2018 (onset of heavy rains) respectively. In total, 54.12% of SMp distributed in the 

extremely low SM cluster (𝑛 = 184), whilst 25.29% (𝑛 = 86) and 20.59% (𝑛 = 70) distributed in 

the low and medium SM clusters respectively. Temporally, SMp showed a high-low-high trend 

along all soil toposequences (Figure 6.3A–C). Variability of SMp (range) was slightly high 

(9.78%) in the middle to lower slope as compared to the toe slope (8.90%) and the upper slope 

(5.58%). 

The lowest (-16.98 ± 1.83 dB) and highest (-13.30 ± 1.64 dB) 𝜎𝑉𝑉
0  were both recorded in the 

toe slope at March 28th, and June 8, 2018 respectively, which corresponded with variability of 

SMp (Figure 6.3). Similarly, the temporal variability of 𝜎𝑉𝑉
0  along the soil toposequences was 

generally consistent with the trend of SMp. Though the number of validation locations were 

not equal in each soil toposequence, 𝜎𝑉𝑉
0  showed similar temporal variability across the 

landscape, i.e. range = -3.52 dB (upper slope), -3.49 dB (middle to lower slope) and -3.68 dB 

(toe slope). 

Throughout the measuring period, water (TCWI and NDWI2) and soil (CI) indices from 

Sentinel-2 images generally bears an inverse resemblance (Figure 6.3). Low TCWI and NDWI2 

indices were recorded in the toe slope followed by the middle to lower slope and the upper 

slope. The reverse condition was observed with CI along the soil toposequences. Some 

consistencies were however observed between the Sentinel-2 water and soil indices at May 

27th, and June 6, 2018 respectively (Figure 6.3). 

In the study area, wet areas are associated with toe slopes, whereas dry areas are associated 

with upper slopes. Corroborated by this observation, the topographical positions and similar 

soil texture as observed by soil types of the validation locations mainly drove the amount of 

https://zenodo.org/badge/latestdoi/239761009
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SM. This consequently influenced the radar backscatter along the soil toposequences 

(Franceschetti and Lanari 2018). On the one hand, the toe slope soils with low elevation and 

high clay content, tends to have higher SM and hold SM for longer periods than the other 

toposequences. On the other hand, the medium to low SMp values of soil types of the different 

soil toposequences determined the reflectivity and intensity of radar backscatter (observed 

here by the low) (Petropoulos 2013). In terms of the derived water indices from Sentinel-2 

image products, low TCWI and NDWI2 is consistent with medium SMp, similar to the 

observations of Sánchez-Ruiz et al. (2014) and Sánchez-Ruiz et al. (2015). The higher 

discrepancies observed with CI index is probably due to the strong and bright soil colors and 

the well to moderately-well drained soils in the upper and middle to lower slopes of the study 

area (Adu 1995). Another possible reason for the inconsistencies observed with soil and water 

indices, between May 27 and June 6, 2018 (Figure 6.3), was implicated by the increased 

amounts of precipitation in the study area from June 8, 2018. 
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Figure 6.3. Temporal variability of in situ SM (SMp), Sentinel-1 𝜎𝑉𝑉
0  (VV) and Sentinel-2 derived 

soil (CI) and water (NDWI2, TCWI) indices along topographical units. CI = soil Color Index, NDWI 

= the second Normalized Difference Water Index and TCWI = Tasseled Cap Wetness Index. 

Along the topographical units are; A = upper slope, B = middle to lower slope and C = toe slope. 



 

 89 

6.3.2 Influence of integrated datasets in the regression matrix of the EBM 

6.3.2.1 Optimal model input features 

Optimal model input parameter combination and their importance is presented in Figure 6.4. 

Ten most important features were selected as optimal predictors for estimating SM for our 

case study areas (R2 = 0.98) (Figure 6.4). These optimal features follow those documented in 

the literature for bare soils of other geographical settings (Lievens and Verhoest 2011; Pasolli 

et al. 2014). Physical soil properties were considered less important via the RF-RFE model. 

Generally, all selected parameters cumulatively showed strong importance in the list of model 

inputs. However, on the one hand, there was a negligible decrease in variations explained by 

the RF-RFE when LIA was initially included (Figure 6.4). On the other hand, no marked 

differences (∆R2 = +0.01) were observed when DEM-derived variables were further included 

(particularly TWI; Figure 6.4). Despite the slightly marked differences in the estimated R2, our 

results suggest that the main contributing variables, cumulatively, were from Sentinel-1 and -

2 derived variables. This observation indicates that though the DEM-derived variables 

contributed minimally, they however accounted for some effects due to inherent site-specific 

landscape heterogeneities such as those from surface roughness and topography at the 

validation locations. One other possible explanation is the coarse resolution of the DEM (i.e. 

1 arc-second). It can be assumed that the higher the resolution, the higher the estimation 

accuracy of intended soil properties with a DEM-derived variable (Hengl et al. 2017b). In 

inference, the enrichment step of selecting optimal-model input feature combination is critical 

in SM estimation than using as many auxiliary datasets available (Holtgrave et al. 2018). Thus, 

over-usage of auxiliary datasets could be detrimental to accurate SM estimation from RS data. 
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Figure 6.4. Optimal set of input features and its importance (high R2) in estimating  SM from 

integrated radar-optical-DEM-derived variables. 

 

6.3.2.2 Sentinel-1, -2 and DEM-derived variables 

Radar backscatter is mainly affected by the dielectric properties of soils that is driven by the 

amounts of inherent SM (Dobson et al. 1985; Barrett et al. 2009). Consequently, at low SM 

levels, radar backscatter is also highly affected by landscape heterogeneities such as surface 

roughness, topography and others (Gao et al. 2017). The generally measured extremely low 

and low SMp levels suggest that not only inherent SM accounted for the radar backscatter for 

our case study areas, but also, other site-specific landscape heterogeneities (Gao et al. 2017). 

Higher variation of predictors (Figure 6.3) show a capability in discriminating the target 

variable (in this case SMp) (Omar et al. 2017). From the integrated radar-optical-DEM dataset, 

𝜎𝑉𝑉
0 , LIA, and DEM-derived variables (TWI, ASP, SLP, SurfR and ELev) showed higher capability 

in discriminating the entire range of SMp levels on the one hand (Figure 6.5) (Holtgrave et al. 

2018). Sentinel-2 derived variables, i.e. TCWI, CI and NDWI2, specifically discriminated 

different ranges of measured SMp, on the other hand. At the extremely low SMp, SMp was 

mainly discriminated by TCWI whilst CI and NDWI2 discriminated the medium, and low to 

medium SMp respectively (Figure 6.5). This shows that our input parameters allowed a wider 

range of variability in order to discriminate and potentially estimate SM within the entire 

range of SMp of the validation locations (Urban et al. 2018). 
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Concerning radar backscatter and SM, strong linear relationships (R2 = 0.9) have been reported 

for moist and wet soil conditions (~25% Vol to 90% Vol), particularly for Sentinel-1 and other 

related SAR images (Amazirh et al. 2018; Holtgrave et al. 2018). However, very little has been 

reported on dry and slightly moist soil conditions (El Hajj et al. 2017). In El Hajj et al. (2017), 

weak linear relationship (R2 = 0.3) was reported between 𝜎𝑉𝑉
0  and low to medium SM levels 

(~7% to 36.3% Vol). This observation suggests that very weak linear relationships between SM 

and 𝜎𝑉𝑉
0  are expected at low and extremely low SM conditions. Corroborated by these 

observations, we observed a similar trend and a very weak linear relationship was recorded 

between SMp and  𝜎𝑉𝑉
0  (R2 = 0.1; Figure 6.5). Similarly, all other integrated variables used for 

the SM estimation also recorded weak relationships with SMp (R2 = 0.1–0.2; ρ < 0.05). Our 

results thus suggest that the synergetic use of Sentinel-1, -2 and DEM-derived variables rather 

presents an improved approach, which strengthens the relationship between input 

parameters and SMp. Supporting this point, a cumulative R2 of 0.66 was observed (Figure 6.5). 

In addition, the radar-optical-DEM data integration strengthened the SM levels’ discrimination 

capability (Holtgrave et al. 2018). It is worth noting that this observation is only valid for 

validation locations of the installed access tubes, which are characterized by bare arable soils 

with no vegetation cover. 

 

Figure 6.5. Distribution of SM estimating variables showing their capability in  discriminating 

the range of in situ SM levels (SM). VV = Sentinel-1  𝜎𝑉𝑉
0  and LIA = local incident angle from 

Sentinel-1. Sentinel-2 derived variables include CI (soil Colour Index), NDWI (the second 
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Normalized Difference Water Index) and TCWI (Tasselled Cap Wetness Index). DEM-derived 

variable also includes TWI (SAGA topographic wetness index), ASP (aspects), SLP (slope), SurfR 

(surface roughness) and Elev (elevation). Coefficient of determination (R2; in parenthesis) 

were all significant at ρ < 0.05. 

 

6.3.3 Model validation and performance 

6.3.3.1 SM estimated via the base MLAs 

From the optimal input feature combination, SM estimated by the ANN algorithm recorded 

an estimation error (RMSE) of 0.18% Vol SMp (R2 = 0.92) and is represented by the linear 

regression equation SMe = 0.09 + 0.93*SMp (Figure 6.6A). SM estimated via the SVR algorithm 

resulted in an estimation error of 1.14% Vol SMp (R2 = 0.94; Figure 6.6B) and is also represented 

by the linear regression equation SMe = 0.18 + 0.88*SMp. From Figure 6.6C, an estimation 

error of 0.15% Vol SMp (R2 = 0.93) was achieved via the RFR. The linear regression equation 

SMe = 0.30 + 0.8*SMp represents the relationship between SMe and SMp via the RFR algorithm. 

Though the highest proportion of variance of the base MLAs was explained by SVR, RFR 

recorded the lowest SM estimation error. Concerning SM estimation error, SVR was the least 

performing algorithm (Figure 6.6). However, all MLAs showed a strong generalization ability 

in estimating SM along the entire range of SMp. The margin of model performance (∆RMSE) 

between base MLAs were all < 1% Vol SMp. Corroborated by their performance metrics shown 

in Figure 6.6, ANN and RFR performed similarly as compared to the SVR algorithm. 

Our findings indicate that the base MLAs exploited the range of variability of the integrated 

radar-optical-DEM model-input datasets in order to estimate SM (Pasolli et al. 2015; Alexakis 

et al. 2017; Kumar et al. 2018). In addition, the MLAs exhibited a strong robustness to noise 

or ambiguities that were associated with the model input datasets (Pasolli et al. 2011). 

Alexakis et al. (2017), Pasolli et al. (2014; 2015) and Kumar et al. (2018) demonstrated similar 

observations for the ANN, SVR and RFR respectively. However, in Figure 6.6B, there is a 

systematic artefact effect with the SVR, which is mainly implicated by outliers such as image 

saturation and noise from Sentinel-1 and -2 images, and the extremely-low inflated SMp 

(Ulaby et al. 2014; Holtgrave et al. 2018). The increased number of support vectors in the SVR 

explains this observation and thus, indicates the need for more training points (Keerthi and 

Lin 2003; Smola and Schölkopf 2004). This observation appears to be one of the drawbacks of 

limited-SVR training datasets in image analyses. It is worth noting that sometimes increased 
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number of iterations tends to overestimate data and thus, might have also contributed to the 

observed systematic artefacts shown in Figure 6.6B (Hauck and Mühll 2003). 

 

 

Figure 6.6. SMp versus SMe by the optimized  base MLAs and the EBM. For A) ANN algorithm, 

B) SVR algorithm, C) RFR algorithm and D) EBM. 

Comparing the base MLAs, the order of model stability and reliability (i.e. robustness to 

extremely-low SMp values) were RFR (0.81; standard deviation) > SVR (0.89) > ANN (0.95). In 

the study of Kumar et al. (2018) where RFR, SVR and ANN were compared, similar model 

stability was demonstrated for RFR. Notarnicola et al. (2008) and Paloscia et al. (2013) also 

reported similar model stability for the ANN. Although SVR was the least performing algorithm 

with regards to SM estimation error, it showed similar model stability as the RFR. The possible 

explanation for this observation is due to the strong generalization ability of SVR than just 

reducing the SM estimation error (Tomar et al. 2011; Vapnik 2013). In addition, SVR allowed 

greater tolerance to noise and converged on a global minimum, as reported by Bisgin et al. 
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(2018). Hence, SVR closely showed a strong relationship between SMp and SMe, than RFR and 

ANN. 

Seemingly, Sentinel-2 derived variables contributed to an increase in the base MLAs 

performance compared to using only Sentinel-1 derived variables – as depicted by the 

cumulative R2 of the RF-RFE model (Figure 6.4). The dominant low and extremely low SM 

conditions at the validation locations confirms these findings and are corroborated by those 

reported in the literatures for dry-bare soils (Paloscia et al. 2013; Pasolli et al. 2015; El Hajj et 

al. 2017). Another critical contribution to the low SM estimation errors was the inclusion of 

the DEM-derived variables. This is because, it has been demonstrated that by including DEM-

derived variables in SM estimation from RS data, ambiguities that results from landscape 

heterogeneities such as surface roughness and topography are disentangled (Pasolli et al. 

2014). The aforementioned findings therefore suggest that at extremely low to medium SM 

conditions, Sentinel-1  𝜎𝑉𝑉
0  alone, without the inclusion of Sentinel-2 and other DEM-derived 

variables, is not a viable way to estimate SM (Banson et al. 2016). 

Slight discrepancies observed as compared to the baseline methodologies, from which this 

study extends and modifies, can mainly be attributed to the different characteristics of the 

validation locations. In this study, we focused on bare arable lands with very dry soil conditions 

whilst the others validated SM in vegetated moist to wet soil conditions. 

 

6.3.3.2 SM estimated via the EBM 

By combining the base MLAs, we recorded the highest model performance and the lowest 

estimation error, i.e., 0.96 (R2) and 0.12% Vol SMp (RMSE) respectively (Figure 6.6D). A linear 

regression equation SMe = 0.19 + 0.88*SMp represents the EBM. Due to the linear synthesis 

of the outputs of the base MLAs into a single score, similar systematic artefacts observed with 

the SVR was reflected in the EBM. However, marked improvements were achieved with 

regards to the systematic artefacts via the EBM (Figure 6.6D). Proportion of variations 

explained by the EBM, between SMe and SMp, was highest than the individual base MLAs. 

One key objective of an EBM is to bag “weak” MLA into a “strong” algorithm (Kotu and 

Deshpande 2018). In the present study, the EBM achieved this objective. Supporting this 

finding is the fairly symmetrical 1:1 plot shown in Figure 6.6D. Although an enhanced SM 

estimates were achieved via the EBM, the observed systematic artefacts with the EBM is one 

of the drawbacks of coupling weak and strong performing MLAs. We thus argue that the 
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performance of the EBM is worth its usage due to the clearly marked different performance 

metrics of the base MLAs, which shows competing quality of SM estimation technique from 

the same model input datasets. Generally, the EBM reproduced the whole range of variability 

of the complex high-dimensional input datasets as compared with the individual MLAs (Table 

6.2 and appendix Table S6.1) and represented a balance of the model performances of the 

base MLAs in the SM estimation (Klinke et al. 2018; Liakos et al. 2018). 

 

6.3.3.3 Effectiveness of SM estimation models to SMp thresholds 

SMp showed slightly wider variability than estimated SM via the estimation models (Figure 

6.7A). Conversely, variability of SMe was wider than SMp when models were evaluated along 

each soil toposequence (Figure 6.7B–D). In inference, there is wider generalization of the 

estimation models, particularly, when validation locations were evaluated in its entirety than 

being evaluated along a segmentation criterion. Thus, at wider model representation, the 

MLAs and the EBM tends to obscured these competing qualities, whereas on a segmentation 

presentation, such competing qualities are clearly exhibited. Holtgrave et al. (2018) reported 

similar observations for the north-east of Germany. 

 

Figure 6.7. Comparing the effectiveness of base MLA and the EBM for estimating  SM from 

integrated radar-optical-DEM dataset. A = Overall performance of base MLAs and the EBM. 

For performance of base MLAs and the EBM along topographical units, B). upper slope, (C). 

middle to lower slope, and (D). toe slope. 
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Concerning the entire variability of SMp, all models underestimated SM with the highest 

occurring with the ANN (-0.64%; PBias) and the lowest via the RFR (-0.04%) (Table 6.3 and 

Figure 6.7A). Over- or underestimated SM corresponded with the extremely low and low SMp 

values across all models, particularly, as those depicted by the upper slope toposequence 

(Table 6.3). Our observations follow those of Holtgrave et al. (2018). Similarly, Ahmad et al. 

(2010) demonstrated such model overestimation at low SMp, particularly with the SVR. Also, 

the SVR showed marked differences in terms of over- or underestimation across soil 

toposequences. Although it has been documented that SVR falsely consider low SMp values as 

outliers (Holtgrave et al. 2018), improved SMe were however achieved with SVR than the ANN 

in the upper slope (Figure 6.7). Generally, low numbers of over- or underestimated SMp were 

observed at either the entire validation locations or along topographic unit model-

segmentation (except for the upper slope; Table 6.3). Meanwhile, inconsistencies (over- or 

underestimated SMe) observed with the EBM is implicated by the performance of the base 

MLAs along the soil toposequence segmentation. Comparably, in the middle to lower and toe 

slopes, all models again underestimated SMp (range = 2.36% SMp; Table 6.3) except for the 

upper slope toposequence, where an over-underestimation trend was observed. The possible 

reason for this observation, particularly in the upper slope, is due to the extremely-low 

inflated SMp (Vorontsov 2009; Tomar et al. 2011). In addition, these trends could also be 

attributed to the sparse nature of our in situ SM measurement network and the long abrupt 

transition periods between in situ measurement (i.e. 12-day interval) (Ramcharan et al. 2018). 

In Baskan et al. (2013), SM is reported to change at small distance and time intervals. With 

decreased time-lags, gradual changes can be registered to enhance model estimation 

performances, especially in the case of low-inflated SMp. 

 

Table 6.3. SM that was over- or underestimated by the base MLAs  and the EBM 

Level of bias estimate 
RFR ANN SVR EBM 

% Vol. 

By all models  -0.04 -0.64 -0.24 -0.33 
Along soil toposequences 

Upper slope  2.59 -5.93  2.62  -0.59 

Middle to lower slope -0.07 -0.52 -0.03 -0.23 

Toe slope -0.89 -0.73  -2.39  -0.74 

Positive values indicate overestimating bias, whereas negative values indicate 
underestimating bias. 
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Although improved SMe can be achieved via the estimation models, there is a < 0% Vol SM 

estimation effect (represented here as “false” SMe) with the ANN at the extremely low SMp 

cluster for the case of our study areas (Figure 6.6 and 6.7). At eleven in situ measurement 

locations, ANN recorded false estimated SM with SMp threshold of 0.375% Vol (minimum). 

Although such effect was observed with the SVR and EBM, they are however insignificant 

(Figure 6.7). The findings of Ahmad et al. (2010), which demonstrated that ANN was unable to 

capture low SMp, corroborates our observations. For the case of our study areas, at ≤ 0.375% 

Vol SMp, ANN is ineffective and under-performs, which caused the EBM to behave similarly. 

This finding is corroborated by results obtained from the toe slope where consistent higher 

SMp was recorded at all stages of the dry season, and no “false” SM was estimated (Figure 

6.7D). Temporal antecedent precipitation of the study area well correlate with these findings. 

Thus, medium and extremely low SMp in toe and upper slope respectively, and low and high 

precipitation at February 20, 2018 (peak of the dry season) and at June 8, 2018 (onset of heavy 

rains) respectively. Clearly, over- or underestimation and “false” estimated SM results rather 

show a significant optimization via the EBM. Figure 6.8 confirms the higher correspondence 

between SMe and SMp. These observed phenomena, as shown in Figure 6.8, buttress our call 

for rather using a coupling approach instead of individual MLAs in SM estimation from RS data 

(Ali et al. 2015). It is important to note that we did not cover higher ranges of SM in soils of 

the study area at the time of SMp measurements. Hence, we cannot also recommend the 

maximum SMp thresholds at which these MLAs are also inefficient. Further studies with 

extremely higher SM values could verify these MLAs performance thresholds. 
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Figure 6.8. Scaled probability distribution of measured (SMp) and estimated (SMe)  SM for A) 

the ANN algorithm, B) the RFR algorithm, C) the SVR algorithm and D) the EBM. 
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6.4. Conclusion and outlook 

In this paper, the feasibility of using an ensemble of RFR, ANN and SVR to estimate SM from 

integrated Sentinel-1, -2 and DEM-derived datasets was investigated and validated for the 

Guinea savannah zone of Ghana. The SM estimation was validated by comparing SMp to SMe. 

By linearly combining the outputs of the base MLAs in the EBM, the overall SM estimation 

errors and model performances were improved. Hence, the EBM points out an effective way 

to estimate SM from RS data with an improved estimation accuracy. In general, the SM 

estimation approach is data-driven, hence, selecting optimal input parameter combination 

was key to improve the estimation accuracy. From the generally low SMp levels, Sentinel-2 

derived variables highly contributed to an increase in the base MLAs performance compared 

to using only Sentinel-1 derived variables. Nevertheless, by coupling the robustness of the 

base MLAs and the use of the integrated radar-optical-DEM input dataset, improved 

estimation results are achieved. Despite competing performances from the base MLAs, the 

EBM presented a greater data generalization ability and robustness to ambiguities in the 

model input datasets. All models (except RFR) estimated “false” SM as certain minimum SMp 

thresholds. At SM threshold of ≤ 0.375% Vol SMp, ANN is ineffective and under-performs for 

the case of our study areas. However, the EBM showed a significant optimization and 

presented the best compromise between the over- or underestimation and “false” estimated 

SM of the base MLAs. One novel aspect of this study was the determination of the minimum 

SM thresholds at which these widely used MLAs under-performed. Future work will 

investigate the maximum SM thresholds at which these MLAs are also inefficient in order to 

provide full model performance recommendations. 

The outcome of this study suggests that at certain SM regimes and soil conditions, the EBM is 

an effective tool for SM estimation from ESA’s Sentinel-1 and -2 missions. Hence, new 

perspectives are opened to improve SM inputs into crop simulation models and also map 

surface SM at detailed spatio-temporal global scales. 
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Spatio-temporal mapping of soil water storage in a semi-arid landscape of Northern 

Ghana – A multi-tasked machine-learning approach 
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Chapter 7: Spatio-temporal mapping of SWS in a semi-arid landscape  of Northern Ghana – 

A multi-tasked machine-learning approach 

This manuscript is under review as: 
Nketia KA, Ramcharan A, Asabere SB, Herbold S, Erasmi S, Sauer D. Spatio-temporal mapping of soil water storage 
in a semi-arid landscape of Northern Ghana – A multi-tasked machine-learning approach. 
 
Conference presentation at AGU Fall Meeting 2019, San Francisco: H134, The Role of Soil Moisture in Land–
Atmosphere Interactions. https://agu.confex.com/agu/fm19/webprogrampreliminary/Paper535503.html  

 
Abstract 

 

Root-zone soil water storage (SWS) illustrates the water storage adequacy of soil horizons and 
its water reservoir capabilities from which crops can draw upon during transient water deficit 
periods. However, such a critical variable is not available at spatio-temporal models for sub-
Saharan Africa, where the agricultural sector is the mainstay of many national economies. For 
this reason, we developed the first spatio-temporally explicit modelling framework to map the 
four-dimensional SWS at a 100 m spatial resolution (12-day temporal resolution). We validate 
the modelling framework with time-series in situ SM data (𝑛 = 1,920) from 36 locations on key 
benchmark soils in the Guinea savannah landscape of Ghana. The multi-tasked modelling 
framework was implemented with an ensemble of a parallelized random forest for spatial data 
and the extreme gradient boosting algorithms to predict maps at six standard soil depths 
(after the GlobalSoilMap specifications). As model-input datasets, we used an optimal subset 
from a priori stack of over 100 key parameters that drives the variability of SWS and follows 
the scorpan concept for soil mapping. The multi-tasked model framework was optimized and 
evaluated via a 5 − 𝑓𝑜𝑙𝑑 Leave-Location-Time-Out cross validation algorithm, and its 
performance assessed by its fitting and validation accuracy, model bias and stability. Our 
results showed that the multi-tasked ensemble model is a viable alternative to predict the 
four-dimensional SWS. An accuracy (𝑅𝑀𝑆𝐸) of 0.22 mm (0.84 ≤ 𝐶𝐶𝐶 ≤ 0.86) was recorded for 
predicted SWS via the ensemble approach, which was an improved performance over the base 
machine-learning algorithms. Comparing the predicted SWS to its corresponding in situ SWS, 
similar results were recorded (mean; 3.54 ± 0.03 mm and 3.56 ± 0.04 mm respectively). 
Predicted SWS in the shallow soil layers were highly variable, unstable and consistently dry 
(high temporal instability) compared to the bottom soil layers, which showed time-stable wet 
cluster of locations due to increase SM and clay buildup that promoted stability. The main 
implication of this study is that time-stable locations where crop water requirements can be 
met during crop growing periods can be explicitly identified for improved crop production. 
Our outcomes form a core support system necessary to guide the implementation of drought-
adaptation measures and complement existing digital soil mapping initiatives. Further 
possible management options from the predicted maps include, e.g., to either prolong the 
existing major single farming window or identify locations and durations where additional 
crop-specific farming is applicable in these semi-arid landscapes. The automated modelling 
framework is open-sourced and robust, and can easily be updated with new in situ 
measurements. 
 

Keywords: digital soil mapping, Guinea savannah zone, root zone, soil moisture, soil water 
storage, semi-arid, spatio-temporal variability, sub-Saharan Africa

https://agu.confex.com/agu/fm19/webprogrampreliminary/Paper535503.html
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7.1 Introduction 

Despite crop production limitations and climate change projections in sub-Saharan Africa 

(SSA), smallholder farmers can meet their food demands through an adapted agricultural 

practice, particularly, in the Guinea savannah zone where a vast prospect for agricultural 

production exist (Morris et al. 2009; Xie et al. 2018). Studies have suggested that because of 

the vast Guinea savannah zone of SSA, it could become a major food producing area not only 

for the region, but also, for the rest of the world (Bourne Jr 2014; Guilpart et al. 2017). The 

degree to which such a suggestion holds is dependent on the sustainable implementation of 

ongoing adaptations. Within SSA, West Africa is of utmost concern regarding agricultural 

production limitations and land mass expansion (van Ittersum et al. 2016). This is because, on 

the one hand, West Africa has mainly accounted for ~60% of the total value of agricultural 

outputs in Africa for about two decades (OECD 2016). On the other hand, West Africa has a 

vast prospect for commercial agriculture in SSA (Morris et al. 2009). Hence, it is critical for 

ongoing agriculture adaptations to adequately improve production limitations so as to boost 

food-crop production. Historically, yield increase in SSA is partly attributed to land 

extensification rather than crop intensification (Brink and Eva 2009; van Ittersum et al. 2016). 

In this regard, van Ittersum et al. (2016) suggested that reduction in crop land extensification 

and yield gap closure can only be achieved by abrupt acceleration in the rate of crop 

intensification efforts. It is therefore key to enhance the options that are geared towards crop 

intensification. Such intensification options are essential due to the dwindling suitable arable 

lands in SSA and land-demand pressures due to increasing population (Vanlauwe et al. 2014). 

Among such adaptation options has been the call for digital soil mapping (DSM) that is needed 

to guide sustainable agriculture, crop intensification, modelling agricultural systems and site-

specific recommendations (Montanarella and Vargas 2012; Shepherd et al. 2015; Hengl et al. 

2017a). Despite the proliferation of DSM initiatives to address the requirements of soil data 

and information around the world (Sanchez et al. 2009; Grunwald et al. 2011; Hengl et al. 

2017b), SSA still has large terra incognita ahead of its DSM initiatives (Vågen et al. 2010; 

Guilpart et al. 2017; Leenaars et al. 2018). For instance, critical spatio-temporal SWS 

information of the root zone of soil that is necessary to support the ~80% population of 

smallholder farmers involved in rainfed agriculture is non-existent (Guilpart et al. 2017; 

Leenaars et al. 2018). Thus far, no study has functionally mapped root zone SWS. In addition, 

very little is known about the spatio-temporal variability of SWS and its potential to boost 
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food-crop production, particularly in the semi-arid landscape of SSA (Guilpart et al. 2017). 

Furthermore, the missing SWS information reveals the paucity of data within the root zone of 

soils of SSA that can also drive dry season farming and drought adaptation interventions for 

notable crops of the area. 

In this regard, the flagship projects of SSA, i.e. the Africa Soil Information Service (AfSIS) 

project (http://africasoils.net/) and the Global Yield Gap Atlas (GYGA) project 

(http://www.yieldgap.org/) were implemented. However, they are both limited to address 

the information gap on root zone SWS. This is mainly because, the AfSIS project focused on 

improving data availability, accuracy and resolution of soil fertility parameters (Vågen et al. 

2010), whilst the GYGA project focused on gap filling for spatially explicit soil maps and root 

zone plant-available water holding capacity (Leenaars et al. 2018). Other such DSM initiatives 

in SSA and around the world includes those of Dewitte et al. (2013), McBratney et al. (2003), 

Forkuor et al. (2017), Hengl et al. (2015; 2017a; 2017b) and Padarian et al. (2019a), however, 

none reported on mapping root zone SWS of soils. In this study, we focus on filling the missing 

knowledge gap on the spatio-temporal SWS with explicit four-dimensional maps for the root 

zone of soils. Such critical contribution to existing DSM initiatives can address concerns such 

as (1) where (spatial location), (2) when (temporal), (3) quantity (requirements) and (4) 

stability of SWS available to support crops through their growing season (Chivenge et al. 2015; 

Mei et al. 2018). In addition, information on SWS would be useful for optimizing soil water 

management and the design of soil water modelling agricultural systems. 

The concept of SWS is not recent, however, it has currently been acknowledged as one of the 

critical state variables necessary for plant growth and the sustainability of rainfed agriculture, 

especially in areas with soil water deficits (Zhao et al. 2017). SWS is mainly recharged by 

infiltration from rainfall events or irrigation and or upward groundwater movement. After field 

capacity is achieved, SWS reflects the size of water reservoir of soil horizons and its water 

storage adequacy from which crops can draw upon between rainfall events or irrigations 

(Guilpart et al. 2017). Within the crop roots, SWS indicates the potential of soils to buffer crops 

against transient water deficits that are critical at specific growth stages (Hall et al. 1982). At 

water deficit periods, the quantification of SWS shows the criticalness of crop productivity 

when evapotranspiration demands are not met by rainfall (Passioura and Angus 2010). 

However, due to the heavy influence of soil-landscape factors such as soil texture, 

evapotranspiration, precipitation, vegetation and others on SWS, water is easily lost from the 
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soil system (Baskan et al. 2013; Biswas and Zhang 2018; Mei et al. 2019). These input-output 

phenomenon leads to different SWS adequacy at different soil depths and at different times. 

Around the world, such vertical soil water fluxes form a key component for the survival of 

rainfed agriculture, especially in water deficit landscapes. Due to the importance of SWS in 

the agricultural systems, it has been broadly applied in diverse climatic zones such as semi-

arid (Mei et al. 2019; Ren et al. 2019), tropical (Adeboye et al. 2017) and temperate (Huang et 

al. 2018) settings, on different hillslopes ranging from upper to toe slopes (Mei et al. 2018; He 

et al. 2019; Mei et al. 2019), and over other land uses such as grassland (Huang et al. 2018; 

Mei et al. 2018), cereals (Jia et al. 2013), legumes (Adeboye et al. 2017) and forest (Zhang and 

Shangguan 2016; He et al. 2019). Other studies have also investigated how farm management 

affects SWS dynamics (Adeboye et al. 2017) and its spatio-temporal variability along hillslopes 

(Duan et al. 2016; He et al. 2019; Ren et al. 2019). In terms of spatio-temporal variability of 

SWS, topography (i.e. slope, elevation and slope positions) (Yang et al. 2015; Mei et al. 2019), 

soil properties (i.e. texture, depth, organic matter and bulk density) (Baskan et al. 2013; 

Gutierrez-Lopez et al. 2014), vegetation cover (Fang et al. 2016), and precipitation amounts 

and intensity are mainly the integrated site-specific driving factors. In Yang et al. (2015), 

topographic factors mainly drove SWS in surface and bottom soil layers of the semi-arid 

hillslopes of the Loess Plateau of China. Similar observations were demonstrated by Mei et al. 

(2018) also for the same area during wet periods. However, for dry periods, soil properties 

mainly account for SWS spatio-temporal variability (Grayson et al. 2002). To our knowledge, 

only few studies have studied the spatio-temporal variability of SWS along an entire soil profile 

and how its spatio-temporal distribution is influenced by multiple-environmental factors 

simultaneously (Zhang and Shangguan 2016; Zhao et al. 2017; Mei et al. 2018). It is important 

to state that these studies were mostly conducted at a traditional point-to-point scale, and 

thus, does not reflect the spatio-temporal distribution of root zone SWS along an entire 

soilscape. Thus, it is imperative that a robust spatio-temporal modelling investigation is 

conducted to adequately address concerns such as spatial location, temporal variability and 

the stability of SWS quantities simultaneously. 

One thing that is common among the aforementioned DSM studies, whose approaches can 

be applied to model the spatio-temporal distribution of SWS, is the use of machine-learning 

algorithms. Acknowledging the plethora of extensive investigations and evaluations of 

machine-learning algorithms such as random forest, gradient boosting, support vector 
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machine, cubist and sophisticated neural networks, which has proven to be very useful for 

DSM, we thus mainly focus on applying these proven approaches to model the root zone SWS. 

Here, we apply a multi-task modelling approach similar to the modelling concept of Padarian 

et al. (2019) with the widely used random forest and extreme gradient boosting algorithms. 

In this way, we account for the spatial structures such as patterns, proximity and time-domain 

dependences of the in situ and optimal model-input datasets. We therefore aimed in this 

paper to contribute to the existing DSM initiatives, by reporting on results of a complimenting 

DSM modelling framework for the semi-arid landscapes of Ghana. We show findings from 

integrated remote sensing data and time-series in situ SM measurements, which were used 

to map the four-dimensional root zone SWS. We validate the developed maps at a local scale 

in a 150 x 80 km agricultural catchment of Ghana. Due to large amounts of small farm sizes in 

the study area, which is reminiscent of the general farm size of SSA (Lowder et al. 2016), we 

use high spatial resolution multi-temporal radar and optical remote sensing images to infer 

modelling covariates. We analyze the spatio-temporal SWS changes and its stability to support 

recommendations for additional applicable cropping window, which is necessary to boost 

crop production capacities and potentials. Further, we examine the extent to which integrated 

site-specific driving factors influence SWS variability in the semi-arid landscape of Ghana. By 

these objectives, we therefore enhance existing DSM initiatives to ensure an improved 

adaptation option critical to support sustainable agriculture. Hence, smallholder farmer’s 

adaptive capacity can adequately consider fundamental soil information necessary to boost 

crop productivity. 

 

7.2 Methods 

7.2.1 Static and dynamic covariates 

In order to produce a predicted root zone SWS map for our case study areas, we followed the 

scorpan concept, which is core of DSM and has been widely used in studies with similar 

objectives (McBratney et al. 2003). Thus, we obtained an extensive stack of covariates for our 

root zone SWS modelling, which were classified as static, dynamic and process-based model 

input datasets. Here, from expert knowledge and literature, we considered these covariates 

to be relevant to soil formation and represented factors that have a causal relationship and 

drives the variability of SWS (Baskan et al. 2013; Mei et al. 2019). Among others were 

attributes that represented climate, vegetation, topography, geology or parent material and 
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the space-time factor. Static covariates included: (1) gridded distance from rivers and soil 

physical properties (such as soil types, clay and silt contents, and bulk density), (2) gridded 

thickness of soil, regolith and sedimentary deposit layers and (3) predicted soil properties 

(such as organic matter and available soil water capacity until wilting point) from AfSIS data 

repository (Vågen et al. 2010). Dynamic covariates included precipitation, evapotrainspiration, 

cumulative days, day of the year and MODIS-land surface temperature (day and night). As 

gridded process-based covariates, we selected features derived from the Shuttle Radar 

Topographic Mission-DEM with spatial resolution of 1 arc-second and other spectral 

reflectance of remote sensing images. Among such process-based features were 𝑆𝐴𝐺𝐴 -

topographic wetness index, flow accumulation, Multi-resolution valley bottom flatness, 

modified soil adjusted vegetation index and profile curvature (Conrad et al. 2015). 

See appendix Table S7.1 for further descriptions. Covariates were either obtained at 100 m 

spatial resolution or resampled to 100 m spatial resolution. For example, covariates at > 100 

m spatial resolution were resampled via a cubic spline algorithm and with a bilinear algorithm 

for those < 100 m spatial resolution. Covariates were processed and derived in 𝑅 software (R 

Core Team 2017) using 𝐺𝑆𝐼𝐹 (Hengl et al. 2014), 𝐺𝐷𝐴𝐿 (Mitchell and Developers 2014) and 

𝑟𝑎𝑠𝑡𝑒𝑟 (Hijmans et al. 2015) 𝑅 packages with libraries and functions from 𝑆𝐴𝐺𝐴–𝐺𝐼𝑆 software 

(Conrad et al. 2015). 

 

7.2.2 Root zone SWS estimation framework 

7.2.2.1 Root zone SWS as a function of soil depth and time 

To estimate the root zone SWS at each in situ data point, we used measured SM at each time-

step (𝑡) and depth (𝑑) to recursively profile SWS as a function of the effective soil thickness 

and the degree of soil compaction that accounted for the effect of soil depth on the in situ SM 

measurements (Figure 7.1) (Mei et al. 2019). We assumed SWS for the subsequent depth (𝑑), 

at each temporal domain (𝑡) with temporal resolution of 12-days, as a reservoir for the 

preceding soil depth (𝑑 − 1) only. Here, ground water movement was not considered in 

profiling SWS, because in the study of Asiamah and Dedzoe (1999), it was reported that 

inherent plinthic and petro-plinthic layers that occurs at 70–100 cm in the study area cut off 

the movement of ground water into the upper soil depths. Hence, SM was mainly recharged 

from the top soil layers into the bottom layers. For these reasons, the observed changes in 

SWS at the 𝑖th location between depth (𝑑 − 1) and depth (𝑑) at a 𝑡th time-step is proportional 
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to the change in measured SM of the soil depths (i.e. 𝑖𝑑−1 and 𝑖𝑑). For a time-step (𝑡), which 

defines the temporal resolution at the 𝑖th location for depth (𝑑), SWS is expressed by: 

𝑆𝑊𝑆𝑖𝑡𝑑 = 0.1 ∗ 𝑓(𝑆𝑀𝑖𝑡𝑑 , 𝐵𝐷𝑖𝑑 , ℎ𝑖𝑡𝑑)𝑛 + 𝐾𝑛 ∗ 𝑓(𝑆𝑀𝑖𝑡𝑑 , 𝐵𝐷𝑖𝑑, ℎ𝑖𝑡𝑑)𝑛−1    (7.1) 

where input variables for 𝑓 were 𝑆𝑀𝑖𝑡𝑑 , which is the in situ SM measurement (%Vol) at the 

𝑖th location at the 𝑡th time-step (i.e. in situ measurement date) and at the 𝑑th soil depth, 

𝐵𝐷𝑖𝑑, the bulk density at 𝑖th location (g cm-3) at the 𝑑th soil depth. Variable ℎ𝑖𝑡𝑑  represents 

the soil layer thickness at the 𝑖th location at the 𝑡th time-step of the 𝑑th soil depth interval 

(cm). 𝑆𝑊𝑆𝑖𝑡𝑑  (mm; Equation 5.1) was estimated at a constant factor of 0.1 (i.e. the density of 

water). Time-steps for 𝑆𝑊𝑆𝑖𝑡𝑑  are in units of days, i.e. 12-day interval. Following the approach 

of Sure and Dikshit (2019), 𝐾𝑛 is estimated by the function that defines the rate of gain or loss 

in 𝑆𝑀𝑖𝑡𝑑  at the 𝑖th location at the 𝑡th time-step and at the 𝑑th soil depth between the initial 

and preceding SM measurement. 𝐾𝑛 varies from 0 (= low gain or loss) to ± 1 (high gain or loss). 

 

Figure 7.1. Spatio-temporal SWS as a function of soil depth  at the 𝑖th location. ‘tr’ and ‘dr’ 

indicates the rate of growth or loss in SWS in time- and depth-domain respectively. 

Furthermore, we developed two main functions (Equation 7.2–7.4) as extra model input 

dataset to account for the spatio-temporal autocorrelation in estimating SWS. We first used 

geographical covariates, estimated as spatial-distances, to account for proximity and spatial 

relations between a measurement location and the other locations (Hengl et al. 2018). Then, 

we calculated the Cumulative Days (from the start of in situ SM measurements) and Day of 
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the Year to represent the temporal-distances in the time domain of SM measurements (Hengl 

et al. 2018). By this approach, we accounted for time of day impact, seasonality and long-term 

trends that occurred in the in situ SM measurements. Hengl et al. (2018) reported details on 

this approach. 

[
𝑌𝑖

⋮
𝑌𝑛

] = [
𝑋𝑖

⋮
𝑋𝑛

] ∗ 𝑓𝑠𝑡𝑑 [

(𝑋𝑔𝑖1 , 𝑋𝑡𝑖1) ⋯ (𝑋𝑔𝑖𝑛 , 𝑋𝑡𝑖𝑛)

⋮ ⋮ ⋮
(𝑋𝑔𝑛1, 𝑋𝑡𝑛1) ⋯ (𝑋𝑔𝑛𝑛 , 𝑋𝑡𝑛𝑛)

]     (7.2) 

where 𝑌𝑖  is the influence due to the space-time domain of SM measurement (𝑋𝑖) at the 𝑖th 

location. Function 𝑓𝑠𝑡𝑑  defines (𝑋𝑔𝑖1, 𝑋𝑡𝑖1), which represents model input variables that 

accounted for the spatial-distances (𝑋𝑔) and temporal-distances (𝑋𝑡) respectively at the 𝑖th 

location. 𝑋𝑔 and 𝑋𝑡  are expressed by Equation 7.3 and 7.4 respectively: 

𝑋𝑔 = (𝑑𝑖 , 𝑑𝑖+1, ⋯ , 𝑑𝑛)         (7.3) 

𝑋𝑡 = ([𝐶𝐷𝑖, 𝐷𝑂𝑌𝑖], [𝐶𝐷𝑖+1, 𝐷𝑂𝑌𝑖+1] ⋯ , [𝐶𝐷𝑛 , 𝐷𝑂𝑌𝑛])     (7.4) 

where 𝑑𝑖  is the spatial-distance between a SM measurement location and others. 𝐶𝐷𝑖 and 

𝐷𝑂𝑌𝑖 are the Cumulative Days and Day of the Year respectively, used as temporal-distance 

between SM measurements 𝑋𝑖1 and 𝑋𝑖2. 

In this study, an effective soil depth of 100 cm was used to predict maps of the SWS at six 

standard soil depths (5 cm, 15 cm, 30 cm, 40 cm, 60 cm and 100 cm). Here, we vertically 

discretized the calculated SWS per soil depth according to GlobalSoilMap specifications 

(Arrouays et al. 2014) (Figure 7.2). For example, the trapezoidal rule (Equation 7.5) was applied 

to derive the weighted average of predicted SWS at depth intervals 0–5 cm or 60–100 cm. 

1

𝑑𝐿−𝑑𝑈
∫ ℎ(𝑥)𝑑𝑥

𝑑𝐿

𝑑𝑈
≈

1

(𝑑𝐿−𝑑𝑈)2

1

2
∑ (𝑥𝑛 −  𝑥𝑛−1)(ℎ(𝑥𝑛−1) + ℎ(𝑥𝑛))𝑛−1

1    (7.5) 

where 𝑑𝐿 − 𝑑𝑈  is estimated depth interval from lower depth (𝑑𝐿) to upper depth (𝑑𝑈),  ℎ(𝑥𝑛) 

is SWS at the 𝑑th depth. An extract of SWS depth curves for the standard depth intervals are 

shown in Figure 7.2. 
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Figure 7.2. Examples of depth curves (A–C) for calculated SWS (horizontal bins) vs full soil 

profile estimated SWS (red lines). Calculated SWS was derived from specific in situ soil depths 

whilst the estimated SWS covered 0–100 cm soil depth interval. 

 

7.2.2.2 Spatio-temporal stability and changes of SWS 

We estimated the spatio-temporal stability of the SWS (𝑇𝑆𝑖𝑡𝑑 ) at the 𝑖th location for each 

depth interval (𝑑) at the 𝑡th time-step by Equation 7.6 in order to access the characteristics 

and persistence of spatial structures within the soil root zone (Vachaud et al. 1985; Kachanoski 

and Jong 1988). Following the mean-relative difference method proposed by Vachaud et al. 

(1985), we calculated the spatio-temporal stability. Also, such a mean-relative difference 

method was useful for us to account for the time-invariant correlation between in situ SM 

(driven by site-specific factors) and its spatial locations. In addition, estimated 𝑇𝑆𝑖𝑡𝑑  allowed 

us to identify soil layers and areas that were consistently-wet (positive values) or consistently-

dry (negative values) than the temporal SWS mean of the study area. We classified the 

consistently-wet or -dry areas into five interval ratings as shown in Table 7.1.  𝑇𝑆𝑖𝑡𝑑  is defined 

as: 

𝑇𝑆𝑖𝑡𝑑 =  
𝑆𝑊𝑆𝑖𝑡𝑑− 𝑆𝑊𝑆𝑡𝑑

𝑆𝑊𝑆𝑡𝑑
         (7.6) 

where (𝑆𝑊𝑆𝑡𝑑) is the estimated mean SWS expressed as: 

𝑆𝑊𝑆𝑡𝑑 =  
1

𝑖
∑ 𝑆𝑊𝑆𝑖𝑡𝑑

𝑖
𝑖=1          (7.7) 

In addition to 𝑇𝑆𝑖𝑡𝑑 , we investigated the temporal change of SWS across the time-depth 

domain throughout the measurement period by selecting the peak of the dry season 

(February 20, 2018) as the initial time-step: 

∆𝑡𝑖𝑚𝑒𝑆𝑊𝑆(𝑖) = 𝑆𝑊𝑆𝑖𝑡(𝑛) −  𝑆𝑊𝑆𝑖𝑡(𝑛−1) (time-domain)    (7.8) 

∆𝑑𝑒𝑝𝑡ℎ𝑆𝑊𝑆(𝑖) = 𝑆𝑊𝑆𝑖𝑑(𝑛) −  𝑆𝑊𝑆𝑖𝑑(𝑛−1) (depth-domain)   (7.9) 
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Table 7.1. Interval ratings indicating temporal stability classification  schemes  for SWS values 

Interval Interpretation Ranking 

> 0.5 Pixel values that are extremely higher than the 
temporal mean pixel value. Classified as consistently-
wet for the corresponding time-step. 

Wet 

> 0.0 – 0.5 Pixel values that are higher than the temporal mean 
pixel value. Classified as a gradient of neutral and 
consistently-wet for the corresponding time-step. 

Slightly wet 

0.0 Pixel values that are equal to the temporal mean pixel 
value. Classified as unchanged. 

Neutral 

< 0.0 – 0.5n Pixel values that are lower than the temporal mean 
pixel value. Classified as a gradient of neutral and 
consistently-dry for the corresponding time-step. 

Slightly dry 

< 0.5n Pixel values that are extremely lower than the temporal 
mean pixel value. Classified as consistently-dry for the 
corresponding time-step. 

Dry 

Negative values are assigned with the subscript ‘neg’.
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7.2.3 Mapping spatio-temporal SWS 

7.2.3.1 Recursive feature elimination 

To obtain the optimal set of predictors for mapping root zone SWS for our case study areas, 

we used random-forest recursive feature elimination (RF-RFE) algorithm to subset the 

extensive stack of covariates (Kuhn 2018). By this way, productive features were also selected 

for the target-oriented cross validation of SWS predictions. Iteratively, with our expert 

knowledge and the RF-RFE algorithm, we eliminated features considered least important from 

the a priori model that included all covariates. Here, covariates were ranked using the Gini 

index. On the one hand, highly correlated covariates with highest correlations were eliminated 

whilst on the other hand, the RF-RFE algorithm selected covariates ranked with high 

importance that constituted the optimal prediction set with the SWS values (Kuhn 2018). This 

enrichment step ensured reduced dimensionality in the stack of covariates and the usage of 

only relevant features in the final model predictions. The optimal RF-RFE model was evaluated 

using 10 − 𝑓𝑜𝑙𝑑 cross validation, which was repeated 5-times. Model performance metrics 

used to assess selected covariates were root mean square error (RMSE), R-square (R2) and 

mean absolute error (MAE). RF-RFE was implemented in 𝑅 software (R Core Team 2017) with 

the 𝑐𝑎𝑟𝑒𝑡 package (Kuhn 2018). 

 

7.2.3.2 Ensemble prediction model 

We used a hybrid modelling approach that combined two tree-based algorithms to predict 

root zone SWS: the Random Forest for spatial data (RFsp) (Hengl et al. 2018) and the extreme 

Gradient Boosting (XgBoost) (Chen and Guestrin 2016) algorithms. In study 3, we found that 

RF algorithm performed poorly and overestimated SM at low and extremely low in situ SM 

values in the study area. This finding was partly driven by the sparse nature of the in situ SM 

measurement network, and thus we included the XgBoost to address this limitation. This is 

because, in sparse data prediction systems similar to our measurement network, DSM 

benchmarks found that XgBoost is among the best performing algorithms in sparse data 

systems (Chen and Guestrin 2016; Ramcharan et al. 2018). Other reasons for combining RFsp 

and XgBoost were due to their high prediction accuracies in complex interactions among 

covariates (Hengl et al. 2017b) and their effective parallelization for large number of spatio-

temporal pixels (Ramcharan et al. 2018). 
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Random forest algorithm in itself uses an ensemble of nested decision tree predictors to 

estimate a target variable (Breiman 2001). It iteratively draws random sub-samples from the 

training sub-sample and generates an average of individually constructed decision trees for 

the final prediction. This random selection allows a robust out-of-bag error estimate necessary 

to assess the model fit. It is important to note that only the optimal predictors drawn from the 

random sub-samples were used to partition the training sub-sample at the respective splits 

(Meyer et al. 2018). The working principle of the RFsp system (Hengl et al. 2018) follows the 

traditional random forest algorithm, except that the traditional approach used for DSM 

calibrates a target variable as a function of the intersection between the soil property and 

covariates that define its occurrence. Such an approach only reflects a point-to-point 

relationship and neglect the spatial structures such as patterns, proximity and time-domain 

dependence especially in the temporal domain (Hengl et al. 2018; Padarian et al. 2019a). 

However, the RFsp system used here leverages on the spatial structures in the model input 

datasets to address this limitation of the traditional random forest algorithm (Hengl et al. 

2018). See Breiman (2001) and Hengl et al. (2018) for details on random forest and RFsp 

algorithms respectively. 

XgBoost’s scalable tree boosting approach allows weighted quantile sketches to handle 

weights in the approximation of learning trees (Chen and Guestrin 2016). Here, an ensemble 

of trees uses additive functions to sum up scores in the corresponding leaves of the sub-

decision tress for the final prediction. In an additive way, the XgBoost model uses learned 

patterns to train itself in order to refine its parameters. Also, overfitting in the XgBoost model 

is prevented by shrinkage of newly introduced weights after each tree boosting and feature 

sub-sampling as implemented in traditional random forest. However, an optimized model is 

driven by, among others, the parameters of tree shrinkage, number of iterations, trees 

branches, influence of each iterative tree, and percentage of sub-samples to be used for 

sampling. See Chen and Guestrin (2016) for further details on XgBoost algorithm. 

 

7.2.3.3 Multi-task model implementation 

A parallelized multi-task ensemble modelling approach was adopted in this study. This was 

because, in a multi-task modelling approach, learned model representations of the predicted 

property of interest, during the model training phase, is shared in the final prediction 

framework (Padarian et al. 2019a). In other machine learning systems where such multi-task 
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approaches were used, it was demonstrated that the multi-task approach reduced model 

prediction time and overfitting, and computational resources, which consequently reduced 

model prediction errors (Ruder 2017; Padarian et al. 2019b). We simultaneously predicted 

SWS at the six standard depth intervals and at the ten time-steps (Figure 7.3). The multi-task 

ensemble modelling was executed in 𝑅 software (R Core Team 2017) on the University of 

Göttingen’s GWDG high performance computing clusters. The base RFsp and XgBoost 

algorithms were implemented with 𝑅 packages: 𝑟𝑎𝑛𝑔𝑒𝑟 (Wright and Ziegler 2015) and 

𝑥𝑔𝑏𝑜𝑜𝑠𝑡 (Chen and Guestrin 2016) respectively. In the ensemble model, we applied a 

weighted average where each base algorithm was weighted by their respective performance 

error. By this approach, we linearly combined both RFsp and XgBoost to derive the final SWS 

prediction and thus, address the limitation of equal contribution by RFsp and XgBoost in the 

ensemble model. 

In order to optimize model implementation, we partitioned the stack of optimal model-input 

covariates into stacks of spatial tiles that covered a spatial extent of 10 x 10 km per block with 

a 10% overlap. Prior to the multi-task ensemble modelling, all open-surface water covers such 

as irrigation dams, large river bodies and ponds were masked out. Subsequently, we 

parallelized the multi-task ensemble model with the generated spatial tiles to predict SWS at 

each time-step and soil depth interval. Spatial tiles of predicted SWS at each time-step and 

soil depth interval were later mosaicked into a single raster file (Figure 7.3). In both algorithms, 

optimized model training configuration was achieved via a grid search, which was resampled 

with a 10 − 𝑓𝑜𝑙𝑑 cross validation and repeated 5-times. To obtain an optimal balance 

between over- or under-fitted model by the RFsp, we used a mtry of 45 from a sequence of 

mtrys (i.e. from 1 to 150 by 5 units) for hyperparameter tuning. For the XgBoost model, we 

controlled the learning rate and the maximum depth of a tree with an eta of 0.4 and 

max_depth of 4 respectively. The other tuning parameter used in the XgBoost model were 

min_child_weight (instances set in terminal node = 1), gamma (minimum loss reduction for 

leaf node partition = 0) and colsample_bytree (columns to sample in tree construction = 0.8). 
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Figure 7.3. Methodological flow of the multi-task ensemble modelling. 𝑡1 represents the first 

time-step whilst 𝑡𝑛 indicates the 𝑛th time-step. Section of chart labelled ‘Base Machine 

Learners’ describe the parallelised iterative prediction of SWS at each soil depth interval by 

RFsp (RF) and XgBoost (XgB) algorithms. 

 

7.2.3.4 Target-oriented accuracy assessment 

We tested the SWS model performance (i.e. fitting and validation accuracy, model bias and 

stability) using a target-oriented cross validation (CV) as proposed by Meyer et al. (2018). In 

the target-oriented CV, we used a Leave-Location-and-Time-Out CV (LLTO-CV). Data 

partitioning were stratified into 𝑛 − 𝑓𝑜𝑙𝑑𝑠 using the 𝑖th location’s identifier and its 𝐷𝑂𝑌𝑖 in 
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order to ensure equal representation of target variable in each fold. In training the LLTO-CV 

model, all locations and time-steps (i.e. folds) except one location and a time-step (a fold) 

were used whilst the held-out fold (i.e. a location and a time-step) was then used as a testing 

sub-sample to assess the LLTO-CV performance. This step was repeated for all other folds in 

which a held-out fold in each iteration was later used for model testing. Calculated SWS were 

log-transformed prior to its use in the ensemble modelling due to its skew distribution. 

Consequently, we used a log scale to report on the LLTO-CV accuracy statistics. However, 

predicted maps were back-transformed to their original values. Performance measures used 

to assess the SWS predictions were: R2 of the LLTO-CV residuals and the RMSE. In addition, 

the concordance correlation coefficient (CCC) at 95% confidence interval was used to assess 

how the estimated SWS deviated from the 1:1 line of perfect concordance after the LLTO-CV 

(Steichen and Cox 2002) (appendix Equation S7.1, S7.2 and S7.3 respectively). 

 

7.2.4 Multi-task modelling framework 

As part of open and reproducible science, we contribute by providing detailed workflow 

including procedures used for the SWS modelling framework on an open-access repository 

(DOI: 10.5281/zenodo.3662411). Other such documents available for use includes 𝑅 scripts, 

metadata and readme files. Full datasets are publicly available on the same online repository. 

 

7.3 Results and discussion 

7.3.1 Ranking the importance of covariates for SWS modelling 

Figure 7.4 shows the top 12 model input features for our case study areas. Across the 

considered RF-RFE selection levels (i.e. Figure 7.4A–C), soil depth was ranked consistently 

highest amongst the features used for predicting SWS. This result suggests that soil depth is a 

crucial factor that influences the spatio-temporal patterns of SWS in the study area. Our 

results are consistent with the observations of Mei et al. (2018), who found similar results in 

the semi-arid Loess regions of China. In addition, it is an indication of strong correlation 

between in situ measuring soil depths and the predicted SWS, as depicted in appendix Table 

S7.2. Similar strong correlation and feature importance with regards to soil depth were 

demonstrated for other soil properties by Ramcharan et al. (2018). On the first level (Figure 

7.4A), soil depth, available water content, bulk density and sand content were considered the 

most important features. However, from the perspective of soil survey, this observation is not 

https://zenodo.org/badge/latestdoi/239761009
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entirely supported by expert knowledge as documented in the literature for SM (Jost et al. 

2005; Gao and Shao 2012; Zhao et al. 2017; He et al. 2019). The possible explanation for this 

observation lies in the target-oriented errors which are hardly considered by the RF-RFE 

algorithm (Meyer et al. 2018). In Ramcharan et al. (2018) and Leenaars et al. (2018), it was 

also reported that feature selection importance metrics could be limiting due to feature 

correlation, and thus, impact less important features (e.g. at the 24th in situ location) from 

receiving boosted importance. For instance, covariate ‘Bdst24’ was ranked among the top 4 

features in the stack of covariates. This geographical distance covariate (at the 24th location) 

was derived from a toe slope soil location with notably high SWS value. Hence, such strongly 

correlated variables are interchangeably used in the RF-RFE (Strobl et al. 2007). This 

observation appears to be one of the drawbacks of RF-RFE as it mainly considers the internal 

importance (Meyer et al. 2018). 

As highly correlated covariates such as geographical distance could impact the feature 

selection process, in addition to its computational intensiveness during its development, it 

would be practical for such covariates to be derived for clusters of target variable (Hengl et al. 

2018). For this purpose, the feature selection process would consider the general spatial 

structures and apply boosted importance equally. Although the ranked features on the first 

level are not fully supported by expert knowledge, they showed continuous consistency of 

importance at the different RF-RFE selection levels (Figure 7.4). Cumulatively, including 

additional features based on expert knowledge (subsequently ranked important variables) 

such as clay and silt contents, surface roughness, day of year, soil types and landform classes 

(Figure 7.4A and 7.4B), the RF-RFE showed marked differences in R2 and RMSEs. The 

downward change of feature importance from depth to the next important variable, i.e. 

available water content, was abrupt but changed gradually across the rest of the stack of 

covariates (Figure 7.4). Generally, soil physical properties such as clay, silt and sand contents 

showed higher importance after soil depth as compared to the process-based and dynamic 

covariates. This observation agrees with the generic scorpan concept of optimal features used 

for DSM (McBratney et al. 2003). 

From a soil-landscape standpoint, although RFE is time consuming, it is critical that model 

feature selection is guided by expert knowledge of factors that drives the variability of the 

target variable of interest, while considering the model selection performance errors. 

Therefore, the Gini importance cannot be the sole feature selector in this case, as such, we 
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limited the use of RF-RFE results for selecting model input features but rather coupled the 

selection process with expert knowledge of the study area. 

 

Figure 7.4. Selected optimal features based on the RF-RFE algorithm and expert  knowledge 

used for the SWS prediction model. Appendix Table S7.1 presents further description on the 

codes used to represent the covariates. A–C shows top three levels of feature importance with 

their corresponding optimization measures (R2 and RMSE). Section ‘A’ represents top 4 

selected covariates that explain the variability of SWS in the study area (RMSE = 0.58 mm, R2 

= 0.89% and MAE = 0.43 mm). Section ‘B’ presents top 7 selected covariates at model 

performance of RMSE = 0.57 mm, R2 = 0.89% and MAE = 0.42 mm, whilst ‘C’ shows marked 

model performance with errors RMSE = 0.50 mm, R2 = 0.91% and MAE = 0.35 mm for top 12 

optimal covariates. Xsoil represents gridded physical and chemical soil properties. Xpb 

represents process-based covariates derived from DEM whilst Xdyn represents dynamic 

covariates. 

 

7.3.2 Multi-task model performance 

The performance measures used to assess the multi-tasked modelling approach of SWS are of 

two-fold: (1) the internal model fitting performance statistics during the training phase and 

(2) the target-oriented LLTO-CV performance statistics between calculated and predicted SWS 

(Table 7.2). 
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During the model fitting phase, with hyperparameter tuning and an optimal model 

configuration, both the RFsp and XgBoost showed comparable performance measures (Table 

7.2). R2 and RMSE for RFsp were 0.96 (based on out-of-bag) and 0.32 respectively, and 0.96 

(based on repeated-CV) and 0.29 for XgBoost respectively. Although we sought to address the 

limitation of the RF algorithm for sparse data systems, the RFsp rather showed a generic 

robustness to locality similar to the performance of the XgBoost algorithm. In addition, RFsp 

was resistant to the low-inflated SWS values for most measurement locations (appendix Table 

S7.3). This suggest that in sparse measurement networks, RFsp and XgBoost can equally be 

used to achieve satisfactory results. In the present study, using only the RFsp may be suitable. 

Another possible reason for this finding was the inclusion of geographical distances as 

covariates in the model input datasets. In Hengl et al. (2018), it was suggested that such model 

input data structure distinctly smooths out predictions and thus, result in satisfactory 

performances. Furthermore, the observed localized variations characterized by the model 

input dataset complements the spatial distribution of SWS and, therefore, might be better 

represented by the RFsp and XgBoost (Hengl et al. 2018; Chen and Guestrin 2016). Although 

the performance measures of RFsp bears a close resemblance of the XgBoost, it is important 

to note that the XgBoost showed a slight improvement over the RFsp. 

 

Table 7.2. Detailed model regression statistics via the multi-task  modelling framework 

Model ME MAE RMSE R2 CCC CCCL CCCU 

Internal 

RFsp - 0.199 0.323 0.956 - - - 

XgBoost - 0.196 0.294 0.964 - - - 

Target-oriented LLTO-CV 

RFsp 0.023 0.136 0.221 0.747 0.841 0.829 0.853 

XgBoost 0.022 0.142 0.227 0.730 0.846 0.833 0.858 

Ensemble 0.023 0.136 0.218 0.752 0.850 0.838 0.861 

Model performance metrics were mean error (ME), mean absolute error (MAE), root mean 
square error (RMSE), R-square (R2) and Lin’s concordance correlation coefficient at 95% 
confidence interval (CCC) with its lower and upper limits. We show the internal-model fitting 
performance statistics during training phase (Internal) and the target-oriented LLTO-CV 
performance statistics between calculated and predicted values of SWS (Target-oriented 
LLTO-CV). 
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While the internal model fitting performance showed a somewhat “perfect-fit” of the training 

data, the target-oriented LLTO-CV rather showed a slight reduction in model performance (i.e. 

their respective R2). Downward ΔR2 was 0.21 for RFsp and 0.23 for XgBoost (Table 7.2). This is 

an indication of less robustness of the model beyond its training data. The example by Meyer 

et al. (2018) where such performance decreases were demonstrated with the LLTO-CV 

approach corroborates these findings. Although the essence of LLTO-CV is to test the 

robustness and efficiency of a prediction model beyond its training data locations in space and 

time (Meyer et al. 2018), it is also important to draw evaluation conclusions with regards to 

the adequate representation of the target variable also in space and time. Particularly, with 

the use of model’s temporal error (i.e. RSME), which has a high effect on the reliability of the 

prediction due to complete elimination of locations and time-steps. Comparing the target-

oriented LLTO-CV performances for both RFsp and XgBoost, they also showed similar model 

performance measures (Table 7.2 and Figure 7.5). This similarities for both RFsp and XgBoost 

shows, in its space- and or time-domain, high ability to predict SWS at an unknown location or 

time with certainty. Temporal errors for RFsp was 0.22 mm (0.83 ≤ CCC ≤ 0.85) and 0.23 mm 

(0.83 ≤ CCC ≤ 0.86) for XgBoost. The CCC used here can describes the overall variance of the 

predicted SWS that is explained by the multi-task modelling approach. Supporting this result, 

from the ME of the LLTO-CV (Table 7.2), neither the RFsp nor XgBoost showed clearly any 

under- or overestimation of SWS (ME nearly zero). Overall, the models accurately predicted 

the variability of the reference calculated SWS (Table 7.2 and Figure 7.5). 

One key reason of an ensemble model is to bag “weak learning” algorithms into a “strong 

learning” algorithm (Kotu and Deshpande 2018). In the present study, the ensemble of the 

base machine learners showed similar performance as the base machine learners in the 

prediction of SWS: RMSE was 0.22 mm (0.84 ≤ CCC ≤ 0.86). This is also visible from the fairly 

symmetrical correlation plot presented in Figure 7.5. 
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Figure 7.5. Correlation plots from target-oriented LLTO-CV between calculated and  predicted 

values of SWS with goodness-of-fit (dashed line) and 1:1 line of perfect concordance (solid 

line). Table 7.2 presents further description on performance measure statistics. ‘A’ shows the 

relationships based on RFsp model, ‘B’ shows that for XgBoost and ‘C’ for the ensemble model. 

See appendix Figure S7.1 for further details on the model variability and mean performance 

differences. 

Mean predicted SWS (± standard error; on a log-scale) were equal for all base and ensemble 

models (3.54 ± 0.03) but negligibly lower compared to the calculated SWS values (3.56 ± 0.04) 

(appendix Figure S7.1). However, variability of predicted SWS (range) was higher in the 

XgBoost model (6.61) compared to the ensemble (5.89) and RFsp (5.44) models (in order of 

reducing variability). These results indicate that despite similar performances from the 

prediction models, RFsp and the ensemble model predicted slightly lower SWS values 

compared to the calculated SWS (6.60). Generally, the RFsp and XgBoost show outcomes that 

agree with the calculated SWS. One possible reason for these findings is that tree-based 

machine learners are able to represent adequately the local soil-landscape interactions, which 

often results in low performance errors (Minasny and McBratney 2010; Hengl et al. 2018; 

Ramcharan et al. 2018). Such local soil-interactions were initially accounted by the sampling 

design adopted in this study (Nketia et al. 2019). Here, the local spatial structures and 

heterogeneities were defined and accounted by the global weighted principal component 

analysis, while suppressing areas that were less influencing and representative of SM by the 

cost-constrained conditioned Latin hypercube algorithm. Although ensemble models can 

achieve higher model improvements (≤ 30%), it does not always translate as improved 

accuracies in DSM (Michailidis 2017), supporting this point is Figure 7.5 and appendix Figure 

S7.1. It is important to compare base learners to assess their efficiency and risk for the target 

variable of interest prior to combining such base algorithms. 
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7.3.3 Spatio-temporal SWS as a function of soil depth 

SWS vary strongly both with depth and time. Appendix Table S7.3 describes in details the 

statistics of spatio-temporal SWS at each standard depth interval. The vertically discretized in 

situ SWS used to develop standard soil depth intervals showed no differences (mean ± 

standard error) between 0–5 and 5–15 cm, probably due to the short thickness of the in situ 

measurement depths (i.e. at 0–10 and 10–20 cm). However, from 15–100 cm there were clear 

increases in temporal mean SWS with increasing soil depth. Within the study period, at 0–15 

cm depth, the lowest temporal mean SWS was recorded with values ranging from 1.59 mm 

(peak of the dry season) to 7.16 mm (onset of heavy rains) whilst the highest was recorded at 

60–100 cm (from 117.53 mm to 131.86 mm). This observation was inversely proportional to 

the coefficient of variation observed over time with increasing soil depth, and thus, showed a 

high spatial variability at 0–5 cm as compared to the other soil depth intervals (appendix Table 

S7.3). 

Generally, the lowest SWS (range) at all standard soil depths were recorded at February 20, 

2018 (~9 mm; peak of the dry season), whilst all other time-steps showed relative increases 

from preceding time-steps – the highest occurring at the onset of heavy rains (~176 mm; June 

6, 2018). Meanwhile, regardless of time-step, specific cluster of locations showed consistently 

high SWS with increasing soil depth; thus, the toe slope soils (i.e. on Siare, Volta and Dagare 

soil types). Specifically, locations with low spatial distances from river bodies were much 

affected. One possible reason for these cluster of locations is due to their morphological 

characteristics and geographical location. Siare and Volta series are colluvio-alluvial sediments 

along the major Volta river and its large tributaries in the study area (Adu 1995). Their 

proximity to the Volta river influences its consistent high SWS despite the period of the year. 

Whereas, Dagare series are periodically deposited alluvial sediments on small river banks. 

Consequently, receded rivers during the dry season impacts its storage capacity and vice 

versa. This finding further indicates that despite the toe slope soils recorded consistently high 

SWS, Siare and Volta series’ SWS is highly influenced by river networks than the Dagare series, 

which lose most of its water in prolonged periods of drought. 

From Figure 7.6, the extent of time-stable cluster of locations increased with increasing soil 

depth interval with preceding time-steps. This result extends the findings of He et al. (2019) 

in that increasing soil depth leads to evenly distributed SWS, which weakens the degree of 

fragmentation and enhance spatial continuity of SWS hotspots. Similarly, Gao and Shao (2012) 
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demonstrated such soil-depth drift of SWS variabilities, which further complement our 

findings. Extracts of spatio-temporal gridded SWS maps based on the ensemble model for all 

standard soil depth intervals are presented in Figure 7.6. All maps (𝑛 = 60) are publicly 

available on the project’s open-access repository. The observed simultaneous spatio-temporal 

trends for SWS at the various soil depth intervals follows studies around the world, supporting 

this are the studies of Gao and Shao (2012) and Mei et al. (2019) for the 0–100 cm depth 

interval. However, these observations are site-specific, scale-dependent and not universal as 

it is in contrast to the findings of Hu et al. (2010) for similar soil depth intervals. In the study 

area, precipitation is the sole source of SWS recharge (Adu 1995). This is because of the sandy 

textured top soils, high evapotranspiration and inhibition of upward groundwater movement 

due to inherent petro-plinthic soil layers (Asiamah and Dedzoe 1999). 
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Figure 7.6. Example of gridded spatio-temporal SWS maps based on the ensemble  model for 

the standard soil depth intervals. A–C shows those for the peak of the dry season (February 

20, 2018) whereas D–F presents those for the onset of heavy rains (June 6, 2018). Complete 

set of maps for this study are accessible on the GitHub repository. 

In the study area, two main possible explanations could be given for the observed 

phenomenon in the bottom and surface soil layers. First, in the bottom soil layers are the 

derived pedogenetically variations and the inherent plinthic and petro-plinthic layer that 

occurs at ≥ 70 cm in the soils of the study area (Asiamah and Dedzoe 1999). These soil layers 
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and internal processes tend to inhibit downward movement of soil water, suggesting that 

stagnation occurs at ≥ 70 cm. The inherent plinthic and petro-plinthic layers further makes it 

difficult for SM to be replenished from groundwater. Consequently, increasing the size of 

water reservoir of the bottom horizons and its water storage adequacy. Second, in the surface 

layers, evapotranspiration demands are unmet by precipitation. Intensive evapotranspiration 

and low amounts of precipitation decreases SWS, particularly in surface soil layers of < 40 cm 

soil depth (Greenland et al. 2018). For instance, Oki and Kanae (2006) found 

evapotranspiration to utilize ~60% of rainfall input in surface soil layers. From Study 2, we also 

demonstrated that the intense variability of SM in the surface layers of the study area was 

primary driven by evapotranspiration, soil texture, precipitation and other topographical 

features. Furthermore, daily evapotranspiration in the Guinea savannah is reported to be ~3-

times the daily average precipitation, suggesting high loss of SM. All these observations 

coupled with the sandy 0–15 cm soil depth contributes to the recorded high variability of the 

surface layers. Meanwhile, the high evapotranspiration makes it difficult for water to 

percolate into the sub-surface soil layers (within 5–30 cm), which consequently affected its 

storage capacity. Other studies have found evapotranspiration, precipitation and soil texture 

to highly influence the variability of SM in shallow soil layers of other landscapes (Seneviratne 

et al. 2010; Huang et al. 2016; Biswas and Zhang 2018). Land cover has also been reported to 

largely affect SWS patterns in soil-plant systems (Zhao et al. 2017), however, due to the 

different characteristics and interspersed occurrence of Khaya senegalensis, Borassus 

aethiopum and Vitellaria paradoxa in the study area, effects due to land cover is less evident 

in the bottom soil layers. In contrast to the surface soil layer, the abundant roots of elephant 

grass (Pennisetum purpureum) might have contributed to its high variability due to root water 

uptake, in agreement with Seneviratne et al. (2010). 

Over the study period, SWS at all soil depth intervals showed positive correlations between 

time-steps, i.e. from 0.3% to 1.0% (Supplementary Table S7.2). The strongest relationships 

were recorded at 60–100 cm depth interval, whilst the weakest were recorded at 0–5 cm 

depth interval. This observation corresponded with the high-low temporal means of SWS. 

However, the strength of the relationships degrades over time which indicates a time-domain 

drift with increasing soil depth. For instance, at 0–5 cm, the correlation between time-steps 

decayed from 0.90% (strong; February 20, 2018) to 0.32% (weak; June 8, 2018). This result is 

exemplified in all other soil depth intervals with increasing time-steps (Supplementary Table 
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S7.2). These findings suggest that factors such as evapotranspiration, precipitation and plants 

roots, that highly drove the variability of SWS in the shallow soil depths were less influencing 

in the deeper soil depths. Significant correlations were reported for soil texture, particularly 

clay content, and SM for soils of the study area (Study 2), which further suggest that the 

increase in clay content in the bottom layers makes water holding capacity high for the bottom 

soil layers. For these reasons, regardless of vegetation cover and other soil-landscape factors, 

SM is the main dependent condition that drives the high dependencies in the bottom layers. 

Thus, SM mainly determines the spatial heterogeneities of SWS with increasing soil depth (Gao 

and Shao 2012). Again, supplementary Table S7.2 further shows that the explanatory power 

of SM and increasing soil depth, which determines the variability of SWS, was high for the 

bottom soil layers. Overall, in the surface soil layers, SWS was highly affected by soil-landscape 

factors; in contracts, SWS in bottom soil layers was mainly controlled by SM and soil texture. 

 

7.3.4 Spatio-temporal change in SWS as a function of soil depth 

The temporal changes in SWS observed in the soils of the study area reflect soil desiccation 

and depletion of infiltrated rainfall with soil depth (Figure 7.7). From February to June 2018, 

an increasing trend in SWS was observed. The peak of the dry season (February 20, 2018) was 

selected as the baseline for determining the temporal changes in SWS. At 0–40 cm depth 

interval, consistently extremely-low to low SWS (< 10 mm) across the study area were 

observed, whereas, at > 40 cm relatively higher SWS (> 30 mm) were recorded. The severity 

of the extremely-low to low SWS decayed with increasing time-steps. June recorded the 

highest SWS across the depth-time domain (Figure 7.7). The temporal change in SWS may be 

attributed to antecedent SWS, which is mainly driven by antecedent precipitation and 

precipitation of the study area (Study 2). In addition, the variability of other environmental 

influencing factors such as topography, vegetation and soil texture, might also be the cause of 

the large temporal changes in SWS. These observations suggest that SWS improves with 

increasing time-steps, and thus, the bottom soil layers has potentials to support food crop 

production – as such moisture reserves can be tapped to support crop growth. 

The tipping point in the temporal change in SWS, where marked increases were recorded, was 

in April (onset of rains) and peaked in June (onset of heavy rains). This observation is 

consistent with increasing soil depth and time-steps, suggesting an increase in storage 

adequacy. Supporting this point, is the underlying plinthic and petro-plinthic layer that occurs 
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at ≥ 70 cm in the soils of the area and the interspersed occurrence of trees to promote root 

water uptake (Asiamah and Dedzoe 1999). However, another possible reason for the severity 

of changes in temporal SWS, particularly in the surface soil layers (≤ 30 cm), is due to the heavy 

occurrence of elephant grass. Root structure and vegetation significantly change and controls 

spatio-temporal pattern of SWS (Jia et al. 2013). The roots of elephant grass are heavily 

distributed within the 0–50 cm depth (WCSP 2014). The predominance combined effect of 

evapotranspiration demands being unmet by precipitation, the sandy top soils and water 

uptake by the abundant elephant-grass roots might be the explanation for the recorded 

extremely-low to low changes in the surface soil layers. Meanwhile, the infiltrability of the 

surface soil layers were high, which promoted the storage adequacy of the bottom soil layers. 

In contrast, changes in the bottom soil layers is mainly controlled by SM and clay build-ups 

due to the low effect of other environmental influencing factors reported for the surface soil 

layers. Thus, SWS accumulated over time and increased with increasing soil depth, in 

agreement with the findings of Mei et al. (2019) and Gao and Shao (2012). 
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Figure 7.7. Spatio-temporal changes in SWS at each gridded location  (i.e. pixel values)  for 

each standard depth intervals from February 20th to June 8, 2018. ‘X’ values are in a measure 

based on cartesian coordinates. 

 

7.3.5 Spatio-temporal stability of SWS as a function of soil depth 

Under the five interval ratings (; Table 7.1), we found consistent time-stable SWS locations 

across the various standard depth intervals (Figure 7.8). Supporting this is the strong 

correlations between time-steps with increasing soil depth (appendix Table S7.2). These 

results are consistent with those of Duan et al. (2017) in other geographical setting. Overall, 

the temporal stability across the depth intervals showed a time-domain drift, particularly in 

the ≤ 15 cm depth interval. However, the spatial heterogeneities of these time-stable locations 
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showed satisfactory characteristics of time stability before and after the tipping point of SWS 

temporal trends (in April; onset of rains), especially at ≥ 30 cm. In the surface layers, temporal 

stability were patchier (greater instability) compared to the bottom layers, suggesting more 

temporally stable areas – in agreement with the explicit results of He et al. (2019), Duan et al. 

(2017) and Jia et al. (2013). The decrease in patchiness at ≥ 30 cm, before and after the tipping 

point, can be explained by the less influence of environmental factors on SWS in the bottom 

soil layers, but rather was mainly influenced by SM and soil texture. Our findings follow those 

of Jia et al. (2013). The greater instability seen in the < 30 cm may be attributed to root water 

uptake by the abundant elephant-grass and higher variability of rainfall, evapotranspiration 

and the sandy top soils (He et al. 2019). 

We found abrupt transition periods between time-steps and soil depth intervals, which 

showed an enhanced instability across the study area (Figure 7.8). This enhanced instability is 

likely due to the temporal resolution of the sampling strategy (i.e. 12-day interval). It has been 

found that SM changes rapidly at small distance and small-time intervals (Baskan et al. 2013), 

hence, it would be necessary to decrease the time-lag between measurement networks in 

order to have a better understanding of the transition periods between time-steps and soil 

depth intervals. Meanwhile, we found clear increases in temporal stability with increasing soil 

depth, consistent with decreasing patchiness with increasing soil depth. Other similar studies 

that assessed the temporal stability of SWS around the world complements our findings 

(Martínez-Fernández 2003; Gao and Shao 2012; He et al. 2019). The possible explanations for 

these increasing temporal stability with increasing depth are: (1) the reduced dependence on 

root water uptake by the abundant elephant-grass and, other evapotranspiration and water 

processes that affected the variability of SWS; thus, SWS remained stable over time (Zhao et 

al. 2010), (2) the pronounced clay content in the bottom soil layers, which improves the ability 

of soils to keep moisture for long periods (Baskan et al. 2013; Huang et al. 2016) and (3) the 

plinthic and petro-plinthic layer, which promotes stagnation of SM in the bottom soil layers 

(Asiamah and Dedzoe 1999). In addition, time-stable locations (particularly, in the toe slope 

soils), as documented in Study 2 to be consistently wet due to their pedological formation, 

might have also introduce more stability for the bottom soil layers. Thus, SWS tended to be 

more stable with time (Figure 7.8). Some studies suggested that landscapes with less 

undulating topography exhibited good characteristics of temporal stability due to low or no 

effect of topography, which is similar to the setting of the present study (Zhao et al. 2017). A 
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number of studies have debated whether temporal stability is greater in wet or dry periods 

(Hupet and Vanclooster 2002; Martínez-Fernández 2003), in the present study, we found a 

clear relation with increasing wetness. 

All depth intervals across the study area (except 40–60 cm) spatially showed consistent dry 

distribution until April, whereas, other time-steps ranged from slightly wet to wet. However, 

due to the easy influence of the intertwin environmental factors at ≤ 30 cm depth, they rather 

showed a wet-dry-wet trend until the onset of heavy rains in June. This wet-dry-wet 

phenomenon suggest that small amounts of precipitation is adequate to recharge the SWS of 

the surface soil layers. Within the 0–15 cm, there were no marked differences in temporal 

stability of SWS. From Figure 7.8, we can imply that neither a time-stable dry nor a time-stable 

wet location can represent the temporal stability of SWS for the various standard depths, 

rather an adequate extent of locations of an area. In essence, a cluster of extended consistent 

time-stable locations makes information on SWS applicable and useful for food crop 

production. 
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Figure 7.8. Spatio-temporal stability of SWS at each gridded location  (i.e. pixel values) for each 

standard depth intervals from February 20th to June 8, 2018. ‘X’ values are in a measure based 

on cartesian coordinates. 

 

7.4 Implication of four-dimensional SWS information for food-crop  production 

For example, in the study area, a single major cropping window is applicable, similar to other 

water deficit landscapes. One of the main challenges to implementing a dual cropping window 

in the Guinea savannah zone is water availability. Consequently, the livelihood options of 
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subsistence farmers are limited, contributing to food insecurity. However, cultivating some 

drought tolerant crops in the lean season to complement the major cropping season may be 

an essential step to boost food-crop productivity, and increase rural livelihood options. Thus 

far, there are a number of drought tolerant crop varieties available for adoption in SSA (Fisher 

et al. 2015; AGRA 2017), but the SWS information needed to support and guide these 

recommendations are missing (Chivenge et al. 2015). The outcomes of the present study then 

form a core support system that is necessary to guide the implementation of such drought-

adaptation measures, which also extends the findings of Study 2. For instance, from our 

results, it is now possible to explicitly address concerns such as (1) where (spatial location), (2) 

when (temporal), (3) at what sowing depths, (4) quantity (requirements) and (5) stability, with 

regards to SWS that are critical for the cultivation of notable crops grown in these water deficit 

landscapes. Also, the gridded SWS information can be useful for optimizing soil water 

management schemes and in the designing of soil water modelling systems. 

One other adaption measure that was recently introduced in the study area to boost crop 

production limitations, due to the single cropping window, was the “Planting for Food and 

Jobs Program” by the Government of Ghana. However, such an enormous step is still limited 

as the program can hardly be extended beyond the rainy season. In this study, we found time-

stable locations that can be used to grow, for example, short maturity crops or crops with 

deep rooting system. Our results therefore become a bridge that can extend some of these 

governmental programs by identifying time-stable locations where crop water requirements 

can be met in order for plants to survive throughout their growing period. Thus, either prolong 

the farming season or cultivate other notable crops that can tap these SWS reserves at the 

different soil depths. Furthermore, one key implication of this study is that on-going DSM 

initiatives across SSA and the world at large, can be complemented with our modelling 

framework in order to present an enhanced DSM package for improved agricultural 

productivity. Key explanation for this observation is that our modeling framework follows the 

scorpan concept, hence, covariates used here are also reported for existing DSM approaches, 

suggesting easy transferability of our approach into other jurisdictions. With regards to the 

optimal set of covariates used in the final predictions, in situ measurements and the RF-RFE 

guided by expert knowledge will always drive the optimal subset of the intended study area.  
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7.5 Conclusion 

In this study, we produced the first spatio-temporally explicit modelling framework for 

mapping the 4-dimensional distribution of SWS. We found similar accuracy performances of 

the respective machine-learning algorithms and their ensembled model. Even with high 

spatio-temporal variability of the soil-landscape, the prediction accuracies of our SWS model 

outputs were high in all algorithms, and thus, they may be useful for similar modelling 

approaches. Future modelling endeavors may benefit from an increased intensity of network 

of in situ SM measurements at shorter time lags and soil thicknesses that also covers an entire 

year, as compared to those of this study. This will reduce patchiness of temporal stability and 

inconsistencies that were reported with the increasing soil depth as in this study. Also, an 

increased in situ SM measurements may increase the sensitivity of the multi-task modelling 

framework to slight changes in SWS variability, as SM is the main determining factor across 

the whole soil profile. Beyond these modelling findings, our study also found that the shallow 

soil layers showed high variability and was consistently dry, whereas the bottom soil layers 

showed time-stable wet cluster of locations. Also, although the temporal stability of SWS for 

the various standard depths is of importance for plant growth, our results showed that neither 

a time-stable dry nor a time-stable wet location can represent the temporal stability of SWS 

for the various standard depths. 

The findings of this study demonstrate the potentials of key benchmark soils of the Guinea 

savannah zone, which can support crop productivity in parts of the dry season due to their soil 

water adequacy. The output maps from this study may be useful to inform the placement of 

suitable crops on the landscape that would make use of water storage in locations that can 

support its growth.  Similarly, areas that may have serious drawdown of water resources (i.e. 

limited SWS) that could affect the main growing season crop may also be avoided with the 

help of our output maps. 

  



 

 135 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photo: Author 

Data on seasonal soil moisture and physical soil properties from the breadbasket of 
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Chapter 8: Data on seasonal SM and physical soil properties  from the “breadbasket” of           

Ghana 

This manuscript is under review as: 
Nketia KA, Sauer D. Data on seasonal soil moisture and physical soil properties from the 
breadbasket of Ghana. 
 
Abstract 

 

Soil moisture (SM) information that depicts its spatio-temporal variability, as influenced by 
physical soil properties, is one of the critical state variables necessary to improve food-crop 
production in water deficit landscapes. In essence, the survival of every crop is contingent on 
the available SM required to support it growing stages. However, such key soil parameter is 
missing in the Guinea savannah zone of Ghana, where the challenges of water deficit 
landscapes limit crop production potentials and impair rural livelihood options. This data 
article provides: (1) spatio-temporal in situ SM (𝑛 = 1,920), (2) gravimetric SM (𝑛 = 170) and 
(3) physical soil properties (i.e. clay, sand and silt contents, and bulk density; 𝑛 = 170 each) 
from 36 validation locations across the Guinea savannah zone. Locations from where these 
datasets were generated were stratified via a coupled global weighted principal component 
analysis and a cost-constrained conditioned Latin hypercube algorithm. These locations also 
span prominent land use and key agricultural benchmark soils of the breadbasket of Ghana. 
Thus, such a comprehensive dataset can support future studies in improving food-crop 
productivity in the Guinea savannah zone of Ghana. It is worth noting that the settings of the 
Guinea savannah zone reflect the agro-ecology of major parts of West Africa. 
 

Keywords: dry seasonal, soil moisture, spatio-temporal, physical soil properties, PR2/60 
profile probe, Guinea savannah, Ghana 
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8.1 Specifications table 

Subject Agricultural and Biological Sciences. 

Specific subject area Soil Science for sustainable agriculture and food-crop production. 

Type of data Tables and excel file. 

How data were acquired Through stratified soil sampling from field survey using Delta-T 
PR2/60 SM probe and other soil sampling tools such as stainless-
steel cylinder, soil auger and other soil digging tools. Others were 
obtained by standard laboratory analysis. 

Data format Raw. 

Parameters for data 
collection 

In situ soil conditions and soil properties. 

Description of data 
collection 

Data was collected by physically inserting SM probes into installed 
access tubes (up to 100 cm depth) and recording their respective SM 
for the various soil depths. In addition, soil samples were collected 
in close proximity to the installed access tubes for the various soil 
depths and analyzed in a laboratory. 

Data source location 36 Geographical Position System (GPS) coordinates of validation 
locations in the Guinea savannah zone of Ghana are presented in 
appendix Table S8.1. Data to this article is also accessible on an open-
access repository (DOI: 10.5281/zenodo.3662411). 

Data accessibility Data is with this article. 

Related research article 1. Nketia KA, Asabere SB, Erasmi S, Sauer D. A new method for 
selecting sites for soil sampling, coupling global weighted 
principal component analysis and a cost-constrained 
conditioned Latin hypercube algorithm. MethodsX 2019; 6:284–
99. DOI: 10.1016/j.mex.2019.02.005. 

2. Nketia KA, Becker JN, Asabere SB, Erasmi S, Sauer D. Spatial and 
temporal dynamics of soil moisture in benchmark soils of the 
Guinea savannah zone of Ghana - is there an unused potential 
for food-crop production? Under review. 

 

8.2 Value of the data 

• The datasets provide detailed spatio-temporal SM (0–100 cm depth) of key agricultural 

benchmark soils of the Guinea savannah zone of Ghana. 

• Thus far, no data exist on the spatio-temporal SM for an entire soil profile for the 

breadbasket of Ghana. 

https://zenodo.org/badge/latestdoi/239761009
https://doi.org/10.1016/j.mex.2019.02.005
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• It can be used for in situ water management, quantitative analysis to guide agricultural 

resource management in such water deficit landscapes, particularly in the field of soil 

science. 

• The results of this article are useful and will directly benefits students and other 

agriculturist/researchers for future studies of SM variability throughout the dry-cropping 

season necessary for improved food-crop productivity. 

 

8.3 Data description 

The datasets described here: (1) spatio-temporal in situ SM measurements (𝑛 = 1,920), (2) 

gravimetric SM (𝑛 = 170) and (3) physical soil properties (i.e. clay, sand and silt contents, and 

bulk density; 𝑛 = 170 each) are from the 36 SM validation locations (appendix Table S8.1) of 

the Guinea savannah zone (Figure 2.1). In addition, we present data on thresholds of SM 

demands by maize crops (Zea mays) for the dry season of the study area. The data covered a 

spatial extent of 150 x 80 km traversing various land uses such as grassland (Pennisetum 

purpureum), food-crops (i.e. maize, cowpea, sorghum, cassava and yam) and other tree 

species (i.e. Borassus palm – Borassus aethiopum, shea trees – Vitellaria paradoxa and Senegal 

mahogany – Khaya senegalensis). In addition, the data covers the variation of the peak of the 

dry season (in February) until the onset of heavy rains (in June). The morphological 

characteristics of the soils from which these datasets were collected are detailed in Adu 

(1999). We present the comprehensive findings as tables in the thesis’ project online 

repository (DOI: 10.5281/zenodo.3662411). It should be stressed that all datasets reported in 

this paper are raw values. With regards to the in situ SM measurements, they are presented 

in a spatio-temporal domain, whereas, in one-time, the gravimetric SM and (3) physical soil 

properties are extracted from collected soil samples for each validation location in the 

laboratory. 

 

8.4 Data source  

Raw datasets are available on an open-access repository (DOI: 10.5281/zenodo.3662411). 

  

https://zenodo.org/badge/latestdoi/239761009
https://zenodo.org/badge/latestdoi/239761009
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Data on the spatio-temporal root zone soil water storage – the Guinea savannah zone 

of Ghana 
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Chapter 9: Data on the spatio-temporal RZ-SWS in the Guinea  savannah zone of Ghana 

This manuscript is under review as: 
Nketia KA, Sauer D. Data on the spatio-temporal root zone soil water storage – the Guinea 
savannah zone of Ghana. 
 
Abstract 

 

In between rainfall events or irrigations, soil water storage (SWS) of the root zone reflects the 
size of soil horizon’s water reservoir and its storage adequacy. After field capacity is achieved, 
crops draw upon this SWS for its water requirements. SWS illustrates the capabilities of these 
soil horizons to buffer crops at specific growth stages against transient water deficits. 
Consequently, information on the spatio-temporal SWS is critical for the sustainability of food-
crop production in rainfed agriculture, especially in semi-arid landscapes. In sub-Saharan 
Africa, where many national economies are driven by agriculture, such critical soil information 
is missing. In this data article, we provide data on the spatio-temporal SWS (𝑛 = 1,920) from 
36 measurement locations across the Guinea savannah zone of Ghana. Data covers the 0–100 
cm rooting depth and spans agricultural benchmark soils of the Guinea savannah zone. In 
addition, the data covers the various topographical units and prominent land use of the area, 
similar to most parts of West Africa. We further present algorithms used in deriving the SWS 
data presented in this article. The comprehensive dataset and algorithm can support crop 
production with regards to water management and optimal agricultural resource allocation in 
the Guinea savannah zone of Ghana and other parts of sub-Saharan African where water 
deficit conditions are common. 
 

Keywords: root zone, semi-arid, soil water storage, spatio-temporal, Guinea savannah, Ghana, 
water deficit, West Africa
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9.1 Specifications table 

Subject Agricultural and Biological Sciences. 

Specific subject area Soil Science for sustainable agriculture, food security and soil water 
management. 

Type of data Tables and ‘R’ data files. 

How data were acquired Through Delta-T PR2/60 in situ SM measurements. 

Data format Analyzed. 

Description of data 
collection 

Data was derived using a SWS estimation algorithm – it recursively 
profiled in situ SM as a function of bulk density and soil thickness, 
which accounted for the effect of measured soil depth (i.e. 0–100 
cm) on the in situ SM measurements. 

Data source location Geographical Position System (GPS) coordinates of the 36 
measurement locations are presented in appendix Table S8.1. Data 
to this article is also accessible on an open-access repository (DOI: 
10.5281/zenodo.3662411). 

Data accessibility Data is with this article as supplementary material. 

Related research article 1. Nketia KA, Asabere SB, Erasmi S, Sauer D. A new method for 
selecting sites for soil sampling, coupling global weighted 
principal component analysis and a cost-constrained 
conditioned Latin hypercube algorithm. MethodsX 2019; 6:284–
99. DOI: 10.1016/j.mex.2019.02.005. 

2. Nketia KA, Becker JN, Asabere SB, Erasmi S, Sauer D. Spatial and 
temporal dynamics of soil moisture in benchmark soils of the 
Guinea savannah zone of Ghana - is there an unused potential 
for food-crop production? Under review. 

3. Nketia KA, Ramcharan A, Asabere SB, Herbold S, Erasmi S, Sauer 
D. Spatio-temporal mapping of SWS in a semi-arid landscape of 
Northern Ghana. Under review. 

 

9.2 Value of the data 

• Comprehensively, the data provides 0–100 cm soil depth information on spatio-temporal 

SWS for agricultural benchmark soils of the Guinea savannah zone of Ghana, similar other 

parts of the West African Guinea savannah agro-ecological zone. 

• No data exist on the spatio-temporal SWS for 0–100 cm depth for soils of the Guinea 

savannah zone of Ghana. 

• The data is critical for crop water resource management and quantitative analysis to guide 

food production under rainfed conditions during transient water deficit periods. 

https://zenodo.org/badge/latestdoi/239761009
https://doi.org/10.1016/j.mex.2019.02.005
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• It can be used to map the four-dimensional distribution of SWS, which can complement 

existing digital soil mapping initiatives of sub-Saharan Africa and Ghana. 

• Further usefulness of the data, in the field of soil science, includes future food productivity 

research, modelling of water management for dry-season farming and guide policy making 

processes. 

 

9.3 Data description 

This data illustrates and describes the spatio-temporal SWS (𝑛 = 1,920) of 36 stratified 

locations of the Guinea savannah zone of Ghana (see appendix Table S8.1; Figure 2.1). The 

data covers an area of 150 x 80 km across key agricultural soil associations of the area. The 

Guinea savannah zone, from where the data was collected, reflects the settings of major part 

of West Africa (Benneh et al. 1996). Datasets covers land uses such as Borassus palm (Borassus 

aethiopum), shea trees (Vitellaria paradoxa), Senegal mahogany (Khaya senegalensis) and 

natural grassland (Pennisetum purpureum). In addition, the data covers notable food-crops 

production systems of the Guinea savannah zone, i.e. maize, cowpea, sorghum, cassava, millet 

and yam. 

This data further shows the variation of SWS from February (peak of the dry season) until June 

(onset of heavy rains) on key benchmark soils of the Guinea savannah zone. Adu (1999) 

reported details on the morphological properties of soils from which the SWS information was 

derived. Tables are used to show the comprehensive datasets on SWS in this article and can 

be found on the thesis’ project online repository. We further illustrate the variability of SWS 

per each benchmark soil type along the various in situ measurement depths (see appendix 

Figure S9.1). 

 

9.4 Data source  

Raw datasets on the spatio-temporal root zone SWS and its associated set of algorithms used 

in its development are publicly assessible at DOI: 10.5281/zenodo.3662411. 

  

https://zenodo.org/badge/latestdoi/239761009
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Section C: General conclusions, limitations and outlook  
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Chapter 10: Synthesis and implications 

10.1 General conclusions 

In this thesis, we investigated and modelled the spatio-temporal seasonal SM and SWS of the 

root zone of arable benchmark soils of the Guinea savannah zone of Ghana. In the context of 

the two specific objectives in pursuance of this main goal, our findings modernize and renew 

approaches on spatio-temporal scale analyses for understanding root zone SM and SWS in 

semi-arid landscapes. General implications of our findings are discussed. 

In the newly designed sampling stratification (i.e. Chapter 4), we found that the ensemble-

approach rather presented an alternative to represent both the feature and the geographic 

space in a soil sampling stratification. For this finding, a spatial extent of a study area can 

adequately be stratified in order to effectively and efficiently capture its localized spatio-

temporal heterogeneities that influence the variability of the investigated soil property (in our 

case SM). Consequently, limitations documented in the literatures for soil sampling designs 

with regards to local structures and localized-spatial autocorrelation that explained the soil-

landscape variability of the investigated soil property in a constrained environment have been 

addressed. Our proposed method effectively correlated the investigated soil property and its 

local environment, which depicts the geographic variations in the soil-environmental 

characteristics across space. Thus far, existing soil sampling designs were also challenged to 

address this limitation. In addition, our proposed sampling design further suppressed the 

occurrence of model-selected sampling locations in areas that were less representative of the 

soil property of interest, suggesting resource use efficiency. We therefore conclude that such 

an ensemble-approach for soil sampling presents a viable alternative to guide field data 

collection and installations of soil-monitoring stations. 

By investigating the spatio-temporal variability of root zone SM and how it was influenced by 

internal- and external-soil factors (i.e. Chapter 5), we found that SM of the agricultural 

benchmark soils of the Guinea savannah was low and highly variable only in the top soil layers 

(≤ 10 cm), whereas in the bottom soil layers (≥ 20 cm), increased clay content with increasing 

soil depth kept high SM for longer periods. Internal factors such as bulk density, clay and silt 

content strongly influenced SM than external factors (i.e. slope, topographic wetness index, 

antecedent precipitation index and evapotranspiration). One key outcome of Chapter 5 is that 

almost all benchmark soils of the Guinea savannah zone (except for the Kumayili series) below 
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10 cm depth have SWS potentials that match the water requirements of at least some 

drought-tolerant crops grown in the area (i.e. cowpea – Bengpla cultivar; > 9 mm day-1). 

Hence, the possibility of a dual farming system is not far-fetched. These findings are important 

to highlight because a dual farming system can enhance agricultural productivity, improve 

food security and increase the income of local farming communities. Our proposed legume-

crop rotation brings an advantage over existing practices in that: (1) it can maintain soil fertility 

for the main cropping season, (2) the use of cowpea grain as food and nutritional supplements 

for the local communities and (3) residue from crop harvest can be used as mulch to conserve 

SM or be used as feed for livestock. 

While we also sort to translate point-based measurements into spatial-temporal scales via 

remote sensing techniques (i.e. Chapter 6), we found that Sentinel-2 derived variables were 

better at discriminating low to extremely-low SM as compared to Sentinel-1 derived variables 

alone. Thus, they accounted for specific clusters of in situ SM whereas, Sentinel-1 derived 

variables focused on accounting for the entire range of in situ SM and microwave signal effects 

due to incidence angle. Also, the inclusion of DEM-derived variables better disentangled SM 

estimation ambiguities in order to improve SM estimation. Overall, our ensemble-based 

model, contrary to existing approaches, rather presented an enhanced alternative to estimate 

SM from synergetic use of remote sensing derived variables. The ensemble-based model, at 

certain SM regimes and soil conditions, is an effective tool to estimate SM from ESA’s Sentinel-

1 and -2 missions. Hence, new perspectives are opened to improve crop simulation models 

with detailed plot level spatio-temporal SM inputs. 

Extending the applicability of findings from Chapter 5 and 6 (i.e. in Chapter 7), we found key 

implications that can improve food-crop production. (1) Modelled root zone SWS in the 

shallow soil layers were highly variable, unstable and consistently dry (high temporal 

instability) compared to the bottom soil layers, which showed time-stable wet cluster of 

locations due to increase SM and clay buildup that promoted stability. (2) Spatio-temporally, 

time-stable locations where crop water requirements can be met during crop growing periods 

can be explicitly identified for use. Our outcomes form a core support system necessary to 

guide the implementation of drought-adaptation measures and complement existing digital 

soil mapping initiatives around the world. Possible adoptable recommendations drawn from 

the four-dimensional SWS maps include, the possibility and practicability to either prolong the 
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existing major single farming window or identify locations and durations where additional 

crop-specific farming is applicable in these semi-arid landscapes.
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10.2 Limitations 

This research is the first to investigate and demonstrate the applicability of spatio-temporal 

scale analyses for root zone SM and SWS in the Guinea savannah zone of Ghana and SSA at 

large. Some limitations were identified and future studies should be undertaken to address 

them. 

• In Chapter 5, there is the need to undertake an on-farm validation and plausibility check 

of our proposed legume-crop rotation recommendation. This will ensure adaptability, 

workability and compatibility with existing farming practices that promote food security 

and livelihood empowerment.  

• In Chapter 6, one novel aspect of the research task was the determination of the minimum 

SM thresholds at which the widely used machine-learning algorithms under-performed. 

However, we did not cover higher SM ranges in soils of the study area at the time of in situ 

measurements. Hence, further studies with extremely higher SM values is required to 

investigate the maximum SM thresholds at which these algorithms are also inefficient. This 

will ensure a full model performance recommendation. 

• In Chapter 7, due to the sparse in situ measurement networks, neither a time-stable dry 

nor a time-stable wet location can adequately represent the temporal stability of SM for 

the various measurement soil depths. Consequently, a yearly expansive in situ 

measurement network at a shorter time lag and shorter soil thickness is important. This 

will reduce patchiness of temporal stability and inconsistencies reported with increasing 

soil depth with regards to SM and SWS. Furthermore, our modelling frameworks used in 

Chapter 4–7 can be very sensitive to slight changes in SM and SWS variability across the 

whole soil profile. 
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10.3 Outlook 

Given the importance of root zone SM and SWS in water deficit landscapes, such benchmark 

studies, as demonstrated in this thesis, should not be overlooked in future crop production 

adaptation initiatives across SSA and the world as a whole. The spatio-temporally modelled 

SM and SWS present useful information for assessing the fluxes of SM and SWS necessary to 

guide and optimize rational use of agricultural resource in water-deficit landscapes. In 

addition, such valuable information can enhance the adaptive capacity of smallholder farmers 

to address site-specific concerns such as where, when, what quantity and stability of SM and 

SWS. That notwithstanding, plant-water management schemes can be designed with such SM 

and SWS flux information as benchmarks for crop suitability recommendation of an area. 

The spatio-temporal scale analyses demonstrated in this thesis bring an advantage over point-

based analysis and the practicability of understanding seasonal root zone SM and SWS in 

water deficit landscapes in the future. One critical outcome of this thesis is that our state-of-

the-art modeling framework follows the scorpan concept for digital soil mapping. Hence, our 

approaches can easily be transferred to other geographical settings. However, the principles 

of the scorpan concept must be adhered in its usage. The automated modelling framework is 

open-sourced and can easily be updated with new in situ SM measurements. For these 

reasons and as part of open and reproducible science, all modelling framework and full 

datasets reported in this thesis are publicly available at DOI: 10.5281/zenodo.3662411. 

  

https://zenodo.org/badge/latestdoi/239761009
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Appendix 

Equations 

Equation S6.1. Sentinel-1 image calibration. 

𝐶𝑖 =
[𝐷𝑁𝑖]2

𝐴𝑖
2            (S6.1) 

where, depending on the selected look up table, 𝐶𝑖  is the Sigma0 (𝜎𝑖
0) at a pixel location i, 𝐷𝑁𝑖 

is the digital number and 𝐴𝑖 is the Sentinel-1 final scaling from internal single look complex to 
ground range detected. 
 

Equation S6.2. Converting calibrated Sigma0 (σ) to decibels. 

𝜎𝑑𝑏
0 = 10. 𝑙𝑜𝑔10𝜎0          (S6.2) 

where 𝜎𝑑𝑏
0  is the Sigma0 in decibels (dB). 

 

Equation S6.3. Estimating the coefficient of determination of variations (R2) explained by the 
base MLAs. 

𝑅2 =  [
∑(𝑆𝑀𝑝− 𝑆𝑀𝑝̅̅ ̅̅ ̅̅  ) 𝑥 (𝑆𝑀𝑒− 𝑆𝑀𝑒̅̅ ̅̅ ̅̅  )

√∑(𝑆𝑀𝑝− 𝑆𝑀𝑝̅̅ ̅̅ ̅̅  )
2

 𝑥 √∑(𝑆𝑀𝑒− 𝑆𝑀𝑒̅̅ ̅̅ ̅̅  )
2
]

2

       (S6.3) 

where 𝑆𝑀𝑝 and 𝑆𝑀𝑒 are the in situ and estimated SM respectively, whereas 𝑆𝑀𝑝
̅̅ ̅̅ ̅̅  and 𝑆𝑀𝑒

̅̅ ̅̅ ̅̅  are 

also the mean in situ and estimated SM respectively. 
 

Equation S6.4. Estimating the root mean squared error (RMSE) of the MLAs. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ [𝑆𝑀𝑒𝑖

−  𝑆𝑀𝑝𝑖
]

2𝑛
𝑖=1         (S6.4) 

where at a location, 𝑆𝑀𝑒𝑖
 and 𝑆𝑀𝑝𝑖

 are the estimated and in situ SM respectively. 

 

Equation S6.5. Estimating the percent bias (PBias) of the MLAs for over- or underestimated 
SM. 

𝑃𝐵𝑖𝑎𝑠 =  100 𝑥 [
∑ 𝑆𝑀𝑒𝑖

− 𝑆𝑀𝑝𝑖
𝑛
𝑖=1

∑ 𝑆𝑀𝑝𝑖
𝑛
𝑖=1

]        (S6.5) 

where at a location, 𝑆𝑀𝑒𝑖
 and 𝑆𝑀𝑝𝑖

 are the estimated and in situ SM respectively. 

 

Equation S7.1. Coefficient of determination (R2). 

𝑅2 =  1 −  
𝑆𝑆𝑒𝑟𝑟𝑜𝑟

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
          (S7.1) 

where 𝑆𝑆𝑒𝑟𝑟𝑜𝑟  is the residual sum of squares at the LLTO-CV locations and the 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  
represents the total sum of squares. A model with 𝑅2 = 1 (i.e. 100%) indicates a perfect 
goodness-of-fit and vice versa. 
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Equation S7.2. Root mean square error (RMSE). 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑ (𝑝𝑟𝑒𝑑𝑖 − 𝑜𝑏𝑠𝑖)

2𝑁
𝑘=1 ]

1/2

       (S7.2) 

where 𝑁 is the number of LLTO-CV points, 𝑝𝑟𝑒𝑑𝑖 is the predicted SWS value at the estimated 
SWS (𝑜𝑏𝑠𝑖) location (𝑖). 
 

Equation S7.3. Lin’s concordance correlation coefficient (CCC). 

𝐶𝐶𝐶 =  
2∗ 𝜌∗ 𝜎𝑝𝑟𝑒𝑑∗ 𝜎𝑜𝑏𝑠

𝜎𝑝𝑟𝑒𝑑
2 + 𝜎𝑜𝑏𝑠

2 + (𝜇𝑝𝑟𝑒𝑑− 𝜇𝑜𝑏𝑠)2        (S7.3) 

where 𝜇𝑝𝑟𝑒𝑑  and 𝜇𝑜𝑏𝑠 are the predicted and estimated SWS means respectively, 𝜎𝑝𝑟𝑒𝑑  and 

𝜎𝑜𝑏𝑠 are the variances at the LLTO-CV locations, and 𝜌 is the correlation coefficient between 
the predicted and estimated SWS values.  
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Tables 

Table S4.1. Principal component matrix of the GWPCA 

 PC1 PC2 PC3 PC4 PC5 PC6 

EV  5.249  3.916  2.079  1.598  1.325  1.117 
CPoV  0.747  0.812  0.847  0.881  0.915 

Loadings 

AWC -0.150  0.382 -0.177 -0.118 -0.079  0.259 
BD  0.145 -0.417  0.141 -0.006 -0.026 -0.197 
Bedrck  0.175  0.040  0.289  0.295 -0.031 -0.261 
Clay  0.179  0.365  0.162 -0.002  0.270 -0.102 
DEM -0.368 -0.081  0.214 -0.017  0.035 -0.144 
Drainage -0.257 -0.150 -0.229 -0.146  0.083 -0.129 
Geology -0.025 -0.051 -0.326  0.046  0.027 -0.077 
Landforms -0.168 -0.004 -0.140 -0.107  0.552 -0.147 
Lithology -0.168  0.056  0.297  0.008  0.176 -0.408 
Precip -0.325  0.181  0.266  0.077 -0.092  0.224 
Riverdist -0.129  0.024  0.059 -0.445 -0.187 -0.453 
Sand -0.220 -0.388 -0.118  0.138 -0.152  0.034 
Sent1A_VH -0.150  0.261 -0.355  0.317 -0.141 -0.264 
Sent1A_VV -0.197  0.213 -0.339  0.335 -0.160 -0.254 
Silt  0.216  0.349  0.053 -0.248  0.016  0.044 
Soil_types -0.076 -0.173  0.167  0.446  0.131  0.258 
Temp  0.374 -0.083 -0.270  0.000 -0.002  0.081 
WatBal -0.345  0.172  0.249  0.067 -0.090  0.199 
WATCov  0.155  0.115  0.014  0.373 0.393 -0.168 
Slope -0.260 -0.099 -0.162 -0.132 0.411  0.145 

Maximum  0.374  0.382  0.297  0.446  0.552  0.259 
Minimum -0.368 -0.417 -0.355 -0.445 -0.187 -0.453 

PC = principal component, EV = eigenvalues, CPoV = cumulative proportion of variation and 
bold values represent minimum and maximum values. 
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Table S5.1. Mean values of soil moisture and physical soil properties of the different soil types 
in the study area 

Statistic 

Moisture content Particle size distribution BD 

SMg SMp Silt Clay  

% g cm-3 

R2 0.68 0.66 0.16 0.64 0.18 

Upland slopes 

Kpelesawgu series (𝑛 = 15) 

LSM 10.67 11.80 34.74 8.91 1.54 
SE (±) 1.13 1.63 3.33 1.15 0.03 
Min 1.79 0.15 26.00 4.00 1.29 
Max 24.28 28.58 50.00 20.00 1.82 

Middle to lower slopes 

Changnalili series (𝑛 = 10) 

LSM 11.92 12.89 28.68 11.42 1.51 
SE (±) 1.40 2.03 4.14 1.44 0.03 
Min 1.28 1.08 14.00 4.00 1.24 
Max 34.21 37.70 52.00 44.00 1.83 

Kumayili series (𝑛 = 15) 

LSM 11.12 12.43 25.76 7.35 1.41 
SE (±) 1.16 1.67 3.36 1.17 0.03 
Min 2.72 0.08 4.00 4.00 1.12 
Max 19.63 26.50 48.00 16.00 1.62 

Lima series (𝑛 = 105) 

LSM 9.23 15.07 36.09 9.61 1.50 
SE (±) 0.43 0.63 1.27 0.44 0.01 
Min 0.97 0.05 2.00 4.00 1.17 
Max 34.97 53.58 60.00 34.00 1.77 

LSM = least square mean, r2 = coefficient of determination of the LSM at 0.95 confidence level, 
SE (±) = standard error, SMg = volumetric soil moisture by gravimetric method, SMp = 
volumetric soil moisture by PR2/60 moisture probe and BD = bulk density.
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Table S5.1. Continued 

Statistic 

Moisture content Particle size distribution BD 

SMg SMp Silt Clay  

% g cm-3 

R2 0.68 0.66 0.16 0.64 0.18 

Valley bottom slopes 

Dagare series (𝑛 = 5) 

LSM 10.61 12.58 14.30 7.02 1.38 
SE (±) 2.03 2.94 5.80 2.07 0.05 
Min 4.76 5.20 10.00 4.00 1.40 
Max 6.99 12.35 18.00 8.00 1.51 

Siare series (𝑛 = 5) 

LSM 19.67 15.25 32.87 16.19 1.40 
SE (±) 2.35 3.58 7.32 2.49 0.06 
Min 26.91 13.73 34.00 10.00 1.14 
Max 42.74 60.75 50.00 40.00 1.55 

Volta series (𝑛 = 15) 

LSM 8.11 14.75 33.93 13.01 1.50 
SE (±) 1.14 1.66 3.39 1.15 0.03 
Min 1.59 5.23 8.00 4.00 1.38 
Max 24.38 33.73 56.00 40.00 1.73 

LSM = least square mean, r2 = coefficient of determination of the LSM at 0.95 confidence level, 
SE (±) = standard error, SMg = volumetric soil moisture by gravimetric method, SMp = 
volumetric soil moisture by PR2/60 moisture probe and BD = bulk density.
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Table S5.2. Mean values of soil moisture and physical soil properties at standard soil depths 
of the study area 

Statistic 

Moisture content Particle size distribution BD 

SMg SMp Silt Clay  

% g cm-3 

R2 0.68 0.66 0.16 0.64 0.18 

At 10 cm 

LSM 8.61 7.79 29.80 7.10 1.42 
SE (±) 0.89 1.27 2.58 0.88 0.02 
Min 0.97 0.05 4.00 4.00 1.14 
Max 26.91 22.30 60.00 14.00 1.63 

At 20 cm 

LSM 10.26 10.39 29.40 7.86 1.46 
SE (±) 0.85 1.28 2.59 0.90 0.02 
Min 1.79 0.15 6.00 4.00 1.17 
Max 34.97 28.48 58.00 32.00 1.77 

At 30 cm 

LSM 7.97 15.19 30.30 10.38 1.46 
SE (±) 0.86 1.24 2.51 0.88 0.02 
Min 2.07 3.40 10.00 4.00 1.31 
Max 38.55 43.68 58.00 28.00 1.73 

At 40 cm 

LSM 10.15 14.98 30.22 12.38 1.48 
SE (±) 0.90 1.30 2.64 0.90 0.02 
Min 2.76 3.95 2.00 4.00 1.12 
Max 42.74 50.53 60.00 36.00 1.83 

At 60 cm 

LSM 12.64 19.34 27.68 14.79 1.50 
SE (±) 1.05 1.47 2.96 0.96 0.02 
Min 3.98 5.78 8.00 6.00 1.32 
Max 35.32 60.75 56.00 44.00 1.82 

 𝑛 = 34, LSM = least square mean, r2 = coefficient of determination of the LSM at 0.95 
confidence level, SE (±) = standard error, SMg = volumetric soil moisture by gravimetric 
method, SMp = volumetric soil moisture by PR2/60 moisture probe and BD = bulk density.
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Table S5.3. Mean values of soil moisture, local slope and topographic wetness index of 
different soil types of the study area 

Soil types 
SMg LS TWI 

Mean SE (±) Mean SE (±) Mean SE (±) 

Upland slopes 

Kpelesawgu series (𝑛 = 3) 10.67 1.10 1.45 0.20 11.50 0.30 

Middle to lower slopes 

Changnalili series (𝑛 = 2) 11.92 1.40 0.80 0.13 13.80 0.27 

Kumayili series (𝑛 = 3) 11.12 1.20 1.40 0.10 11.30 0.10 

Lima (𝑛 = 21) 9.23 0.40 1.00 0.05 12.30 0.08 

Valley bottom slopes 

Siare series (𝑛 = 1) 19.67 2.30 0.98 0.00 15.20 0.00 

Volta series (𝑛 = 3) 8.11 1.10 0.92 0.17 13.20 0.32 

Dagare series (𝑛 = 1) 10.61 2.00 0.10 0.00 14.10 0.00 

SE (±) = standard error, SMg = volumetric soil moisture by gravimetric method, LS = local slope 
and TWI = topographic wetness index. 
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Table 5.4. Thresholds of SM demands (PAWC) for maize (Zea mays) in the dry season of the study 

Station 
ID 

Upper 
soil 
depth 

Lower 
soil 
depth 

Layer 
thickness 

BD Sand  Silt Clay SAT DUL CLLa CLLm PAWCm PAWCa PAWCm* PAWCa* 

(cm) g cm-3 (%) (mm) 

P1 0 10 10 1.39 80.16 14.38 5.46 40.64 23.66 12.70 6.29 10.95 17.36 57.16 162.96 
P2 10 20 10 1.45 78.30 15.07 6.63 38.37 19.38 11.69 4.37 7.69 15.01 

  

P3 20 30 10 1.34 68.57 18.94 12.49 42.42 17.60 12.22 3.90 5.38 13.70 
P4 30 40 10 1.48 56.35 20.20 23.45 37.27 23.43 14.90 5.02 8.53 18.40 
P5 40 60 20 1.64 61.90 20.05 18.05 31.27 26.31 20.27 8.95 12.08 34.72 
P6 60 100 40 1.66 53.77 25.83 20.40 30.53 30.22 27.09 14.28 12.52 63.77 

BD = bulk density, SAT = saturation, DUL = drained upper limit, CLL = crop lower limit, ‘*’ presents PAWC for the entire soil profile (i.e. 0–100 cm soil 
depth). Subscripts ‘a’ and ‘m’ indicates anthesis and maturity stages of maize. 
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Table S5.5. Mean values of temporal SMp of the different soil types at standard depth intervals 

Depth 
intervals 

Measurements 

1 2 3 4 5 6 7 8 9 10 

cm 12 – day interval 

Upland slopes 

Kpelesawgu series 

0 — 10 0.10 0.05 0.43 0.64 2.74 0.49 0.24 0.23 0.55 1.55 
10 — 20 6.64 6.96 7.93 15.16 13.60 10.49 9.65 10.45 7.83 17.13 
20 — 30 15.86 15.56 15.13 19.11 18.63 20.54 16.66 19.69 16.26 25.04 
30 — 40 23.29 22.26 21.61 23.30 23.46 25.53 23.33 23.89 22.08 29.16 
40 — 60 28.61 27.54 25.95 27.64 28.15 30.33 29.11 31.67 27.85 29.65 

60 — 100 16.36 17.81 17.75 17.75 17.83 17.95 17.85 17.75 17.55 17.54 
Middle to lower slopes 

Changnalili series  

0 — 10 0.15 5.28 1.08 0.08 5.65 3.95 5.22 8.35 9.78 17.55 
10 — 20 6.13 7.22 6.85 12.63 12.10 11.38 14.58 18.43 13.25 15.24 
20 — 30 10.30 10.65 10.83 11.70 11.60 12.69 15.10 19.34 17.09 23.12 
30 — 40 22.50 23.96 23.46 25.66 25.71 26.08 27.59 31.16 27.26 25.90 
40 — 60 55.73 40.95 36.26 33.58 32.04 31.80 44.35 46.25 45.61 45.94 

60 — 100 56.00 51.18 52.03 50.62 51.16 51.23 50.13 52.24 52.33 53.08 
Kumayili series  

0 — 10 0.08 0.15 1.18 2.31 3.68 1.77 2.20 1.59 8.69 8.81 
10 — 20 0.38 3.10 2.90 3.90 12.23 9.18 5.91 7.40 6.11 14.86 
20 — 30 17.35 4.26 4.76 5.30 5.11 8.38 19.39 15.66 18.03 23.93 
30 — 40 20.63 15.58 15.50 20.50 20.63 20.56 19.30 17.85 20.44 28.70 
40 — 60 29.00 25.28 24.13 25.96 25.96 26.51 26.14 25.33 25.11 26.58 

60 — 100 33.73 16.00 16.31 16.36 16.31 16.50 16.46 16.69 16.61 19.61 
Lima series  

0 — 10 1.53 1.95 3.45 3.74 6.26 4.34 5.61 3.83 5.57 7.22 
10 — 20 6.62 6.01 12.44 10.93 12.42 15.38 14.74 11.63 14.89 19.00 
20 — 30 13.28 14.64 17.82 18.44 20.08 19.93 20.29 16.51 19.10 23.57 
30 — 40 17.79 17.49 17.69 19.75 20.32 22.32 21.62 19.74 20.99 24.85 
40 — 60 21.89 24.02 24.47 25.72 25.90 26.83 27.92 27.00 27.01 28.82 

60 — 100 32.15 32.29 33.08 33.65 33.17 34.50 35.46 35.06 34.29 37.19 
Valley bottom slopes 

Dagare series * 

0 — 10 3.10 4.25 5.20 10.38 7.03 - - - - - 
10 — 20 6.05 6.48 6.35 15.80 9.10 - - - - - 
20 — 30 7.75 7.55 7.63 16.15 9.90 - - - - - 
30 — 40 8.05 7.50 7.50 14.23 9.48 - - - - - 
40 — 60 13.33 12.48 12.35 12.35 12.40 - - - - - 

60 — 100 24.05 23.23 23.15 23.10 23.20 - - - - - 

* On Dagare series, SMp measurements were not completed due to destruction of installed 
access tube by local residents. 
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Table S5.5. Continued 

Depth 
intervals 

Measurements 

1 2 3 4 5 6 7 8 9 10 

cm 12 – day interval 

Valley bottom slopes 

Siare series  

0 — 10 1.05 0.80 10.95 13.73 5.93 25.13 21.67 17.50 11.75 2.10 
10 — 20 0.35 0.13 14.88 21.03 6.60 30.23 39.48 31.50 23.80 9.43 
20 — 30 15.43 16.98 41.83 43.68 18.50 47.10 46.70 43.93 39.53 12.43 
30 — 40 27.93 26.83 46.75 50.53 26.83 51.43 51.23 49.80 50.63 20.95 
40 — 60 46.80 45.53 59.48 60.75 59.30 62.60 57.53 67.55 62.45 51.43 

60 — 100 58.28 58.90 59.00 60.53 59.30 63.10 61.20 60.73 61.70 61.40 
Volta series  

0 — 10 1.25 2.26 11.61 7.80 8.52 5.43 6.76 4.48 12.11 10.88 
10 — 20 7.10 6.54 15.28 13.84 13.20 11.04 11.14 8.53 14.59 13.36 
20 — 30 11.35 10.50 13.68 13.73 14.78 13.70 11.43 11.41 11.63 16.08 
30 — 40 14.43 12.98 12.86 13.88 14.00 16.28 15.99 16.30 16.83 18.40 
40 — 60 25.68 29.36 29.43 29.68 29.63 29.85 29.81 30.73 29.55 29.69 

60 — 100 64.90 54.21 54.24 53.65 54.45 54.08 54.37 59.69 54.45 54.78 
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Table S5.6. Mean values of temporal soil water storage of the different soil types at standard 
depth intervals 

Depth 
intervals 

Measurements 

1 2 3 4 5 6 7 8 9 10 

cm 12-day interval 

Upland slopes 

Kpelesawgu series 

0 — 10 0.15 0.08 0.65 0.98 4.21 0.75 0.37 0.36 0.85 2.39 
10 — 20 10.22 10.72 12.20 23.34 20.93 16.14 14.85 16.08 12.04 26.37 
20 — 30 24.41 23.95 23.28 29.41 28.66 31.61 25.64 30.30 25.03 38.53 
30 — 40 35.84 34.26 33.26 35.86 36.11 39.28 35.90 36.76 33.97 44.88 
40 — 60 88.07 84.76 79.87 85.07 86.66 93.34 89.60 97.48 85.72 91.26 

60 — 100 100.73 109.65 109.27 109.27 109.73 110.50 109.88 109.27 108.04 107.96 
Middle to lower slopes 

Changnalili series 

0 — 10 0.23 7.97 1.62 0.11 8.53 5.96 7.88 12.61 14.76 26.50 
10 — 20 9.25 10.90 10.34 19.08 18.27 17.18 22.01 27.82 20.01 23.01 
20 — 30 15.55 16.08 16.35 17.67 17.52 19.16 22.80 29.21 25.81 34.91 
30 — 40 33.98 36.18 35.42 38.74 38.82 39.39 41.66 47.06 41.16 39.11 
40 — 60 168.29 123.67 109.50 101.40 96.77 96.04 133.95 139.68 137.74 138.74 

60 — 100 338.24 309.10 314.23 305.74 309.01 309.43 302.77 315.52 316.09 320.62 
Kumayili series 

0 — 10 0.11 0.21 1.66 3.26 5.20 2.49 3.11 2.25 12.27 12.44 
10 — 20 0.53 4.38 4.09 5.51 17.26 12.96 8.35 10.45 8.63 20.98 
20 — 30 24.50 6.02 6.72 7.48 7.22 11.83 27.38 22.12 25.45 33.79 
30 — 40 29.12 21.99 21.89 28.95 29.12 29.03 27.25 25.20 28.86 40.52 
40 — 60 81.90 71.38 68.13 73.32 73.32 74.87 73.81 71.52 70.92 75.05 

60 — 100 190.48 90.37 92.13 92.42 92.13 93.19 92.98 94.25 93.83 110.77 
Lima series 

0 — 10 2.30 2.92 5.18 5.61 9.39 6.50 8.41 5.74 8.35 10.83 
10 — 20 9.92 9.02 18.64 16.38 18.62 23.05 22.09 17.43 22.32 28.49 
20 — 30 19.91 21.94 26.71 27.65 30.10 29.88 30.41 24.75 28.63 35.34 
30 — 40 26.67 26.22 26.52 29.60 30.46 33.46 32.41 29.59 31.47 37.24 
40 — 60 65.63 72.02 73.37 77.10 77.64 80.44 83.70 80.96 80.97 86.40 

60 — 100 192.77 193.64 198.36 201.74 198.91 206.85 212.63 210.24 205.62 222.96 
Valley bottom slopes 

Dagare series * 

0 — 10 4.28 5.87 7.19 14.34 9.71 - - - - - 
10 — 20 8.36 8.95 8.78 21.84 12.58 - - - - - 
20 — 30 10.71 10.43 10.54 22.32 13.68 - - - - - 
30 — 40 11.13 10.37 10.37 19.66 13.09 - - - - - 
40 — 60 36.83 34.48 34.14 34.14 34.27 - - - - - 

60 — 100 132.95 128.39 127.97 127.70 128.25 - - - - - 

* On Dagare series, SMp measurements were not completed due to destruction of installed 
access tube by local residents. 
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Table S5.6. Continued 

Depth 
intervals 

Measurements 

1 2 3 4 5 6 7 8 9 10 

cm 12-day interval 

Valley bottom slopes 

Siare series 

0 — 10 1.47 1.12 15.37 19.28 8.32 35.29 30.42 24.57 16.50 2.95 
10 — 20 0.49 0.19 20.88 29.53 9.27 42.44 55.42 44.23 33.42 13.24 
20 — 30 21.66 23.83 58.72 61.32 25.97 66.13 65.57 61.68 55.49 17.44 
30 — 40 39.21 37.66 65.64 70.94 37.66 72.21 71.92 69.92 71.08 29.41 
40 — 60 131.41 127.83 167.01 170.59 166.51 175.78 161.55 189.68 175.36 144.42 

60 — 100 327.27 330.78 331.34 339.96 333.03 354.37 343.70 341.08 346.51 344.82 
Volta series 

0 — 10 1.87 3.39 17.40 11.68 12.76 8.13 10.12 6.70 18.14 16.29 
10 — 20 10.64 9.79 22.88 20.73 19.77 16.54 16.68 12.77 21.85 20.01 
20 — 30 17.00 15.73 20.50 20.56 22.15 20.52 17.11 17.10 17.41 24.08 
30 — 40 21.61 19.44 19.27 20.78 20.97 24.38 23.95 24.42 25.22 27.56 
40 — 60 76.92 87.97 88.16 88.91 88.76 89.43 89.32 92.05 88.53 88.94 

60 — 100 388.88 324.84 324.99 321.50 326.26 324.07 325.77 357.65 326.26 328.21 
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Table S6.1. Spatial variability of auxiliary datasets along topographical units 

Statistic 
TWI ASP SLP SurfR Elev LIA 

- d - m d 

Upper slopes (𝒏 = 3) 

Mean 11.469 226.491 1.340 0.575 197.555 42.680 
SE (±) 0.769 51.369 0.500 0.084 25.935 1.303 
Min 10.662 144.786 0.450 0.472 160.812 40.074 
Max 13.005 321.285 2.170 0.741 247.634 44.025 

Middle to lower slopes (𝒏 = 26) 

Mean 12.267 181.302 1.040 0.515 169.175 42.628 
SE (±) 0.193 23.603 0.110 0.018 4.410 0.453 
Min 11.055 4.498 0.220 0.333 128.890 36.833 
Max 14.652 355.989 2.150 0.667 233.931 45.548 

Toe slopes (𝒏 = 5) 

Mean 13.777 140.421 0.650 0.520 126.596 40.551 
SE (±) 0.605 39.385 0.360 0.061 5.749 0.767 
Min 12.301 18.586 0.000 0.378 109.484 38.433 
Max 15.181 203.991 1.920 0.711 138.290 42.335 

LIA = local incidence angle, TWI = topographic wetness index, ASP = aspect, SLP = slope, SurfR 
= surface roughness, Elev = elevation, d = degree, SE (±) = standard error, 𝑛 = number of 
validation locations, Min = minimum and Max = maximum.



 

 192 

 
  



 
 193 

Table S7.1. List of a priori covariates used in the SWS modelling framework 

Covariate ID used in 
regression matrix 

Description of parameter 
Spatial 
Resolution (m) 

Resampling 
Method 

Units Source 

Terrain variables 

DevM 
Deviation from mean elevation value (surface 
roughness) 

100 - m Deriveda 

FloAC 
Flow accumulation – Upslope contributing area 
within the catchment. 

100 - - Deriveda 

FloCRV Flow Line Curvature 100 - 
degree 
m-1 

Deriveda 

FloDir Flow direction 100 - - Deriveda 
FloPath Flow path length 100 - - Deriveda 
MrRTF Multi-resolution of ridge top flatness index (MrRTF) 100 - - Deriveda 

MrVBF 
Multi-resolution Index of Valley Bottom Flatness - 
Estimating depositional areas 

100 - - Deriveda 

NegTO 
Negative Topographic Openness - the enclosure of 
a landscape location 

100 - - Deriveda 

PlaCRV Plan Curvature - Horizontal (contour) curvature 100 - 
degree 
m-1 

Deriveda 

PosTO 
Positive Topographic Openness - the dominance of 
the coordinate of a pixel location 

100 - - Deriveda 

ProCRV Profile Curvature - Vertical rate of change of slope 100 - 
degree 
m-1 

Deriveda 

SLP 
Terrain slope - Inclination of the land surface from 
the horizontal 

100 - radians Deriveda 

SRTM 
Shuttle Radar Topography Mission (SRTM) 1 arc sec 
- Digital Elevation Model 

30 bilinear meter https://earthexplorer.usgs.gov/ 

Deriveda are process-based features derived from Shuttle Radar Terrain Mapper-Digital Elevation Model whilst Derivedb are those from Sentinel-2 
images.  Covariates that were sourced at > 100 m spatial resolution were resampled to 100 m via a cubic spline algorithm (cubic) and those < 100 
m spatial resolution resampled also to 100 m via a bilinear algorithm (bilinear). 
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Table S7.1. Continued 

Covariate ID used in 
regression matrix 

Description of parameter 
Spatial 
Resolution (m) 

Resampling 
Method 

Units Source 

Terrain variables 

TWI Topographical Wetness Index 100 - - Deriveda 

Vdepth 
Valley depth - Vertical distance to a 
channel network base level elevation 

100 - m Deriveda 

Landcover variables 

BSI Bare soil index 100 - - Derivedb 

CI 
Colour index to differentiate soil 
types of an area 

100 - - Derivedb 

LULC 10 class landuse and landcover 20 bilinear - http://2016africalandcover20m.esrin.esa.int/ 

MSAVI 
Modified Soil adjusted vegetation 
index 

100 bilinear - Derivedb 

NDVI 
Normalized Difference Vegetation 
Index (NDVI) 

100 - - Derivedb 

NDWI2 
The second normalized difference 
water index used to detect surface 
water and extent 

100 - - Derivedb 

TCWI 
Tasselled cap wetness developed 
from Tasselled cap coefficients for 
Sentinel-2 bands (1 – 12 and 8A) 

100 - - Derivedb 

Deriveda are process-based features derived from Shuttle Radar Terrain Mapper-Digital Elevation Model whilst Derivedb are those from Sentinel-2 
images.  Covariates that were sourced at > 100 m spatial resolution were resampled to 100 m via a cubic spline algorithm (cubic) and those < 100 
m spatial resolution resampled also to 100 m via a bilinear algorithm (bilinear). 
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Table S7.1. Continued 

Covariate ID used 
in regression 
matrix 

Description of parameter 
Spatial 
Resolution 
(m) 

Resampling 
Method 

Units Source 

Climatic variables 

DLST 
Mean monthly MODIS Land Surface 
Temperature - daytime 

1000 cubic Kelvin https://earthdata.nasa.gov/ 

ETo Subsurface soil moisture 1000 cubic Kg m-2 Google earth engine 

NLST 
Mean monthly MODIS Land Surface 
Temperature - nightime  

1000 cubic Kelvin https://earthdata.nasa.gov/ 

Prep 
Mean monthly precipitation at 1 km 
February 

1000 cubic mm https://www.esrl.noaa.gov/psd/data/ 

Landscape variables 

ASSDT 
Average soil and sedimentary deposit 
thickness 

1000 cubic m https://daac.ornl.gov 

AWC 
Available soil water capacity 
(volumetric fraction) with FC = pF 2.0, 
2.3, 2.5 

250 cubic Vol% https://www.isric.org 

BD2 Fine earth bulk density 250 cubic kg m-3 https://www.isric.org 

Bdst 
Geographical distances from and to 
each measurement location 

100 - m Derived 

CLAY 
Soil texture fraction – clay content (0-
2µm) 

250 cubic % https://www.isric.org 

Cos_Fg Volumetric coarse fragments 250 cubic % https://www.isric.org 

LandF 
Landform class - Breaks/Foothills-Flat 
Plains-Hills-Low Hills-Low 
Mountains-Smooth Plains 

250 - - CSIR-Soil Research Institute 

Deriveda are process-based features derived from Shuttle Radar Terrain Mapper-Digital Elevation Model whilst Derivedb are those from Sentinel-2 
images.  Covariates that were sourced at > 100 m spatial resolution were resampled to 100 m via a cubic spline algorithm (cubic) and those < 100 
m spatial resolution resampled also to 100 m via a bilinear algorithm (bilinear). 
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Table S7.1. Continued 

Covariate ID used in 
regression matrix 

Description of parameter 
Spatial 
Resolution (m) 

Resampling 
Method 

Units Source 

Landscape variables 

LSM Soil mapping units at series level 250 cubic - CSIR-Soil Research Institute 

ORG 
Soil organic carbon content (fine 
earth) 

250 cubic g kg-1 https://www.isric.org 

RivDist River distance map 250 cubic km CSIR-Soil Research Institute 
SAND2 Sand content (> 5µm) 250 cubic % https://www.isric.org 
SILT2 Silt content (2-5µm) 250 cubic % https://www.isric.org 

UVBLSDT 
Upland valley bottom and lowland 
sedimentary deposit thickness 

1000 cubic m https://daac.ornl.gov 

WatCov Surface water occurrence 250 cubic - CSIR-Soil Research Institute 
In situ measured variables 

BD In situ bulk density point-based - g cm-3 Authors  
Clay In situ clay content point-based - % Authors  

Cum 
Cumulative Days (from the start of 
SM measurements)  

point-based - - Authors  

Depth Measured standard soil depths point-based - - Authors  

DOY 
Day of the year for each 
measurement 

point-based - - Authors  

Sand In situ sand content point-based - % Authors  
Silt In situ silt content point-based - % Authors  

SMp 
In situ volumetric SM by calibrated 
PR2/60 capacitance moisture probe. 

point-based - Vol% Authors  

Deriveda are process-based features derived from Shuttle Radar Terrain Mapper-Digital Elevation Model whilst Derivedb are those from Sentinel-2 
images.  Covariates that were sourced at > 100 m spatial resolution were resampled to 100 m via a cubic spline algorithm (cubic) and those < 100 
m spatial resolution resampled also to 100 m via a bilinear algorithm (bilinear).
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Table S7.2. Correlation coefficient matrix of spatio-temporal SWS at standard depth intervals 

Time-steps 20-Feb 4-Mar 16-Mar 28-Mar 9-Apr 21-Apr 3-May 15-May 27-May 

At 0–5 cm 

4-Mar 0.9         

16-Mar 0.83 0.93        

28-Mar 0.96 0.92 0.85       

9-Apr 0.6 0.7 0.72 0.65      

21-Apr 0.81 0.91 0.97 0.84 0.75     

3-May 0.51 0.62 0.6 0.55 0.88 0.63    

15-May 0.49 0.59 0.6 0.54 0.88 0.63 0.89   

27-May 0.56 0.65 0.68 0.6 0.97 0.7 0.92 0.9  

8-Jun 0.32 0.32 0.37 0.31 0.28 0.36 0.31 0.4 0.32 
At 5–15 cm 

4-Mar 0.9         

16-Mar 0.83 0.93        

28-Mar 0.96 0.92 0.85       

9-Apr 0.6 0.7 0.72 0.65      

21-Apr 0.81 0.91 0.97 0.84 0.75     

3-May 0.51 0.62 0.6 0.55 0.88 0.63    

15-May 0.49 0.59 0.6 0.54 0.88 0.63 0.89   

27-May 0.56 0.65 0.68 0.6 0.97 0.7 0.92 0.9  

8-Jun 0.32 0.32 0.37 0.31 0.28 0.36 0.31 0.4 0.32 
At 15–30 cm 

4-Mar 0.94         

16-Mar 0.92 0.96        

28-Mar 0.99 0.95 0.93       

9-Apr 0.87 0.9 0.94 0.88      

21-Apr 0.92 0.94 0.99 0.93 0.95     

3-May 0.82 0.9 0.89 0.84 0.95 0.89    

15-May 0.81 0.86 0.86 0.82 0.94 0.87 0.95   

27-May 0.85 0.89 0.92 0.86 0.99 0.93 0.97 0.95  

8-Jun 0.47 0.5 0.54 0.51 0.52 0.57 0.53 0.61 0.52 
At 30–40 cm 

4-Mar 0.98         

16-Mar 0.98 0.99        

28-Mar 1 0.98 0.98       

9-Apr 0.96 0.97 0.98 0.96      

21-Apr 0.98 0.99 1 0.98 0.98     

3-May 0.95 0.97 0.97 0.95 0.99 0.97    

15-May 0.95 0.96 0.96 0.95 0.98 0.96 0.98   

27-May 0.95 0.97 0.98 0.96 1 0.98 0.99 0.98  

8-Jun 0.79 0.81 0.81 0.8 0.81 0.81 0.81 0.85 0.81 

All matrix comparisons were significant at 𝜌 < 0.01. 𝑛 = 2e+07.
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Table S7.2. Continued 

Time-steps 20-Feb 4-Mar 16-Mar 28-Mar 9-Apr 21-Apr 3-May 15-May 27-May 

At 40–60 cm 

4-Mar 0.97         

16-Mar 0.95 0.99        

28-Mar 1 0.97 0.96       

9-Apr 0.93 0.95 0.95 0.93      

21-Apr 0.96 0.98 0.99 0.96 0.96     

3-May 0.92 0.93 0.93 0.92 0.97 0.94    

15-May 0.93 0.93 0.93 0.93 0.97 0.93 0.97   

27-May 0.93 0.95 0.95 0.93 0.99 0.95 0.98 0.97  

8-Jun 0.81 0.82 0.81 0.81 0.82 0.81 0.8 0.85 0.82 
At 60–100 cm 

4-Mar 1         

16-Mar 0.99 0.99        

28-Mar 1 1 0.99       

9-Apr 0.98 0.99 0.99 0.98      

21-Apr 0.99 0.99 1 0.99 0.99     

3-May 0.95 0.94 0.94 0.95 0.96 0.93    

15-May 0.95 0.94 0.93 0.95 0.95 0.93 1   

27-May 0.95 0.95 0.94 0.95 0.97 0.94 1 0.99  

8-Jun 0.93 0.92 0.91 0.93 0.93 0.9 0.98 0.98 0.98 

All matrix comparisons were significant at 𝜌 < 0.01. 𝑛 = 2e+07.
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Table S7.3. Overview of descriptive statistics of spatio-temporal SWS at standard depth 
intervals 

Time-steps Mean SE (±) St. Dev Var CV Min Max Median CI (95%) 

At 0–5 cm 

Feb 20 1.586 0.000 1.544 2.385 0.974 0.006 10.904 1.479 0.001 
Mar 04 3.267 0.000 2.173 4.720 0.665 0.006 15.397 2.986 0.001 
Mar 16 3.433 0.001 3.250 10.560 0.947 0.006 17.383 2.493 0.001 
Mar 28 1.743 0.000 1.606 2.580 0.922 0.006 12.369 1.493 0.001 
Apr 09 4.766 0.000 1.994 3.976 0.418 0.006 19.328 4.479 0.001 
Apr 21 6.159 0.001 3.158 9.971 0.513 0.006 19.356 4.986 0.001 
May 03 3.567 0.000 2.192 4.807 0.615 0.006 18.808 3.000 0.001 
May 15 5.313 0.000 2.114 4.468 0.398 0.006 18.835 5.000 0.001 
May 27 3.587 0.000 2.031 4.126 0.566 0.006 16.863 3.014 0.001 
Jun 08 7.160 0.001 2.931 8.593 0.409 0.006 23.808 6.521 0.001 
At 5–15 cm 

Feb 20 1.586 0.000 1.544 2.385 0.974 0.006 10.904 1.479 0.001 
Mar 04 3.267 0.000 2.173 4.720 0.665 0.006 15.397 2.986 0.001 
Mar 16 3.433 0.001 3.250 10.560 0.947 0.006 17.383 2.493 0.001 
Mar 28 1.743 0.000 1.606 2.580 0.922 0.006 12.369 1.493 0.001 
Apr 09 4.766 0.000 1.994 3.976 0.418 0.006 19.328 4.479 0.001 
Apr 21 6.159 0.001 3.158 9.971 0.513 0.006 19.356 4.986 0.001 
May 03 3.567 0.000 2.192 4.807 0.615 0.006 18.808 3.000 0.001 
May 15 5.313 0.000 2.114 4.468 0.398 0.006 18.835 5.000 0.001 
May 27 3.587 0.000 2.031 4.126 0.566 0.006 16.863 3.014 0.001 
Jun 08 7.160 0.001 2.931 8.593 0.409 0.006 23.808 6.521 0.001 
At 15–30 cm 

Feb 20 13.245 0.001 3.530 12.458 0.266 0.006 29.835 12.479 0.002 
Mar 04 19.709 0.001 3.893 15.158 0.198 6.576 37.863 18.507 0.002 
Mar 16 22.992 0.001 5.662 32.057 0.246 9.562 43.918 20.986 0.002 
Mar 28 14.138 0.001 3.513 12.341 0.248 0.110 31.328 13.466 0.002 
Apr 09 25.052 0.001 4.325 18.708 0.173 12.041 47.356 23.945 0.002 
Apr 21 27.264 0.001 5.416 29.335 0.199 14.041 47.397 25.479 0.002 
May 03 22.158 0.001 4.050 16.402 0.183 9.055 43.342 20.959 0.002 
May 15 24.885 0.001 3.937 15.504 0.158 12.562 45.780 23.973 0.002 
May 27 22.313 0.001 4.127 17.030 0.185 10.548 43.369 20.986 0.002 
Jun 08 33.702 0.001 3.630 13.174 0.108 17.165 53.753 33.000 0.002 

SE (±) = standard error, St. Dev = standard deviation, Var = variance, CV = coefficient of 
variation of spatial SWS, Min = minimum, Max = maximum and CI = confidence interval at 95% 
around the mean. 𝑛 = 2e+07. 
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Table S7.3. Continued 

Time-steps Mean SE (±) St. Dev Var CV Min Max Median CI (95%) 

At 30–40 cm 

Feb 20 41.012 0.001 6.499 42.237 0.158 15.220 76.876 38.973 0.003 
Mar 04 44.689 0.002 7.341 53.892 0.164 18.617 93.397 42.438 0.003 
Mar 16 50.627 0.002 9.407 88.492 0.186 24.589 105.383 47.411 0.004 
Mar 28 41.987 0.001 6.688 44.730 0.159 17.192 79.876 39.945 0.003 
Apr 09 55.876 0.002 8.013 64.208 0.143 30.562 105.918 53.397 0.003 
Apr 21 51.786 0.002 9.241 85.398 0.178 25.096 103.835 48.424 0.004 
May 03 52.470 0.002 7.552 57.032 0.144 27.069 100.397 49.945 0.003 
May 15 55.813 0.002 7.430 55.204 0.133 29.082 101.411 53.904 0.003 
May 27 52.670 0.002 7.974 63.582 0.151 28.576 103.918 49.986 0.003 
Jun 08 67.498 0.001 6.081 36.984 0.090 37.165 97.739 66.424 0.003 
At 40–60 cm 

Feb 20 25.693 0.001 5.995 35.938 0.233 4.644 61.684 23.973 0.003 
Mar 04 21.864 0.001 5.889 34.684 0.269 2.631 52.794 20.055 0.003 
Mar 16 20.692 0.001 6.756 45.638 0.326 1.151 49.315 18.521 0.003 
Mar 28 24.791 0.001 5.941 35.293 0.240 4.631 60.191 23.000 0.003 
Apr 09 25.079 0.001 5.323 28.338 0.212 6.576 51.808 23.493 0.002 
Apr 21 20.724 0.001 6.777 45.924 0.327 1.617 47.342 18.493 0.003 
May 03 25.676 0.001 5.589 31.241 0.218 6.096 51.808 24.452 0.002 
May 15 26.485 0.001 5.963 35.558 0.225 6.096 57.780 24.986 0.003 
May 27 24.845 0.001 5.672 32.169 0.228 6.603 52.794 23.466 0.002 
Jun 08 29.237 0.001 5.751 33.071 0.197 6.110 61.739 27.973 0.002 
At 60–100 cm 

Feb 20 121.135 0.004 17.295 299.103 0.143 56.151 223.971 114.890 0.007 
Mar 04 117.737 0.004 16.813 282.675 0.143 53.672 217.957 111.631 0.007 
Mar 16 117.532 0.004 17.442 304.233 0.148 51.206 217.930 111.424 0.008 
Mar 28 120.225 0.004 17.293 299.048 0.144 55.165 222.971 113.904 0.007 
Apr 09 122.569 0.004 16.669 277.866 0.136 61.069 221.464 116.890 0.007 
Apr 21 118.112 0.004 17.443 304.257 0.148 50.699 216.916 111.931 0.008 
May 03 129.063 0.004 19.118 365.515 0.148 61.576 250.875 123.959 0.008 
May 15 127.719 0.004 19.397 376.245 0.152 60.589 251.368 122.411 0.008 
May 27 126.423 0.004 18.595 345.777 0.147 62.069 245.861 121.014 0.008 
Jun 08 131.855 0.004 18.680 348.937 0.142 63.082 257.313 126.521 0.008 

SE (±) = standard error, St. Dev = standard deviation, Var = variance, CV = coefficient of 
variation of spatial SWS, Min = minimum, Max = maximum and CI = confidence interval at 95% 
around the mean. 𝑛 = 2e+07.
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Table S8.1. Site characteristics and GPS coordinates for all sampling locations from the Guinea savannah zone of Ghana 

Station 
ID 

Latitude Longitude Soil type Soil association Geology District block 

SM and physical soil properties sites 

AT01 9.38209 -0.68264 Lima Sambu-Pasga Shale, Mudstone, Sandstone Mion 

AT02 9.38980 -1.02133 Kpelesawgu Sambu-Pasga Shale, Mudstone, Sandstone Tolon 
AT03 9.24358 -0.62165 Changnalili Lima-Volta Alluvium sediments Karaga 

AT04 9.30885 -0.71828 Kpelesawgu Techiman-Tampu Voltain sandstone Tamale Metro 
AT05 9.40523 -1.23727 Changnalili Kpelesawgu-Changnalili Voltain shale Tolon 
AT06 9.55798 -0.96041 Lima Lima-Volta Alluvium sediments Kumbungu 

AT07 9.55211 -1.17127 Lima Sambu-Pasga Shale, Mudstone, Sandstone Tolon 
AT08 9.34742 -0.75396 Lima Techiman-Tampu Voltain sandstone Tamale Metro 

AT09 9.25980 -0.72064 Lima Lima-Volta Alluvium sediments East Gonja 
AT10 9.45722 -1.29907 Lima Kpelesawgu-Changnalili Voltain shale North Gonja 

AT11 9.63135 -1.18874 Lima Kpelesawgu-Changnalili Voltain shale Kumbungu 
AT12 9.39602 -0.48972 Kumayili Techiman-Tampu Voltain sandstone Tamale Metro 

AT13 9.41191 -0.23344 Changnalili Gushiagu-kasele Voltain shale Karaga 

AT15 9.32232 -0.81182 Lima Lima- Volta Alluvium sediments East Gonja 
AT16 9.08735 -1.13139 Siare Siare-dagare Alluvium sediments Central Gonja 

AT17 9.80794 -0.42220 Lima Kpelesawgu-Changnalili Voltain shale Karaga 
AT18 9.08612 -1.03072 Volta Kpelesawgu-Changnalili Voltain shale Central Gonja 

AT19 9.57707 -0.77180 Lima Techiman-Tampu Voltain sandstone Savelugu Nanton 
AT20 9.31643 -0.25106 Lima Sambu-Pasga Shale, Mudstone, Sandstone Mion 

AT22 9.75427 -0.82686 Volta Lima-Volta Alluvium sediments Kumbungu 

AT23 9.51278 -0.75376 Lima Lima-Volta Alluvium sediments Savelugu Nanton 

AT24 9.47611 -1.13107 Kumayili Sambu-Pasga Shale, Mudstone, Sandstone Savelugu Nanton 
AT25 9.38885 -0.27060 Kpelesawgu Techiman-Tampu Voltain sandstone Tamale Metro 

AT26 9.53645 -1.37973 Dagare Sambu-Pasga Shale, Mudstone, Sandstone North Gonja 

AT27 9.52581 -0.92455 Lima Lima-Volta Alluvium sediments Kumbungu 
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Table S8.1. Continued 

Station 
ID 

Latitude Longitude Soil type Soil association Geology District block 

AT28 9.73252 -0.47761 Lima Sambu-Pasga Shale, Mudstone, Sandstone Karaga 

AT29 9.15954 -1.42628 Lima Techiman-Tampu Voltain sandstone Central Gonja 

AT30 9.40799 -0.45041 Lima Lima-Volta Alluvium sediments Mion 

AT31 9.07524 -0.54386 Lima Sambu-Pasga Shale, Mudstone, Sandstone East Gonja 

AT32 9.32838 -0.93585 Lima Lima-Volta Alluvium sediments Central Gonja 

AT33 9.60072 -0.84122 Kumayili Mimi-Techiman Voltain sandstone North Gonja 

AT34 9.59978 -0.63474 Lima Kpelesawgu-Changnalili Voltain shale Savelugu Nanton 

AT35 9.38973 -0.33578 Lima Lima-Volta Alluvium sediments Mion 

AT36 9.49393 -0.69697 Lima Lima-Volta Alluvium sediments Karaga 

AT37 9.47358 -0.84833 Lima Techiman-Tampu Voltain sandstone Sagnerigu 

AT38 9.20374 -0.97482 Volta Kpelesawgu-Changnalili Voltain shale Central Gonja 

Plant available water content sites 

Wet 1 9.65884 -0.57731 Lima Lima-Volta Alluvium sediments Karaga 

Wet 2 9.40714 -0.98608 Kpelesawgu Sambu-Pasga Shale, Mudstone, Sandstone Tolon 
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Figures 

 

Figure S4.1. Distribution of subsamples (spl) drawn from the selected PCs of the GWPCA (init) 
used in the cLHC simulating annealing process. TWI = SAGA topographic wetness index. 
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Figure S5.1. Modelled least square means (LSM) and 95% confidence intervals (CI) for 
gravimetric soil moisture (SMg) and physical soil properties per soil type (A) and at different 
standard soil depths (B). N = number of samples used per groups of measurements.  
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Figure S5.2. Modelled least square means (LSM) and 95% confidence intervals (CI) for physical 
soil properties and gravimetric soil moisture per soil type (A – clay content, C – silt content 
and E – bulk density) and at different standard soil depths (B – clay content, D – silt content 
and F – bulk density), N = number of samples used per groups of measurements. TS = toe 
slope, MLS = middle to lower slope and UP = upper slope.  
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Figure S5.3. Estimates and 95% confidence intervals (CI) for fixed and random effects of the 
mixed effect models used to explain the relationship between gravimetric (SMg) and PR2 
profile probe (SMp) soil moisture measurements. 
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Figure S7.1. Differences in model performances for predicted SWS from the target-oriented 
LLTO-CV. Arithmetic means (red dots), ranges (length of whiskers), medians (horizontal bars) 
and their corresponding distribution of predicted SWS are presented. 
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Figure S9.1. Spatio-temporal variability of SWS for (A) Kpelesawgu series, (B) Changnalili series, (C) Dagare series, (D) Kumayili series, (E) Lima series, 
(F) Siare series and (G) Volta series along the various in situ measurement depths. Soil names are in Ghanaian soil classification system. Statistical 
analysis focussed on the spatio-temporal variability of SWS. Ranges (length of whiskers) and medians (vertical bars) are shown. 


