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Abstract

It is believed that knowing all cell types making up a brain will
lead to its understanding. Consequently, current efforts focus on clas-
sifying cell types according to their anatomical, genetic and physiolog-
ical properties. Research in Drosophila melanogaster has greatly ad-
vanced cell type classifications, using transcriptomics, connectomics
and genetic tools for neural circuit dissection. In particular, the fly
eye, or optic lobe, has been extensively researched in an attempt
to understand motion computation. Detection of motion is crucial
for the survival of many species. Furthermore, motion computation
is close to being mapped to its algorithmic neuronal substrate. In
this thesis, we map the functional circuit organization of the fly vi-
sual system at the level of cell types. We focus on Tm9, the main
synaptic input to T5 neurons, the first direction-selective neurons
in the fly visual system, which detect moving dark edges. Tm9 like
most neurons in Drosophila melanogaster has a stereotyped anatomy,
that distributes regularly over the 800 columns of the fly eye and
can be specifically targeted with genetic lines. Here, using in vivo
two-photon calcium imaging we show Tm9 has variable receptive
field properties that contrast with its homogeneous anatomy and
genetics. In particular, Tm9 can display both narrow and wide re-
ceptive fields. We demonstrate this variability is not common to
other fly neurons using simultaneous dual imaging, and find that
wide-field responses are mediated by ON signals. Using anatomical
and optogenetic circuit mapping, we identify Dm4, Dm12, and Dm20
as novel wide-field (variable) inputs to Tm9, and combine genetic
silencing with in vivo imaging to show each of them mediates Tm9
response properties. In particular, Dm12 and Dm20 sharpen Tm9
ON receptive fields. The influence of Dm4, Dm12, Dm20, and Tm9
extends to downstream computations, genetic silencing reveals they
are all required for proper directional tuning of T4 and T5 neurons.
We further establish a computational role of functional variability in
Tm9 by showing that Tm9 axons’ spatiotemporal properties corre-
late with the ones from postsynaptic T5 dendrites. Taken together
our results unravel the existence of variability within classical cell
types, its functional relevance in motion detection, and show newly
characterized wide-field neurons in the fly brain are required for
motion computation. We postulate flexible synaptic connectivity as a
mechanism to regulate functional heterogeneity in morphologically-
and genetically-defined cell types.

ix
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Introduction

This thesis aims to analyze the concept of neural identity and its precision
in the context of a behaviorally relevant computation. This study focuses on
neuron types in the Drosophila visual system required for motion detection.

What is the goal of neuroscience? Theory of the brain?

The goal of science is to reach a level in which the theories can explain
known and predict unknown phenomena. In neuroscience, we study
the brain, one of the most complex systems. Even more complex is the
collective behavior arising from the interaction of individuals with brains.
We assume the brain is the substrate for the mind. And thus, the brain
allows us to sense, perceive, act, form memories, and retrieve them. This
knowledge goes back at least to 400 B.C.E. when Hippocrates wrote his
treatise “On the Sacred Disease” !:

Men ought to know that from nothing else but the brain come
joys, delights, laughter and sports, and sorrows, griefs, despon-
dency, and lamentations. And by this, in an especial manner,
we acquire wisdom and knowledge, and see and hear, and
know what are foul and what are fair, what are bad and what
are good, what are sweet, and what unsavory; some we dis-
criminate by habit, and some we perceive by their utility.

Through neuroscience, we face the opportunity to dive into the very
essence of our thinking, to figure out how the brain works.

!See translation in (The Internet Classics Archive — On the Sacred Disease by Hippocrates
2019)



2 Chapter 1. Introduction

1.1 Cell types

Analyzing the brain a neuron at a time To understand the brain, one
needs to understand its composition. One milestone in this direction was
the emergence of the neuron doctrine. This doctrine, pioneered by Santiago
Ramoén y Cajal, stated the brain consisted of individual discrete units
called neurons. This advancement was enabled by a silver nitrate staining
technique developed by Camillo Golgi (the “reazione nera”). Thereby,
brain tissue was stained to be visualized under a microscope. Ramén y
Cajal’s observations led to postulating the existence of neurons. He also
pioneered the description of the nervous system organization in several
organisms, as compiled in his many engravings. Neuronal types emerged
from reoccurring shapes of neurons and their organization into circuits.
Thus, studying the myriad neurons of the brain can be easier if we group
them into fewer discrete types. Through classification we can describe a
system in a hierarchical order of detail. This way we can focus on fewer
items at a time and overcome the limits of our cognition. Therefore, cell
type classifications, of neuronal and non-neuronal cells, are useful as an
inventory of brain composition.

The importance of classifications of cells, has led to an avalanche of
information that cannot be summarized in this thesis introduction, for
different perspectives some reviews are suggested (Masland, 2004; Seung
and Stmbiil, 2014; Poulin et al., 2016; Arendt et al., 2016; Zeng and
Sanes, 2017). This interest was fueled by major funding initiatives, e.g.,
classifying cell types is the first aim of the BRAIN initiative (“BRAIN 2025:
A Scientific Vision” n.d.). Consequently, even entire institutes dedicate
themselves to classify all cell types in human and mouse brains (cortices)
(Ecker et al., 2017).

Historically, the first neuron characterizations were purely anatomical.
Later advances for measuring the electric properties of neurons allowed to
classify neurons into electrophysiological neuronal types. With advances
in genetics, neurons could also be classified on the basis of their expressed
genes, creating genetic cell types with ever larger specificity. With the
ability to genetically label cell types and trace their projections, connec-
tivity was a further addition to the neuron classification schemes. Serial
electron microscopy paved the way for neuron reconstruction and synapse
annotation to map the connectome, as a further source of connectivity
classification for neuronal cell types.

Nowadays, high-throughput experiments attempt to sample freely from
bias the anatomical, genetic, and physiological properties of neurons in
brain regions with some known functions (Zeisel et al., 2015; Gouwens et
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al., 2019) and others with functions yet to unravel (Namboodiri, Rodriguez-
Romaguera, and Stuber, 2016; Pandey et al., 2018). Next, we expand on
these aspects.

Anatomy

First, we discuss the role of anatomical methods in the classification of
neuronal types. Golgi stain labels tissue randomly and sparsely, and can
isolate single neurons. This method and its iterations are particularly
useful for exploring neural organization in species with limited genetic
access like camels (Zaqout et al., 2012), lizards (Srivastava, Maurya, and
Chand, 2009), and humans (Al-Hussain Bani Hani, Al-Haidari, and Saboba,
2007).

Besides Golgi method, neurons were also reconstructed from electron
microscopy images. Both methods are low-throughput. An attempt to
scale up the number of neurons sampled in a tissue came about with
connectomics. Connectomics aims to reconstruct of all neurons and their
connections in a brain area, or ideally the whole brain or even organism.
The typical method for connectomics is the reconstruction of a volume
scanned with electron microscopy (Denk and Horstmann, 2004; Briggman
and Bock, 2012). This approach has shed light on circuit computations
such as direction selectivity in several species (Briggman, Helmstaedeter,
and Denk, 2011; Takemura, Bharioke, et al., 2013), and contributed with
discovery of new cell types (Helmstaedter et al., 2013). This, in principle,
enables sampling without bias all neurons in a brain. For example, a whole
Drosophila melanogaster brain was imaged using electron microscopy and
is available for tracing (Zheng et al., 2018).

The following methods illustrate the combination of multiple features
in the efforts to reach comprehensive cell type classifications. To link
morphology to electrophysiology, single cells are also labeled and traced
after recording their electrical activity using patch-pipettes. This method is
currently used to push the classification of cortical neurons, which could
as well split into the order of 1000 neuron types (Masland, 2004). For
example, morphological and electrophysiological data were used to model
a cortical column of the somatosensory cortex of the rat (Markram et al.,
2015). And more recently, visual cortical neurons were classified based on
joint electrical and morphological properties (Gouwens et al., 2019).

Genetic methods also contributed to the anatomical studies of neurons.
Neurons can be visualized via expression of fluorescent proteins driven
by some genetic line (Feng et al., 2000) or viral vectors (Moriyoshi et al.,
1996). Viral methods are also useful to label neurons retrogradely or
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anterogradely, important in mapping projections and synaptic partners.
The labeling coverage of these methods could range from sparse to dense.
To ensure labeling single neurons, stochastic expression methods were
developed for a single fluorescent protein (Struhl and Basler, 1993; Wong,
Wang, and Axel, 2002). To increase the sampling coverage, the stochastic
labeling method was extended to multiple spectrally different fluorescent
proteins (Livet et al., 2007; Hadjieconomou et al., 2011; Hampel et al.,
2011; Cai et al., 2013; Nern, Pfeiffer, and Rubin, 2015). This increased the
number of distinct colors to label neurons. And even allowed to identify
novel neuron types (Nern, Pfeiffer, and Rubin, 2015).

Another assumption is that neurons of a same type would have similar
connectivity, so neurons of the same type connect to the same neuron types
in similar proportions (Seung and Siimbiil, 2014). A prime example of
connectivity classification is work on the nematode Caenorhabditis elegans,
which 302 neurons were classified into 118 classes based on morphology
and connectivity (J.G. White et al., 1986; Hobert, Glenwinkel, and J. White,
2016). Clearly, anatomical methods have pushed forward classification
since the beginning of the modern age of neuroscience, and even more
aided by advances in molecular biology and imaging techniques.

Physiology

Anatomical methods show the static properties of neurons. However,
neurons perform their function dynamically, shaping the information that
flows through them. In turn, neurons properties can change depending on
the dynamics of its activity. The function of a neuron is usually measured
as its activity under certain context, e.g., external stimuli and internal
states. A functional definition of a cell type requires neurons of a single
type to have the same function.

Classification of neuronal function was traditionally done recording
electrical activity of single or couple of neurons at a time. Classifications de-
pended on the feature chosen by the experimenters, in some cases reaching
a convention (The Petilla Interneuron Nomenclature Group (PING), 2008).
Electrophysiological recordings offer high spatial and temporal resolution
to neuronal properties. Given the low throughput of such recordings, it is
useful to follow them by labeling and tracing the neuron, or sequencing its
molecular properties (Markram et al., 2015; Cadwell et al., 2016; Gouwens
et al., 2019).

Conversely, optical methods offer access to larger number of neurons
simultaneously. Recording of neuronal populations at cellular resolution
relies on fluorescent indicators of voltage and calcium. Voltage recordings
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reflect closer neural activity than calcium. But because of the lower sensi-
tivity of voltage indicators, calcium indicators are often used for large-scale
recordings (T.-W. Chen et al., 2013; W. Yang and Yuste, 2017). Light
scattering hinders the study of deep regions in larger brains, but whole
brain recordings at cellular resolution are possible in smaller translucent
animals (Ahrens et al., 2013; Nguyen et al., 2016).

To split neurons into functional cell types, the activity of neurons is
recorded in response to a set of stimuli sampling a wide array of response
properties. Then, quantitative data analysis is performed as objectively
as possible to get an unbiased classification using statistical techniques.
With this approach, populations of retinal bipolar and ganglion neurons in
the mouse were classified into functional types based on responses to an
array of visual stimuli (Franke et al., 2017; Baden et al., 2016). Further
improvements in microscopy and activity sensors will scale up the number
of neurons that can be recorded, and allow to reliably record voltage and
other modalities of neural activity. Classifications based on functional
imaging are yet to be applied in many brain regions and species.

Genetics

We have discussed about the morphology and function of neurons. These
properties largely boil down to the genes expressed in the neuron. There-
fore, one can expect that the genetic identity of neurons can provide
another mean for cell type classification. Reliably identifying cell types
based on genetic properties allows for systematic targeting of the same
neurons in different animals. Thus, genetic access to single cell types is
useful to study their anatomical and functional properties.

Earlier tools to access cell types, relied on enhancer/promoter elements
that produced a desired expression pattern. Driver lines were created
to express transgenes using an endogenous gene specific to a cell type.
Another method to express transgenes is enhancer traps, insertions of
transgenes into random locations in the genome (Bellen et al., 1989;
Brand and Perrimon, 1993). This method provided some useful lines but
usually not at a cell type level.

Greater specificity was achieved using binary systems. In binary sys-
tems, a cell-type specific promoter drives an effector transgene, thus only
in cells where both parts come together the transgene is expressed. A
successful binary system is the Gal4/UAS system in Drosophila (Fischer
et al., 1988; Brand and Perrimon, 1993). Here, the promoter drives expres-
sion of the transcription factor Gal4, and the effector transgene is under
control of the UAS (upstream activation sequence). Thus, the effector
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transgene is expressed only when Gal4 comes together with UAS. Usually,
two transgenic animals carry each part of the binary expression system to
allow for different combinations of transgenes and cell types. For species
with no transgenic methods the transgenes are inserted using viral vectors
(El-Shamayleh, Ni, and Horwitz, 2016). These methods allowed defining
some cell types by the expression of fluorescent proteins in selected neu-
rons as discussed above (p. 4). Thus, lines were cell type specific when
the resulting expression patterns labeled a subset of neurons with similar
anatomical properties. So with this approach, genetic and anatomical defi-
nitions of cell types are intermingled. For further information on genetic
approaches to neuroscience see (Luo, Callaway, and Svoboda, 2008; Luo,
Callaway, and Svoboda, 2018).

Previous methods were labor intensive, and cell-type definitions relied
on the visualization of neuron morphologies. Current methods allow for
high-throughput unbiased characterization of genetic cell types based
on single-cell transcriptomes. The transcriptome is the collection of all
expressed mRNAs. In this approach single cells are sequenced and classified
into types based on their gene expression patterns. The classification
resorts to statistical methods similarly to the ones used for anatomical
or functional properties. For a review see (Poulin et al., 2016; Zeng and
Sanes, 2017). In particular, retinal bipolar cells were sequenced and
classified into clusters that recapitulate morphological and functional types
(Shekhar et al., 2016; Helmstaedter et al., 2013; Franke et al., 2017). In
the cortex, different studies have shown classifications that seem to share
grouping of major known classes of excitatory and inhibitory neurons, and
further clusters that may represent new types (Cadwell et al., 2016; Tasic,
Menon, et al., 2016; Tasic, Yao, et al., 2018). In C. elegans transcriptomic
classifications largely match the anatomical one (Hobert, Glenwinkel, and
J. White, 2016). Transcriptomic studies can also identify specific markers
to target a specific cell type, and further contribute to the study of its
anatomical and functional properties.

The relation between the classification of neuronal types using anatomy,
physiology or genetics is not trivial. In the retinal bipolar cells multiple
independent classifications of anatomy, physiology and genetics match.
But in the case of cortical neurons grouping by physiology or anatomy
alone yields different results than using both properties simultaneously
(Gouwens et al., 2019). Also the factors are interrelated: genetics defines
electrical and morphological properties, and connectivity, but activity
in turn alters gene expression and connectivity. This interaction makes
a unified cell-type definition non-trivial. Therefore, neurons should be
classified comprehensively based on joint anatomical, functional, and
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genetic properties.

Data analysis for cell type classifications

In all previous approaches mentioned, classification involved techniques for
visualization, dimensionality reduction, and clustering of high-dimensional
data. Here, we just want to draw attention to the role of existing algorithms
in defining a cell type, as there is no all-purpose method to cluster data in
a completely unbiased and unsupervised way. Usually analysis commences
with some visualization, to project the data into two or three dimensions.
Consider the example of a transcriptomic sequencing: N neurons each of
them expressing some combination of n possible genes. This data set lies in
an n dimensional space, where each dimension corresponds to the expres-
sion level of one of the genes. In this space, each neuron will correspond to
a point, an n-dimensional vector, where the i-th component is the expres-
sion level of the gene i. If the sequencing data provides information about
hundreds or thousands of genes, we can see how unintuitive this space will
be. Using dimensionality-reduction techniques (typically PCA, NMF, t-SNE,
WGCNA) will allow projection of the data into a new set of coordinates,
ordered by their contribution to represent the original high-dimensional
data. Thus, we can visualize the data in two or three dimensions and try
to find patterns or groups. This step is useful, as there is no optimal way of
establishing the number of clusters an algorithm is expected to find. Even
unsupervised algorithms depend on the choice of a parameter to optimize,
e.g. distance, or similarity metric between data points, and also depend on
a cutoff to define the final cluster arrangement, e.g., hierarchical clustering.
The full data in the original form (or in a reduced number of dimensions
if data size is too large) can be fed into a clustering algorithm (k-means,
hierarchical clustering, mixture of Gaussians, etc.). The resulting clusters
can be then visualized in the reduced space provided by the previous step.
This approach of clustering and visualization can iterate until a satisfactory
grouping is achieved. The satisfaction criteria are sometimes defined by
the expected number of clusters based on previous studies of anatomical
or functional types. Therefore, we need to keep in mind that even when
we cluster data, the underlying structure can be a continuum of cell type
properties. Also with larger number of neurons available new types can be
discovered, previous types can be merged into one type, or a type can be
split into new ones.
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Using cell types to describe neural circuits and their
computations

Cell types are useful to understand neural computations and behavior.
One can aim to describe the neural substrate of a computation with a
canonical circuit of cell types. Conversely, one can identify cell types and
study their function until they can be ascribed to a given computation
or behavior. Either way requires defining cell types according to their
function. But going from a computation to the neural substrate may
avoid the pitfalls of an otherwise reductionist approach from neurons to
computations/behavior (Krakauer et al., 2017). Thus, cell types should be
studied under their computational and behavioral context.

To dig into the cell type contributions to the algorithmic implementa-
tion of a computation we can focus on organisms and computations with
a large knowledge foundation. Many computations are conserved across
species, however, the concrete implementation may differ. For example,
various animals use the direction of motion to navigate the environment.
Because of its behavioral relevance and experimental accessibility, the com-
putation of motion has been actively researched since the 1950s, in both
invertebrates (Hassenstein and Reichardt, 1956), and vertebrates (Barlow
and Levick, 1965). And similar mechanisms with some crucial differences
were proposed for different species (reviewed in (Ramos-Traslosheros,
Henning, and Silies, 2018)). However, this mechanisms were algorithmic
and lacked detailed implementations at the neuronal level. This ignited
the search for the cell types which properties could fit into the algorithmic
description.

With advances in genetics, Drosophila melanogaster became a prime
candidate to look for the neuronal substrate of motion detection (Rister
et al., 2007), eventually unraveling the first direction-selective neurons in
the fly eye (Maisak et al., 2013). Prior to genetics, cell types were defined
in Drosophila melanogaster based on anatomical studies (Fischbach and
Dittrich, 1989). Further refinements in the genetic tools allowed greater
specificity, targeting single anatomical cell types (Pfeiffer et al., 2010).
Consequently, research increased on cell type physiological properties and
their role in motion computation (Joesch et al., 2010; Clark et al., 2011;
Silies et al., 2013; Behnia et al., 2014; Fisher, Leong, et al., 2015; Serbe
et al., 2016; Arenz et al., 2017; Strother et al., 2017). Therefore, motion
computation in the fly enables the study of single cell types within their
computational context.
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1.2 Cell types in the Drosophila visual system

Drosophila melanogaster stands in a good place regarding cell type classifi-
cations thanks to recent advances, in particular, since the start of this thesis.
The list of parts of the brain in the fly is closer to completion than in other
species, with the exception of the nematode worm Caenorhabditis elegans
which 302 neurons have been classified based on anatomy, connectivity,
or genetics (Hobert, Glenwinkel, and J. White, 2016). As for Drosophila
melanogaster a whole brain has been imaged using electron microscopy
and is available for segmentation and mapping of neural circuits (Zheng
et al., 2018). Particularly, at the level of the fly visual system, we have
access to anatomically defined cell types, connectomes, transcriptomes,
and behavioral and physiological studies with cell type specificity.

Characterization of cell types in the optic lobe

Anatomical classification: Golgi studies, fluorescence labeling, and
connectomics

The fly visual system has attracted scientists since the beginning of modern
neurobiology (Cajal, 1909; Ramon y Cajal and Sanchez, 1915). The first
anatomical descriptions were done in larger fly species. Later on, Golgi
studies revealed morphological cell types in the Drosophila melanogaster
visual neuropiles, the optic lobe (Fischbach and Dittrich, 1989). And
modern genetic labeling tools revealed even more neuron types (Nern,
Pfeiffer, and Rubin, 2015). The fly visual system is so stereotypical that
single neurons from different individuals can be ascribed to one type based
purely on anatomy.

The stereotypical constitution of the fly brain makes anatomical cell
types the foundation for genetic and physiological studies. Genetic lines to
label cell types are defined by their expression pattern. To label a single
cell type, the resulting expression pattern has to comprise a uniform distri-
bution of cells matching the anatomical features of the cell type of interest.
Once a specific genetic line for a cell type is available, one can study the
genetic and physiological properties of the cell type. In particular, genetic
lines for single cell types are ground truth for transcriptomic approaches
to cell type classification, and for labeling neurons reconstructed from
connectomics.

On the connectomics part, synaptic organization of the optic lobes
was first restricted to the connections in the second neuropile, the lamina
(Meinertzhagen and O’Neil, 1991). Further studies reached out to the
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next neuropile, the medulla (Takemura, Bharioke, et al., 2013; Shinomiya,
Karuppudurai, et al., 2014; Takemura, Xu, et al., 2015), and finally to the
lobula and lobula plate (Shinomiya, Huang, et al., 2019).

Genetic classification: driver lines and transcriptomes

Over the years, collections of thousands of genetic lines to target Drosophila
melanogaster neurons have achieved higher specificity. From the first
collections of promoter/enhancer pairs, e.g., the binary expression system
GAL4/UAS (Brand and Perrimon, 1993; Jenett et al., 2012), to lines
relying on genetic intersections to narrow down the expression pattern,
e.g., splitGAL4 (Pfeiffer et al., 2010; Gohl et al., 2011; Tirian and Dickson,
2017; Dionne et al., 2018).

On the other hand, transcriptomic studies have sequenced optic lobes
(Konstantinides et al., 2018) or brains (Davie et al., 2018) at the single
cell level and classified neurons intro genetic cell types. But these studies
usually cannot recover the number of cell types expected from anatomy
(Davis et al., 2019). A recent study departs from specific genetic lines to
obtain transcriptomes of single cell types (Davis et al., 2019). Thus, this
approach bridges anatomical, genetic, and physiological studies based on
the same genetic line.

Functional classification: very rough, behavior driven, forward or
backward screening

Given the genetic accessibility of the fly, physiological studies often rely
on genetic lines to express neural activity indicators. Unlike mammalian
neurons, the soma of neurons in the fly lies far apart from the neurites,
where synaptic transmission takes place. Because of this and the gen-
eral disadvantages of small structures for electrophysiology, imaging of
neuronal activity is the conventional choice to study neuronal processing
(T.-W. Chen et al., 2013; H.H. Yang, St-Pierre, et al., 2016). Furthermore,
large scale studies are precluded by the dense neuropile that hinders single
cell segmentation from whole brain imaging. Thus, studies of neuronal
function are as narrow or broad as the genetic line expression pattern.
Therefore, most studies in the fly use specific genetic lines to image single
cell types, an unparalleled advantage over other organisms.
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1.3 Motion vision models

Here, we give a brief account of the algorithmic descriptions of motion
computation that fueled the search for the precise neural implementation
of motion detection. For a more detailed review see (Ramos-Traslosheros,
Henning, and Silies, 2018; H.H. Yang and Clandinin, 2018).

Motion in essence can be detected up to the spatial resolution of a
given visual system. Motion at this scale is encoded by elementary motion
detectors (EMD). This units respond selectively to one direction of motion,
i.e., they are direction-selective (DS).

First mechanistic studies of motion detection date back to the 1950s,
when using the Chlorophanus beetle Hassentein and Reichardt proposed
a model for direction selectivity (Hassenstein and Reichardt, 1956). The
model, nowadays known as Hassenstein-Reichardt Correlator (HRC), com-
putes motion using two channels originating from two spatial points in
visual space. The points are offset in space, and one channel is pro-
cessed with a delay with respect to the other. The two channels are then
nonlinearly amplified at the output stage, resulting in a spatiotemporal
correlation, hence the name.

For example to encode left-to-right motion, the corresponding HRC
has a delay in the left channel. When the left channel is activated by
left-to-right motion, the signal is delayed, there is also an inherent motion
delay, the time needed from the motion to traverse the spatial offset of the
channels. Depending on the speed of motion, the signals will overlap at
the output stage, and produce an amplified output signaling left-to-right
motion. For right-to-left motion, the delay of motion adds to the processing
delay, thus, signals arrive individually at the output stage and are not
amplified and do not signal motion. Therefore, to generate direction
selectivity the HRC amplifies signals in the preferred direction of motion
(PD), not in the null direction (ND).

A similar two channel EMD model, the Barlow-Levick Model (BLM),
originated from studies of direction-selective neurons in the rabbit retina
(Barlow and Levick, 1965). The two channels are also spatially offset and
processed with a temporal delay. In this case signals are combined in a
suppressive way, via a NOT AND operation. The suppression originates
from a NOT operation in the delayed arm. As long as a signal is present
in the delayed channel, the outcome of the AND operation and the EMD
model will be zero. For a EMD with left-to-right PD, the delayed suppres-
sive channel will be in the right channel. The delay of movement plus
processing delay allow signals in the PD to arrive before the suppressive
signal, thus signaling motion. For motion in the ND, the delayed signal
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in the suppressive channel overlaps temporally with the excitatory signal
from the other channel, nullifying the output signal. Therefore, to generate
direction selectivity the BLM suppresses signals in the null direction of
motion, not in the preferred direction.

The motion energy model was proposed to explain motion detection in
humans (Adelson and Bergen, 1985). However, this model, under some
conditions, is fully equivalent to the HRC (van Santen and Sperling, 1985).

The predictions of the HRC model were verified in flies and other
organisms. Nevertheless, recent studies reveal the mechanism of direction
selectivity is more complex than any of the discussed models.

1.4 Motion vision pathways

We discussed the resources available for studying cell types in the optic
lobes, and classical models for motion computation. Now we describe the
mapping of those cell types into the algorithmic implementation of motion
detection.

Anatomy of the fly eye

The fly eye comprises the retina and the optic lobe. The optic lobe of the
fly comprises four neuropiles: the lamina, the medulla, the lobula, and the
lobula plate.

The fly eye has a lattice arrangement consisting of eye columns, roughly
800 of them. In the retina, each column is called an ommatidium. One
ommatidium contains eight types of photoreceptors R1-R8. Photoreceptors
R1-R6 express the broadband rhodopsin Rh1 in all ommatidia (Ostroy, M.
Wilson, and Pak, 1974; O’Tousa et al., 1985; Zuker, Cowman, and Rubin,
1985), whereas R7 and R8 exist in two subtypes that define two types of
ommatidia: pale and yellow. Pale ommatidia have R7 that express Rh3
sensitive to UV, and R8 that express Rh5 sensitive to blue. Yellow omma-
tidia have R7 with Rh4, also sensitive to UV but of longer wavelengths,
and R8 with Rh6 that is sensitive to green (Zuker, Montell, et al., 1987;
Montell et al., 1987; Salcedo et al., 1999). Pale and yellow ommatidia are
stochastically distributed over the retina (Chou et al., 1999).

The R1-R6 neurons project to the lamina in a retinotopic fashion, so
axons carrying information from the same region of space project to the
same region of the lamina (Braitenberg, 1967; Horridge and Meinertzha-
gen, 1970). This retinotopic projection along with other cell types in the
lamina form a cartridge. The lamina cartridge, together with the R7 and R8
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axons, then projects to the medulla, conserving the retinotopy (Horridge
and Meinertzhagen, 1970).

From the twelve types of lamina neurons there is an expansion to the
more than sixty types of the medulla. Most cell types are columnar and
each cartridge has a copy of them, while other cell types span multiple
columns and are less numerous than the number of cartridges (Fischbach
and Dittrich, 1989). However, few lamina cell types are required for
motion detection (Tuthill et al., 2013; Silies et al., 2013), and a fewer
proportion in comparison in the medulla (Ammer et al., 2015; Fisher,
Leong, et al., 2015; Serbe et al., 2016; Strother et al., 2017), reviewed in
(Ramos-Traslosheros, Henning, and Silies, 2018; H.H. Yang and Clandinin,
2018). The first neurons to compute motion in the fly eye have their axons
in the lobula plate, and their dendrites in either the medulla or the lobula.
Next, we focus on the neurons with some role in motion detection.

Anatomy of motion pathways

The first neurons computing motion in the fly are the direction selective
neurons T4 and T5 (Maisak et al., 2013). Both have their axons in the
lobula plate, but T4 has dendrites in the proximal medulla, and T5 in the
first layer of the lobula. The two neuron types are selective for stimuli
of opposite polarity: T4 and T5 neurons are selective for bright, and
dark moving edges, respectively (Maisak et al., 2013; Fisher, Silies, and
Clandinin, 2015). Furthermore, T4 and T5 neurons exist in four subtypes,
each type projects exclusively to one of the four layers of the lobula plate
(Fischbach and Dittrich, 1989). Interestingly, each T4 and T5 subtype
responds preferentially to one of the four cardinal directions (E. Buchner,
S. Buchner, and Biilthoff, 1984; Maisak et al., 2013; Fisher, Silies, and
Clandinin, 2015). T4 and T5 neurons are required for behavioral responses
to motion (Maisak et al., 2013; Bahl et al., 2013; Serbe et al., 2016;
Strother et al., 2017; Leonhardt, Meier, et al., 2017).

Now we describe the pathways leading to the direction selective neu-
rons T4 and T5, the ON and the OFF motion pathways, respectively. Both
pathways start in the retina, photoreceptors R1-R6 were already known
to be required for motion vision (Heisenberg and E. Buchner, 1977; Yam-
aguchi et al., 2008), and R7 and R8 to have a minor contribution (Wardill
et al., 2012). R1-R6 synapse to the lamina monopolar neurons L1, L2, and
L3. Silencing the outputs of the lamina neurons in different combinations
led to the observation of the ON and OFF motion pathways. The ON
motion pathway starts with L1 neurons, while the OFF motion pathway
starts with L2 and L3 neurons (Rister et al., 2007; Joesch et al., 2010;
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Clark et al., 2011; Silies et al., 2013). Lamina neurons project to the
medulla, where the pathways diverge through several interneurons before
converging back into T4 and T5, conserving the retinotopy throughout
(Shinomiya, Huang, et al., 2019).

The following is extracted from recent connectomes (Takemura, Bhar-
ioke, et al., 2013; Shinomiya, Karuppudurai, et al., 2014; Takemura, Nern,
et al., 2017; Shinomiya, Huang, et al., 2019). Notably, the connectome is
not yet complete, and lacks mapping of many wide-field neurons spanning
multiple eye columns. The main chemical synaptic inputs to T4 are medulla
intrinsic neurons Mil, Mi4, Mi9, transmedullary neuron Tm3, wide-field
neuron CT1, transmedullary Y neuron TmY15, centrifugal neuron C3, and
the T4 neurons of the same directional preference. The T5 neurons receive
input mainly from transmedullary neurons Tm1, Tm2, Tm4, Tm9, Tm23,
wide-field neuron CT1, transmedullary Y neuron TmY15, lobula tangential
neuron LT33, and T5 neurons of the same directional preference.

Because T4 and T5 neurons encode local motion, analysis are often
restricted to columnar neurons with clear retinotopy. In the ON motion
pathway, L1 feeds into Mil and Tm3, and L3 feeds into Mi9. Lamina
signals from L1 and L3 are carried to Mi4 trough L5 and Mi9, respectively.
And CT1 connecting to T4 in the medulla receives lamina inputs indirectly
via Mil and Mi9. In the OFF motion pathway, L2 feeds into Tm1, Tm2,
and Tm4, and L3 feeds into Tm9. Again, CT1 receives only indirect lamina
inputs in the lobula through Tm1 and Tm9.

There is a spatial organization in the pathways. The dendrites of T4
receive inputs from three sequential cartridges, e.g., visual points in space.
From the tips to the base of the dendrite inputs to T4 come from: Mi9,
next from Mil and Tm3, and finally from CT1, C3, and Mi4. Similarly,
from tips to base of T5 dendrites inputs come from: Tm9, then Tm1, Tm2,
and Tm4, and finally from CT1 (Shinomiya, Huang, et al., 2019).

Physiology of motion pathways

Because many inputs to DS neurons in the fly were mapped just recently,
few cell types have been studied physiologically. Notably, all neurons
described here transmit information through graded potentials, rather
than spikes.

Prior attempts to map the circuits of motion detection focused on
identifying two neurons that could fit into the motion detection models
(section 1.3). But this assumes one of the models is true for the fly
visual system. Besides, implementation at the algorithmic level does not
necessarily map one-to-one to the neural level. Therefore, it is more
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beneficial to narrow down the particular algorithmic implementation of
motion detection in Drosophila melanogaster before deciphering the circuit
mapping at cell type resolution (Krakauer et al., 2017). Following this
perspective, we discuss first the physiological properties of DS neurons, as
well as their implications for algorithms of motion detection.

Physiology of direction selective neurons

Apart from the selectivity to ON or OFF moving edges, T4 and T5 share
some common response properties. T4 and TS5 are orientation-selective
(Maisak et al., 2013; Fisher, Silies, and Clandinin, 2015). They are
direction-opponent, i.e, they are excited by movement in their preferred
direction, but inhibited by movement in their null direction (Badwan et al.,
2019). They respond to illusory motion, or reverse-phi, that consists of
sequential stimuli of opposite contrasts that elicit a percept of motion in
the opposite direction of the sequence (Anstis, 1970; Salazar-Gatzimas,
Agrochao, et al., 2018). T4 and T5 neurons incorporate information about
ON and OFF stimuli (Leong et al., 2016; Salazar-Gatzimas, J. Chen, et al.,
2016; Strother et al., 2017; Arenz et al., 2017; Salazar-Gatzimas, Agrochao,
et al., 2018). As confirmed by connectomics, T4 and T5 receive inputs from
at least three visual locations (Haag, Arenz, et al., 2016; Haag, Mishra, and
Borst, 2017). Also T4 and T5 calcium imaging studies revealed both null
direction suppression and preferred direction enhancement in both neu-
rons (Fisher, Silies, and Clandinin, 2015; Haag, Arenz, et al., 2016; Haag,
Mishra, and Borst, 2017). However, voltage recordings concluded that
direction selectivity in T4 and T5 can emerge from linear input summation,
and upstream nonlinearities only shape the already direction-selective
signal (Wienecke, Leong, and Clandinin, 2018; Gruntman, Romani, and
Reiser, 2018). Taken together, these constraints imply that models should:
integrate inputs from three points in space with delayed processing of the
extreme points with respect to the middle, combine both ON and OFF
stimuli linearly in voltage, and potentially include dynamic nonlinearities
(Badwan et al., 2019).

Physiology of inputs to direction selective neurons

Physiological studies aimed at deciphering the circuit implementation
of motion detection. Rather than taking a historical account, here, we
describe the physiological properties of the main synaptic inputs into T4
and T5.
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The pathways converging onto T4 and T5 split in the lamina neurons,
however all lamina neurons L1, L2, and L3 depolarize to light decrements
(OFF), and hyperpolarize to light increments (ON). They have different
kinetics, L3 responses are more sustained than those of L1 and L2 (Reiff
et al., 2010; Clark et al., 2011; Freifeld et al., 2013; Silies et al., 2013;
H.H. Yang, St-Pierre, et al., 2016).

Downstream in the medulla, we have Mil, Tm3, Mi4, and Mi9 as main
inputs to T4. All depolarize to ON, except Mi9 that depolarizes to OFF
(Behnia et al., 2014; Arenz et al., 2017; Strother et al., 2017). On the
T5 pathway, all main inputs Tm1, Tm2, Tm4, and Tm9 depolarize to OFF
(Behnia et al., 2014; Fisher, Leong, et al., 2015; Serbe et al., 2016; H.H.
Yang, St-Pierre, et al., 2016; Arenz et al., 2017). These neurons have
different temporal filtering properties. In the T4 pathway, Mil and Tm3
can encode higher temporal frequencies than Mi4 and Mi9. In the T5
pathway, Tm1, Tm2, and Tm4 encode similarly higher frequencies than
Tm9 (Arenz et al., 2017). About their spatial properties, most neurons
have center-surround receptive fields that match the optical resolution
of one ommatidium, i.e., one pixel of the fly eye (Behnia et al., 2014;
Serbe et al., 2016; Arenz et al., 2017). Interestingly, and opposite to other
reports (Serbe et al., 2016; Arenz et al., 2017), Tm9 has been reported
to have a wide receptive field spanning multiple columns (Fisher, Leong,
et al., 2015). This wide receptive field indicates potential contributions
from uncharacterized wide-field neurons in the fly eye (Nern, Pfeiffer, and
Rubin, 2015).

1.5 Thesis objectives

Because of the cell type resolution of the studies, this discrepancy about
Tm9 receptive field properties, sparked the interest in variability within
cell types. This is particularly remarkable in the light of the regular and
stereotypical constitution of the fly eye. Now, we have access to study
cell type variability using an anatomically and molecularly defined cell
type. Furthermore, we study this cell type under its computational context,
i.e., motion computation. Tm9 is the major synaptic input to T5 DS
neurons (Shinomiya, Karuppudurai, et al., 2014; Shinomiya, Huang, et al.,
2019). The input from Tm9 to T5 is excitatory and cholinergic (Shinomiya,
Karuppudurai, et al., 2014; Davis et al., 2019). Genetic silencing of Tm9
activity has profound effects in behavioral responses to OFF moving edges
(Fisher, Leong, et al., 2015; Serbe et al., 2016).

Therefore, the aim of this thesis was to characterize the receptive field
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properties of Tm9, and their variability; to dissect the receptive field of
Tm9 at the cell-type level; and to study the role of Tm9 and its input cell
types into direction selective T5 neurons and optomotor behavior?. Each
chapter of this thesis deals with each aim.

In the first chapter, we characterized Tm9 spatiotemporal response
properties and their variability using a variety of visual stimuli and in vivo
two-photon calcium imaging. To test the scope of cell type variability in
the fly visual system, we further characterized response properties of other
neuron types in the OFF motion pathway. We also recorded Tm9 and Tm4
simultaneously to reduce sources of variability across experimental condi-
tions. We show Tm9 has variable properties, temporally Tm9 responses
can be transient or sustained, whereas spatially receptive fields are narrow
for OFF stimuli, and narrow to wide for ON stimuli. Furthermore, the
variability is not common to all neurons tested.

In the second chapter, we studied the Tm9 receptive field contributions
of the cell types that synapse onto Tm9. We first searched for novel
inputs to Tm9 from wide-field cell types that could explain the wide ON
receptive fields. We also performed a functional mapping of inputs to Tm9,
using the candidate wide-field inputs together with connectomics data.
We recorded Tm9 responses upon optogenetic activation of a variety of
cell types, including some without direct connections. Then, we studied
Tm9 response properties while we blocked the input from main lamina
neurons, wide-field neurons, and electrical synapses onto Tm9. We show
Tm9 is robust to single neurons manipulations. Moreover, we identified
novel wide-field inputs that modulate Tm9 full-field responses, and the
ON receptive field size and its variability.

Finally, in the third chapter, we studied the properties of T4 and T5
DS neurons while blocking activity of Tm9 neurons and its novel wide-
field inputs. We provide evidence that wide-field neurons modulate the
response amplitude and direction-selectivity of T4 and T5 neurons.

Thus, the contributions of this thesis are threefold: study functional
variability within cell types, analyze the cell type contributions to receptive
fields, and define the role of wide-field neurons in fly vision, all within the
context of a relevant neural computation, motion detection.

2Reflexive turning responses to moving stimuli, e.g., sinusoidal gratings.
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Functional variability in classical genetically and
anatomically defined cell types

“I learned very early the
difference between knowing the
name of something and
knowing something.”

Richard P. Feynman

In this chapter, we study the receptive field properties of the main
synaptic inputs to the direction-selective neurons T5 of the OFF motion
pathway. We show functional variability in a genetically and anatomically
defined cell type, namely Tm9. We also show how this variability can be
modulated by inhibitory wide-field inputs.

First reports about the response properties of Tm9 stated Tm9 had
wide receptive fields (Fisher, Leong, et al., 2015), but a following study
reported narrow field properties (Serbe et al., 2016; Arenz et al., 2017).
This discrepancy hinted at variability of functional properties within a
cell type, which may be stimulus-specific, or may be more intrinsic to
the neuronal properties. This chapter resolves the issue by studying the
properties of Tm9 receptive fields. In the first section 2.1, we describe the
variability in Tm9 receptive field properties. In the second section 2.2, we
test the specificity of the variability and possible underlying parameters
by simultaneous dual imaging of Tm9 and another OFF pathway neuron,
namely Tm4. In the third, final section 2.3, we characterize and contrast
the receptive fields of four main OFF pathway neurons independently:
Tm1, Tm2, Tm4 and Tm9.

19
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2.1 Functional variability in the main input to
OFF direction selective neurons

Tm9 is a crucial neuron for computing motion of dark moving edges. It
is the main synaptic input to direction-selective T5 neurons in the OFF
pathway (Shinomiya, Karuppudurai, et al., 2014; Shinomiya, Huang, et
al., 2019). Fly optomotor behavior to dark moving stimuli is impaired
upon Tm9 neurotransmission block, accompanied by decreased direction-
selectivity in neurons in the lobula plate (Fisher, Leong, et al., 2015; Serbe
et al., 2016). Therefore, understanding the features encoded by Tm9 may
bring us closer to crack the neural mechanism of motion computation in
Drosophila melanogaster.

Tm?9 is an anatomically defined cell type (Fischbach and Dittrich, 1989).
Genetic lines to specifically label Tm9 are used in physiological and behav-
ioral experiments (Fisher, Leong, et al., 2015). In transcriptomics, a single
cluster is assigned to Tm9 (Konstantinides et al., 2018). Taken together,
Tm9 is a genetically and anatomically defined cell type.

Usually, it is difficult to find such narrow anatomical definition and
specific genetic access to a single cell type. As the morphology and genetic
expression patterns seem homogeneous, one would expect the function
to be equally constrained. The function of a neuron is key to understand
neural computations. Downstream circuits will only receive the chemical or
electrical signals encoding the preferred feature of the presynaptic neuron,
not its morphology or full genetic makeup.

The discrepancy about wide versus narrow receptive fields of Tm9 can
be have numerous sources: different environmental conditions for raising
the flies, different adaptation states, the statistical structure of the stimuli,
imaging conditions, among others. Another possibility is the variability in
the functional properties of the cell type across and within individuals. This
last hypothesis is amenable to testing, because carrying out the experiments
in a single setup will reduce many sources of variability across laboratories.
Thus, following section shows Tm9 functional characterization with a
variety of stimuli.
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Figure 2.1: Tm9 responds preferentially to OFF full-field flashes.

A. Single Tm9 neuron responses to dark and bright full-field flashes of 2s
duration, interleaved by 4 s long intermediate gray screen. Mean trace and
shaded standard error are overlaid. Tm9 neurons respond preferentially
to OFF flashes. B. Single neuron traces in (A) stacked to highlight the
variability of responses. Positive responses are encoded in purple, negative
responses in green.

Tm9 neurons responses to full field flashes

A very simple functional division of neuronal properties is based on the
response of a neuron to the onset or offset of a stimulus leading to ON,
OFF or ON-OFF types. Here, we test Tm9 responses to full-field flashes of
ON and OFF polarities; the screen goes darker or brighter relative to an
intermediate gray screen.
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Tm9 neurons response to full-field flashes is heterogeneous

Neural responses were recorded using in vivo two-photon calcium imag-
ing. Tm9 neurons expressed the genetically-encoded calcium indicator
GCaMPé6f (T.-W. Chen et al., 2013). We imaged the Tm9 axon terminals,
located in the first layer of the lobula. Then, after image registration
(motion correction), and manual selection of regions-of-interest(ROIs),
signals were trial averaged. Fluorescence signal was normalized relative
to the baseline fluorescence (mean signal of inter-stimulus background),
per region-of-interest, resulting in ATf(eq. 6.3). From here on, the terms
region-of-interest and neuron will be used interchangeably, unless stated
otherwise.

Responses of Tm9 neurons varied in kinetics and polarity. On average
Tm9 neurons’ calcium increased upon OFF stimulation, and remained
unchanged or decreased slightly upon ON stimulation (fig. 2.1). Some
neurons showed inverted polarity, i.e. their calcium levels increased upon
ON stimulation.

Principal component analysis of full-field flashes responses To see
finer structure in the responses we proceeded to visualize the data in a
reduced dimensionality. We performed principal component analysis (PCA)
on responses of the entire population of Tm9 neurons, without any quality
control criteria. To focus on response kinetics and to prevent the response
amplitude from dominating the variance, the principal component analysis
was performed on z-scored data, i.e., subtracting the mean and dividing by
the standard deviation of each neuron trace. The first principal component
explained about 50% of the variance (fig. 2.2A).

The first five principal components that explained about 90% of the
variance are shown in (fig. 2.2B). The first principal component resembled
the average positive, sustained responses to OFF flashes, and a smaller neg-
ative response to ON flashes. The second principal component responded
negatively to both ON and OFF. The third principal component was a
positive, transient response to OFF and a positive response to the offset
of the ON flash. The fourth principal component was mostly a transient,
biphasic (sign changing) response to OFF. The fifth principal component
was less intuitive.

Next, we examined the distribution of several response metrics on
three dimensions, the first three principal components summing up to
70% explained variance. We first visualized the response quality index,
a metric related to the trial variability. Low response quality indicates
high trial variability, and vice-versa. From this, we got an intuition on
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Figure 2.2: Principal component analysis of Tm9 ON-OFF full-field
flashes responses.

A. Explained variance of each principal component in dark bars, light bars
indicate the cumulative explained variance. B. Principal components in
time coordinates, color coded by explained variance (lighter color for less
explained variance). C-D. Visualization of first three principal components,
color indicates response quality index; darker color is lower quality.

the distribution of responsive cells. In this low-dimensional projection,
neurons spread elliptically, and neurons with higher response quality were
in the outer region (fig. 2.2C-D). Thus, there was a structure defined by
the response quality index, namely lower quality neurons occupied the
central region. This indicated a response quality threshold for selecting
responsive cells. This selection criterion is important for experimental
conditions that may change the response properties of a neuron type, and
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to select among neuron types with different properties.
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Figure 2.3: First principal component of ON-OFF responses relates to
the polarity.
A-B. Data visualization from first three principal components, color indi-
cates response polarity; darker color is OFF polarity, brighter colors are
ON polarity.

Because the first and second principal components had opposite signs
for the OFF stimulus, the first principal component could relate to the
response polarity (eq. 6.7). To visualize this, we colored the points
according to the polarity index, which is positive for ON and negative
for OFF responses. Indeed, the response polarity was divided along the
first principal component (fig. 2.3). The response polarity (first principal
component) dominated most of the variability in the data. However,
neurons that responded preferentially to ON stimuli, were likely to have
portions of their receptive fields outside the stimulation area, and thus,
the responses would be mostly driven by the inhibitory surround (Freifeld
et al., 2013; Fisher, Leong, et al., 2015).

On the other hand, a variety of temporal profiles was obscured by aver-
aging all responses (fig. 2.1). Looking carefully, some responses peaked
earlier and decayed, while others rose more slowly and continuously with
the stimulus. The first and second principal components indicated late
peaking responses, and the third and fourth components peaked earlier,
started decaying, and even changed sign during the end of the OFF stimu-
lus (fig. 2.2B). Thus, Tm9 neurons showed temporal response variability,
most were sustained and late peaking, and a smaller subset was more
transient (early peaking and decaying).
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Figure 2.4: K-means clustering of different z-scored response dynam-
ics.

A. Six clusters visualized on the first two principal components from fig.
2.2B, separation is not so clear for this linear method. B. Six clusters visu-
alized on the nonlinear embedding from t-SNE, separation is clearer. Note
that clustering was done independently of the dimensionality reduction
techniques. C. Clustered z-scored responses: first and third clusters are
more transient than second and sixth clusters. Cluster four follows the
stimulus intensity. Cluster five responds negatively for both stimuli.

Clustering of full-field flashes responses To extract structure from dif-
ferent polarities and temporal response properties, we clustered the pop-
ulation responses using K-means. To reduce noise in the data, responses
were approximated by the first 20 principal components. Again, to discard
amplitude effects on the clustering, the data were z-scored by subtracting
the mean and dividing by the standard deviation of the response of each
neuron. The number of clusters was set to six, exploring grouping with
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hierarchical clustering also defined six clusters (data not shown).

We visualized the clustering in the first two principal components,
which explained 65% variance. Clusters overlapped in this reduced rep-
resentation (fig. 2.4A). Principal component analysis is a linear dimen-
sionality reduction method, to check whether a nonlinear dimensionality
reduction provided better cluster separation we used t-SNE (t-stochastic
neighboor embedding). Principal component analysis defines a coordinate
transformation that can be applied to new data. However, t-SNE is and
embedding and to accommodate new data one needs to compute a new
embedding. The meaning in the t-SNE components is not intuitive, and
conventional distance metrics are not preserved. Hence, t-SNE is a useful
visualization tool, but should not be used for further analysis. In the t-SNE,
the clusters were more separated (fig. 2.4B).

The first and second clusters split the data into early and late peaking
responses, respectively. The third cluster responded similarly to the OFF
transitions: gray to dark, and bright to gray. The fourth cluster followed
the stimulus intensity. The fifth cluster responded negatively for both ON
and OFF stimuli. Finally, the sixth cluster responded positively to OFF and
negatively to ON, and the OFF response was similar to the one of cluster
two. Data from clusters three, four, and five were in the region of low
response quality (fig. 2.2C-D).

We next related the clusters to conventional properties: polarity, suste-
nance, time to half extreme, time to extreme, and response quality index
(see Section 6.7 for definitions). All properties were calculated for the OFF
stimulus, except polarity that used ON and OFF portions, and response
quality index that used the whole trace. All clusters but the fourth had
negative polarity, i.e., preferred OFF flashes!. Clusters four and five had
the lowest response quality, we regarded them as noise clusters. Clusters
two and six were the most sustained and slowest to reach their extreme
response. Conversely, clusters one and three were more transient, and
peaked earlier (fig. 2.5). From the sustained clusters, both responded
to OFF flashes, but only the sixth responded to the offset of ON flashes.
Similarly, both transient clusters responded to OFF, but only cluster three
responded to ON offset. Because the offset of ON flashes is an OFF flash,
Tm9 shows mainly two robust types of response dynamics to OFF full-field
flashes.

!Cluster four responded more negatively to ON than to OFF, thus according to our
polarity index (eq. 6.7) it had OFF polarity.
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Figure 2.5: Response properties per cluster.

A. Polarity index: All clusters but the fourth are OFF selective. B. Suste-
nance index: Clusters two and six are sustained, while clusters one, three,
four and five are more transient. C. Time to peak: clusters two and six
reach half of their peak later than the other clusters. D. Time to peak:
clusters two and six peak later than the other clusters.E. Response quality
index: clusters four and five have the worst quality and can be considered
noise clusters.

Tm9 neurons responses to flashing bars

The responses to full-field flashes depend on the integration of the stimulus
by the receptive field of the neuron. We therefore next measured the
receptive field components at a finer spatial resolution, similar to the
resolution of one ommatidium (5°).

Previous studies of the spatial receptive field of Tm9 measured re-
sponses to OFF bars (Serbe et al., 2016), or the correlation of the stimulus
and response (Fisher, Leong, et al., 2015; Arenz et al., 2017). Thus, the
former ignored potential ON receptive field properties, while the later
included both ON and OFF contributions in a non-obviously separable way.
Here, we show the responses of Tm9 neurons to both ON and OFF bars,
separately.

To measure the receptive field we used horizontal or vertical bars of
5°, on a square screen of 60° side. Bars were presented for 1 s interleaved
by 1s of background. ON bars had maximum projector luminance on a
background of minimum projector luminance. OFF bars had minimum
luminance on maximum luminance background. A stimulus sequence
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Figure 2.6: Tm9 receptive fields are variable in size, especially for ON
stimuli.

A-D. Tuning curves for neurons that were responsive (response quality
index > 0.5), and had a good fit (> > 0.3), neurons were analyzed
independently for each stimulus. Responses in purple are positive, green
ones are negative. A, B. OFF receptive fields for horizontal (A), and vertical
(B) bars. C, D. ON receptive fields for horizontal (C) and vertical (D) bars.
E. Receptive field full width at half maximum (FWHM) for data in A-D.
ON receptive fields are larger than OFF receptive fields. F. Variance of
FWHM distributions in E. ON receptive field sizes are more variable than
OFF ones. G. Coefficient of variation (CV) of FWHM distributions in E.
Also shown are the central decision line and bootstrap decision band at
95% confidence. Values outside the band (filled circles) are significantly
different from the population, values within the band (empty circles) are
not. ON receptive fields are more variable than the average across stimuli.
N is the No. of flies, in parenthesis are (No. of used neurons / No. of
recorded neurons).

consisted on a single polarity and a single orientation. A trial consisted
on the presentation of all bar positions shuffled for a pseudo-random
presentation. Several trials (four to six) were presented for each stimulus.

We constructed the tuning curve of the neuron using the extreme value
of the 1s trace for each bar position?. To quantify its spatial extent a single

2The extreme of the response was the value that had maximum absolute value. Other
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1D Gaussian was fitted to the tuning curve (eq. 6.8). The full width at half
maximum (FWHM) of the Gaussian (eq. 6.9) was used as the receptive
field size. Only ROIs satisfying quality criteria set in 6.6 were used for
further analysis (fig. 2.6).

To visualize the trial-averaged tuning curves we color coded the re-
sponse, positive values in purple and negative values in green. Tm9
neurons responded to both ON and OFF bars (fig. 2.6 A-D). The terms
ON and OFF receptive field refer to tuning curves from ON and OFF bars,
respectively. Same holds for vertical and horizontal conditions. OFF recep-
tive fields are narrow, about 10° for both orientations (fig. 2.6 A-B, E). ON
receptive fields are wider, ranging from 10° to 70° (fig. 2.6 C-D, E). The
vertical receptive fields were smaller than horizontal ones, more so for ON
bars. Taken together, Tm9 has variable receptive field properties, narrow
for OFF stimuli and narrow to wide for ON stimuli.

We quantified variability in the receptive field size using the standard
deviation and the coefficient of variation (fig. 2.6 F-G). The standard
deviation measures the spread of the data, but its value depends on the
average magnitude, and units of the data. The coefficient of variation
(CV) accounts for this by taking the ratio of the standard deviation to
the mean, a dimensionless value that can be expressed as a percentage.
Thus, the coefficient of variation can be used to compare data dispersion
across properties measured on a ratio scale, i.e., a scale with a unique and
non-arbitrary zero value. The standard deviation of the receptive field
size was larger for ON stimuli than OFF stimuli, and for horizontal than
vertical bars (fig. 2.6 F). The coefficient of variation of the receptive field
size was larger for ON than for OFF stimuli (fig. 2.6 G). To test whether
the difference in variability was statistically significant, we bootstrapped
a confidence interval for the mean coefficient of variation of all stimuli
(Boiroju and Reddy, 2012). Values outside the band are statistically signifi-
cant differences at 95% confidence. ON receptive fields are more variable
than OFF receptive fields (fig. 2.6 G). Therefore, Tm9, a well-defined cell
type, showed functional variability, which is higher for ON stimuli.

Responses of Tm9 neurons to full-field noise vs ON-OFF
full-field flashes

So far, we showed Tm9 functional variability: temporal variability to
a global stimulus (2.1), and spatial variability to a localized stimulus

options included the mean or median response that are more robust to outliers, but
underestimate transient responses.
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(2.1). We then asked whether the variability extends to stimuli that have
both temporal and spatial components. We first extended the temporal
complexity of full-field flashes, using a ternary noise stimulus. The screen
could take randomly every 50 ms one of three values: dark, gray, or bright.
Using reverse correlation analysis, the receptive field of the neuron was
estimated as a linear filter from the responses to the stimulus. This linear
filter described the temporal dynamics of Tm9 neurons. To extract and
compare multiple properties, we recorded responses of every neuron to all
stimuli, including previous stimuli: ON-OFF full-field flashes and flashing
bars.

First, we analyzed the responses to ON-OFF full-field flashes and com-
pared the properties to the previous dataset. We recorded fewer flies
and neurons, but two clusters with different response kinetics remained,
clusters one and three (fig. 2.7 C, G-I).

We then analyzed the responses to full-field noise. We modeled the
stimulus-response function of the neuron as a linear equation: the response
equals the stimulus design matrix (stimulus time history) multiplied by the
linear (temporal) filter of the neuron. To obtain the temporal filter, the
equation was inverted using ordinary least-squares. Thus, the temporal
filters were a linear approximation to the response function of the neuron
to full-field stimuli.

To quantify how good this approximation is, we calculated the filters
using 80 % of the response time series, and predicted the response of the
remaining 20 % of the time series. The quality of the filter approxima-
tion was defined as the correlation between the predicted and the actual
response. However, we did not discard any data.

Most of the filters had negative sign (fig. 2.8A). Because the response
is obtained by multiplying the filter and the stimulus, a negative filter
yields a positive response to negative (dark) stimuli, and negative response
to positive (bright) stimuli. We observed a variety of filters. Like in our
approach to ON-OFF full-field flashes, we clustered the responses using
k-means, and found that six clusters separated the data visually (fig. 2.8B).
The number of clusters (6) was in the order of the number of flies recorded
(10). To test if the clusters arise from variability within or across flies, we
colored the neurons in each cluster according to the fly they belong to. We
also shifted the traces vertically and randomly (jittered them) for better
visibility. Most clusters included neurons from more than one fly, and for
most flies the neurons distributed among different clusters. Hence, the
clusters represented variability across and within individuals (fig. 2.8B).

The temporal filters can be described by the frequencies they encode.
We calculated the frequency spectrum of every filter using the FFT (fast
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Fourier transform), and plotted the amplitude of the transform, i.e., the
amplitude spectrum (fig. 2.8C). The clusters were similar in the frequency
domain. Only the cluster six (yellow) had longer tails and peaked at a
higher frequency. Correspondingly, this cluster had narrower filters and
peaked closer to response than others (fig. 2.8C-D). On the other hand,
cluster two (orange) peaked later and the spectrum decayed faster. Overall,
the filters do not encode frequencies higher than about 5Hz. Tm9 is a
band-pass for low frequencies.

To compare the properties of this dynamic stimulus to the simpler ON-
OFF full-field flashes we used the time to peak of the linear filters. The
time to peak was the time of the minimum filter value, because the filters
were mostly negative. The time to peak was differed gradually between
clusters (fig. 2.8D), clusters with similar time to peak had different filter
widths, e.g., clusters four (pink) and five (green). We correlated the time
to peak of the linear filter with the following properties from all neurons in
fig. 2.7: mean response to ON and OFF flashes, polarity index, sustenance
index, and time to extreme (peak). The temporal properties of ON-OFF
full-field flashes were correlated with each other, namely sustenance index
and time to extreme. Both of those properties correlated negatively with
the filter time to peak (fig. 2.8E). So more sustained neurons, which also
peaked later for ON-OFF full-field flashes, had longer absolute times to
peak for temporal filters. Thus, some temporal properties of Tm9 responses
to full-field stimuli of different dynamics are correlated.
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Figure 2.7: Two response modes are reproducible and distribute over
flies.

A. Tm9 responses to ON-OFF full-field flashes. B. Responses in (A) stacked
to highlight single cell traces. C. K-means clustering of different z-scored
response dynamics from A-B: left are responses grouped and colored by
cluster index, right are response clusters colored by fly index. D-J. Response
properties from clusters in C.
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Figure 2.8: Tm9 temporal filter variability distributes over flies.

A. Tm9 linear temporal filters from responses to full-field noise, time of
response is at zero. B. K-means clustering of different z-scored response
dynamics from A: left are responses grouped and colored by cluster index,
right are response clusters colored by fly index. C. Amplitude of the Fourier
transform of the linear filters in B. The narrower filters can encode higher
frequencies than wider filters (yellow vs orange). D. Time to the filter
peak (minimum value) for clusters in B. The increase in peak times in
gradual, and clusters with similar peak time have different peak widths
(not quantified). E. Rank correlation of peak times of linear filters with
response properties from ON-OFF full-field flashes in fig. 2.7. Filter peak
time correlated with ON-OFF full-field flashes sustenance index (-0.40)
and time to peak (-0.42). Because filter times are negative, more negative
times to peak for filters mean slower filters. Negative correlation between
filter peak time and sustenance means slower filters have more sustained
responses.
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Responses of Tm9 neurons to noise bars vs flashing bars

We saw temporal variability in Tm9 responses to full-field stimuli with
different temporal scales. We also saw variability in spatial stimuli with
flashing bars. We proceeded to test if the spatial variability also extended
to more complex and dynamic stimuli. Again, we used a ternary noise
stimulus, but this time the screen was divided into bars 5° wide. For every
frame a random luminance value was drawn independently for each bar,
frames were updated every 100 ms. We extracted the filter similarly to
the full-field one, by using least-squares to invert the linear equation. In
this case, the filter had both a spatial and a temporal dimension. The
spatiotemporal filters, will be referred to as spatiotemporal receptive fields
(STRFs) interchangeably. The population of recorded filters for vertical
and horizontal noise bars is shown in fig. 2.9.

To compare the properties of these filters with the previous stimuli, the
filters were split into a spatial and a temporal filter. We did so by first
locating the extreme value of every filter from fig. 2.9. From this point
the temporal and spatial filters were extracted as the profiles along the
temporal and the spatial axis, respectively.

Comparison of temporal filters

First, we compared the temporal filters across stimuli: vertical and hor-
izontal noise bars, and full-field noise (fig. 2.10). Temporal filters for
horizontal and vertical noise bars were similar (fig. 2.10A-B). Unlike tem-
poral filters for noise bars, some temporal filters for full-field noise had
positive incursions before the negative peak (fig. 2.10C). To compare the
filters in more detail, we correlated them.

To distinguish contributions of good versus bad filters, we colored them
by their explained correlation®, using the minimum explained correlation
of the three filters per neuron. Filters were correlated with each other
in the same amount, because the bootstrapped confidence interval of
the correlations overlapped (fig. 2.11). Thus, the temporal properties
measured for different orientations and spatial structures were similarly
correlated.

Comparison of spatial filters

Receptive field visualization We then visualized the spatial filters ex-
tracted for noise bars and the tuning curves from flashing bars. To get

3Not to be confused with the correlation between different filters calculated here.
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Figure 2.9: Tm9 spatiotemporal receptive fields.

Tm9 spatiotemporal filters obtained from Tm9 responses to ternary noise
bars. A. Filters for vertical bars. B. Filters for horizontal bars. Positive filter
values are purple, negative values are green. Every rectangle corresponds
to one neuron, same neurons are shown in A and B. Time of response at
zero is on the left edge.

an image of the receptive field of a neuron in the screen, we calculated
the Cartesian product of the tuning curves (or spatial filters) from the two
orthogonal stimulus orientations. We color coded this product in both
magnitude and sign of the receptive field components. The product magni-
tude was linearly encoded in the luminance of the colors. To discern the
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Figure 2.10: Tm9 linear temporal filters.

A-C. Linear temporal filters for Tm9 neurons, single neuron traces, mean
and standard error overlaid. Filters for (A) horizontal noise bars, (B) verti-
cal noise bars, and (C) full-field noise. D-F. Same as A-C but highlighting
single neuron dynamics. Some full-field filters in (C, F) had positive values
before negative peak, and positive values at response time.

sign of the product components we used three colors. To reduce saliency
of locations where product components had opposing signs, we colored
them gray. We colored in yellow (orange / brown) regions where both
components were negative. And we used green for regions where both
components were positive.* Thus a mix of green and yellow, indicated
mixed sign contributions, e.g., excitatory and inhibitory center-surround
components of the receptive fields. This mix was most prominent in re-

4These colors were meant to be color-blind friendly for most options tested on (Coblis
— Color Blindness Simulator — Colblindor 2019).
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Correlation of Tm9 temporal filters (a.u.) across stimuli

A B C
corr = 0.88 (0.94, 1.0) corr = 0.82 (0.53, 0.99) corr = 0.87 (0.82,1.0) Min
0.2 1 1 . 1 -
: : explained

— — —
2 0. A _'_? é correlation
= < % (hor, vert, full)
£ 9 £ £ 07
w o z

0.2

-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2
Horizontal time filter Horizontal time filter Vertical time filter

Figure 2.11: Tm9 linear temporal filters correlate accross stimuli.
A-C. Correlation of linear temporal filters for Tm9 neurons: scatter plot
and correlation with 95 % bootstrapped confidence interval in parenthesis.
Filters were color coded by the minimum explained correlation of the
three filters per neuron (darker color means higher explained correlation).
Comparison for (A) horizontal vs vertical noise bars, (B) horizontal noise
bars vs full-field noise, and (C) vertical noise bars vs full-field noise. Filters
were correlated across stimuli, and filters with higher explained correlation
laid closer to identity line (gray).

ceptive fields with the smallest centers, like the second column of each
panel in fig. 2.12 A-C. Moreover, one can see the retinotopy, different Tm9
neurons covered different portions of visual space, e.g., first column in fig.
2.12 B.

To compare receptive field sizes across stimuli, we fitted a Gaussian
to each receptive field component for every stimulus. The size of the
receptive field was again the full width at half maximum of the Gaussian.
The receptive field sizes were mostly correlated between orientations of
the same stimulus, rather than between stimuli. Thus, we averaged the
full width at half maximum for vertical and horizontal receptive fields.
Mean FWHM of receptive fields were 13° for OFF, 23° for ON, and 17° for
noise bars, respectively. Receptive fields were largest for ON flashing bars,
and smallest for OFF bars (fig. 2.12D-E). The properties measured with
noise, which mixes ON and OFF contributions, were intermediate to the
ones measured with pure ON or OFF contributions. We conclude that the
wide-field response properties observed for different stimuli arise from the
ON portion of the receptive field.
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Figure 2.12: Noise receptive fields are larger than OFF and smaller
than ON receptive fields.

A-C. Tm9 receptive fields visualized as Cartesian product of tuning curves
for vertical and horizontal bars, for ternary noise bars (A), OFF bars
(B), and ON bars (C). D. Receptive field sizes (FWHM) compared across
stimuli: Noise vs OFF, Noise vs ON, and ON vs OFF. The scatter plot shows
the mean of the FWHM of vertical and horizontal stimuli, only neurons
with good fits (r*> > 0.5) are included. On top: correlation between
stimuli widths with p-value and slope of linear fit (dark line) with 95%
confidence interval. Receptive field sizes were correlated across stimuli. E.
Distribution of receptive field sizes from data in D: shape is the density of
data distribution, single values are shown as small lines, wider line is at
the mean value. F. Comparison of receptive field sizes: Noise minus OFF
and Noise minus ON. Both are significant (tab. 2.1).
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2.2 Simultaneous receptive field
measurements of two neuron types

In the previous sections we showed Tm9 has variable response properties
and wide ON receptive fields. To understand how specific to Tm9 are
this variability and wide field responses, we recorded another neuron
simultaneously. We chose Tm4, because it shares the computational context
of Tm9: it is in the OFF-motion pathway and connects to T5 neurons in
the lobula. Also, the Tm4 axon terminals in the lobula do not overlap
with Tm9 axon terminals (fig. 2.13 A-B). This reduces the cross-talk
of the fluorescence signals from both neurons. To image both neurons
simultaneously, we used two genetically-encoded calcium indicators with
different spectral sensitivity. We used GCaMP6f (green-emitting, T.-W.
Chen et al., 2013) in Tm9 neurons, and jJRGECO1a (red-emitting, Dana
et al., 2016) in Tm4 neurons (fig. 2.13 B).

We recorded responses of Tm9 and Tm4 to ON-OFF full-field flashes,
and ON and OFF bars. For full-field flashes, both neurons responded
preferentially to OFF flashes (fig. 2.13 C-F). Responses of Tm4 were more
transient than Tm9 responses. Also Tm4 responded similarly to both OFF
transitions: gray to OFF and ON to gray. Tm9 responded with higher
amplitude to gray to OFF than ON to gray.

We next analyzed the responses to flashing bars, to get receptive fields
from Tm4 and Tm9. Both neuron types responded positively to OFF bars,
and with similar spatial extent. However, unlike Tm9, Tm4 neurons did
not respond to ON bars. To visualize the average receptive field, we
aligned individual tuning curves by maximizing their cross-correlation
to a reference tuning curve, which was the average of tuning curves
closer to the center of the screen. Again, we saw similarities in the OFF
receptive fields of both neurons, but Tm4 average ON tuning curves were
flat (fig. 2.14). On the other hand, Tm9 average ON tuning curves
for both orientations looked wider than the corresponding average OFF
tuning curves. As before, we quantified the receptive field size by fitting
a Gaussian and computing its full width at half maximum. We compared
the receptive field size distribution for OFF Tm4, OFF Tm9, and ON Tm9
receptive fields. Because the neurons were analyzed independently for
all stimuli, pairwise comparisons across stimuli were not possible. The
FWHM of OFF receptive fields of Tm4 and Tm9 ranged from about 5°
to 20°, and the FWHM of ON receptive fields of Tm9 ranged from about
10° to 30° (fig. 2.15). On average FWHM were 11.20° for Tm4 OFF, 9.80°
for Tm9 OFF, and 19.40° for Tm9 ON receptive fields. Tm4 had slightly
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Table 2.1: Statistics for Tm9 receptive field size for ON, OFF, or noise
bars.

Shown are p-values from two-sample two-sided permutation test of mean
differences between pairs of stimuli.

Noise - OFF Noise - ON

FWHM (°)
p-value 6-107%  2.1073
Mean difference 4.11 —5.70

larger OFF receptive fields (p-value = 3 - 1072)°. Tm9 ON receptive fields
were almost twice as large as OFF receptive fields from either neuron type
(both p-values equal 1-10~%). We also quantified the variability of the
distributions, the variance of the Tm9 ON FWHM distribution was higher
than the Tm4 OFF FWHM distribution, but the coefficient of variation was
smaller for Tm9 ON than for Tm4 OFF and Tm9 OFF. Therefore, wide-field
responses are specific to Tm9 ON receptive field, and contribute to the
functional variability of Tm9 in terms of variance.

SPermutation tests, all comparisons were significant under the Holm-Bonferroni
method for multiple testing correction.
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Figure 2.13: Responses to ON-OFF full-field flashes of Tm9 and Tm4
measured simultaneously.

Tm9 calcium responses were measured with GCaMP6f, and Tm4 responses
were measured with jJRGECO1la (Dana et al., 2016). A. Schematic of the
fly visual system including Tm9 in green, and Tm4 in purple, highlighting
the location of their axon terminals in the lobula. The rectangle shows
imaging region. B. An example imaging region in the lobula with Tm9
axon terminals in green, and Tm4 axon terminals in purple. C. ON-OFF
full-field flashes responses of all recorded Tm4 neurons. D. Similar as
(C) but for Tm9. E and F. Same data as (C) and (D) but highlighting
single neuron responses, color map shows positive responses in purple and
negative responses in green.
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Figure 2.14: Receptive fields of Tm9 and Tm4 measured simultane-
ously.

Tm4 and Tm9 example receptive fields to ON and OFF bars. Receptive field
average after alignment by maximizing their cross-correlation. Tm4 and
Tm9 have similar OFF receptive field shapes. There was a bias to record
receptive fields in the upper portion of the screen, because the signal was
too low in deeper layers looking closer to the screen center.

Receptive field size distribution
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Figure 2.15: Receptive field widths of Tm9 and Tm4 measured simul-
taneously.

Distribution of receptive field widths, measured as the full width at half
maximum from a Gaussian fit. Only Tm9 responded to ON bars.
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2.3 Receptive fields of the main inputs to the
OFF direction selective neurons

The previous section demonstrated Tm9 but not Tm4 neurons respond to
ON stimuli, when measured under exactly the same biological, stimulus,
and imaging conditions. We next asked whether other neuron types would
exhibit variable receptive fields. We chose to measure the receptive fields of
the main input neurons to the T5 direction-selective neurons, namely, Tm1,
Tm2, and Tm4, in addition to Tm9. There are reports of their receptive
fields to OFF bars (Serbe et al., 2016) and to white-noise bars (Arenz
et al., 2017). However, given the discrepancy in the literature regarding
receptive field properties of Tm9, we measured these again to reproduce
existing results or to get new insights.

We started by characterizing responses to ON-OFF full-field flashes. We
recorded neurons that responded to a small 10° circle flashing in the center
of the screen. The responses to the search stimulus were not recorded.
The response to small circles did not imply a (strong) response to full-field
flashes (fig. 2.16). In fact, the responses of some Tm1l neurons were
particularly low (fig. 2.16 A, E). All neuron types responded positively
to OFF. Tm9 responded to ON positively or negatively but with small
amplitude (fig. 2.16 D, H). Some Tm1 neurons responded negatively to
the OFF to gray transition. Contrarily, ON responses of Tm2 and Tm4 were
not prominent (fig. 2.16 B, C, F, G). All neurons types but Tm9 responded
similarly to both OFF transitions: gray to OFF, and ON to gray. Therefore,
they seemed to encode the contrast regardless of baseline luminance.
About the temporal properties, Tm1 neurons were some transient and
some sustained, the sustained ones dominated the average. Tm2 neurons
peaked early and decayed to a plateau. Tm4 neurons were transient and
decayed back to baseline before the OFF stimulus ended. Tm9 neurons
were mostly sustained with some transient exceptions (same data as in
fig. 2.7). Therefore, all Tm neurons encoded OFF stimuli with different
kinetics, but only Tm9 and Tm1 showed signs of variability.

We next recorded responses to ON and OFF bars, and extracted re-
ceptive fields that were fitted by a single Gaussian. Similarly to full-field
flashes, all neurons responded positively to OFF bars (fig. 2.17 A-D). Only
Tm2 and Tm9 responded to ON bars, and negatively so (fig. 2.17 B, D,
except for 3 out of 90 Tm1 neurons in A). We quantified the FWHM of the
Gaussians as a measure of receptive field size. All neurons had very similar
narrow (less than 10°) receptive fields for OFF stimuli (fig. 2.17 E). Tm2
and Tm9 ON receptive fields were almost twice as wide as OFF receptive
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fields, and had a larger variance of the FWHM distribution (fig. 2.17 E,
G). Interestingly, no receptive field was wider than 40°, contrasting with
data of previous section. Thus, Tm9 properties on this data set were less
variable. As comparison, we overlaid the quantification of the coefficient
of variation of the first dataset on (fig. 2.17 F). The lack of Tm9 wide
receptive fields can stem from diverse sources, and will be discussed at
the end of the thesis. Nevertheless, this data confirmed the narrow OFF
receptive fields reported in (Serbe et al., 2016), but additionally demon-
strated that not only Tm9 but also Tm1 can encode ON stimuli over wider
regions than covered by one eye column, and do so with different kinetics.
Furthermore, Tm9 was the only neuron showing variability at both the
spatial and temporal response properties.
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Figure 2.16: Responses of OFF-pathway neurons to ON-OFF full-field
flashes.

Shown trial averaged responses per neuron to a sequence of 2 s gray, 2s
OFF, 4s gray, and 2s ON. A-D, single neuron responses (thin lines), on top
is the mean with the standard error across neurons, for Tm1, Tm2, Tm4
and Tm9, respectively. E-H. Single traces from A-D, respectively, stacked
on top of each other for better visualization of response variability.
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Figure 2.17: Receptive fields of the main inputs to the OFF pathway.
Receptive fields for horizontal and vertical ON and OFF bars for (A) Tm1,
(B) Tm2, (C) Tm4 and (D) Tm9. Receptive field are aligned by cross-
correlation to receptive fields close to the center of the screen, OFF recep-
tive field shift is applied to the respective ON receptive fields. E. Receptive
field width distributions of Tm1, Tm2, Tm4, and Tm9. Widths are the
FWHM from single Gaussian fits to receptive fields in (A-D). F. Coeffi-
cient of variation from distributions in E. Line is the average coefficient
of variation for all conditions, and the band shows the 95% bootstrapped
confidence interval, open and closed circles indicate values inside and
outside the band, respectively. Overlaid is the quantification of previous
Tm9 dataset (fig. 2.6). G. Standard deviation of distributions in E.







737

Mechanisms composing and tuning the receptive
field of Tm9

In the previous chapter demonstrated Tm9 functional properties can be
variable. In this chapter, we delve deeper into the mechanisms making
up the receptive field of Tm9. The first section sketches the presynaptic
circuitry of Tm9, including new types of wide-field neurons. In the second
section we probe the role of single cell types in the receptive fields of Tm9
neurons. Finally, in the third section, we extend the study of Tm9 receptive
field mechanisms to electrical coupling via gap junctions to Tm9.

3.1 Sketching the presynaptic circuitry of Tm9
neurons

The receptive field of a neuron is a macroscopic description of the neuronal
response properties arising from the integration of inputs by the neuron.
Sensory neurons can transduce many modalities of physical stimuli into
electrical and chemical signals that are transmitted to downstream neurons.
Thus, inputs to a non-sensory neuron are mainly chemical or electrical.
Chemical substances can activate receptors in the neuron that activate
signaling cascades with a myriad of effects. These substances can be
divided into neuromodulators and neurotransmitters. Neurotransmitters
are substances released by a neuron that activate a specific target neuron.
The pair of releasing-receiving portions of neurons is called a chemical
synapse. On the other hand, neuromodulators are substances that regulate
the properties of a set of neurons with longer lasting effects than those
of chemical synapses. Electrical synapses connect two neurons via gap
junctions that connect their cytosol allowing transmission of ions and small
signaling molecules. Here we focus on how the chemical and electrical

49
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synapses onto Tm9 shape its receptive field.

Anatomical mapping

We first looked for the neuron types with chemical synapses onto Tm9. We
used anatomical knowledge of neuron types and connectomics.

Connectomics

First, from connectomes of the Drosophila melanogaster visual system
(Takemura, Xu, et al., 2015) we identified the core circuitry of Tm9. Tm9
receives inputs from L3, Mi4, C3, Tm20, Tm1, C2, and L4. However, data
extracted from (Flyem Tables 2017) gave different information!. Never-
theless, Tm9 receives input mainly from L3 and other types of columnar
neurons.

Connectivity is more distributed for Tm9 than other OFF pathway in-
terneurons Interestingly, while we looked at connectomics data that
compared reconstructions of seven medulla columns, we noticed Tm9 had
more connectivity variations than other neurons (supplementary tables
in Takemura, Xu, et al., 2015). Furthermore Tm9 received fewer input
synapses than other OFF pathway neurons, namely Tm1 and Tm2. Indeed,
the major cell type inputs to Tm1 and Tm2 had larger synapse counts
than all of the Tm9 inputs together (fig. 3.1 A). Thus, to get the normal-
ized contribution of each cell type, we calculated the proportion of input
synapses relative to the total. More than 70 % of the synapses to Tm1 and
Tm2 came from a single cell type, while only about 50 % synapses to Tm9
were contributed by its main input cell type (fig. 3.1 A). Therefore, Tm9
integrates input more uniformly across cell types, than its OFF pathway
counterpart neurons Tm1 and Tm2.

Fluorescence reconstitution across synaptic partners

Tm9 receives inputs from many columnar cell types, but the wide-field
responses of Tm9 suggested wide-field neurons could contribute to Tm9
receptive fields. Because the neurites of wide-field neurons span multiple
columns, they could not be entirely reconstructed to be mapped to a
cell type, and thus were missing from published connectomes (Takemura,
Bharioke, et al., 2013; Takemura, Xu, et al., 2015).

!Website is no longer available/accessible.
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Figure 3.1: Input synapse distribution of the major OFF motion path-
way interneurons.

Input synapse distribution to Tm1, Tm2, and Tm9, from data in (Takemura,
Xu, et al., 2015). A. Stacked bar plot of total number of input synapses,
each color indicates a different cell type, colors are independently assigned
for Tm1, Tm2, and Tm9. B. Distribution of synapses per cell type. Each
bar represents the proportion of input synapses contributed by each cell
type relative to the total count in (A), cell types were ranked accordingly.
Tm1 and Tm2 receive more than half their inputs from a single cell type.
Tm9 inputs distribute more uniformly across cell types than Tm1 and Tm2
inputs.

To identify possible wide-field inputs into Tm9 we used a light mi-
croscopy characterization of wide-field neurons (Nern, Pfeiffer, and Rubin,
2015). We shortlisted candidates based on the arborization size and posi-
tion within the medulla. Tm9 dendrites arborize in the medulla layer 3
(M3). Wide-field neurons in this location are called distal medulla (Dm)
neurons. The candidate neurons arborizing over tens of columns in layer
M3 were Dm4, Dm12, and Dm20 (fig. 3.2 A). Also Dm9 arborizes in
this layer, but because it also projects to more proximal layers we did not
consider it in our initial screening. However, we collected preliminary data
on Dm9 effects into Tm9 receptive fields (section 3.2).

To test for synaptic contact we used GRASP (genetic reconstitution
across synaptic partners) (Feinberg et al., 2008; Macpherson et al., 2015).
In this fluorescence reconstitution assay, the potential postsynaptic neuron
expressed one portion of the GFP molecule on its membrane, and the
potential presynaptic neuron expressed the complementary part of the
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Dmé4 full pattern Dm12 full pattern ?0 full pattern

Figure 3.2: Dm4 and Dm12 synapse onto Tm9: GRASP assay.

GRASP (GFP reconstitution across synaptic partners) assay from Dm4,
Dm20, and Dm20 to Tm9. A. Schematic of neuron types that arborize
in layer M3 (after (Nern, Pfeiffer, and Rubin, 2015)). B. Full expresion
patterns of genetic lines for Dm4, Dm12, and Dm20 neurons. C. GRASP
signals from Dm4 to Tm9, and Dm12 to Tm9, indicating Tm9 receives
wide-field inputs.

GFP molecule attached to a synaptic vesicle protein (synaptobrevin). Thus,
when vesicles are released upon exocytosis, the vesicle membrane fuses
with the cell membrane, and the GFP tagged synaptobrevin faces the
extracellular medium. If both neurons are in proximity, the portions of
the GFP molecule interact and complement each other, resulting in a
fluorescence signal. Therefore, GRASP fluoresce signals are a proxy of
synaptic connectivity, one cell membrane close to the presynaptic release
sites of other cell.

For GRASP experiments, we imaged the endogenous fluorescence of
the brains immediately after dissection with no extra treatments. We used
genetic lines for Dm4, Dm12, Dm20 that were very specific, except Dm20
line, which was nevertheless specific in the M3 layer (fig. 3.2 B). We
performed GRASP using Tm9 as postsynaptic neuron, and Dm4, Dm12,
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and Dm20 as presynaptic neurons. We observed GRASP signals in Tm9-
Dm4, and Tm9-Dm12 (fig. 3.2 C). Therefore, Dm4 and Dm12 are potential
wide-field inputs to Tm9.

Synaptic site distribution in wide-field neurons

To understand the input-output relation in Dm neurons, we stained them
with markers for the somatodendritic compartment (DenMark (Nicolai et
al., 2010)), and for synaptic vesicles (synaptotagmin fused to GFP Zhang,
Rodesch, and Broadie, 2002). Dm12 had a uniform distribution for both
pre- and postsynaptic sites (fig. 3.3 D, F). Contrarily, Dm4 showed a patchy
presynaptic site distribution (fig. 3.3 C, E). Moreover the presynaptic
release sites localized to the layer M3 bulb-like projections of Dm4 (data
not shown). This suggested Dm4 is a substrate for circuit variability in the
fly eye.

We investigated further Dm4 variable presynaptic distribution. To test
whether the patchy presynaptic distribution of Dm4 depended on the
marker, we used different markers to label the presynaptic release sites. To
check the influence of the fluorescent protein fused to synaptotagmin, we
used RFP in addition to GFP fused synaptotagmin. We also used a different
marker fused with a different fluorescent protein, namely the active zone
marker Bruchpilot fused to mCherry. The coverage of the distribution
varied from only one neuron lacking presynaptic sites (fig. 3.4 A), to
only couple neurons having presynaptic sites (fig. 3.4 C). We concluded,
despite possible effects of the presynaptic marker and fused fluorescent
protein, that Dm4 has a non-uniform presynaptic site distribution. Because
Tm9 gets inputs from Dm4 and Dm4 has a heterogeneous presynaptic
distribution it is important to study the functional consequences. Thus, we
next studied the functional connectivity of Dm4 and Tm9, among other
neuron types.
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Figure 3.3: Dm4 presynaptic site distribution is non-uniform.

Dm4 and Dm12 postsynaptic sites (soma and dendrites) labeled with Den-
Mark in red, and presynaptic release sites labeled with synaptotagmin fused
with GFP (syt::GFP) in blue. Shown are maximum intensity projections of
confocal microscopy stacks of example optic lobes after immunostaining to
amplify the signal. A-B. Example Dm4 (A) and Dm12 (B) neurons adapted
from (Nern, Pfeiffer, and Rubin, 2015). C-D. Full optic lobe image of Dm4
(C) and Dm12 (D). Only some Dm4 neurons lacked presynaptic sites. E-F.
Zoomed version of (C, D). It is clear Dm4 neurons expressed DenMark
overall, but syt::GFP was missing in some neurons like the one in (E).)
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A Dm4 expressing synaptotagmin::RFP

Figure 3.4: Dm4 presynaptic site distribution is non-uniform irrespec-
tive of markers.

Dm4 presynaptic release sites from maximum intensity projections of
confocal microscopy stacks. Each panel shows the two optic lobes of an
example fly Dm4 expressed different presynaptic markers which were
immunostained to amplify the signal. A. Synaptotagmin fussed to RFP: the
left optic lobe shows a hole in lower part. B. Synaptotagmin fused to GFP:
both optic lobes have several holes. C. Bruchpilot (active zone marker)
fused to mCherry: very few neurons were labeled. similar results were
obtained for three to five flies.
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Functional mapping: optogenetics

Purely anatomical connectivity does not tell what is the effect of the
activity of a presynaptic neuron on Tm9’s activity. Functional connectivity
describes this relationship. We can activate one neuron and check the effect
on another neuron. Here we use optogenetics together with in vivo two-
photon calcium imaging to stimulate one neuron type and record responses
of Tm9 neurons, respectively. We used a red-shifted opsin CsChrimson
to minimize photoreceptor activation and avoid confounding effects of
visual vs optogenetic responses to light. Nevertheless, neurons responded
to the red light (625nm LED, data not shown). Thus, performed the
experiments in blind flies (fig. 3.6 w+). Blind flies were norpA (no receptor
potential A) mutants, the norpA gene encodes phosphatidylinositol-specific
phospholipase C (PLC) that is required for phototransduction (McKay et al.,
1995).

We recorded Tm9 responses to full-field optogenetic stimulation of
following cell types that expressed CsChrimson: photoreceptors R1-R6,
and RS8; lamina neurons L1, L2, and L3; distal medulla neurons Dm4,
Dm12, and Dm20; and other columnar neurons like Tm1, Mi9, and C3.
For each group we used as a control one cell type without known direct
synapses: L1, Mi9, and Dm20. The cell types used are sketched in fig. 3.5

We tested different stimuli, from single light pulses lasting 25 ms to
trains of 5ms long pulses at 40 Hz. Response kinetics were qualitatively
similar for single pulses and pulse trains (data not shown). We further
probed the effect of light power on the responses, again, we did not observe
any effects on the kinetics (fig. 3.6). Next, we only show results from pulse
train stimulation used for all cell types (fig. 3.7).

Photoreceptor activation led to negative Tm9 responses. All lamina
neurons increased calcium in Tm9, while all distal medulla neurons de-
creased calcium in Tm9. Interestingly, Dm4 also increased calcium in a
subset of Tm9 neurons. This duality of Dm4 effects adds to the duality of
Dm4 neurons with and without presynaptic sites (fig. 3.4).

Different neuron types elicited different response time courses in Tm9.
The short initial negative response evoked by R1-R6 was masked by the
stimulus, but the negative response peak of Tm9 was visible for the longer
lasting effects of R8 activation. Interestingly, the positive rebound evoked
by R1-R6 was more prominent than the one evoked by R8. Tm9 responses
evoked by L1 lasted longest, consistent with indirect connections from L1
to Tm9 supported by silencing experiments (Fisher, Leong, et al., 2015). L2
and L3 evoked responses decayed within 10s. Dm4 and Dm12 wide-field
neurons evoked responses that decayed faster than Dm20 evoked responses.
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Dm4

Figure 3.5: Cell types used for optogenetic mapping of Tm9 inputs.
Schematic of the fly optic lobe with cell types overlaid. Anatomy of cell
types adapted from (Fischbach and Dittrich, 1989; Nern, Pfeiffer, and
Rubin, 2015).

Also both positive and negative Tm9 responses evoked by Dm4 had similar
kinetics. From the remaining neurons Mi9 evoked negative responses that
decayed fastest (within 5s). Tm1 evoked responses qualitatively similar to
the ones evoked by R1-R6 photoreceptors, a sharp negative peak followed
by a positive longer lasting rebound. Finally, responses elicited by C3
were initially negative with small amplitude and then positive with larger
amplitude, the whole effect decayed within 10s.

Activating L3 led to the strongest Tm9 responses, consistent with L3
being the main chemical input to Tm9 (Takemura, Bharioke, et al., 2013),
and with silencing experiments of L3 chemical inputs to Tm9 (Fisher,
Leong, et al., 2015). Interestingly, all neurons elicited responses in Tm9,
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Figure 3.6: Different stimulation powers and durations led to similar
Tm9 responses.

Optogenetic activation of cell types using CsChrimson (Klapoetke et al.,
2014) while imaging Tm9 expressing GCaMP6f in blind flies. Traces
overlaid for different light powers, and for train of pulses vs the shortest
pulse attainable. W+ are control blind flies (norpA mutants).
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Figure 3.7: Tm9 integrates input from different cell types.
Optogenetic activation of cell types using CsChrimson while imaging Tm9
expressing GCaMP6f in blind flies. A. Photoreceptor inputs. B. Lamina
inputs. C. Wide-field inputs. D. Columnar medulla inputs.
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even the ones without direct synapses, such as L1, Mi9, and Dm20 (no
observed GRASP). We confirmed functional wide-field inputs into Tm9,
namely, Dm4, Dm12 and Dm20. Overall, we showed Tm9 could integrate
both direct and indirect inputs of different response polarity and kinetics
from diverse cell types (fig. 3.7).

3.2 Single cell type contribution to the
receptive field of Tm9 neurons

We confirmed a diverse set of inputs into Tm9, both anatomically and
functionally. In this section, we proceeded to test the contribution of
several cell types to Tm9 receptive fields. We did so by recording Tm9
receptive fields upon genetic silencing of input cell types. We silenced input
neurons by overexpression of the inward-rectifying potassium channel
Kir2.1 that hyperpolarized their membrane potential (Baines et al., 2001).
We recorded responses of Tm9 neurons to ON-OFF full-field flashes and
ON and OFF bars (like in sec. 2.1).

Table 3.1: Statistics for Tm9 ON-OFF full-field flashes response prop-
erties under block of lamina neurons L1, L2, or L3.

Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is control minus L1-, L2-, or L3-input block.

L1 block L2 block L3 block

p-value Mean diff p-value Mean diff p-value Mean diff
Mean OFF (AF—f) 4.60- 107! —3.40-1072 9-1071 —5.80-107° 9.30- 107! —4-1073
Mean ON (%}') 2-107° 9.30- 1072 4.60- 1072 2.80-1072 5.40 - 1071 —7.70-1073
Polarity index 4.30- 107! 8.60-1072 6.70 - 107! —4.80 - 1072 4.60-107! —7.70-1072
Sustenance index 3.70 - 107! -3.90-1072 8.20- 107! 9-1073 6.70 - 102 8.10-1072
Half-rise time (s) 4.30- 107! —3-1072 8.90- 10" —5-1073 1.70-1072 8-1072
Time to extreme (s) 1.90 - 1072 —2.30-1071 9.50 - 107! 5.70- 1073 31071 1-107!

Response quality 4.20-1073 —6.10-1072 2.50- 1072 4.60- 1072 2.60 - 1074 8.20- 1072
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Figure 3.8: Tm9 responses to ON-OFF full-field flashes without input
from lamina neurons L1, L2, or L3.

A-D. Trial averaged responses to a sequence of gray-OFF-gray-ON, of 4s,
2s, 4s and 2s duration, respectively. Thin lines indicate single neurons, on
top is the mean and standard error. Controls (A), L1 (B), L2 (C), and L3
(D) block. E-H. Traces in A-D stacked for better visualization of different
response kinetics.
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Figure 3.9: Tm9 response properties to ON-OFF full-field flashes with-
out input from lamina neurons L1, L2, or L3.

Data is from fig. 3.8, but only neurons with response quality above 0.5 are
used. Order in all plots is control vs L1, L2, or L3 block. A. Mean response
to OFF. B. Mean response to ON. C. Polarity index. D. Sustenance index. E.
Half-rise time. F. Time to extreme. G. Response quality.
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Contribution of lamina cell types

We start by the main inputs to the motion pathways, lamina neurons
L1, L2, and L3, for which we have evidence of functional connectivity to
Tm9. L3 is the strongest synaptic partner to Tm9. Both L1 and L3 shaped
Tm9 response amplitude to ON-OFF flashes without intermediate gray
in a different experimental setting (Fisher, Leong, et al., 2015). And L2
optogenetic activation led to positive Tm9 responses.

Role of lamina neurons in Tm9 full-field responses

We recorded responses to ON-OFF full-field flashes (fig. 3.8). Blocking
L1 inputs decreased Tm9 responses to ON flashes but did not change the
polarity index (fig. 3.9 B, C). Also, Tm9 neurons with L1 block peaked
later without changing their sustenance (fig. 3.9 D, F). The response
quality increased for L1 block compared to control (fig. 3.9 G). Blocking
L2 inputs slightly decreased Tm9 responses to ON flashes (by 0.03 AF—f)
without changing the polarity index, and lowered the response quality
(fig. 3.9 B, C, G). Finally, blocking L3 inputs decreased the half-rise time
and the response quality (fig. 3.1 D, G, tab. 3.1). Tm9 neurons without
L3 inputs responded additionally to the OFF to gray, and ON to gray
transitions, as seen in the average response trace (fig. 3.8 D, H), this was
not further investigated. The mean OFF response was unaltered upon L3
block, because a subset of neurons with high responses balanced a subset
of neurons with low responses, resulting in a bimodal distribution (fig. 3.8
D, 3.9 A). The lower part of the bimodal distribution of Tm9 responses
under L3 block would be consistent with a strong reduction expected
by connectomics, optogenetics, and above mentioned experiments using
different stimulus, silencing strategy, and data selection (Fisher, Leong,
et al., 2015). Here we showed: L1 inputs contribute to Tm9 rectification
of ON responses, both L1 and L3 affect Tm9 OFF response kinetics, and L3
affects the distribution of OFF response amplitudes.

Role of lamina neurons in Tm9 receptive fields

Surprisingly, no strong effects were observed for full-field responses of
Tm9 lacking lamina inputs. We next analyzed the responses of the same
neurons to ON and OFF bars. As before (see p. 34) , we visualized all
Tm9 receptive fields for all experimental conditions. We aligned the OFF
receptive fields by maximizing cross-correlation to neurons close to the
center of the screen. The shift in position obtained from the OFF receptive
fields was used to align the ON receptive fields. Most control neurons and
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L3 block ones had defined OFF receptive fields (fig. 3.10 A, D). On the
contrary, fewer neurons of L2 block condition had defined OFF receptive
fields (fig. 3.10 C).

Response amplitude to bars To check whether the lamina inputs shaped
Tm9 response amplitude to bars, a localized stimulus, we plotted the
extreme responses of Tm9 tuning curves. This is a non-parametric analysis
independent of the Gaussian fit used to quantify the size of the receptive
fields. This way we can observe neurons that were responding reliably
(response quality larger than 0.5), even when the tuning curve could not
be fit well by a single Gaussian. This is of particular interest, because
some neurons had a ON receptive field that was negative in the center and
positive in the surround. In some of those cases, the surround had larger
magnitude than the center response resulting in positive extremes in fig.
3.11 C-D.

Visual inspection showed Tm9 responses to OFF bars were enhanced
by blocking L1 inputs (fig. 3.11 A-B), and diminished by blocking L2
inputs (fig. 3.11 A-B). Again, effects were smaller for L3 block. However,
examining Tm9 responses to ON bars revealed a role of L3 inputs. The
control distribution of response extremes was bimodal, a group of neurons
dominated by positive ON surround responses, and another group domi-
nated by negative ON center responses. On average the extreme was close
to zero. The mean extreme value was more negative for neurons with L2
or L3 block, because fewer neurons had positive ON surround responses
(fig. 3.11 C-D). Taken together, L1 neurons reduced Tm9 responses to OFF
bars, while L2 neurons increased them. Furthermore, 1.2 and L3 shaped
the surround of Tm9 ON receptive fields.

Receptive field width We analyzed the receptive field of a reduced num-
ber of neurons that were fitted well by a single Gaussian. Less than half and
less than a third of the recorded cells were used for the OFF and ON bars,
respectively. Blocking lamina neurons did not impact much the proportion
with respect to control for OFF bars. For ON bars, blocking input from L1,
L2, or L3 reduced proportion of fitted cells to about a quarter, an eight,
and a thirteenth, respectively (fig. 3.12 A-D). Unless the neuronal block is
reversible and recordings are performed on the same neurons for control
and block conditions, non-responsive cells exist in any fly depending on
cells’ health and the relative position of the stimulus and their receptive
fields. Here as in (Fisher, Leong, et al., 2015), the proportion of Tm9
responsive neurons was lowest under L3 block.
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Table 3.2: Statistics for Tm9 receptive field widths under block of
lamina neurons L1, L2, or L3.

Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is FWHM (°) of control minus L1-, L2-, or L3-input block.

L1 block L2 block L3 block
p-value Mean diff p-value Mean diff p-value Mean diff
OFFX 3.50 1073 —2.55 3.12-1071 —8.53-1071 6.42-1071 —3.09-107!
OFFY 0.00 —3.55 21074 —2.34 4.80-1073 —1.43
ONX 5.97-107" —1.08 8.31-1071 —4.97-1071 4-107* —7.93
ONY 3.10-107% —4.25 2.27-1072 —4.76 0.00 —7.06

Out of the responsive cells, the OFF receptive field width increased for
both orientations under L1-input block (fig. 3.12 A, B). For vertical OFF
bars receptive field width of Tm9 increased for all conditions: L1-, L2-, or
L3-input blocks (fig. 3.12 A, B). Already the receptive field width is larger
for horizontal receptive field than vertical bars in the control condition,
we did not pursue this asymmetry further. For both orientations, blocking
L1-input increased OFF receptive field size (fig. 3.12 A, B), and blocking
L3-input increased ON receptive field size (fig. 3.12 C, D).

To test the effects on variability of receptive field properties, we looked
at the coefficient of variation of the full width at half maximum (fig. 3.12
E-H). Overall, we observed no statistically significant effect. The coefficient
of variation was lowered by L2-input block for ON bars of both orientations
resulting from a decreased standard deviation and increased mean (only
for vertical bars, fig. 3.12 G, H, K, L). However, the small sample size
precludes rigorous analysis of variability.

In conclusion, silencing lamina neurons led to reduced amount of
responsive neurons, particularly for ON stimuli. From the responsive
neurons, Tm9 neurons lacking L1 inputs had larger OFF receptive fields,
and Tm9 neurons lacking L3 inputs had larger ON receptive fields. We
detected no significant effect on receptive field size variability. Lack of
L1 inputs also increased the amplitude of responses to OFF bars, thus L1
could provide indirect inhibition to Tm9 OFF receptive fields in the center
and surround. The lack of this OFF surround inhibition from L1 could
account for wider Tm9 receptive fields. Similarly, blocking L3 decreased
the surround responses of Tm9 ON receptive fields, accounting for wider
Tm9 ON receptive fields. This suggested two diverging pathways from L1
and L3 converge back at Tm9, one mediates excitatory center responses,
the other mediates inhibitory surround responses.
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Figure 3.10: Receptive field width of Tm9 upon silencing single lamina
cell types (L1, L2, or L3).

A-D. Receptive fields of Tm9 neurons to OFF bars for control (A), L1-input
block (B), L2-input block (C), and L3-input block (D). E-H. Receptive fields
of Tm9 neurons to ON bars matching A-D.
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Figure 3.11: Receptive field amplitude distribution of Tm9 upon si-
lencing single lamina cell types L1, L2 or L3.

A-D. Distribution of receptive field extreme values of responses to: hori-
zontal OFF bars (A), vertical OFF bars (B), horizontal ON bars (C), vertical
ON bars (D). All stimuli were recorded for the same neurons, but only
the neurons with response quality over 0.5 were used for each panel. N
is number of flies from which the n plotted neurons come / number of
recorded neurons.
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Figure 3.12: Receptive field width distribution of Tm9 upon silencing
single lamina cell types (L1, L2 or L3).

A-D. Distribution of receptive field widths from FWHM of responses to:
horizontal OFF bars (A), vertical OFF bars (B), horizontal ON bars (C),
vertical ON bars (D). E-H. Coefficient of variation from distributions in A-D.
Line is the average coefficient of variation for all conditions, and the band
shows the 95% bootstrapped confidence interval, open and closed circles
indicate values inside and outside the band, respectively. I-L. Standard
deviation of distributions in A-D.
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Figure 3.13: Tm9 responses to ON-OFF full-field flashes without input
from wide field neurons Dm4, Dm9, Dm12, or Dm20.

A-E. Trial averaged responses to a sequence of gray-OFF-gray-ON, of 4s,
2s, 4s and 2s duration, respectively. Thin lines indicate single neurons, on
top is the mean and standard error. Controls (A), Dm4 block (B), Dm9
block (C), Dm12 block (D), and Dm20 block (E). F-J. Traces in A-E stacked
for better visualization of different response kinetics.
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Figure 3.14: Tm9 response properties to ON-OFF full-field flashes with-
out input from wide field neurons Dm4, Dm9, Dm12, or Dm20.

Data is from fig. 3.13, but only neurons with response quality above 0.5
are used. Order in all plots is control vs Dm4, Dm9, Dm12, or Dm20 block.
A. Mean response to OFF. B. Mean response to ON. C. Polarity index. D.
Sustenance index. E. Half-rise time. F. Time to extreme. G. Response

quality.
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Contribution of wide-field cell types

Next, we studied how blocking the inputs from wide field neurons affected
the receptive fields of Tm9 neurons. Besides the wide-field inputs from
Dm4, Dm12, and Dm20 confirmed by optogenetics, we added preliminary
data on Dm9, another distal medulla neuron that projects to layer M3. Dm9
could have a role in color vision in the fly, and potentially mediate Tm9
response properties through interactions with L3 and R8 photoreceptors.

Table 3.3: Statistics for Tm9 ON-OFF full-field flashes response prop-
erties under block of distal medulla neurons Dm4, Dm9, Dm12, or
Dm20.

Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is control minus Dm4-, Dm9-, Dm12- or Dm20-input block.

Dm4 block Dm9 block Dm12 block Dm20 block
p-value Mean diff p-value Mean diff p-value Mean diff p-value Mean diff
Mean OFF (4£) 1-107* ~1.50-107" 8.10-107" ~1.70-102 2-107° —2.20-107" 2.10°° —3.20-107"
Mean ON (45) 2.80-107! 1.10-1072 5.20-107! 1.40- 1072 3.1072 2.50 107 2.107° 5.60 - 1072
Polarity index 1.40-107* 2.30-107! 3.80- 107! —1.60-107" 1.60 - 1072 1.70- 10! 2.107° 3.20-107"
Sustenance index 5.70- 107! —1.90- 1072 2.50- 10! 7.10-1072 8-107° —1.20-107! 1.70 - 10 —4.60- 1072
Half-rise time (s) 8-107° —1.40-107" 3.70-107" —5.40-1072 2-107° —2.60-107" §-107° —-1.20- 107"
Time to extreme (s) 11073 —2.30-107" 7.10-107" —5.40-1072 2-107° —3.80-107" 11010 ~1.10-107"
Response quality 7.60-107" —4.70-1073 7-1072 6.30- 1072 2.107° —6.20-1072 2.107° —9.10-1072

Role of distal medulla neurons in Tm9 full-field responses

First we checked the effects on the responses to ON-OFF full-field flashes.
Looking at all recorded neurons (fig. 3.13), we observed an increased
response to OFF flashes for Dm4, Dm12, and Dm20 blocks. Also, the
ON to gray response increased for all blocked neuron types. Analyzing
the response properties in more detail® revealed Tm9 responses to OFF
flashes were indeed reduced when the input from Dm4, Dm12, or Dm20
was blocked (fig. 3.14 A, tab. 3.3). Also, blocking Dm12 or Dm20
decreased the responses to ON flashes (fig. 3.14 B). The shifts in ON and
OFF responses were accompanied by a polarity index with higher OFF
preference (fig. 3.14 C). Blocking Dm12 made Tm9 responses to OFF
flashes more sustained, with longer half-rise time and time to extreme (fig.
3.14 D-F). On the other hand, blocking Dm4 only increased half-rise time
and time to extreme (fig. 3.14 E, F), but not the sustenance index. And
Dm20 block only increased the half-rise time (fig. 3.14 E). Tm9 neurons
had larger response quality when Dm12 or Dm20 inputs were blocked (fig.

2We included only responsive neurons with response quality index grater than 0.5.
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3.14 G). Thus, Dm12 modulates all studied properties of Tm9 responses
to full-field flashes. Taken together, wide field neurons Dm4, Dm12, and
Dm20 modulate the response polarity, and kinetics of Tm9.

Role of distal medulla neurons in Tm9 receptive fields

Table 3.4: Statistics for Tm9 receptive field widths under block of
wide-field distal medulla neurons Dm4, Dm9, Dm12, or Dm20.

Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is FWHM (°) of control minus Dm4-, Dm9-, Dm12- or Dm20-input block.

Dm4 block Dm9 block Dm12 block Dm20 block
p-value Mean diff p-value Mean diff p-value Mean diff p-value Mean diff
OFFX 6.54 1072 8.46-1071 5.73- 107! —7.85-107" 1.17-107! —8.36- 107! 6.45- 1071 —2.40-107!
OFFY 1.75- 1071 —4.28 107! 0.00 —6.75 6.00-1073 —1.01 1571071 —4.35-107"
ONX 4.49-107t —6.95-107! — — 0.00 —4.68 1-107* —5.54
ONY 2.50 1073 —2.84 — — 0.00 —4.02 0.00 —5.71

We proceeded to look into the receptive field properties of Tm9 upon
blocking one of the wide field input neuron types. We visualized the
population of recorded cells in fig. 3.15. Note that for Dm9 the sample
size was about a quarter from the one of control condition. Rfs of flies
with Dm12 or Dm20 inputs blocked seemed larger, more so for ON than
for OFF bars. The proportion of responding cells to ON bars seemed higher
than control when Dm12 input was blocked.

For further analysis we fitted a Gaussian to Tm9 receptive fields. There
were no strong effects in the response amplitude of the Gaussian fits. Only
Dm20 block raised responses to OFF bars of both orientations, but only
significantly for vertical bars (fig. 3.16 A-B, E-F). Blocking Dm12 slightly
decreased Tm9 responses to vertical OFF bars (fig. 3.16 B, E-F).

The receptive fields showed no increase in size for OFF bars, except few
neurons with Dm9-input block for vertical bars (fig. 3.17 B). Due to lower
sample size, no further conclusion will be drawn from Dm9-input block
experiments. Blocking Dm4 inputs increased receptive field size only for
vertical ON bars (fig. 3.17 D). Moreover, blocking either Dm12 or Dm20
inputs to Tm9 increased the receptive field size for ON stimuli in both
orientations (fig. 3.17 C, D).

About variability of the receptive field size, no change in the coefficient
of variation was significant (fig. 3.17 E-H). Nevertheless, the coefficient
of variation was lower for ON stimuli under Dm4-, or Dm12-input block
(fig. 3.17 G, H). This is explained by a combination of increased mean
and decreased standard deviation in the receptive field size distribution
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(fig. 3.17 C, D, K, L). Blocking Dm20 had opposing effects, the increased
size of the ON receptive field was accompanied by an increased standard
deviation, thus having no effect on the coefficient of variation (fig. 3.17 C,
D, G, H, K, L).

Taken together, our data suggested Dm12 and Dm20 inputs constrain
the ON receptive field size of Tm9. And Dm4 and Dm12 reduce the
variability of size of the ON receptive fields of Tm9 relative to the mean,
while Dm20 increases variability via the variance of the size distribution.
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Figure 3.15: Receptive field of Tm9 upon silencing single distal
medulla cell types.

Controls (A, F), Dm4 block (B, G), Dm12 block (C, H), Dm20 block (D, I)
or Dm9 block (E, J). Left and right columns are for OFF and ON stimuli,
respectively.
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Figure 3.16: Receptive field properties of responsive Tm9 neurons
upon blocking Dm4, Dm9, Dm12, or Dm20 neurons.

A-D. Receptive field amplitude of Tm9 for control vs Dm4, Dm9, Dm12,
or Dm20 input block for: OFF horizontal (A) and vertical bars (B); ON
horizontal (C) and vertical bars (D). E. Mean amplitude difference between
control and the experimental conditions. Decrements and increments with
respect to control are in blue and red, respectively. F. P-values from
permutation tests of mean differences in (E). Values above 0.05 are in
black and highlight non-significant (n.s.) values.
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Figure 3.17: Receptive field width of Tm9 upon silencing single distal
medulla cell types (Dm4, Dm9, Dm12, or Dm20).

A-D. Distribution of receptive field widths from FWHM of responses to:
horizontal OFF bars (A), vertical OFF bars (B), horizontal ON bars (C),
vertical ON bars (D). E-H. Coefficient of variation from distributions in
(A-D). Line is the average coefficient of variation for all conditions, and
the band shows the 95% bootstrapped confidence interval, open and
closed circles indicate values inside and outside the band, respectively. I-L.
Standard deviation of distributions in (A-D).
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3.3 Role of electrical coupling in the receptive
field of Tm9 neurons

We have seen Tm9 neurons were very robust to single cell type manipu-
lations. This suggested multiple cell types contribute to the ON and OFF
receptive field properties of Tm9. To test broader contributions, we could
block the transmission of a specific input channel, for example pharma-
cologically blocking glutamate receptors. Another broad manipulation
would be to block gap junctions responsible for electrical coupling between
neurons. Gap junctions are formed by two pores, one in each membrane
of the connected cells. The pores for gap junctions in invertebrates are
made out of proteins of the innexin family (Phelan, Stebbings, et al., 1998;
Phelan and Starich, 2001).

Therefore, we studied the effect of gap junction block on the response
properties of Tm9. One of the main innexins in Drosophila melanogaster
is shaking-B (shakB) (Phelan, Stebbings, et al., 1998). We used RNAi
silencing of shakB in Tm9 neurons, thereby eliminating gap junctions
requiring shakB in Tm9 membrane. This will be referred to as gap junction
block in the rest of the section. We must note that other gap junction
forming proteins (such as ogre) may remain in Tm9.

Table 3.5: Statistics for Tm9 ON-OFF full-field flashes response prop-
erties under gap junction block.
Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is control minus Tm9-shakB-RNA.i.

p-value Mean difference
Mean OFF (45) 9.51-107" 3.50-107°
Mean ON (&L) 7.70 1073 4.78 1072
Polarity index 4.30-1071 7.05-1072
Sustenance index 6.73-107! —1.75-1072
Half-rise time (s) 2.39-107! 1.11- 1071
Time to extreme (s) 2.52-107! —9.01-1072
Response quality 5.26 - 1071 8.90-1073

First, we observed the effects of gap junction block on ON-OFF full-field
flashes responses. The gap junction block decreased responses to ON
full-field flashes, but did not affect OFF responses (fig. 3.18, 3.19 ).
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Figure 3.18: Tm9 responses to ON-OFF full-field flashes upon RNAi
silencing of shakB in Tm9 neurons.

A-B. Trial averaged responses to a sequence of gray-OFF-gray-ON, of 45,
2s, 4s and 2s duration, respectively. Thin lines indicate single neurons, on
top is the mean and standard error. (A) Controls. (B) Tm9-shakB-RNAI.
C-D. Traces in A and B stacked for better visualization of different response
kinetics.

Next, we examined the contribution of shakB-mediated gap junctions
to Tm9 receptive field properties. The response amplitude to vertical OFF
bars decreased upon gap-junction block (fig. 3.21 B). On the other hand,
the response amplitude to ON bars did not change (fig. 3.21 C, D, tab.
3.6). Gap junction block increased the receptive field size for vertical ON
bars and also slightly for OFF bars, but not for horizontal bars (fig. 3.21
E-H). Blocking gap junctions also increased the variance of the receptive
field size distribution, thereby increasing the coefficient of variation for all
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Figure 3.19: Tm9 response properties to ON-OFF full-field flashes
upon RNAi silencing of shakB in Tm9 neurons from fig. 3.18.

Only neurons with response quality above 0.5 are used. Order in all plots
is control vs Tm9-shakB-RNAi. A. Mean response to OFF. B. Mean response
to ON. C. Polarity index. D. Sustenance index. E. Half-rise time. F. Time to
extreme. G. Response quality.

stimuli (fig. 3.21 I-P, tab. 3.6). Therefore, electrical synapses sharpen the
variance of the Tm9 receptive field size distribution, and the symmetry of
the receptive field by narrowing vertical ON receptive fields.
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Figure 3.20: Receptive fields of Tm9 upon RNAi silencing of shakB in
Tm9 neurons.

A-B. Receptive fields of Tm9 neurons to OFF bars for control (A) and
shakB-RNAi (B). C-D. Similar to A-B but for ON bars.
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Figure 3.21: Receptive field properties of responsive Tm9 neurons

upon RNAI silencing of shakB in Tm9 neurons.

A-D. Receptive field amplitude of control vs Tm9 gap junction block (Tm9-
shakBRNAI) for: OFF horizontal (A) and vertical bars (B); ON horizontal
(C) and vertical bars (D). E-H. Similar as A-D but for the receptive field
size. I-L. Standard deviation of the FWHM distributions in (E-H). M-P.
Coefficient of variation of the FWHM distributions in (E-H), gray band is

the 95% decision band, no change was significant.
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Table 3.6: Statistics for Tm9 receptive field size under gap junction
block.

Shown are p-values from two-sample two-sided permutation test of mean
differences between control and the condition mentioned. Mean difference
is control minus Tm9-shakB-RNAi. Variance of the full width at half
maximum, variance equality was tested with the Brown-Forsythe test,
shown are the p-value and the ratio of variances: control divided by
Tm9-shakB-RNAi.

OFF ON

Horizontal Vertical Horizontal Vertical
Amplitude (%)
p-value 6-102 1-1074 9-107! 2-107!
Mean difference 8.1072 2.1071! —2.1073 —2.1072
FWHM (°)
p-value 81071 3-1072 1-107t 1-1072
Mean difference 8-1072 —6.70 - 1071 —2.46 —4.80
Var(FWHM)
p-value 3.96-1072 5.26 - 1072 1.49 - 1071 3.98-1072

Var ratio 2.44-1071 4.99 - 1071 4.78 -1071 4.08 - 1071
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Contributions of Tm9 and related wide-field
neurons to motion detection

In the previous chapter, we demonstrated that wide-field neurons play an
important role modulating the receptive field properties of Tm9 neurons.
First, we identified novel wide-field inputs to Tm9. Then, optogenetic
experiments showed wide-field neurons have inhibitory effects in Tm9.
Finally, we recorded Tm9 responses while blocking wide-field inputs and
showed that they modulated the size of the Tm9 ON receptive fields.
Because Tm9 is a crucial neuron in the OFF motion pathway, it is likely
that the effects of wide-field inputs on Tm9 can propagate downstream
in the circuit. Therefore, in this chapter we studied the role of wide-field
neurons in the response properties of direction-selective neurons, namely
T4 and T5.

4.1 Receptive fields of distal medulla neurons

We started by doing a basic characterization of Dm4 and Dm12 neurons!.
We recorded Dm4 and Dm12 neurons expressing GCaMP6f using in vivo
two-photon calcium imaging. First, we visualized their responses to ON-
OFF full-field flashes. Both neurons responded with larger amplitude to
OFF flashes (fig. 4.1 A, B). Dm12 OFF responses raised slowly and reached
maximum at the offset of the stimulus, ON responses raised faster and
were sustained (fig. 4.1 A). Both ON and OFF Dm4 responses reached

!These experiments were done based on positive GRASP results of Dm4 and Dm12. In
the meantime, I supervised a master student (Cagatay Aydin) while he recorded receptive
fields of Dm4, Dm9, Dm12, and Dm20. The stimulus used there had a gray background,
here we used full contrast bars consistently with all other receptive field recordings in this
thesis. Receptive fields widths for OFF bars were about 7°, 10° and 15° for Dm4, Dm12,
and Dm20, respectively.

83
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maximum faster than Dm12 and sustained the activity throughout the
stimulus (fig. 4.1 B). Therefore, Dm4 and Dm12 responded preferentially
to OFF stimuli with slow and sustained kinetics.

We next recorded receptive fields from responses to vertical ON and
OFF bars. Both neurons responded to positively to OFF bars, and negatively
to ON bars. Receptive fields of dendritic segments of Dm4 were arranged
retinotopically, and were larger for ON than for OFF bars (fig. 4.2 B,
C). Despite the wide-field anatomy of Dm4, receptive fields of dendritic
segments were restricted to one eye column, the FWHM from Gaussian fits
was about 5° for OFF bars (data not shown, fig. 4.2 A, B). On the other
hand, receptive fields of Dm12 dendritic segments were wider than one
column and overlapped with neighboring receptive fields (fig. 4.2 D-F).
Full width at half maximum of Gaussian fits to Dm12 receptive fields were
about 20° and 30° for OFF and ON bars, respectively (data not shown).
Thus, wide-field neurons can process information in different spatial scales,
Dm4 acts locally within one eye column, and Dm12 signaling spreads over
multiple columns.

B
Dm12 ON-OFF responses Dm4 ON-OFF responses

AF/FO Dm12 N=9, n = 207 Dm4 N=2,n =52

1

Figure 4.1: Dm4 and Dm12 responses to ON-OFF full-field flashes.
Normalized fluorescence from neurons expressing GCaMP6f. Individual
thin lines are single neuron responses, thick lines are the neuron average,
standard error of the mean is similar to the average line thickness. A.
Responses of Dm12. B. Responses of Dm4.
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Figure 4.2: Dm4 receptive fields are restricted to one eye column and
Dm12 receptive fields span multiple columns.

Normalized fluorescence from neurons expressing GCaMP6f. A,
D.Maximum intensity projection of recording for (A) Dm4 and (B) Dm12.
B, C. Dm4 receptive fields for vertical OFF bars (B) and ON bars (C) from
selected regions-of-interest in (A). Notice the retinotopy that continues
even after a gap in the GCaMP6f expression of Dm4. Each dendritic seg-
ment acts as a local processing unit, their receptive field is restricted to
one eye column. Dm4 ON receptive fields are wider than OFF ones. E,
F. Dm12 receptive fields for vertical OFF bars (E) and ON bars (F) from
selected regions-of-interest in (D). Dm12 dendritic receptive fields span
more than one column (FWHM ¢ 5°) and are wider for ON than for OFF.
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4.2 Wide-field inputs tune responses of
direction-selective neurons

After sketching the response properties of some wide-field neurons, we
tested how Tm9 and its wide-field inputs modulate the properties of
direction-selective neurons. To this end, we silenced the activity of the
distal medulla neurons Dm4, Dm12, Dm20, or Tm9, and recorded the
activity in the direction-selective neurons T4 and T5. We recorded the
activity of both T4 and T5 neurons, because no specific line was available
to target only either of them. This offers the advantage of additionally
studying effects on the ON motion-pathway. As before, neuron activity
was blocked by overexpression of the inward-rectifying Kir2.1 channel.
Responses of T4 and T5 neurons were recorded using in vivo two-photon
calcium imaging, with GCaMP6f expression in T4 and T5. Recordings
focused on the lobula plate, where T4 and T5 axon terminals lie (fig. 4.3
A).

We measured responses to ON and OFF edges moving in four different
directions (up, down, left, right). To select regions of interest, every
pixel was correlated with its nearest neighbors. The mean correlation
with the nearest neighbors gave a correlation map with local structure,
i.e., clumps of pixels behaving similarly. From this correlation map, we
selected circular regions-of-interest of 2.75 um diameter to include at most
one axon terminal (fig. 4.3 B), which are less than 5um in diameter
(Maisak et al., 2013). Because the neurites of T4 and T5 are intertwined
in the lobula plate, regions-of-interest were a mixture of pixels from either
neuron. T4 neurons respond selectively to moving ON edges, and T5
neurons to moving OFF edges. Thus, we used the contrast preference
of the region-of-interest to get an idea of the mixture of T4 an T5 per
region-of-interest.
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Figure 4.3: T4 and T5 response maps to moving edges.

A. Maximum intensity projection of the time series of an example fly. Scale
bar is 10 um. B. Nearest-neighbor correlation map, darker colors indicate
higher correlations. Selected ROIs are overlaid in green. C. Direction
preference map (DMP), each pixel was color coded in the HCL color
space (Hughes and Goodhill, 2015), hue is preferred direction of the
pixel, chroma and lightness are same for all pixels. D. Same map as (C)
but encoding the direction selectivity index (DSI) in the color lightness,
brighter colors indicate higher DSI. Notice the nice separation of preferred
directions across the four layers of the lobula plate.

Response amplitude and contrast selectivity

To quantify preference to ON or OFF edges, we used a contrast selectivity
index (eq. 6.11). This index is bound between [—1, 1], —1 is pure OFF
preference, 1 is pure ON preference, and 0 is no preference. The contrast
selectivity index of control T4 and T5 responses was positive. Thus, there
was a bias towards ON edges, i.e., T4 responses (fig. 4.4). This ON bias
was further increased by blocking the activity of any of the neuron types
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Dm4, Dm12, Dm20, or Tm9 (fig. 4.4, tab. 4.1).

To find the cause of the contrast selectivity index increments, we studied
the responses to ON and OFF edges separately. The response to each
polarity was calculated by averaging the maximum response across all
directions for a given polarity. Blocking any of the neurons affected T4
and T5 responses (fig. 4.5) . Blocking the activity of Dm12, Dm20, or
Tm9 increased responses to moving ON edges, and decreased responses to
moving OFF edges. Blocking Dm4 activity decreased responses to both ON
and OFF moving edges (fig. 4.6, tab. 4.2).

Contrast-selectivity index
1 -—
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Figure 4.4: T4 and T5 contrast selectivity increased upon blocking
activity of Dm4, Dm12, Dm20, or Tm9.

T4 and T5 contrast selectivity to moving edges for control, and block of
Dm4, Dm12, Dm20, or Tm9. All conditions lead to an increase of the
contrast selectivity, i.e., preference to ON edges (Table 4.1) .
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Table 4.1: Statistics for T4 and T5 contrast selectivity to moving edges
under input block: Dm4, Dm12, Dm20, or Tm9.

Shown are difference of means: control minus condition, and correspond-
ing p-values from two-sample two-sided permutation test of mean differ-
ences.

p-value Mean difference
Dm4 block 2.00-107° —1.47-1071
Dm12 block 2.00-1075 -1.22-107¢
Dm20 block 2.00-1075 -2.23-107¢
Tm9 block 2.00-1075 -3.05-1071

Table 4.2: Statistics for T4 and T5 response amplitude to moving
edges under input block: Dm4, Dm12, Dm20, or Tm9.

Shown are difference of means: control minus condition, and correspond-
ing p-values from two-sample two-sided permutation test of mean differ-
ences.

ON OFF
p-value Mean diff. p-value Mean diff.
Dm4 block 3.48 1073 6.22-1072 2.00-107° 1.54-107¢
Dm12 block 2.00-107° —8.83-1072 1.37-1072 4.02-1072
Dm20 block 2.00-107° —1.58-1071 2.00-107° 1.24-107¢

Tm9 block 2.00-107° -1.72-107! 2.00-107° 1.62- 1071
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Figure 4.5: T4 and T5 responses to edges upon blocking activity of
Dm4, Dm12, Dm20, or Tm9.

A-E. T4 and T5 responses to moving edges for control (A), and block of
Dm4 (B), Dm12 (C), Dm20 (D), or Tm9 (E). Every trace is the average
response over four motion directions, traces were aligned by maximizing
cross correlation before averaging. Mean and standard error are overlaid.
E-J. Single response traces stacked for visualization, corresponding to A-E.



4.2. Wide-field inputs tune responses of direction-selective neurons 91

A B C
— 2 7 -
e
e
o 1 & i g,
: gﬂ ‘
x b
g, 1%
D_ . E. 0 1 2 3
[T
|1
(@) T4/T5 ROI mean
i 1 - i Control
L<L] Dm4 block
Dm12 block
% o () Dm20 block
= g i
I . r " r r T 1 Tm9 block
0 1 2 3 0 1 2 3
Max AF/F, (ON)
F G
Max response to ON edges Max response to OFF edges
2.5 =
2 —
2 =
= — 1.5+
[T
€ 154 5
< =
S - S 11 :
x 1 E /1 < =
..‘- .-.=.-. | z 05 - 1 & - - - 488 ‘ .. N -
0.5 E | B —
- = | 8 E E E E
- R D |
0- 0-
éSO\ \0& \0(\'P \Od_ o
(Jo ™ 1V QO Qo —
Q((\ O({\'\' Q{(O/ «(0 p < 0.05

Figure 4.6: T4 and TS5 response amplitude to edges upon blocking
activity of Dm4, Dm12, Dm20, or Tm9.

T4 and T5 response amplitude to moving edges for control, and block of
Dm4, Dm12, Dm20, or Tm9. A-E. T4/T5 maximum responses to OFF vs
ON edges across directions for (A) controls, (B) Dm4 block, (C), Dm12
block, (D) Dm20 block, and (E) Tm9 block. F. Distribution of response
amplitude to ON edges. G. Distribution of response amplitudes to OFF
edges. Blocking Dm12, Dm20, or Tm9 increased responses to ON edges,
blocking Dm4 decreased responses to ON edges. Blocking any of the
four neuron types increased response amplitudes to moving OFF edges.
Statistical tests are summarized in tab. 4.2.



92 Chapter 4. Role of wide field neurons in motion computation

Preferred directions and direction selectivity

The main function of T4 and T5 cells is to compute the direction of
motion. To quantify how much these neurons respond preferentially to
one direction, we used the direction selectivity index (DSI) (eq. 6.12).
Neurons responding exclusively to one direction have a direction selectivity
index of 1, while neurons responding equally to all directions have a
direction selectivity index of 0. The preferred direction of a neuron was
also calculated (eq. 6.13). We analyzed the responses to ON and OFF
separately (fig. 4.7). Interestingly, we observed the preferred direction
vectors segregated into four groups, even when the selection of regions-
of-interest discarded the information of the origin layer. To visualize
better the distribution of preferred directions over flies, we computed the
kernel density estimate of preferred directions. Indeed, the distribution
of all preferred directions had four lobes corresponding to main groups of
preferred directions close to the cardinal directions (fig. 4.8).

The distribution of preferred directions was not the same for ON than
for OFF responses, we examined this difference in more detail. Because
T4 and T5 neurons were recorded together and they are retinotopically
arranged, each region-of-interest should have captured the T4 and T5 axon
terminals that look at the same point of visual space. Thus, we asked
whether the same direction is encoded by both T4 and T5 neurons at the
same location in visual space. Because preferred directions are periodic
and have no meaningful start and end point, we calculated the circular
correlation of preferred directions for ON and OFF responses. Because of
T4 and T5 contrast selectivity, ON and OFF responses are a proxy for T4
and T5 responses, respectively. Indeed, preferred directions were positively
correlated for T4 and T5 neurons in the controls (fig. 4.9 A). However,
blocking Dm4 and Tm9 resulted in negative circular correlations of T4 and
T5 preferred directions (fig. 4.9 B, E). Thus, Dm4 and Tm9 are needed for
normal joint encoding of moving direction of ON and OFF edges at each
point in space.

The observed decoupling of preferred directions could be due to a
lower direction selectivity that leads to a imprecise estimate of preferred
direction. Therefore we next compared the direction selectivity index for
T4 and T5 neurons looking at the same point in space. Similarly, the
direction selectivity index was correlated for T4 and T5 neurons in controls
(fig. 4.9 A), and was negatively correlated for Dm4 block (fig. 4.9 B), and
uncorrelated for Tm9 block (fig. 4.9 E). This further supported the idea
that Dm4 and Tm9 are required to balance the properties of T4 and T5
neurons.
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Figure 4.7: T4 and T5 direction selectivity and preferred directions to
moving edges per fly, upon blocking activity of Dm4, Dm12, Dm20, or
Tm9.

A-E. T4 and T5 direction selectivity vs preferred direction for moving edges,
for control (A), and block of Dm4 (B), Dm12 (C), Dm20 (D), or Tm9 (E).
Top rows: responses to moving ON edges. Bottom rows: responses to
moving OFF edges. Notice that ON responses are impaired while OFF
responses remain, in some flies, e.g., fly 7 in Dm20 block, and fly 3 in Tm9
block.

To study the particular effects of input blocks, we quantified the di-
rection selectivity index for ON and OFF edges, equivalent to T4 and T5
responses. Dm4 block decreased T5 direction selectivity index (fig. 4.11
B). Dm12 block increased the direction selectivity index of both T4 and T5
(fig. 4.11 A, B). Dm20 and Tm9 blocks had similar effects, they increased
T4 direction selectivity index and decreased T5 direction selectivity index
(fig. 4.11 A, B). Therefore, all wide-field neurons and Tm9 are required
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Distribution of preferred directions for T4 and T5 neurons
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Figure 4.8: Distribution of preferred directions for T4 and T5 neurons
upon blocking activity of Dm4, Dm12, Dm20, or Tm9.

A-E. T4 and T5 preferred direction distribution for moving edges, for
control (A), and block of Dm4 (B), Dm12 (C), Dm20 (D), or Tm9 (E). Top
rows: responses to moving ON edges. Bottom rows: responses to moving
OFF edges. The curves are the kernel density estimates of the distributions,
note the four lobes. For comparison control distribution is on every block
condition. Colored regions in (A) highlight the directions that split the
distribution into four sections at the points of lowest density.

for proper direction tuning of T4 and T5 neurons.

Because T4 and T5 neurons exist in four subtypes encoding mainly four
directions of motion, we asked whether the tested inputs affected equally
all four subtypes of T4 and T5 neurons. Thus, we visualized the effects
of input blocks over the four main direction groups (as defined in fig. 4.8
A). Indeed, Dm12 block increased tuning in all directions for both T4 and
T5 (fig. 4.12 A-H ). Also Dm4 block decreased tuning of T5 neurons in all
directions (fig. 4.12 E-H ). The effects of Dm20 and Tm9 were similar in
three out of the four directions for both T4 and T5. Interestingly, Dm4 block
led to opposite effects for opposing directions of motion: increased tuning
for upwards and rightwards motion, and decreased tuning for downwards
and leftwards motion. This effects canceled each other when grouping
over all neurons and directions (fig. 4.11 A). We concluded Dm12, Dm20,
and Tm9 have similar effects in all four subtypes of T4 and T5 neurons.
Furthermore, Dm4 acts uniformly for all T5 subtypes, but has opposite
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Figure 4.9: Correlation of T4 and T5 preferred directions at the same
point in space upon blocking activity of Dm4, Dm12, Dm20, or Tm9.
A-E. Circular correlation of T4 and T5 preferred directions for moving
edges, for control (A), and block of Dm4 (B), Dm12 (C), Dm20 (D), or
Tm9 (E). Color coded is the direction selectivity index. Top: Circular
correlation and corresponding p-value. T4 and T5 preferred directions
are positively correlated for controls, and Dm12, and Dm20 block, but
negatively correlated for Dm4 and Tm9 block.

effects in T4 subtypes encoding opposite directions of motion.

In this section, we provided evidence that multiple wide-field cell types
are required for proper scaling of T4 and T5 amplitude responses, their
directional tuning, and joint encoding of directions for ON and OFF moving
stimuli at each retinotopic position.
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Figure 4.10: Correlation of T4 and T5 direction selectivity index at the
same point in space upon blocking activity of Dm4, Dm12, Dm20, or
Tm9.

A-E. Pearson correlation of T4 and T5 direction-selectivity indices for
moving edges, for control (A), and block of Dm4 (B), Dm12 (C), Dm20
(D), or Tm9 (E). Overlaid is the linear least-squares fit. Top: Pearson
correlation and corresponding p-value. T4 and T5 direction-selectivity
indices are positively correlated for controls, and Dm12, and Dm20 block,
but negatively correlated for Dm4 block, and uncorrelated for Tm9 block.
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Figure 4.11: T4 and T5 direction selectivity upon blocking activity of
Dm4, Dm12, Dm20, or Tm9.

T4 and T5 direction selectivity to moving edges for control, and block of
Dm4, Dm12, Dm20, or Tm9. A. DSI for moving ON edges. B. DSI for
moving OFF edges. Lack of Dm12, Dm20, and Tm9 increased T4 DSI, lack
of Dm12 increased T5 DSI, and lack of Dm4, Dm20, and Tm9 decreased
T5 DSI. (Table 4.3)

Table 4.3: Statistics for T4 and T5 direction selectivity to moving edges
under input block: Dm4, Dm12, Dm20, or Tm9.

Shown are difference of means: control minus condition, and correspond-
ing p-values from two-sample two-sided permutation test of mean differ-
ences.

DSI ON DSI OFF
p-value Mean diff p-value Mean diff
Dm4 block 9.04-107! 1.25-1073 2.00-107° 7.37-1072
Dm12 block 2.00-107° —7.49-1072 4.00-107° —4.04-1072
Dm20 block 8.60-10~* —3.16-1072 4.45-1072 2.01-1072

Tm9 block 2.00-107° —5.24-1072 1.42 1072 2.45-1072
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Figure 4.12: T4 and T5 direction selectivity grouped over the cardinal
directions upon blocking activity of Dm4, Dm12, Dm20, or Tm9.

T4 and T5 direction selectivity to moving edges for control, and block of
Dm4, Dm12, Dm20, or Tm9. A-D. DSI for moving ON edges for upwards
(A), rightwards (B), downwards (C), leftwards (D), each direction is mainly
represented by one anatomical layer. E-H. Similar to (A-D) but for moving
OFF edges. Only Dm12 block had a consistent increase in DSI over all
polarities and directions.
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4.3 Response properties at overlapping T5
dendrites and Tm9 axons

So far, we demonstrated Tm9 neurons have variable receptive field prop-
erties, and they are required for proper responses of T4 and T5 neurons.
Thus, Tm9 variability could reflect on some features of T5 responses. To
look for relations between T5 neurons and the corresponding Tm9 input
neurons, we performed dual in vivo two-photon calcium imaging of T5
neurons expressing the green-emitting GCaMP6f sensor, and Tm9 neurons
expressing the red-emitting jJRGECO1a sensor (similar to sec. 2.2). We
recorded responses to ON and OFF bars, and analyzed responses to manu-
ally selected regions-of-interest encircling single Tm9 axons terminals. As
in previous sections, we fitted a single Gaussian to the tuning curves of T5
and Tm9 neurites within the same region-of-interest.

Spatial receptive fields Both T5 and Tm9 neurons responded positively
to OFF bars. Tm9 neurons responded with the usual negative response
in the center, accompanied occasionally by a positive surround response.
Contrarily, T5 did not respond to ON bars, but only to the offset from ON
bar to dark background (data not shown). Thus, we started analyzing the
relationship of response parameters to OFF stimuli, namely the amplitude,
position, and width of the fitted Gaussians. All parameters correlated for
both horizontal and vertical bars (fig. 4.13). The tight relative position
of T5 and Tm9 receptive fields (fig. 4.13 B, E) is consistent with the
evidence from connectomics that T5 receives inputs from the Tm9 neuron
in the same column (Shinomiya, Huang, et al., 2019). Furthermore, T5
dendrites had larger receptive fields than Tm9 axons (fig. 4.13 C, F), this
is consistent with T5 receiving OFF inputs from Tm1, Tm2 and Tm4 from
a neighboring column (Shinomiya, Huang, et al., 2019). About amplitude,
we observed two coupling modes, one where T5 and Tm9 amplitudes laid
close to the identity line, and other where T5 had larger amplitude than
Tm9, irrespective of fit quality (fig. 4.13 A, D).

Spatiotemporal tuning maps We next asked whether the correlation
of Tm9 and T5 properties would extend to the spatiotemporal domain.
Thus, we probed T5 and Tm9 responses to drifting sine gratings of of
different temporal and spatial frequencies, from 0.25 Hz to 16 Hz and 0.03 £
to 0.50 12, respectively. Because we are recording T5 dendrites, we have

21 is cycles per degree, a dimensionless unit.
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OFF receptive field properties of T5 dendrites and Tm9 axon terminals
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Figure 4.13: T5 and Tm9 spatial OFF response properties are corre-
lated.

Response properties extracted from Gaussian fits to spatial tuning curves
to OFF bars. A-C. Response properties for horizontal bars: (A) response
amplitudes, (B) receptive field center position, and (C) receptive field
width. Pearson correlation between T5 and Tm9 properties and corre-
sponding p-values are on top. D-F. Similarly to (A-C) but for vertical bars.
All parameters are correlated for both orientations. Notice amplitudes split
along two lines, one close to the identity and other in a line with higher
T5 than Tm9 amplitudes. The minimum coefficient of determination 72
between T5 and Tm?9 fits per neuron was used as a color map. Interestingly,
fit quality affected only center positions but not amplitudes or widths.

the dendrites of the four subtypes of T5 neurons overlapping in each eye
column. Therefore, we only used sine gratings moving in one direction
(leftwards), assuming only the T5 subtype selective to that direction of
motion would respond strongly, and the others would respond negligibly.
We calculated the spatiotemporal tuning maps using the amplitude of the
first harmonic of the response to gratings, obtained via the fast Fourier
transform (FFT). The first harmonic was the amplitude spectrum at the
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temporal frequency of the drifting gratings. We calculated the tuning maps
for each T5 and Tm9 pair at each region-of-interest. We smoothed the
maps using cubic splines interpolation and then averaged them across
regions-of-interest. Tm9 axons and T5 dendrites showed similar mean
spatiotemporal tuning maps (fig. 4.14 A, B). To visualize the spatial and
temporal frequency tuning curves separately, we split the data at the map
peak, along the corresponding axis. About their spatial tuning, both T5 and
Tm9 preferred the largest grating used that had a period of 32° (fig. 4.14 C).
It is possible both neurons prefer eve wider gratings, but displaying wider
gratings was not possible due to the screen size of 60°. Moreover, both
neurons had a sharp decline in responses for gratings with period about
8°, consistent with the resolution of one eye column. About their temporal
tuning, both Tm9 and T5 preferred 1Hz (fig. 4.14 D), resembling T5
tuning in (Maisak et al., 2013). This is interesting because Tm9 expressed
a slower calcium sensor, jJRGECO1a, than GCaMP6f expressed by T5, which
could influence the temporal tuning comparisons. To exclude parametric
comparisons, we simply calculated the correlation coefficient between pairs
of T5 dendrites and Tm9 axons at each region-of-interest. Most neuron
pairs had large positive correlations, about 0.7 on average (fig. 4.14 E)).
Therefore, our data suggested T5 and Tm9 properties are correlated in
both the spatial and temporal domains.
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Figure 4.14: Spatiotemporal tuning maps of T5 dendrites and overlap-
ping Tm9 axons are correlated.

A, B. Mean spatiotemporal tuning maps (from drifting sine gratings) of (A)
Tm9 axons and (B) overlapping T5 dendrites. Maps were interpolated by
cubic splines and averaged for 112 ROIs from 11 flies. All axes for spatial
and temporal frequencies are in a logarithmic scale of base 2, e.g., 0 is
20 = 1. Color map shows the first harmonic amplitude from fast Fourier
transform (FFT) of the responses to sine gratings, blue (darkest) is lowest
amplitude, yellow (brightest) is highest amplitude. C. Slice along the
spatial frequency axis for the peak in (A, B), blue is T5 dendrites, red is
Tm9 axons. Both neurons preferred the widest gratings (lowest spatial
frequency) of 32° period. D. Similar as (C) but for the temporal frequency.
Both T5 and Tm9 peaked at about 1 Hz. E. Histogram of Pearson’s cor-

relations between tuning maps of T5 and Tm9 ROIs, average correlation
0.7.
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Discussion

5.1 Cell types with variable functional
properties

In this thesis, we characterized the receptive field properties and their
variability of neurons involved in motion computation. We showed that
Tm9, an anatomically and genetically defined cell type, can display narrow
and wide receptive fields.

Our data about Tm9 receptive field variability reconciles contradictory
literature (Fisher, Leong, et al., 2015; Serbe et al., 2016; Arenz et al.,
2017). Recording from a population of Tm9 neurons revealed the whole
range of FWHMs observed in those references. The variability is observed
in the spatial and temporal domains using different stimuli, extending
the ones used in those studies: full-field flashes, flashing bars, and noise
stimuli. Here, we first want to discuss some assumptions used in fly vision
research that led to such contradictions. Given the wonderful regularity
of the fly eye, it is often assumed that neuron properties are the same
throughout the whole eye. Moreover, studies depend on the genetic
background of the flies, thus, the fly and not the neuron is the sampling
unit from the underlying genetic distribution. Consequently, in practice
fewer neurons are recorded per fly, to allow collecting data from more flies.
This assumption would not reveal inhomogeneities unless experimental
variations occur unintentionally and lead to observing otherwise ignored
brain regions. This approach however has provided most of the findings
referenced by this thesis. In fact, there were solid reasons to assume
Tm9, and other neuron types, are functionally homogeneous. Tm9 is an
anatomical neuron type, it has a stereotypic shape within the eye and
across eyes of different flies that distinguish it from others (Fischbach
and Dittrich, 1989), and it is labeled by a genetic line (used here and

103
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also in (Fisher, Leong, et al., 2015)) that produces the same expression
pattern over and over in different flies. Therefore, it is remarkable that Tm9
exhibits variable functional properties defying the homogeneity assumption
supported both anatomically and genetically (Davis et al., 2019).

Heterogeneity has long been a part of neuroscience research. Variations
exist that are intrinsic to biology and also extrinsic related to measurement
errors. Initial measurements will always provide a rough picture, that will
be resolved better with ever finer measurement techniques. For example,
going from a reticular theory to the neuron doctrine required measure-
ments first by light microscopy and ultimately by electron microscopy to
demonstrate the existence of synapses. Sometimes, the biological differ-
ences are remarkable and allow robust classifications such as anatomically
defined cell types (Ramon y Cajal and Sanchez, 1915; Llinas, 2003). Neu-
ron types defined this way can remain as such until finer measurements
reveal previously unattainable details. For example in the vertebrate retina,
the number of cell types increased with more advanced studies (Wassle,
2004; Sanes and Masland, 2015; Zeng and Sanes, 2017). Similarly, current
studies in the hippocampus, a brain region involved in navigation and mem-
ory, highlight the heterogeneity within classical cell types (Cembrowski
and Spruston, 2019), interestingly both developments were facilitated by
advances in transcriptomics. For the hippocampus, neuronal subtypes were
defined for pyramidal neurons on the basis of joint anatomical, genetic,
and physiological properties, in agreement with a continuous variation
rather than discrete subtypes (Cembrowski and Menon, 2018; Cembrowski,
Phillips, et al., 2018). This results highlight even more our findings, be-
cause pyramidal neurons vary along all axes, but Tm9 varies only along
the functional axis. There are no available reports on heterogeneity in
Tm9 regarding gene expression patterns (Davie et al., 2018; Davis et al.,
2019; Konstantinides et al., 2018), nor anatomical neuron reconstructions
(Takemura, Xu, et al., 2015). However, future studies may reveal the fine
gene expression or connectivity variations that could determine the various
Tm9 functional properties.

Wide-field inhibitory neurons provide flexible control of
receptive field properties

We went one step down to reveal connectivity variations of Tm9 neurons.
We showed wide-field neurons functionally connect to Tm9. These neurons
were distal medulla neurons Dm4, Dm12, and Dm20 (fig. 3.7 C). All of
them were inhibitory to Tm9 when optogenetically activated. Strikingly,
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Dm4 was excitatory to some Tm9 neurons. Moreover, we showed Dm4
neurons have a heterogeneous presynaptic site distribution (fig. 3.3, 3.4).
Also, staining for GABAergic neurons revealed again a heterogeneous dis-
tribution in Dm4, resembling the presynaptic labeling results (unpublished,
Cagatay Aydin). The inhomogeneous distributions seem to stem from
whole Dm4 neurons having or lacking expression of the genes of interest
rather than inhomogeneities within single Dm4 neurons. The inhomoge-
neous distribution of GABAergic Dm4 neurons is consistent with functional
connectivity data from optogenetics experiments. A subset of inhibitory
Dm4 neurons could decrease Tm9 responses, and the other subset would
have to increase Tm9 responses via a excitatory transmission. We further
showed Dm4 connects directly to Tm9 using GRASP. A careful analysis of
new GRASP experiments could reveal whether connections occur homo-
geneously in the brain or only subsets of Dm4 neurons connect to Tm9.
Future experiments will image both Dm4 and Tm9 neuron responses simul-
taneously to reveal the coupling of their response properties. To this end
we will tag Dm4 neurons with a presynaptic marker to be able to group
Tm9 responses accordingly and potentially link Dm4 to Tm9 heterogeneity.

To quantify variability across different conditions, we used the coef-
ficient of variation (standard deviation divided by mean). We observed
that Dm4 has the potential to reduce the coefficient of variation of Tm9
ON receptive field size distribution (fig. 3.4 C, D, G, H, K, L), by reducing
the variance or increasing the mean. Dm12 could similarly modulate the
variability of Tm9, however Dm4 and Dm12 effects were not statistically
significant. Contrarily, Dm20 block increased significantly the variance of
the sizes of the ON receptive fields. Thus Dm20 is necessary to reduce the
variability in Tm9 properties. Higher sample sizes will give definitive proof
of the influence of wide-field neurons into Tm9 responses.

Our anatomical and optogenetic studies of Dm4 support our hypoth-
esis that wide-field neurons can flexibly regulate connectivity and shape
response properties of involved cell types. Following this logic, we expect
to find variability in the other neurons types receiving inputs from Dm4,
and maybe to a lesser extent from Dm12 and Dm20. The amount of this
variability would depend on the synaptic weights relative to other input
neurons, which we discuss further down.

Heterogeneity within a functional map

All previous facts posit Dm4 as an intriguing neuron type, with the possi-
bility of having completely different effects downstream. If Dm4 neurons
are functionally homogeneous, the same feature of visual space will be
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encoded throughout the brain, but this feature will suppress responses in
regions downstream GABAergic Dm4 neurons and it will excite responses
elsewhere. To this point we are not aware of any neuron type with such pro-
cessing mechanism. Because of the heterogeneous functional implications
of Dm4 responses, it is important to characterize the features encoded by
Dm4 neurons. Here, we showed Dm4 neurons process information locally,
each dendritic bulb within one column has a receptive field size matching
one column (fig. 4.2). Roughly, Dm4 neurons encode OFF stimuli in their
positive responses, and ON stimuli less so in their negative responses. Dm4
neurons are sustained and have slow rise and decay kinetics (fig. 4.1).
This provided to our knowledge the first known functional characterization
of distal medulla neurons. We hypothesized Dm4 dendritic bulbs have very
localized responses by the nature of their long convoluted neurites. Our
hypothesis was confirmed by a recent study of another neuron with similar
dendritic structure to Dm4, namely the CT1 neuron, which was shown to
have very localized receptive fields electrically isolated from each other
(Meier and Borst, 2019). There is one CT1 neuron per optic lobe, and the
projections cover the whole medulla layer 10, and the whole lobula layer
1, the layers where T4 and T5 dendrites are located. CT1 synapses into
both T4 and T5 neurons and is thought to be provide them with inhibition
(GABAergic) (Shinomiya, Huang, et al., 2019). Thus CT1 functions as
many parallel units throughout the brain, while Dm4 functions as parallel
units with two possible functional consequences. We believe, studying
Dm4 will bring more insights into structure-function relation of neurons
and or dendrites in particular. The role of Dm4 and CT1 could be analog,
Dm4 acting at earlier stages, and CT1 at later ones. Other anatomically
analog cell types in medulla and lamina are also hypothesized to underlie
similar circuit motifs with analogous functions in different brain regions
(Davis et al., 2019). The role of CT1 in the responses of T4 and T5 neurons
is unknown. Here, we showed Dm4 neurons are required for direction-
selectivity in T5 neurons (fig. 4.11). Moreover, the effects of silencing Dm4
appeared more variable across flies than the other conditions (fig. 4.7).
Further experiments are needed to check the role of Dm4 across different
stimuli and also at the level of behavior.

To investigate further the heterogeneous map encoded by Dm4, we
propose immunostaining of Dm4 neurons with selected markers, to label
the whole eye and analyze the statistical spatial structure of the labeling,
for example the nearest neighbor distribution of labeled vs unlabeled Dm4
dendrites over eye columns. We must mention, Dm4 neurons tile the
fly eye without obvious overlaps (Nern, Pfeiffer, and Rubin, 2015). In
our eyes, we observed no obvious pattern, but the suggested experiments
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and analysis would provide a more rigorous test. The markers of Dm4
heterogeneity should then be used in physiological imaging studies to
finally obtain a topographical Dm4 functional map.

Similarly, we tried looking for heterogeneity in the functional map of
Tm9 and T5 neurons. Our results showed, T5 and Tm9 spatiotemporal
properties are correlated (fig. 4.14). However, we did not provide the
analysis (in progress) of the T5 properties relative to the size of the Tm9
ON receptive field its most variable property, the functional consequences
of this correlations for motion detection will be discussed at a later point.
Topographical mapping of T5 and Tm9 responses could further shed light
on the encoding of natural scene statistics. We often observed layers
of mixed selectivity in out T4 and T5 neuron recordings, however, as
an example we used a fly with four selective layers, except for lower
portion of first layer, which was mostly leftwards selective but had some
more downwards selective neurons (fig. 4.14 C, D). Even without the
visual maps, the mixed selectivity was reflected in the wider distribution
of preferred directions in some directions over others (fig. 4.7, 4.8).
Interestingly, this mixed selectivity tended to be more pronounced for the
first layer, hinting at a potential topographical organization. Because all
axons targeting layers two to four have to travel through layer one, mixed
selectivity can arise by imaging combinations of axons from all layers in
different proportions. Moreover, mixed selectivity seemed to localize to
lower portions of layer one, thus, the optical sectioning of the lobula plate
could further influence the observed selectivity. Topographic origins of
mixed selectivity could then be confirmed using sparse genetic labeling
to image single neurons in the first layer of the lobula plate to discard
mixing signals across neuron subtypes, and imaging of different optical
sections at different angles, to discard effects of lobula plate topology. The
topographical organization could reflect underlying regularities in natural
images. Although there is evidence for an ON-OFF processing bias in visual
systems across multiple species that is related to the ON-OFF bias in the
content of natural images (Cooper and Norcia, 2015; Chichilnisky and
Kalmar, 2002; Leonhardt, Ammer, et al., 2016), it is not clear up to what
extent other known spatial biases (topographic organizations) in visual
processing propagate downstream in the circuits. Of course, we humans
have a region of high acuity vision, the fovea, however that is a continuous
map rather than a discrete, random one. On the other hand, photoreceptor
opsin expression in primates is random and its study could shed light into
the relevance of topographic functional maps.

Similarly, in the fly, there is another substrate for heterogeneity, namely
the pale and yellow cartridges defined by the rhodopsin expression in R7
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and R8 photoreceptors. They form the basis of color opponency (UV-green,
and UV-blue) in the fly eye (Schnaitmann et al., 2018). Interestingly, flies
collected in the wild have a varying ratio of pale to yellow photoreceptors
and this variation is reflected in their innate color preferences (Anderson
et al., 2017). Thus the ratio (if not the topography) of pale and yellow
cartridges can propagate up to behavior. Moreover, the color pathway
can provide a link between wide-field neurons and topographical maps.
Wide-field Dm8 neurons are required for proper UV preferences in flies,
and they integrate signals from about 16 R7 photoreceptors (Karuppudurai
et al., 2014). The topographic organization of color vision thus seems to
stem from pooling of randomly distributed feature channels. However, the
exact distribution of R7 inputs from pale and yellow photoreceptors pooled
by a single Dm8 neuron is not known. Dm8 neurons could create a uni-
form representation by averaging out the spatial variability in wavelength
preferences of its many inputs. Alternatively, Dm8 could create another
heterogeneous map if each Dm8 neuron were to pool different proportions
of R7 pale and yellow photoreceptors acquiring slightly different spectral
preference to its neighbors. This hypotheses rely on the assumption that
Dm8 actually pool signals over their dendritic fields, which has yet to be
tested, because we have evidence that even neurons with wider dendritic
fields like Dm4 and CT1 can act only locally. We showed that Tm9 receives
inhibition from R8 photoreceptors (fig. 3.7 A). Therefore the topographic
variability of R8 spectral preferences is inherited by Tm9 responses. It
would be interesting to test whether both pale and yellow photoreceptors
synapse to Tm9, and if so if they do it with similar weights. Assuming Tm9
receives one to one inputs from both types of R8 photoreceptors, we can
expect some spatial heterogeneity in Tm9 spectral preferences. However,
Tm9 not only integrates signals from R8, but from various other cell types,
which could reduce the net effects of R8 variability on Tm9 response prop-
erties. Thus, studying dendritic integration is important to understand to
what extent features are conserved or transformed as information flows
along neural circuits.

Multiple cell type convergence into Tm9: robustness or
multi-feature integration?

In this thesis we demonstrated Tm9 receives diverse functional inputs from
multiple cell types connected directly or indirectly to Tm9 (fig. 3.7). From
connectomics, we inferred that Tm9 inputs are distributed more uniformly
over cell types than those of other neurons in the OFF motion pathway
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(fig. 3.1). This degree of cell-type input convergence is higher than for
the connectivity between cell types of the mammalian retina (Masland,
2012). For example, connectivity maps approximated from contact areas
of electron microscopy reconstructions of a portion of the mouse retina
revealed synaptic circuits involving up to nine cell types, however contact
area does not imply synaptic connectivity, and therefore this would likely
be an overestimate of connectivity. Indeed, Peter’s rule, which predicts
larger connectivity for larger contact area, is usually violated in both the
mammalian retina and the fly optic lobes (Helmstaedter et al., 2013;
Takemura, Xu, et al., 2015). Further evidence about large convergence
of cell types onto Tm9 was provided by our silencing experiments. No
single cell-type block completely abolished responses of Tm9 neurons,
and block of wide-field inputs even enhanced responses because of their
inhibitory nature to Tm9 (sec. 3.2). Even blocking two inputs at once
did not completely silenced Tm9 responses to full-field flashes (Fisher,
Leong, et al., 2015). Assuming each input cell type to Tm9 encodes a
different feature of the environment, Tm9 integration across multiple
cell types would result in Tm9 selectivity to a more complex feature.
Therefore, discovering the particular feature selectivity of Tm9 will require
experiments using different stimuli across wide range of conditions. Only
then, we could probe the effects of input silencing into Tm9 selectivity.
Alternatively, Tm9 could multiplex the inputs to provide information to
parallel pathways besides motion detection. For example, neurons types
in the lobula are known to be feature selective and project to the central
brain, for example the lobula columnar neuron LC11 is selective to moving
objects (Keles and Frye, 2017), and LC10 encodes visual features required
for courtship (Ribeiro et al., 2018). Many other features are likely going to
be elucidated in the near future (Wu et al., 2016). Because Tm9 projects to
the lobula, it is thus likely that Tm9 could participate in multiple pathways
leading from the lobula to the central brain by transmitting multiplexed
features. We find the study of feature selectivity an exciting area for
understanding higher-order computations.

Alternatively, Tm9 function could be restricted to one pathway, namely
the motion pathway. At least, direction-selective neurons T5 received the
most synapses from Tm9. Thus, the convergence of multiple cell types
into Tm9 could provide robustness to ensure proper motion encoding even
under missing or defective processing in some cell types. Furthermore,
errors in connectivity from additional cell types would be reduced when
averaged over all inputs. Such additional connectivity errors do exist in
the fly optic lobe (Takemura, Xu, et al., 2015). Supporting the robustness
hypothesis is the redundancy in the response properties of Tm9 inputs.
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All L1 to L3, and Dm4, Dm12, and Dm20 respond positively to OFF. Tm9
gets excited by L1 to L3 (and some Dm4 neurons), and inhibited by Dm4,
Dm12, and Dm20. Therefore, Tm9 has access to redundant OFF excitation
and inhibition from at least three cell types each.

Tm9 receives main inputs from L3 neurons, which are luminance
sensitive (Ketkar et al. unpublished). Thus Tm9 should carry some of
this information, and potentially integrate more features as explained in
the above paragraph. Here, we focused for sake of time into figuring
out the wide-field properties of Tm9, rather than trying to modulate its
properties with luminance levels. Experiments to test Tm9 contribution
to luminance or contrast adaptation can be performed, for example by
measuring receptive field properties in several orders of magnitude dimer
or brighter mean luminance levels, in wild-type and in combination with
L3 silencing. Because some Tm9 neurons were robust to blocking L3 inputs,
maybe only probing Tm9 in different luminance regimes will reveal an
even stronger phenotype.

Further mechanisms for integration are gap junctions, we showed by
RNAI silencing of shakB, that Tm9 receptive fields have electrical coupling
contribution. However this contribution was rather small or restricted
to one orientation (fig. 3.21). Moreover, it is not clear what cell types
are electrically coupled to Tm9. Transcriptomic data could provide some
guidelines as to what other anatomically proximal neurons express the
complementary gap junction proteins. Connectomics data used here was
restricted to chemical synapses, thus, this does not exclude the possibility
that some chemical inputs may be as well electrically couple to Tm9.

In general, how general is this wide convergence of cell types that leads
to response robustness or multi-feature integration remains to be tested. A
first step would be to characterize the other main inputs to T5: Tm1, Tm2,
and Tm4.

Understanding what information from the world is encoded by a neuron
is challenging. Even when considering single cell-type inputs, we could
face complex spatiotemporal integration by the receiving neuron. Recent
studies aimed at inferring the receptive field substructure of neurons in the
retina (Maheswaranathan et al., 2018; Liu et al., 2017; Shi et al., 2019;
Freeman et al., 2015), and hierarchical models are also applied to higher
visual neurons such as those in cortical areas V2 (Hosoya and Hyvéarinen,
2015) and IT (Yamins and DiCarlo, 2016). In particular, deep learning is
becoming trending as a neuroscience research tool (Turner et al., 2019).
We envision that using sophisticated analysis methods combined with the
fine genetic toolbox of Drosophila melanogaster will lead to rapid advances
in receptive field dissection.
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Additionally, neural integration can be tested experimentally. For ex-
ample, we could extend out optogenetic experiments to two independent
optical channels, expressing opsins of different spectral preferences in
two distinct cell types, while recording another cell type in yet another
optical channel. For example we could express Channelrhodopsin-2 (Boy-
den et al., 2005) in L1 and CsChrismon in Dm4 to study how they are
integrated by Tm9. We could also study spatial integration using spatially
restricted optogenetic excitation of multiple neurons (of the same type)
simultaneously while imaging another neuron (Packer et al., 2015). This
way, we could test whether neighboring dendrites from wide-field neurons
are integrated by Tm9, and if so if the integration is linear or nonlinear.
Moreover, applying this methods to genetically accessible novel wide-field
neurons in the fly could shed light into general mechanisms of dendritic
integration.

Role of wide-field inhibitory neurons in early vision in
Drosophila

Functional characterization of wide-field neurons is scarce in the fly visual
system, with exception of wide-field neurons in the lobula plate selective
for global motion that have received attention for decades (Krapp, B.
Hengstenberg, and R. Hengstenberg, 1998). Here, we showed that distal
medulla neurons Dm12 and Dm20 sharpen the ON receptive fields of Tm9,
and provide inhibition to ON and OFF stimuli. This points at roles in lateral
inhibition, consistent with this are the receptive fields measured for Dm12
which are wider for ON than for OFF and both span multiple columns. This
organization resembles the classical center-surround structure encountered
in the vertebrate retina. Furthermore Dm4, Dm12, and Dm20 neurons are
required for the tuning of direction-selective neurons T4 and T5. Likely;,
the effects will be reflected at the behavioral output (preliminary data,
not shown). All of these processing roles are fulfilled by some horizontal
or amacrine cell types in the retina (Diamond, 2017). To understand the
roles of wide-field neurons in multiple parallel pathways, we need to map
their postsynaptic partners. Genetic trans-synaptic labeling methods are
available (Talay et al., 2017), thus, this experiments are possible in the
immediate future. There are at least twenty types of wide-field neurons in
the medulla, only from the distal medulla family. Given the large diversity
of this family, it is logical to assume multiple unknown computations in
the fly can be revealed by studying the functional roles of distal medulla
neurons. Especially because in the vertebrate retina, most computations
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require inhibition originating from amacrine cells (Gollisch and Meister,
2010; Diamond, 2017). Given the genetic access to amacrine-like cells
in Drosophila melanogaster, we think they can provide useful insights to
guide further research on role of inhibitory amacrine cells in other species.

5.2 Why variability?

Is connectivity shaped actively or a result of random
variability?

Connectomic reconstructions from seven columns of the fly eye reveal con-
nection errors below 1 %. But within the analyzed neurons, Tm9 seemed to
haver larger variations (Takemura, Xu, et al., 2015). Moreover the scaling
of mean synapse counts and the respective variance could be approximated
by a Poisson distribution, indicating that normal connectivity is itself vari-
able. Wiring variations can influence functional properties of neurons
(Tobin, R.I. Wilson, and Lee, 2017). This suggested that even when connec-
tion errors are small, Tm9 could have more flexibility in the distribution of
synaptic inputs. Moreover, during development visual neurons including
Tm9 exhibit activity patterns that are not depending on visual stimulation
and the correlations between activity patterns of different cell types reflect
adult connectivity (Akin et al., 2019). In particular, Tm9, L3, and Dm4
are correlated more than other cell types, consistent with our functional
and silencing studies of Tm9 response properties. Importantly, flies used
for optogenetic experiments were blind, so flies developed without visual
stimulation. Nevertheless, functional connectivity remained between Tm9
and Dm4. Moreover the functional connectivity exhibited variations con-
sistent with the heterogeneous presynaptic release site distribution and
GABAergic labeling, experiments that were carried in flies with normal
vision. Changing environmental conditions during development may pro-
vide insights into the robustness of connectivity and variations thereof, in
particular using Tm9, L3 and Dm4 as a testbed. The connectivity between
these cell types is thought to be regulated by pairs of specific ligand and
receptors (Tan et al., 2015), providing a genetic handle to the connectivity
in the system.

We must note that the connectomic analysis of Tm9 entirely ignored
wide-field neurons. Therefore, the synaptic input distribution of Tm9 could
be broader and more variable. Interestingly, the more synapses a neuron
makes, the more errors it has in connecting to target cell types in wrong
columns, whereas it makes less errors in connecting to wrong cell types
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overall (Takemura, Xu, et al., 2015). With more synapses Tm9 could then
reach out to inputs in columns other than its own.

Information about branching variations in (Takemura, Xu, et al., 2015)
supports Tm9 anatomical homogeneity:

Our reconstructions reveal minor variations in branching pat-
terns of the same cell type in different columns that we in-
terpret as relational, which are required to match reciprocal
variations in target neurons so as to establish constancy in
pathway strength

Role of efficiency constraints on fly brain wiring for
flexible circuit connectivity

Evolution constrained fly wiring to be very efficient in terms of energy and
materials (Niven and Laughlin, 2008), a proof of this is the location of cell
bodies outside of the neuropiles to optimize wiring distances and space
usage (Rivera-Alba et al., 2011). If this constraint is the largest for building
the Drosophila melanogaster brain, then adding new neuron types to fulfill
new functions may be incredibly expensive. Like building a new room for
a home studio, instead of re-purposing existing space within the home,
using the same space and fewer resources. In the same way, new features
can be extracted by combinatorial integration of already existing cell types.
In this regard, one neuron can become a flexible switch to regulate new
configurations. For example, Dm4 shows heterogeneous functional inputs
to Tm9, release sites, and neurotransmitter phenotype. It is possible that
only Dm4 is so variable, because varying multiple parameters at once
otherwise greatly increases the number of potential outcomes and may
complicate convergence towards a useful configuration. On the other
hand, silencing Dm12 seems to increase the receptive field size of Tm9
neurons, making the distribution more uniform. This variability control
may indicate subtle changes on connectivity, maybe only seen as overall
synaptic strength between the connections rather that all or none as in Dm4
case. This can be a form of plasticity existing in multiple neurons in the fly
brain since the effects can be finely tuned, rather than switched between
two states. Thus, multiple mechanisms may be adaptively regulating
brain wiring and function in Drosophila melanogaster, with the stronger
mechanism restricted to one or few cell types. While variability offers
evolutionary advantages (Hiesinger and Hassan, 2018), it could as well
be a deficiency of the fly vision, which may hinder fly behavior or could
be tolerated by it. This can be tested by single fly behavior quantification,
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followed by brain dissection and labeling of Dm4 synaptic properties
(neurotransmitter, presynaptic release sites, etc.). The variability could be
a random phenomenon that will drive natural selection in a way that some
flies may be better suited to the potentially changing environment, but this
question will require longer time span to be tested than the duration of a
PhD.

When to stop sub-dividing cell types

Morphology is useful as a classification. Here, we see that molecularly,
a morphological cell type can show contrasting molecular differences
(heterogeneous presynaptic protein distribution and GABAergic marker
expression for Dm4). A molecular difference as big as neurotransmitter
expression can lead to completely opposite effects downstream, e.g. ex-
citing versus inhibiting the postsynaptic cell. Ultimately this effect can
greatly affect the functional heterogeneity of the next anatomical cell types.
Because neurons downstream do not need to know about the morphology
of the input neuron, but only about the signal (electrical or chemical)
they receive from it, we argue that functional classifications should be
prioritized. Nevertheless, the division should stop at a level in which we
can make sense of the found classes, before we dive into deeper details.

5.3 What we learned from motion detection

Implications of the receptive fields of interneurons for
models of direction selectivity

Most receptive fields were measured only with OFF bars or noise bars for
calcium imaging. Calcium imaging makes it hard to detect signals below
baseline, when the baseline itself is small. Here, I show Tm9 and Tm2
neurons have both ON RFs. Tm9 and Tm2 neurons projecting to T5 come
from neighboring columns (Shinomiya, Huang, et al., 2019). Thus, T5
has access to ON signals from main medulla inputs in both receptive field
locations (ON RFs are larger than OFF RFs therefore The ON RF of Tm2
from one column will overlap with the ON RF of Tm9 from neighboring
column). This supports linear integration as the mechanism for direction-
selectivity. Here, we still need to consider response kinetics. We propose
our approach of dual imaging of input and output neurons will shed more
light into motion computation in the fly.



5.4. Thoughts on research methodology 115

Limitations

Regarding studies of wide-field pathways in OFF motion detection, cell
types other than Tm9 can convey signals in parallel from Dm neurons to T5.
As mentioned before, we can map the pathways emerging from Dm neurons
with a focus on direction selectivity. Their potential role may just be tuning
the response strength and receptive field size. Studying the postsynaptic
partners of Dm neurons and their receptive fields, especially under Dm
neuron silencing, will prove if this is their general function. Alternatively,
the development of synapse specific perturbation methods will enable
studies of pathway-specific contributions from Dm neurons through Tm9
to T5 cells. While imaging T5 dendrites we approximated responses to
one cell type by using stimuli that would preferentially activate a single T5
subtype. To overcome these assumptions and limitations, sparse genetic
expression of a calcium sensor in T5 can lead to single neuron labeling, on
the other hand, the data collection will be more labor intensive.

An important limitation of this study is the stimulation screen size. Tm9
receptive fields may be affected by boundary effects, since the screen is
smaller relative to the whole fly visual field. However, even if this is the
case, the effect observed in Tm9 is not observed in other neurons, or at the
least is exclusive to ON stimulation. Further analysis is needed to study
asymmetries in Tm9 receptive fields, this asymmetry can be influenced the
the perspective correction applied to the stimulus projection. However, the
fact that some neurons were symmetric and some were not speaks in favor
of potential asymmetry in the receptive fields.

5.4 Thoughts on research methodology

Many of the next points may seem obvious to the reader, however, they
are important lessons learned throughout this thesis work. To reveal and
reconcile contradicting reports regarding Tm9 properties, our work high-
lights the importance of recording more neurons per fly, without reducing
the usual number of flies. This requires more data collection. Although
there is always a trade-off of resources dedicated to one experiment and
the number of possible experiments and hypotheses to test, we suggest
that thorough experiments with solid results be performed once, rather
than testing multiple hypothesis with a lower statistical power. We find
this important given the perceived reproducibility crisis in contemporary
research (Baker, 2016). Another layer that obscures data variability is the
data visualization process itself. Typically, during data analysis, different
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trials recorded per neuron are averaged, losing the trial variability. Then
the trial averages of neurons are first averaged per fly, and quantification
is done using only fly means. The variability within a fly is then lost. Then
data is summarized and visualized by the fly mean and the corresponding
standard error, without individual data points. This way even the variabil-
ity across individuals is obscured. We advocate for a efficient visualization
of variability in the data, although we are aware that effectively visualizing
uncertainty and probability distributions is an active research topic (Kale
et al., 2019), and we might have failed to do so in this thesis. Nevertheless,
the increasingly complex datasets acquired by current experiments high-
light the importance of keeping up to date with the latest effective data
visualization tools. Furthermore, more sophisticated hierarchical statistical
analyses could provide information of effects across trials, neurons, and
individuals, without the need to discard information from lower levels
(Good, 1980; Allenby, Rossi, and McCulloch, 2005). Moreover, effective
data sharing will allow different groups to perform independent analyses
of the data potentially revealing more insights. This is in line with current
efforts to foster open science and data sharing (McKiernan et al., 2016;
Munafo, Hollands, and Marteau, 2018; Farnham et al., 2017).

5.5 Summary

e We showed Tm9 is an anatomically and genetically defined cell type
that exhibits functional variations. This reconciled a discrepancy in
the literature.

e We characterized new ON receptive field properties of transmedullary
inputs to T5, favoring linear summation models, or models than
integrate both ON and OFF responses.

e We identified novel wide-field inputs to Tm9: Dm4, Dm12 and Dm20.

e Tm9 ON receptive field properties are sharpened by Dm12 and Dm20
neurons.

e We showed Dm4 is an anatomical substrate for functional hetero-
geneity, as reflected by positive and negative optogenetic effects on
Tm9 responses.

e We suggested Dm neurons offer flexible control of functional proper-
ties in the Drosophila brain.
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e We demonstrated Tm9 receptive field integrates inputs from multiple
cell types and is robust to single input type silencing.

e We characterized receptive fields of Dm neurons, and showed they
are required for normal function of direction-selective T4 and T5
neurons.

e We proposed flexible connectivity as a mechanism regulating func-
tional heterogeneity in a morphologically and genetically defined cell
type.
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Materials and methods

6.1 Fly husbandry

Flies for imaging and behavior experiments were raised at 25°C. They
were kept in a dark light cycle of 12 h starting at 8 h CET. They were grown
in plastic vials containing food based on molasses. Flies up to ten days
from eclosion were used for optogenetics, and up to five days from eclosion
for normal functional imaging.

6.2 Fly genotypes
The following genotypes have been used in this thesis.

Table 6.1: Genotypes of experimental lines used in chapter 2.

Genotype Used in figs.
+ T lex A att P40 lex Aop- MP attP5
$—+; m9-lex Ap65 ,ef op-GCa 6f ;$ 21_12’ 16, 17
wt | Tm9-lex Ap65°tt P4 jex Aop-GCaM P65  UAS-jRGECO1a 2.13-2.15
w™ ) Tmd4-splitGAL4 ' Tmd-splitGAL4 : :
w’, Tml-splitGAL4 . Tml-splitGAL4
w— ! UAS-GCaMP6f? + 216’ 2.17
+ . Tm2-splitGAL4 . Tm?2-splitGALA4
wt . Tm2-sp . P
w— ' UAS-GCaMP6f’ ¥ 2.16, 2.17
+ . Tmd-splitGAL4 . Tm4-splitGAL4
w™ , Tm4-sp . D
w=? UAS-GCaMP6f> + 216’ 2.17

119
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Table 6.2: Genotypes of experimental lines used in section 3.1.
Genotype Used in figs.
wt Tm9-lex Ap65°11P40 . lex Aop-GF P! UAS-syb::GF P10 3.2
w~ " $502361(Dm4-splitGAL4)? 5502361(Dm4-splitGAL4) ‘
wt . Tm9-lex Ap652tt 40 . lex Aop-GF P! UAS-syb::GF P10 3.2
w~? $500359(Dm12-splitGAL4)? S500359(Dm12-splitG AL4) ‘
wt , Tm9-lex Ap65°tt 740 | lex Aop-GF P!\ UAS-syb::GFP'~10 3.2 (l'l S )
w? + ’ Dm20(VT049111)-GAL4 ‘ oo
wt . §502361(Dmd-splitGAL4) . $502361(Dm4-splitGAL4) 3.2
w™? UAS-mCDS8::GFP ’ + .
wt . $500359(Dm12-splitGAL4) . SS00359(Dm12-splitG AL4) 3.2
- UAS-mCDS8::GFP ’ + .
wt . UAS-mCD8:GFP . Dm20(VT049111)-GAL4 3.9
w— + ) + .
wt . SS02361(Dmd-splitGALA) | S502361(Dmd-splitGAL4) 3.3.3.4
w™? CyO ?» UAS-DenMark,UAS-syt::eGF P I
wt . SS00359(Dm12-splitGAL4) . SS00359(Dm12-splitGAL4) 33
w™? CyO ' UAS-DenMark,UAS-syt::eGF P ‘
wt 5502361(Dm4-splitGALA4) | S$502361(Dm4-splitGAL4) 3 4
w™? + ’ UAS-syt::RFP ‘
wt | §502361(Dm4-splitGAL4) | S502361(Dm4-splitG AL4) 3.4
w=? + ? UAS-brphort::mCherry :
w¥ norpA3® | Tm9-lex Ap652* 710 lex Aop-GCaM PG f*'*P5 | U AS-CsChrimson::mV enus®**F? 3.6
Y ) + ; F .
w*,norpA36,rh1-GAL4 . Tm9»lezAp65““P40,leonp-GCa]\rlPGf"”P5 . UAS-CsChrimson::mV enus®ttP?2 3 6 3 7
Y ) + ) + ey e
w*,norpA%,panRS-GALél, Tm9-lezAp65““P40,leonp»GCaMP6f”“P5 . UAS-CsChrimson:mV enus®ttP?2 3 7
Y ) + ) + .
wt norpA36 ng'lﬁwAPGE)a“P‘mJCIAOP-GCGJWPGf‘”’tPS . UAS-CsChrimson::mV enus®tP? 3 6 3 7
Y ’ LICZUZG-GALAL ) + bl .
wt norpA38 | Tm9-lex Ap652t P40 lew Aop-GCaM P f**'P° | U AS-CsChrimson::mV enus®tP? 3.7
Y ’ L2-splitGAL4(R53G02-AD) 40 ) L2-splitGALA(R29G11-DBD)* 1?2 :
wh norpA3® | Tm9-lex Ap652° 740 lex Aop-GCaM PG f*'*F5 | U AS-CsChrimson::mV enus***F? 3.6, 3.7
Y ’ + ’ L3%9.GAL4 It
wh norpA3® | Tm9-lex Ap652° 740 lex Aop-GCaM PG f*'*F5 | U AS-CsChrimson::mV enus®**F? 3.6
Y ’ 5502361 (Dmd-splitGAL4) ? 5502361 (Dm4-splitGAL4) °
wt norpA3° TmQ»leacApGE)““P/‘U,leonp-GCaMP6f‘“‘P5 . UAS-CsChrimson::mV enus®ttF?2 3.6. 3 7
Y ’ S5500359(Dm12-splitG AL4) ? S5500359(Dm12-splitGAL4) It
wt norpA3° Tm9»lezAp65”“’P4U,leonp-GCaMP6fa“P5 . UAS-CsChrimson::mV enus®ttF?2 3.6.3 7
Y ’ + ? Dm20(VT049111)-GAL4 Mt
wt norpA3 | Tm9-lex Ap65*740 lex Aop-GCaM P f41 75 | U AS-CsChrimson:mV enus®*? 3.7
Y ) Mi9-splitG ALA(V T044843-p65AD Zp**P40) 7 M i9-splitG ALA(V T046779-ZpG DBD*F2) :
wt norpA36 | Tm9-lex Ap652t P40 lew Aop-GCaM P f**P° | U AS-CsChrimson::mVenus®*tP? 3.7
Y ) + ) Tml1270-GAL4 *
er;rwrpA36 . Tm9-lexAp65““P4n,lemAnp-GCaMPGf““P‘r’ . UAS-CsChrimson:mV enus®tF?2 3 7
Y ) C3-splitGALA(R35A03-AD) ) T C3-split GALA(R29G11-DBD) .

n.s.: data not shown in figure
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Table 6.3: Genotypes of experimental lines used in sections 3.2 and 3.3.

Genotype Used in figs.
wt . Tm9-lex Ap65*+ 740 lex Aop-GCaM P6 f**F® U AS-Kir2.1:eGF P 3.8-17
wt + ) T -0~

ﬂ. T’mg-lezAp65attP4O,lezAOp-GCaMPﬁfattP5 . UAS-Kir2.1::eGF P 3.8-12
wt? L1€202e.GAL4 ) + :

wt | Tm9-lex Ap65** P40 lex Aop-GCaM P fo1HF5 | UAS-Kir2.1::eGFP 3.8-12
w=? L2-splitGALA(R53G02-AD)tt P40 ) L2-splitGAL4(R29G11-DBD)*t? :

ﬁ, Tm9—lezAp65a“P40,leonp—GCaMPGf’lttP‘r’ . UAS-Kir2.1::eGFP 3 8_12
wt? L3-splitGALA(R59A05-AD) P40 ) L3-splitGALA(RT5HO7-DBD)*t 1?2 :

wt . T7n9-le:vapfSScmP40,lex.»‘&op-G’C’aMPGJMMP5 . UAS-Kir2.1::eGFP 3.13-17
w— ) 5502361 (DmAa-splitGALAL) ? §502361(DmA-splitGALA) :

wt . Tm9-lex Ap65°tF40 lex Aop-GCaM P6f**P5  UAS-Kir2.1::eGF P 3.13-17
w—)! + ) Dm942HOI_G A 4attP2 . -
wt . Tm&)-lezApGE)attP40.,leacAop-GCaMPGf‘“tP5 . UAS-Kir2.1::eGF P 3 13_17
w— ) S$500359(Dm12-splitGALA) » §500359(Dm12-splitGALA) :

wt . Tm9-lex Ap6521 P40 lex Aop-GCaM P6f*1*F5  UAS-Kir2.1:eGFP 3.13-17
w— ) ¥ » Dm20(VT049111)-GAL4 :

wt . Tm9-lex Ap65*1tF10 lex Aop-GCaM P61t P> U AS-shakB.RN Ai(TRiP.HMC04895)%*tF2 3.18-21
wh) + ' + o
wt . Tm9-lex Ap652tP40 jex Aop-GCaM P61 F5 U AS-shakB.RN Ai(T RiP.H M C04895)%ttP2 3.18-21

wt? + ) Tm942C08.GAL4

Table 6.4: Genotypes of experimental lines used in chapter 4.

Genotype Used in figs.
wt, §502361(Dm4-splitGAL4) , S$502361(Dm4-splitGAL4) 4.1.4.2
w) UAS-GCaMP6f ’ + L

wt . $500359(Dm12-splitGALA4) . SS00359(Dm12-splitGAL4) 4.1. 4.2
w) UAS-GCaMP6f ’ + L

wt , T4/T5R9EB lex A lew Aop-GCaM P6 f*"' 75 UAS-Kir2.1:eGFP 4.3-12
wt? + ’ + .

wt . T4/T5R9E08 Jeq A lex Aop-GCaM P f*"'F5 7 AS-Kir2.1:eGFP 4.4-12
w) 5S02361(Dmd-splitGALA) ’ §502361(DmA-splitGAL4) :

wt . T4/T5R9E08 Jeq A lex Aop-GCaM P f*"'F5 = 7 AS-Kir2.1:eGFP 4.4-12
w) 5S00359(Dm12-splitGAL4) ’ §500359(Dm12-splitGAL4) :

wt . T4/T5R9E08 e A lex Aop-GCaM P6 f*"'F5 17 AS-Kir2.1::eGFP 4.4-12
w) + ’ Dm20(VT049111)-GAL4 :

wt , T4/T5R9E8 lew A lew Aop-GCaM P6 f*"' 75 UAS-Kir2.1:eGFP 4.4.12
wt? + » Tm942C08-GAL4 :

wt . T4/T5R9L08 leg A lex Aop-GCaMP6f*"'F° U AS-jRGECO1a 4.13.4.14
w—! + ) Tm942C08_ A4 . > T
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6.3 Fly immunostainings

Flies were mounted, up to 6 flies were dissected at a time. They were lined
up head up. With forceps rip off proboscis sequentially for each fly. Then in
the mid-line of the anterior part of head rip from opening from proboscis
removal up to the top of head (in between the eyes), also sequentially for
each fly. Now we focus on one fly, we rip off the cuticle, especially from
the eyes. This is done by inserting forceps (number 5) just below the eyes
but on top of the brain, so the retina is removed but the rest of the brain
starting by the lamina remains. The remains of retina (red spongy stuff)
need to be cleaned of so it does not absorb the antibodies later on, and to
reduce autofluorescence and occlusion of the rest of the optic lobe. This
is critical step where lamina could be detached or damaged, if this did
not already happen while removing the cuticle. Next the trachea can be
removed, this is a white translucent looking membrane. After this, we can
detach the brain from the body by carefully cutting below the head. Then,
proceed to clean the trachea in the newly exposed brain portion. Brains
were dissected in PFA 2% solution, deposited in the same ice cold PFA
solution while the rest of dissections were going on.

Brains were left for about one hour in the PFA at room temperature,
then washed three times in 0.3% PBT and blocked with normal goat serum
(NGS) overnight at 4°C. NGS was replaced with the primary antibody
solution and left for 48 h at 4°C. Then again washed trice in PBT, each
5min. Secondary antibody was added and incubated overnight at 4 °C or
2h at room temperature. Brains were washed trice again in PBT to lastly
add embedding medium (Vectashield).

Antibody solutions were 10% in NGS. For GFP we used chicken anti-
GFP (Abcam, ab13970) at 1:2000, for mCherry and RPF we used rabbit
anti-dsRed (Clontech, 632496) at 1:400. Secondary antibodies were Alexa
Fluor 488 anti-chicken IgG (Dianova, 103545155) and Alexa Fluor 594
anti-rabbit IgG (Dianova, 111585003) both at 1:200.

We imaged the brains using a Zeiss LSM confocal microscope with 40x
or 60x oil objectives.

6.4 Fly in vivo two-photon calcium imaging

Setup

For in vivo two-photon calcium imaging we used a Bruker Investigator
2-photon microscope. GCaMP6f was excited using a Insight laser (Spec-
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traphysics) tuned at 920 nm for dual channel with jJRGECO1a laser was
tuned to 935 nm for Tm4 and Tm9 experiments, or 980 nm for T5 and Tm9
experiments. We used a Nikon 25X/1.1 objective. Zoom level was 8 to 10
for Tm and Dm neuron recordings but 6 for T4 and T5 recordings. Scan-
ning rate was about 10 Hz. The microscope was controlled by PrairieView
software. Communication of stimulus computer and the microscope was
performed via a NI USB-611 data acquisition card.

Dissection

We opened a optical window to the fly brain by removing cuticle in the back
of the head and underlying fat and trachea. Dissections were performed
in ice cold saline solution without calcium. Imaging solution was at room
temperature and contained calcium. Saline solutions are same as used in
(Silies et al., 2013).

Visual stimulation

Visual stimulation consisted of a DLP LightCrafter 4500 (Texas Instruments)
controlled by custom-written software in C++ using OpenGL. Resolution
was 912 x 1140 pixels and frame rate was 100 Hz. Stimulus were projected
on a squared screen of 8 cm sides which was placed so it covered 60° of
visual angle from the fly position under the objective.

6.5 Optogenetic input mapping

Fly food with all-trans retinal (ATR)

All procedures in this subsection were carried out in a dark room. A
stock solution of 100 mm ATR in EtOH was prepared by diluting 25 mg
all-trans-retinal in 878.92 ul.

The food was supplemented with ATR solution to reach 1mM similarly
as in (Hornstein, Pulver, and Griffith, 2009). Briefly, food was microwaved
until it liquefied (usually for 30s). Food was let to cool down for about 30 s.
Vials contained 6 ml to 10 ml. Once the food was cooler and still liquid,
60 ul to 70 ul of the stock ATR solution were pipetted into the food. Food
was stirred promptly and vigorously to mix the ATR. After mixing, vial was
placed into ice to solidify the supplemented food. After solidification, vials
were cleaned from condensation and food in the walls. Flies were then
placed into the food, and vials were wrapped into aluminum foil to block
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light. Vials with flies were put into the incubators at 25 °C for at least two
days before experiments.

Stimulation device

LED from ThorLabs at 625 nm. Light stimulation was delivered through
the microscope objective.

Stimulation protocols

The stimuli consisted on a 625 ms long train of light pulses at 40 Hz. Every
pulse lasted 5ms and had equal power 9.40 uW mm 2 to 29.40 uW mm 2.
The first pulse started 10s after recording start. Five trains were presented
per recording, the trains were separated by 30s from each other. Alterna-
tively, a single pulse of 25 ms, the shortest possible in our setup, was used
with a power of 29.40uW mm~—2. The pulse started 10s after recording
start. Five pulses separated by 30s from each other were presented per
recording.

6.6 Data processing

Image registration

Image registration was performed for correcting motion artifacts and
aligning multiple time series corresponding to different stimuli.

Most of the data was aligned by rigid registration, by translating images
to maximize the cross-correlation of a given frame with a template. For
two-channel images, the calculation of the position of the cross-correlation
maximum was performed on the sum of the cross-correlations of the two
channels. To obtain a template image the signal-to-noise ratio (SNR) was
calculated for the first 300 frames of the time series (or the entire time
series if it was shorter). The template was constructed by averaging the
frames up to the start of the SNR plateau.

Roi selection

Regions of interest were selected manually for most of the data by drawing
a polygon around the identified portions of neurites within an eye column
from a maximum intensity projection of the aligned time series. The
exception are T4T5 recordings in the lobula plate. There we used the
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correlation projection obtained by substituting each pixel by the average
correlation of the time series with that of the neighboring pixels. Then a
circle of the size matching local structure of the correlation image was used
to manually select the ROI centers (about 2.75um in diameter). Using this
method, only responsive signals were selected, since low signals lead to
lower correlations due to increased contribution of noise.

Signal normalization

Fluorescence signal was normalized relative to F (eq. 6.1), the baseline
fluorescence (mean signal of inter-stimulus background), per region-of-
interest, resulting in eq. 6.2. However, when the baseline signal is close to
zero, the division results in large values. To account for low baselines we
added the mean of the full time series to the denominator (eq. 6.3).

1 n
Fy = - Z F(t;); t; = {t|t is inter-stimulus interval} (6.1)
i=1

AF(t)  F(t) - Fy
B R (6.2)

AF(t) F(t) - Fy
_ 6.3
Fot R+ 32, F(t) %

Signal quality metrics and data selection

For receptive field measurements we defined two quality parameters: the
(non-parametric) response quality index (eq. 6.4) and the (parametric)
r-square of the Gaussian fits. Response quality index (RQI) was given by
(Baden et al., 2016):

Var[(F), ],

RO WarlF),), o4

where F is a n; x n, response matrix from n; time points and n,

repetitions of the same stimulus, and Var|-|, and (-), are the variance and

mean across dimension z, respectively. If responses are identical across

trials RQI = 1, and if responses are random over trials with fixed variance
RQI x 1/n,.

We visualized the relationship between the two and found linear re-

lations for OFF RFs, because OFF RFs are largely captured by a single

Gaussian. For ON RFs there is lower signal and larger variability it is not
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trivial to decide what function will fit better, some appear like a difference
of Gaussians centered around zero, others have their lowest response at
zero and have two positive lobes around it. We decided to focus on the
center, and fit a single Gaussian to it. The extent of this ON RF component
is less or equal than the full ON RF. In the view of this simplification, the
threshold for separating ROIs was higher for the nonparametric quality
index and lower for the parametric goodness of fit. We set for 0.5 for re-
sponse quality index and 0.2 for the r-square. Most quantifications required
to pass all thresholds for all stimuli used to map RF of a given ROIL. In
cases where the ON RFs mapped were of lower SNR, the constraints were
relaxed to require only good OFF RFs, and ON RF for either orientation. In
cases when the effect of silencing could lead to loss of some RFproperties,
the criteria were applied per stimulus. For measuring non-parametric
properties we set the threshold only for the response quality index, since
fits were bad for most ROIs in the given condition.

6.7 ON-OFF full-field flashes analysis

We quantified the magnitude and dynamics of responses to ON-OFFfull-
field flashes. We calculated the mean of the response during the ON and
the OFF flashes:

<E> = L Ej (6.5)
Fo [on  Ton tEON Fo
AF 1 AF
<—> === - (6.6)
Fo [ ome  Torr tCOFF Fo

where Tonorr is the number of time points the given stimulus was
presented.

Using the mean responses (eq. 6.5, 6.6) we defined the polarity index
(Baden et al., 2016) as follows:

AF AF
<?o>0N B <To>0FF

(00| + |15

(6.7)

Polarity index =

)ors

We quantified the response dynamics with the sustenance index defined
as the ratio of mean response within the last 500 ms of the stimulus (ON or
OFF flash) to the extreme response, which is the quantity that is larger in
absolute magnitude between the minimum and maximum of the response.
For transient responses that decay to zero towards the end of the stimulus
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the sustenance index equals zero, while the sustenance index equals one for
sustained responses that remain constant during the stimulus or rise slowly
to reach their maximum only at the end of the stimulus. To disambiguate
between the last two situations we considered the time to extreme as an
independent parameter that indicates whether the response peaks early
or late. And to measure how fast the response evolves over time we used
the half-rise time, which is the time point at which the response is equal to
half of the extreme response. Both time to extreme and half-rise time are
bounded between zero and the stimulus duration.

6.8 Receptive field analysis

Flashing bars

Response to the flashing bar at a given location was measured by the
extreme of the time course.

This resulted in a tuning curve. The tuning curve was the fitted by a
single Gaussian of the form

flz) =a-e () (6.8)

The « is the signal amplitude, b is the receptive field center position
and c is related to the receptive field width. The width was given by the
full width at half maximum (FWHM) as

FHWM = 2¢+/log(2) (6.9)

To quantify the variability in receptive field sizes (FWHM) we used the
standard deviation stdpwiyv and coefficient of variation CVewpm

std (FWHM)

mean(FWHM)’ (6.10)

C:\/FWHM =

which is a normalized measure of variability relative to the mean.

Noise bars

The receptive field from noise bars was obtained through reverse correla-
tion analysis. The response was modeled by a linear filter.

Ft == kSt
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F, is the response at time ¢ and S; is the stimulus history of a given specified
length, preceding the response. We used ordinary least squares to obtain
the filter from the linear equation. After the filter k is obtained, we can
do a rough analysis of the spatial and temporal properties separately. The
maximum of the filter is identified, at that point a slice is taken in both
the temporal and spatial dimensions to get the approximated spatial and
temporal filters. The spatial filter extent is then quantified by the FWHM
as for the static bars by fitting a single Gaussian (eq. 6.8).

6.9 Moving edges

The preference to ON or OFF edges was measured as the contrast selectivity
index (CSD):

(max Ron,g — max Ror,0)0

CSI = : (6.11)

(max Ron,p + max Ropre)e

where max Ron is the maximum response of the neuron to an ON
edge, moving in the direction given by ¢, and (-)y indicates average over
directions.

The preference to one direction of motion over the others was measured
by the direction selectivity index (DSI):

DSI = 1320 Boc”| (6.12)
> o | Rl
C\
Opref = arctan ;gmean (6.13)
mean
R 10
20 floe” 6.14)
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