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Abstract 

 

Adaptive radiation describes the divergence of an ancestral taxon into multiple, 

phenotypically diverse species, adapted to a range of ecological niches by means of 

natural selection. The process is recognized as a fundamental reason for the origin of 

biodiversity. The main driver of adaptive radiation is ecological opportunity, though 

the specific agents are often poorly understood with the exception of some iconic 

lineages. Many well-studied adaptive radiations are island endemics, which makes 

island systems an ideal study system for adaptive radiation. Oceanic islands 

represent discrete replicates of the evolutionary process, as they are isolated, 

comparatively small, and often topographically complex. Species communities are 

formed by colonization and in situ diversification. The Hawaiian Islands are the most 

isolated archipelago on earth and home to a range of adaptively radiating lineages. 

The islands form as the Pacific plate passes over a magmatic hotspot with the eight 

current high islands originating within the last ca. 5-6 million years and the majority 

of the native biodiversity diverging within that time. The genus Melicope colonized 

numerous archipelagos throughout the Pacific including the Hawaiian Islands, 

where the lineage comprises currently 54 endemic species and represents the largest 

radiation of woody plants on the islands. Most species are single-island endemics 

and adapted to a variety of habitat types and elevational ranges. The lineage is 

monophyletic with an estimated crown age predating the rise of the current high 

islands, the oldest of which originated approximately 5 million years ago. As for 

many adaptively radiating lineages, phylogenetic inference based on Sanger 

sequencing has not been sufficient to resolve species or deeper level relationships in 

Hawaiian Melicope. Recent years have seen development of high throughput 

sequencing methods and their increasing application to solve recalcitrant 

relationships. 

In this thesis, I examined the evolutionary trajectory of the Hawaiian Melicope 

adaptive radiation. I investigated the so-called ‘island syndrome’, which describes a 

set of traits commonly characterizing successful island colonizers, including recent 

polyploidy and shifts associated with subsequent establishment, in Hawaiian 

Melicope. I utilized restriction site-associated high throughput sequencing (RAD-seq) 

to reconstruct species relationships and historical biogeography in the lineage and 

estimate diversification rates and the impact of habitat adaption on species 

divergence.  

RAD-seq datasets provided unprecedented resolution of species relationships in 

Hawaiian Melicope. However, the size and complexity of high throughput 

sequencing datasets require a high computational effort, which currently limits the 

applicability of algorithms for phylogenetic inference to concatenated analysis or 
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site-specific coalescence-based methods. I employed both methods and found them 

to result in incongruent relationships for the backbone of the Hawaiian Melicope 

topology. Concatenation violates the assumptions of the multispecies coalescent 

model, while site-based methods are statistically inconsistent but less accurate in 

simulated and empirical datasets. Considering the increased accuracy of the 

concatenated approaches as evaluated by quartet concordance methods and the 

synergistic effect of concatenation, I concluded that results of concatenated analysis 

reflect the relationships of Hawaiian Melicope best.  

Results of flow cytometric screening of 32 Hawaiian species, representing 66% of the 

described diversity, and literature searches indicate that the ancestor of Hawaiian 

Melicope did not show traits associated with successful colonizers. The genus 

seemingly retained colonization success while exhibiting a combination of traits that 

typically characterize well-established island specialists. In particular, the ancestral 

Melicope colonist was not a recent polyploid. Neopolyploidy increases evolutionary 

flexibility and thus enhances chances for establishment and adaption. In Hawaiian 

Melicope flexibility is possibly facilitated by introgressive hybridization events. 

Phylogenetic reconstruction based on RAD-seq datasets provides evidence for two 

ancient and several recent introgression events. Extant Hawaiian Melicope are 

divided into five fully supported main clades, two of which correspond to 

morphologically circumscribed infrageneric groups, whereas three morphologically 

defined taxonomic units are not monophyletic. All in all, 24 species were included 

with multiple samples, four of which were resolved as non-monophyletic. Finally, I 

confirmed that the Melicope radiation endemic to the Marquesas Islands originated 

from the Hawaiian radiation. These results highlight the necessity for a taxonomic 

revision in the lineage. 

Estimated divergence times revealed that the Hawaiian archipelago was colonized 

prior to the origin of the current high islands. Inter-Island colonization patterns 

largely follow the progression rule from older to younger islands, but back 

colonizations to older islands occurred. Extant diversity results from recent 

divergence of a small number of taxa prevailing through the bottlenecks represented 

by the origin and colonization of the high islands. Long internal branches and 

estimated diversification rates indicate a high extinction rate, possibly related to the 

consequences of volcanic activity and the impact of glacial cycles. Consequently 

habitat types that are more vulnerable to climatic changes, i.e. dry ranges and bogs 

show high speciation and extinction rates. Increased rates of diversification are 

linked to habitat dissection and frequent ecological trait shifts. 
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1.  |   Introduction 

 

 

 

 

 

Lava stream emitted by the Kilauea volcano, creating new landmass and flowing into the 

sea. Photograph: Marc Appelhans 

 

 

 

 

  



Introduction 

 

6 

1.1  Adaptive radiations 

Seeing this gradation and diversity of structure in one small, intimately related group of birds, one 

might really fancy that, from an original paucity of birds in this archipelago, one species had been 

taken and modified for different ends. 

C. Darwin (1842) 

When Charles Darwin contemplated his observations of the avifauna on the 

Galápagos Islands (Darwin, 1842), he recognized a process that would prevail to this 

day and become to be regarded as one of the fundamental, if not only origin(s) of the 

biodiversity on earth. The concept was consolidated and christened in the modern 

synthesis (Dobzhansky, 1937; Mayr, 1942; Stebbins, 1951; Simpson, 1953): adaptive 

radiation. 

Adaptive radiation describes the divergence of an ancestral taxon into multiple, 

phenotypically diverse species, adapted to a range of ecological niches by means of 

natural selection, (Simpson, 1953; Schluter, 2000). The selecting agent is the 

environment itself, as populations or closely related species compete for resources 

and develop traits to improve their exploitation while avoiding competition with 

each other (Simpson, 1953; Givnish, 1997; Schluter, 2000). Icons of adaptive radiation 

include such enigmatic lineages as Darwin’s finches on the Galápagos Islands (Grant 

and Grant, 2002), the cichlid fishes in African rift lakes (Seehausen, 2006) or the 

marsupial fauna in Australia (Cássia‐Silva and Sales, 2019). 

Despite the prevalence of the concept spanning several decades and the ever-

growing amount of research on adaptive radiation, or maybe because of it, its 

definition, diagnosis, and mechanisms have accumulated controversies (reviewed in 

Givnish, 1997, 2015; Glor, 2010; Losos and Mahler, 2010). According to the most 

recent major synthesis of the concept (Schluter, 2000) adaptive radiation is 

characterized by four features, illustrated here on Darwin’s finches. 

A) The component species share a common ancestor. All life on earth traces back to 

one common ancestor and might thus be regarded as one single adaptive radiation. 

However, given that the process is driven by natural selection operating on low 

taxonomic levels (Schluter, 2000), research of adaptive radiation in practice is often 

limited to clades of closely related, geographically cohesive species. Darwin’s finches 

comprise 15 species distributed on the Galápagos Islands and derive from one 

common ancestor. However, they also include one derived species occurring in 

Cocos Island (Grant and Grant, 2002), illustrating that strict monophyly is not 

required for a group to represent an adaptive radiation (Schluter, 2000). 
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B) The species are morphologically divergent and different phenotypes correlate 

with features of their environments. These differences must be stable. Darwin’s 

finches differ consistently in their body sizes and the size and shape of their beaks, 

even when transferred to other environments (Grant and Grant, 2008). 

C) Phenotypic traits offer fitness advantages in their respective environments. This 

embodies the adaption component to adaptive radiation. Each species of Darwin’s 

finches on the Galápagos Islands shows specific feeding habits. There are several 

insectivorous, granivorous and cactus-feeding species, each. Beak shape and sizes are 

adapted to the preferred food items. The three species of seed-eating finches feed on 

seeds, which differ in size and hardness. Beak size evolved to convey fitness 

advantages in specific niches defined by seed sizes (Grant and Grant, 2002, 2008). 

 D) Bursts of speciation associated with the process of phenotypic and ecological 

divergence. The ancestor to Darwin’s finches arrived on the islands about 3 million 

years ago (mya). This is the fastest speciation rate recorded for any bird group on 

earth and changes in morphology can largely be traced to ecological conditions 

through time (Grant and Grant, 2008).  

Since divergence is driven by the environment during adaptive radiation, one 

necessary, though not determinate, element to the process is the availability of open 

ecological niches. This is termed ecological opportunity and loosely defined as a 

cornucopia of available resources in the absence of competing taxa (Simpson, 1953). 

Ecological opportunity contains three distinct features, all of which have to be met by 

an ancestral species for adaptive radiation to occur: spatial, ecological and 

evolutionary opportunity (Simpson, 1953; Stroud and Losos, 2016). Spatial 

opportunity (also referred to as physical or geographical opportunity) specifies that 

an ancestral species must find itself in an area, where a range of underutilized 

resources exist. Ecological opportunity describes that resources cannot already be 

exploited by another species, or if so this species must be competitively inferior 

(Simpson, 1953). Evolutionary opportunity states that the ancestral species must be 

evolutionarily equipped to exploit the resources provided by ecological opportunity, 

i.e. to evolve the necessary features (Simpson, 1953).  

The majority of adaptive radiations identified to date occur on islands or lakes, 

highlighting the importance of ecological opportunity. Examples include iconic 

lineages like Darwin’s finches on the Galápagos Islands (Grant and Grant, 2002), the 

Hawaiian silverswords (Baldwin and Sanderson, 1998), or the African rift lake 

cichlids (Seehausen, 2006). Young islands and lakes are both characterized by a lack 

of inhabitants, which reduces competition for resources or pressure from predators 
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for newly arriving species (Carlquist, 1974). This allows radiating species to occupy 

ecological niches, that they might have been originally blocked from (Stroud and 

Losos, 2016). Mass extinctions are another possible cause of competitive release. 

Arguably one of the most prominent examples being the adaptive radiation of 

mammals following the extinction of the dinosaurs (Meredith et al., 2011). Further 

identified causes for adaptive radiations are key adaptions unlocking novel habitats, 

e.g. the evolution of CAM photosynthesis in bromeliads allowing the exploitation of 

drier areas (Silvestro et al., 2014).  

In the Carribean Anolis lizards divergence follows identical trajectories on every 

single island following its initial colonization, producing convergent species adapted 

to similar niches across the islands, called ecomorphs (Losos, 1992). The emergence 

of a set of ectomorphs on each island seemingly follows the same progression; first 

divergence in body size, then in microhabitats and finally divergence along a climatic 

axis (Losos and Mahler, 2010). The evolution of many plant radiations on oceanic 

islands follows a trajectory of herbaceous colonizers to woody species (Carlquist, 

1974; Dulin and Kirchoff, 2010). This indicates that the process of adaptive radiation 

may have overall patterns of diversification along identical axes. The identification of 

all elements to the selective process during adaptive radiation could then potentially 

explain the emergence of the majority of diversity of life.  

 

1.2  Oceanic Island Systems 

Oceanic Islands have long been emerging as an ideal study system for evolution, 

biogeography, and ecology, because they are comparatively small, have distinct 

boundaries and smaller species communities than continental areas. As such island 

species communities represent discrete replicates of the evolutionary process 

(McArthur and Wilson, 1967). Many well-studied adaptive radiations are island or 

archipelago endemics, which makes islands also an ideal study system for the 

process of adaptive radiation.  

Oceanic islands may be broadly divided into three distinct categories: (1) continental 

shelf islands, situated on the same landmass as their neighboring continents, e.g. 

Borneo and Java. They are often connected to the continental landmasses during 

times of low sea levels, i.e. during glacial maxima. (2) Continental fragments; islands 

that were once connected to continental landmasses and drifted away due to plate 

tectonic effects, e.g. Madagascar. (3) Oceanic Islands, which emerge from the ocean 

and were never connected to a continental landmass. They are mostly volcanic in 

origin caused by a variety of tectonic processes, associated either with subduction or 

rift zones at plate margins or stationary mantel plumes, etc. (Whittaker et al., 2010). 
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With few exceptions volcanic islands are short-lived on geological time scales, and 

proceed through a typical life cycle of growth, submergence, erosion and final 

submergence leading to a steadily changing continuum of ecological opportunities. 

Most studies about adaptive radiations on islands aim to correlate patterns of species 

richness and endemism to geologic and climatic island characteristics to elucidate 

evolutionary processes and their conditions. More than 50 years ago the seminal 

equilibrium theory of island biogeography provided a first conceptual framework 

(McArthur and Wilson, 1967). The equilibrium theory stresses the role of island area 

and isolation in shaping the biodiversity on islands. However, it does not adequately 

capture how the life cycle of volcanic islands affect biodiversity (Price and Clague, 

2002; Stuessy et al., 2005). Consequently, a modification to the equilibrium theory 

was proposed: the general dynamic model of island biogeography (Whittaker et al., 

2007, 2008). 

The majority of remote volcanic islands, including the Hawaiian archipelago and the 

Galápagos Islands as well as the Canary Islands are shield volcanoes, a type of 

volcano built by effusive eruptions. With these type of eruptions highly fluid lava 

flows continuously in all directions gradually building up large cones with a very 

gentle slope (Pyle, 2015; Staudigel and Koppers, 2015). Shield volcanoes are typically 

a product of either volcanism related to continental rift zones or magmatic hot-spots. 

In both cases, the lava flow for a single caldera is transitory, lasting only while the 

volcano is directly above the magmatic chamber and ceases when tectonic plate 

movements carry the volcano away from its source.  

A typical volcano ontogeny is divided into three main periods: pre-shield, shield, 

and post-shield stages. The pre-shield stage describes the initial, entirely submarine 

stages of volcanism. During the shield stage, the volcano grows to break the sea 

surface and towards its maximum area and height while acquiring the typical shield 

form (Staudigel and Koppers, 2015). Subaerial erosion and dissection due to rain and 

wind set in, dissecting the landscape and creating novel ecological niches. Initially, 

most of the inhabitant species are expected to result from immigration to the islands, 

with in situ speciation gradually increasing and reaching its maximum in the late 

shield stage (Figure 1.1) (Borregaard et al., 2017; Whittaker et al., 2007, 2008, 2010). 

Upon moving away from the magma chamber, eruptions will cease, the volcano will 

submerge rapidly and sometimes substantially (e.g. Moore and Clague, 1992), while 

continued erosion will further dissect the surface. During the post-shield stage 

erosion is the prominent process shaping the area resulting in further dissection and 

maximum topographic complexity. At this time the island reaches its peak species 

richness due to the increasingly dissected topography allowing adaptive radiation 

and allopatric speciation (Whittaker et al., 2010). (Figure 1.1). Further erosion will 

result in a gradual loss of height and area until finally the subaerial part of the 
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volcano either founders or remain as a reef (Morgan, 1996; Price and Clague, 2002; 

Stuessy et al., 2005).  

 

Figure 1.1. | Conceptual schematic of key aspects of island ontogeny shaping diversity 

through time. R: Absolute species numbers (solid black line; left axis). Island -level 

rates (dashed lines) are expressed as number of species per unit time (right axis) - I: 

immigration rate (blue); S:  speciation rate (green); E : extinction rate (red). Modified 

from Borregaard et al. (2017).  

Typically, real island ontogenies are additionally shaped by further processes, 

possibly involving catastrophic events like landslides and tsunamis (e.g. Moore et al., 

1989; Krastel et al., 2001; Whelan and Kelletat, 2003; Le Friant et al., 2004), 

rejuvenated volcanism (Pyle, 2015) or fusion and fission of individual volcanos or 

entire islands related to sea-level fluctuations during glacial cycles (e.g. Fernández‐

Palacios et al., 2016; Price and Elliott-Fisk, 2004).  

Oceanic islands are often clustered together into archipelagos, where each island 

originates from the same magmatic source but the timing of the formation varies 

depending on the movement of the tectonic plate traversing the volcanic hotspot (e.g. 

Carracedo, 1999; Price and Clague, 2002). Each island within an archipelago 

represents a different stage of the ontogeny and species composition trajectory. 

Examples include the Galápagos Islands, the Canary Islands, and the Hawaiian 

Archipelago. The geology of these systems has long been researched leading to a 

very detailed (if not yet complete) understanding of their histories (e.g. Borregaard et 
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al., 2017; Carracedo, 1999; Geist et al., 2014; Neall and Trewick, 2008; Price and 

Clague, 2002). Several theories were established aiming to explain how the 

biogeography of archipelagos relates to the speciation in endemic taxa, most 

prominently the progression rule, which states that taxa colonize the islands in the 

archipelago in an age-dependent pattern from older to younger with or without in 

situ speciation (Wagner and Funk, 1995).  

Well resolved and time-calibrated phylogenies of island lineages are necessary to 

elucidate the relationship between island ecology, immigration, and adaptive 

radiation. 

Island Evolution 

The application of molecular methods has increased our understanding of oceanic 

island evolution. Species communities of remote oceanic islands are not merely 

“downscaled” versions of those on the nearest continent, but are individual species 

assemblies compiled entirely from the descendants of successful colonizers 

(Carlquist, 1966a, 1974). In most island systems, only a scarce minority of colonizers 

give rise to radiations (Whittaker and Fernández-Palacios, 2010). For example, on the 

Hawaiian Islands, the ten largest lineages combined represent 57% of all endemic 

Angiosperm species, but only 4% of the successful colonizers (Price, 2004). As 

colonization and establishment are not easily observable processes, inferences are 

usually drawn from extant native island floras and their close relatives (e.g. 

Carlquist, 1969, 1974). Some traits have been identified as characterizing the 

colonizers giving rise to island radiations (e.g. Carlquist, 1974; Whittaker and 

Fernández-Palacios, 2010).  

The most obvious trait is dispersal ability as it determines which taxa colonize at all 

and if so how frequently. Obviously, taxa, that fail to colonize in the first place, 

cannot form endemic island species. On the other hand, a high dispersal ability is not 

conducive to produce adaptive radiations, either. Ferns possess tiny spores that are 

effectively dispersed by wind over long distances. On the Galápagos Islands, less 

than 8 % of the native pteridophyte flora is endemic compared to almost 60 % of 

dicot Angiosperms (Porter, 1979, 1984). High dispersal ability and subsequently 

frequent immigrations to islands, maintain gene flow between source areas and 

island populations, thus preventing local speciation (Carlquist, 1974; Porter, 1979, 

1984; Whittaker and Fernández-Palacios, 2010). Speciation on an island system 

seemingly requires the colonist to be in the “goldilocks zone” of dispersal ability, 

which must be high enough to reach island systems, but infrequent enough to 

prevent gene flow between remote populations. (Carlquist, 1974; Price and Wagner, 

2004). This is the adaptive zone as defined by McArthur and Wilson (1967), which is 

a function of distance and thus highly taxon-specific. Many island lineages originate 



Introduction 

 

12 

from herbaceous colonizers as these generally have a high dispersibility (Carlquist, 

1974).  

Self-compatibility was argued to facilitate the establishment of colonizers on islands 

(Baker, 1955). Theoretically, one autogamous individual could establish a stable 

population, whereas an obligate outcrossing species requires the colonization of at 

least two specimens. Seemingly confirming this argument is the observation that the 

floras of New Zealand, the Hawaiian Islands, and the Galapágos Archipelago have 

lower proportions of self-incompatible species than the putative source continents 

(Carr et al., 1986; McMullen, 1987; Webb and Kelly, 1993).  

Polyploidy was suggested as one of the most important traits for successful 

establishment and subsequent adaptive radiation on remote islands (Carr, 1998; 

Crawford et al., 2009). Estimates regarding the ploidy level of Angiosperm 

communities exist for several island systems. On the Canary Islands polyploidy was 

inferred to characterize 25.5% of endemic Angiosperms (Bramwell, 1976), compared 

to 63% in New Zealand (Hair, 1966), 66% in the Juan Fernandez Islands (Stuessy et 

al., 1992), and even 88% in the Hawaiian Archipelago (Carr, 1998). As island taxa 

often display chromosomal stasis (Stuessy and Crawford, 1998) these numbers reflect 

the successful establishment of polyploid colonizers. Polyploidy has been shown to 

offer advantages to colonizers including gene redundancy and heterosis leading to 

increased vitality (Comai, 2005). In addition, polyploid colonizers are expected to 

have a greater genetic diversity than diploids, which would increase the breadth of 

their response to the novel, insular environments. This effect is likely related to 

island characteristics like size, age or degree of isolation, as the different proportions 

of polyploidy on the archipelagos illustrate (Whittaker and Fernández-Palacios, 

2010). 

Characteristics promoting colonization of and establishment on oceanic islands do 

not necessarily also facilitate subsequent speciation. Comparative research of island 

biotas revealed common biological and niche shifts displayed by established, 

radiating island lineages, summarized under the term “island syndrome” (Carlquist, 

1974). One component of the island syndrome is the loss of dispersal ability in both 

plants and animals (Carlquist, 1966b, 1966c). Members of the Asteraceae family are 

efficient dispersers, representing a significant fraction of the endemic species in many 

oceanic island systems, including Hawaii (e.g. Bidens L.; Crawford et al., 2009), 

Polynesia (e.g. Fitchia Meisn., Carlquist, 1974) and the Canaries (e.g. the Sonchus 

Alliance; Kim et al., 1996). Hawaiian Bidens likely arrived on the islands by external 

bird dispersal, but extant species are often characterized by the reduction or loss of 

achene awns - bristle or hook-like structures facilitating attachment of the fruit to 

feathers or hair (Carlquist, 1966b, 1974). One possible reason for the selection against 

dispersibility in island populations is that highly dispersive propagules or organisms 
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are more likely to be blown off the island, thereby getting lost from the gene pool 

(Carlquist, 1974).  

Similarly, the initial advantage of self-compatibility is likely short-termed compared 

to the duration of lineage development on islands and selected against in order to 

avoid inbreeding depression (Barrett et al., 1996; Whittaker and Fernández-Palacios, 

2010). Approximately 50% of the flora endemic to the Canary Islands shows floral 

features promoting outcrossing (Francisco-Ortega et al., 2000). A more striking 

example is the endemic flora of the Hawaiian Islands, which has the highest 

proportion of dioecious species world-wide (Sakai et al., 1995). The high incidence of 

dioecy results from both, dioecious colonists and at least 12 distinct shifts from 

hermaphroditic immigrants including in ancestors of several species-rich lineages 

(Sakai et al., 1995).  

A third component of the island syndrome is insular woodiness (Carlquist, 1974). As 

Darwin (1859) already noted, herbaceous species make good island colonists because 

of their higher dispersal abilities compared to woody taxa. However, he also 

observed that many island taxa with exclusively herbaceous continental relatives 

grow as trees or shrubs (Darwin, 1859). Molecular studies have confirmed the 

evolution of woodiness from herbaceous ancestors in many lineages. Examples 

include the Hawaiian violets (Ballard and Sytsma, 2000), silverswords (Baldwin and 

Sanderson, 1998) and lobeliads (Carlquist, 1969; Givnish et al., 2009), Senecio on the 

Juan Fernandez Islands (Pelser et al., 2010), and the Macronesian Sonchus Alliance 

(Kim et al., 1996). On the Canary Islands, 38 distinct shifts to insular woodiness were 

reconstructed, representing 70% of the current woody flora (Lens et al., 2013). Several 

theories aim to explain this highly repetitive evolutionary shift, including that 

growing taller might convey a competitive advantage (Darwin, 1859), that the 

longevity enabled by woodiness increases the number of produces seeds or chances 

for reproduction when pollinators are scarce (Wallace, 1878), or that the usually less 

seasonal climate or the lack of large herbivores allows herbaceous colonists to grow 

longer and eventually become woody (Carlquist, 1974). The different hypotheses and 

subsequently suggested extensions (Böhle et al., 1996; Givnish, 1998) are not 

mutually exclusive, but experimental data supporting either one are scarce 

(Whittaker and Fernández-Palacios, 2010). 

 

1.3  The Hawaiian Islands 

The Hawaiian Islands are the most isolated archipelago on earth with a distance of 

>3200 km to the nearest continental landmass and still >2600 km to the nearest island 

system, the Marquesas Islands. The archipelago constitutes the windward islands of 

the larger Emperor mountain chain running in a north-western direction from the 
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Hawaiian Islands to a subduction zone at the border of the Eurasian plate. The 

islands form as the pacific plate moves over a stationary mantel plume. The hot spot 

has been active for ca. 85 million years (MA) leaving a string of 129 volcanos, most of 

which have been eroded to submarine mounts (Clague, 1996).  

Twice the volcanic activity of the hot spot was reduced in combination with faster 

movement of the Pacific plate. As a result, there were no subaerial seamounts 

between 32-29 mya and in the two periods between 29-23 mya and again between 8-5 

mya, only small, low-elevation and widely spaced islands existed (Clague, 1996; 

Price and Clague, 2002; Clague et al., 2010). The former represents the upper 

boundary for the age of the Hawaiian biota while the latter two represent significant 

bottlenecks. In accordance with the severity of the bottleneck, the majority of the 

Hawaiian biota is younger than 5million years (MA) (Price and Clague, 2002; Price 

and Wagner, 2004; Cowie and Holland, 2006). 

The eight current main islands are formed by the 15 youngest islands in that chain. 

Their ages and sequence of formation have important implications for the 

biogeography and evolution in the archipelago: Kauaʻi/Niʻihau (5.8-4.3 mya), Oʻahu 

(3.9-1.8 mya), Molokaʻi (2.1-1.35 mya), Maui (2.0-1.1 mya), Lānaʻi (1.35 -1.3 mya), 

Kahoʻolawe (1.35-1.2 mya) and Hawaiʻi (since 1.1 mya) (Figure 1.2; Clague and 

Sherrod, 2014). Since the rise of Kauaʻi, there have always been summits over 1500 m 

in height, indicating a high amount of topographic complexity and ecological 

opportunity, which afforded opportunities for adaptive speciation processes. The 

islands of Molokaʻi, Lānaʻi, Kahoʻolawe, and Maui were connected for most of their 

existence, forming a singular island which was called Maui-Nui (“Big Maui”) larger 

than the island of Hawaiʻi is currently. The four islands only became separated again 

less than 200,000 years ago. In addition, the island of Molokaʻi was connected to 

Oʻahu for a short period until ca. 1.9 mya (Price and Elliott-Fisk, 2004). These fusion 

and fission processes provided opportunities for allopatric speciation.  

The Hawaiian native flora is characterized by the world-wide highest rate of 

endemicity, with over 90% of Angiosperms and over 70% of fern species being 

endemic to the archipelago. Due to the great morphological diversity displayed by 

extant taxa, the assumed number of colonization events per taxon to the archipelago 

was very high, e.g. up to five separate events for the Hawaiian lobeliads (6 genera, 

ca. 130 species; Campanulaceae; Givnish et al., 2009). Molecular phylogenetic 

research in recent years has revealed that many native lineages are monophyletic and 

estimations for the number of successful colonization events were reduced. As 

currently estimated, the approximately 1200 native flowering plant species have 

originated from 259 separate colonization events (Keeley and Funk, 2011; Price and 

Wagner, 2018).  
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Figure 1.2.  | Map of the Hawaiian Islands. Island names are given, with Maui Nui 

summarizing the Islands Molokaʻi, Maui, Kahoʻolawe and Lānaʻi. Times of subaerial 

growth is given below islands (Clague and Sherrod, 2014). Above islands, the number 

of Melicope species is shown (number of endemic species/total number of species per 

island) (Stone et al., 1999) (Photograph: nasa.gov). 

Colonizers arrived exclusively by long-distance dispersal (LDD). Based on dispersal 

mechanisms displayed by extant native Angiosperm species, bird dispersal provided 

the majority of immigrants. A smaller amount of colonizers probably arrived by 

floating, while colonization by wind dispersal is extremely rare (Price and Wagner, 

2018). Wind dispersal is, however, quite essential in ferns (Carlquist, 1966a, 1974). 

Successful colonizers have widespread origins, with the majority of immigrants 

originating in the Indo-Malayan and Pacific regions. A substantial amount of 

successful colonizations originated in North America and the Neotropics, 

respectively (Keeley and Funk, 2011; Price and Wagner, 2018). However, the origin of 

the majority of lineages (77% of extant species) is unknown due to limited resolution 

in phylogenetic analyses, insufficient taxon sampling or the fact that detailed 

research efforts are still lacking for them. Additionally, the origin of a substantial 

number of lineages could not be resolved precisely, due to widespread extant 

relatives or low resolution of phylogenetic relationships (Keeley and Funk, 2011; 

Price and Wagner, 2018). The majority of colonization events did not result in 

radiation on the islands, but in single endemic species (Price, 2004; Price and Wagner, 

2004). With respect to the species-rich lineages, there is no apparent scale between 

the number of colonizers from each specific region and the subsequent radiations. 
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For example, there were only few successful colonizations from Eastern Asia, and 

only one of them radiated. This radiation, however was extensive, as it represents the 

Hawaiian lobeliads, the largest adaptively radiating plant lineage on any island 

system (Givnish et al., 2009; Price and Wagner, 2018). In contrast, three colonizers 

from North America radiated to a substantial degree on the Hawaiian Islands, 

including the ancestor to the iconic silversword alliance (Baldwin and Sanderson, 

1998; Baldwin and Wagner, 2010; Price and Wagner, 2018).  

Within the archipelago, the majority of radiations seems to adhere somewhat to the 

progression rule (Wagner and Funk, 1995; Nepokroeff et al., 2003; Dunbar-Co et al., 

2008; Percy et al., 2008; Givnish et al., 2013; Landis, 2017; Johnson et al., 2019) with 

various proportions of inter- vs. intra-island speciation events (Price and Wagner, 

2004). However, for several multi-species lineages, the biogeographic pattern is not 

consistent with the progression rule (Lindqvist et al., 2003; Havran et al., 2009; 

Morden and Harbin, 2013; Appelhans et al., 2014b; Roy et al., 2015). 

While the application of molecular methods, especially Sanger-sequencing 

approaches have undoubtedly shed light on the evolution of many endemic 

Hawaiian lineages, especially with respect to establishing their monophyly (e.g. 

Baldwin and Sanderson, 1998; Givnish et al., 2009; Harbaugh et al., 2009; Lindqvist 

and Albert, 2002), resolution of relationships within each lineage is typically low or 

statistical support is lacking (e.g. Appelhans et al., 2014b; Baldwin and Sanderson, 

1998; Cronk et al., 2005; Eggens et al., 2007; Knope et al., 2012; Nepokroeff et al., 2003; 

Percy et al., 2008), which prevents conclusive insights into evolution of island 

adaptive radiations. However, the recent advances in sequencing technologies 

provide the opportunity to generate genome-sized datasets to study the evolution of 

recalcitrant relationships (see 1.5). 

 

1.4  Melicope J.R. Forst. & G. Forst. 

The family Rutaceae in the order Sapindales contains ca. 161 genera and 2100 species 

(Stevens, 2001; Kubitzki et al., 2011). Rutaceae are characterized, amongst other 

features, by secretory civities on the leaves containing essential oils (Figure 1.3). The 

majority of species are woody; either trees or shrubs and very few herbaceous 

representatives (Kubitzki et al., 2011). Rutaceae are distributed worldwide in tropical, 

subtropical and (warm) temperate regions in a wide variety of habitats (Hartley, 

2001; Kubitzki et al., 2011). The incidence of dioeciousness in the family is high, with 

19 genera exclusively dioecious and several others containing both monoclinous and 

dioecious species (Kubitzki et al., 2011). One noted characteristic of the family is the 

large and diverse amount of secondary chemical compounds present (Price, 1963). 

Rutacean taxa produce a large number of structurally diverse quinolones, acridones, 
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coumarins, flavones, acetophenones, and limonoids as well as volatile oils, which 

confer the characteristic strong scent many species emit when crushing leaves. 

 

Figure 1.3. | Secretory civities on leaves are the family characteristic of most Rutaceae, 

as here in the ornamental Calamondin (Citrus x microcarpa  Bunge). Photograph: Claudia  

Paetzold  

The most influental comprehensive treatment of the family recognized seven 

subfamilies and various tribes and subtribes (Engler, 1931) based on morphology, 

mainly fruit type. However, the classifications were increasingly disputed by results 

of phytochemical (Waterman, 1975; da Silva et al., 1988) and DNA sequence data (e.g. 

Appelhans et al., 2011; Bayly et al., 2013; Chase et al., 1999; Groppo et al., 2008; Poon 

et al., 2007) revealing non-monophyly of most subfamilies or tribes. In this thesis, I 

adopted the most recent classification proposed by Morton and Telmer (2014) due to 

the high statistical support of relationships recovered and phytochemical, 

karyological or morphological synapomorphies characterizing each taxon. The 

family is subdivided into four subfamilies: the basal Cneroideae Webb (8 genera), 

Amyridoideae Link (105-108 genera) sister to the sister-groups Rutoideae Arn. (6-7 

genera), and Aurantoideae Horan. (24-26 genera).  

Melicope J.R. Forst & G. Forst is the largest genus in Rutaceae containing some 230 

species (Kubitzki et al., 2011) and was resolved in the Amyridioideae subfamily 

(Morton and Telmer, 2014). Kubitzki et al. (2011) placed the genus into the so-called 
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‘Euodia-Alliance’ together with 30 other genera, which are linked by morphological, 

chemotaxonomic and early molecular evidence, but refrained from proposing 

relationships between alliances or clades due to lack of evidence.  

The genus contains mostly shrubs and trees with trifoliate, unifoliate or simple leaves 

(Figure 1.4a-c), bisexual or functionally unisexual flowers (Figure 1.4d-f), and 

exclusively dehiscent fruits (Hartley, 2001). The fruit is comprised of up to four 

basally connate follicles, to sub-syncarpous or syncarpous capsules. The seeds are 

persistent and prominently displayed upon dehiscence of the fruit (Hartley, 2001). 

The seed is covered by a shiny black pellicle, covering the spongy sarcotesta and the 

thick and robust sclerotesta. Fruit and seed anatomy have been interpreted as an 

adaption to bird dispersal with the sarcotesta representing the reward for the vector 

and the sclerotesta offering protection from the digestive system (Hartley, 2001; 

Kubitzki et al., 2011). Melicope species are distributed throughout the Pacific from 

New Zealand to Hawaii, from Japan throughout Southeast Asia to Madagascar and 

the Mascarene Islands. However, the majority of species are endemic to 

comparatively small regions, with only a few widespread representatives (Hartley, 

2001).  

The most recent taxonomic revision of the genus recognizes four sections diagnosed 

mainly by the type of seed attachment in the dehisced fruit (type A: partially 

detached pericarp strip or raphe or type B: no detached pericarp strip or raphe), the 

trichomes (simple or compound), the number of stamens (4 or 8), the adnation of the 

endocarp to the mesocarp, and carpel connation (Hartley, 2001).  

Melicope sect. Melicope contains 38 species characterized by strictly follicular fruits, 

seed attachment type A and a separate endocarp, while stamen number and trichome 

structure are variable. The section is distributed (Hartley, 2001) mainly in Australasia 

with some species endemic to India and the Pacific to the outer Melanesian Islands 

and Tahiti (Hartley, 2001). Melicope sect. Vitiflorae T.G.Hartley is characterized by 

strictly four stamens and simple trichomes as well as basally connate follicles, seed 

attachment type A, and a separate endocarp. The section is the smallest containing 

only 8 species distributed in Australasia and the Pacific Islands from the Austral to 

the Society Islands (Hartley, 2001). Melicope section Lepta (Lour.) T.G.Hartley is the 

largest section containing 102 species distributed throughout the Pacific Islands up to 

the Society Islands, Australasia, Malesia, and Madagascar and the Mascarene Islands. 

The section is characterized by possessing exclusively 4 stamens, seed attachment 

type B, an endocarp adnate at the middle or towards the apex and fruits displaying 

the entire range of carpel connation. The section also contains both, monoclinous and 

dioecious species (Hartley, 2001; Appelhans et al., 2014a). Lastly, Melicope sect. Pelea 

(A.Gray) Hook comprises more than 80 species characterized by 8 stamens, the entire 

range of carpel connation, the endocarp being adnate ate least at base, middle or 
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apex and showing seed attachment type A or B. The section is mainly distributed on 

Island systems throughout the Pacific including Oceania, Melanesia, New Caledonia, 

the Hawaiian, and Marquesan Islands, thus representing the westwards maximum 

extension of the genus entire (Hartley, 2001). The section is named for the Hawaiian 

volcano goddess Pele. It comprises all Hawaiian species of the genus, which were 

originally regarded as a Hawaiian endemic genus Pelea and later reduced into 

Melicope (Hartley and Stone, 1989). 

Molecular systematics has also reshaped our understanding of the relationships of 

Melicope. The ‘Euodia-Alliance’ was shown to be not monophyletic (Poon et al., 2007; 

Groppo et al., 2008; Bayly et al., 2013). Melicope was resolved as closely related to 

some of the genera from the ‘Euodia-Alliance’, notably Euodia J.R.Forst. & G.Forst. 

and Acronychia J.R.Forst. & G.Forst. as well as several other genera originally thought 

to belong to another alliance altogether (Bayly et al., 2013). In accordance with 

Appelhans et al. (2014a), I will refer to these putatively closely related genera as 

Acronychia-Euodia-Melicope group. 

Several molecular phylogenies were generated to elucidate relationships between 

genera in the Acronychia-Euodia-Melicope group. The data sets contained up to seven 

nuclear and chloroplast coding and non-coding marker regions from up to 164 

species from 26 genera and covering the entire geographic range of the group. The 

results show that the genera in the Acronychia-Euodia-Melicope group are not 

monophyletic in their current circumscription (Appelhans et al., 2014a, 2014b; 

Holzmeyer et al., 2015). The group is broadly divided into two main clades; the 

species-poor Euodia clade and the species-rich Acronychia-Melicope clade, which 

contains all but one described Melicope species included in the data sets. Several 

smaller genera are nested within Melicope and need to be reduced to achieve 

monophyly (Appelhans et al., 2014a, 2014b; Holzmeyer et al., 2015).  

On the subgeneric level only section Lepta was inferred to be monophyletic; the 

remaining three sections were all revealed to be paraphyletic (Appelhans et al., 

2014a, 2014b). The Acronychia-Melicope clade was divided into four clades with the 

earliest diverging clade comprising some species of section Melicope, the majority of 

section Vitiflorae, the New Caledonian species of section Pelea and four smaller genera 

(Appelhans et al., 2014a). The second clade comprises the genera Acronychia and 

Maclurodendron intermingled (Appelhans et al., 2014a; Holzmeyer et al., 2015). The 

third clade comprises all species of section Lepta, but the different reproductive 

systems are each not monophyletic (Appelhans et al., 2014a). Finally, the fourth clade 

comprises the remaining species of section Melicope in two subclades, the remaining 

species of section Pelea, as well as the genus Platydesma as sister to the Hawaiian 

Pelea. Consequently, the genus was merged into Melicope (Appelhans et al., 2017). 
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Members of the Acronychia-Melicope clade are efficient dispersers, colonizing almost 

all Pacific islands systems and other remote regions, sometimes repeatedly 

(Appelhans et al., 2018b). The majority of colonization events occurred comparatively 

recently in the Pleistocene (Appelhans et al., 2018b). Colonization is often followed 

by rapid adaptive radiation leading to high amounts of species diversity and 

endemism in the group. The most species-rich radiation within the lineage is the 

Hawaiian Melicope clade (Appelhans et al., 2018b). 

Hawaiian Melicope 

Hawaiian Melicope currently comprises 54 accepted species (Stone et al., 1999; 

Harbaugh et al., 2009; Wood et al., 2016, 2017; Appelhans et al., 2017) endemic to the 

Hawaiian Islands, where they are traditionally called Alani or Pilo kea. The majority 

of the species are single island endemics, with only eight species occurring on 

multiple islands, M. clusiifolia (A.Gray) T.G.Hartley & B.C.Stone, M. elliptica (A.Gray) 

T.G.Hartley & B.C.Stone, M. hawaiensis (Wawra) T.G.Hartley & B.C.Stone, M. ovata 

(St.John & E.Hume) T.G.Hartley & B.C.Stone, M. spathulata A.Gray, M. pallida 

(Hillebr.) T.G.Hartley & B.C.Stone, M. peduncularis (H.Lév) T.G.Hartley & B.C.Stone 

and M. pseudoanisata (Rock) T.G.Hartley & B.C.Stone (Figure 1.2; Stone et al., 1999; 

Appelhans et al., 2017). They occur in a variety of habitats, from dry to wet forests, 

bogs, and even subalpine shrublands, and in elevations from 360-2073m (Stone et al., 

1999; NTBG, 2019). As such they represent the third largest adaptive radiation on the 

Hawaiian Islands after the Hawaiian Lobelioids (Givnish et al., 2009) and Cyrtandra 

J.R.Forst & G.Forst (Gesneriaceae; Lorence and Perlman, 2007). It does, however, 

represent the largest radiation of exclusively woody plants (Figure 1.4a-c) on the 

islands.  

Before the reduction into Melicope, the Hawaiian species of Pelea were divided into 

four sections, Apocarpa B.C.Stone, Cubicarpa B.C.Stone, Megacarpa B.C.Stone and Pelea 

(Stone et al., 1999), which are still used as informal taxonomic groups and I will refer 

to them as “Stone’s sections” herein. Stone’s sections are mainly characterized by the 

fruit morphology and leaf position (Figure 1.4g-j). The fruits of Stone’s section 

Apocarpa present four distinct follicles (Figure 1.4g), whereas the remaining three 

sections show capsules with a varying degree of carpel connation. Stone’s section 

Megacarpa is characterized by the carpels being connated up to 2/3 of their overall 

length (Figure 1.4h). Consequently, Stone’s section Cubicarpa presents carpels 

connated (nearly) completely (Figure 1.4j). Finally, Stone’s section Pelea is 

characterized by whorled leaves (Figure 1.4c), in contrast to the remaining sections, 

which show opposite leaves (Figure 1.4a, b; Stone et al., 1999). The latest taxonomic 

treatment, which included these sections was considered provisional by the authors 

due to the variability of diagnostic characters (Stone et al., 1999).  
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Figure 1.4. | Examples of habit (a-c), flowers with a petal removed (d-e), and fruits (g-

f) in Hawaiian Melicope.  (a) shrub-like habit in M. kavaiensis .  (b) tree-like habit of M. 

clusiifolia . (c) unbranched shrub-like habit in M. spathulata . (d) functionally male flower 

in M. hawaiiensis .  (e) functionally female flower in M. clusiifolia . (f) hermaphroditic  

flower in M. spathulata.  (g) “cubicarp ic” fruit in M. anisata . (h) “megacarp ic” fruit in M. 

feddei .  (f) apocarpous open fruits, showing the black seeds in M. sessilis.  

A first molecular systematic effort in the group showed the congenerity of the genus 

Platydesma with Melicope but taxon sampling was insufficient to address subgeneric 

or interspecies relationships (Harbaugh et al., 2009). Platydesma had been described 

as a separate genus resulting from a different colonization event due to its perfect 

flowers (Mann, 1866) and a separate colonization event was proposed for its origin 

(Sakai et al., 1995; Kubitzki et al., 2011). A second molecular phylogeny with an 
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increased taxon sampling and based on seven marker regions provided first insights 

into the evolution of the lineage (Appelhans et al., 2014b). Hawaiian Melicope samples 

were resolved in six distinct, highly supported clades. The species of Platydesma were 

confirmed as the earliest diverging lineage within the radiation and thus 

representing a reversal from dioecy (Figure 1.4d, e) to bisexual flowers (Figure 1.3.f; 

Appelhans et al., 2014b, 2017). Species of Stone’s section Apocarpa were resolved in 

three different clades, with one species, M. elliptica (A.Gray) T.G.Hartley & B.C.Stone 

forming a monotypic sister group to a clade comprising all species of Stone’s sections 

Cubicarpa and Megacarpa. Pelea was the only Stone’s section resolved to be 

monophyletic. Unfortunately, the informative content of the marker set was not 

sufficient to resolve relationships between clades or interspecies relationships 

(Appelhans et al., 2018b). Consequently, biogeographic patterns within the islands 

could not be tested in detail. However, the molecular evidence shows that the 

Marquesan Melicope, comprising seven species, are nested within the Hawaiian clade 

(Harbaugh et al., 2009; Appelhans et al., 2014b). These seven species likely represent 

two independent colonization events from the Hawaiian Archipelago, crossing a 

distance of over 3800km leading to an adaptive radiation on the Marquesas Islands 

(Appelhans et al., 2014b, 2018b).  

Divergence time estimation revealed that the most recent common ancestor (MRCA) 

to the lineage most likely predates the origin of the current Hawaiian main islands. 

Hence, the group is one of a sparse selection of Hawaiian endemics to pass through 

the bottleneck in the period of 8 – 5 mya, when no high islands existed in the 

archipelago (Price and Clague, 2002; Appelhans et al., 2018b). The island of Kauaʻi 

harbors the highest number of species with progressively fewer species occurring on 

younger islands (Figure 1.2). Kauaʻi species were resolved in all major clades within 

Hawaiian Melicope indicating diversification might follow the progression rule 

(Appelhans et al., 2014b; Wagner and Funk, 1995; see 1.2) All in all Hawaiian 

Melicope represent an ideal model system to study adaptive radiation. However, 

reliably testing biogeographic and diversification patterns within the lineage requires 

a fully resolved phylogeny. 

 

1.5  High-Throughput-Sequencing in Systematics 

The development of the Polymerase Chain Reaction (Mullis et al., 1986) and Sanger-

sequencing (Sanger et al., 1977) and its subsequent application to evolutionary 

research has drastically increased our knowledge regarding evolutionary patterns. 

For over 30 years these methods provided insights into diverse taxa across the tree of 

life including many adaptive radiations and island lineages. However, the 

comparatively small number of genomic marker regions generated by that approach 

often contains insufficient variation to resolve relationships on shallow taxonomic 
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levels or in rapid divergences (e.g. Appelhans et al., 2014; Baldwin and Sanderson, 

1998; Cronk et al., 2005; Eggens et al., 2007; Knope et al., 2012; Nepokroeff et al., 2003; 

Percy et al., 2008).  

The development of high-throughput sequencing (HTS; Next Generation Sequencing 

(NGS)) methods in the wake of the human genome project (Collins et al., 2003) might 

prove to have an even bigger impact on evolutionary research than Sanger 

biochemistry had three decades prior. HTS provides the opportunity to sequence 

millions of base pairs and thus obtain sufficient amounts of information to resolve 

even the most recalcitrant relationships. Sequencing costs per base have dropped 

drastically, amounting to around $1000 for a human genome (Wetterstrand, 2019). 

However, in systematic research, sequencing and assembly of entire genomes for an 

entire lineage of interest is generally too costly and labor-intensive, especially since 

the genomes of many organisms are bigger and more complex compared to humans 

(e.g. Bennett and Leitch, 2007; NCBI Resource Coordinators, 2018). Instead, a 

representative subset of the genome is targeted and sequenced with HTS techniques, 

providing hundreds or thousands of genomic loci at an improved cost-benefit ratio.  

Consequently, a range of reduced representation strategies for sampling a 

representative fraction of the genome were developed. For hypothesis-driven 

application of HTS to systematics, RNA sequencing (RNAseq, transcriptomics) was 

initially the most popular approach (Zimmer and Wen, 2015). Transcriptomic 

approaches reduce genomic complexity by sequencing only the set of transcripts in a 

sample, most commonly messenger RNA (Wang et al., 2009). The approach requires 

living tissues from the same organs and identical developmental stages to ensure a 

wide overlap of expressed genes (Zimmer and Wen, 2015). In addition, due to the 

conserved nature of coding regions, the method is best used at deep and possibly 

medium phylogenetic scales (Zimmer and Wen, 2015). The plasticity of eukaryotic, 

especially plant genomes with the common occurrence of duplication events, makes 

orthology inference the most critical step (Yang et al., 2018). 

Among reduced representation methods, target enrichment (TE; target capture, 

anchored hybrid enrichment) and restriction site-associated DNA sequencing (RAD-

seq) are currently most commonly used for systematic research. The phylogenetic 

range of applicability for either method is still under exploration (e.g. Cariou et al., 

2013; Leaché et al., 2015b). 

Target enrichment uses biotinylated ‘baits’ or ‘probes’ (70-120 bp RNA 

oligonucleotides) to capture genomic fragments via hybridization to complementary 

sections (Gnirke et al., 2009). Captured fragments are then isolated and sequenced by 
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HTS (Gnirke et al., 2009). The approach is theoretically applicable at all taxonomic 

levels, provided orthologous genomic regions are identified in the taxon of interest 

showing a rate of variability matching the research hypothesis. Consequently, TE 

methods require the presence of more or less closely related reference genomes 

and/or transcriptomes and intensive bioinformatics efforts to identify suitable 

genomic regions (Mayer et al., 2016). In general, TE methods are mostly applied at 

deep to medium taxonomic levels (e.g. Leaché et al., 2015b). 

RAD-seq targets genomic DNA adjacent to a restriction enzyme recognition site. 

Genomic DNA is digested and fragments of a targeted size subjected to high 

throughput sequencing (Miller et al., 2007; Baird et al., 2008). The method allows 

sampling regions over the entire genome and no reference is needed. Mutations may 

affect enzyme recognition sites and cause locus dropout with increasing phylogenetic 

distance, and limit the applicability of the method to shallower phylogenetic levels 

(Ree and Hipp, 2015). To date, phylogenetic RAD-seq studies have been primarily 

employed in population-level research or in small sets of closely related species (Ree 

and Hipp, 2015; Díaz-Arce et al., 2016; Hodel et al., 2017). However, simulated RAD 

investigation using Drosophila, mammals and yeast genomes revealed the potential 

applicability of the method in groups aged up to 60 MA (Rubin et al., 2012). Since 

then, the application at deeper taxonomic levels has increased (Hipp et al., 2014; 

Leaché et al., 2015b; Eaton et al., 2017). A range of strategies modifying the original 

RAD-seq approach (Baird et al., 2008) have been proposed, including the so-called 

‘genotyping-by-sequencing’ (GBS) mathods. The individual approaches differ mainly 

in the number of digestion enzymes (two in ddRAD), the frequency of their targeted 

cut sites (ezRAD), the approach to shearing (original RAD), and the approach for size 

selection (Davey et al., 2011; Puritz et al., 2014). In addition, a strategy aiming 

combine the advanteges of RAD-seq and TE approaches by employing RAD loci as 

baits for hybridization has been proposed: hyRAD (Suchan et al., 2016). 

One of the key issues of using RAD-seq is the assembly of reads into a matrix of 

orthologous loci. In rare cases, a closely related reference genome exist, which can be 

employed to guide the assembly (Ree and Hipp, 2015). In a majority of taxa the 

assembly is achieved de novo purely by bioinformatic means (e.g. Catchen et al., 2011; 

Eaton, 2014; reviewed in Ree and Hipp, 2015). The basic outline for de novo RAD-seq 

assembly can be summarized in three steps:  

1) Identification of loci within samples. Reads of individual samples must be 

collected into clusters (also ‘stacks’) representing genomic loci. Clustering must 

account for sequencing errors and allelic variation. Finally, the consensus sequence of 

each locus is called (genotyping). 
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2) Orthology assessment between samples. Consensus sequences from individual 

samples are compared across samples and grouped into clusters representing 

putative orthologous loci. If multiple sequences from the same sample are clustered 

into the same locus, this can indicate duplication events or repetitive regions and 

these loci should be discarded to avoid comparing paralogs (Eaton, 2014). The 

algorithms and parameters governing this step have a deep impact on the final 

matrix and any subsequent analysis. Setting the allowed genetic distance between 

sequences too high leads to overmerging of loci, i.e. grouping of paralogous regions 

into one cluster. Setting the allowed distance too low results in undermerging, i.e. 

loci actually representing one ortholog being split into different clusters, each with a 

potentially reduced sample coverage. A conclusive strategy for identifying the best 

clustering threshold is still lacking but under active research (Mastretta-Yanes et al., 

2015; Paris et al., 2017; Suchan et al., 2017). Finally, putatively orthologous sequences 

are aligned.  

3) Assembling the data matrix. By definition, RAD matrices are incomplete, as most 

of the identified loci will not be present in all samples. Assembling the final matrix 

requires considering that including more loci means also including more missing 

information. The criterion for including a locus is sample coverage; i.e. a locus is 

included in the final matrix if it is recovered from at least a specified number of 

samples. Several studies have evaluated the trade-off between the number of loci and 

amount of missing data and its impact on the resolution of trees (Wagner et al., 2013; 

Hipp et al., 2014; Eaton et al., 2017).  

Several bioinformatics pipelines have been developed to implement these general 

steps. Each pipeline is usually focused on a specific research approach either 

regarding taxon set, RAD-method, implementation of clustering steps or available 

computational resources. However, most of the software is targeted at population 

level genomics. The most commonly used pipeline (Ree and Hipp, 2015; Andrews et 

al., 2016) is stacks, explicitly designed for “genetic analysis of crosses or populations” 

(Catchen et al., 2011, 2013), i.e. of highly similar individuals. In the presence of indel 

variation, stacks tends to undermerge loci when clustering between samples and thus 

fails to accurately detect orthologs (Eaton, 2014). In general, stacks is likely best suited 

for shallow taxonomic scales. The program pyRAD, on the other hand, is designed for 

phylogenetic research. The identification of genomic loci is implemented as a global 

alignment clustering algorithm, which allows for indel variation while identifying 

homology and for more efficient computation time compared to stacks (Eaton, 2014). 

Detection of paralogs is performed during both within and between samples by 

application of a number of explicit filters regarding a number of allowed 
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heterozygous sites in a locus or number of haplotypes. In general, pyRAD has a better 

ability to detect homologs in phylogenetic RAD-seq sampling (Eaton, 2014). 

RAD-seq datasets have some unique features compared to other HTS or traditional 

approaches. As RAD-seq is typically combined with short-read HTS, individual loci 

are only about 100-250 bp in length. Due to the shortness RAD loci are expected to 

carry little individual phylogenetic signal. This characteristic is expected to decrease 

with further advances in sequencing technology or the application of long-read 

sequencing platforms (Ree and Hipp, 2015). Compared to TE and transcriptomic 

approaches, the number of loci is increased by at least an order of magnitude, as 

RAD-seq approaches may yield hundreds of thousands of loci. These loci originate 

from the entire with of the genome and are thus expected to provide a genome-wide 

view of sequence divergence. Finally, RAD matrices contain substantial amounts of 

missing data, as sampling errors and mutation of restriction sites cause locus dropout 

in samples. In a nutshell, RAD-seq datasets are very large, incomplete by nature and 

contain short individual loci (e.g. Eaton et al., 2017; Harvey et al., 2016; Mastretta-

Yanes et al., 2015). These characteristics pose some limitations with respect to which 

methods of species tree inference are applicable. The shortness of individual loci and 

the amount of missing data are not well tolerated by algorithms using gene resolved 

trees to infer the species tree, (e.g. Larget et al., 2010; Liu et al., 2010; Liu and Yu, 

2011; Mirarab et al., 2014a; Mirarab and Warnow, 2015). In addition, most algorithms 

scale badly to the sizes of RAD-seq datasets. The most frequently used and arguably 

most practical approach is concatenating all loci into a single matrix, which is then 

used for tree inference using Maximum Likelihood or Bayesian approaches (Ree and 

Hipp, 2015).  

The analysis of large-scale, phylogenomic datasets in a concatenated matrix has been 

criticized as it may produce erroneous results with high statistical support (Gadagkar 

et al., 2005; Kubatko and Degnan, 2007; Seo, 2008). Since concatenation assumes all 

loci in the dataset share the same evolutionary history, it is inconsistent in the 

presence of incomplete lineage sorting (ILS) (Kubatko and Degnan, 2007). 

Accordingly, short branches are likely especially susceptible to the resolution of 

erroneous results with concatenation (Kumar et al., 2012). Interestingly, the effect 

may be driven by only a handful of loci (Shen et al., 2017). In contrast, simulation 

studies have shown, that concatenated RAD-seq matrices are very robust to gene 

tree/species tree discord and produce the correct species tree even when a substantial 

amount of discordant loci are present. Inclusion of these loci is unlikely to result in 

highly supported, false species tree topologies, but rather in unresolved ones (Huang 

and Knowles, 2009).  
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Coalescent-based species tree inference methods explicitly address gene-tree conflict 

due to ILS and hence are designed to be more robust than concatenated methods 

(Kubatko and Degnan, 2007). The majority of algorithms implementing the 

coalescence theory aim to infer the species tree by reconciling individual gene trees. 

These algorithms have become increasingly popular due to their comparative speed 

and accuracy, provided model assumptions are not violated. Examples include 

ASTRAL (Mirarab et al., 2014b), ASTRAL-II (Mirarab and Warnow, 2015), MP-EST 

(Liu et al., 2010) or NJst (Liu and Yu, 2011). The shortness and low informative 

content of individual RAD-loci often lead to poorly resolved locus trees, which may 

have a negative impact on species tree estimation via gene tree methods (Salichos 

and Rokas, 2013; Mirarab et al., 2016). In addition, their demands for computational 

resources are high (Liu et al., 2015) and hardly feasible for datasets containing tens to 

hundreds of thousands of loci.  

Finally, coalescence based methods are consistent only when the assumptions of the 

coalescence model are met. Consequently, they are proven to be inconsistent when 

reticulate evolution is the cause for gene tree discord, and not ILS only (Solís-Lemus 

et al., 2016; Fernández-Mazuecos et al., 2018).  

Despite methodological differences and challenges, HTS methods provide 

researchers with large, datasets containing hundreds to tens of thousands of genomic 

loci and are expected to stimulate phylogenetic research in all branches of the tree of 

life, including Hawaiian lineages. To date, only a few studies have applied HTS 

methods to Hawaiian plant radiations. The majority of studies focused on either on 

smaller lineages or in population-level studies. Whole Genome sequencing was used 

to study population genomics in Metrosideros polymorpha Gaudich. (ʻŌhiʻa, 

Myrtaceae), the most iconic and most common Hawaiian plant (Izuno et al., 2016, 

2017; Choi et al., 2019). A population-level study of two closely related species in the 

Hawaiian lobelioids utilized RAD-seq (Jennings et al., 2016). A Transcriptomic 

approach was applied to identify informative genes in Cyrtandra and Clermontia 

Gaudich. (Campanulaceae, Lobelioidae). A target enrichment approach was 

employed to research species-level systematics on a limited sampling in the diverse 

Hawaiian Cyrtandra focusing on hybridization (Johnson et al., 2019; Kleinkopf et al., 

2019). Whole plastomes were sequenced for species-level relationships in Hawaiian 

mints but yielded little resolution in the young lineage (Welch et al., 2016). 
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1.6  Aims and Scope 

In this thesis, I investigated the Hawaiian lineage of Melicope comprising currently 54 

described species (Wood et al., 2016, 2017; Appelhans et al., 2017). I used integrated 

multidisciplinary approaches from karyology, phylogenomics, and evolutionary 

modeling to infer the trajectory from colonization and establishment on the island 

system to the evolution of the current species diversity. The results were integrated 

into the existing framework of adaptive radiation on oceanic islands as predicted by 

well-researched lineages, e.g the Hawaiian Lobeliods (Givnish et al., 2009) or 

Cyrtandra (Johnson et al., 2017, 2019). 

Chapter 2 – Melicope lack traits characteristic for island colonization. 

In this chapter, I reviewed traits characterizing island colonizers that subsequently 

give rise to adaptive radiations. These traits include herbaceousness, self-

compatibility, and neo- or mesopolyploidy (Carlquist, 1974; Carr et al., 1986; Baldwin 

and Sanderson, 1998; Carr, 1998). Establishment of colonizers on the islands is 

accompanied by specific trait shifts, e.g. from herbaceousness to secondary 

woodiness (Lens et al., 2013) and a reduction in dispersal ability (Carlquist, 1966b), 

collectively referred to as ‘island syndrome’ (Carlquist, 1974). I investigated the 

island syndrome in Melicope throughput the Pacific with a special emphasis on the 

Hawaiian Islands. I used Flow Cytometry to infer the karyotype of Hawaiian and 

other Melicope to detect ancestral polyploidization events. The remaining traits were 

compiled from the literature to test if Hawaiian Melicope complies with the island 

syndrome as currently described. 

Chapter 3 – RAD-seq phylogeny of Hawaiian Melicope. 

Previous attempts to resolve species relationships in Hawaiian Melicope were based 

on a comparatively small number of nuclear and plastid marker regions generated by 

Sanger sequencing. The resulting datasets comprised several thousand base pairs 

and established the monophyly of the lineage including the formerly endemic genus 

Platydesma and resolved six major clades within the lineage (Harbaugh et al., 2009; 

Appelhans et al., 2014a, 2014b). However, the number of informative sites in the 

datasets was neither sufficient to resolve relationships between these clades nor at 

the species-level (Harbaugh et al., 2009; Appelhans et al., 2014a, 2014b). In this 

chapter, I employed an HTS approach of restriction-site associated genomic loci 

(RAD-seq) to assemble datasets comprising several thousand to tens of thousands of 

genomic loci and millions of base pairs. Both, coalescence-based and concatenated 

Maximum Likelihood or Bayesian inference methods were applied. Results were 

evaluated in a statistical framework assessing concordance, informative capacity, and 

quality of discord on a per branch basis. In addition, partitioned D-statistics were 

used to investigate signals of introgressive hybridization. 

Chapter 4 – Biogeography and Diversification of Hawaiian Melicope. 
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The RAD-seq datasets generated in chapter 3 served as a foundation to analyze 

patterns of diversification in Hawaiian Melicope. I estimated the divergence times in a 

Bayesian framework to infer when the ancestor colonized the archipelago and 

discuss the origin of the lineage considering that the majority of Hawaiian radiations 

are younger than the current high islands (Price and Clague, 2002). In addition, I 

modeled the historical biogeography of Hawaiian Melicope to investigate dispersal 

patterns within the archipelago. Results are were discussed with respect to common 

patterns of island biogeography, notably the progression rule (Wagner and Funk, 

1995). Estimated diversification rates were used to explore the rapidity of speciation 

within the clade. Differences in diversification rate are discussed with respect to the 

geology of the islands. Finally, I tested how species habitats influence diversification 

in a probabilistic framework. 
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The caldera of the dormant Haleakala volcano (Maui). Photograph: Marc Appelhans 
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Abstract 

Oceanic islands are unique in their species composition, which is defined by arrival 

of colonizers via long distance dispersal followed by establishment of species 

followed in some cases by adaptive radiation. Evolutionary biologists identified traits 

facilitating successful colonization of islands as including polyploidy, self-

compatibility, herbaceousness and ability for long-distance dispersal. Successful 

establishment and evolutionary diversification of lineages on islands often involves 

shifts to woodiness and shifts in methods of outcrossing as well as changes in 

dispersal ability. The genus Melicope colonized numerous archipelagos throughout 

the Pacific including the Hawaiian Islands, where the lineage comprises currently 54 

endemic species and represents the largest radiation of woody plants on the islands. 

The wide distributional range of the genus illustrates its high dispersibility, most 

likely due to adaption to bird dispersal. Here we investigate ploidy in the genus 

using flow cytometry and chromosome counting. We find the genus to be 

paleopolyploid with 2n = 4x = 36, a ploidy level characterizing the entire subfamily 

Amyridoideae and dating back to at least the Palaeocene. Therefore Hawaiian 

Melicope have not undergone recent polyploidization prior to colonization of the 

islands. Thus Melicope retained colonization success while exhibiting a combination 

of traits that typically characterize well established island specialists while lacking 

some traits associated to successful colonizers.  
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2.1  Introduction 

Ever since Charles Darwin wrote about his observations upon visiting the Galápagos 

Islands (Darwin, 1859), oceanic islands have been a focal point for biologists in their 

quest to unravel the process of evolution. The study of islands that have never been 

connected to a continental land mass, especially those that are greatly isolated and of 

volcanic origin, offer several unique advantages (Emerson, 2002). Islands are discrete 

systems with oceanic boundaries restricting gene flow between land masses. In spite 

of their small size (compared to continents), many oceanic islands offer a wealth of 

habitats and ecological niches, which are often in a constant flux due to influences of 

outside forces, e.g., plate tectonics, volcanic activity, erosion, flooding and tropical 

storms.  

Yet, island floras are not merely ‘downscaled’ versions of the neighbouring 

continental ones. In contrast, islands possess unique species compositions differing 

remarkably from those of the continental land mass and typically with a high degree 

of endemism. For example, in the Canary Islands about 40% of all Angiosperm taxa 

are endemic (Francisco-Ortega et al., 2000) and about 90% in the Hawaiian Islands 

(Wagner et al., 1999b; Keeley and Funk, 2011). The species composition of an island is 

dependent on three main factors: distance, geology (incl. altitudinal variation) and 

age. Distance refers to the distance between an island and other landmasses serving 

as a possible origin of colonizers. Increasing distance decreases the frequency of 

successful colonization events and restricts the diversity of possible colonizers to 

those with propagules ‘equipped’ to travel the distance. The geology and size of the 

island determines the quality and the quantity of ecological niches it provides. The 

age of an island represents the time frame available for colonization, establishment, 

adaptive radiation and even extinction of species (Carlquist, 1966a).  

Successful colonizations of oceanic islands are rare, so that arrivals, especially to 

young islands, probably experience less selective pressure from other species than in 

their continental environment (Baldwin, 1998). When a viable seed reaches a given 

island and meets conditions allowing its establishment, the colonizer may undergo 

extensive adaptive radiation giving rise to a lineage of diverse species (Carlquist, 

1966a; Givnish et al., 2009).  

The synergy of colonization by few founders, along with establishment in available 

ecological niches and adaptive radiation result in unique island floras that are vastly 

different from their source areas – both morphologically, ecologically and in terms of 

species richness (Carr, 1998). Yet, despite the individuality of each island system, 

after close to two centuries of island evolution research, several evolutionary trends 

have become apparent. In the past island biodiversity has been associated with 
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multiple colonization events per lineage based on the presence of divergent 

morphological characters. However, more recent molecular phylogenetic and 

biogeographic studies revealed that this not the case and that, e.g., the 1192 species of 

vascular plants native to the Hawaiian Islands are the result of only 263-270 

colonization events (Keeley and Funk, 2011). Most island lineages are monophyletic 

descending from one successful colonization event, e.g., the Hawaiian lobeliads 

(Campanulaceae; Givnish et al., 2009), Dendroseris D.Don (Asteraceae) on the Juan 

Fernandez Islands (Crawford et al., 1998) or the woody Sonchus L. (Asteraceae) 

alliance in Macaronesia (Kim et al., 1996). In many cases, island colonizers seem to be 

single, broadly adapted, often herbaceous, generalist species that radiated into 

several highly specialized, locally adapted and restricted species (Grant, 1998). 

Common traits of successful colonizers and the subsequent evolutionary shifts 

during establishment and radiation on oceanic islands include:  

(1) Polyploidization. The advent of modern sequencing techniques has revealed that 

a whole genome duplication (WGD) event predated the diversification of all 

Angiosperms, rendering all flowering plants ‘polyploid’ (Amborella Genome Project, 

2013). For simplicity in this paper these most ancient events will be ignored and 

polyploidy will concern only chromosome number changes post-dating them. That 

being said, many oceanic island floras are characterized by a high number of 

polyploid plant taxa. Conventional estimations of polyploidy are often based on 

identifying the most likely base number of Angiosperms by widespread comparison 

of numerous lineages combined with chromosome pairing analysis and postulating a 

threshold. Using this method Grant (1963) postulated that plants with a basic 

chromosome number of n = 14 or higher are most likely polyploid. While detailed 

comparisons and genomic and cytological estimations are required to identify ploidy 

levels on a lineage-by-lineage basis, this approach serves as an adequate 

approximation.  

Employing this approach, more than 80% of Hawaiian endemics (including Melicope 

J.R.Forst. & G.Forst.) are polyploid (Carr, 1998), as are 66% of all endemics on the 

Juan Fernandez Islands (Stuessy et al., 1992), while on the Canary Islands the fraction 

is only 24.5% (Bramwell, 1976). These numbers indicate that polyploidy has a 

different impact or prevalence on islands depending on island age and distance to 

continental land masses (Whittaker, 1998). High levels of polyploidy on many 

oceanic islands do not reflect high instances of in situ polyploidization, as island 

lineages often display chromosomal stasis during speciation (Stuessy and Crawford, 

1998; Kiehn, 2005). Instead, the high percentage of polyploid endemics indicates the 

success of polyploid immigrants (Stuessy and Crawford, 1998) in the competition for 
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colonization and adaptive radiation. In the grass subfamily Danthonioideae, 

polyploidization events were shown to facilitate Long-Distance Dispersal (LDD; 

Linder and Barker, 2014). Polyploidy offers advantages that may be particularly 

potent for establishment on oceanic islands, including increased vigour through 

heterosis and gene redundancy (Comai, 2005). Although detailed molecular studies 

for many lineages are still lacking, the few radiations that have been investigated 

indicate an allo- or autopolyploidization event directly predates the colonization of 

oceanic islands. While the phenomenon is fairly well researched in Asteraceae 

(Crawford et al., 2009), it is perhaps most striking in the sandalwoods (Santalum L., 

Santalaceae). Members of Santalum colonized islands throughout the Pacific in a 

stepwise fashion, following at least six polyploidization events leading to three 

additional ploidy levels (Harbaugh and Baldwin, 2007; Harbaugh, 2008). Hawaiian 

examples include the silversword alliance originating from an allopolyploidization 

event in California ca. 15 million years ago (mya) (Baldwin et al., 1991; Baldwin and 

Sanderson, 1998), or the Hawaiian violets arriving as recently as ca. 1.2-2 mya 

(Havran et al., 2009). Following the classification of Ehrendorfer (1980) on those few 

investigated lineages, colonizers classify as neo-or mesopolyploids. 

(2) Dispersibility. Immigrants to remote oceanic islands arrive by definition via LDD. 

While there is an element of chance to that, the likelihood of successful LDD event(s) 

increases with diaspores adapted to efficient dispersal, as evidenced by families or 

genera that colonized multiple islands. Adaptions of highly dispersible diaspores 

include smallness of spores or seeds for wind dispersed taxa (e.g., ferns, orchids), 

hooks, barbs and adhesive layers for exozoochory (e.g., Bidens L. (Asteraceae); 

Peperomia Ruiz & Pav. (Piperaceae)), or pulpous parts (often containing many tiny 

seeds) attracting feeders for endozoochory (e.g. Rubus L. (Rosaceae)). Regardless of 

vector, a small seed size is a common factor among efficient dispersers, both because 

this makes them easy to carry or swallow and because most immigrants are herbs 

(see 4). Weedy or herbaceous open habitat species tend to have small seeds as 

seedlings are exposed to sunlight shortly after germination. In contrast woody 

species tend to have larger seed sizes, as the seed contains stored nutrients, from 

which the seedling will grow until it reaches higher forest strata and exposure to 

sunlight (Carlquist, 1966a). Though detailed studies are scarce, trends for island 

species to drastically reduce their dispersal ability as pertaining to LDD and water 

barriers have been observed (e.g. Carlquist, 1966b, 1966c; Fresnillo and Ehlers, 2008; 

Price and Wagner, 2004). In several fern genera an increase in spore size has been 

observed as well as reduction or loss of pappus awns in Bidens (Carlquist, 1966b) or 

an increase in fruit size in, e.g., Polyscias J.R.Forst. & G.Forst. (Araliaceae; as 
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Tetraplasandra A.Gray) or Zanthoxylum L. (Rutaceae; as Fagara L.) (Carlquist, 1966c). 

Reducing dispersibility is an advantageous adaptation in an island setting as it 

decreases the likelihood of seeds becoming ‘lost at sea’ and reflects the condition 

where the habitable area of most species is often much smaller than the total island 

size (Carlquist, 1966a; Price and Wagner, 2004). 

(3) Self-Compatibility to Outbreeding. In 1955 Herbert Baker proposed the 

hypothesis (later widely known as Baker’s law) that self-compatibility is an 

advantageous trait for an island colonizer to possess. Since colonization events are 

rare and typically involve only one or a small number of individual(s), being self-

compatible allows establishment on an island in the absence of potential mates 

and/or pollinators or when potential mates are present but incompatible (Pannell, 

2015). However, high instances of outbreeding mechanisms observed on oceanic 

islands (Carlquist, 1966a) seem to point towards the development of said 

mechanisms following establishment to counter possible negative effects of small 

population sizes and gene pools. In New Zealand 12-13% of species are dioecious 

(Webb and Kelly, 1993) as are 14% of species on the Hawaiian Islands (Sakai et al., 

1995), where the worldwide ratio is at 4% (Yampolski and Yampolski, 1922). On the 

Hawaiian archipelago approximately one third of all dimorphic species evolved from 

a monomorphic colonizer (Sakai et al., 1995). 

(4) Herbaceousness to insular woodiness. Stuessy and Crawford (1998) argued that in 

many cases successful island colonizers are predominantly herbs. Decreased 

generation times of herbs, as compared to woody species, should enable them to 

adapt to a new environment more quickly. Upon establishment, however, a shift to a 

woody growth form can often be observed, which Carlquist (1974) termed ‘insular 

woodiness’. It has been observed in several Angiosperm families and islands, and 

evolved in numerous lineages independently. In Asteraceae this pattern is highly 

prominent with the woody Sonchus alliance on the Macaronesian islands (Kim et al., 

1996), Dendroseris and Robinsonia DC. (Asteraceae) on the Juan Fernandez Islands 

(Crawford et al., 1998), the Hawaiian silversword alliance (Baldwin, 1998) or 

Hawaiian Schiedea Cham & Schltdl. (Caryophyllaceae, Wagner et al., 2005). 

Of course, not all successful radiations exhibit all of these traits, and research is 

incomplete for a majority of lineages. While some species of Hawaiian mints are 

shrubby or herbs with a “somewhat a woody base”, others are herbaceous (Wagner 

et al., 1999b), and as such the lineage as a whole does not exhibit insular woodiness 

(Lens et al., 2013). Since no detailed study exists regarding the woodiness in 

Hawaiian mints, and as the boundary between herbaceous and woody is considered 

fuzzy (Lens et al., 2013), evaluation of this trait is not final. On the other hand 
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Hawaiian mints are of allopolyploid origin and share the same chromosome number 

(2n = 64) as their closest relatives in the genus Stachys L. (Lamiaceae). However, with 

chromosome numbers ranging from 2n = 10 to 102 in the genus Stachys (Wagner et 

al., 1999b; Lindqvist and Albert, 2002; Roy et al., 2015), the ancestor of Hawaiian 

mints may be classified as a mesopolyploid. And while we do know that the largest 

oceanic radiation in the world, Hawaiian lobeliads (Campanulaceae), is polyploid 

(Lammers, 1988; Carr, 1998), we do not know whether polyploidization occurred 

prior to colonization. We can surmise, however, that successful adaptive radiations 

on oceanic islands seem to show at least one or several, if not necessarily all of these 

traits.  

Melicope J.R.Forst. & G.Forst. (Rutaceae) in its traditional circumscription comprises 

ca. 230 species of shrubs and trees distributed in east-west-extension from 

Madagascar to the Hawaiian Islands and in north-south-extension from Japan to 

New Zealand. Currently (Hartley, 2001) the genus is subdivided into four sections: 

Lepta (Lour.) T.G.Hartley, Melicope, Pelea (A.Gray) Hook. and Vitiflorae (F.Muell.) 

T.G.Hartley. Recent molecular work has revealed that several genera are nested 

within Melicope and that the enlarged genus now contains about 300 species 

(Appelhans et al., 2014a). The Hawaiian genus Platydesma H.Mann was one of these 

genera and has recently been included in Melicope (Appelhans et al., 2017). Melicope 

has its origin in the Australasian region but has colonized numerous archipelagos 

throughout the Pacific and even Madagascar and the Mascarene Islands (Appelhans 

et al., 2018b). The Hawaiian Island lineage of Melicope is monophyletic and nested 

deeply within the genus. The clade belongs to section Pelea and comprises 54 

currently accepted species (Hartley, 2001; Appelhans et al., 2017; Wood et al., 2017). It 

represents the largest radiation of woody plants on the Hawaiian Islands (Wagner et 

al., 1999b) and colonization predates the age of the current high islands (Appelhans 

et al., 2018b). At first glance the lineage seems to match the pattern for insular 

specialist very nicely; the species are woody, mostly distributed in forests and about 

80% of the species are endemic to a single island (when Maui Nui is treated as a 

single island) with only small distributional ranges on the islands. Also they are 

mostly dioecious and their capsular/follicular fruits display shiny black seeds in 

varying sizes with a spongy and nutritious sarcotesta and a thick sclerotesta, which 

have been interpreted as an adaption to bird dispersal (Hartley, 2001). However, all 

species of not only the genus Melicope but also all related genera (Appelhans et al., 

2014a) are woody and bird dispersed and all species of Melicope section Pelea are 

dioecious (Hartley, 2001). Therefore these traits are ancestral and not acquired 

following colonization of the archipelago. Whether the same is true regarding the 
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ploidy is not yet clear. Up until now chromosome counts exist for 20 Melicope species, 

two species of Acronychia J.R.Forst. & G.Forst., which is nested in Melicope as well as 

one recorded count for Comptonella Baker f., which was revealed to be nested within 

Melicope sect. Vitiflorae (Appelhans et al., 2014a) (Table 2.1). Altogether these records 

span the entire distributional range of Melicope (except Madagascar and the 

Mascarene Islands) and all four sections of the genus. The 14 species representing 

non-Hawaiian lineages of Melicope, the two specimens of Acronychia as well as the 

record for Comptonella revealed a base chromosome number of 2n = 36; with the 

exception of one count for M. semecarpifolia (Merr.) T.G.Hartley (n = 12; Hsu, 1968) 

and the result for M. brassii T.G.Hartley (2n = 32; Borgmann, 1964). Though an 

ancestral state of n = 18 has also been suggested (Stace et al., 1993), the ancestral 

haploid chromosome number in Rutaceae is most likely nine (Kubitzki et al., 2011), 

as the most closely related sister clades (Meliaceae, Simaroubaceae) also show a base 

chromosome number of n = 9 (Figure 2.1). Within Rutaceae only the species-poor 

subfamilies Aurantioideae and Rutoideae (Morton and Telmer, 2014; ~300 species in 

33 genera) possess n = 9 (or more rarely n = 10). The vast majority of Rutaceae 

(including Melicope) is represented by subfamily Amyridoideae (Morton and Telmer, 

2014), a clade of 1800 species in 113 genera with n = 18 as base chromosomal number 

(Kubitzki et al., 2011). The shift from n = 9 to n = 18 likely happened in the Paleocene 

or even the Late Cretaceous (Appelhans et al., 2012; Figure 2.1). Therefore the 

Amyridoideae genera including Melicope can be considered paleopolyploids. 

Table 2.1. | Chromosome counts for 12 Hawaiian and 13 non-Hawaiian Melicope 

species, two species of Acronychia and one species of Comptonella, both of which are 

nested within Melicope. Details on origin of specimens, collection numbers including 

deposition of Herbarium vouchers for new records and references are given. Herbarium 

acronyms are according to Index Herbariorum (http://sweetgum.nybg.org/science/ih/).  

Species n 2n section origin 

Coll. No. 

(Herbarium 

of voucher 

deposition 

for new 

counts) 

Reference 

Hawaiian taxa       

Melicope adscendens 

(St.John & Hume) 

T.G Hartley & 

B.C.Stone 

 36 Pelea Maui 

Oppenheimer 

H20907 & 

Perlman 

(BISH, WU) 

Kiehn, this 

paper 

M. anisata (H.Mann) 

T.G.Hartley & 

B.C.Stone 

 34-36 Pelea Kauaʻi 

Perlman & 

Kiehn 

SP 21325 

(PTBG, WU) 

Kiehn, this 

paper 

M. barbigera A.Gray  36 Pelea Kauaʻi  Kiehn, 2005 
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M. clusiifolia (A.Gray) 

T.G.Hartley & 

B.C.Stone 

 36 Pelea Kauaʻi 

Perlman & 

Kiehn 

SP 21328 

(PTBG, WU) 

Kiehn, this 

paper 

M. cornuta (Hillebr.) 

Appelhans, 

K.R.Wood & 

W.L.Wagner 

18  Pelea Oʻahu  

Carr, 1978 

(as 

Platydesma 

c.) 

M. elliptica A.Gray 18  Pelea Oʻahu  
Carr, 

1978(as 

Pelea e.) 

M. ovata (St.John & 

Hume) T.G.Hartley 

& B.C.Stone 

 34-36 Pelea Kauaʻi 

Perlman & 

Kiehn 

SP 21333 

(PTBG, WU) 

Kiehn, this 

paper 

M. ovata (St.John & 

Hume) T.G.Hartley 

& B.C.Stone 

 18, 36 Pelea Kauaʻi  Kiehn, 2005 

(as M. sp.) 

M. puberula (H. St. 

John) T.G. Hartley 

& B.C. Stone 

18 36 Pelea Kauaʻi 

Perlman & 

Kiehn 

SP 21327 

(PTBG, WU) 

Kiehn, this 

paper 

M. rostrata (Hillebr.) 

Appelhans, 

K.R.Wood & 

W.L.Wagner 

 36 Pelea Kauaʻi  

Guerra, 

1984 (as 

Platydesma 

rostratum 

Hillebr.) 

M. sp. indet  36 Pelea Oʻahu  Kiehn, 2005 

M. wawraeana Rock  72 Pelea Kauaʻi  
Guerra, 

1984 (as 

Pelea w.) 

M. zahlbruckneri 

(Rock) T.G.Hartley 

& B.C.Stone 

 36 Pelea Hawaiʻi 

Kiehn & Pratt 

MK-090211-

4/4 (BISH, 

WU) 

Kiehn, this 

paper 

Non-Hawaiian taxa       

       

M. brassii T.G.Hartley  32 Pelea 
Papua New 

Guinea 
 Borgmann, 

1964 

M. bonwickii 

(F.Muell.) 

T.G.Hartley 

 36 Lepta 
Philippine: 

Luzon 
 

Pancho, 

1971 (as 

Euodia 

villamillii 

Merr.) 

M. frutescens (Blanco) 

Appelhans & J.Wen 
 36 

(38?) 
Lepta 

Philippine: 

Luzon 
 

Pancho, 

1971 (as 

Euodia 

confusa 

(Blco.) 

Merr.) 
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M. grisea (Planch.) 

T.G.Hartley 
 36 Lepta 

Japan: Bonin 

Islands 
 

Ono and 

Masuda, 

1981 (as 

Boninia 

grisea 

Planch.) 

M. lunu-ankenda 

(Gaertn.) 

T.G.Hartley 

 36 Lepta Sri Lanka  

Morawetz, 

1986 (as 

Evodia 

roxburghiana 

Benth.) 

M. mantellii Buchanan 18  Melicope 

New Zealand: 

cult. 

Auckland 

University 

College 

 Rattenbury, 

1957 

M. micrococca 

(F.Muell.) 

T.G.Hartley 

18  Lepta Australia  

Smith-

White, 1954 

(as Euodia 

micrococca 

F.Muell.) 

M. quadrilocularis 

(Hook. & Arn.) 

T.G.Hartley 

 36 Lepta 
Japan: Bonin 

Islands 
 

Ono & 

Masuda, 

1981 (as 

Boninia 

glabra 

Planch.) 

M. retusa(A.Gray) 

T.G.Hartley 
 36 Pelea 

Philippine: 

Luzon 
 Pancho, 

1971 

M. rubra (Lauterb. & 

K.Schum.) 

T.G.Hartley 

 36 Lepta 
Papua New 

Guinea 
 Borgmann, 

1964 

M. semecarpifolia 

(Merr.) T.G.Hartley 
12  Lepta Taiwan  

Hsu, 1968 

(as Euodia 

confusa 

(Blco.) 

Merr.) 

M. semecarpifolia 

(Merr.) T.G.Hartley 
 36 Lepta 

Philippine: 

Luzon 
 Pancho, 

1971 

M. simplex A.Cunn.  36 Melicope New Zealand  Rattenbury, 

1957 

M. ternata J.R.Forst. 

& G.Forst. 
18  Melicope 

New Zealand: 

cult. 

Auckland 

University 

College 

 Rattenbury, 

1957 

M. ternata J.R.Forst. & 

G.Forst. 
 36 Melicope 

cult. Botanical 

Garden 

University of 

Vienna (WU) 

 Guerra, 

1984 

Acronychia suberosa 

C.T.White 
 36  Australia: 

Queensland 
 Guerra, 

1984 
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A. pubescens  34  Australia: 

Queensland 
 Guerra, 

1984 

Comptonella Baker f. 18   France: New 

Caledonia 
 Kubitzki, 

2011 

 

The observation of a depauperate sisterclade to a highly diverse, species-rich, 

polyploid one with a delay between the polyploidization event and the onset of 

diversification fits the WGD radiation lag-time model (Schranz et al., 2012). One 

hypothesis for this lag phase is, that this time is required for diploidization to take 

place (Dodsworth et al., 2016). Diploidization is a post-genome-duplication process 

that includes operations between duplicated genes, e.g. neofunctionalization, 

subfunctionalization and non-functionalization as well as operations between 

duplicated genomes, e.g. genome downsizing (Ma and Gustafson, 2005; Dodsworth 

et al., 2016).  

Comparing chromosome numbers and DNA content in Rutaceae (C-value database 

Kew, http://data.kew.org/cvalues; assessed on 01. 16. 2017) shows no linear 

relationship. Ruta graveolens L. for example shows a chromosome number of n = 78 at 

a DNA content of 0.75 pg and illustrates the effects of genome downsizing. So far the 

only Melicope species for which both a chromosome count as well as genome size 

have been measured is Melicope ternata J.R.Forst. & G.Forst. This species has a 

chromosome number of n = 18 and shows a genome size of 0.93 pg (Guerra, 1984) 

comparable to that of many diploid members of Rutaceae.  

The seven Melicope species from Hawaii investigated previously do not show a 

consistent picture. Three different chromosome numbers were reported (2n = 18, 36 

or 72; Table 2.1) indicating possible polyploidization or hybridization events within 

the lineage (Kiehn, 2005). 
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Figure 2.1. | Phylogenetic relationships of Rutaceae genera (modified from Appelhans 

et al., 2012) with known ploidy levels as inferred from known chromosome numbers 

(Kew C-value database (http://data.kew.org/cvalues; assessed on 01. 16. 2017), 

Kubitzki, 2011) plotted to each genus. Rutaceae subfamili es are indicated by black 

(Cneorideae), violet (Amyridoideae), mint (Rutoideae) and green (Aurantoideae) bars. 

Outgroups refer to the most c losely related families Meliaceae and Simaroubaceae 

(Appelhans et al., 2012). A black arrow marks the split of the A urantioideae and 

Amyridoideae subfamilies in the Palaeocene and the coinciding polyploidization event.  

 

The main aim of this study is to investigate evolutionary trends characteristic for 

oceanic islands in the Hawaiian lineage of the genus Melicope. To that end we also 

investigate if specimens show traits specific for colonization of and/or establishment 

on islands, and if these traits are unique to the Hawaiian radiation or characteristic 

for the genus as a whole. We have conducted a literature search regarding traits of 

insular woodiness, dispersibility, and reproductive systems. We further investigate 

ploidy levels in the Hawaiian radiation of the genus as well as representatives of the 

non-Hawaiian species to infer whether the colonizer of the archipelago was a neo- or 

mesopolyploid.  
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2.2  Material and Methods 

Flow cytometry 

DNA content was assessed for 61 samples representing 66% of the Hawaiian 

radiation of Melicope as well as nine samples of non-Hawaiian species via flow 

cytometry. Table 2.2 details geographic origins and collection details for the samples. 

Due to scarcity of material, only one measurement was taken per sample. 

Leaf material was ground with a TissueLyzerII (Quiagen, Hilden, Germany) at 15 Hz 

for 45 s using a steal bead (Ø 3 mm) in a 2 mL Eppendorf cap. Nuclei were isolated 

by 8 min incubation in 300 µL Otto I buffer (Otto, 1990). After filtering the mix (30 

µm mesh, CellTrics® Partec GmbH, Münster, Germany), 800 µL staining solution 

(Otto II buffer, Doležel and Göhde, 1995) was added and the solution again 

incubated for 8 min on ice. The solution was then measured on the flow cytometer 

(CyFlow® Ploidy Analyser, Sysmex Deutschland GmbH, Norderstedt, Germany) 

using the blue UV LED channel. Fluorescence intensity was measured and peaks 

medians were calculated using the program CyFlow Cube v 1.5.7.3 (Sysmex 

Deutschland GmbH, Norderstedt, Germany). 

Samples were measured at gain 450 with Pisum sativum L. (Fabaceae) as internal 

standard. Several samples failed to produce a peak due to inference of debris 

particles, and the measurement was repeated for those at gain 480 with Paspalum 

notatum Flugge (Poaceae) as external standard. The mean peak value of all reference 

measurements (> 15) was used to calculate the DNA content of samples using the 

formula (sample mean peak * reference mean peak) / reference DNA content. 

Reference mean C1 values were obtained from the Kew C-value database 

(http://data.kew.org/cvalues; assessed on 16. 01. 2017) as 1C = 4.88pg for Pisum 

sativum and 1C = 0.89pg for Paspalum notatum. The software Past v 3.17 (Hammer et 

al., 2001) was used to test for normal distribution of measurements. 

Chromosome counts 

Chromosome counts are based on field fixations or fixations from plants cultivated at 

the Botanical Garden of the University of Vienna (Austria). Fixations of meristematic 

tissues (actively growing root tips, young flowers or apices for counts of mitotic 

numbers, young flower buds for meiotic investigations) were made in a freshly 

mixed 3:1 solution of ethanol (96%):glacial acetic acid or in a 4:3:1 mixture of 

chloroforme:100% ethanol:glacial acetic acid. Some germinating seeds were 

pretreated with 0.002 M 8-hydroxyquinoline solution for 6 h at 8-10 °C in the dark 

before fixations were made (Table 2.1). Each fixation represents one individual in the 

case of field fixations, or individually distinguishable seedlings in the case of 

fixations of germinating seeds. Chromosome staining was performed with Feulgen 
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reagent, Giemsa, or aceto-carmine (for details on staining procedures see Kiehn, 

2005). Exact counts could not be achieved in some cases because of limited material. 

A range of chromosome numbers is given in such cases. Permanent slides for the 

counts are deposited in the personal collection of MK. Reference voucher specimens 

for each investigated collection have been deposited in at least one of the following 

herbaria: Bishop Museum, Honolulu, Hawaii (BISH), National Tropical Botanical 

Garden, Kalāheo (Kauaʻi), Hawaii, (PTBG), University of Hawaiʻi (HAW), or 

University of Vienna (WU). 

 

2.3  Results 

Table 2.2 summarizes the genome sizes for 61 samples of Melicope as estimated by 

flow cytometry. With the exception of M. ternata (Guerra, 1984) none of these species 

have been assessed regarding their genome sizes before. The results are normally 

distributed (p = 0.71; Shapiro-Wilk = 0.988). The mean 1C value of all samples is 0.76 

pg with a standard deviation of 0.05. The lowest and highest genome sizes were 

estimated for the Hawaiian M. haupuensis (St.John) T.G.Hartley & B.C.Stone and M. 

peduncularis (H.Lév.) T.G.Hartley & B.C.Stone with 1C = 0.65 pg and 1C = 0.87 pg 

respectively. In samples using Pisum sativum as reference, estimated genome sizes 

were slightly higher (mean 1C = 0.8 pg). Four samples (M. anisata (H.Mann) 

T.G.Hartley & B.C.Stone [Appelhans MA665], M. barbigera A.Gray [Appelhans 

MA664], M. barbigera [Wood KW 16718] and M. peduncularis [Appelhans MA652]), 

that could be measured successfully with both available references, show a slightly 

higher 1C value when measured with P. sativum as a reference, indicating that there 

seems to be a slight bias introduced due to the different genome sizes of the 

references (Figure 2.2).  
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Figure 2.2. | Flow Cytometry measurements of Melicope barbigera A.Gray [Appelhans MA664] at gains 

450 (A) and 480 (B). X-axis shows amount of particles at a given fluorescence intensity. Intensity peaks 

are marked (Reg 2 & 3, M. barbigera; Reg 1, reference Pisum sativum). 

 

Chromosome numbers for six Melicope species were newly determined, increasing 

the total number of assessed species to 25 (including Acronychia and Comptonella), of 

which 12 represent the Hawaiian lineage (Table 2.1). All new reports reveal 

chromosome numbers of n = 18 or 2n = 36, as did the majority of the previous counts 

for the genus. Altogether 12 species with known chromosome numbers are 

represented in the flow cytometry taxon sampling, including two of the four species 

showing varying chromosome numbers (M. ovata (St.John & Hume) T.G.Hartley & 

B.C.Stone and M. wawraeana (Rock) T.G.Hartley & B.C.Stone). DNA content 

measured in these species does not deviate (compare Table 2.1 and Table 2.2).  
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Table 2.2. | DNA content of 62 Hawaiian and 11 non -Hawaiian Melicope specimens as 

measured by flow cytometry using Pisum sativum (†) or Paspalum notatum (‡) as 

reference. Details for placement of herbarium vouchers and origin of samples are given. 

Herbarium acronyms are according to Index Herbariorum 

(http://sweetgum.nybg.org/science/ih/).  

Species Herbarium voucher Origin C(pg) † C(pg) ‡ 

Hawaiian species     

Melicope adscendens (H. St. 

John & E.P. Hume) T.G. 

Hartley & B. C. Stone 

Appelhans MA628 (silica sample 

only, cultivated at Olinda Rare 

Plant Facility) 

Maui  0.71 

Melicope anisata (H. 

Mann) T. G. Hartley & 

B. C. Stone 

Appelhans MA665 (GOET 

[GOET019849], PTBG [PTBG 

1000057433]) 

Kauaʻi 0.75 0.79 

Melicope anisata (H. 

Mann) T. G. Hartley & 

B. C. Stone 

Appelhans MA668 (GOET 

[GOET019850], PTBG [PTBG 

1000057439], US) 

Kauaʻi  0.78 

Melicope barbigera A. Gray  

Appelhans MA664 (GOET 

[GOET019851], PTBG [PTBG 

1000057432], US) 

Kauaʻi 0.72 0.69 

Melicope barbigera A. Gray  

Appelhans MA666 (BISH, GOET 

[GOET019852], PTBG [PTBG 

1000057437], US) 

Kauaʻi  0.79 

Melicope barbigera A. Gray  Wood 16718 (PTBG) Kauaʻ 0.78 0.73 

Melicope christophersenii 

(H. St. John) T. G. 

Hartley & B. C. Stone  

Appelhans MA617 (BISH, GOET 

[GOET019853], PTBG [PTBG 

1000057596], US) 

Oʻahu  0.75 

Melicope christophersenii 

(H. St. John) T. G. 

Hartley & B. C. Stone  

Appelhans MA621 (silica sample 

only, cultivated at Puʻu Kaʻala) 
Oʻahu  0.73 

Melicope christophersenii 

(H. St. John) T. G. 

Hartley & B. C. Stone  

Takahama s.n. (silica sample 

only) 
Oʻahu 0.86  

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA615 (GOET 

[GOET019855], PTBG [PTBG 

1000057517]) 

Oʻahu  0.82 

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA634 (PTBG [PTBG 

1000057507]) 
Maui  0.78 

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA650 (GOET 

[GOET019857], PTBG [PTBG 

1000057504], US) 

Maui 0.82  

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA651 (BISH, GOET 

[GOET019856], PTBG [PTBG 

1000057511], US) 

Maui 0.85  

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA655 (silica sample 

only) 
Maui  0.76 

Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Appelhans MA657 (GOET 

[GOET019858], PTBG [PTBG 

1000057572], US) 

Maui 0.80  
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Melicope clusiifolia (A. 

Gray) T. G. Hartley & 

B. C. Stone  

Oppenheimer H91641 (US) Lānaʻi  0.67 

Melicope cruciata (A. 

Heller) T.G. Hartley & 

B.C. Stone 

Wood 16251 (PTBG) Kauaʻi  0.76 

Melicope feddei (H. Lév.) 

T. G. Hartley & B. C. 

Stone 

Appelhans MA688 (BISH, GOET 

[GOET019864], PTBG [PTBG 

1000057431], US) 

Kauaʻi  0.74 

Melicope haleakalae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone  

Appelhans MA637 (BISH, GOET 

[GOET019866], PTBG [PTBG 

1000057497], US) 

Maui  0.79 

Melicope haleakalae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone  

Appelhans MA641 (BISH, GOET 

[GOET019865], PTBG [PTBG 

1000057502]) 

Maui  0.74 

Melicope haleakalae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone  

Appelhans MA645 (BISH, GOET 

[GOET019867], PTBG [PTBG 

1000057495]) 

Maui  0.75 

Melicope haleakalae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone  

Appelhans MA646 (BISH, GOET 

[GOET019868], PTBG [PTBG 

1000057496], US) 

Maui  0.76 

Melicope haupuensis (H. 

St. John) T. G. Hartley 

& B. C. Stone 

Appelhans MA687 (BISH) Kauaʻi  0.73 

Melicope haupuensis (H. 

St. John) T. G. Hartley 

& B. C. Stone 

Wood 16794 (PTBG) Kauaʻi  0.65 

Melicope hawaiensis 

(Wawra) T.G.Hartley & 

B.C.Stone  

Appelhans MA633 (BISH, GOET 

[GOET019869], PTBG [PTBG 

1000057494], US) 

Maui  0.78 

Melicope kavaiensis (H. 

Mann) T. G. Hartley & 

B. C. Stone 

Appelhans MA679 (BISH, GOET 

[GOET019871], PTBG [PTBG 

1000057501], US) 

Kauaʻi 0.77  

Melicope knudsenii 

(Hillebr.) T.G. Hartley 

& B.C. Stone 

Appelhans MA629 (silica sample 

only, cultivated at Olinda Rare 

Plant Facility) 

Maui  0.71 

Melicope knudsenii 

(Hillebr.) T.G. Hartley 

& B.C. Stone 

Oppenheimer H41610 (BISH) Maui  0.66 

Melicope knudsenii 

(Hillebr.) T.G. Hartley 

& B.C. Stone 

Wood 17119 (PTBG) Kauaʻi  0.65 

Melicope lydgatei (Hillebr.) 

T.G. Hartley & B.C. 

Stone  

Ching s.n. (silica sample only) Oʻahu  0.71 

Melicope makahae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone 

Takahama s.n. (silica sample 

only) 
Oʻahu  0.71 

Melicope makahae (B. C. 

Stone) T. G. Hartley & 

B. C. Stone (cf.) 

Appelhans MA609 (GOET 

[GOET019872], PTBG [PTBG 

1000057509]) 

Oʻahu  0.76 
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Melicope molokaiensis 

(Hillebr.) T. G. Hartley 

& B. C. Stone  

Appelhans MA635 (BISH, GOET 

[GOET019875], PTBG [PTBG 

1000057498]) 

Maui  0.74 

Melicope molokaiensis 

(Hillebr.) T. G. Hartley 

& B. C. Stone  

Appelhans MA643 (BISH, GOET 

[GOET019874], PTBG [PTBG 

1000057560], US) 

Maui  0.72 

Melicope mucronulata (H. 

St. John) T.G. Hartley & 

B.C. Stone 

Appelhans MA630 (silica sample 

only, cultivated at Olinda Rare 

Plant Facility) 

Maui  0.71 

Melicope oahuensis (H. 

Lév.) T. G. Hartley & B. 

C. Stone 

Appelhans MA610 (BISH, GOET 

[GOET019876], PTBG [PTBG 

1000057508], US) 

Oʻahu  0.82 

Melicope orbicularis 

(Hillebr.) T. G. Hartley 

& B. C. Stone  

Appelhans MA656 (BISH, GOET 

[GOET019877], PTBG [PTBG 

1000057584], US) 

Maui 0.80  

Melicope orbicularis 

(Hillebr.) T. G. Hartley 

& B. C. Stone  

Appelhans MA659 (GOET 

[GOET019878], PTBG [PTBG 

1000057578]) 

Maui 0.79  

Melicope ovata (H. St. John 

& E. P. Hume) T. G. 

Hartley & B. C. Stone  

Appelhans MA662 (GOET 

[GOET019880], PTBG [PTBG 

1000057460], US) 

Kauaʻi 0.75  

Melicope ovata (H. St. John 

& E. P. Hume) T. G. 

Hartley & B. C. Stone  

Appelhans MA663 (BISH, GOET 

[GOET019879], PTBG [PTBG 

1000057427], US) 

Kauaʻi 0.78  

Melicope ovata (H. St. John 

& E. P. Hume) T. G. 

Hartley & B. C. Stone  

Appelhans MA684 (BISH, GOET 

[GOET019881]) 
Kauaʻi  0.73 

Melicope ovata (H. St. John 

& E. P. Hume) T. G. 

Hartley & B. C. Stone  

Wood 17082 (PTBG) Kauaʻi  0.77 

Melicope pallida (Hillebr.) 

T. G. Hartley & B. C. 

Stone 

Appelhans MA689 (silica sample 

only) 
Kauaʻi  0.77 

Melicope pallida (Hillebr.) 

T. G. Hartley & B. C. 

Stone 

Wood 16789 (PTBG) Kauaʻi  0.75 

Melicope paniculata (H. St. 

John) T. G. Hartley & B. 

C. Stone 

Perlman 19387 (PTBG) = 

Appelhans MA660 (silica sample) 
Kauaʻi 0.85  

Melicope peduncularis (H. 

Lév.) T. G. Hartley & B. 

C. Stone 

Appelhans MA613 (BISH, GOET 

[GOET019882], PTBG [PTBG 

1000057524], US) 

Oʻahu  0.79 

Melicope peduncularis (H. 

Lév.) T. G. Hartley & B. 

C. Stone 

Appelhans MA652 (BISH, GOET 

[GOET019883], PTBG [PTBG 

1000057547], US) 

Maui 0.87 0.80 

Melicope peduncularis (H. 

Lév.) T. G. Hartley & B. 

C. Stone 

Appelhans MA653 (BISH, GOET 

[GOET019884], PTBG [PTBG 

1000057513], US) 

Maui  0.79 

Melicope pseudoanisata 

(Rock) T.G. Hartley & 

B.C. Stone  

Appelhans MA632 (silica sample 

only, cultivated at Olinda Rare 

Plant Facility) 

Maui  0.70 
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Melicope pseudoanisata 

(Rock) T.G. Hartley & 

B.C. Stone  

Appelhans MA636 (silica sample 

only) 
Maui  0.71 

Melicope pseudoanisata 

(Rock) T.G. Hartley & 

B.C. Stone  

Appelhans MA642 (GOET 

[GOET019885], PTBG [PTBG 

1000057554], US) 

Maui  0.79 

Melicope puberula (H. St. 

John) T. G. Hartley & B. 

C. Stone 

Appelhans MA680 ( GOET 

[GOET019886], PTBG [PTBG 

1000057484], US) 

Kauaʻi  0.73 

Melicope radiata (H. St. 

John) T. G. Hartley & B. 

C. Stone  

Appelhans MA698 (BISH, GOET 

[GOET019888], PTBG [PTBG 

1000057523], US) 

Hawaiʻi   0.71 

Melicope rostrata (Hillebr.) 

Appelhans, K.R. Wood 

& W.L. Wagner 

Appelhans MA683 (BISH, GOET 

[GOET019889]) 
Kauaʻi  0.85 

Melicope rotundifolia (A. 

Gray) T.G. Hartley & 

B.C. Stone 

Ching s.n. (silica sample only) Oʻahu 0.72  

Melicope sandwicensis 

(Hook. & Arn.) T.G. 

Hartley & B.C. Stone 

Ching s.n. (silica sample only) Oʻahu  0.69 

Melicope sessilis (H. Lév.) 

T. G. Hartley & B. C. 

Stone 

Appelhans MA644 (BISH, GOET 

[GOET019890], PTBG [PTBG 

1000057483], US) 

Maui 0.79  

Melicope sessilis (H. Lév.) 

T. G. Hartley & B. C. 

Stone 

Appelhans MA654 (BISH, GOET 

[GOET019891], PTBG [PTBG 

1000057519], US) 

Maui 0.77  

Melicope spathulata A. 

Gray 

Wood 16836 (PTBG [PTBG 

1000059483]) 
Kauaʻi  0.77 

Melicope stonei K.R. 

Wood, Appelhans & 

W.L. Wagner 

Wood 17505 (PTBG) Kauaʻi 0.81  

Melicope volcanica (A. 

Gray) T.G. Hartley & 

B.C. Stone (cf.) 

Oppenheimer s.n. (silica sample 

only) 
Lānaʻi  0.69 

Melicope wawreana (Rock) 

T.G. Hartley & B.C. 

Stone 

Wood 17478 (PTBG) Kauaʻi 0.86  

Non-Hawaiian species     

Melicope elleryana (F. 

Muell.) T.G. Hartley 
Lorence 6602 (PTBG) 

cultivated: 

NTBG, 

Kalaheo, 

Kauaʻi, 

Hawaii 

 0.70 

Melicope elleryana (F. 

Muell.) T.G. Hartley 
Appelhans MA404 (LAE, US) 

New 

Guinea 
 0.71 

Melicope elleryana (F. 

Muell.) T.G. Hartley 
Appelhans MA413 (LAE, US) 

New 

Guinea 
 0.74 

Melicope frutescens 

(Blanco) Appelhans & 

J.Wen  

Brambach 464 (GOET) 
Indonesia: 

Sulawesi 
 0.74 
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Melicope latifolia (DC.) 

T.G. Hartley 

Lorence 10298 (PTBG [PTBG 

1000027858]) 

cultivated: 

NTBG, 

Kalaheo, 

Kauaʻi, 

Hawaii 

 0.77 

Melicope mantellii 

Buchanan 
Pelser 3122 (GOET) 

New 

Zealand 
 0.81 

Melicope maxii T.G. 

Hartley 
Brambach 1916 (GOET) 

Indonesia: 

Sulawesi 
 0.77 

Melicope ternata J.R. Forst. 

& G. Forst. 
Appelhans MA487 (GOET) 

cultivated: 

Botanical 

Garden 

Göttingen 

 0.81 

Melicope triphylla (Lam.) 

Merr. 
Appelhans MA394 (GOET) 

cultivated: 

Hortus 

Botanicus 

Leiden 

 0.87 

 

2.4  Discussion 

All newly reported chromosome numbers of Hawaiian Melicope exhibit n = 18 or 2n = 

36. Most Amyridoideae (Morton and Telmer, 2014) show identical or similar 

chromosome numbers (Kubitzki et al., 2011), so that we confirm Melicope to be a 

Palaeocene paleopolyploid. The DNA content of the genus Melicope as measured by 

flow cytometry is also reasonably uniform. None of the estimated DNA amounts 

represents one and a half times (3n) or twice (4n) that of any other. That includes the 

assessed specimens of M. wawraeana and M. ovata, of which earlier studies had 

indicated a shift in chromosome numbers (Guerra, 1984; Kiehn, 2005). Therefore we 

conclude that Melicope is characterized by a mean DNA amount of 2C = 0.76 pg, 

which corresponds to the chromosome number 2n = 36 (Figure 2.3). 

Guerra (1984) reported 2n = 72 for M. wawraeana, which might indicate a 

polyploidization event on the Hawaiian Islands. Since our measurements did not 

support this result, we conclude that the species as a whole likely did not experience 

a shift in ploidy level. Instead, our result could indicate that there is an individual or 

a population of M. wawraeana originating from a recent polyploidization event 

resulting in 2n = 72 chromosomes. At least 11 genera in Rutaceae are facultative 

apomicts (Carman, 1997), a reproductive strategy highly associated with polyploidy 

(Asker and Jerling, 1992). As of yet reproduction in Melicope has not been researched, 

but Zanthoxylum, a distantly related genus within the same subfamily (Bayly et al., 

2013) reproduces both by facultative apomixis and adventitious embryony, a strategy 

strongly associated with paleopolyploidy (Carman, 1997). 
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Figure 2.3. | Comparison of chromosome numbers and DNA content in 49 species of Rutaceae 

including newly assessed Hawaiian Melicope specimens. Values were extracted from the Kew C-value 

database (http://data.kew.org/cvalues; assessed on 01. 16. 2017). Green circles represent species in 

Aurantioideae and Rutoidae (base chromosome number n = 9). Violet diamonds represent species in 

Amyridoideae (base chromosome number n = 18). Melicope species are indicated by a black frame 

around the violet diamonds. There is no linear increase of DNA content with increasing ploidy levels. 

Instead the effects of diploidization can be observed in paleopolyploids with C-values comparable to 

diploids. 

 

With 2n = 136-144 several species of Zanthoxylum have the highest chromosome 

number known in the family (Kiehn and Lorence, 1996). The observed chromosome 

number of 2n = 72 in an individual of M. wawraeana (Guerra, 1984) might therefore 

indicate the influence of apomixis or a recent hybridization event. However, since the 

species is a member of the youngest clade within Hawaiian Melicope (Appelhans et 

al., 2014b), this putative polyploidization event is not basal in the lineage but would 

have occurred on the Islands. 

The only report of a lower ploidy level in a seedling of M. ovata (Kiehn, 2005; as M. 

spec.: 2n = 18 for one seedling with three other seedlings from the same fruit 

exhibiting 2n = 36) cannot be explained with certainty, but might be an effect of 

irregularities in embryogenesis.  
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There are only two other reports for Melicope of chromosome numbers deviating 

from n = 2x = 18. One is for M. semecarpifolia, which was assessed by Pancho (1971) 

with n = 18, but with n = 12 by Hsu (1968; as Euodia confusa Merr.). Figure 37 of this 

latter publication shows a drawing of an anaphase I stadium of pollen mother cell 

meiosis. While it cannot be excluded that the count is correct, the drawing could also 

be interpreted to show a higher number of chromosomes (personal observation M. 

Kiehn). All other accounts within section Lepta (Table 2.1) revealed n = 18 and 2n = 36 

respectively, so this seems to be an isolated deviation, as does the second deviating 

count of 2n = 32 in M. brassii (Borgman, 1964). 

In summary it can be stated that Hawaiian Melicope are uniform in terms of 

chromosome numbers and 1C values (Figure 2.3). Aberrations likely represent local 

events, e.g., disruptions in embryogenesis, possible hybridization events, 

chromosome loss or putative effects of apomixis. Also, there is no indication for a 

difference between Hawaiian representatives of the genus and the remainder of the 

genus indicating there was no polyploidization event prior to the colonization of the 

islands.  

In terms of the traits for successful island colonization and adaptive radiation, it 

seems that at least Hawaiian Melicope do not exhibit features characteristic for many 

examples of lineages that colonized distant islands. While sampling herein is not 

sufficient to exclude polyploidy in all island radiations of the genus, we have shown 

that the Hawaiian colonizer was not a recently formed neo- or mesopolyploid. 

Woodiness is a pervading character of the whole genus (Hartley, 2001). Dioecy is 

present in two subsections of Melicope, Pelea and Lepta with the latter also containing 

monoecious species (Hartley, 2001). While the genus as a whole seems to show 

several shifts in breeding system (compare Appelhans et al., 2014a; Hartley, 2001), 

the dioecy of the Hawaiian lineage seems to be a trait acquired before the 

colonization. Up to now, a detailed study on the dispersibility of Melicope species has 

not been undertaken. However, the whole genus displays dehiscent fruits (follicles or 

capsules), with shiny black seeds, which remain attached upon dehiscence (Hartley, 

2001). This, together with the spongy sarcotesta and the thick sclerotesta, likely 

represents an adaption to bird dispersal (Carlquist, 1966c; Hartley, 2001). This 

hypothesis is supported by field observations (Frith et al., 1976; Floyd, 1989; Innis, 

1989; Hartley, 2001; Medeiros, 2004). Seed size varies in the genus – and indeed 

within the Hawaiian lineage ranging from relatively small (Ø 2.5 mm) to several 

times that size (Stone et al., 1999) showing no clear trend for reduction of spatial 

dispersibility by seed size on the island (Carlquist, 1966a).  
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There are three possible explanations for the apparent deviation of the genus from 

the generalist-colonizer-to-specialist-island-endemic pattern. 

1.) The-odd-one-out. LDD events are very rare and therefore not governed by regular 

migration patterns (e.g. Carlquist, 1966a; Appelhans et al., 2018b). Unusual behavior 

of vectors, catastrophic events or uncommon vectors are suspected causes (Higgins et 

al., 2003; Nathan et al., 2008). Thus there is a significant element of chance to 

migration and establishment of a lineage on an island. While certain prerequisites 

increasing the likelihood of an establishment followed by adaptive radiation exist 

and researchers seem to have made strides in identifying them, chance might also be 

an influencing factor here. On the Juan Fernandez Islands 35.6% of the endemic flora 

is represented by species directly derived from their continental relatives (Stuessy 

and Crawford, 1998) without any apparent radiation, despite some of them being a 

member of families renowned for successful island adaptive radiations. Chance may 

prevent an adaptive radiation in a lineage despite it meeting all identified 

predispositions or it may allow an ‘unexpected’ radiation in a lineage not exhibiting 

any of the facilitating factors. However, that is unlikely the case in Melicope, as the 

Hawaiian radiation is not an exception in an otherwise poorly distributed group. The 

genus has colonized numerous islands throughout the Pacific, and even colonized 

Madagascar and the Mascarene Islands radiating into ca. 20 spp. There (Appelhans et 

al., 2018b). That many successful colonization events followed by adaptive radiation 

seem unlikely without the genus exhibiting predisposing traits. Due to the rarity of 

LDD events, exceptional occurrences (Higgins et al., 2003; Nathan et al., 2008), or 

vectors (Wenny et al., 2016) cannot be ruled out as causes for colonization of an 

island. However, the adaptations of Melicope to bird dispersal (Hartley, 2001) seem to 

be the key feature facilitating high dispersibility as evidenced by the high number of 

successful island colonizations (Appelhans et al., 2014a, 2018b). 

2.) The hidden generalist. The vast majority of Hawaiian Melicope species are highly 

endemic (about 80% single-island endemics), with only a small number of species 

being more widespread (Hartley, 2001; Appelhans et al., 2014b). The relatively small 

distributional niches most of these species occupy certainly fit the picture of the 

island specialist with a very narrow distributional range. Carlquist (1966a) also 

observed a loss of dispersibility manifested as an increase in seed size in some 

species of Melicope. On the other hand these specialist Hawaiian lineages spawned 

two successful independent colonizations of the remote Marquesas Islands (distance 

> 3500 km) resulting in a local radiation of seven species (Appelhans et al., 2014b, 

2018b). Successful colonizations of oceanic islands with subsequent adaptive 

radiations originating from an insular lineage is a repeated occurrence in the genus 
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(Appelhans et al., 2014b, 2018b). This indicates the possibility of some species having 

a broader ecological capacity than suggested by the niches they are observed to 

occupy. The comparatively small distributional ranges of these species would then 

likely be due to competition. If this pressure is removed by transmission to another 

island system with a different species composition, the colonizer may occupy any 

fraction in a comparatively wide range of ecological conditions. This is corroborated 

by the fact that both colonizers of the Marquesas Islands are from clades comprising 

narrowly distributed species (Appelhans et al., 2014b). 

3.) The incomplete picture. Although evolutionary patterns on oceanic islands have 

been a research focus of biologists for more than 200 years, the application of 

molecular methods has been comparatively recent. Applying these methods to 

insular radiations and their continental relatives has helped confirm some and 

rescind other long standing theories. The high morphological diversity in island 

lineages has often lead to overestimation of the frequency of colonization events, e.g. 

in the Hawaiian lobeliads (Givnish et al., 2009) or Hawaiian Cyrtandra J.R.Forst. & 

G.Forst. (Cronk et al., 2005; Johnson et al., 2017), or of phylogenetic affiliations as in 

Melicope (Appelhans et al., 2014a), which are rectified by results of molecular 

investigations. However, most studies focus on resolving phylogenetic relationships 

(e.g., Givnish et al., 2009) or one specific trait of the island pattern, e.g., dispersal 

routes (e.g., (Appelhans et al., 2018b) or ploidy levels in lineages (e.g., Harbaugh, 

2008) or archipelagos (e.g., Carr, 1998). Attempts of identifying underlying patterns 

are then made by synergy of these studies. Continued research into adaptive island 

radiations, especially comparison of displayed traits between species rich lineages 

and colonizers not undergoing radiation, could help to ultimately identify traits 

facilitating island adaptive radiations. As of now, the picture is most likely 

incomplete. For instance, the high proportion of polyploid lineages on islands (e.g., 

Carr, 1998; Stuessy et al., 1992) indicates polyploidy to be a positive trait. However, 

we do not have a clear picture here, yet. Melicope are paleopolyploid having likely 

undergone extensive diploidization already as indicated by comparing chromosome 

counts and genome sizes in Rutaceae (Figure 2.3). All investigated species of Melicope 

including all Hawaiian representatives show genome sizes highly similar to diploid 

Rutaceae. Therefore the genus has most likely undergone profound post-ploidization 

diploidization and may be regarded as genetically and cytologically diploidized. 

However as of yet there are no studies on the formation of bivalents during meiosis; 

so whether the species’ are functionally diploid remains unclear. Research of the 

Hawaiian silversword alliance (Sakai et al., 1995), the Canarian Argyranthemum Webb 

(Asteraceae; Francisco‐Ortega et al., 1997) or Pacific sandalwoods (Harbaugh, 2008) 
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suggest a recent polyploidization prior to colonization. However, it is entirely 

unknown whether the colonizer spawning the polyploid Hawaiian lobeliads 

(Lammers, 1988; Kiehn, 2005) should be considered a neo-, meso- or paleopolyploid. 

Long term effects of polyploidization and the cytological mechanisms responsible for 

them are poorly understood (Wendel, 2015). While neopolyploids may exploit the 

effects of heterosis and gene redundancy (Comai, 2005), meso- and paleopolyploids 

may exploit ongoing diploidization to maintain genetic diversity over long periods of 

time (Hohmann et al., 2015). In fact there seems to be a correlation between increased 

genome downsizing, even beyond the size of the diploid ancestor, and increased 

diversification rates (Hohmann et al., 2015; Dodsworth et al., 2016). In Arabidospis 

thaliana (L.) Heybh. (n = 5) and several other Angiosperm species’ genome reduction 

during post-polyploidization diploidization has led to a small number of 

chromosomes and obscured several WGD events (Leitch and Bennett, 2004; 

Hohmann et al., 2015). The same might be the case in several Hawaiian lineages, 

possibly even including Melicope. Applying genomic methods to Hawaiian plant 

lineages is required to reliably identify polyploids, their origin and diversity. In 

addition, even identifying the trait as ‘polyploidy’ might be misleading. It is entirely 

plausible, that polyploidy is merely a ‘casualty’ of the actual trait: hybrid origin. All 

of the aforementioned neo- and mesopolyploid lineages are allopolyploid and 

hybridization is suspected to facilitate adaptive radiations (Seehausen, 2013). 

Seemingly non-polyploid colonizers spawning successful lineages may still be the 

result of a homoploid hybridization. It has been shown that homoploid hybrid 

speciation can rapidly reach stability, especially when spatially separated from the 

parents (Seehausen, 2004). While there are no investigations yet regarding 

hybridization within Hawaiian Melicope, M. mantellii Buchanan on New Zealand was 

suggested to be a hybrid of the closely related M. simplex A.Cunn. and M. ternata 

(Cockayne and Allan, 1934). If this is indeed true, it would constitute a case of 

homoploid hybrid speciation within the genus. Further investigations are needed to 

reach definitive conclusions regarding not just the trait polyploidy, but the entire 

pattern. Once we have clearly identified the pattern, we might find Hawaiian 

Melicope to meet it very well. 

Conclusion 

With successful colonizations of nearly all Pacific archipelagos, including the remote 

Hawaiian Islands in the East and Madagascar and the Mascarene Islands in the West, 

as well as the only known instance of two independent colonizations of the 

Marquesas Islands within a single genus, Melicope shows a very high dispersal 

ability. Characteristics of successful colonizers were identified as the genomic 
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flexibility a polyploidization event facilitates, herbaceousness, self-compatibility and 

high dispersal ability. Successful establishments are characterized by shifts to 

reduced dispersibility, outcrossing and secondary woodiness. In the case of Melicope 

the main driving factor for successful colonizations seems to be the adaption to bird 

dispersal. We have shown that the Hawaiian radiation of Melicope did not experience 

a recent polyploidization event prior to colonization of the islands. As the genus is 

woody and several lines show adaptions to outcrossing (i.e., dioecy), including the 

clade spawning the Hawaiian lineage, evolutionary shifts characteristic to 

establishment are observed in the entire genus, not merely in oceanic island lineages. 

In terms of reduced dispersibility on islands, the picture is not yet clear. Both an 

increase and a decrease in seed size have been observed, the latter being attributed to 

an adaption to bog habitats by Carlquist (1966c), but as to how this might affect 

dispersibility on a case by case basis is unclear. Future research of oceanic lineages 

will reveal, whether Melicope represent a lineage thriving on islands despite not 

expressing most traits associated with successful colonizations or if we have not yet 

identified important parts of the island evolution picture. 
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3. |  Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves 

species relationships and reveals ancient introgression 
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Abstract 

Hawaiian Melicope are one of the major adaptive radiations of the Hawaiian Islands 

comprising 54 endemic species. The lineage is monophyletic with an estimated 

crown age predating the rise of the current high islands. Phylogenetic inference 

based on Sanger sequencing has not been sufficient to resolve species or deeper level 

relationships. Here we apply Restriction-site Associated DNA sequencing (RAD-seq) 

to the lineage to infer phylogenetic relationships. We employ Quartet Sampling to 

assess information content, statistical support, and to quantify discordance as well as 

partitioned ABBA-BABA tests to uncover evidence of introgression. Our new results 

drastically improved resolution of relationships within Hawaiian Melicope. The 

lineage is divided into five fully supported main clades, two of which correspond to 

morphologically circumscribed infrageneric groups. We provide evidence for both 

ancestral and current hybridization events. We confirm the necessity for a taxonomic 

revision of the Melicope section Pelea, as well as a re-evaluation of several species 

complexes by combining genomic and morphological data. 
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3.1  Introduction 

Oceanic islands have long been a focal point of evolutionary studies as they represent 

a microcosm for examining the process of speciation. This microcosm is shaped by a 

combination of factors: (1) islands are geographically small and discrete units, 

sometimes far removed from continental landmasses; (2) colonizations or secondary 

arrivals are relatively infrequent, thus gene flow between the source areas and island 

systems is restricted; and (3) islands often have dynamic geological histories that give 

rise to extensively varying landscapes with numerous ecological niches (Emerson, 

2002; Price and Wagner, 2018). These factors can often lead to high levels of 

endemism, which is often the result of adaptive radiation of a limited number of 

colonizers (Price and Wagner, 2004; Losos and Ricklefs, 2009; Keeley and Funk, 

2011). Synthesizing the unique aspects of island evolution and extrapolating results 

to larger scales may allow us to better uncover general patterns and processes in 

evolution. Such phenomena include identifying factors affecting successful 

colonization and adaptive radiation (Carlquist, 1967, 1974; Paetzold et al., 2018), 

morphological or ecological shifts (e.g. “insular woodiness”, (Carlquist, 1974; Lens et 

al., 2013)), the spatiotemporal origins of lineages (Appelhans et al., 2018b), 

reconstructing colonization events (Harbaugh et al., 2009), and studying co-evolution 

(Roderick, 1997). These insights may result in further questions regarding taxonomy, 

species richness, medicinal or technical applications and conservation (e.g. Francisco-

Ortega et al., 2000). 

Adaptive radiations on islands are of special interest for connecting changes in 

morphology and ecology through time (Givnish, 1998), but require well-resolved 

phylogenies to do so. In the Hawaiian Islands, phylogenetic studies based on 

morphology and taxonomy have sometimes overestimated the number of 

colonization events, because high levels of morphological diversity led researchers to 

overestimate lineage diversity and the number of colonization events (Price and 

Wagner, 2018). In contrast, molecular phylogenetic studies have revealed that many 

enigmatic Hawaiian plant radiations colonized the islands only once followed by 

adaptive radiation: the Hawaiian lobeliads (Campanulaceae; Givnish et al., 2009), 

Psychotria (Rubiaceae; Nepokroeff et al., 2003), Silene (Caryophyllaceae; Eggens et al., 

2007), Touchardia/Urera (Urticaceae; Wu et al., 2013), and Melicope (Harbaugh et al., 

2009; Appelhans et al., 2014b). Polyploidization and hybridization events were also 

discovered to predate colonization and radiation in several island lineages, including 

the Hawaiian silverswords (Asteraceae; Baldwin and Sanderson, 1998; Barrier et al., 

1999) and mints (Lamiaceae; Roy et al., 2015) along with the pan-Pacific sandalwoods 



RAD-seq phylogeny of Hawaiian Melicope 

 

60 

(Santalaceae; Harbaugh, 2008) suggesting evolutionary success in young hybrid or 

polyploid colonists (Carr, 1998; Paetzold et al., 2018). 

Time-scaled phylogenies have revealed that most Hawaiian radiations are ≤5 Myr 

old, which corresponds to the age of the oldest current main islands, Kauaʻi and 

Niʻihau. This suggests a bottleneck for dispersal from older (and now largely 

submerged) leeward islands to the current main islands. However, there are several 

known exceptions of lineages older than 5 Myr, including Drosophila, damselflies, 

lobeliads, Zanthoxylum (Rutaceae), as well as Melicope (Price and Clague, 2002; Keeley 

and Funk, 2011; Appelhans et al., 2018b, 2018a). Most phylogenetic studies of 

Hawaiian flora, however, have relied on few sequenced loci, and have thus lacked 

sufficient power to resolve recent rapid radiations where hybridization, incomplete 

lineage sorting, and polyploidy may be common. Newer genomic tools are likely to 

provide more accurate estimates that may transform our understanding of island 

radiations. 

The genus Melicope comprises about 235 species of shrubs and trees distributed 

throughout SE Asia and Australasia, extending to the Mascarene Islands and 

Madagascar in the West and most of the Pacific Archipelagos in the East (Hartley, 

2001). There are 54 species of Melicope endemic to the Hawaiian Islands (Appelhans 

et al., 2017; Wood et al., 2017), 41 of which are single island endemics (Stone et al., 

1999). Hawaiian Melicope were initially placed in the genus Pelea together with 

species from the Marquesas Islands (Stone, 1969; Stone et al., 1999) but later 

incorporated into Melicope forming the majority of the section Pelea (Hartley, 2001). 

Hawaiian Pelea was divided into four sections based mainly on the grade of carpel 

connation: Apocarpa, Cubicarpa, Megacarpa, and Pelea. Since the incorporation of the 

genus Pelea into Melicope, these sections have not been formally recognized within 

the larger infrageneric taxonomy for Melicope as recognized by Hartley (2001), but are 

still being used informally as species groups (Appelhans et al., 2014b) and we refer to 

them as Stone’s sectional species groups (Stone’s sections) from here on. The most 

current recent and comprehensive taxonomic treatment of Hawaiian Melicope was 

considered ‘provisional’ by the authors (Stone et al., 1999), as species boundaries are 

difficult to define in some cases. Examples include three described species 

complexes, where the incorporated species vary from each other primarily in the 

degree of fruit pubescence; the M. elliptica complex based mainly in Oʻahu (6 

species), the Hawaiian based M. volcanica complex (4 species) and the Kauaʻi based 

M. kavaiensis complex (5 species) (Stone et al., 1999). 

In contrast to other successful island radiations, the colonization of the Hawaiian 

Archipelago in Melicope was not preceded by a recent polyploidization event. In 
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general, the genus Melicope shows a uniform chromosome number (Paetzold et al., 

2018). To date, phylogenetic relationships in Hawaiian Melicope have been 

investigated in four molecular studies (Harbaugh et al., 2009; Appelhans et al., 2014a, 

2014b, 2018b), with a combination of up to six nuclear and plastid genomic regions 

amplified using PCR. Hawaiian Melicope was shown to be derived from a single 

colonization event (Harbaugh et al., 2009). The origin of the lineage was dated to the 

Mid or Late Miocene (Appelhans et al., 2018b), predating the age of Kauaʻi and 

Niʻihau (Price and Clague, 2002). In addition, the Hawaiian endemic genus 

Platydesma is nested within Melicope as a monophyletic sister group to the Hawaiian 

species and has since been reduced (Appelhans et al., 2017). Statistically supported 

incongruences between individual genomic regions were not observed, yet the 

resolution of relationships within and among the clades was in general medium to 

poor (Harbaugh et al., 2009; Appelhans et al., 2014a, 2014b, 2018b). However, two 

independent Hawaiian origins of the Marquesan Melicope radiation, which 

encompasses 7 species, were inferred (Appelhans et al., 2014a, 2014b, 2018b). 

Restriction-site associated sequencing (RAD-seq; Baird et al., 2008; Miller et al., 2007) 

is among the most frequently used reduced representation methods employed in 

plant systematics. To date, most phylogenetic RAD-seq studies have focused mostly 

on populations or closely related species (Ree and Hipp, 2015; Díaz-Arce et al., 2016; 

Hodel et al., 2017). However, a simulated RAD investigation in Drosophila revealed 

the method to be potentially applicable in groups aged up to 60 million years (Rubin 

et al., 2012). Since then, application to deeper species-level relationships has 

increased (Eaton and Ree, 2013; Hipp et al., 2014; Eaton et al., 2017) facilitated by the 

development of RAD-seq assembly pipelines targeted at phylogenetic research 

(Eaton, 2014). 

Incongruence between datasets has been a long-standing occurrence in molecular 

phylogenetic inference, traditionally manifesting as incongruences between different 

gene trees. The advance of NGS technology has shown that the issue is not solved by 

merely incorporating more data (Jeffroy et al., 2006). There are three possible 

categories of confounding information in a phylogenetic study: noise, systematic 

error and an underlying biological signal. Noise is an effect of the inherently 

stochastic nature of sequence evolution and leads to a deterioration of phylogenetic 

signal over time. As such, noise most heavily impacts very small datasets and deep 

nodes (Misof et al., 2014). Incongruence may also reflect a true biological signal, e.g. 

the presence of incomplete lineage sorting (ILS) or non-tree-like evolution, i.e. 

introgression, hybridization, or recombination (Misof et al., 2014; Salichos et al., 2014) 

(Misof et al., 2014; Salichos et al., 2014). Effects of hybridization range from 
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introgression of individual alleles, organelle capture, to hybrid speciation (Currat et 

al., 2008; Stegemann et al., 2012; Twyford and Ennos, 2012). Either of these processes 

will result in discordant gene trees and several approaches have been proposed to 

unravel them. Based on the distributions of conflicting phylogenetic patterns in the 

genome, it is possible to distinguish the more stochastic signal of ILS from the 

directional and asymmetric signal of hybridization (Durand et al., 2011). 

Here we apply RAD-seq to Hawaiian Melicope, a lineage with a crown age of ca. 10 

Myr (Appelhans et al., 2018b). We use RAD-seq to infer species-level relationships in 

the lineage; in a phylogenetic context of several colonization events of individual 

islands, multiple possible bottlenecks and adaptive radiations within a lineage. The 

taxonomic implications of our phylogenetic results are discussed within the 

framework of evidence for both ancient and current introgression. 

 

3.2  Material & Methods 

Taxon Sampling 

Table 3.1 details the identity and origin of the 101 samples of this study; 6 outgroup 

and 95 ingroup specimens representing 41 Hawaiian species (81% of the lineage). 

Two samples represent the two independent colonization events to the Marquesas 

Islands (28% of Marquesan species). Taxonomic treatment follows species recognized 

in Wood et al. (2016) plus a recently described species (Wood et al., 2017) and 

including Platydesma (Appelhans et al., 2017). Additionally, morphologically 

divergent specimens of M. barbigera (KW16722, KW16718) and M. ovata (KW16762, 

KW17082, MA663) were included (Table 3.1, asterisk) to elucidate whether these 

might represent separate taxa. We also included two specimens, KW17111 and 

KW15733, which correspond closely, though not entirely to the description of M. 

wawraeana as delimited by Stone et al. (1999). Even the Oʻahu populations that were 

considered the core of M. wawraeana are variable, suggesting it is a potentially 

artificial taxon (Stone et al., 1999). Since the morphology of the two specimens did 

not correspond entirely to the Oʻahu populations considered to be M. wawraeana, we 

included them here as M. sp. (Table 3.1). 
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Table 3.1. | Samples within this study including origin, voucher placement and 

assignment to Stone’s sections. Asterisks mark morphologically deviating specimens. 

Samples in bold were used in parameter optimization. ORPF: cultivated at Olinda Rare 

Plant Facility.  

Species 
Stone’s 

section 

Collection number, 

Herbarium voucher 
Origin 

Melicope adscendens (H. St. 

John & E.P. Hume) T.G. 

Hartley & B. C. Stone 

Apocarpa 
Appelhans MA628 (silica 

sample only, ORPF) 
Maui 

Melicope anisata (H. Mann) T. G. 

Hartley & B. C. Stone 
Cubicarpa 

Appelhans MA665 (GOET, 

PTBG) 
Kauaʻi 

Melicope anisata (H. Mann) T. G. 

Hartley & B. C. Stone 
Cubicarpa 

Appelhans MA668 (GOET, 

PTBG, US) 
Kauaʻi 

Melicope balloui (Rock) 

T.G.Hartley & B.C.Stone 
Megacarpa Wood KW7685 (PTBG) Maui 

Melicope barbigera A. Gray  Apocarpa 
Appelhans MA666 (BISH, 

GOET, PTBG, US) 
Kauaʻi 

Melicope barbigera A. Gray  Apocarpa Wood KW15333 (PTBG) Kauaʻi 

Melicope barbigera A. Gray  Apocarpa Wood KW15449 (PTBG) Kauaʻi 

Melicope barbigera A. Gray  Apocarpa Wood KW15961 (PTBG) Kauaʻi 

Melicope barbigera* A. Gray Apocarpa Wood KW16722 (PTBG) Kauaʻi 

Melicope barbigera* A. Gray  Apocarpa Wood KW16718 (PTBG) Kauaʻi 

Melicope christophersenii (H. St. 

John) T. G. Hartley & B. C. 

Stone  

Megacarpa 
Appelhans MA618 (BISH, 

GOET, PTBG, US) 
Oʻahu 

Melicope christophersenii (H. St. 

John) T. G. Hartley & B. C. 

Stone  

Megacarpa 

Appelhans MA621 (silica 

sample only, cultivated at 

Puʻu Kaʻala) 

Oʻahu 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Appelhans MA615 (GOET, 

PTBG) 
Oʻahu 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA617 Oʻahu 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA634 (PTBG) Maui 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Appelhans MA650 (GOET, 

PTBG, US) 
Maui 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Appelhans MA651 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Appelhans MA655 (silica 

sample only) 
Maui 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Appelhans MA657 (GOET, 

PTBG, US) 
Maui 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA670 Kauaʻi 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA672 Kauaʻi 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA693 Hawaiʻi 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Appelhans MA695 Hawaiʻi 
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Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea 

Oppenheimer s.n. (silica 

sample only) 
Maui 

Melicope clusiifolia (A. Gray) 

T. G. Hartley & B. C. Stone  
Pelea Oppenheimer H91641 (US) Lānaʻi 

Melicope clusiifolia (A. Gray) T. 

G. Hartley & B. C. Stone  
Pelea Wood KW16146 (PTBG) Kauaʻi 

Melicope clusiifolia (Gray) 

T.G.Hartley & B.C.Stone 
Pelea Appelhans MA675 Kauaʻi 

Melicope cornuta (Hillebr.) 

Appelhans, K.R.Wood & 

W.L.Wagner 

Platydesma Ching s.n. (silica sample only) Oʻahu 

Melicope cornuta var. decurrens 

(B.C. Stone) Appelhans, K.R. 

Wood & W.L. Wagner 

Platydesma 
Takahama s.n. (silica sample 

only) 
Oʻahu 

Melicope cruciata (A. Heller) 

T.G. Hartley & B.C. Stone 
Megacarpa Wood KW16251 (PTBG) Kauaʻi 

Melicope degeneri (B.C.Stone) 

T.G.Hartley & B.C.Stone 
Cubicarpa Wood KW15903 (PTBG) Kauaʻi 

Melicope degeneri (B.C.Stone) 

T.G.Hartley & B.C.Stone 
Cubicarpa Wood KW15984 (PTBG) Kauaʻi 

Melicope feddei (H. Lév.) T. G. 

Hartley & B. C. Stone 
Megacarpa 

Appelhans MA688 (BISH, 

GOET, PTBG, US) 
Kauaʻi 

Melicope feddei (H. Lév.) T. G. 

Hartley & B. C. Stone 
Megacarpa Wood KW15844 (PTBG) Kauaʻi 

Melicope haleakalae (B. C. 

Stone) T. G. Hartley & B. C. 

Stone  

Pelea 
Appelhans MA645 (BISH, 

GOET, PTBG) 
Maui 

Melicope haleakalae (B. C. Stone) 

T. G. Hartley & B. C. Stone  
Pelea 

Appelhans MA646 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope haupuensis (H. St. 

John) T. G. Hartley & B. C. 

Stone 

Apocarpa Appelhans MA687 (BISH) Kauaʻi 

Melicope haupuensis (H. St. John) 

T. G. Hartley & B. C. Stone 
Apocarpa Wood KW16791 (PTBG) Kauaʻi 

Melicope haupuensis (H. St. John) 

T. G. Hartley & B. C. Stone 
Apocarpa Wood KW16794 (PTBG) Kauaʻi 

Melicope hawaiensis (Wawra) 

T.G.Hartley & B.C.Stone  
Apocarpa 

Appelhans MA633 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope hawaiensis (Wawra) 

T.G.Hartley & B.C.Stone  
Apocarpa Appelhans MA700 Hawaiʻi 

Melicope hawaiensis (Wawra) 

T.G.Hartley & B.C.Stone  
Apocarpa 

Oppenheimer s.n. (silica 

sample only) 
Maui 

Melicope hiiakae (B.C.Stone) 

T.G.Hartley & B.C.Stone 
Megacarpa Ching s.n. (silica sample only) Oʻahu 

Melicope hivaoaensis J.Florence  Meyer 826 

Hivaoa, 

Marquesas 

Islands 

Melicope inopinata J.Florence  Meyer 887 

Hivaoa, 

Marquesas 

Islands 
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Melicope kavaiensis (H. Mann) 

T. G. Hartley & B. C. Stone 
Megacarpa 

Appelhans MA679 (BISH, 

GOET, PTBG, US) 
Kauaʻi 

Melicope knudsenii (Hillebr.) 

T.G. Hartley & B.C. Stone 
Apocarpa 

Appelhans MA629 (silica 

sample only, ORPF) 
Maui 

Melicope knudsenii (Hillebr.) 

T.G. Hartley & B.C. Stone 
Apocarpa Oppenheimer H41610 (BISH) Maui 

Melicope knudsenii (Hillebr.) 

T.G. Hartley & B.C. Stone 
Apocarpa Wood KW17119 (PTBG) Kauaʻi 

Melicope lydgatei (Hillebr.) T.G. 

Hartley & B.C. Stone  
Megacarpa Ching s.n. (silica sample only) Oʻahu 

Melicope makahae (B. C. 

Stone) T. G. Hartley & B. C. 

Stone 

Apocarpa 
Takahama s.n. (silica sample 

only) 
Oʻahu 

Melicope makahae (B. C. Stone) T. 

G. Hartley & B. C. Stone (cf.) 
Apocarpa 

Appelhans MA609 (GOET, 

PTBG) 
Oʻahu 

Melicope molokaiensis (Hillebr.) 

T. G. Hartley & B. C. Stone  
Megacarpa 

Appelhans MA635 (BISH, 

GOET, PTBG) 
Maui 

Melicope molokaiensis (Hillebr.) 

T. G. Hartley & B. C. Stone  
Megacarpa 

Appelhans MA643 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope molokaiensis 

(Hillebr.) T. G. Hartley & B. 

C. Stone  

Megacarpa 
Oppenheimer s.n. (silica 

sample only) 
Maui 

Melicope mucronulata (H. St. 

John) T.G. Hartley & B.C. 

Stone 

Apocarpa 
Appelhans MA630 (silica 

sample only, ORPF) 
Maui 

Melicope munroi (St.John) 

T.G.Hartley & B.C.Stone 
Megacarpa 

Oppenheimer s.n. (silica 

sample only) 
Lānaʻi 

Melicope oahuensis (H. Lév.) T. 

G. Hartley & B. C. Stone 
Cubicarpa 

Appelhans MA610 (BISH, 

GOET, PTBG, US) 
Oʻahu 

Melicope oahuensis (H. Lév.) T. 

G. Hartley & B. C. Stone 
Cubicarpa Ching s.n. (silica sample only) Oʻahu 

Melicope oppenheimeri 

K.R.Wood, Appelhans & 

W.L.Wagner 

Megacarpa Wood KW7419 (PTBG) Maui 

Melicope oppenheimeri 

K.R.Wood, Appelhans & 

W.L.Wagner 

Megacarpa Wood KW7408 (PTBG) Maui 

Melicope orbicularis (Hillebr.) T. 

G. Hartley & B. C. Stone  
Megacarpa 

Appelhans MA656 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope orbicularis (Hillebr.) T. 

G. Hartley & B. C. Stone  
Megacarpa 

Appelhans MA659 (GOET, 

PTBG) 
Maui 

Melicope ovalis (St.John) 

T.G.Hartley & B.C.Stone 
Cubicarpa Wood KW13724 (PTBG) Maui 

Melicope ovata (H. St. John & 

E. P. Hume) T. G. Hartley & 

B. C. Stone  

Apocarpa 
Appelhans MA662 (GOET, 

PTBG, US) 
Kauaʻi 

Melicope ovata (H. St. John & E. 

P. Hume) T. G. Hartley & B. 

C. Stone  

Apocarpa 
Appelhans MA684 (BISH, 

GOET) 
Kauaʻi 
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Melicope ovata* (H. St. John & E. 

P. Hume) T. G. Hartley & B. 

C. Stone  

Apocarpa 
Appelhans MA663 (BISH, 

GOET, PTBG, US) 
Kauaʻi 

Melicope ovata* (H. St. John & E. 

P. Hume) T. G. Hartley & B. 

C. Stone  

Apocarpa Wood KW17082 (PTBG) Kauaʻi 

Melicope ovata* (H. St. John & E. 

P. Hume) T. G. Hartley & B. 

C. Stone  

Apocarpa Wood KW16762 (PTBG) Kauaʻi 

Melicope pallida (Hillebr.) T. G. 

Hartley & B. C. Stone 
Apocarpa 

Appelhans MA689 (silica 

sample only) 
Kauaʻi 

Melicope pallida (Hillebr.) T. G. 

Hartley & B. C. Stone 
Apocarpa Wood KW16789 (PTBG) Kauaʻi 

Melicope pallida (Hillebr.) T. G. 

Hartley & B. C. Stone 
Apocarpa Wood KW15571 (PTBG) Kauaʻi 

Melicope paniculata (H. St. 

John) T. G. Hartley & B. C. 

Stone 

Cubicarpa 

Perlman 19387 (PTBG) = 

Appelhans MA660 (silica 

sample) 

Kauaʻi 

Melicope paniculata (H. St. John) 

T. G. Hartley & B. C. Stone 
Cubicarpa Wood KW16155 (PTBG) Kauaʻi 

Melicope peduncularis (H. Lév.) 

T. G. Hartley & B. C. Stone 
Cubicarpa 

Appelhans MA652 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope peduncularis (H. Lév.) 

T. G. Hartley & B. C. Stone 
Cubicarpa 

Appelhans MA653 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope pseudoanisata (Rock) 

T.G. Hartley & B.C. Stone  
Megacarpa 

Appelhans MA632 (silica 

sample only, ORPF) 
Maui 

Melicope pseudoanisata (Rock) 

T.G. Hartley & B.C. Stone  
Megacarpa 

Appelhans MA636 (silica 

sample only) 
Maui 

Melicope pseudoanisata (Rock) 

T.G. Hartley & B.C. Stone  
Megacarpa 

Appelhans MA642 (GOET, 

PTBG, US) 
Maui 

Melicope puberula (H. St. John) 

T. G. Hartley & B. C. Stone 
Megacarpa 

Appelhans MA680 ( GOET, 

PTBG, US) 
Kauaʻi 

Melicope puberula (H. St. John) 

T. G. Hartley & B. C. Stone 
Megacarpa Wood KW16058 (PTBG) Kauaʻi 

Melicope radiata (H. St. John) T. 

G. Hartley & B. C. Stone  
Megacarpa Appelhans MA696 Hawaiʻi 

Melicope rostrata (Hillebr.) 

Appelhans, K.R. Wood & 

W.L. Wagner 

Platydesma 
Appelhans MA683 (BISH, 

GOET) 
Kauaʻi 

Melicope rotundifolia (A. 

Gray) T.G. Hartley & B.C. 

Stone 

Megacarpa 
Ching s.n. (silica sample 

only) 
Oʻahu 

Melicope sandwicensis (Hook. & 

Arn.) T.G. Hartley & B.C. 

Stone 

Apocarpa Ching s.n. (silica sample only) Oʻahu 

Melicope sessilis (H. Lév.) T. G. 

Hartley & B. C. Stone 
Megacarpa 

Appelhans MA644 (BISH, 

GOET, PTBG, US) 
Maui 

Melicope sp. (Rock) T.G.Hartley 

& B.C.Stone 
Megacarpa Wood KW17111 (PTBG) Kauaʻi 

Melicope sp. (Rock) T.G.Hartley 

& B.C.Stone 
Megacarpa Wood KW15733 (PTBG) Kauaʻi 
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Melicope spathulata A. Gray Platydesma Appelhans MA697 Hawaiʻi 

Melicope spathulata A. Gray Platydesma Wood KW16743 (PTBG) Kauaʻi 

Melicope spathulata A. Gray Platydesma Wood KW16836 (PTBG) Kauaʻi 

Melicope stonei K.R.Wood, 

Appelhans & W.L.Wagner 
Apocarpa Appelhans MA691 Kauaʻi 

Melicope stonei K.R.Wood, 

Appelhans & W.L.Wagner 
Apocarpa Wood KW16727 (PTBG) Kauaʻi 

Melicope volcanica (A. Gray) T.G. 

Hartley & B.C. Stone (cf.) 
Megacarpa 

Oppenheimer s.n. (silica 

sample only) 
Lānaʻi 

Melicope waialealae (Wawra) 

T.G.Hartley & B.C.Stone 
Pelea Wood KW16015 (PTBG) Kauaʻi 

outgroup    

Melicope aneura (Lauterb.) 

T.G.Hartley 
 Appelhans MA418 (LAE, US) 

Papua New 

Guinea 

Melicope brassii T.G.Hartley  Appelhans MA436 (LAE, US) 
Papua New 

Guinea 

Melicope durifolia (K.Schum.) 

T.G.Hartley 
 Appelhans MA455 (LAE, US) 

Papua New 

Guinea 

Melicope durifolia (K.Schum.) 

T.G.Hartley 
 Appelhans MA465 (LAE, US) 

Papua New 

Guinea 

Melicope polyadenia Merr. & 

L.M.Perry 
 Appelhans MA438 (LAE, US) 

Papua New 

Guinea 

Melicope triphylla Merr.  Appelhans MA394 (GOET) 

cultivated 

Hortus 

Botanicus 

Leiden 

 

RAD library preparation 

DNA was extracted from silica-dried material using the Qiagen DNeasy Plant Mini 

Kit® (Qiagen, Hilden, Germany) as per the manufacturer’s instructions with 

incubation in lysis buffer elongated to two hours. DNA concentration was measured 

using the Qubit® fluorometer and the Qubit® dsDNA BR Assay Kit (ThermoFisher 

Scientific, Darmstadt, Germany) and adjusted to 30 ng/µl. Floragenex Inc. (Portland, 

Oregon, USA) generated RAD libraries using the restriction enzyme SfbI. Employing 

a method following Baird et al. (2008), including the use of sample-specific barcodes, 

the samples were sequenced on an Illumina® GAIIx platform to produce 100 bp 

single-end reads.  

RAD locus assembly 

Quality of raw reads was checked using FastQC (Andrews, 2010). The program 

ipyrad v.0.7.21 (Eaton, 2014) was used to demultiplex raw reads allowing a mismatch 

of 1 bp. Raw reads were trimmed using cutadapt v.1.9.1 (Martin, 2011) as 

implemented in ipyrad by removing adapter sequences, trimming bases with Phred-

Scores < 30 and removing reads shorter than 35 bp after trimming. Trimmed reads 

were assembled de novo using the ipyrad pipeline. The software attempts to evaluate 
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orthology by scoring alignments of reads or sequences, as opposed to assessing 

purely sequence identity (Eaton, 2014). The alignment score is the user-determined 

clustering threshold to be met. To reduce the risk of introducing assembly error to 

our dataset, we performed a modified clustering optimization approach (Paris et al., 

2017). We iterated over core clustering parameters and plotted assembly matrices 

(cluster depth, heterozygosity, number of putatively paralogous loci, number of 

SNPs) to identify parameters introducing excessive assembly errors (Paetzold et al., 

unpublished; Paris et al., 2017). In addition, we optimized the clustering of reads 

within each individual sample and the clustering of consensus sequences across loci 

separately, reasoning that the divergence found within each individual genome 

might be significantly different from the ca. 10 Myr of divergence (Appelhans et al., 

2018b) within the lineage as a whole. Thus, the assembly was generated using a 

clustering threshold of 95 for in-sample-clustering and 90 for between-sample-

clustering. Final filtering of loci was performed for values 10, 32, 50, 67 and 85 as the 

minimum number of samples per locus. 

Phylogenetic inference & Quartet sampling 

Phylogenetic inference was performed on all resulting alignments using Maximum 

Likelihood (ML) and Bayesian inference (BI). As individual loci are very short and 

may comprise a high fraction of missing data, a partitioned analysis is neither 

computationally feasible nor expected to produce reliable results. Thus, all datasets 

were analyzed solely concatenated. ML was performed using ExaML v3.0.2 (Kozlov 

et al., 2015) using the new rapid hill-climbing algorithm, a random number seed, the 

GAMMA model of rate heterogeneity and using the median for discrete 

approximation of rate heterogeneity. For datasets containing a minimum number of 

10, 32 and 50 samples, the memory saving option for gappy alignments was activated 

(-S). Parsimony starting trees were generated using RAxML v8.2.4 (Stamatakis, 2014). 

RAxML was also used to generate 100 bootstrap replicate alignments and their 

corresponding Parsimony Starting Trees. ExaML searches were run on every 

replicate alignment with the above-mentioned settings.  

BI was performed using ExaBayes v 1.5 (Aberer et al., 2014). Four independent runs 

were carried out with a convergence stopping criterion (split frequencies average 

<5% in three subsequent generations) and for a minimum of 100,000 generations 

sampling every 100th generation under the GTR + I + G model. Majority rule 

consensus trees were drawn on topologies of all four runs combined after the first 

25% was discarded as burn-in.  

Analysis of large-scale, concatenated datasets can result in erroneous relationships 

with high bootstrap support because of a failure to model the effects of ILS 
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(Gadagkar et al., 2005; Kubatko and Degnan, 2007; Seo, 2008). These effects can be 

driven by only a few loci (Shen et al., 2017) and especially pertain to short branches 

(Kumar et al., 2012). On the other hand, a simulation study has shown, that 

concatenated analysis of datasets containing loci with anomalous gene trees will 

more likely result in unresolved species tree topologies, rather than highly supported 

false ones (Huang and Knowles, 2009).  

Methods implementing the Multispecies Coalescent Model (MSC) explicitly 

incorporate gene tree conflict into species tree inference and are thus more robust to 

ILS than concatenation approaches (Kubatko and Degnan, 2007), but are often 

intractable for large datasets (Liu et al., 2015). Summary methods of species tree 

inference under the MSC e.g., ASTRAL (Mirarab et al., 2014b) or NJst (Liu and Yu, 

2011), are based on the analysis of individual gene trees and have become popular 

due to their comparative speed and accuracy. However, the limited information 

content of individual RAD loci often limits their application for gene tree inference, 

which may negatively impact species tree estimation (Salichos and Rokas, 2013; 

Mirarab et al., 2016). Alternatively, site-based methods avoid estimation of gene 

trees, instead using SNP data directly, and so are expected to be well suited to short, 

low-variability loci (Molloy and Warnow, 2018). We employed the SVDQuartets 

method, which infers quartet trees from SNPs using phylogenetic invariant patterns 

under the coalescent model and then infers the species tree by quartet joining of the 

subtrees using algebraic statistics (Chifman and Kubatko, 2014). We converted the 

SNP datasets into nexus format using the Ruby script convert_vcf_to_nexus.rb 

(Matschiner, 2019). The SVDQuartets analysis was computed as implemented in the 

software PAUP*4.0a (Swofford, 2002, 2018). We analysed 250,000 randomly selected 

quartets and assessed statistical support using 100 non-parametric bootstrap support 

replicates. For ambiguous positions in the SNP matrix, we chose the “Distribute” 

option, as these positions represent heterozygous sites.  

To estimate the robustness of resolved relationships, we employed the Quartet 

Sampling method, which aims to measure branch support in large sparse alignments 

(Pease et al., 2018). As each internal branch divides all samples within a phylogeny 

into four non-overlapping subsets, the method randomly samples one taxon per 

subset to produce a quartet phylogeny. The topology of each quartet is either 

concordant with the tree topology or discordant. Discord is measured and quantified 

to produce four metrics - Quartet Concordance (QC), Quartet Differential (QD), 

Quartet Informativeness (QI), and Quartet Fidelity (QF) – allowing effective 

assessment of branch-related (QC, QD, QI) and taxon-related (QF) discordance in the 

dataset (Pease et al., 2018). The method is implemented in the python script 
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quartet_sampling.py (https://www.github.com/fephyfofum/quartetsampling).We 

performed quartet sampling on all datasets and the respectively resolved topologies 

using 500 replicates per branch with a minimum required overlap of 300,000 bp in 

the min10, min32, min50 and min67 concatenated datasets. The minimum overlap 

was lowered to 140,000 bp in the min85 concatenated dataset, as otherwise 5 samples 

would have been excluded from the analysis.  

Test for introgression 

The D-statistics (Durand et al., 2011) is a site-based test for introgression. In a four-

taxon topology (((P1, P2), P3), O), a derived allele in the P3 lineage is expected to 

occur also in either P1 or P2 with equal frequency, giving rise to either an ABBA or 

BABA discordant site pattern (Durand et al., 2011).  

 

 

Figure 3.1. | The principle of five-taxon D-statistics test. Biallelic site patterns are quantified, which 

support or contradict the underlying symmetric phylogeny. Asymmetry of discordant site patterns is 

quantified to calculate three separate D-statistics characterizing introgression from the P31 taxon (D1), 

the P32 taxon (D2) or their common ancestor (D12) into the taxa designated P1 and P2 (Eaton and Ree, 

2013). 

A statistically significant imbalance in these site pattern frequencies provides 

evidence of introgression, while equal frequencies are associated with neutral 

processes like ILS. Unfortunately, this test is not well suited for deeper evolutionary 

time scales, where the P3 lineage has diverged into multiple sub-lineages, and it also 

does not allow inference of direction of introgression. Partitioned D-statistics are a 

system of multiple four-taxon D-statistics in a symmetric, five-taxon phylogeny with 
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the ingroup taxa forming two pairs (P1, P2) and (P31, P32) and an outgroup taxon (O) 

(Figure 3.1) (Eaton and Ree, 2013). The partitioned D-statistics identifies sites, in 

which either or both of the P3 lineages share a derived allele with either P1 or P2, but 

not both (Figure 3.1) (Eaton and Ree, 2013).  

We used partitioned D-statistics to infer whether discordant relationships inferred 

between major clades (see below) are caused by ILS or introgression. We defined 

entire clades as lineages and tested all combinations obeying the symmetric 

topology.  

 

3.3  Results 

Raw data and assembly 

Illumina Sequencing yielded an average of 10,439,082 reads per sample (342,914 - 

34,663,109). After quality trimming an average of 10,327,562 reads per sample 

(271,257 - 34,542,777) were left. The assembled dataset contained a total of 786,169 

clusters prior to filtering by sample coverage. Filtering reduced the number of loci by 

over 90 % (Table 2). The final datasets contained between 7,266 (min85) and 59,041 

(min10) loci. The number of variable sites (SNPs) ranged from 529,045 (min10) to 

82,760 (min85) (Table 3.2). 

Table 3.2. | Differences between the number of loci, their concatenated length and the 

number of SNPs resulting from filtering by minimum samples per locus (10, 32, 50, 67 

and 85).  

 total min10 min32 min50 min67 min85 

number of loci 786,169 59,041 36,622 30,801 23,401 7,266 

concatenated 

length (bp) 
NA 4,800,367 2,986,760 2,506,242 1,892,473 584,086 

number of 

SNPs 
NA 529,045 385,871 332,935 256,276 82,760 
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Phylogenetic Inference 

All five final datasets were used for phylogenetic inference in concatenated BI, ML, 

and SVDquartets analyses. Statistical support for inferred relationships was assessed 

using Posterior Probabilities (PP), Nonparametric Bootstrap (ML-NBS, SVD-NBS) 

and Quartet Sampling. Analyses of the five datasets resulted in mostly congruent 

relationships, with few exceptions (see below). NBS and PP values are very high 

across the trees. QI values are high for all nodes (>0.9), and QF scores average 

between 0.83 and 0.88 across datasets. Figure 2 shows the result of phylogenetic 

inference in the concatenated min32 dataset.  

Hawaiian Melicope are divided into five main clades corresponding to those 

previously resolved by Appelhans et al. (2014b). These five clades are fully 

supported by all statistical methods. The former genus Platydesma represents the 

earliest diverging lineage (clade V; Figure 3.2). Clade IV corresponds to Stone’s 

section Pelea, characterized by whorled leaves. The remaining Stone’s sections appear 

to be non-monophyletic. Species ascribed to Stone’s section Apocarpa are resolved as 

two independent lineages (Clades II and III). Clade I comprises all species of Stone’s 

sections Cubicarpa and Megacarpa intermingled (Figure 3.2). Relationships of clade III 

were resolved incongruently between datasets and analyses. BI and ML analyses 

resolved clade III as sister to clade IV, and the resulting monophyletic lineage again 

in a sister-group relationship to clades I + II with maximum PP and high ML-NBS 

support in four of the datasets (min10, min32, min50, min85), yet with some discord 

detected by Quartet Sampling. (Figure 3.2, Figure 3.3, Supplemental Figures 3.1, 3.2, 

3.4). The concatenated min67 dataset resolves clade III as sister to clades I + II, and 

clade IV as sister to clades I + II + III (Supplemental Figure 3.3) with medium 

statistical support. Coalescent based SVDQuartets analysis of SNP datasets resolved 

a third alternative topology. Here, clade II is resolved as sister to clade III and the 

resulting lineage is sister to clades I + IV. This topology receives medium to low SVD-

NBS support across all SNP datasets, as well as medium to high negative QC values, 

indicating substantial counter-support for this relationship (Supplemental Figures 

3.1-3.9). 

The relationship of clade III is highly discordant over quartet replicates 

(Supplemental Figure 3.3). Across all datasets, the discord detected by Quartet 

Sampling for the ancestral branch is skewed favoring one of the tested alternative 

quartet topologies (QD; Figure 3.3, Supplemental Figures 3.1-3.9). The remaining 

relationships within individual clades are fully resolved, improving resolution to the 

species and intraspecies level (Figure 3.2). The majority of all Hawaiian Melicope are 

resolved in clade I and relationships among species show many nodes with notable 

discord and very short branches (Figure 3.2). Most of the nodes show low QC and 

medium to low QD values (Figure 3.3). 



RAD-seq phylogeny of Hawaiian Melicope 

 

73 

 

 

Figure 3.2. | Phylogeny of Hawaiian Melicope based on the concatenated min32 dataset. 

Bayesian posterior probability (pp) values are indicated above, ML nonparametric 

bootstrap support (ML-NBS) below branches. Support values are not shown for 

maximally supported clades (1.00pp/100BS). A Hashtag (#) represents incongruent 

species relationships between Bayesian and ML analysis. Clade colours and line 

drawings correspond to morphologically limited Stone’s sections. Bold samp les 

represent Marquesan species. Asterisks mark specimens differing morphologically from 

the typical representatives of these species. Purple arrows mark putative introgression 

events.  
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Figure 3.3. | Phylogeny of Hawaiian Melicope based on the min32 dataset. Quartet 

sampling results (Quartet concordance (QC)/Quartet Differential (QD)/Quartet 

Informativeness (QI)) are indicated on branches, Quartet Fidelity (QF) values behind 

samples. Nodes are colored according to QC & QD values. Results are not shown for 

branches with QC > 0.9. Lowest QF values are highlighted. Outgroup specimens are 

removed for graphical purposes. All outgroup relationships receive maximum QC 

values (1/-/1).  

Three samples show incongruent relationships between datasets. This pertains to the 

Marquesan M. hivaoaensis, which is resolved in clade I as either sister to the 

remaining species (Supplemental Figures 3.3-3.9) within the clade or diverging prior 

to M. lydgatei (Figures 3.2, 3.3, Supplemental Figures 3.1, 3.2) as well as to M. 

kavaiensis and M. sp. KW15773 (Figure 3.3, Supplemental Figures 3.1-3.9). In all 

datasets, QC values show high discord or even counter-support for the placement of 

these three specimens. However, while QD and QF values are high for M. hivaoaensis, 
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for both M. kavaiensis and M. sp. KW15773, QD values are low and QF scores are 

below average (0.47-0.6 for M. kavaiensis) (Figure 3.3, Supplemental Figures 3.1-3.9). 

The remaining relationships in clade I are congruent among all concatenation based 

analyses. Site-specific coalescence analysis however resolved largely incongruent 

relationships for taxa in this clade, especially pertaining to the most recent 

divergences. The inferred relationships receive medium to very low SVD-NBS values 

and show a high amount of discord in quartet sampling (Supplemental Figures 3.5-

3.9).  

Clades III and IV are subdivided into two subclades each. Most species sampled with 

multiple accessions are resolved as monophyletic with high support and no discord 

detected in quartet sampling. Exceptions are M. clusiifolia, M. haupuensis, M. 

knudsenii, and M. feddei. Melicope clusiifolia is resolved paraphyletic with respect to M. 

haleakalae, which is nested within clade IVB with high to maximum support. 

Specimens of M. haupuensis are resolved as polyphyletic within clade IIIB. The 

relationships among the three sampled taxa are not resolved consistently across 

datasets and poorly supported. Quartet sampling reveals a high level of discord and 

below-average QF scores (Figure 3.3, Supplemental Figures 3.1-3.9). Melicope 

knudsenii is also resolved as polyphyletic with two Maui specimens (MA629, H41610) 

monophyletic in clade IIIA, while the third sample from Kauaʻi (KW17119) is 

resolved as sister to M. barbigera in clade IIIB (Figure 3.2). Either relationship is 

virtually uncontested (Figures 3.2, 3.3, Supplemental Figures 3.1-3.9). Melicope feddei 

is paraphyletic with respect to one of the Kauaʻi M. wawraeana-like specimens 

(KW17111). The three individuals form a fully supported, monophyletic unit (Figures 

3.2, 3.3, Supplemental Figures 3.1-3.9). 

None of the three species complexes (M. elliptica, M. kavaiensis, and M. volcanica 

complexes) are resolved as monophyletic. Species of both, the M. kavaiensis and M. 

volcanica complexes, are resolved in clade I (Figure 3.2) in proximity to each other, 

but not sister to each other. Species of the M. elliptica complex are resolved in 

different subclades of clade III (Figure 3.2). Both, M. barbigera and M. ovata were 

resolved as monophyletic and the morphologically divergent specimens (Table 3.1, 

asterisk) are resolved as sister clades to the samples with the typical morphology of 

the respective species with high support (Figure 3.2).  

The species from the Marquesas Islands are deeply nested within the Hawaiian 

clade. Melicope inopinata is resolved in clade III as sister to the rest of subclade IIIA. 

Melicope hivaoaensis represents a group of six morphologically similar species that 

form a highly supported monophyletic clade (Appelhans et al., 2014b, 2018b) and is 

nested within clade I here (Figure 3.2).  
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Test for Introgression 

The min32 dataset was used for the ABBA-BABA test, since it produced the highest 

number of fully supported nodes. The tree topology in Figure 2 was chosen to 

represent the species tree topology, as it was recovered by the majority of analyses. 

The D-statistics were only used to test the incongruent position of clade III as for 

incongruent species within clade I, the sampling of the respective populations is not 

sufficient to draw reliable conclusions. Samples within clades were pooled and single 

nucleotide polymorphism (SNP) frequencies were used for D-statistic calculations 

(Durand et al. 2011). All possible relationships complying with the D-statistic 

assumptions were tested. A total of 24,673 loci covered at least one-third of all 

samples per clade and thus, contributed to the test results. Table 3 summarizes the 

tested topologies and inferred partitioned D-statistics. When clades III and IV are 

tested as donors for introgressed loci, values for D12 are small and not significant (Z12 

< 2.55), while values for D1 and D2 are significant, respectively. For tests with either of 

the clades I and II designated as P3 lineages, D12, as well as D1 and D2, are all 

significant (Table 3.3). For all tested configurations, the dataset exhibits more than 

3,000 discordant site patterns (Table 3.3).  

Table 3.3. | Partitioned D-statistics for introgression involving clades I -IV. Z scores ≥ 

2.55 represent a significant value for Dx.  The respective numbers of concordant and 

discordant site patterns are listed. Clade numbers refer to those in Figure 2 and the 

group they are assigned to in the partitioned D-statistics test is indicated (compare 

Figure 1). (O = outgroup).  

((P1, P2),(P31, P32), O) D12 Z12 n ABAAA n BABBA 

((I, II), (III, IV), V&O) 0.020 0.95 809.84 778.1 

((I, II), (IV, III), V&O) -0.020 0.96 778.1 809.84 

((IV,III), (I, II), V&O) 0.066 3.28 1273.58 1115.49 

((IV, III), (II, I), V&O) -0.066 3.29 1273.58 1115.5 
     

((P1, P2),(P31, P32), O) D1 Z1 n ABBAA n BABAA 

((I, II), (III, IV), V&O) 0.276 8.48 261.01 437.67 

((I, II), (IV, III), V&O) -0.276 8.17 437.67 261.01 

((IV,III), (I, II), V&O) -0.242 7.07 403.07 222.05 

((IV, III), (II, I), V&O) 0.290 7.61 271.16 444.45      

((P1, P2),(P31, P32), O) D2 Z2 n ABABA n BAABA 

((I, II), (III, IV), V&O) -0.253 7.08 505.48 286.73 

((I, II), (IV, III), V&O) 0.253 7.05 286.73 505.48 

((IV,III), (I, II), V&O) 0.290 7.57 271.16 444.45 

((IV, III), (II, I), V&O) -0.242 7.24 403.06 222.05 
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3.4  Discussion 

Phylogeny and Introgression 

Analysis of ipyrad assemblies consistently resolved five major clades within 

Hawaiian Melicope (Figure 3.2). However, the relationships of clade III were 

incongruent among the five datasets and analysis methods (Figure, 3.2, 

Supplemental Figures 3.1-3.9). Incongruence between datasets may be caused by one 

of three factors: noise, ILS, or non-tree-like evolution. As noise is expected to impact 

small datasets and deep nodes most severely (Misof et al., 2014), it is unlikely a 

sufficient cause of the incongruence observed here, since our RAD-seq alignments 

are substantial in size (Table 3.2) and the remaining deep nodes are not affected.  

The QD values of the branch illustrate that one of the discordant topologies is 

inferred significantly more often (0.0-0.4; Figure 3.3, Supplemental Figures 3.1-3.9), 

which indicates non-tree-like evolution as the cause for the discord. Thus, we used 

the partitioned D-statistics to test for signals of ancient introgression between clades I 

through IV with all clades tested as putative donor (P3) lineages. In all cases, values 

for D1 and D2 were each significant, yet values for D12 were only significant when 

clades I and II were defined as P3 (Table 3.3). Positive values of D1 represent 

introgression between P2 and P31, while negative values indicate introgression 

between P1 and P31, and values for D2 represent events analogous for P32 and P2 

(Eaton and Ree, 2013; Pease and Hahn, 2015). The significant values for D1 and D2 

indicate introgression between the respective ancestors of clades I and IV as well as 

between respective ancestors of clades II and III. Significant values for D12 represent 

shared ancestral alleles from the clade I+II progenitor introduced into the respective 

ancestor of clades III and IV (Figure 3.2, Table 3.3). All taxa in clades II and III have 

apocarpous fruits, while all taxa in clades I and IV have syncarpous fruits (Stone et 

al., 1999), providing a morphological connection between either of the two pairs, 

which might be linked to introgressed information. However, we interpret these 

result cautiously, as D-statistic results are sensitive to confounding signals from 

multiple introgressive events due to phylogenetic non-independence of tests (Eaton 

et al., 2015). 

The origin of the Hawaiian Melicope lineage predates the rise of the current high 

islands (Appelhans et al., 2018b). Thus, the inferred introgressive events are 

associated with a time when the ancestral species were either still relegated to 

refugial areas on small, low islands or shortly after they colonized the young island 

of Kauaʻi. The time frame under consideration presents a ‘bottleneck’ scenario, where 

the ancestral lineages were likely in close spatial proximity. Additionally, increased 

volcanic activity of the Hawaiian hotspot coincided with the rise of Kauaʻi (Price and 
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Clague, 2002). This volcanic activity could have produced lava flows, earthquakes, 

tsunamis, and other catastrophic events, which may have additionally promoted 

hybridization (Stuessy et al., 2014). The ancestral hybridization events may even have 

promoted subsequent adaptive radiation on the islands (Kagawa and Takimoto, 

2018). Estimation of divergence times in Hawaiian Melicope will be needed to infer 

the time frame for hybridization events in ancestral lineages. While there is strong 

evidence for ancient hybridization events within Hawaiian Melicope, the nature of de 

novo RAD-seq data currently limits our analytic methods. Further information may 

be obtained through gene tree based approaches applied to target capture or Whole-

Genome-Sequencing data (Meng and Kubatko, 2009), or by examining SNP based 

patterns, as they vary spatially along a reference genome (Martin et al., 2013).  

Bootstrap and Posterior Probability support values were generally high across trees 

inferred from different datasets but genrally increased with dataset size. Lenient 

filtering in RAD-seq data is often practiced, as there is a correlation between the size 

of a data matrix and resolution and support of relationships (Wagner et al., 2013; 

Hodel et al., 2017). RAD locus dropout is expected to increase with increasing 

divergence times, as enzyme cut sites will be lost or gained through mutation 

(Cariou et al., 2013). Loci with a small amount of missing data are therefore expected 

to represent the conserved spectrum of genomic sites and thus, provide a limited 

capacity of resolution. On the other hand, sparse loci are expected to increase 

resolution of relationships despite also introducing noise, as they are assumed to 

represent the more rapidly evolving genomic fractions (Cariou et al., 2013; Wagner et 

al., 2013; Eaton et al., 2015). However, including all loci is not advisable either, as 

there seems to be a point at which inclusion of increasingly more sparse loci might 

start to decrease support. At this point, noise, due to missing data introduced by the 

inclusion of more sparse loci, will overpower the informative value these loci 

provide. However, the Quartet Sampling method seems an adequate approach to 

evaluating the reliability of the dataset as the QC value showed the same trend in all 

datasets regardless of size and offer the QI score to assess the amount and impact of 

missing data.  

We detected some discord between relationships resolved by concatenation and site-

specific coalescence based methods (Figure 3.2, Supplemental Figures 3.1-3.9). The 

evaluation of the performance of different species-tree inference methods is a matter 

of ongoing research, especially with regards to genomic datasets. Concatenation 

based ML inference can be statistically inconsistent under some conditions in the 

MSC, i.e. ILS causing gene trees to differ from the true species tree (Kubatko and 

Degnan, 2007). However, the limits of the concatenated approach are poorly 
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understood (Molloy and Warnow, 2018) and the performance of concatenated 

Bayesian analysis has yet to be formally assessed. Some simulation studies show that 

concatenated RAD-seq data are robust to gene tree/species tree discord when 

inferring relationships among taxa (Rivers et al., 2016). In addition, concatenated 

approaches potentially offer hidden support as a feature overriding gene tree/species 

conflict (Gatesy and Springer, 2014; Rivers et al., 2016), although hidden support has 

not been addressed in plant phylogenomic research yet. Coalescence based methods 

are statistically consistent under the MSC. Bayesian co-estimation of gene trees and 

the species tree under the MSC is currently considered the most effective approach, 

yet computationally very demanding and thus less applicable to large datasets. 

Hence, summary and site-specific MSC methods have become popular and several 

algorithms implementing the concepts do exist (Liu et al., 2015). However, the 

assessment of the performance of these methods under empirical and simulated 

conditions is still a matter of active research. For example, gene tree methods have 

proven to be statistically inconsistent if the cause of gene tree discord is horizontal 

gene transfer, instead of ILS (Solís-Lemus et al., 2016; Fernández-Mazuecos et al., 

2018). Several recent simulation studies compared the accuracy of multiple summary 

and site-based coalescent methods, including SVDQuartets, as well as concatenated 

ML under varying levels of ILS and Gene Tree Estimation Error (GTEE). 

Concatenated ML was at least competitive with MSC methods under most conditions 

and outperformed SVDQuartets under all tested conditions, including high GTEE 

(Chou et al., 2015; Mirarab et al., 2016; Molloy and Warnow, 2018). The latter would 

be expected in RAD-seq datasets and should also be present herein.  

With respect to species relationships inferred for Hawaiian Melicope and considering 

the observed lower accuracy of SVDQuartets compared to concatenation based 

approaches under conditions typically characterizing RAD datasets, we suggest that 

the results from concatenated BI and ML are probably more accurate than those 

based on SVDQuartets and will be discussed below. However, we do stress that none 

of the approaches have proven to be statistically consistent under conditions 

observed herein, i.e. ILS, GTEE and horizontal gene transfer (Figure 3.2). 

Taxonomic Implications 

The former small genus Platydesma and Stone’s section Pelea, are each monophyletic 

(Figure 3.2), while the three remaining sections of Stone, comprising the majority of 

all Hawaiian Melicope species, are not. Apocarpa is divided into two lineages with the 

majority of species resolved in Apocarpa 1 (Figure 3.2). The three species of the 

Apocarpa 2 clade share a number of morphological traits, though neither of them is 

either exclusive or inclusive. All species of Apocarpa 2 occur in mesic forests only and, 
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with the exception of M. stonei, share a sprawling, shrubby habit (Stone et al., 1999; 

Wood et al., 2017). Finally, in all Apocarpa 2 species both, endo- and exocarp are 

glabrous and inflorescences are few-flowered, though both of these traits also appear 

outside of this group (Stone et al., 1999; Wood et al., 2017). In a previous analysis 

apocarpous species were resolved in three different clades (Appelhans et al., 2014b), 

one of which, consisting of M. elliptica only, could not be sampled in this study. 

Further research will be necessary to identify morphological character combinations 

distinguishing these lineages. Stone’s sections Cubicarpa and Megacarpa are 

paraphyletic with respect to each other (Figure 3.2) with species of each resolved 

intermingled throughout the clade. The two groups differ by the degree of carpel 

connation, with carpels “connate from base up to 2/3 of their length” (Stone et al., 

1999) characterizing Megacarpa and carpels “nearly to completely” connate (Stone et 

al., 1999) characterizing Cubicarpa. Carpel connation clearly represents a continuum 

and not two discrete units. As there is no pattern to the degree of carpel fusion 

apparent in clade I, the separation of these two of Stone’s sections seems artificial. 

Inter-species relationships within clade I are less well supported than in the 

remaining clades and Quartet Sampling reveals measurable discord at nearly every 

branch in the backbone of this clade. For many of the nodes with low QC values, QD 

values are high (Figure 3.3, Supplemental Figures 3.1-3.9), which characterizes ILS 

and corresponds to the shortness of these branches. On the other hand, many 

branches show low QD values indicating widespread introgression between these 

lineages. Unfortunately, sampling herein is not sufficient to test individual 

relationships. 

Of the 24 species represented by multiple accessions, 20 were resolved as 

monophyletic, while four species were either para- or polyphyletic. Melicope clusiifolia 

is the most widespread and morphologically diverse of all Hawaiian Melicope (Stone 

et al., 1999) and it is paraphyletic with both of the other species of Stone’s section 

Pelea, M. haleakalae and M. waialealae (clade IV, Figure 3.2). Several attempts have 

been made to subdivide M. clusiifolia into varying constellations of subspecies, 

varieties, and forms (St. John, 1944; Stone, 1969). In the most recent taxonomic 

treatment, Stone et al. (1999) synonymized all subdivisions of the species, arguing 

that the variable characters seem to represent a continuum rather than 

distinguishable, discrete units. However, the authors also issued the 

recommendation that the overall pattern of variability in M. clusiifolia should be 

studied in detail (Stone et al., 1999). Melicope haleakalae is characterized as differing 

from M. clusiifolia, mainly in its persistent sepals (Stone et al., 1999). Considering that 

M. haleakalae is nested deeply within M. clusiifolia (clade IV, Figure 3.2). The two 
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might be regarded as conspecific and included in an overall evaluation of the 

complex. Melicope waialealae differs from M. clusiifolia mainly in leaf shape (Stone et 

al., 1999). However, since the leaf shape of M. clusiifolia is highly variable, M. 

waialealae might represent one end of a continuum across both taxa rather than one of 

two distinct states. On the other hand, these three species might represent a case of 

speciation in progress. In this case, the deep nesting, especially of M. haleakalae, 

within M. clusiifolia, would represent speciation following a progenitor-derivative 

scenario (Crawford, 2010). The widespread, morphologically variable M. clusiifolia 

would meet all criteria of the progenitor (p) species. The persistent petals in M. 

haleakalae and the leaf shape in M. waialealae would represent a variable, 

morphological feature in the parent being fixed in the respective derivative (d) 

species. Identification of a true p-d relationship is difficult and rare However, several 

candidate species pairs do exist (Crawford, 2010). The p-d species pair Layia 

glandulosa (Hook.) Hook. & Arn. and L. discoidea D.D.Keck (Asteraceae) show not 

only a shift in morphology between progenitor and derivative species, but also 

geographic isolation due to a shift in habitat (Baldwin, 2005). This could be the same 

for M. waialealae, which is restricted to bogs, whereas the putative progenitor M. 

clusiifolia occurs in mesic to wet forests (Stone et al., 1999). Unfortunately, there is no 

data available regarding breeding system or pollinator communities in these species 

creating potential barriers to gene flow. Detailed studies of morphological characters, 

gene flow, and abiotic habitat factors are necessary to determine whether these taxa 

are separate p-d species pairs or conspecific, as already indicated in previous studies 

(Appelhans et al., 2014b). 

Melicope knudsenii, delimited by Stone et al. (1999) as the only species occurring on 

non-adjacent islands, was resolved as polyphyletic with three samples resolved as 

two distinct lineages within clade III. Appelhans et al. (2014b) already showed that 

this taxon is polyphyletic, consisting of three taxa. One of these was recently 

described as M. stonei (Wood et al., 2017). Our results confirm the previously 

resolved pattern with the two specimens of M. knudsenii from Maui resolved as sister 

to M. hawaiiensis and the specimen from Kauaʻi as sister to M. barbigera (clade III, 

Figure 2). We confirm that these specimens clearly represent different species. The 

Maui species will be resurrected under one of the names used in an earlier treatment 

by Stone (1969), wherein he adopted a narrower species concept than in the later 

classification (Stone et al., 1999), leaving M. knudsenii restricted to only populations 

on Kauaʻi. 

The three specimens of M. haupuensis included in this study are resolved as 

paraphyletic. Moreover, they are the only species resolved with incongruent 
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topologies of the individual samples associated with the different datasets (compare 

Figure 3.2, Supplemental Figures 3.1-3.9). Quartet Sampling shows strong discord for 

either of the inferred relationships with medium QD values (Figure 3.3, 

Supplemental Figures 3.1-3.9), indicating the possibility of introgressed sites. 

Moreover, QF scores for the three specimens are considerably lower than the 

average, indicating a rogue behavior (Aberer et al., 2013; Pease et al., 2018) of the 

three taxa. Additionally, several specimens in the field were observed presenting 

morphologically intermediate forms between M. haupuensis and M. barbigera 

(personal observation K.R. Wood). QD values for the latter are also low (Figure 3.3, 

Supplemental Figures 3.1-3.9). Both, the morphological intermediates as well as the 

incongruence associated with different datasets, indicate potential hybridization 

between these species. However, conclusively identifying putative hybridization 

events would require sampling at the population level, including any morphological 

intermediates.  

Multiple samples of M. ovata and M. barbigera, were included in our analyses, 

representing both, the typical morphology and a deviating morphotype. For either 

species, the morphologically deviating samples were resolved as the sister group to 

the samples with the typical habit. Variant morphotypes of M. ovata displayed a 

pubescent lower leaf surface, whereas leaves are typically glabrous in this species. 

Melicope barbigera usually has few-flowered inflorescences (Stone et al., 1999). In 

contrast, the variant morphotype has inflorescences with a considerably larger 

number of flowers. Genomic divergence is comparable to other species pairs within 

the lineage. Both groups might be another case of speciation in progress within 

Hawaiian Melicope. In both cases, detailed morphological studies will be necessary to 

investigate if the morphologically divergent populations of the two species should be 

recognized as separate taxa.  

The two M. wawraeana-like specimens are resolved in clade I, but not closely related 

to each other. One specimen (KW17111) is nested within the two samples of M. feddei 

with high support (Figures 3.2, 3.3). M. wawraeana is very similar to M. feddei and 

differs mainly in pedicel length (Stone et al., 1999). The present results suggest that 

some populations might be conspecific with M. feddei, while others (e.g. from the 

herein unsampled type location) are not. The relationships of the second M. 

wawraeana-like specimen (KW15733) are resolved incongruently among datasets, as 

are the relationships of the sampled specimen of M. kavaiensis. The two samples are 

resolved either as sister groups (Figure 3.3, Supplemental Figures 3.1, 3.4, 3.5, 3.7-3.9) 

or as consecutive sister clades within clade I (Supplemental Figures 3.2, 3.3, 3.6). 

There is a substantial amount of discord in the dataset for either of the resolved 
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relationships. QD values are low, indicating the possibility of introgression between 

these morphologically distinct species. Additionally, QF scores for either of the 

specimens are low corresponding to the rogue behavior of the samples.  

The rogue behavior of the aforementioned samples (M. kavaiensis, M. sp KW15733) 

might also be related to the incongruent placement of M. hivaoaensis, as the three taxa 

are inferred as closely related, regardless of the relation to the remainder of clade I. 

For this specimen QC and QD values are low, however, QF is high (Figure 3.3, 

Supplemental Figures 3.1-3.9). Melicope hivaoaensis represents an adaptive radiation 

of five species endemic to the Marquesas Islands, whose predecessor colonized from 

the Hawaiian Islands (Appelhans et al., 2014b, 2018b). Successful island colonizations 

have been associated with recent hybridization or polyploidization events (Paetzold 

et al., 2018). There was no polyploidization event immediately prior to the 

colonization of the Hawaiian Islands itself (Paetzold et al., 2018), making a 

polyploidization event prior to the colonization of the Marquesas Islands unlikely. 

Chromosome counts for Marquesan species are not available for a conclusive answer. 

However, results herein indicate the presence of several hybridization events within 

the lineage. Thus, a hybridization event might have predated the colonization of the 

Marquesas Islands as well. As the incongruent position of M. hivaoaensis seems to 

correspond to the rogue behavior of M. sp. KW15733 and M. kavaiensis, the latter two 

might represent the parental lineages of the Marquesan Melicope radiation. A 

conclusive answer to the question is contingent on a thorough sampling of all 

concerned lineages as well as a prior revision of the M. wawraeana species concept. 

We confirm previous results showing that Hawaiian Melicope colonized the 

Marquesas Islands twice independently, negating the hypothesis that the remote 

Hawaiian Islands constitute a dispersal sink (Harbaugh et al., 2009; Appelhans et al., 

2014b, 2018b). The nesting of Marquesan species in different Hawaiian clades is 

corroborated by fruit morphology (Hartley, 2001), since M. hivaoaensis and its close 

relatives from the Marquesas Islands have syncarpous fruits as do the species in 

clade I, while M. inopinata has apocarpous fruits like the species in clade III.  

The present study provides unprecedented insight into the relationships of Hawaiian 

Melicope. Several previous findings could be corroborated and firmly supported by 

genome-wide data, including the non-monophyly of most of Stone’s sections, which 

cannot be held up as delimited (Stone, 1969; Stone et al., 1999). The lineage is in need 

of a taxonomic revision. Understanding the relationships of Hawaiian Melicope 

would be enhanced by some formal recognition of the subclades with corresponding 

morphological features. However, the creation of novel formal subgroups within 
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Melicope section Pelea must also include the extra-Hawaiian members of the section. 

The former genus Platydesma is the most distinctive group within Melicope sect. Pelea 

and should receive some level of formal recognition. Apocarpa species need to be split 

into two groups, one of which would include the Marquesan species M. inopinata. 

However, conclusive treatment of Apocarpa should be adjourned until an improved 

understanding of the separation within the M. elliptica complex is attained. 

Delimitations of species within the Pelea group, M. barbigera, M. ovata as well as M. 

haupuensis may need revision, but levels of hybridization should also be investigated 

as part of that process. Melicope wawraeana requires revision as well as a prerequisite 

to test the putative hybrid character of the Marquesan radiation. Furthermore, the 

other six Melicope species endemic to the Marquesas Islands would need to be 

included in a novel taxonomic recognition of Stone’s former sections Megacarpa and 

Cubicarpa. 
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3.    |  Supplemental Information 

 

 

Supplemental Figure 3.1 | Phylogeny of Hawaiian Melicope based on the concatenated 

min10 dataset. Statistical support values are indicated on branches; Bayesian posterior 

probability (pp) values in curly brackets and bold, Maximum Likelihood bootstrap 

support (ML-NBS) values in round brackets and in italics. Quartet Fidelity (QF) values 

are indicated in square brackets behind samples. For graphical purposes, values for 

maximally supported clades (100 ML-NBS, 1.00pp, 1/-/1) are not shown.  
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Supplemental Figure 3.2 | Phylogeny of Hawaiian Melicope based on the concatenated 

min50 dataset. Statistical support values are indicated on branches; Bayesian posterior 

probability (pp) values in curly brackets and bold, Maximum Likelihood bootstrap 

support (ML-NBS) values in round brackets and in italics. Quartet Fidelity (QF) values 

are indicated in square brackets behind samples. For graphical purposes, values for 

maximally supported clades (100 ML-NBS, 1.00pp, 1/-/1) are not shown. 
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Supplemental Figure 3.3 | Phylogeny of Hawaiian Melicope based on the concatenated 

min67 dataset. Statistical support values are indicated on branches; Bayesian posterior 

probability (pp) values in curly brackets and bold, Maximum Likelihood bootstrap 

support (ML-NBS) values in round brackets and in italics. Quartet Fidelity (QF) values 

are indicated in square brackets behind samples. For graphical purposes, values for 

maximally supported clades (100 ML-NBS, 1.00pp, 1/-/1) are not shown.  
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Supplemental Figure 3.4 | Phylogeny of Hawaiian Melicope based on the concatenated 

min85 dataset. Statistical support values are indicated on branches, Bayesian posterior 

probability (pp) values in curly brackets and bold, Maximum Likeli hood L bootstrap 

support (ML-NBS) in round brackets and in italics. Quartet Fidelity (QF) values are 

indicated in square brackets behind samples. For graphical purposes, values for 

maximally supported clades (100 ML-NBS, 1.00pp, 1/-/1) are not shown. 
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Supplemental Figure 3.5 | Phylogeny of Hawaiian Melicope based SVDQuartet analysis 

of min10 SNP matrix. Statistical support values are indicated on branches; bootstrap 

support (SVD-NBS) values below and Quartet Sampling scores above branches. Quartet 

Fidelity (QF) values are indicated in square brackets behind samples. For graphical 

purposes, values for maximally supported clades (100 SVD -NBS, 1/-/1) are not shown.  

  



RAD-seq phylogeny of Hawaiian Melicope 

 

90 

 

Supplemental Figure 3.6 | Phylogeny of Hawaiian Melicope based SVDQuartet analysis 

of min32 SNP matrix. Statistical support values are indicated on branches; bootstrap 

support (SVD-NBS) values below and Quartet Sampling scores above branches. Quartet 

Fidelity (QF) values are indicated in square brackets behind samples. For graphical 

purposes, values for maximally supported clades (100 SVD-NBS, 1/-/1) are not shown.  
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Supplemental Figure 3.7 | Phylogeny of Hawaiian Melicope based SVDQuartet analysis 

of min50 SNP matrix. Statistical support values are indicated on branches; bootstrap 

support (SVD-NBS) values below and Quartet Sampling scores above branches. Quartet 

Fidelity (QF) values are indicated in square brackets behind samples. For graphical 

purposes, values for maximally supported clades (100 SVD -NBS, 1/-/1) are not shown.  

  



RAD-seq phylogeny of Hawaiian Melicope 

 

92 

 

Supplemental Figure 3.8 | Phylogeny of Hawaiian Melicope based SVDQuartet analysis 

of min67 SNP matrix. Statistical support values are indicated on branches; bootstrap 

support (SVD-NBS) values below and Quartet Sampling scores above branches. Quartet 

Fidelity (QF) values are indicated in square brackets behind samples. For graphical 

purposes, values for maximally supported clades (100 SVD-NBS, 1/-/1) are not shown.  
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Supplemental Figure 3.9 | Phylogeny of Hawaiian Melicope based SVDQuartet analysis 

of min85 SNP matrix. Statistical support values are indicated on branch es; bootstrap 

support (SVD-NBS) values below and Quartet Sampling scores above branches. Quartet 

Fidelity (QF) values are indicated in square brackets behind samples. For graphical 

purposes, values for maximally supported clades (100 SVD -NBS, 1/-/1) are not shown. 
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Abstract 

 

 Island radiations represent ideal case studies for the investigation of 

diversification of lineages through time, yet many inferences suffer from 

poorly resolved species relationships. Application of high-throughput 

sequencing datasets to investigations of island lineage evolutionary histories 

and diversification is still scarce. 

 We investigate the spatio-temporal diversification patterns of the 

monophyletic Melicope clade endemic to the Hawaiian Islands using RAD-seq 

datasets sampling >80% of the currently accepted species of Hawaiian Melicope 

including two species from the Marquesas Islands. We compute divergence 

times and infer historical biogeography. We analyse relative diversification 

rates in the lineage and state-specific speciation and extinction rates linked to 

specific habitats.  

 Hawaiian Melicope colonized the archipelago prior to the rise of the current 

main islands. Inter-Island colonization patterns largely follow the progression 

rule from older to younger islands, but back colonizations to older islands 

have occurred. Diversification is characterized by lag and burst times. Dry and 

bog habitats show high speciation and extinction rates. 

 Extant diversification results from recent divergence of a small number of taxa 

prevailing through bottlenecks and high amounts of species turnover. 

Increased rates of diversification are linked to habitat dissection, and frequent 

ecological trait shifts. 
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4.1  Introduction 

Adaptive radiation is the divergence of an ancestral species into multiple 

descendants via natural selection in response to “ecological opportunity“. The latter 

encompasses three distinct spatio-temporal factors: physical, ecological and 

evolutionary opportunity (Glor, 2010). Consequently, the timing of evolutionary 

events, e.g. colonizations or trait shifts, is important.  

Oceanic Island systems have played a key role in the development of the theory of 

evolution from its inception (Darwin, 1859) and have been a focal point for 

evolutionary biologists ever since. De-novo island systems are of particular interest 

as extant biodiversity largely originated from a relatively small number of founder 

species (Price and Wagner, 2018) followed by subsequent diversification (Whittaker 

et al., 2008; Warren et al., 2015). Traditional icons of adaptive radiation include many 

island lineages, e.g. Hawaiian lobeliads (Givnish et al., 2009) or Darwin's finches 

(Galapagos) (Grant and Grant, 2002). However, identification of the patterns of 

diversification is far from conclusive.  

The fundamental challenge for the integrative research of adaptive radiation is a 

fully resolved and dated phylogenetic tree. For many adaptive radiations resolution 

of phylogenetic relationships remains problematic for at least some nodes, e.g. in 

Hawaiian lobeliads (Givnish et al., 2009) or Hawaiian silverswords (Landis et al, 

2018). Lack of resolution often concerns nodes related to “bursts of speciation”, 

where lineages have diverged rapidly and traditional genomic marker regions did 

not accumulate a sufficient amount of diagnostic variation. The application of high-

throughput sequencing (HTS) approaches has improved phylogenetic resolution 

drastically, e.g. in African cichlid fishes (Wagner et al., 2013), Hawaiian mints (Welch 

et al., 2016) or Hawaiian Melicope (Paetzold et al., 2019). 

Another challenge is the estimation of divergence times. While methods for dating 

phylogenies have been employed in island radiations for more than 20 years 

(Baldwin and Sanderson, 1998), algorithms for diversification rate estimation 

currently scale badly to HTS datasets and improvements are under active 

development. Nevertheless, dating phylogenies will remain a non-trivial matter, as 

the fossil record is very sparse for many lineages (Allison and Bottjer, 2011) and 

methods for incorporation of other lines of evidence, e.g. palaeogeographical 

features, (Landis, 2017) may introduce bias when lineages are older than the islands 

they inhabit (Heads, 2011).  

The Hawaiian Islands are the most remote archipelago in the world and formed by 

the gradual northwest movement of the Pacific plate over a stationary mantel plume 

(Price and Clague, 2002). Each island progresses through a distinctive cycle of 

growth, subsidence, erosion and eventual submergence (Price and Clague, 2002) 
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resulting in a continuum of available ecological niches, which in turn determine 

species richness. There were no high islands (> 1000m) in the period between 8-5 

million years ago (mya), hence most of the Hawaiian endemic biodiversity originates 

from adaptive radiation following colonizations within the last 5 million years (MA; 

Price and Clague, 2002). The current high islands age from the oldest islands Ni’ihau 

(6.0-4.3 mya) and Kaua’i (5.8-4.0 mya) to O’ahu (3.9-1.8 mya) followed by the Maui 

Nui complex, which was one single island during most of its existence and only 

became separated in the Pleistocene (Maui (2.0-0.9 mya), Moloka’i (2.1-1.5 mya), 

Lāna’i (1.32 mya) and Kaho’olawe (1.35 mya)) and finally Hawai’i (1.1 mya and 

ongoing) (Clague and Sherrod, 2014). Considering these decreasing island ages and 

the number of species per island, Wagner & Funk (1995) proposed the “progression 

rule” to explain diversification in the archipelago, stating that taxa colonize older 

islands first, and then disperse to younger islands as they emerge. As intra-island 

diversification occurs subsequent to colonization, a correlation between island age 

and species number or diversification patterns might be expected (Wagner & Funk, 

1995). For many Hawaiian lineages the progression rule is a tested and true concept, 

including Cyanea (Givnish et al., 2009), Cyrtandra (Johnson et al., 2019; Kleinkopf et 

al., 2019), or damselflies (Jordan et al., 2005).  

The genus Melicope (Rutaceae) comprises ca. 235 species (Hartley, 2001) distributed 

throughout Southeast Asia, Malesia, Australasia, the Pacific region as well as 

Madagascar and the Mascarene Islands. Hawaiian Melicope represents the fourth 

largest Hawaiian plant radiation (Wagner et al., 1999b) comprising currently 54 

Hawaiian species (Stone et al., 1999; Appelhans et al., 2017; Wood et al., 2017) and 

seven species endemic to the Marquesas Islands, originating from two independent 

colonization events from the Hawaiian Islands (Appelhans et al., 2014b; Paetzold et 

al., 2019). The species are distributed across the islands in dry, mesic and wet 

habitats, including bogs and in elevational ranges from 300-1400 (-2100) m. The 

majority of the species are single-island endemics and their distributional range is 

often highly restricted (Stone et al., 1999). Approximately 40% of the species are 

distributed on Kaua’i with decreasing species numbers on the younger islands (Stone 

et al., 1999), indicating that diversification might follow the progression rule. The 

species are divided into five morphologically defined, informal groups, which we 

refer to as ‘Stone’s sections’ (Paetzold et al., 2019). Stone’s sections are defined largely 

by the degree of carpel connation (apocarpous to fully syncarpous), and the sexuality 

of flowers, (perfect vs. functionally unisexual and plants dioecious) (Stone et al., 

1999). 

Species relationships within the lineage have recently been resolved using RAD-seq 

(Paetzold et al., 2019). The analysis resolved five main clades in Hawaiian Melicope, 

only two of which corresponded to Stone’s sections. The fully resolved relationships 

in the group allow biogeographic and diversification hypothesis testing. The main 
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aim of this investigation is to elucidate the spatio-temporal diversification in 

Hawaiian Melicope in the context of island geology. We will also test whether specific 

habitat types impact diversification. 

 

4.2  Material and Methods 

We used the RAD-seq datasets generated in Paetzold et al. (2019) containing 101 

specimens, including two Marquesan species representing the two independent 

colonization events from the Hawaiian to the Marquesas Islands (Appelhans et al., 

2014a, b; Paetzold et al., 2019) and six non-Hawaiian members of Melicope sect. Pelea 

as outgroup. The five datasets resulted from filtering the assembled loci by species 

coverage to a minimum of 10, 32, 50, 67 and 85, respectively (Paetzold et al., 2019). 

All computational analyses were run on the high performance computing cluster of 

the GWDG, Goettingen. 

 

Divergence Time Estimation 

We used BEAST v. 1.10.4 (Drummond and Rambaut, 2007) for divergence time 

estimation in Hawaiian Melicope. As there are no suitable fossils, we used a 

secondary calibration to constrain the root age (Appelhans et al., 2018b). Secondary 

calibrations are sensitive to a potential primary error introduced by the previous 

analysis (Forest, 2009). To address this we used a normal distribution as prior of the 

root age with an upper truncation at 15 mya and a lower truncation at 5 mya, 

corresponding to the 95% credibility interval (CI) inferred by Appelhans et al. 

(2018b).  

Two independent BEAST runs were performed with 5,000,000 generations each and 

every 500th generation stored under a constant size Coalescent Tree Prior, the 

GTR+G+I model of sequence evolution and 1/x as prior for the population size. We 

tested several clock rates and tree prior combinations, but only runs with a strict 

clock reached convergence. To evaluate the impact of dataset size on estimated node 

ages, we selected 11 nodes, representing the origin of major lineages and one 

colonization event to the Marquesas Islands (Figure 4.1), and compared the inferred 

ages. We used the Shapiro-Wilk-Test (Shapiro and Wilk, 1965) and multiple linear 

regression models (LM) to test whether the estimated mean node ages were biased to 

dataset size using the functions shapiro.test() and lm() in R v 3.6.1 (R Core Team, 

2019).  

Currently, the size of genome-sized datasets often poses a struggle for Bayesian 

methods, which promoted the development of less complex algorithms (To et al., 

2016; Volz and Frost, 2017). To evaluate the results from divergence time estimation 
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using BEAST, considering that only a strict clock reached convergence (see 

Discussion), the least-squares dating method (LSD; To et al., 2016) implemented in 

the software IQTree v. 2.0.6  (Nguyen et al., 2015; Minh et al., 2020) was employed as 

well. The method combines the effective algorithm for resolving Maximum 

Likelihood (ML) trees provided by IQ-Tree (Nguyen et al., 2015; Minh et al., 2020) 

with the relaxed lognormal clock, Gaussian-noise, least-squares approach provided 

by LSD2 (To et al., 2016). In simulations that the LSD algorithm proved robust to 

uncorrelated violations of the molecular clock and performed similar to BEAST in 

most scenarios (To et al., 2016). Least-squares dating was performed with the min32 

ML phylogeny from (Paetzold et al., 2019) as starting tree and 100 bootstrap 

replicates to attain confidence intervals. The algorithm may fail to produce a unique 

solution with an age interval and a single calibration point (Hien, personal 

communication). Consequently separate analyses were computed on each input 

alignment, one for the upper and lower bounds of the calibrated node, respectively 

and results were merged. This approach will be available in future versions of the 

LSD software (Hien, personal communication). 

 

Ancestral Area Reconstruction 

For ancestral area reconstruction (AAR), we defined entire islands as ranges of 

endemism. The four islands of the Maui Nui complex were treated as a single unit 

(Price and Elliott-Fisk, 2004) as were the Marquesas Islands. For species occurring on 

multiple islands, we specified the entire distributional range as area with the 

exception of the widespread and morphologically very variable M. clusiifolia. A 

geographically stratified pattern within this taxon might provide insights towards its 

taxonomic treatment. Hence, we chose the sample origin as its respective area. 

We used the R package BioGeoBEARS (Matzke, 2013), which implements three 

different models of range evolution, differing in assumptions of range evolution and 

inheritance. We tested three models, diversification-extinction-cladogenesis (DEC) 

(Ree et al., 2005; Ree and Smith, 2008), DIVA-like (Ronquist, 1997) and BayArea-like 

(Landis et al., 2013) with maximum range size limited to five areas. We conducted 

another analysis under each model including the free parameter j with a starting 

value of 0.5 (Matzke, 2014) to account for possible jump-dispersal speciation events. 

The reconstruction was time-stratified to incorporate island ages as estimated by 

Price and Elliott-Fisk (2004).We compared the results of the six models (DEC, DEC+J, 

DIVALIKE, DIVALIKE+J, BAYAREALIKE, BAYAREALIKE+J) using the Akaike 

Information Criterion.  
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Diversification analysis 

We estimated evolutionary rate regimes across Hawaiian Melicope using BAMM 

(Rabosky, 2014; Rabosky et al., 2014a). We pruned the min32 dataset to include only 

one sample per species with the exception of taxa previously resolved as non-

monophyletic (Supplemental Table 4.1; Paetzold et al., 2019) and only the three most 

closely related outgroup samples. For multi-sampled species, we selected the 

specimen with the higher number of loci to increase informative content. Paetzold et 

al. (2019) showed that M. clusiifolia is paraphyletic with respect to both, M. haleakalae 

and M. waialealae, and this complex likely requires taxonomic revision. Currently, it is 

unclear whether M. clusiifolia represents several distinct species or one 

morphologically highly variable taxon. We conducted the analysis twice to account 

for both possibilities by either including one sample per described species (DA1) or 

including one sample per monophyletic lineage within the clade (DA2) 

(Supplemental Table 4.1). We inferred a dated phylogenetic tree for each of the 

reduced datasets using BEAST v. 1.10.4 (Drummond and Rambaut, 2007) as 

described above. To account for incomplete taxon sampling, we assigned missing 

species to one of the five main clades based on molecular or morphological evidence 

(Supplemental Table 4.2) and used the percentage of sampled species per clade to 

inform BAMM. We ran 10,000,000 generations in 4 Markov Chain Monte Carlo 

(MCMC) and summarized results using the R package BAMMtools (Rabosky et al., 

2014b).  

 

State-specific speciation and extinction 

To test whether habitat specificity might be linked to diversification rates within 

Hawaiian Melicope, we used state-dependent speciation and extinction (SSE) 

inference. SSE models a birth-death process, where diversification rates are 

dependent on the state of an evolving character in a Bayesian framework. Originally 

developed for binary characters (Maddison, 2006; Maddison et al., 2007), several 

variants exist including one for multistate characters, MuSSE (FitzJohn, 2014). We 

implemented MuSSE for four habitat states: dry, mesic, wet, and bog in the RevBayes 

language (Höhna et al., 2016). The distribution of character states among species was 

collected from the groups latest taxonomic revision (Stone et al., 1999; Hartley, 2001), 

augmented with information from herbarium specimens from PTBG and US 

(http://sweetgum.nybg.org/science/ih/) and personal observations (K. Wood)( 

Supplemental Table 4.3). We specified a log-uniform distribution as priors to both, 

speciation and extinction rates. An exponential distribution with a mean of 10 was 

chosen as the prior for the transition rates. The root state priors for each state were 

drawn from a Dirichlet distribution. We specified the proportion of sampled species 

as an approximation of the probability of taxa being sampled. We ran MCMC 
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analyses on each DA1 and DA2 pruning the outgroup specimens (Supplemental 

Table 4.1), for two runs of 1,000,000 generations sampling every 100th generation. We 

summarized results using the R package RavGadgets (Höhna and Freyman, 2016) and 

a burnin of 20%. 

 

4.3  Results 

Phylogeny and Divergence times 

The min10 dataset did not finish computing in available CPU time and will not be 

further considered here. Both, BEAST an IQ-Tree analyses (Figure 4.1, Supplemental 

Figures 4.1-4.7) of the remaining four datasets resolve the same five main clades as 

Paetzold et al. (2019) with clade V (Platydesma) as sister to the remaining Hawaiian 

Melicope. Clades I (Stone’s sections Megacarpa and Cubicarpa) and II (Apocarpa I) are 

sister to each other and again sister to the lineage comprising clades III (Apocarpa II) + 

IV (Pelea) (Fig. 2; Paetzold et al., 2019). One difference between topologies herein is 

the relationship of the Marquesan species M. hivaoaensis. While BEAST resolves the 

species consistently as an early divergent lineage in clade I (Figure 4.1, Supplemental 

Figures 4.1-4.3), IQ-Tree- ML inference places the species as sister to M. kavaiensis and 

M. sp. KW15733 within clade I (Supplemental Figures 4.4-4.7).  

Divergence times estimated for the four RAD-seq datasets (min32, 50, 67 and 85) 

using BEAST differed slightly, though 95% HPD intervals were always overlapping. 

The Shapiro-Wilk-Test revealed that estimated ages of the eleven focal nodes (Figure 

4.1) were normally distributed. While some more recent nodes tended to receive 

younger age estimates from smaller datasets (Supplemental Figures 4.1-4.3), LM 

showed the relationship to be not or only weakly significant (Supplemental Table 

4.4). Divergence times as estimated using LSD2 follow a similar pattern of recent 

nodes being estimated younger based on smaller datasets (Supplemental Figures 4.4-

4.7). However, 95% CI’s are widely overlapping as well. Mean divergence times 

based on LSD2 are consistently older for all nodes and datasets, and fall into the 

upper end of the 95% HPD-intervals resulting from BEAST (Figure 4.1, Supplemental 

Figures 4.1-4.7). 

Divergence times estimated with the BEAST algorithm from the reduced dataset for 

diversification analyses were largely comparable to those estimated from the full 

dataset. Recent nodes received nearly identical divergence times, while ancestral 

node ages were generally slightly older in the reduced dataset, though always by less 

than 500,000 years and with 95% CI’s widely overlapping.  

Thus, only the divergence time estimates for the full min32 dataset are discussed here 

(Figure 4.1, Supplemental Figure 4.4). The root age was estimated close to the 

calibration point at 9.7 mya (CI: 6.7-12.9 mya) using BEAST and 12.0 mya (CI: 9.5-14.7 
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mya) using LSD2, respectively. Our estimates suggest a Late Miocene origin of 

Hawaiian Melicope with a crown age of 8.0 mya (5.5-10.6 mya)/10.0 mya (8.5-11.5 

mya).  

 

Figure 4.1. | Divergence times in Hawaiian Melicope as inferred by BEAST in the min32 

dataset. The maximum clade credibility consensus tree is shown with the credibility 

intervals of estimated ages displayed as light blue bars. Nodes corresponding to the 

origin of major lineages are marked and their mean ag es are shown. Node numbers 

refer to respective linear model tests for impact of dataset size on estimated node ages. 

Clades are indicated on the right.  Outgroup including calibration point not shown fro 

graphical purposes. 

The five main clades diverged within a period of less than 1 million years (MA) in 

the early Pliocene. We estimated the crown age of clade V at 5.2 mya (3.6-6.9 mya)/6.6 

mya (5.0-8.9 mya) and of the MRCA to the four remaining groups (node 4; Figure 4.1) 
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at 5.1 mya (3.4-6.7 mya)/6.2 mya (4.6-8.0 mya). The estimated crown ages for the 

clades I+II (node 6) and clades III+IV (node 5) date back to 4.2 mya (2.8-5.5 mya)/5.1 

mya (3.7-6.7 mya) and 4.7 mya (3.3-6.3 mya)/ 5.8 mya (4.3-7.5 mya), respectively. 

Our results indicate that extant diversification commenced in the Mid Pleistocene. 

The crown ages of the main clades I-IV were estimated as: clade I: 1.7 mya (1.2-2.3 

mya)/1.6 mya (1.1-2.1 mya), clade II: 1.5 mya (1.0-1.9 mya)/1.7 mya (1.1-2.4 mya), 

clade III: 1.5 mya (1.0-1.9)/1.5 mya (1.1-2.2 mya), and clade IV: 1.0 mya (0.7-1.4 

mya)/1.2 mya (0.8-1.6 mya. Most of the extant species originated within the last 1 

MA. The origin of both Marquesan Island lineages was estimated to the Mid 

Pleistocene as well with a stem age of1.7 mya (1.2-2.3 mya)/1.2 mya (0.8-1.6 mya) for 

M. hivaoaensis and 1.3 mya (0.9-1.7 mya)/1.5 mya (1.0-2.1 mya) for M. inopinata. 

 

Ancestral Area Reconstruction 

Results of AAR revealed that adding the jump-dispersal parameter improved model 

fit in general, though only for BAYAREALIKE model was the likelihood significantly 

better. The BAYAREALIKE + J model fit our data best (Table 4.1), though inferred 

ancestral areas are similar between all models considering jump-dispersal 

(Supplemental Figures 4.8-4.12).  

 

Table 4.1. | Comparison of the six models for Ancestral area reconstruction 

implemented in BioGeoBEARS.  

model LnL 
No. 

params 
d e j AIC AIC_wt 

DEC -151.2 2 0.05 1.00E-12 0 306.5 2.80E-15 

DEC+J -150 3 0.046 1.00E-12 0.0033 306.1 3.40E-15 

DIVALIKE -152.9 2 0.058 1.00E-12 0 309.9 5.00E-16 

DIVALIKE+J -151.7 3 0.053 1.00E-12 0.0041 309.3 6.60E-16 

BAYAREALIKE -157.1 2 0.03 0.22 0 318.3 7.50E-18 

BAYAREALIKE+J -116.7 3 0.014 1.00E-07 0.019 239.4 1 

 

Figure 4.2 shows the inferred historical biogeography for Hawaiian Melicope. The 

MRCA to Hawaiian Melicope was inferred to originate outside of the current 

distributional range. The ancestor of clade V may have originated outside of the 

current distributional range as well, while the MRCA to all remaining species 

originated on Kaua’i (Figure 4.2). Within each of the five main clades biogeographic 

patterns are characterized by – sometimes repeated – progressive colonizations to 

and diversification within younger islands. Some instances of dispersal back to older 

islands or shifts from single-island endemism to widespread occupation of multiple 

islands were inferred (Figure 4.2).  
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Figure 4.3. | 

Ancestral area 

reconstruction 

according to the 

BAYAREALIKE + J 

model implemented 

in BioGeoBEARS. A 

schematic  view of the 

islands and dispersal 

routes is shown on 

the left. The origins of 

individual islands are 

indicated in the 

phylogeny as vertical, 

dashed lines. The 

distance between the 

Hawaiian 

Archipelago and the 

Marquesas Islands is 

not drawn to scale.  

 

Figure 4.4. | 

Ancestral area 

reconstruction 

according to the 

BAYAREALIKE + J 

model implemented 

in BioGeoBEARS. A 

schematic  view of the 

islands and dispersal 

routes is shown on 

the left. The origins of 

individual islands are 

indicated in the 

phylogeny as vertical, 

dashed lines. The 

distance between the 

Hawaiian 

Archipelago and the 

Marquesas Islands is 

not drawn to scale.  

 

Figure 4.2. | 

Ancestral area 

reconstruction 

according to the 

BAYAREALIKE + J 

model implemented 

in BioGeoBEARS. A 

schematic  view of the 

islands and dispersal 

routes is shown on 

the left. The origins of 

individual islands are 

indicated in the 

phylogeny as vertical, 

dashed lines. The 

distance between the 

Hawaiian 

Archipelago and the 

Marquesas Islands is 

not drawn to scale.  
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In clade V (Figure 4.2), the MRCA spawned two lineages: the widespread M. 

spathulata, which originated on Kaua’i and another taxon (M. rostrata) originating and 

remaining on Kaua’i while one daughter lineage dispersed to O’ahu. Clade IV 

follows the progression rule, as does clade III, except that one taxon (M. inopinata) 

dispersed to the Marquesas Islands, but its origin is not clearly inferred. In clade II 

(Figure 4.2)one lineage representing a single species (M. adscendens) dispersed from 

Kaua’i to Maui, while the remaining taxa diversified on Kaua’i. Clade I (Figure 4.2), 

containing the majority of species, shows a slightly more complex biogeographical 

pattern. The MRCA to the clade dispersed to the Marquesas Islands and spawned a 

diversification on Kaua’i and one dispersal event to O’ahu. This was followed by two 

independent colonizations from O’ahu to Maui followed by diversification on the 

island and eventual colonization of Hawai’i. The first lineage to disperse to Maui 

spawned M. peduncularis, a multi-island species occurring on Kaua’i, O’ahu, Moloka’i 

and Maui. Populations of M. peduncularis occurring in Kaua’i might represent a 

successful backwards dispersal. As the individuals herein were collected on Maui 

(Supplemental Table 4.1), the dispersal routes within the species could not be tested. 

The second lineage to disperse to Maui comprises the majority of all species endemic 

to Maui including three separate colonizations of the island of Hawaii with one 

resulting in a speciation event (M. radiata). The lineage also comprises one backwards 

colonization from Maui to O’ahu involving a speciation event and resulting in the 

diversification of three extant species (Figure 4.2). 

 

Diversification analysis  

The results of the BAMM analyses are plotted as lineage through time plots (LTT) 

and as a heat map on the branches of the phylogeny, warmer colours represent 

higher rates of diversification (Figure 4.3). For the DA1 dataset, seven distinct shift 

configurations wre identififed in the 95% credible (Supplemental Figure 4.9). The 

majority of inferred shift configurations correspond to the one represented by the 

mean phylorate plot (Figure 4.3a), with the time points for the shifts varying along 

branches and each clade within Hawaiian Melicope showing a different relative 

diversification rate (Figure 4.3a), the lowest inferred for clade V and the highest in 

clades I and III. The LTT plot (Figure 4.3a) shows a relatively constant diversification 

rate, with a slight increase ca. 5.3 mya, and a steep increase between ca. 1.4 and 0.3 

mya. For the DA2 dataset, two distinct shift configurations were found in the 95% 

credible shift set (Supplemental Figure 4.14). The mean phylorate plot (Figure 4.3b) 

shows three different rates of diversification for the five clades in Hawaiian Melicope. 

Clade V has the lowest relative rate of diversification, and rates increased in the 

MRCA to the remaining four clades. Clade I then shows a second increase in relative 

diversification rate. The LTT plot (Figure 4.3b) shows a similar pattern as described 

for DA1. 
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Figure 4.3. | Results of diversification analysis of a : DA1 (current taxonomic 

description of M. clusiifolia and close relatives) and b: DA2 (M. clusiifolia as several 

distinct lineages) using BAMM. The branches in the phylogenetic  tree are color -coded 

by their relative diversification rates. Warm colors represent higher relative 

diversification rates, cold colors lower, relative diversification rates. The li neage 

through time plot shows the time in millions of years on the x -axis and relative 
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diversification rates on the y-axis. The mean diversification rate is red and the 

credibility interval shaded in blue.  

Multiple state-dependent Speciation and Extinction (MuSSE) 

Analyses of DA1 and DA2 yielded highly comparable results with values for rates 

showing the same trend across datasets (Table 4.2). A mesic habitat was revealed as 

the ancestral state in Hawaiian Melicope with medium support (Figure 4.4). Posterior 

probability (PP) values for ancestral states are generally high in clades II and III and 

generally low in clades I, IV and V (< 0.5 PP).  

 

Table 4.2. | Results of Multiple character dependent Speciation and Extinction analysis 

in DA1 and DA2 for different habitats. Subscript numbers 0, 1, 2, and 3 refer to dry, 

mesic, wet and bog habitat, respectively. Posterior estimates for rates of speciation (λ), 

extinction (μ), diversification (r) and state transition (q xy) are given as mean with their 

95% credibility interval (CI).  

 DA1 DA2 
 mean CI mean CI 

λ0 20.27 10-6-76.2 2.52 10-6-14.60 

μ0 29.36 10-6-99.94 15.15 10-5-73.81 

r0 -9.09 -68.7-4.45 -12.63 -79.25-4.06 

λ1 0.55 0.31-0.81 0.521 0.29-0.81 

μ1 0.022 10-6-0.93 0.021 10-5-1.05 

r1 0.532 0.29-0.79 0.449 0.253-0.77 

λ2 0.66 10-6-1.78 1.43 0.89-2.11 

μ2 0.06 10-6-0.38 0.028 2*10-5-0.16 

r2 0.6 0.45-1.94 1.401 0.86-2.06 

λ3 4.03 10-9-35.21 0.128 10-6-0.36 

μ3 7.18 10-6-42.97 0.399 10-5-1.78 

r3 -3.15 -99.4-75.4 -0.27 -2.08-0.79 

q01 0.131 6.3*10-5-0.39 0.152 10-5-0.44 

q02 0.11 10-6-0.36 0.13 3*10-5-0.39 

q03 0.043 6.5*10-6-0.13 0.055 4.7*10-5-0.13 

q10 0.278 5.6*10-5-0.72 0.149 7.9*10-6-0.45 

q12 0.089 4.4*10-6-0.96 0.06 9.6*10-6-0.19 

q13 0.11 1.9*10-6-0.31 0.112 3.9*10-5-0.25 

q20 0.088 9.7*10-6-0.26 0.063 1.2*10-6-0.2 

q21 0.239 4.58*10-5-0.51 0.293 0.05-0.57 

q23 0.171 3.8*10-5-0.5 0.177 3.5*10-6-0.49 

q30 0.065 1.3*10-5-0.22 0.053 10-6-0.016 
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q31 0.131 2.8*10-5-0.39 0.188 6.6*10-6-0.36 

q32 0.186 1.9*10-5-0.61 0.15 7.9*10-6-0.42 

 

For species occurring in habitat types dry and bog, the analysis revealed a high 

negative mean diversification rate resulting from high speciation rates and very high 

extinction rates (Table 4.2). For habitat types mesic and wet, mean diversification 

rates were positive, but lower by at least an order of magnitude and result from 

comparatively low speciation and even lower extinction rates (Table 4.2). Transition 

rates vary by an order of magnitude as well but are generally lower than speciation 

rates. The highest transition rates are inferred for shifts from mesic to dry and from 

bog to wet (Table 4.2). 

 

 

Figure 4.4. | Results of Multiple character dependent Speciation and Extinction 

(MuSSE) analyses for different habitats in the DA1 datasets. The elevational range for 

species included in the study is indicated.  
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4.4  Discussion 

The tree topologies inferred herein are largely congruent with previous results based 

on the same datasets (Paetzold et al., 2019). One difference between topologies 

inferred by BEAST and the IQ-Tree-ML algorithm is the placement of the Marquesan 

species M. hivaoaensis within clade I, which was also recovered by Paetzold et al. 

(2019) and interpreted as possibly indicating reticulate evolution prior to the 

colonization of the Marquesas Islands. Sampling of Marquesan species is insufficient 

herein to conclusively address this question, which therefore must remain 

unresolved and results, including divergence time estimation as well as the historical 

biogeography remain preliminary. However, the relationships of the five main clades 

as resolved herein are congruent with those resulting from concatenated ML and 

Bayesian approaches of the same datasets (Paetzold et al., 2019).  

For BEAST analyses we only achieved convergence of MCMC runs under the 

assumption of a strict clock. Runs assuming an uncorrelated lognormal relaxed clock 

did not converge within available computational time. The strict clock assumes that 

the evolutionary rate of the underlying data is the same across all branches and the 

entire length of the tree. This assumption has been proven inadequate in many 

empirical datasets (Ho and Duchêne, 2014). The uncorrelated lognormal relaxed 

clock model allows every branch to evolve at a unique, independent rate (Ho and 

Duchêne, 2014), resulting in a large parameter space. Compared to simpler models 

adequately exploring the entire parameter space drastically increases the number of 

required MCMC moves. Considering the size and complexity of the datasets herein 

(Paetzold et al., 2019), it is entirely reasonable, that 5,000,000 MCMC iterations are 

not sufficient to explore the parameter space of a relaxed model and reach 

convergence of rate estimates.  

On the other hand, the dataset herein might be best (or at least well enough) 

characterized by a model assuming a strict clock. RAD datasets contain thousands of 

short loci, of which the vast majority originate from non-coding regions of the 

nuclear genome (Hipp et al., 2014). Non-coding regions are assumed to approach a 

neutral evolutionary rate better than coding regions. In this case, the assumption of a 

strict clock-like evolution might increase model fit and thus lead to convergence of 

MCMC runs. Ideally, model testing using a Stepping Stone algorithm and Bayes 

factors could estimate which clock model fits best. However, this requires that 

MCMC runs converge to sample from an effective power posterior (Baele et al., 2013; 

Barido-Sottani et al., 2018) and was thus not feasible here.  

We compared the strict-clock BEAST results to those estimated by the LSD2 

algorithm, which is less complex but uses a lognormal relaxed clock (To et al., 2016; 

Minh et al., 2020). Node ages were generally higher than those estimated by BEAST, 

falling into the upper third of the 95% HPD intervals estimated by the latter. 
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However, the general pattern of divergence times across the tree is comparable, with 

no node age estimated younger by LSD2 than BEAST or beyond the 95% HPD 

interval, which might be expected if a specific lineage violates the strict-clock 

assumption.  

A recent study based on Sanger-sequencing of five marker regions and extensive 

sampling in the entire genus Melicope employed a similar calibration scheme and a 

relaxed lognormal clock (Appelhans et al., 2018b). The analysis resolved the 

monophyly of Hawaiian Melicope and the five main clades with very high statistical 

support, while inter-species and inter-clade-relationships were not well resolved. 

Age estimations for the supported Hawaiian clades are highly congruent to our 

BEAST estimates and in the case of clades I and III even identical, with 95% HPD 

intervals largely overlapping. The exception is the MRCA to clade V (Platydesma), 

estimated to be 2.4 MA old in Appelhans et al. (2018b), but nearly twice (Figure 4.1) 

or three times (Supplemental Figure 4.4) that in here. This could be caused by an 

outgroup effect, as the outgroup comprised the entirety of the genus plus several 

related genera in Appelhans et al. (2018b) but only six samples herein.  

To date studies employing RAD-seq datasets for divergence time estimation are 

scarce or limited to a small number of samples (Lecaudey et al., 2018; Zhou et al., 

2018). We expect an improvement of the computational efficiency of the multispecies 

coalescent model triggered by the increasing application of HTS and the resulting 

availability of phylogenomic datasets.  

We investigated the relationship between the number of RAD loci in the alignment 

and the inferred node ages (Supplemental Table 4.4). The number of loci in the 

dataset had a weakly significant impact on the estimated node ages for more recent 

divergences, with inferred node ages an average 100,000 years older in the smallest 

dataset compared to the largest. This is probably related to the nature of RAD-seq 

assembly filtering by the number of samples per locus. Increasing evolutionary 

distance between taxa causes RAD locus dropout due to enzyme recognition site 

mutations. Thus, loci found in a comparatively large number of samples are 

conservative, while loci recovered from a limited number of samples have a higher 

rate of sequence evolution. Herein, the inferred divergence times for the most ancient 

nodes (1-6; Figure 4.1) are highly similar across all datasets (Supplemental Table 4.4), 

which likely reflects the fact that the oldest divergences are informed by the 

conservative loci in the dataset. The estimated differences in node ages are not 

altering the general picture of diversification patterns in Melicope, as they do not skirt 

time spans of geological or climatological changes in the region and 95% HPD 

intervals overlap widely.  
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A larger taxon sampling spanning the entire genus Melicope, comprehensive 

sampling of outgroups allowing the primary calibration of several nodes and 

improvements to molecular dating algorithms will be required to decisively evaluate 

our estimation. Nevertheless, our inferences provide the best resolved results to date.  

 

Divergence and biogeography 

As node ages estimated using BEAST are lower compared to the results of LSD2, 

they represent the more conservative estimates for divergence times. Thus, the 

discussion will focus on these conservative estimates as they represent the 

‘minimum’ estimated age.  

Hawaiian Melicope originated at least ca. 7.9 mya (6.7-12.9 mya) (Figure 4.1). This is 

the second analysis inferring the origin of the lineage to pre-date the rise of the 

current high islands by more than 2 MA (Appelhans et al., 2018b). The colonization 

of the Hawaiian archipelago was seemingly not followed by immediate 

diversification (Figure 4.1). This is opposite to observations for the majority of 

Hawaiian adaptive radiations, where colonization was often followed by rapid 

diversification into distinct lineages, e.g. silverswords (Baldwin and Sanderson, 1998; 

Landis et al., 2013), honeycreepers (Lerner et al., 2011), or Schiedea (Willyard et al., 

2011). 

The period between 8-5 mya was characterized by a reduced Hawaiian archipelago 

with small islands lower than 1000 m (Price and Clague, 2002; Garcia et al., 2015) and 

represented a bottleneck for diversity on the islands. Hawaiian Melicope seems to 

represent one of the few lineages prevailing on older, low islands as did e.g. 

Hawaiian lobeliads (Givnish et al., 2009). As the Melicope colonist arrived between 

4.7-11.7 (Appelhans et al., 2018b) or 6.7-12.9 mya (herein), the most likely islands to 

have been colonized were either Necker (ca. 10.3 mya), Twin Banks (ca. 9.6 mya), 

Nihoa (ca. 7.5 mya); even the French Frigate Shoals (ca. 12.0 mya) or the Gardner 

pinnacles (ca. 12.3 mya) (Garcia et al., 2015), although the latter two possibilities seem 

less likely due to their ages falling into upper end of the 95% HPD interval (Figure 

4.1). These islands were all comparatively small and low in elevation, which suggests 

a paucity of ecological niches compared to higher islands (Price and Clague, 2002). In 

addition, the average times of existence for these islands are shorter compared to the 

present, higher elevation islands (Clague, 1996). By the time the Melicope colonist 

arrived on the archipelago, these islands might already have been in decline with 

increasingly high ecological niche turnover due to erosion in addition to niche 

saturation by earlier colonizers. Under these circumstances, the initial population of 

the Melicope colonizer might have encountered only few niches to exploit via 

adaptive diversification. Depending on where the colonization of the island chain 

occurred, the ancestor to the lineage might have arrived on the current high islands 
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by using several low islands as stepping stones. This process would represent a 

prolonged bottleneck.   

The ancestors to the extant five main clades diverged within a short period of less 

than 1 MA, around the emergence of Kaua’i. The following 3 MA are characterized 

by seemingly low diversification before the onset of the current burst of 

diversification 1.5 mya (Figure 4.1). The recent period of divergence was 

accompanied by the colonization of the remaining islands of the Hawaiian Islands 

(and even the Marquesas Islands), so that the colonization of the younger islands 

seems to have started long after their emergence with the partial exception of 

Hawai’i (Figure 4.2). However, the estimated diversification rates for the last 5 MA 

(Figure 4.3) and the handle-and-broom pattern in the topology imply high rates of 

extinction in the previous intervals (Crisp and Crone, 2009). In this case, earlier 

lineages might have colonized O’ahu and Maui Nui, but became extinct and the 

extant species are descendants from subsequently colonizing lineages. The Hawaiian 

Archipelago is a geologically highly active region, which causes a range of high-

impact events, e.g. substantial landslides and (Mega-) Tsunamis (Moore and Clague, 

1992). These events might have caused substantial extinction in taxa with high 

degrees of endemism like Melicope (Stone et al., 1999). Additional strain might have 

been put on taxa by changing sea levels during the glacial-interglacial cycles, which 

reshaped or even discarded entire habitat regimes on the islands (Price and Elliott-

Fisk, 2004).  

Biogeographical patterns in Hawaiian Melicope are overall characterized by a per-

clade progression rule (Figure 4.2). Within each main clade, the major route of 

colonization is from older to younger islands, which in this case might not 

necessarily reflect the emergence of the islands but rather their relative proximity. 

Hawaiian Melicope show adaptions to bird dispersal (Stone et al., 1999; Hartley, 

2001).While the native Hawaiian avifauna was rich at least prior to the arrival of 

humans, many species adapted to island life by evolving a low-cost reduced fly 

apparatus, limiting their dispersal ranges (McNab, 1994).  

Colonization events to younger islands resulted in speciation in most cases (Figure 

4.3). However, the majority of species richness originated from intra-island 

diversification of established colonists. There is no general pattern of divergence; 

rather each clade seems to represent a unique pattern. Clade IV mainly comprises the 

morphologically variable M. clusiifolia and might represent a “generalist” strategy. 

The species is morphologically variable and occurs in a wide range of habitats and 

elevations on all islands (Figure 4.4). The diversification rate within this widespread 

taxon is comparatively low (Figure 4.3a). However, the taxonomic treatment of M. 
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clusiifolia requires revision and might represent several distinct species with 

speciation along the progenitor-derivative concept (Paetzold et al., 2019).  

Clade III mostly comprises species adapted to mesic habitats, with the majority of 

taxa endemic to Kaua’i. The island has long been subjected to erosion processes, 

which might act as a driver of diversification by creating a plethora of dissected 

microhabitats exploitable by vicariant speciation.  

Clade I is the most diverse clade of all, showing the highest rates of diversification 

(Figure 4.3) in the entire lineage. One subclade, comprising approximately half of all 

taxa, is endemic to Kaua’i, while the other comprises all species occurring on the 

younger islands. The taxa in clade I show a wide range of habitat preferences 

including a comparatively high amount of habitat shifts and range expansions 

(Figure 4.4, Table 4.2). In clade I, there is also some evidence for species-to-species 

matching, where different species occupy identical habitat types on different islands 

(Wagner and Funk, 1995), e.g. M. molokaiensis and M. oahuensis or M. hiiakae and M. 

ovalis (Figure 4.4). The high diversity in this clade might signify a pattern of repeated 

adaptive shifts to different height ranges and precipitations.  

Clades II and V show low rates of diversification and species numbers. Platydesma 

(clade V) is characterized by hermaphroditic flowers with extensive nectar 

production as an adaption to bird pollination (Stone et al., 1999), while the remaining 

species of Melicope section Pelea, including the extra-Hawaiian representatives, are 

functionally dioecious (Hartley, 2001). Dioecy is frequent in island floras and has 

been associated with avoidance of inbreeding depression in small island populations 

and thus presenting a selective advantage (Sakai et al., 1995). In Hawaiian Melicope 

the shift towards hermaphroditism seems to have occurred only once. Divergence 

time estimation suggests a crown age of 5.1 - 6.5 mya for Platydesma (Figure 4.1), 

placing the shift during the time of colonization of a young, active Kaua’i. The shift 

to hermaphroditism might have presented a short-term advantage when population 

sizes were small. On the other hand, species-rich Melicope section Lepta comprises 

both monoclinous and dioecious species, with several shifts between the flower types 

and some plasticity in a number of species (Hartley, 2001; Appelhans et al., 2014a). 

Plasticity in flower type continues to be documented in the field for some Hawaiian 

Melicope species (Stone et al., 1999; Hartley, 2001; K. Wood, personal observation), 

perhaps implicating selective suppression of flower parts. A formal assessment of the 

trait and a genus-wide taxon sampling would be required to assess the effect of the 

trait on speciation. 

There is an ongoing debate regarding estimation of diversification rates from dated 

phylogenetic trees using model-based methods like BAMM (e.g. Meyer and Wiens, 

2016; Moore et al., 2016; Meyer et al., 2018). While the majority of the criticism was 

shown to be founded in shortcomings of either mathematical or statistical 
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framework, or experimental design (Rabosky, 2018, 2019; Mitchell et al., 2019), one 

aspect has been addressed, but remains unsolved: unobserved rate shifts. Likelihood 

estimation for model based rate-shift algorithms all follow the logic introduced in the 

BiSSE method (Maddison et al., 2007), and condition the likelihood on the finite set of 

observed branches on the tree (i.e. the methods assume no rate shifts in unsampled 

or extinct lineages). The problem has been recognized (Moore et al., 2016; Rabosky et 

al., 2017; Mitchell et al., 2019) but as of yet it is unclear how that information might be 

gained (Mitchell et al., 2019). However, recent simulations indicated, that unobserved 

rate shifts do not bias rate estimations significantly (Mitchell et al., 2019) and that 

BAMM provides more accurate rates compared to other methods andacross a range 

of diversification scenarios (Rabosky, 2018; Title and Rabosky, 2019). Nevertheless, 

our understanding of diversification progresses and is not complete and, like others 

before, we encourage improvements of methods and models (Rabosky et al., 2017; 

Louca et al., 2018; Mitchell et al., 2019). 

The four different habitat types Hawaiian Melicope are adapted to, have a significant 

impact on species diversification. In mesic and wet habitats, which represent the 

majority of available ecological niches on the island group, speciation rates are an 

order of magnitude higher than extinction rates (Table 4.2), leading to a steady, but 

slow increase in species adapted to these habitats. In more extreme habitats, dry 

ranges and bogs, the inferred diversification rate is negative, resulting in a loss of 

species. However, both speciation and extinction rates associated with these more 

extreme habitats are up to 40 times higher compared to mesic and wet habitats, 

illustrating a high rate of species turnover and possibly a shorter time of individual 

species prevalence. Bog habitats do not initially exist on young, volcanic islands, as 

their formation requires a long-term primary succession of rainforests as well as high 

amounts of rainfall. In addition, bog habitats are vulnerable to decreases in moisture 

(Mueller-Dombois and Boehmer, 2013). Drier conditions have been common on the 

islands repeatedly during glacial maxima (Price and Elliott-Fisk, 2004). As such these 

habitats are transient, colonized late and highly competitive.  

The highest rates of speciation and extinction were inferred for species occurring in 

dry habitats, which are generally associated to leeward, lowland areas on the 

Hawaiian Islands (Wagner et al., 1999a). These areas are transient in the initial states 

of island formation due to rapid subsidence when an island moves away from the 

hot-spot (Clague, 1996). Dry habitats, especially low elevation ones, are most 

extensive during glacial maxima, as wide ranges of land emerge from the ocean and 

conditions are generally cooler and much drier (Price and Elliott-Fisk, 2004). 

Repeated glacial cycles combined with changing habitat availability on young islands 

might contribute to high species turnover associated with dry habitats (Table 4.2). 

Dry and lowland habitats have also been exceptionally impacted by anthropogenic 
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changes since human arrival with many native species adapted to these conditions 

extinct or at high risk of extinction (Sakai et al., 2002), which might be reflected by the 

extremely high inferred rates of extinction. 

However, considering that the highest diversification rates are observed in clade I 

(Figure 4.3), one key to diversification in Hawaiian Melicope might be trait flexibility. 

The ability to shift habitat types, elevational ranges and possibly other characters 

frequently might create an abundance of small-range specialists, with the capacity to 

spawn new taxa that successfully compete for different ecological niches. This 

evolutionary flexibility would result in a lineage that is adapted to exploit 

continuously emerging and changing habitats typical for a geologically active 

environment such as the Hawaiian Islands.  
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4.    |  Supplemental Information 

 

Supplemental Table 4.1 | Samples within this study including assignment to Stone’s 

sections. Samples in bold are included in reduced datasets for diversification analyses: 

bold: DA1, bold + shaded: DA2. Asterisks denote multi -sample species included 

because of non-monophyly in Paetzold et al. (2019).  

Species Coll. No. 
 Stone's 

section 

Melicope adscendens (H. St. John & E.P. Hume) T.G. 

Hartley & B. C. Stone 
MA628 Apocarpa 

Melicope anisata (H. Mann) T. G. Hartley & B. C. Stone MA665 Cubicarpa 

Melicope anisata (H. Mann) T. G. Hartley & B. C. Stone MA668 Cubicarpa 

Melicope balloui (Rock) T.G.Hartley & B.C.Stone KW7685 Megacarpa 

Melicope barbigera A. Gray  MA666 Apocarpa 

Melicope barbigera A. Gray  KW15333 Apocarpa 

Melicope barbigera A. Gray  KW15449 Apocarpa 

Melicope barbigera A. Gray  KW15961 Apocarpa 

Melicope barbigera A. Gray KW16722 Apocarpa 

Melicope barbigera A. Gray  KW16718 Apocarpa 

Melicope christophersenii (H. St. John) T. G. Hartley & B. 

C. Stone  
MA618 Megacarpa 

Melicope christophersenii (H. St. John) T. G. Hartley & B. C. 

Stone  
MA621 Megacarpa 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA615 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA617 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA634 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA650 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA651 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA655 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA657 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA670 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA672 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA 693 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  MA695 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  Oppenheimer s.n. Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  
Oppenheimer 

H91641 
Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone  KW16146 Pelea 

Melicope clusiifolia (A. Gray) T. G. Hartley & B. C. Stone MA675 Pelea 

Melicope cornuta (Hillebr.) Appelhans, K.R.Wood & 

W.L.Wagner 
Ching s.n. Platydesma 

Melicope cornuta var. decurrens (B.C. Stone) Appelhans, 

K.R. Wood & W.L. Wagner 
Takahama s.n. Platydesma 
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Melicope cruciata (A. Heller) T.G. Hartley & B.C. Stone KW16251 Megacarpa 

Melicope degeneri (B.C.Stone) T.G.Hartley & B.C.Stone KW15903 Cubicarpa 

Melicope degeneri (B.C.Stone) T.G.Hartley & B.C.Stone KW15984 Cubicarpa 

*Melicope feddei (H. Lév.) T. G. Hartley & B. C. Stone MA688 Megacarpa 

*Melicope feddei (H. Lév.) T. G. Hartley & B. C. Stone KW15844 Megacarpa 

Melicope haleakalae (B. C. Stone) T. G. Hartley & B. C. Stone  MA637 Pelea 

Melicope haleakalae (B. C. Stone) T. G. Hartley & B. C. Stone  MA645 Pelea 

Melicope haleakalae (B. C. Stone) T. G. Hartley & B. C. 

Stone  
MA646 Pelea 

*Melicope haupuensis (H. St. John) T. G. Hartley & B. C. 

Stone 
MA687 Apocarpa 

*Melicope haupuensis (H. St. John) T. G. Hartley & B. C. 

Stone 
KW16791 Apocarpa 

*Melicope haupuensis (H. St. John) T. G. Hartley & B. C. 

Stone 
KW16794 Apocarpa 

Melicope hawaiensis (Wawra) T.G.Hartley & B.C.Stone  MA633 Apocarpa 

Melicope hawaiensis (Wawra) T.G.Hartley & B.C.Stone  MA700 Apocarpa 

Melicope hawaiensis (Wawra) T.G.Hartley & B.C.Stone  Oppenheimer s.n. Apocarpa 

Melicope hiiakae (B.C.Stone) T.G.Hartley & B.C.Stone Ching s.n. Megacarpa 

Melicope hivaoaensis J.Florence Meyer826  

Melicope inopinata J.Florence Meyer887  

Melicope kavaiensis (H. Mann) T. G. Hartley & B. C. 

Stone 
MA679 Megacarpa 

*Melicope knudsenii (Hillebr.) T.G. Hartley & B.C. Stone MA629 Apocarpa 

Melicope knudsenii (Hillebr.) T.G. Hartley & B.C. Stone 
Oppenheimer 

H41610 
Apocarpa 

*Melicope knudsenii (Hillebr.) T.G. Hartley & B.C. Stone KW17119 Apocarpa 

Melicope lydgatei (Hillebr.) T.G. Hartley & B.C. Stone  Ching s.n. Megacarpa 

Melicope makahae (B. C. Stone) T. G. Hartley & B. C. 

Stone 
Takahama s.n. Apocarpa 

Melicope makahae (B. C. Stone) T. G. Hartley & B. C. Stone 

(cf.) 
MA609 Apocarpa 

Melicope molokaiensis (Hillebr.) T. G. Hartley & B. C. Stone  MA635 Megacarpa 

Melicope molokaiensis (Hillebr.) T. G. Hartley & B. C. Stone  MA643 Megacarpa 

Melicope molokaiensis (Hillebr.) T. G. Hartley & B. C. 

Stone  
Oppenheimer s.n. Megacarpa 

Melicope mucronulata (H. St. John) T.G. Hartley & B.C. 

Stone 
MA630 Apocarpa 

Melicope munroi (St.John) T.G.Hartley & B.C.Stone Oppenheimer s.n. Megacarpa 

Melicope oahuensis (H. Lév.) T. G. Hartley & B. C. Stone MA610 Cubicarpa 

Melicope oahuensis (H. Lév.) T. G. Hartley & B. C. Stone Ching s.n. Cubicarpa 

Melicope oppenheimeri K.R.Wood, Appelhans & W.L.Wagner KW7419 Megacarpa 

Melicope oppenheimeri K.R.Wood, Appelhans & 

W.L.Wagner 
KW7408 Megacarpa 

Melicope orbicularis (Hillebr.) T. G. Hartley & B. C. Stone  MA656 Megacarpa 

Melicope orbicularis (Hillebr.) T. G. Hartley & B. C. Stone  MA659 Megacarpa 

Melicope ovalis (St.John) T.G.Hartley & B.C.Stone KW13724 Cubicarpa 
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Melicope ovata (H. St. John & E. P. Hume) T. G. Hartley & 

B. C. Stone  
MA662 Apocarpa 

Melicope ovata (H. St. John & E. P. Hume) T. G. Hartley & B. 

C. Stone  
MA684 Apocarpa 

Melicope ovata (H. St. John & E. P. Hume) T. G. Hartley & B. 

C. Stone  
MA663 Apocarpa 

Melicope ovata (H. St. John & E. P. Hume) T. G. Hartley & B. 

C. Stone  
KW17082 Apocarpa 

Melicope ovata (H. St. John & E. P. Hume) T. G. Hartley & B. 

C. Stone  
KW16762 Apocarpa 

Melicope pallida (Hillebr.) T. G. Hartley & B. C. Stone MA689 Apocarpa 

Melicope pallida (Hillebr.) T. G. Hartley & B. C. Stone KW16789 Apocarpa 

Melicope pallida (Hillebr.) T. G. Hartley & B. C. Stone KW15571 Apocarpa 

Melicope paniculata (H. St. John) T. G. Hartley & B. C. Stone MA660 Cubicarpa 

Melicope paniculata (H. St. John) T. G. Hartley & B. C. 

Stone 
KW16155 Cubicarpa 

Melicope peduncularis (H. Lév.) T. G. Hartley & B. C. 

Stone 
MA652 Cubicarpa 

Melicope peduncularis (H. Lév.) T. G. Hartley & B. C. Stone MA653 Cubicarpa 

Melicope pseudoanisata (Rock) T.G. Hartley & B.C. Stone  MA632 Megacarpa 

Melicope pseudoanisata (Rock) T.G. Hartley & B.C. Stone  MA636 Megacarpa 

Melicope pseudoanisata (Rock) T.G. Hartley & B.C. Stone  MA642 Megacarpa 

Melicope puberula (H. St. John) T. G. Hartley & B. C. Stone MA680 Megacarpa 

Melicope puberula (H. St. John) T. G. Hartley & B. C. 

Stone 
KW16058 Megacarpa 

Melicope radiata (H. St. John) T. G. Hartley & B. C. Stone  MA696 Megacarpa 

Melicope rostrata (Hillebr.) Appelhans, K.R. Wood & 

W.L. Wagner 
MA683 Platydesma 

Melicope rotundifolia (A. Gray) T.G. Hartley & B.C. Stone Ching s.n. Megacarpa 

Melicope sandwicensis (Hook. & Arn.) T.G. Hartley & B.C. 

Stone 
Ching s.n. Apocarpa 

Melicope sessilis (H. Lév.) T. G. Hartley & B. C. Stone MA644 Megacarpa 

*Melicope sp. (wawraeana-like) KW17111 Megacarpa 

*Melicope sp. (wawraeana-like) KW15733 Megacarpa 

Melicope spathulata A. Gray MA697 Platydesma 

Melicope spathulata A. Gray KW16743 Platydesma 

Melicope spathulata A. Gray KW16836 Platydesma 

Melicope stonei K.R.Wood, Appelhans & W.L.Wagner MA691 Apocarpa 

Melicope stonei K.R.Wood, Appelhans & W.L.Wagner KW16727 Apocarpa 

Melicope volcanica (A. Gray) T.G. Hartley & B.C. Stone 

(cf.) 
Oppenheimer s.n. Megacarpa 

Melicope waialealae (Wawra) T.G.Hartley & B.C.Stone KW16015 Pelea 

outgroup   

Melicope aneura (Lauterb.) T.G.Hartley MA418  

Melicope brassii T.G.Hartley MA436  

Melicope durifolia (K.Schum.) T.G.Hartley MA455  
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Melicope durifolia (K.Schum.) T.G.Hartley MA465  

Melicope polyadenia Merr. & L.M.Perry MA438  

Melicope triphylla Merr. MA394  

 

Supplemental Table 4.2 | Assignment of unsampled species to c lades herein for BAMM 

analysis.  

Taxon assorted 

to clade 

Reference 

M. cinerea A.Gray III Appelhans et al., 2014b 

M. elliptica (A.Gray) T.G.Hartley & B.C.Stone I Appelhans et al., 2014b 

M. hosakae (H.St.John) W.L.Wagner & R.K.Shannon I Stone et al., 1999 

M. kaalaensis (H.St.John) T.G.Hartley & B.C.Stone I Stone et al., 1999 

M. macropus (Hillebr.) T.G.Hartley & B.C.Stone I Stone et al., 1999 

M. nealae (B.C.Stone) T.G.Hartley & B.C.Stone I Stone et al., 1999 

M. obovata (H.St.John) T.G.Hartley & B.C.Stone III Appelhans et al., 2014b 

M. quadrangularis (H.St.John & E.P.Plume) 

T.G.Hartley & B.C.Stone 

I Stone et al., 1999 

M. reflexa (H.St.John) T.G.Hartley & B.C.Stone I Stone et al., 1999 

M. remyi (Sherff) Appelhans, K.R.Wood & 

W.L.Wagner 

V Appelhans et al., 2017 

M. saint-johnii (E.P.Plume) T.G.Hartley & B.C.Stone III Appelhans et al., 2014b 

M. wailauensis (H.St.John) T.G.Hartley & B.C.Stone I Stone et al., 1999 

M. zahlbruckneri (Rock) T.G.Hartley & B.C.Stone I Stone et al., 1999 
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Supplemental Table 4.3 | Habitat occupation for Hawaiian Melicope species 

investigated in MuSSE analysis. *represents a total of six c losely related Marquesan 

species. **represents the Maui populations of M. knudsenii.  

species habitat 

M. adscendens mesic 

M. anisata mesic-wet 

M. balloui wet 

M. barbigera mesic 

M. christophersenii wet 

M. clusiifolia mesic-wet-bog 

M. cornuta mesic 

M. cruciata wet 

M. degeneri wet 

M. feddei wet-bog 

M. haleakalae wet 

M. haupuensis mesic 

M. hawaiiensis dry-mesic 

M. hiiakae wet 

M. hivaoaensis* wet 

M. inopinata wet 

M. kavaiensis wet-bog 

M. knudsenii dry-mesic 

M. knudsenii** dry-mesic 

M. lydgatei mesic 

M. makahae mesic 

M. molokaiensis mesic-west 

M. mucronulata mesic 

M. munroi mesic-wet 

M. oahuensis mesic-wet 

M. oppenheimeri wet 

M. orbicularis mesic-wet 

M. ovalis wet 

M. ovata mesic 

M. pallida mesic 

M. paniculata wet 

M. peduncularis mesic 

M. pseudoanisata mesic-wet 

M. puberula wet-bog 

M. radiata dry-mesic-wet 

M. rostrata mesic-wet 

M. rotundifolia mesic-wet 

M. sandwicensis mesic 

M. sessilis wet 

M. spathulatha mesic-wet 

M. stonei mesic 

M. volcanica mesic-wet 

M. waialealae wet-bog 
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M. sp. (wawraeana-like) mesic 

Supplemental Table 4.4 | Results of multiple linear regression models (LM) to infer the 

impact of dataset size on inferred node ages for 11 focal nodes (Figure 4.2). 

 multiple R2 F1,2 p 

node 1 0.001458 0.00292 0.9618 

node 2 0.5853 2.823 0.235 

node 3 0.5243 2.204 0.275 

node 4 0.769 6.657 0.1231 

node 5 0.8852 15.42 0.0592 

node 6 0.5842 2.81 0.2356 

node 7 0.9798 97.02 0.01015 

node 8 7697 6.685 0.1227 

node 9 0.9731 33.17 0.0288 

node 10 0.9613 49.68 0.0195 

node 11 0.9703 65.29 0.01497 
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Supplemental Figure 4.1 | Divergence times in Hawaiian Melicope as inferred by 

BEAST in the min50 dataset. The maximum clade credibility consensus tree is shown 

with the credibility intervals of estimated ages displayed as light blue bars. Mean ages 

of nodes corresponding the origin of major lineages are shown.  
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Supplemental Figure 4.2 | Divergence times in Hawaiian Melicope as inferred by 

BEAST in the min67 dataset. The maximum clade credibility consensus tree is shown 

with the credibility intervals of estimated ages displ ayed as light blue bars. For nodes 

corresponding the origin of major lineages mean ages are shown in addition to the 95% 

credibility interval.  
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Supplemental Figure 4.3| Divergence times in Hawaiian Melicope as inferred by BEAST 

in the min85 dataset. The maximum clade credibility consensus tree is shown with the 

credibility intervals of estimated ages displayed as light blue bars.  For nodes 

corresponding the origin of major lineages mean ages are shown in addition t o the 95% 

credibility interval.  
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Supplemental Figure 4.4  | Divergence times in Hawaiian Melicope as inferred by LSD2 

with IQ-Tree in the min32 dataset. The Maximum Likelihood tree is shown with the 

credibility intervals of estimated ages displayed as light blue bars. For nodes 

corresponding the origin of major lineages mean ages are shown in addition to the 95% 

credibility interval.  
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Supplemental Figure 4.5 | Divergence times in Hawaiian Melicope as inferred by LSD2 

with IQ-Tree in the min50 dataset. The Maximum Likelihood tree is shown with the 

credibility intervals of estimated ages displayed as light blue bars. For nodes 

corresponding the origin of major lineages mean ages are shown in addition to the 95% 

credibility interval.  
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Supplemental Figure 4.6 |  Divergence times in Hawaiian Melicope as inferred by LSD2 

with IQ-Tree in the min67 dataset. The Maximum Likelihood tree is shown with the 

credibility intervals of estimated ages displayed as light blue bars. For nodes 

corresponding the origin of major lineages mean  ages are shown in addition to the 95% 

credibility interval.  
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Supplemental Figure 4.7 | Divergence times in Hawaiian Melicope as inferred by LSD2 

with IQ-Tree in the min85 dataset. The Maximum Likelihood tree is shown with the 

credibility intervals of estimated ages displayed as light blue bars. For nodes 

corresponding the origin of major lineages mean ages are shown in addition to the 95% 

credibility interval.  
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Supplemental Figure 4.8 | Ancestral area reconstruction according to the 

BAYAREALIKE model implemented in BioGeoBEARS. The origin of the Islands is 

indicated in the phylogeny as vertical, dashed lines.  
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Supplemental Figure 4.9 | Ancestral area reconstruction according to the DEC+J model 

implemented in BioGeoBEARS. The origin of the Islands is indicated in the phylogeny 

as vertical, dashed lines.  
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Supplemental Figure 4.10 | Ancestral area reconstruction according to the DEC model 

implemented in BioGeoBEARS. The origin of the Islands is indicated in the phylogeny 

as vertical, dashed lines.  



Diversification of Hawaiian Melicope 
 

133 

 

 

Supplemental Figure 4.11 | Ancestral area reconstruction according to the DIVALIKE+J 

model implemented in BioGeoBEARS. The origin of the Islands is indicated in the 

phylogeny as vertical, dashed lines.  
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Supplemental Figure 4.12 | Ancestral area reconstruction according to the DIVALIKE 

model implemented in BioGeoBEARS. The origin of the Islands is indicated in the 

phylogeny as vertical, dashed lines.  

 

 



Diversification of Hawaiian Melicope 
 

135 

 

 

Supplemental Figure 4.13 | Distinct shift configurations in the credible shift set 

resolved by BAMM analysis of the DA1 dataset ordered by frequency (f).  Warm colours 

represent higher relative diversification rates, cold colours lower, relative 

diversification rates. Grey circles represent lin eage-specific  shifts in relative 

diversification rate.  
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Supplemental Figure 4.14 | Distinct shift configurations in the credible shift set 

resolved by BAMM analysis of the DA2 dataset ordered by frequency (f).  Warm colours 

represent higher relative diversification rates, cold colours lower, relative 

diversification rates. Grey circles represent lineage -specific  shifts in relative 

diversification rate.  
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5. |  Discussion 

 

 

 

 

 Na Pali Coast, Northern Kauaʻi. Photograph: Claudia Paetzold 
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5.1  Phylogeny and Spatio-temporal evolution of Hawaiian Melicope  

Elucidating relationships in Hawaiian Melicope has been challenging in the past. 

Datasets generated by Sanger-Sequencing of a small number of genomic regions did 

not contain sufficient variation to resolve the majority of relationships (Harbaugh et 

al., 2009; Appelhans et al., 2014a, 2014b). The RAD-seq datasets herein are several 

magnitudes larger compared to previous efforts both in the number of base pairs and 

in the number of informative sites (Table 3.2; Harbaugh et al., 2009; Appelhans et al., 

2014a, 2014b) and offer an unprecedented resolution of species-level relationships in 

the lineage.  

Divergence time estimation using the RAD-seq dataset (chapter 4) resulted in a 

crown age of 7.9 mya (6.7-12.9 mya) for the extant Hawaiian Melicope (Figure 4.1). 

This estimate confirms previous results dating the origin of the lineage prior to the 

rise of the current high islands (Appelhans et al., 2018b). Consequently, the ancestor 

of the radiation most likely colonized either Necker (ca. 10.3 mya), the Twin Banks 

(9.6 mya) or, less likely, Nihoa (ca 7.5 mya) (Garcia et al., 2015). The colonizer 

originated from the Australasian region and is hypothesized to have arrived via 

stepping stone dispersal of other Pacific Island systems, though the resolution of 

relationships is not sufficient to support that claim (Appelhans et al., 2018b; Price and 

Wagner, 2018).  

Chromosome numbers for Hawaiian Melicope are uniformly n = 18 or 2n = 36 (chapter 

2), with only one reported deviation in extant species (Guerra, 1984). These values 

represent the base chromosome number in the entire Rutacean subfamily 

Amyridioideae dating back to an ancient polyploidization event at least 70 MA 

(Appelhans et al., 2012). There is no evidence to suggest that the ancestor of the 

Hawaiian lineage was a recent polyploid.  

The colonization of the archipelago was seemingly not followed by immediate large-

scale diversification. The established colonizer persisted for a period of ca. 2 MA in 

the archipelago but did not radiate, before eventually colonizing Kauaʻi. Lag times 

between colonization and onset of diversification have been connected to decreased 

initial competitiveness due to the low population numbers during the establishment 

of new arrivals (Gillespie, 2004). Yet the majority of island adaptive radiations are 

characterized by an early burst of speciation soon after colonization (e.g. Baldwin 

and Sanderson, 1998; Lindqvist et al., 2003; Gillespie, 2004). The exceptions to that 

early burst pattern are the lineages that colonized the archipelago prior to the 

emergence of the current main islands, Hawaiian Lobeliads (Givnish et al., 2009) and 

drosophilids (Russo et al., 1995) and now apparently Melicope. Considering that the 

leeward refugial islands were short-lived, low in elevation and already in decline at 

the time of the Melicope arrival (Clague, 1996; Price and Clague, 2002), the majority of 



 Discussion 

 

140 

ecological niches were likely saturated. Consequently, the population size of the 

established colonists might have remained small until colonization of the young 

Kauaʻi provided ecological opportunity to diversify.  

Extant Hawaiian Melicope are divided into five, fully supported main clades (Figure 

3.2). Ancestral area reconstruction in chapter 4 suggests that Kauaʻi was colonized 

twice; once by the ancestor to clade V (Platydesma) and a second time by the ancestor 

to clades I-IV (Figure 4.2). That taxon subsequently diverged into four lineages 

comparatively rapidly within less than 1 MA after arrival (Figure 4.2). 

The relationships of clade III are incongruent across different RAD-seq datasets 

(Figure 3.2, Supplemental Figures 3.1-3.4) with quartet sampling QD scores 

indicating ILS as a less likely source than horizontal gene transfer (Figure 3.3; Pease 

et al., 2018). Partitioned D-statistics tests (Eaton and Ree, 2013) with each of the 

clades I-IV designated as donor lineages in all possible combinations were conducted 

to identify signals of ancient introgression events (chapter 3). The results were 

statistically significant for D1 and D2 in all performed tests, while D12 produced 

significant results exclusively in tests with clades III and IV designated as donor 

lineages (Table 3.3). This indicates that two separate introgressive hybridization 

events occurred between these four ancestral species, one involving the ancestors to 

clades I and IV, while the second involved the ancestors to clades II and III (Figure 

3.2). Significant values for D12 represent the presence of alleles by the progenitor of 

clades I and II, which the two descending species shared and subsequently 

introduced into the ancestral species of clades III and IV, respectively. The 

introgressed information might even have resulted in the apparent morphological 

connection between the clades. All species in clades I and IV have syncarpous fruits, 

while clades II and III are characterized by apocarpous fruits (Stone et al., 1999). In 

general, some caution is warranted as D-statistics tests are sensitive to confounding 

signals from multiple introgression events due to phylogenetic non-independence of 

tests (Eaton et al., 2015). In addition, I could not sample M. elliptica for my thesis, 

which was resolved as an independent lineage and sister to clade I in a previous 

analysis (Appelhans et al., 2014b). As this taxon is suspected to be involved in 

hybridization events itself (Price and Wagner, 2004), incorporating the species is 

crucial to exclude the possibility of the results inferred herein resulting from a ghost-

lineage effect. 

As currently standing, the introgressive hybridization events are associated with the 

time frame of the subaerial shield building of Kauaʻi (Figure 1.1; Clague and Sherrod, 

2014). The older islands in the mountain chain, Necker, Twin Banks, and Nihoa, were 

eroded substantially or completely at this time, while Kauaʻi experienced the phase 

of most active volcanism, accompanied by lava flows, earthquakes, and landslides, 

which might have caused tsunamis (Moore et al., 1989; Price and Clague, 2002; 
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Clague and Sherrod, 2014; Denlinger and Morgan, 2014). Catastrophic events have 

been suggested to promote hybridization events though the exact reasons are 

unknown (Stuessy et al., 2014). These events might force species to survive in 

refugial, suboptimal habitats thus increasing close proximity of each other.  

The divergence of the five main lineages was followed by a period of little apparent 

diversification lasting 3 MA. The currently recognized 54 species evolved during a 

phase of rapid diversification in the last 1.5 MA (Figure 4.1). The burst in divergence 

was accompanied by the colonization of the younger islands in the archipelago, and 

the Marquesas Islands (Figure 4.2).  

The estimated diversification rates for Hawaiian Melicope, especially during the last 

<2 MA (Figure 4.3), render the previous interval of seemingly low divergence 

unlikely. Instead, the “handle-and-broom” shape of the tree with long basal branches 

and bushy tips characterizes a high extinction fraction, i.e. a high rate of extinction 

relative to speciation (Crisp and Crone, 2009). The estimated rates of species turnover 

indicate that the majority of diversity in the lineage is extinct and the extant species 

descend from a small number of surviving lineages. As already mentioned, the 

Hawaiian Islands are geologically highly active regularly experiencing large scale 

catastrophic events (Moore et al., 1989; Price and Clague, 2002; Denlinger and 

Morgan, 2014). Changing sea levels during glacial cycles repeatedly reshaped or 

discarded entire habitat zones (Price and Elliott-Fisk, 2004) while tropical cyclones 

increased frequency and intensity during warming phases (Montaggioni, 2005; 

Fedorov et al., 2010). All of these factors combined with changing ecological 

opportunity driven by island ontogeny (Whittaker et al., 2010) are liable to cause 

substantial amounts of extinction in lineages with high degrees of single-island 

endemism and species adapted to narrow ecological niches, like Hawaiian Melicope 

(Stone et al., 1999). Unfortunately, we currently lack evolutionary models that can 

adequately estimate extinction from genomic data alone (Sanmartín and Meseguer, 

2016).  

The overall biogeographical pattern in Hawaiian Melicope seems to be represented by 

a per-clade progression rule (Wagner and Funk, 1995). In each clade, islands were 

colonized in the order of their age (Figure 4.2). However, the pattern does not reflect 

the younger islands becoming successively available. Both Oʻahu and Maui Nui were 

already in post-shield stage when they were colonized. It rather reflects the relative 

proximity of neighboring islands as destinations for dispersers. Melicope, including 

the Hawaiian radiation, shows adaptions to bird dispersal (Stone et al., 1999; Hartley, 

2001). At least in prehistoric times, the Hawaiian Islands had a rich endemic avifauna 

providing a wide palette of possible dispersers (Pratt et al., 2009). However, most 

forest birds have adapted to island life by evolving a sedentary behavior and a 
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reduced, low-cost flight apparatus in response to competitive release. The majority of 

native bird species are single-island endemics that lost their inclination and ability to 

travel larger distances and thus find the water body between the main islands a 

barrier (Pratt, 2009). Hence, the colonization of subsequently younger islands in the 

chain is more likely a function of distance and might be contingent on non-standard 

vectors or migration, e.g. birds blown away by tropical storms. 

In most cases, the colonization of a new island resulted in a speciation event (Figure 

4.2). However, the majority of species are the product of intra-island diversification 

subsequent to colonization and in one case from diversification following back-

colonization of an older island (clade I, Figure 4.2). In general, however, back-

colonizations are infrequent and not associated with speciation events, rather they 

result in a species being more widespread.  

Presently, it seems no general pattern describes patterns of divergence in Hawaiian 

Melicope. Rather every major clade seems to represent a unique pattern, which in turn 

is associated with a specific diversification rate. Clade V (Platydesma) shows the 

lowest diversification rate in the entire lineage. The taxa in this clade are 

characterized by perfect flowers, whereas they are functionally dioecious in all other 

clades (Stone et al., 1999; Appelhans et al., 2017). The shift to hermaphroditism 

occurred only once and likely relatively early in the history of the lineage during the 

relegation to refugial islands (Figure 4.1). When population sizes were low, the shift 

to hermaphroditism might have represented a short-term advantage but would have 

possibly made the population susceptible to inbreeding-depression (Sakai et al., 

1995), which resulted in low diversification rates. A shift from dioecy to perfect 

flowers following colonization of Hawaii has also been noted for Rhus L. 

(Anacardiaceae; Sakai et al., 1995), which is represented by only one endemic species 

that colonized the archipelago around 13.5 mya (Yi et al., 2004). In either lineage, the 

shift to hermaphroditism might have enabled the survival of bottlenecks at the cost 

of future diversification. 

Both, clade II and IV show comparatively low diversification rates and species 

numbers. Clade IV might represent a widespread, morphologically variable 

ecological generalist, with M. clusiifolia occupying a wide range of habitats and 

elevational ranges and the remaining two species more specialized (Figure 4.4; Stone 

et al., 1999). A generalist strategy would result in low diversification rates and raise 

the question of how gene flow is maintained across the islands. Caution is required 

for this assessment, as the clade requires taxonomic revision (see below). Species in 

clade II are exclusively adapted to mesic habitats and have mostly small elevational 

ranges. However, this pertains also to clade III, which shows comparatively high 

rates of diversification. Quartet sampling QD scores (Figure 3.3), as well as 

morphological observations in the field (K. Wood, personal communication), indicate 
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that hybridization events occur with some frequency. Repeated hybridization events 

can increase gene flow between species or result in hybrid speciation, and thus 

increase diversification rates.  

Finally, clade I is the most species-rich clade in the entire lineage and shows the 

highest diversification rates (Figure 4.3). One subclade comprises approximately half 

the diversity and is strictly endemic to Kauaʻi while the second subclade comprises 

all species occurring on the younger islands (Figure 4.2). Species in this clade show a 

wide range of habitat preferences, including a high frequency of habitat shifts and 

elevational range expansions/contractions between species (Figure 4.4, Table 4.2). 

There are also some instances of species-to-species-matching, where species of 

different islands occupy similar habitats and show similar morphology; e.g. M. 

molokaiensis, M. oahuensis, M. hiiakae, M. ovalis (Figure 4.4; Stone et al., 1999). 

Diversification in this clade might be represented by a pattern of repeated 

specialization to small, open ecological niches with species adapting to different 

habitats and height ranges.  

 

5.2  Taxonomic implications of RAD-seq phylogeny 

Phylogenetic relationships based on RAD-seq datasets highlights the necessity for a 

taxonomic revision in Hawaiian Melicope. Of the five informally used Stone’s sections 

in the lineage, I only could confirm only two as monophyletic groups, the former 

genus Platydesma and Stone’s section Pelea (Figure 3.2). Considering the 

distinctiveness of the Platydesma lineage, especially the palmoid habit, 

hermaphroditic flowers and staminal tube (Wagner et al., 1999b) and its early 

divergence (Figure 4.1), the group should receive formal recognition. The three 

remaining Stone’s sections, which comprise the vast majority of the lineage are each 

non-monophyletic. Stone’s sections Cubicarpa and Megacarpa are paraphyletic to each 

other and all taxa belonging to either were resolved in clade I with no apparent 

pattern to the divergence between the two fruit morphologies (Figure 3.2). The main 

characteristic delimitating the two groups is the degree of carpel connation, which is 

described as “up to 2/3 of their length” for Megacarpa and “nearly to completely” for 

Cubicarpa (Stone et al., 1999). The results I present in chapter 3 suggest the separation 

between these two Stone’s sections is artificial and they should be merged as carpel 

connation seems a continuous character rather than two discrete states. Stone’s 

section Apocarpa is divided into two different lineages with the majority of taxa 

resolved in clade Apocarpa 1 (clade III, Figure 3.2) while only three species included 

herein comprise the Apocarpa 2 clade (clade II, Figure 3.2). These three species do 

share some morphological traits, noticeably the sprawling, shrubby habit (except M. 

stonei), a glabrous exo- and endocarp and the few-flowered inflorescences. 
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Additionally, these three taxa occur exclusively in mesic habitats (Stone et al., 1999; 

Wood et al., 2017). However, neither one of these characteristics, nor their 

combination, is unique to this lineage. Further studies of the characteristics of all 

Apocarpa species are required to identify trait patterns characterizing these clades. 

These research efforts need to include samples of M. elliptica, which I could not 

sample for my thesis. M. elliptica represents the type species of Stone’s section 

Apocarpa. Results from Sanger sequencing suggest the species represents a third 

apocarpous lineage within the Hawaiian Melicope and may be closely related to clade 

I (Appelhans et al., 2014b). Price and Wagner (2004) hypothesized that the 

individuals of M. elliptica might represent hybrids, as they grew near several species 

of clade I. Inclusion of M. elliptica samples is required to determine, whether one of 

the two Apocarpa clades resolved will have to be renamed or even both. The revision 

of the lineage must also necessarily include the Marquesan species of Melicope. My 

results confirm previous results suggesting that the Hawaiian Islands are the origin 

of two independent colonization events to the Marquesas Islands, one resulting in a 

local adaptive radiation of seven species (Hartley, 2001; Appelhans et al., 2018b) 

represented here by M. hivaoaensis (clade I; Figure 3.2). Inclusion of these altogether 

eight Marquesan species in further research is necessary to conclusively identify 

phenotypic traits characterizing clades in Hawaiian Melicope. 

Some species require taxonomic revision as well. In this thesis, I sampled 84% of the 

54 currently described Hawaiian species, 24 of which I could include with multiple 

samples. Of these 24 multi-sampled species four were resolved as non-monophyletic: 

M. clusiifolia, M. haupuensis, M. knudsenii, and the M. feddei. Melicope knudsenii is the 

only species in the entire lineage occurring on non-neighboring islands, Kauaʻi and 

Maui (Stone et al., 1999). Previous phylogenetic efforts in Hawaiian Melicope 

provided evidence that the populations of M. knudsenii actually represent up to three 

distinct species (Appelhans et al., 2014b). Subsequently, one population occurring on 

the island of Kauaʻi was described as a new species (Wood et al., 2017). In this thesis, 

I could confirm that the populations of M. knudsenii on Kauaʻi and Maui represent 

two distinct taxa as indicated in Appelhans et al. (2014b). The individuals are all 

members of clade III, with the Maui populations sister to M. hawaiensis and the 

populations from the type location on Kauaʻi type population sister to M. barbigera. 

Either relationship receives high statistical support (Figure 3.3). However, the results 

of quartet sampling indicate the possibility of reticulate evolution in the Maui 

population, possibly involving M. barbigera (Figure 3.3). This could result in the 

reconstructed close relationship between the two taxa. Further studies are required to 

definitively elucidate the relationship of the Maui population of M. knudsenii before it 

can be resurrected as a separate species during taxonomic revision.  

Melicope haupuensis is polyphyletic (clade III, Figure 3.2) and the only sample in my 

thesis with incongruent constellations among the individuals based on different 
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datasets (Figure 3.2, Supplemental Figures 3.1-3.4). Several individuals were 

observed in the field showing intermediate phenotypes between M. haupuensis and 

M. barbigera (personal observation K. Wood), which might be of hybrid origin. The 

results of quartet sampling support the indication of extensive reticulate evolution, as 

several nodes show skewed discord (Figure 3.3; Pease et al., 2018). However, the 

taxon sampling in my thesis is not sufficient to address this question further. A 

thorough population-level sampling of the taxa in question, including M. knudsenii as 

sister to M. barbigera, will be required to address the possibility, extent, and direction 

of horizontal gene transfer in this clade.  

Finally, M. clusiifolia is paraphyletic with respect to both M. haleakalae and M. 

waialealae (Figure 3.2). Melicope clusiifolia is the most widespread species in the entire 

lineage, occurring on all main islands, and characterized by large morphological 

plasticity. The most recent taxonomic treatment synonymized all previous attempts 

at subdividing this species (St. John, 1944; Stone, 1969) considering the variability to 

represent continuously varying rather than discrete characters. In the same spirit, M. 

haleakalae, differing from M. clusiifolia mainly by persistent sepals and M. waialealae 

differing mainly in leaf shape (Stone et al., 1999) might be considered representing 

further morphological variability. Thus, Stone’s section Pelea might only comprise 

one highly plastic species. On the other hand, the relationships of these three taxa 

might indicate speciation in progress. In this case, the deep nesting of M. haleakalae 

within M. clusiifolia would represent a case of progenitor-derivative-speciation 

(Crawford, 2010). Finally, there is a clear geographical signal for the diversification in 

this group (Figure 4.2), which would indicate limited gene flow among islands. 

Extensive sampling of populations of Stone’s section Pelea and subsequent 

morphological and molecular research will be required to definitively elucidate the 

taxonomy of this clade.  

M. wawraeana might be the most cryptic taxon within the lineage. My sampling 

included two individuals from Kauaʻi that correspond closely, but not entirely to the 

type-morphology of the species. The core populations of the species are situated on 

Oʻahu and show some degree of morphological variability. In “non-core” 

populations this variability is extended further and resulted in synonymization of 

several species names (Stone et al., 1999). However, one of these synonyms, M. 

hiiakae, was tentatively resurrected by Hartley and Stone (1989) and treated as a 

separate species ever since (Wagner et al., 1999a; Imada et al., 2011; Wood et al., 

2016). My results provide evidence for this resurrection as the taxon is resolved as 

sister to M. christophersenii in clade I and not closely related to the two wawraeana-like 

individuals (Figure 3.2). This indicates that other non-core populations might 

represent different taxa as well. The M. wawraeana-like populations from Kauaʻi 

sampled herein are cryptic as well. One of these M. sp. (specimen KW17111) is 
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resolved in a monophyletic clade with the individuals representing M. feddei (Figure 

3.2). This indicates that at least one of the populations from Kauaʻi might actually 

represent M. feddei instead of M. wawraeana. The second M. sp. (specimen KW15733) 

is closely related to M. kavaiensis and both taxa show rogue behavior related to the 

Marquesan sample M. hivaoaensis (Figure 3.3, Supplemental Figures 3.1-3.4), which 

might reflect a hybridization event. In addition to putative hybridization events in 

the M. wawraeana complex (chapter 3, Imada et al., 2011), there is also evidence for 

polyploidy in some individuals (Guerra, 1984). Further detailed morphological, 

molecular and karyological studies are required to determine the status and 

evolutionary history of this potentially artificial taxon (Stone et al., 1999). 

Finally, the sampling also included two species with samples corresponding to both, 

the type morphology and deviating morphotypes, M. barbigera and M. ovata. The 

deviating morphotypes are resolved as monophyletic sister groups to the samples 

representing the type morphology, which are also resolved as monophyletic (Figure 

3.2). This again indicates speciation including phenotypic changes. Further studies 

are required to ascertain whether the speciation events are in process or sufficiently 

advanced to recognize these deviating morphotypes as separate species or 

subspecies.  

 

5.3  Hawaiian Melicope and island adaptive radiation 

The results presented in the previous three chapters offer the opportunity to evaluate 

the existing theories about the evolution of adaptive radiations on oceanic islands. 

We will find that Hawaiian Melicope support several hypotheses and negate others.  

The ancestor to Hawaiian Melicope did not show any trait hypothesized to 

characterize successful island colonizers. Instead, the taxon showed traits 

characterizing already established island lineages. Woodiness is the ancestral state of 

the entire Rutaceae family, which comprises only a small number of herbaceous taxa 

(Kubitzki et al., 2011). Melicope is an exclusively woody genus with no herbaceous 

representatives (Hartley, 2001). Several hypotheses have been proposed for the 

evolution of secondary woodiness in island settings. According to the competition 

hypothesis, herbaceous colonists gain an advantage when they are growing taller 

than their competitors eventually evolving secondary woody structures to support 

their ever taller growth (Darwin, 1859). The longevity hypothesis, suggested by 

Wallace (1878), states that woodiness provides a longer lifespan, which in turn 

increases the chances for reproduction when pollinators might be scarce. Finally, the 

moderate insular climate hypothesis states that, since island climates are typically 

more mild and moist compared to the climate in the respective source areas, plants 

can grow throughout the whole year and thus woodiness is promoted (Carlquist, 

1974). However, a woody colonist would profit from the advantages of the habit 
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right away, instead of evolving it presumably with a time delay and thus even 

having a competitive advantage. Frequent shifts to woodiness are likely owed to the 

high frequency of herbaceous colonizers profiting from the mentioned advantages.  

Herbs often have a higher dispersal ability compared to trees and thus represent the 

majority of island colonizers (Darwin, 1859; Carlquist, 1966a, 1966b, 1966c). Based on 

observations of Pacific island floras, Carlquist (1966a, 1966b, 1966c) connected the 

higher dispersability of herbaceous taxa to lightweight, small seeds that are easy to 

swallow or transport, and the germination typically occurring in open areas with 

direct access to sunlight. On the other hand, trees generally show larger seed sizes, 

because they comprise the embryo and additional nutrient tissues enabling growth in 

a forest understorey with limited light exposure after germination (Carlquist, 1966a). 

However, the presence of nutrient tissues in herbaceous and woody taxa and its 

impact on dispersal to oceanic islands has never been empirically studied. 

Establishment of colonizers is characterized by a loss of dispersibility putatively in 

order to avoid loss of propagules at sea or in ecologically unfavorable regions on 

islands (Darwin, 1842; Carlquist, 1966b, 1966c, 1974). The phenomenon is best 

investigated in Pacific Asteraceae (Carlquist, 1966b); Hawaiian Bidens, for example, 

show the reduction of attaching structures on seeds thus reducing their dispersal 

range (Carlquist, 1966c). Many other island plants have increased seed or fruit sizes 

so as to be swallowed less easily or transported only over short distances due to their 

weight (Carlquist, 1966b, 1966c; Price and Wagner, 2004). For Melicope detailed, 

empirical studies regarding dispersal ranges are lacking. While seed sizes are highly 

variable in Melicope, there is no observable trend for a reduction of seed size in 

Hawaiian Melicope or Melicope island species compared to mainland representatives 

of the genus (Stone et al., 1999; Hartley, 2001). Melicope is adapted to bird dispersal, 

yet the Hawaiian avifauna is characterized by a high degree of endemicity and many 

species balking at habitat barriers (Pratt, 2009). If such restricted-range bird species 

serve as dispersers for Hawaiian Melicope, seed size in terms of dispersal ability 

might have not been under strong selective pressure.  

Dioecy is a common feature in island floras with e.g. 12-13% of the New Zealand 

flora (Webb and Kelly, 1993) and at least 14.7% (Sakai et al., 1995) of the Hawaiian 

flora dioecious, compared to only 4% of Angiosperms worldwide (Yampolski and 

Yampolski, 1922). In Melicope, dioecy is present in two of the four sections, Lepta and 

Pelea (Hartley, 2001). The shift from hermaphroditism to dioecy occurred several 

times within the genus and characterizes several island lineages including the 

Hawaiian one, for which dioecy is the ancestral state (Hartley, 2001; chapter 2). 

However, the dioecious colonizer to Hawaiian Melicope is not necessarily an 

exception, as approximately 10% of the current species diversity in Hawaii descends 

from dioecious colonizers, while 31.8% of dioecious species evolved autochthonously 
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in the archipelago (Sakai et al., 1995). In New Zealand, only five shifts to dioecy were 

reconstructed in the native flora and most of the dioecious species descend from 

dimorphic ancestors (Lloyd, 1985). This suggests that the selective advantage of 

outcrossing in island systems is high enough to both, promote the shift to 

dimorphism in hermaphroditic colonizers (Baker, 1955), and to outweigh the 

disadvantages of being a dioecious colonizer requiring at least two individuals for 

establishment (Carlquist, 1974). On the other hand, strong evidence for self-

incompatibility was only found in one Hawaiian radiation so far, the Hawaiian 

silversword/tarweed alliance (Asteraceae, Madiinae; Carr et al., 1986). Although not 

many Hawaiian lineages have been empirically tested for self-incompatibility, the 

few existing results suggest a lack thereof. Hence, the causality of the evolution and 

success of dioecy in island radiations is not yet established (Sakai et al., 1995). In the 

general terms of the island syndrome, we can surmise that it is characterized by a 

comparatively higher frequency of dioecy per se, but that a shift in breeding system, 

regardless of whether it occurs prior to colonization or autochthonously on the 

islands is not strictly required to derive successful radiations. A world-wide sister-

lineage comparison revealed dioecy is connected to lower diversification rates on the 

family and genus level compared to monomorphism (Heilbuth, 2000). The genus 

Melicope represents a case where shifts in breeding system occur within a genus, and 

thus an organismic level explicitly not tested, yet. Further research is required to 

infer whether dioecy or self-incompatibility is characterizing either adaptive 

radiations as a whole or oceanic island lineages in particular and to establish 

causality. 

Another feature of the island syndrome, especially in plants, is polyploidy. In the 

Hawaiian flora 88% of native plants are polyploid (Carr, 1998), for New Zealand the 

number ranges around 63% (Murray et al., 2005). In addition, several species-rich 

Angiosperm families are characterized by a whole-genome duplication (WGD) event 

at their origin, which is linked to the evolution of key traits, e.g. the composite flower 

in Asteraceae (Schranz et al., 2012). Considering that the Angiosperm radiation as a 

whole is characterized by two ancient polyploidization events (Jiao et al., 2011; 

Amborella Genome Project et al., 2013), polyploidy is suggested to represent a key 

feature characterizing major adaptive radiations (Schranz et al., 2012). Since all 

Angiosperms might be considered polyploid (Jiao et al., 2011), commonly only the 

latest polyploidization event in a taxons history is considered (Leitch and Bennett, 

2004). There are two advantages to polyploidy, that promote adaptive radiation: 

heterosis (in case of an allopolyploid), gene redundancy, which allows neo- or 

subfunctionalization of duplicated genes or masking of deleterious mutations 

(Comai, 2005). In the danthonioid grasses, the frequency of long-distance dispersal 

events across oceanic barriers is significantly increased in polyploid lineages 

compared to diploid ones (Linder and Barker, 2014). The association reflects the 
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effects on establishment, rather than the likelihood of dispersal events per se (Linder 

and Barker, 2014). Polyploidy can disrupt self-incompatibility systems and thus 

increase the chances for successful establishment of a colonizer from a single 

propagule (Miller and Venable, 2000; Mable, 2004). The genomic plasticity conveyed 

by a fixed higher heterozygosity, heterosis and gene redundancy, may increase the 

evolvability compared to diploid taxa thus enabling subsequent adaption to a wide 

range of ecological niches (Doyle et al., 2008).  

Chromosome counts and DNA content of Hawaiian and extra-Hawaiian Melicope 

(chapter 2) show a chromosome number of 2n=36 shared by all Hawaiian species, 

with the possible exception of one specimen of M. wawraeana. The 2n=36 

chromosome configuration is ancestral to the entire subfamily Amyridioideae 

(Kubitzki et al., 2011; Morton and Telmer, 2014) and originates from a WGD event 

about 70 mya (Figure 2.1; Appelhans et al., 2012). The MCRA of Hawaiian Melicope 

was thus a palaeopolyploid that has likely not undergone an additional 

polyploidization event prior to the colonization of the islands. The DNA content in 

the nuclei of Hawaiian Melicope is equal to or even smaller than that of other 

Rutaceae species with n=9 (Figure 2.3), suggesting substantial diploidization 

(Dodsworth et al., 2016). Post-WGD diploidization was suggested to be crucial to 

counter the negative effects of a polyploid genome, especially dosage effects and 

selection barriers. Thus, the causal agent for the positive effects of WGDs may not the 

actual duplication event itself, but the downsizing following it (Dodsworth et al., 

2016). This suggestion receives support from the observation that the majority of 

polyploidization events result in extinction rather than diversification (Mayrose et 

al., 2011; Arrigo and Barker, 2012) and provides an explanation for the apparent lag-

time between a WGD event and the onset of diversification in lineages that prevail 

(Dodsworth et al., 2016).  

The hypothesis that diploidization subsequent to polyploidization events conditions 

taxa for diversification raises the expectation that diversification rates be elevated in 

other amyridioid genera, characterized by palaeopolyploidy. Melicope and 

Zanthoxylum are the largest genera in Rutaceae, comprising ca. 230 species each 

(Kubitzki et al., 2011). Zanthoxylum has a wider distributional range, occurring in 

world-wide in tropical regions and extends to subtropical and temperate regions in 

Asia and North America (Beurton, 1994). Both genera comprise widely distributed, 

woody species, show shifts in breeding system between functionally unisexual and 

perfect flowers as well as similar fruits adapted to bird dispersal (Hartley, 2001; 

Kubitzki et al., 2011). In addition, chromosome numbers in Zanthoxylum range from 

2n=32 to 2n=136 (-144) (Kiehn and Lorence, 1996; Kubitzki et al., 2011) showing 

extensive aneuploidy and dysploid variation (Stace et al., 1993) illustrating the effects 

of diploidization. Consequently, the diversification rates in Melicope and Zanthoxylum 
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should at least be equal if not higher in Zanthoxylum, considering the putatively 

additive effects of repeated WGD events and the wider distribution potentially 

increasing access to ecological opportunity. Surprisingly, diversification rates in 

Melicope are considerably higher than in Zanthoxylum (Appelhans et al., 2014b) in 

general and on the Hawaiian Islands. In the archipelago, Zanthoxylum is represented 

by a monophyletic group of only four morphologically diverse species with a crown-

group age of 11.8 MA (6.9-17.5 MA) (Appelhans et al., 2014b, 2018a) compared to the 

54 species in Melicope (Wood et al., 2016, 2017; Appelhans et al., 2017). In addition, 

many other polyploid, native Hawaiian lineages are represented by low species 

numbers as well and have not radiated (Carr, 1998; Wagner et al., 1999b). 

This suggests that polyploidy per se is not necessarily the trait characterizing 

adaptive radiations. For only two Hawaiian Angiosperm radiations, the originating 

polyploidization events were reconstructed from molecular data; the colonists to 

Hawaiian mints and the Hawaiian silversword Alliance were neoallopolyploids; i.e. 

the result of an interspecific hybridization event in the respective source areas 

(Barrier et al., 1999; Lindqvist and Albert, 2002; Lindqvist et al., 2003; Roy et al., 

2015). The majority of the positive effects of polyploidization pertain especially to 

allopolyploids, e.g. heterosis and increased fixed heterozygosity (Comai, 2005). So 

far, plant adaptive radiations resulting from polyploidization events have generally 

been linked to a hybrid origin (reviewed in Schranz et al., 2012).  

Hybridization events as a putative catalyst to adaptive radiation have garnered 

increased attention in the era of genomic studies (e.g. Seehausen, 2004, 2013; Abbott 

et al., 2013; Marques et al., 2019). Partitioned D-statistics and quartet sampling on 

RAD-seq data in chapter 3 indicate several putative introgressive hybridization 

events in Hawaiian Melicope (Figure 3.3, Table 3.3). Past and present reticulate 

evolution on the Hawaiian Islands has also been shown for Cyrtandra (Johnson et al., 

2019; Kleinkopf et al., 2019) and Schiedea (Willyard et al., 2011). Interspecific 

hybridization is quite common with an estimated 10% of animal and 30% of plant 

species regularly hybridizing (Mallet, 2005). Besides hybrid speciation (Rieseberg, 

1997), one frequent outcome of hybridization is the introgression of alleles from one 

species into another by backcrossing. This process might combine selectively favored 

alleles that arose under different ecological conditions (Abbott et al., 2013). Mutation 

events are rare; statistically, there are only 10-8 – 10-9 per base and generation (Abbott 

et al., 2013). Speciation events during adaptive radiation often occur too rapidly to 

evolve novel adaptions by mutation. Instead, adaptive traits are mostly the result of 

existing genetic variation (Barrett and Schluter, 2008). Hybridization can provide an 

abundant source of genetic variation and numerous different combinations of 

adaptive alleles. Further research regarding the effect of hybridization on adaptive 

radiation is required to identify its significance. Genomic studies have provided 

evidence for hybridization in many lineages, where there was no or limited 
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indication for it before. Hawaiian Melicope are illustrating that issue, as analysis of 

few genomic loci did not provide an indication for hybridization (Appelhans et al., 

2014b) but analysis of thousands of genomic loci (chapter 3) did. However, 

combinatorial analyses are necessary to provide evidence for introgressed alleles 

being under selection and for providing an adaptive advantage (Suarez-Gonzalez et 

al., 2018). This requires extensive genomic information but has been accomplished in 

Populus (Suarez‐Gonzalez et al., 2016) and the Lake Victoria cichlid fishes (Meier et 

al., 2017). 

Patterns of Diversification 

Diversification rates in Hawaiian Melicope are generally high (Table 4.2), comparable 

to those inferred for other adaptively radiating clades, e.g. orchids (Givnish et al., 

2015). Melicope species in the Hawaiian islands are adapted to four habitat types: dry, 

mesic, wet forests and bog habitats (Stone et al., 1999). Each habitat type has a 

significant impact on species diversification possibly reflecting its average lifetime on 

an island. Mesic and wet habitat types represent the majority of habitats on the 

archipelago. Within them, speciation rates are comparatively low, but extinction rates 

are even lower by an order of magnitude, resulting in a positive net diversification 

and thus a steady gain of species numbers in the lineage in these habitats. In 

addition, the character transition rates are highest for a shift from either dry or wet to 

mesic habitats (Table 4.2), which is likely due to a large extent to the frequent shifts 

for habitat adaption in species of clade I (Figure 4.4). In more extreme habitats on the 

islands, dry ranges, and bogs, the inferred net diversification rate is negative, 

resulting in a net loss of species (Table 4.2). However, this diversification rate results 

from elevated speciation rates, which are up to 40x higher than for mesic and wet 

habitats. Consequently, extinction rates for the two extreme habitat types are 

considerably high as well (Table 4.2). These rates represent a high amount of species 

turnover associated with bog and dry habitat ranges, and possibly a shorter average 

time of prevalence per species due to the transitory nature of these habitat types, 

which are strongly affected by island orogeny and climate changes.  

Mesic and wet ranges come into existence comparatively early in the existence of an 

island and persist in large areas for almost all its lifetime. That is not to mean, that 

these ranges are static; they shift with regards to area, dissection and elevational 

range due to the island's growth, subsidence, glacial cycles, and wind currents. 

However, these areas are present in substantial amounts for nearly the entire lifespan 

of the island. Extreme habitat types are impacted by these environmental and 

orogenic factors more substantially. Bog habitats do not initially exist on young 

islands. The formation of bogs requires a long-term sequence of events; the primary 

succession of rainforest, erosion, and depletion of nutrients from the soil; combined 

with steady high amounts of rainfall. Both, their formation and their persistence are 
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vulnerable to decreases in water supply (Mueller-Dombois and Boehmer, 2013). Yet, 

the islands have experienced repeated periods of drier conditions during glacial 

maxima (Price and Elliott-Fisk, 2004). During these periods bog habitats have likely 

shrunk or disappeared from some mountain ranges entirely before expanding again 

during wetter conditions. In general, this habitat type is becoming available later 

than the others, comparatively short-lived and likely highly competitive, thus 

resulting in high species turnover. 

The highest speciation and extinction rates were estimated for dry habitats (Table 

4.2). On the Hawaiian Islands, these are generally associated with lowland, leeward 

areas (Wagner et al., 1999a). These ranges are transient in the early stages of island 

formation. At the end of the shield stage, when the island moves away from the 

mantel plume, subsidence occurs rapidly (Clague, 1996; Clague and Sherrod, 2014) 

resulting in the submergence of initial lowland areas. Lowland, dry habitats are most 

extensive during glacial maxima. Large areas of land emerge when sea levels drop 

and the conditions are generally cooler and much drier (Price and Elliott-Fisk, 2004). 

Glacial cycles result in repeated extension and contraction of dry, lowland areas and 

result in high rates of species turnover. The high estimated rates of extinctions are an 

echo of the effects of the current interglacial period setting in with a rapid rise of sea 

levels beginning only 19.000 years ago (Lambeck and Chappell, 2001). However, 

diversification rates for dry habitats might be contorted by human influence. 

Lowland regions on the Hawaiian Islands have been exceptionally impacted by 

anthropogenic land use due to settlements and agriculture. Many of the species 

adapted to these areas are already extinct or at high risk for extinction (Sakai et al., 

2002). The inferred rates for extinction might reflect this anthropogenic impact. 

On the other hand, the trait “habitat” as used here is a very broad concept mainly 

relating to the water regime and only one possible trajectory for adaption. In the 

Asteraceae genus Encelia Adans. adaption to light intensity and temperatures along 

an elevational gradient resulted in different degrees of leaf pubescence (Ehleringer 

and Clark, 1988). Differences in leaf hairiness, especially along the midrib, is also 

known from Melicope (Stone et al., 1999; Hartley, 2001). However, despite our current 

understanding of the geology of the islands, detailed data regarding environmental 

factors such as light intensity or soil properties are limited. Reconstructing the 

adaptive landscape (Schluter, 2000) of Hawaiian Melicope requires fine-scaled data 

about these ecological factors, detailed distributional maps for the lineage linking 

species to specific ecological conditions, as well as corresponding phenotypic traits to 

identify adaption. For example, the difference in fruit morphology throughout the 

lineage (Stone et al., 1999) an the gene flow necessary to sustain widespread species 

(see 5.1) might indicate adaption to different vector species. Currently lacking 

knowledge about pollinator identity, availability, and specificity, as well as mating 

barriers, might be crucial to understand the realization of hybridization and adaption 
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to local insect communities. Flowers of Hawaiian Melicope produce nectar, but are 

generally small and inconspicuously colored suggesting a general strategy of 

pollination by insects with no obvious morphological specialization (Hartley, 2001). 

However, this theory remains without empirical evidence. With the hermaphroditic 

Platydesma lineage showing floral traits (copious nectar production and connate 

stamens) interpreted as adaptions to bird pollination (Appelhans et al., 2017) and the 

wealth of secondary metabolites present in Rutaceae (Kubitzki et al., 2011) in general 

and Melicope in particular, diversification driven by adaptions to biotic factors is 

likely but untested. 

For Hawaiian Melicope I estimated the highest diversification rates in clade I (Figure 

4.3) suggesting one key to diversification in Hawaiian Melicope might be flexibility, 

i.e. evolvability. The ability to frequently shift habitat type, elevational range (Figure 

4.4) and possibly other characters, as required to exploit open ecological niches, 

might create an abundance of small-niche specialists, each with the capacity to 

spawn new species to compete for other niches. This evolvability would result in a 

lineage that is highly adapted to the continually emerging and changing habitats 

typical for the geologically active environment on oceanic islands. 

Many oceanic lineages present a different picture with high initial rates of 

diversification (Whittaker and Fernández-Palacios, 2010) and higher rates of 

diversification on younger islands (Borregaard et al., 2017). Either of these patterns is 

not directly observable in Hawaiian Melicope (Figures 4.2, 4.3). In Hawaiian Melicope 

the majority of diversification seems limited to the comparatively short period of the 

recent ca. 1.5 MA (Figure 4.1) to the island of Kauaʻi. The low observed rates of initial 

variation are quite possibly an artifact of the previously discussed high amounts of 

species turnover. As species are adapted to narrow ecological niches, the local 

disappearance of said niche results in the extinction of a species or in a shift to a new 

niche. Considering that taller islands tend to support more habitat types than lower 

ones (Hobohm, 2000), diversity on Kauaʻi was possibly even greater in the past. The 

observed low diversity results from the high background extinction rates and extant 

diversity resulting from the few lineages leaving descendants to the present. High 

rates of extinction might also explain – at least partially – the comparatively low 

diversity on younger islands and their recent colonization compared to island ages 

(Figure 4.2). This would require entire established lineages on the younger islands to 

have gone extinct and be replaced by the comparatively arrivals of the most wave of 

arrivals. According to the general dynamic model of island biogeography (Whittaker 

et al., 2007, 2008), all islands except for Hawaiʻi have reached or surpassed their 

maximum carrying capacity in terms of the number of species, so broom-and-handle 

shaping of the tree and the comparable youth of diversity might also represent 

“extinction-based-saturation” of niches (MacArthur and Wilson, 1967; Sax and 
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Gaines, 2008). In this case, the higher diversity on Kauaʻi might be explained by some 

degree of allopatric speciation in dissected habitats representing identical niches. 

Alternatively, the high extinction rates correspond to a mass extinction event in the 

recent past (1-2 mya), which impacted Oʻahu and Maui more severely than Kauaʻi. 

However, evidence for such an event would likely be provided by fossils, which are 

lacking for Hawaiian Melicope, or by comparison across Hawaiian lineages. 

On the other hand, the differences in species diversity on the islands in the 

archipelago might correspond to a founder effect. In island settings, bottlenecks 

occur on four different levels: the colonization of the archipelago itself, the 

subsequent colonization of individual islands, the colonization of habitat patches on 

islands (Whittaker and Fernández-Palacios, 2010), and the climate changes associated 

with glacial cycles reducing some habitat regimes drastically in size (Price and 

Clague, 2002). If evolvability is an important trait in Hawaiian Melicope the 

colonization of the younger islands might have resulted in local populations with a 

reduced genetic regarding adaptive traits, which would result in a lower 

evolutionary opportunity, (Glor, 2010), increased vulnerability to climatic effects and 

consequently lower species numbers. 

Unfortunately, several difficulties exist for determining speciation and extinction 

rates through time from phylogenies using current methods (reviewed in Sanmartín 

and Meseguer, 2016). The handle-and-broom shape of the Hawaiian Melicope 

phylogeny can be a result from three different speciation and extinction signatures: a 

high background extinction rate across the entire tree, a mass extinction event 

sometime around ca. 1.5 mya and a true shift in diversification rates in the lineage 

(Crisp and Crone, 2009; Antonelli and Sanmartín, 2011). Distinguishing between 

these three scenarios, requires additional information, such as paleontological data 

(Sanmartín and Meseguer, 2016). Unfortunately, there are no applicable fossils for 

Melicope or other Hawaiian endemic lineages to date. However, a mass extinction 

event would have impacted a range of Hawaiian taxa and its signature should, 

therefore, be found in all their phylogenies. Genomic studies on Hawaiian lineages 

are scarce but increasing (Izuno et al., 2016, 2017; Jennings et al., 2016; Welch et al., 

2016; Kleinkopf et al., 2019), offering the possibility to compare a number of resolved 

phylogenies in the near future. Considering the high volcanic activity of the 

Hawaiian mantle plume and its consequences, e.g. lava flows, slope failures, and 

tsunamis (McMurtry et al., 2004; Clague and Sherrod, 2014), frequent meteorological 

events, e.g. hurricanes, in addition to the effects of island ontogeny (Figure 1.1; 

Whittaker and Fernández-Palacios, 2010) and repeated glacial cycles (Price and 

Elliott-Fisk, 2004; Fernández‐Palacios et al., 2016), makes a general high background 

extinction rate the most likely. Yet, while modeling approaches have recently become 

more sophisticated, the majority are unable to estimate speciation and extinction rate 

heterogeneously across time and clades without prior assumptions (Sanmartín and 
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Meseguer, 2016). The closest models to achieve this are the class of SSE methods, 

which associate rates to the evolution of a trait character. While I have employed one 

of these methods in chapter 4 to investigate the effects of habitat adaption to 

diversification (see above), the application of these methods is computationally and 

data-intensive. The application of these methods to Melicope is currently limited by 

the restricted availability of ecological data as well as the necessity of taxonomic 

revision to accurately investigate morphological traits. 

Subsequently, research efforts have to be extended to the Melicope genus as a whole, 

preferably using genomic methods to resolve species relationships, reticulate 

evolution, adaption, and speciation. Melicope distributed throughout Australasia with 

local adaptive radiations on nearly all Pacific island systems and mainland areas. The 

island radiations are typically monophyletic and younger than the Hawaiian 

radiation (Hartley, 2001; Appelhans et al., 2018b). The framework of adaptive 

radiation on oceanic islands research currently tends to focus on few iconic lineages 

and to overlook colonizers that have not produced either endemic species or 

substantial variation (Warren et al., 2015). In the Acronychia-Melicope clade, there are 

several widespread species, e.g. M. triphylla, which occurs throughout Malesia and 

on several Pacific islands (Hartley, 2001). There are also several instances of multiple 

colonizations of island systems, e.g. Lord Howe Island was colonized three times 

independently (Appelhans et al., 2018b) and the Marquesas Islands were colonized 

twice from Hawaiian ancestry (this thesis). Thus the Acronychia-Melicope clade 

represents an ideal case study for island adaptive radiation with Hawaiian Melicope 

representing the tip of the proverbial iceberg and an ideal subset to establish 

methods and research questions. 

 

5.4  Big data in plant systematics – quo vadis? 

Application of phylogenomic datasets to systematics has provided insights into a 

large number of recalcitrant relationships across the tree of life. Amongst others, it 

revealed that horizontal gene transfer is very common in multicellular organisms 

(e.g. Abbott et al., 2016; Gallardo, 2017). Phylogenomic approaches provide an 

unprecedented amount of information and thus the ability to resolve bursts of 

speciation at both recent and deep evolutionary time scales (e.g. Wanke et al., 2017). 

However, the sheer amount of data creates and reveals methodological and 

computational challenges regarding matrix assembly, species tree reconstruction, 

and algorithmic complexity. 

The assembly of HTS reads into a matrix is either reference-based (reads are mapped 

to a reference genome) or de novo (reads are compared to each other). The process is 

generally computationally intensive, especially in the case of de novo assembly since 
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it requires an all-to-all read comparison. A variety of software and pipelines exist for 

either approach. In the family Rutaceae, sequencing and annotation of entire 

genomes has so far only been performed for crop species from the genus Citrus (Wu 

et al., 2013; Xu et al., 2013). Unfortunately, these genomes are not suitable as a 

reference for Melicope. The two genera are members of different subfamilies in 

Rutaceae, which diverged ca. 55-70 mya (Appelhans et al., 2012; Morton and Telmer, 

2014; Koenen et al., 2016). In addition, Citrus is characterized by a base chromosome 

number of n=9, compared to n=18 in Melicope (see chapter 2). Since a closely related 

reference genome was not available for Melicope; I assembled RAD-seq reads de novo 

using the software ipyrad (Eaton, 2014) in chapter 3. However, all available software 

implements the same paradigm of assembling sequences into contigs purely by 

sequence similarity. In RAD-seq assembly that paradigm is asserted twice, first when 

reads are clustered into putative genomic loci within each individual sample (in-

sample-clustering) and then when consensus sequences called from in-sample loci 

are clustered across samples (between sample clustering) into a matrix (Catchen et 

al., 2011; Eaton, 2014; Ree and Hipp, 2015). Putative genomic loci are characterized 

by a user-specified maximum level of divergence; in ipyrad that is implemented as a 

minimum clustering threshold for the aligned sequences in a locus (Eaton, 2014). The 

selection of appropriate clustering thresholds is thus crucial to avoid introducing 

systematic errors to the analysis (Mastretta-Yanes et al., 2015), possibly resulting in 

the resolution of erroneous relationships (Misof et al., 2014). Unfortunately for the 

majority of taxonomic groups, reliable estimates for genomic divergence within and 

between genomes are lacking. Consequently, most RAD-seq studies employ a range 

of clustering thresholds, estimate tree topologies from the resulting alignments and 

determine the best assembly parameters by maximizing average statistical support, 

the number of SNPs or the recovery of specific relationships (e.g. Leaché et al., 2015; 

Suchan et al., 2017). Strategies to determine which loci are most likely assembly 

artifacts have been proposed (Shen et al., 2017), and could potentially be used to 

determine the best assembly. However, that approach might be computationally very 

demanding when a thorough exploration of parameter space becomes necessary. 

Few suggestions on identifying the optimal assembly parameters a priori exist, e.g. by 

using technical replicates (Mastretta-Yanes et al., 2015) or exploring the effects of 

clustering thresholds (Paris et al., 2017). In addition, in most cases the same threshold 

is employed for both in-sample- and between-sample-clustering (Leaché et al., 2015b; 

Suchan et al., 2017), implicitly assuming that the divergence between alleles in the 

genome is identical to the divergence between genomes of different species. This 

assumption may be biologically realistic in a population genomics approach (for 

which most of these methods have been developed), but unlikely when sampling 

divergent species. 
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For the assembly of the RAD-seq dataset of Hawaiian Melicope, I have attempted to 

reduce assembly artifacts and the introduction of systematic error by adapting the 

approach of Paris et al. (2017) to a phylogenetic framework (chapter 3). I have 

iterated over core clustering parameters in the ipyrad pipeline, separately for in-

sample and between-sample clustering, to obtain an optimal parameter set for the 

assembly process.  

However, even the optimization of the assembly process cannot provide a dataset of 

entirely accurately assembled loci. In Citrus L. (Rutaceae) the observed 

heterozygosity on chromosome 6 varies more than 3 fold between 500bp windows 

(Wu et al., 2014). Highly conserved loci would benefit from a very strict clustering 

threshold and are at risk of over-merging already. On the contrary, highly variable 

loci will be under-merged still. During between-sample-clustering, the issue of 

variable divergence of loci is exacerbated by the divergence between species. We 

now deal with varying genetic divergence between regions of one genome as well as 

different divergence times between loci of different taxa. As of now, there is no de 

novo clustering algorithm which can account for rates of evolution differing between 

genomic loci. Subsequent assembly and filtering steps will likely recognize some of 

these loci. However, a small amount of assembly error will likely remain even in the 

most optimal dataset. An ‘optimal’ dataset must therefore currently be one, which 

reduces the assembly error to a point that it is overpowered by the true signal.  

All in all, the assembly process is vulnerable to systematic errors when assembly 

parameters are miss-specified. The RAD-seq assembly process would benefit from 

algorithms, which are aware of different levels of divergence and implement 

clustering parameter optimization into the assembly process. These could use a deep 

learning approach to identify bins of clusters requiring the same clustering threshold. 

These bins would also represent divergence rates of fractions of the genomes in 

question, and thus provide an additional layer of phylogenetic information. 

Alternatively, algorithms might incorporate genomic signal into the clustering 

process (Mendizabal-Ruiz et al., 2018). 

In Hawaiian Melicope, the relationships of clade III were resolved incongruent 

between datasets and inference methods. Concatenated BI (CA-BI), ML (CA-ML) and 

BEAST analyses resolved clade II as sister to clade IV and the entire lineage as a sister 

group to a lineage comprising clades I and II with maximum PP and high ML-NBS 

support, but some discord revealed by QD scores for four of the datasets (Figure 3.2, 

Supplemental Figures 3.1, 3.2, 3.4). Relationships as resolved on the CA-BI and CA-

ML of the min67 matrix place clade III as the only sister to clades I + II, and clade IV 

as sister to the lineage comprising clades I + II and III (Supplemental Figure 3.3). The 

SVD-Quartets analysis of the five datasets resulted in a third alternative topology, 
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where clade II is sister to clade III and that lineage is sister clades I + IV 

(Supplemental Figures 3.1-3.9). While the ultimate reason for the detected discord is 

likely the ancient introgression event (see 5.3), the question which topology best 

describes the relationships of the major lineages in Hawaiian Melicope remains. 

The performance and evaluation of different species-tree inference methods and 

models is a matter of ongoing research especially with regards to the scalability to 

large genomic datasets with thousands or hundreds of thousands of loci (e.g. Chou et 

al., 2015; Roch and Warnow, 2015; Mirarab et al., 2016; Molloy and Warnow, 2018; 

Nute et al., 2018). Concatenated analysis of multiple genomic regions has been 

suggested to possibly resolve erroneous relationships with high statistical support 

(Kubatko and Degnan, 2007). Concatenation does not model the effects of 

heterogeneity in the evolutionary history of individual genomic regions resulting in 

gene-tree/species-tree discord. Accordingly, the concatenation approach is 

statistically inconsistent in the presence of incomplete lineage sorting (Kubatko and 

Degnan, 2007). As typically only a limited number of sites are informative for specific 

nodes in a topology (Palmer et al., 2019), a ‘handful’ of loci can drive the resolution of 

erroneous relationships with high support (Shen et al., 2017). Short branches are 

especially susceptible to this effect, as many genomic loci fail to coalesce between 

speciation events and thus provide contentious information (Kumar et al., 1990). The 

Multispecies Coalescent (MSC) was developed to explicitly model gene-tree 

heterogeneity when resolving species-tree relationships (Degnan and Rosenberg, 

2009). A range of methods has been developed for species tree estimation from multi-

locus datasets under the MSC model (reviewed in Warnow, 2017). These methods 

fall into three categories: (a) co-estimation of gene trees and species trees, as 

implemented for example in BEAST (Heled and Drummond, 2010). Sampling both 

species trees and gene trees simultaneously is computationally very demanding, 

even when employing heuristics (Wang and Nakhleh, 2018). Thus the method is 

currently computationally not feasible for RAD-seq sized datasets. (b) summary 

methods. The majority of available coalescent-based methods developed to date aim 

to estimate the species tree from existing gene trees by applying a summary statistic, 

e.g. ASTRAL (Mirarab et al., 2016), BUCKy (Larget et al., 2010), and MP-EST (Liu et 

al., 2010). Most summary methods have been proven statistically consistent under 

the MSC (Warnow, 2017), provided a large sample of true gene trees is provided 

(Mirarab et al., 2014a). In genome sized dataset, the likelihood of all loci containing 

substantial phylogenetic signal is low resulting in a high amount of gene tree 

estimation error (GTEE) (Bayzid et al., 2015). For analyzing RAD datasets, where the 

majority of individual loci comprise only limited phylogenetic information (Ree and 

Hipp, 2015), the vulnerability of MSC methods to GTEE is especially pronounced. In 

addition, the number of loci in RAD matrices and the resulting number of locus trees 

require tremendous computational efforts, which is currently hardly feasible. 
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Binning approaches (Bayzid and Warnow, 2013; Mirarab et al., 2014a; Zimmermann 

et al., 2014; Bayzid et al., 2015) offer computational improvements but their impact 

on accuracy is highly variable and currently poorly understood (Streicher et al., 

2018). (c) site-based coalescent methods. These methods aim to bypass the calculation 

of gene-trees by analyzing individual site patterns to estimate the species tree. The 

method SNAPP (Bryant et al., 2012) employs a Bayesian MCMC algorithm that is 

computationally highly expensive and only feasible for a limited number of samples 

in the dataset (Yoder et al., 2013). A computationally feasible site-based coalescent 

method is SVD-Quartets, which computes quartet topologies and summarizes them 

into a species tree topology using a heuristic (Chifman and Kubatko, 2014).  

The majority of coalescent-based methods have been proven to be statistically 

consistent under the MSC model, curiously with the exception of SVD-Quartets, 

where the mathematical proof is still outstanding (Roch et al., 2019). However, 

statistical consistency does not necessarily translate to the accuracy of inferred 

relationships. In comparative studies on simulated and empirical data, CA-ML 

performed at least as well and frequently better than coalescent-based methods 

under a variety of proportions of ILS and gene tree estimation error (Chou et al., 

2015; Mirarab et al., 2016; Molloy and Warnow, 2018; Nute et al., 2018; Streicher et al., 

2018; Palmer et al., 2019). The assumptions posed for statistical consistency under the 

MSC are not biologically realistic conditions (Roch et al., 2019); the MSC requires that 

individual loci are independent, that there is no recombination and that gene tree 

discord is exclusively caused by ILS (Degnan and Rosenberg, 2009). Statistical 

consistency under the MSC is the proof that the respective method will converge on 

the true species tree topology with probability 1 as the number of genes and the 

number of sites per gene both increase without upper bound (Roch et al., 2019). 

When the number of sites per locus has an upper bound, irrespective of its size, all of 

the hitherto tested MSC models as well as fully partitioned ML analysis become 

statistically inconsistent and can even become positively misleading, i.e. converging 

on an erroneous species tree topology with high probability, with long-branch 

attraction effects suggested as the ultimate cause (Roch et al., 2019). These 

simulations did not include site-based methods, however, SVD-Quartets has been 

proven to be less accurate than summary and co-estimation MSC models as well as 

CA-ML under all levels of ILS, GTEE (Roch and Warnow, 2015; Nute et al., 2018). In 

addition, it is vulnerable to missing data, especially when the distribution is non-

random (Schmidt-Lebuhn et al., 2017; Nute et al., 2018). Concatenated analysis, on 

the other hand, generally resolves relationships with high accuracy under all 

simulated and empirically tested conditions of GTEE, ILS and missing data, despite 

not being statistically consistent under the MSC (e.g. Roch and Warnow, 2015; Eaton 

et al., 2017; Nute et al., 2018).  
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The limits of concatenated analyses of large phylogenomic datasets are poorly 

understood (Molloy and Warnow, 2018) and research has so far focused solely on 

concatenated Maximum Likelihood (CA-ML) inference. In this thesis, I have also 

employed concatenated Bayesian (CA-BI, chapter 3) as well as BEAST (chapter 4) 

analysis on RAD matrices for Hawaiian Melicope. The performance of either 

approach, with regards to robustness to ILS, GTEE, and HGT has not been formally 

assessed, yet. For CA-ML approaches it was suggested concatenation results in a 

synergistic effect where the combination of loci is more accurate than the proverbial 

sum of the signals provided by individual regions (Rivers et al., 2016; Palmer et al., 

2019). This synergistic effect or ‘hidden support’ provides robustness to conflicting 

signals originating from incongruent gene trees, GTEE and missing data to the point 

that correct species relationships are inferred even when the majority of individual 

loci support an alternate, erroneous relationship (Rivers et al., 2016). The increased 

robustness to conflict might be imparted by the high-level distribution of 

phylogenetic signal for individual nodes versus the low-level distribution of conflict 

(Nute et al., 2018). In addition, Quartet sampling detected overall less discord in 

relationships resolved by on concatenated analysis. Accordingly, I have accepted the 

topology resolved by analysis of the concatenated analyses (Figure 3.2) as the more 

likely relationship. 

However, as an ancestral introgression event was inferred as the most likely cause 

for conflicting relationships of clade III (chapter 3, Figure 3.3), phylogenetic 

reconstruction methods modeling HGT are required to definitively confirm the 

relation of the major clades. Phylogenetic Networks aim to explicitly incorporate 

reticulate evolution by allowing horizontal edges in addition to bifurcating ones 

(Huson et al., 2010). With the increasing recognition of the prevalence of 

hybridization events across the tree of life (Mallet et al., 2016), algorithms for 

inferring explicit phylogenetic networks have recently been advanced from a proof-

of-concept state (Huson et al., 2010) to fully implemented software. As the evolution 

of individual loci within the network is tree-like, the MSC has been extended to 

phylogenetic networks (Yu et al., 2011, 2012) and recently network inference in a 

Bayesian framework has been implemented (Zhu et al., 2018). However, the 

relationship between phylogenetic trees and networks is very complex, and many 

problems are computationally expensive (Zhu et al., 2016). The computation of 

explicit networks, inferring simultaneously a rooted network with edges 

representing evolutionary distances and the number of reticulate events within that 

network is an NP-hard problem, so heuristics and algorithmic constraints, e.g. 

considering the number of reticulation events, have to be enforced (Huson et al., 

2010). Still, phylogenetic network space is considerably larger than that of 

phylogenetic trees on the same number of taxa (Wen et al., 2018). Consequently, the 

majority of the current methods can only handle a small number of taxa and genomic 
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loci and do not scale to phylogenomic datasets (Zhu and Nakhleh, 2018; Elworth et 

al., 2019; Zhu et al., 2019). However, scalability is substantially improved in a 

recently proposed divide-and-conquer method, which drastically reduces 

computation times (Zhu et al., 2019), might provide an algorithm applicable in 

Hawaiian Melicope in the near future.  

Streicher et al. (2018) posed the relevant question of whether researchers will have 

the data determine the analytical method or if the method should determine the data 

to be chosen for analysis. Currently, computational restrictions related to dataset size 

and complexity are often one of the deciding factors in method choice. This 

particular situation is pragmatic, but undoubtedly not ideal. However, the increased 

awareness of model assumptions and computational challenges provided by studies 

like the one presented in this thesis serve to highlight current challenges and to drive 

future development.  

 

5.5  Conclusion and Prospects 

Hawaiian Melicope represent a great model to study island adaptive radiation. The 

application of RAD-seq has resulted in unprecedented resolution of relationships in 

this mesmerizing lineage allowing for efficient testing of evolutionary hypotheses.  

The lineage colonized the archipelago before the origin of the current high islands, 

and the oldest high island, Kauaʻi was colonized nearly upon its emergence. The 

younger islands were colonized repeatedly. However, the only direct evidence we 

find is for very recent colonizations of the younger islands, long after they had 

emerged (Figure 4.2). In general, diversification in the lineage is characterized by 

extinction just as much as by adaption to continuously changing habitats and 

speciation events (Figure 4.4, Table 4.2). The occurrence of some widespread species 

closely related to narrow endemics (Figure 4.4) indicates shifts in either pollinator or 

dispersal vectors; although in general there is no detailed knowledge of pollinator or 

disperser identity. A shift in breeding system is displayed by the members of clade V 

(Platydesma) from a dioecious ancestor to hermaphroditism in the extant species. The 

shift to monomorphism was estimated to have occurred around the time when 

Kauaʻi was first colonized by the clade. Two ancient introgression events were 

indicated involving the ancestors to the remaining four clades of Hawaiian Melicope. 

In addition, the RAD-seq datasets and the observation of morphologically 

intermediate individuals in the field, indicate additional, recent hybridization events. 

All in all occasional hybridization events might be crucial mechanisms to allow for 

the combination of adaptive traits from existing genetic variation during rapid 

speciation (Barrett and Schluter, 2008; Abbott et al., 2013). 
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The limited sampling for populations of species suspected in recent and current 

hybridization events in this thesis as well as the nature of RAD-seq data limits 

definitive assessment of the frequency, direction, and impact of introgression events 

on the evolution of Hawaiian Melicope. In addition, a taxonomic revision is required 

to investigate phenotypic trait evolution. In order to address the issues raised by this 

thesis, I am currently drafting a project aiming to employ a TE approach to Hawaiian 

Melicope using a custom bait set designed by myself. Sampling will be expanded to 

include additional populations of species resolved as non-monophyletic, species 

suspected to be involved in hybridization events, e.g. M. barbigera and M. haupuensis 

(Figure 3.3), as well as the entire Marquesan radiation and additional populations of 

widespread Hawaiian taxa. Using the resulting gene alignments, I will revise the 

question of phylogenetic inference methods with regards to accuracy and 

computational feasibility. In addition, loci resulting from the ancient hybridization 

event (Figure 3.2) will be identified and evaluated for conferring adaptive traits. 

Phasing of alleles will allow the inference of paternal lineages to recent and ongoing 

hybridization events, potentially adding further insights into the evolution of 

adaptive traits.  

 



References 

163 

 

References 
 

Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J. E., Bierne, N., et al. (2013). 

Hybridization and speciation. Journal of Evolutionary Biology 26, 229–246. 

doi:10.1111/j.1420-9101.2012.02599.x. 

Abbott, R. J., Barton, N. H., and Good, J. M. (2016). Genomics of hybridization and its 

evolutionary consequences. Molecular Ecology 25, 2325–2332. doi:10.1111/mec.13685. 

Aberer, A. J., Kobert, K., and Stamatakis, A. (2014). ExaBayes: Massively parallel Bayesian 

tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553–

2556. doi:10.1093/molbev/msu236. 

Aberer, A. J., Krompass, D., and Stamatakis, A. (2013). Pruning rogue taxa improves 

phylogenetic accuracy: An efficient algorithm and webservice. Systematic Biology 62, 

162–166. doi:10.1093/sysbio/sys078. 

Allison, P. A., and Bottjer, D. J. eds. (2011). Taphonomy: Bias and process through time. 

Dordrecht, Netherlands: Springer. doi:10.1007/978-90-481-8643-3_1. 

Amborella Genome Project, Albert, V. A., Barbazuk, W. B., dePamphilis, C. W., Der, J. P., 

Leebens-Mack, J., et al. (2013). The Amborella genome and the evolution of flowering 

plants. Science 342, 1241089–1241089. doi:10.1126/science.1241089. 

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., and Hohenlohe, P. A. (2016). 

Harnessing the power of RADseq for ecological and evolutionary genomics. Nature 

Reviews Genetics 17, 81–92. doi:10.1038/nrg.2015.28. 

Andrews, S. (2010). FastQC: A quality control tool from high throughput sequence data. 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc. 

Antonelli, A., and Sanmartín, I. (2011). Mass extinction, gradual cooling, or rapid radiation? 

Reconstructing the spatiotemporal evolution of the ancient Angiosperm genus 

Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Systematic 

Biology 60, 596–615. doi:10.1093/sysbio/syr062. 

Appelhans, M. S., Keßler, P. J. A., Smets, E., Razafimandimbison, S. G., and Janssens, S. B. 

(2012). Age and historical biogeography of the pantropically distributed 

Spathelioideae (Rutaceae, Sapindales). Journal of Biogeography 39, 1235–1250. 

doi:10.1111/j.1365-2699.2012.02686.x. 

Appelhans, M. S., Reichelt, N., Groppo, M., Paetzold, C., and Wen, J. (2018a). Phylogeny and 

biogeography of the pantropical genus Zanthoxylum and its closest relatives in the 

proto-Rutaceae group (Rutaceae). Molecular Phylogenetics and Evolution 126, 31–44. 

doi:10.1016/j.ympev.2018.04.013. 

Appelhans, M. S., Smets, E., Razafimandimbison, S. G., Haevermans, T., van Marle, E. J., 

Couloux, A., et al. (2011). Phylogeny, evolutionary trends and classification of the 



References 

 

164 

Spathelia–Ptaeroxylon clade: morphological and molecular insights. Annals of Botany 

107, 1259–1277. doi:10.1093/aob/mcr076. 

Appelhans, M. S., Wen, J., Duretto, M., Crayn, D., and Wagner, W. L. (2018b). Historical 

biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on 

Pacific dispersals. Journal of Systematics and Evolution 56, 576-599. 

doi:10.1111/jse.12299. 

Appelhans, M. S., Wen, J., and Wagner, W. L. (2014a). A molecular phylogeny of Acronychia, 

Euodia, Melicope and relatives (Rutaceae) reveals polyphyletic genera and key 

innovations for species richness. Molecular Phylogenetics and Evolution 79, 54–68. 

doi:10.1016/j.ympev.2014.06.014. 

Appelhans, M. S., Wen, J., Wood, K. R., Allan, G. J., Zimmer, E. A., and Wagner, W. L. 

(2014b). Molecular phylogenetic analysis of Hawaiian Rutaceae (Melicope, Platydesma 

and Zanthoxylum ) and their different colonization patterns. Botanical Journal of the 

Linnean Society 174, 425–448. doi:10.1111/boj.12123. 

Appelhans, M. S., Wood, K. R., and Wagner, W. L. (2017). Reduction of the Hawaiian genus 

Platydesma into Melicope section Pelea (Rutaceae) and notes on the monophyly of the 

section. PhytoKeys 91, 125–137. doi:10.3897/phytokeys.91.21363. 

Arrigo, N., and Barker, M. S. (2012). Rarely successful polyploids and their legacy in plant 

genomes. Current Opinion in Plant Biology 15, 140–146. doi:10.1016/j.pbi.2012.03.010. 

Asker, S., and Jerling, L. (1992). Apomixis in plants. Boca Raton, USA: CRC Press. 

Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A., and Lemey, P. (2013). Accurate 

Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Molecular 

Biology and Evolution 30, 239–243. doi:10.1093/molbev/mss243. 

Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., et al. (2008). 

Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS 

ONE 3, e3376. doi:10.1371/journal.pone.0003376. 

Baker, H. G. (1955). Self-Compatibility and establishment after “long-distance” dispersal. 

Evolution 9, 347–349. doi:10.1111/j.1558-5646.1955.tb01544.x. 

Baldwin, B. G. (1998). “Evolution in the endemic Hawaiian Compositae.” in Evolution and 

speciation of island plants, eds. T. F. Stuessy and M. Ono (Cambridge, UK: Cambridge 

University Press), 49–73. 

Baldwin, B. G. (2005). Origin of the serpentine-endemic Layia discoidea from the widespread 

L. glandulosa (Compositae). Evolution 59, 2473–2479. doi:10.1554/05-147.1. 

Baldwin, B. G., Kyhos, D. W., Dvorak, J., and Carr, G. D. (1991). Chloroplast DNA evidence 

for a North American origin of the Hawaiian silversword alliance (Asteraceae). 

Proceedings of the National Academy of Sciences 88, 1840–1843. 

doi:10.1073/pnas.88.5.1840. 



References 

165 

 

Baldwin, B. G., and Sanderson, M. J. (1998). Age and rate of diversification of the Hawaiian 

silversword alliance (Compositae). Proceedings of the National Academy of Sciences 95, 

9402–9406. doi:10.1073/pnas.95.16.9402. 

Baldwin, B. G., and Wagner, W. L. (2010). Hawaiian Angiosperm radiations of North 

American origin. Annals of Botany 105, 849–879. doi:10.1093/aob/mcq052. 

Ballard, H. E., and Sytsma, K. J. (2000). Evolution and biogeography of the woody Hawaiian 

Violets (Viola, Violaceae): arctic origins, herbaceous ancestry and bird dispersal. 

Evolution 54, 1521–1532. 

Barido-Sottani, J., Bošková, V., Plessis, L. D., Kühnert, D., Magnus, C., Mitov, V., et al. (2018). 

Taming the BEAST—A Community Teaching Material Resource for BEAST 2. 

Systematic Biology 67, 170–174. doi:10.1093/sysbio/syx060. 

Barrett, R. D. H., and Schluter, D. (2008). Adaptation from standing genetic variation. Trends 

in Ecology & Evolution 23, 38–44. doi:10.1016/j.tree.2007.09.008. 

Barrett, S. C. H., Emerson, B., Mallet, J. W., Clarke, B. C., and Grant, P. R. (1996). The 

reproductive biology and genetics of island plants. Philosophical Transactions of the 

Royal Society of London. Series B: Biological Sciences 351, 725–733. 

doi:10.1098/rstb.1996.0067. 

Barrier, M., Baldwin, B. G., Robichaux, R. H., and Purugganan, M. D. (1999). Interspecific 

hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian 

silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. 

Molecular Biology and Evolution 16, 1105–1113. 

doi:10.1093/oxfordjournals.molbev.a026200. 

Bayly, M. J., Holmes, G. D., Forster, P. I., Cantrill, D. J., and Ladiges, P. Y. (2013). Major 

clades of Australasian Rutoideae (Rutaceae) based on rbcL and atpB Sequences. PLoS 

ONE 8, e72493. doi:10.1371/journal.pone.0072493. 

Bayzid, M. S., Mirarab, S., Boussau, B., and Warnow, T. (2015). Weighted statistical binning: 

Enabling statistically consistent genome-scale phylogenetic analyses. PLoS ONE 10, 

e0129183. doi:10.1371/journal.pone.0129183. 

Bayzid, M. S., and Warnow, T. (2013). Naive binning improves phylogenomic analyses. 

Bioinformatics 29, 2277–2284. doi:10.1093/bioinformatics/btt394. 

Bennett, M. D., and Leitch, I. J. (2007). Plant DNA C-values database (release 3.0). Accessed 

01.10.2019. Available at: https://cvalues.science.kew.org/ 

Beurton, C. (1994). Gynoecium and perianth in Zanthoxylum s.l. (Rutaceae). Plant Systematic 

Evolution 189, 165–191. doi:10.1007/BF00939724. 

Böhle, U. R., Hilger, H. H., and Martin, W. F. (1996). Island colonization and evolution of the 

insular woody habit in Echium L. (Boraginaceae). Proceedings of the National Academy of 

Sciences 93, 11740–11745. doi:10.1073/pnas.93.21.11740. 



References 

 

166 

Borgmann, E. (1964). Anteil der Polyploiden in der Flora des Bismarcksgebirges von 

Ostneuguinea. Zeitschrift für Botanik 55, 118–173. 

Borregaard, M. K., Amorim, I. R., Borges, P. A. V., Cabral, J. S., Fernández‐Palacios, J. M., 

Field, R., et al. (2017). Oceanic island biogeography through the lens of the general 

dynamic model: assessment and prospect. Biological Reviews 92, 830–853. 

doi:10.1111/brv.12256. 

Bramwell, D. (1976). “The endemic flora of the Canary Islands; distribution, relationships 

and phytogeography.” in Biogeography and ecology in the Canary Islands, ed. G. Kunkel 

(Dordrecht: Springer Netherlands), 207–240. doi:10.1007/978-94-010-1566-0_6. 

Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., and RoyChoudhury, A. (2012). 

Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in 

a full coalescent analysis. Molecular Biology and Evolution 29, 1917–1932. 

doi:10.1093/molbev/mss086. 

Cariou, M., Duret, L., and Charlat, S. (2013). Is RAD-seq suitable for phylogenetic inference? 

An in silico assessment and optimization. Ecology and Evolution 3, 846–852. 

doi:10.1002/ece3.512. 

Carlquist, S. (1966a). The biota of long-distance dispersal. I. Principles of dispersal and 

evolution. The Quarterly Review of Biology 41, 247–270. doi:10.1086/405054. 

Carlquist, S. (1966b). The biota of long-distance dispersal. II. Loss of dispersibility in Pacific 

Compositae. Evolution 20, 30-48. doi: 10.2307/2406147 

Carlquist, S. (1966c). The biota of long-distance dispersal. III. Loss of dispersibility in the 

Hawaiian flora. Brittonia 18, 310-335. doi:10.2307/2805148. 

Carlquist, S. (1967). The biota of long-distance dispersal. V. Plant dispersal to Pacific islands. 

Bulletin of the Torrey Botanical Club 94, 129–162. doi:10.2307/2484044. 

Carlquist, S. (1969). Wood anatomy of Lobelioideae (Campanulaceae). Biotropica 1, 47-72. 

doi:10.2307/2989761. 

Carlquist, S. (1974). Island Biology. New York, NY: Columbia University Press. 

Carman, J. G. (1997). Asynchronous expression of duplicate genes in Angiosperms may 

cause apomixis, bispory, tetraspory, and polyembryony. Biological Journal of the 

Linnean Society 61, 51–94. doi:10.1111/j.1095-8312.1997.tb01778.x. 

Carr, G. D. (1978). Chromosome numbers of Hawaiian flowering plants and the significance 

of cytology in selected taxa. American Journal of Botany 65, 236–242. doi:10.1002/j.1537-

2197.1978.tb06061.x. 

Carr, G. D. (1998). “Chromosome evolution and speciation in Hawaiian flowering plants.” in 

Evolution and speciation of island plants, eds. T. F. Stuessy and M. Ono (Cambridge, UK: 

Cambridge University Press), 97–119. 



References 

167 

 

Carr, G. D., Powell, E. A., and Kyhos, D. W. (1986). Self-Incompatibility in the Hawaiian 

Madiinae (Compositae): An exception to Baker’s Rule. Evolution 40, 430–434. 

doi:10.2307/2408823. 

Carracedo, J. C. (1999). Growth, structure, instability and collapse of Canarian volcanoes and 

comparisons with Hawaiian volcanoes. Journal of Volcanology and Geothermal Research 

94, 1–19. doi:10.1016/S0377-0273(99)00095-5. 

Cássia‐Silva, C., and Sales, L. P. (2019). The imprints left by historical contingency on 

marsupials’ life-history traits. Journal of Zoology 307, 149–158. doi:10.1111/jzo.12629. 

Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., and Postlethwait, J. H. (2011). Stacks : 

Building and genotyping loci de novo from short-read sequences. 

Genes|Genomes|Genetics 1, 171–182. doi:10.1534/g3.111.000240. 

Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A., and Cresko, W. A. (2013). Stacks: 

an analysis tool set for population genomics. Molecular Ecology 22, 3124–3140. 

doi:10.1111/mec.12354. 

Chase, M. W., Morton, C. M., and Kallunki, J. A. (1999). Phylogenetic relationships of 

Rutaceae: a cladistic analysis of the subfamilies using evidence from RBC and ATP 

sequence variation. American Journal of Botany 86, 1191–1199. doi:10.2307/2656983. 

Chifman, J., and Kubatko, L. (2014). Quartet inference from SNP data under the coalescent 

model. Bioinformatics 30, 3317–3324. doi:10.1093/bioinformatics/btu530. 

Choi, J. Y., Purugganan, M., and Stacy, E. A. (2019). Divergent selection and primary gene 

flow shape incipient speciation of a riparian tree on Hawaii Island. Molecular Biology 

and Evolution msz259. doi:10.1093/molbev/msz259 

Chou, J., Gupta, A., Yaduvanshi, S., Davidson, R., Nute, M., Mirarab, S., et al. (2015). A 

comparative study of SVDquartets and other coalescent-based species tree estimation 

methods. BMC Genomics 16, S2. doi:10.1186/1471-2164-16-S10-S2. 

Clague, D. A. (1996). “Growth and subsidence of the Hawaiian-Emperor volcanic chain.” in 

The origin and evolution of Pacific island biotas, New Guinea to eastern Polynesia: patterns 

and processes, eds. A. Keast and S.C. Miller (Berlin, Germany: Balogh Scientific Books), 

35–50. 

Clague, D. A., Braga, J. C., Bassi, D., Fullagar, P. D., Renema, W., and Webster, J. M. (2010). 

The maximum age of Hawaiian terrestrial lineages: geological constraints from Kōko 

Seamount. Journal of Biogeography 37, 1022–1033. doi:10.1111/j.1365-2699.2009.02235.x. 

Clague, D. A., and Sherrod, D. R. (2014). Growth and degradation of Hawaiian volcanoes. 

U.S. Geological Survey Professional Papers 1801, 97-146. 

Cockayne, L., and Allan, H. H. (1934). An annotated list of groups of wild hybrids in the 

New Zealand flora. Annals of Botany 48, 1-55. 



References 

 

168 

Collins, F. S., Morgan, M., and Patrinos, A. (2003). The human genome project: Lessons from 

large-scale biology. Science 300, 286–290. doi:10.1126/science.1084564. 

Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews 

Genetics 6, 836–846. doi:10.1038/nrg1711. 

Cowie, R. H., and Holland, B. S. (2006). Dispersal is fundamental to biogeography and the 

evolution of biodiversity on oceanic islands. Journal of Biogeography 33, 193–198. 

doi:10.1111/j.1365-2699.2005.01383.x. 

Crawford, D. J. (2010). Progenitor-derivative species pairs and plant speciation. Taxon 59, 

1413–1423. doi:10.1002/tax.595008. 

Crawford, D. J., Lowrey, T. K., Anderson, G. J., Bernardello, G., Santos-Guerra, A., and 

Stuessy, T. F. (2009). “Genetic diversity in Asteraceae endemic to oceanic islands: 

Baker’s Law and polyploidy.” in Systematics, evolution, and biogeography of Compositae, 

ed. V. Funk (Vienna, Austria: International Association for Plant Taxonomy), 139–151. 

Crawford, D. J., Sang, T., Stuessy, T. F., Kim, S.-C., and Silva O., M. (1998). “Dendroseris 

(Asteraceae: Lactuceae) and Robinsonia (Asteraceae: Senecioneae) on the Juan 

Fernandez Islands: similarities and differences in biology and phylogeny.” in 

Evolution and speciation of island plants, eds. T. F. Stuessy and M. Ono (Cambridge, UK: 

Cambridge University Press), 97–120. 

Crisp, M. D., and Crone, L. G. (2009). Explosive radiation or cryptic mass extinction? 

Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265. 

Cronk, Q. C. B., Kiehn, M., Wagner, W. L., and Smith, J. F. (2005). Evolution of Cyrtandra 

(Gesneriaceae) in the Pacific Ocean: the origin of a supertramp clade. American Journal 

of Botany 92, 1017–1024. doi:10.3732/ajb.92.6.1017. 

Currat, M., Ruedi, M., Petit, R. J., and Excoffier, L. (2008). The hidden side of invasions: 

Massive introgression by local genes. Evolution 62, 1908–1920. doi:10.1111/j.1558-

5646.2008.00413.x. 

da Silva, M. F. das G. F., Gottlieb, O. R., and Ehrendorfer, F. (1988). Chemosystematics of the 

Rutaceae: Suggestions for a more natural taxonomy and evolutionary interpretation 

of the family. Plant Systematic Evolution 161, 97–134. doi:10.1007/BF00937293. 

Darwin, C. (1842). Journal of researches into the geology and natural history of the various countries 

visited by the voyage of H.M.S. “Beagle”, under the command of Captain Fitzroy, R. N. from 

1832-1836. London, UK: Henry Colborn. 

Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of the 

favoured races in the struggle for life. London, UK: John Murray. 

Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., and Blaxter, M. L. 

(2011). Genome-wide genetic marker discovery and genotyping using next-

generation sequencing. Nature Reviews Genetics 12, 499–510. doi:10.1038/nrg3012. 



References 

169 

 

Degnan, J. H., and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference 

and the multispecies coalescent. Trends in Ecology & Evolution 24, 332–340. 

doi:10.1016/j.tree.2009.01.009. 

Denlinger, R. P., and Morgan, J. K. (2014). Instability of Hawaiian volcanoes. U.S. Geological 

Survey Professional Papers 1801, 149-176. 

Díaz-Arce, N., Arrizabalaga, H., Murua, H., Irigoien, X., and Rodríguez-Ezpeleta, N. (2016). 

RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas. 

Molecular Phylogenetics and Evolution 102, 202–207. doi:10.1016/j.ympev.2016.06.002. 

Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia Univ. Press. 

Dodsworth, S., Chase, M. W., and Leitch, A. R. (2016). Is post-polyploidization diploidization 

the key to the evolutionary success of Angiosperms?: Diploidization in polyploid 

Angiosperms. Botanical Journal of the Linnean Society 180, 1–5. doi:10.1111/boj.12357. 

Doležel, J., and Göhde, W. (1995). Sex determination in dioecious plants Melandrium album 

and M. rubrum using high‐resolution flow cytometry. Cytometry 19, 103–106. 

doi:10.1002/cyto.990190203. 

Doyle, J. J., Flagel, L. E., Paterson, A. H., Rapp, R. A., Soltis, D. E., Soltis, P. S., et al. (2008). 

Evolutionary genetics of genome merger and doubling in plants. Annual Review of 

Genetics 42, 443–461. doi:10.1146/annurev.genet.42.110807.091524. 

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by 

sampling trees. BMC Evolutionary Biology 7, 214. doi:10.1186/1471-2148-7-214. 

Dulin, M. W., and Kirchoff, B. K. (2010). Paedomorphosis, secondary woodiness, and insular 

woodiness in plants. The Botanical Review 76, 405–490. doi:10.1007/s12229-010-9057-5. 

Dunbar-Co, S., Wieczorek, A. M., and Morden, C. W. (2008). Molecular phylogeny and 

adaptive radiation of the endemic Hawaiian Plantago species (Plantaginaceae). 

American Journal of Botany 95, 1177–1188. doi:10.3732/ajb.0800132. 

Durand, E. Y., Patterson, N., Reich, D., and Slatkin, M. (2011). Testing for ancient admixture 

between closely related populations. Molecular Biology and Evolution 28, 2239–2252. 

doi:10.1093/molbev/msr048. 

Eaton, D. A. R. (2014). PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. 

Bioinformatics 30, 1844–1849. doi:10.1093/bioinformatics/btu121. 

Eaton, D. A. R., Hipp, A. L., González-Rodríguez, A., and Cavender-Bares, J. (2015). 

Historical introgression among the American live oaks and the comparative nature of 

tests for introgression. Evolution 69, 2587–2601. doi:10.1111/evo.12758. 

Eaton, D. A. R., and Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq 

data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic 

Biology 62, 689–706. doi:10.1093/sysbio/syt032. 



References 

 

170 

Eaton, D. A. R., Spriggs, E. L., Park, B., and Donoghue, M. J. (2017). Misconceptions on 

missing data in RAD-seq phylogenetics with a deep-scale example from flowering 

plants. Systematic Biology 66, 399–412. doi:10.1093/sysbio/syw092. 

Eggens, F., Popp, M., Nepokroeff, M., Wagner, W. L., and Oxelman, B. (2007). The origin and 

number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). 

American Journal of Botany 94, 210–218. doi:10.3732/ajb.94.2.210. 

Ehleringer, J. R., and Clark, C. (1988). “Evolution and adaptation in Encelia (Asteraceae).” in 

Plant evolutionary biology, eds. L. D. Gottlieb and S. K. Jain (Dordrecht: Springer 

Netherlands), 221–248. doi:10.1007/978-94-009-1207-6_9. 

Ehrendorfer, F. (1980). “Polyploidy and distribution.” in Polyploidy: Biological relevance, ed. W. 

H. Lewis (Boston, MA: Springer US), 45–60. doi:10.1007/978-1-4613-3069-1_3. 

Elworth, R. A. L., Ogilvie, H. A., Zhu, J., and Nakhleh, L. (2019). “Advances in computational 

methods for phylogenetic networks in the presence of hybridization.” in 

Bioinformatics and phylogenetics, ed. T. Warnow (Basel, Switzerland: Springer 

International Publishing), 317–360. doi:10.1007/978-3-030-10837-3_13. 

Emerson, B. C. (2002). Evolution on oceanic islands: molecular phylogenetic approaches to 

understanding pattern and process. Molecular Ecology 11, 951-966. 

Engler, A. (1931). “Cneoraceae, Rutaceae.” in Die natürlichen Pflanzenfamilien, eds. A. Engler 

and K. Prantl (Leipzig, Germinay: W. Engelmann), 184–359. 

Fedorov, A. V., Brierley, C. M., and Emanuel, K. (2010). Tropical cyclones and permanent El 

Niño in the early Pliocene epoch. Nature 463, 1066–1070. doi:10.1038/nature08831. 

Fernández-Mazuecos, M., Mellers, G., Vigalondo, B., Sáez, L., Vargas, P., and Glover, B. J. 

(2018). Resolving recent plant radiations: Power and robustness of genotyping-by-

sequencing. Systematic Biology 67, 250–268. doi:10.1093/sysbio/syx062. 

Fernández‐Palacios, J. M., Rijsdijk, K. F., Norder, S. J., Otto, R., Nascimento, L. de, 

Fernández‐Lugo, S., et al. (2016). Towards a glacial-sensitive model of island 

biogeography. Global Ecology and Biogeography 25, 817–830. doi:10.1111/geb.12320. 

FitzJohn, R. G. (2014). Diversitree: comparative phylogenetic analyses of diversification in R. 

Methods in Ecology and Evolution 6, 1084–1092. doi:10.1111/j.2041-210X.2012.00234.x. 

Floyd, A. G. (1989). Rainforest trees of mainland South-Eastern Australia. Melbourne, Australia: 

Inkata Press. 

Forest, F. (2009). Calibrating the Tree of Life: fossils, molecules and evolutionary timescales. 

Annals of Botany 104, 789–794. doi:10.1093/aob/mcp192. 

Francisco‐Ortega, J., Santos‐Guerra, A., Hines, A., and Jansen, R. K. (1997). Molecular 

evidence for a Mediterranean origin of the Macaronesian endemic genus 

Argyranthemum (Asteraceae). American Journal of Botany 84, 1595–1613. 

doi:10.2307/2446622. 



References 

171 

 

Francisco-Ortega, J., Santos-Guerra, A., Kim, S.-C., and Crawford, D. J. (2000). Plant genetic 

diversity in the Canary Islands: a conservation perspective. American Journal of Botany 

87, 909–919. doi:10.2307/2656988. 

Fresnillo, B., and Ehlers, B. K. (2008). Variation in dispersability among mainland and island 

populations of three wind-dispersed plant species. Plant Systematics and Evolution 270, 

243–255. doi:10.1007/s00606-007-0615-1. 

Frith, H. J., Crome, F. H. J., and Wolfe, T. O. (1976). Food of fruit-pigeons in New Guinea. 

Emu 76, 49–58. doi:10.1071/mu9760049. 

Gadagkar, S. R., Rosenberg, M. S., and Kumar, S. (2005). Inferring species phylogenies from 

multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of 

Experimental Zoology Part B: Molecular and Developmental Evolution 304, 64–74. 

doi:10.1002/jez.b.21026. 

Gallardo, M. H. (2017). “Phylogenetics, reticulation and evolution.” in Phylogenetics, ed. I. Y. 

Abdurakhmonov (London, UK: InTech), 47-58. doi:10.5772/intechopen.68564. 

Garcia, M. O., Smith, J. R., Tree, J. P., Weis, D., Harrison, L., and Jicha, B. R. (2015). 

“Petrology, geochemistry, and ages of lavas from Northwest Hawaiian Ridge 

volcanoes,” in The origin, evolution, and environmental impact of oceanic large igneous 

provinces eds. C. R. Neal, W. W. Sager, T. Sano, and E. Erba, 1–25. 

Gatesy, J., and Springer, M. S. (2014). Phylogenetic analysis at deep timescales: Unreliable 

gene trees, bypassed hidden support, and the coalescence/concatalescence 

conundrum. Molecular Phylogenetics and Evolution 80, 231–266. 

doi:10.1016/j.ympev.2014.08.013. 

Geist, D., Snell, H., Snell, H., Goddard, C., and Kurz, M. (2014). “Palaeogeography of the 

Galápagos Islands and biogeographical implications.” in The Galápagos: A natural 

laboratory for the earth sciences, eds. K. S. Harpp, E. Mittelstaedt, N. d’Ozouville, and D. 

W. Graham (Washington, D.C., USA: American Geophysical Union), 145–166. 

Gillespie, R. (2004). Community assembly through adaptive radiation in Hawaiian spiders. 

Science 303, 356–359. doi:10.1126/science.1091875. 

Givnish, T. J. (1997). “Adaptive radiation and molecular systematics: issues and approaches,” 

in Molecular evolution and adaptive radiation, eds. T. J. Givnish and K. J. Systma 

(Cambridge, UK: Cambridge University Press), 1–54. 

Givnish, T. J. (1998). “Adaptive plant evolution on islands: classical patterns, molecular data, 

and new insights.” in Evolution on islands, ed. P. R. Grant (Oxford, UK: Oxford 

University Press), 281–304. 

Givnish, T. J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: 

why conceptual distinctions are fundamental to understanding evolution. New 

Phytologist 207, 297–303. doi:10.1111/nph.13482@10.1111. 



References 

 

172 

Givnish, T. J., Bean, G. J., Ames, M., Lyon, S. P., and Sytsma, K. J. (2013). Phylogeny, floral 

evolution, and inter-island dispersal in Hawaiian Clermontia (Campanulaceae) based 

on ISSR variation and plastid spacer sequences. PLoS ONE 8, e62566. 

doi:10.1371/journal.pone.0062566. 

Givnish, T. J., Millam, K. C., Mast, A. R., Paterson, T. B., Theim, T. J., Hipp, A. L., et al. (2009). 

Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: 

Campanulaceae). Proceedings of the Royal Society B: Biological Sciences 276, 407–416. 

doi:10.1098/rspb.2008.1204. 

Givnish, T. J., Spalink, D., Ames, M., Lyon, S. P., Hunter, Zuluaga, A., et al. (2015). Orchid 

phylogenomics and multiple drivers of their extraordinary diversification. Proceedings 

of the Royal Society B: Biological Sciences 282, 20151553. doi:10.1098/rspb.2015.1553. 

Glor, R. E. (2010). Phylogenetic insights on adaptive radiation. Annual Review of Ecology, 

Evolution, and Systematics 41, 251–270. doi:10.1146/annurev.ecolsys.39.110707.173447. 

Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., Brockman, W., et al. (2009). 

Solution hybrid selection with ultra-long oligonucleotides for massively parallel 

targeted sequencing. Nature Biotechnology 27, 182–189. doi:10.1038/nbt.1523. 

Grant, P. R. (1998). “Patterns on islands and microevolution.” in Evolution on islands, ed. P. R. 

Grant (Oxford, UK: Oxford University Press), 1–17. 

Grant, P. R., and Grant, B. R. (2002). Adaptive radiation of Darwin’s finches: Recent data help 

explain how this famous group of Galápagos birds evolved, although gaps in our 

understanding remain. American Scientist 90, 130–139. 

Grant, P. R., and Grant, B. R. (2008). How and why species multiply: The radiation of Darwin’s 

finches. Princeton, USA: Princeton University Press. 

Grant, V. (1963). The origin of adaptations. New York, USA: Columbia University Press. 

Groppo, M., Pirani, J. R., Salatino, M. L. F., Blanco, S. R., and Kallunki, J. A. (2008). Phylogeny 

of Rutaceae based on two noncoding regions from cpDNA. American Journal of Botany 

95, 985–1005. doi:10.3732/ajb.2007313. 

Guerra, M. dos S. (1984). New chromosome number in Rutaceae. Plant Systematics and 

Evolution 146, 13–30. doi:10.1007/BF00984051. 

Hair, J. B. (1966). Biosystematics of the New Zealand flora, 1945–1964. New Zealand Journal of 

Botany 4, 559–595. doi:10.1080/0028825X.1966.10430184. 

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Palaeontological statistics 

software package for education and data analysis. Palaeontologica Electronica 4, 9. 

Harbaugh, D. T. (2008). Polyploid and hybrid origins of Pacific island sandalwoods 

(Santalum, Santalaceae) inferred from low‐copy nuclear and flow cytometry data. 

International Journal of Plant Sciences 169, 677–685. doi:10.1086/533610. 



References 

173 

 

Harbaugh, D. T., and Baldwin, B. G. (2007). Phylogeny and biogeography of the 

sandalwoods (Santalum, Santalaceae): repeated dispersals throughout the Pacific. 

American Journal of Botany 94, 1028–1040. doi:10.3732/ajb.94.6.1028. 

Harbaugh, D. T., Wagner, W. L., Allan, G. J., and Zimmer, E. A. (2009). The Hawaiian 

Archipelago is a stepping stone for dispersal in the Pacific: an example from the plant 

genus Melicope (Rutaceae). Journal of Biogeography 36, 230–241. doi:10.1111/j.1365-

2699.2008.02008.x. 

Hartley, T. G. (2001). On the taxonomy and biogeography of Euodia and Melicope (Rutaceae). 

Allertonia 8, 1–328. 

Hartley, T. G., and Stone, B. C. (1989). Reduction of Pelea with new combinations in Melicope 

(Rutaceae). Taxon 38, 119–123. doi:10.2307/1220910. 

Harvey, M. G., Smith, B. T., Glenn, T. C., Faircloth, B. C., and Brumfield, R. T. (2016). 

Sequence capture versus Restriction site associated DNA sequencing for shallow 

systematics. Systematic Biology 65, 910–924. doi:10.1093/sysbio/syw036. 

Havran, J. C., Sytsma, K. J., and Ballard, H. E. (2009). Evolutionary relationships, interisland 

biogeography, and molecular evolution in the Hawaiian violets (Viola: Violaceae). 

American Journal of Botany 96, 2087–2099. doi:10.3732/ajb.0900021. 

Heads, M. (2011). Old taxa on young islands: A critique of the use of island age to date 

island-endemic clades and calibrate phylogenies. Systematic Biology 60, 204–218. 

doi:10.1093/sysbio/syq075. 

Heilbuth, J. C. (2000). Lower species richness in dioecious clades. The American Naturalist 156, 

221–241. doi:10.1086/303389. 

Heled, J., and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus 

data. Molecular Biology and Evolution 27, 570–580. doi:10.1093/molbev/msp274. 

Higgins, S. I., Nathan, R., and Cain, M. L. (2003). Are long-distance dispersal events in plants 

usually caused by nonstandard means of dispersal? Ecology 84, 1945–1956. 

doi:10.1890/01-0616. 

Hipp, A. L., Eaton, D. A. R., Cavender-Bares, J., Fitzek, E., Nipper, R., and Manos, P. S. 

(2014). A framework phylogeny of the American Oak clade based on sequenced RAD 

data. PLoS ONE 9, e93975. doi:10.1371/journal.pone.0093975. 

Ho, S. Y. W., and Duchêne, S. (2014). Molecular-clock methods for estimating evolutionary 

rates and timescales. Molecular Ecology 23, 5947–5965. doi:10.1111/mec.12953. 

Hobohm, C. (2000). Plant species diversity and endemism on islands and archipelagos, with 

special reference to the Macaronesian Islands. Flora 195, 9–24. doi:10.1016/S0367-

2530(17)30943-X. 



References 

 

174 

Hodel, R. G. J., Chen, S., Payton, A. C., McDaniel, S. F., Soltis, P., and Soltis, D. E. (2017). 

Adding loci improves phylogeographic resolution in red mangroves despite 

increased missing data: comparing microsatellites and RAD-Seq and investigating 

loci filtering. Scientific Reports 7, e17598. doi:10.1038/s41598-017-16810-7. 

Hohmann, N., Wolf, E. M., Lysak, M. A., and Koch, M. A. (2015). A time-calibrated road map 

of Brassicaceae species radiation and evolutionary history. The Plant Cell 27, 2770–

2784. doi:10.1105/tpc.15.00482. 

Höhna, S., and Freyman, W. A. (2016). RevGadgets: Process output generated by RevBayes. R 

package version 1.0.0. https://rdrr.io/github/revbayes/RevGadgets/. 

Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., et al. (2016). 

RevBayes: Bayesian phylogenetic inference using graphical models and an interactive 

model-specification language. Systematic Biology 65, 726–736. 

doi:10.1093/sysbio/syw021. 

Holzmeyer, L., Duretto, M., Crayn, D., Hörandl, E., Heslewood, M., Jayanthan, J., et al. 

(2015). Phylogeny of Acronychia (Rutaceae) and first insights into its historical 

biogeography and the evolution of fruit characters. PLoS ONE 10, e0136296. 

doi:10.1371/journal.pone.0136296. 

Hsu, C.-C. (1968). Preliminary chromosome studies on the vascular plants of Taiwan (II). 

Taiwania 11, 11–27. 

Huang, H., and Knowles, L. L. (2009). What is the danger of the anomaly zone for empirical 

phylogenetics? Systematic Biology 58, 527–536. doi:10.1093/sysbio/syp047. 

Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic networks: Concepts, algorithms 

and applications. Cambridge, UK: Cambridge University Press. 

Imada, C., Clifford, P., and Lau, J. Q. C. (2011). 2010 Rare plant survey, Oʻahu forest national 

wildlife refuge, Waipiʻo Oʻahu. 1st edition. Honolulu, USA: Bishop Museum Press. 

Innis, G. J. (1989). Feeding ecology of fruit pigeons in subtropical rainforests of South-Eastern 

Queensland. Wildlife Research 16, 365–394. doi:10.1071/wr9890365. 

Izuno, A., Hatakeyama, M., Nishiyama, T., Tamaki, I., Shimizu-Inatsugi, R., Sasaki, R., et al. 

(2016). Genome sequencing of Metrosideros polymorpha (Myrtaceae), a dominant 

species in various habitats in the Hawaiian Islands with remarkable phenotypic 

variations. Journal of Plant Research 129, 727–736. doi:10.1007/s10265-016-0822-3. 

Izuno, A., Kitayama, K., Onoda, Y., Tsujii, Y., Hatakeyama, M., Nagano, A. J., et al. (2017). 

The population genomic signature of environmental association and gene flow in an 

ecologically divergent tree species Metrosideros polymorpha (Myrtaceae). Molecular 

Ecology 26, 1515–1532. doi:10.1111/mec.14016. 

Jeffroy, O., Brinkmann, H., Delsuc, F., and Philippe, H. (2006). Phylogenomics: the beginning 

of incongruence? Trends in Genetics 22, 225–231. doi:10.1016/j.tig.2006.02.003. 



References 

175 

 

Jennings, H., Wallin, K., Brennan, J., Valle, A. D., Guzman, A., Hein, D., et al. (2016). 

Inbreeding, low genetic diversity, and spatial genetic structure in the endemic 

Hawaiian lobeliads Clermontia fauriei and Cyanea pilosa ssp. longipedunculata. 

Conservation Genetics 17, 497–502. doi:10.1007/s10592-015-0785-2. 

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., et al. 

(2011). Ancestral polyploidy in seed plants and Angiosperms. Nature 473, 97–100. 

doi:10.1038/nature09916. 

Johnson, M. A., Clark, J. R., Wagner, W. L., and McDade, L. A. (2017). A molecular 

phylogeny of the Pacific clade of Cyrtandra (Gesneriaceae) reveals a Fijian origin, 

recent diversification, and the importance of founder events. Molecular Phylogenetics 

and Evolution 116, 30–48. doi:10.1016/j.ympev.2017.07.004. 

Johnson, M. A., Pillon, Y., Sakishima, T., Price, D. K., and Stacy, E. A. (2019). Multiple 

colonizations, hybridization and uneven diversification in Cyrtandra (Gesneriaceae) 

lineages on Hawaiʻi Island. Journal of Biogeography 46, 1178–1196. 

doi:10.1111/jbi.13567. 

Jordan, S., Simon, C., Foote, D., and Englund, R. A. (2005). Phylogeographic patterns of 

Hawaiian Megalagrion damselflies (Odonata: Coenagrionidae) correlate with 

Pleistocene island boundaries. Molecular Ecology 14, 3457–3470. doi:10.1111/j.1365-

294X.2005.02669.x. 

Kagawa, K., and Takimoto, G. (2018). Hybridization can promote adaptive radiation by 

means of transgressive segregation. Ecology Letters 21, 264–274. doi:10.1111/ele.12891. 

Keeley, S. C., and Funk, V. A. (2011). “Origin and evolution of Hawaiian endemics: new 

patterns revealed by molecular phylogenetic studies.” in The biology of island floras, 

eds. D. Bramwell and J. Caujape-Castells (Cambridge, UK: Cambridge University 

Press), 57–88. doi:10.1017/CBO9780511844270.005. 

Kiehn, M. (2005). Chromosome numbers of hawaiian Angiosperms: New records and 

comments. Pacific Science 59, 363–377. doi:10.1353/psc.2005.0036. 

Kiehn, M., and Lorence, D. H. (1996). Chromosome counts on Angiosperms cultivated at the 

National Tropical Botanical Garden, Kauaʻi, Hawaiʻi. Pacific Science 50, 317–323. 

Kim, S. C., Crawford, D. J., Francisco-Ortega, J., and Santos-Guerra, A. (1996). A common 

origin for woody Sonchus and five related genera in the Macaronesian Islands: 

molecular evidence for extensive radiation. Proceedings of the National Academy of 

Sciences 93, 7743–7748. doi:10.1073/pnas.93.15.7743. 

Kleinkopf, J. A., Roberts, W. R., Wagner, W. L., and Roalson, E. H. (2019). Diversification of 

Hawaiian Cyrtandra (Gesneriaceae) under the influence of incomplete lineage sorting 

and hybridization. Journal of Systematics and Evolution 57, 561-578. 

doi:10.1111/jse.12519. 



References 

 

176 

Knope, M. L., Morden, C. W., Funk, V. A., and Fukami, T. (2012). Area and the rapid 

radiation of Hawaiian Bidens (Asteraceae). Journal of Biogeography 39, 1206–1216. 

doi:10.1111/j.1365-2699.2012.02687.x. 

Koenen, E. J. M., Clarkson, J. J., Pennington, T. D., and Chatrou, L. W. (2016). Recently 

evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) 

shed new light on the origins of rainforest hyperdiversity. New Phytologist 207, 327–

339. doi:10.1111/nph.13490. 

Kozlov, A. M., Aberer, A. J., and Stamatakis, A. (2015). ExaML version 3: a tool for 

phylogenomic analyses on supercomputers. Bioinformatics 31, 2577–2579. 

doi:10.1093/bioinformatics/btv184. 

Krastel, S., Schmincke, H.-U., Jacobs, C. L., Rihm, R., Bas, T. P. L., and Alibés, B. (2001). 

Submarine landslides around the Canary Islands. Journal of Geophysical Research: Solid 

Earth 106, 3977–3997. doi:10.1029/2000JB900413. 

Kubatko, L. S., and Degnan, J. H. (2007). Inconsistency of phylogenetic estimates from 

concatenated data under coalescence. Systematic Biology 56, 17–24. 

doi:10.1080/10635150601146041. 

Kubitzki, K., Kallunki, J. A., Duretto, M., and Wilson, P. G. (2011). “Rutaceae.” in Flowering 

plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae - The families and genera of vascular 

plants, ed. K. Kubitzki (Berlin, Germany: Springer), 276–356. 

Kumar, S., Filipski, A. J., Battistuzzi, F. U., Kosakovsky Pond, S. L., and Tamura, K. (2012). 

Statistics and truth in phylogenomics. Molecular Biology and Evolution 29, 457–472. 

doi:10.1093/molbev/msr202. 

Kumar, V., Karunaratne, V., Sanath, M. R., Meegalle, K., and MacLeod, J. K. (1990). Two 

fungicidal phenylethanones from Euodia lunu-ankenda root bark. Phytochemistry 29, 

243–245. doi:10.1016/0031-9422(90)89042-8. 

Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 

292, 679–686. doi:10.1126/science.1059549. 

Lammers, T. G. (1988). Chromosome numbers and their systematic implications in Hawaiian 

Lobelioideae (Campanulaceae). American Journal of Botany 75, 1130–1134. 

Landis, M. J. (2017). Biogeographic dating of speciation times using paleogeographically 

informed processes. Systematic Biology 66, 128–144. doi:10.1093/sysbio/syw040. 

Landis, M. J., Freyman, W. A., and Baldwin, B. G. (2018). Retracing the Hawaiian silversword 

radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. 

Evolution 72, 2343–2359. doi:10.1111/evo.13594. 

Landis, M. J., Matzke, N. J., Moore, B. R., and Huelsenbeck, J. P. (2013). Bayesian analysis of 

biogeography when the number of areas is large. Systematic Biology 62, 789–804. 

doi:10.1093/sysbio/syt040. 



References 

177 

 

Larget, B. R., Kotha, S. K., Dewey, C. N., and Ané, C. (2010). BUCKy: Gene tree/species tree 

reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910–2911. 

doi:10.1093/bioinformatics/btq539. 

Le Friant, A., Harford, C. L., Deplus, C., Boudon, G., Sparks, R. S. J., Herd, R. A., et al. (2004). 

Geomorphological evolution of Montserrat (West Indies): importance of flank 

collapse and erosional processes. Journal of the Geological Society 161, 147–160. 

doi:10.1144/0016-764903-017. 

Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, A. Nieto-Montes, and Stamatakis, A. 

(2015a). Short tree, long tree, right tree, wrong tree: New acquisition bias corrections 

for inferring SNP phylogenies. Systematic Biology 64, 1032–1047. 

doi:10.1093/sysbio/syv053. 

Leaché, A. D., Chavez, A. S., Jones, L. N., Grummer, J. A., Gottscho, A. D., and Linkem, C. W. 

(2015b). Phylogenomics of phrynosomatid lizards: Conflicting signals from sequence 

capture versus restriction site associated DNA sequencing. Genome Biology and 

Evolution 7, 706–719. doi:10.1093/gbe/evv026. 

Lecaudey, L. A., Schliewen, U. K., Osinov, A. G., Taylor, E. B., Bernatchez, L., and Weiss, S. J. 

(2018). Inferring phylogenetic structure, hybridization and divergence times within 

Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Molecular Phylogenetics 

and Evolution 124, 82–99. doi:10.1016/j.ympev.2018.02.022. 

Leitch, I. J., and Bennett, M. D. (2004). Genome downsizing in polyploid plants. Biological 

Journal of the Linnean Society 82, 651–663. doi:10.1111/j.1095-8312.2004.00349.x. 

Lens, F., Davin, N., Smets, E., and del Arco, M. (2013). Insular woodiness on the Canary 

Islands: A remarkable case of convergent evolution. International Journal of Plant 

Sciences 174, 992–1013. doi:10.1086/670259. 

Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M., and Fleischer, R. C. (2011). Multilocus 

resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian 

honeycreepers. Current Biology 21, 1838–1844. doi:10.1016/j.cub.2011.09.039. 

Linder, H. P., and Barker, N. P. (2014). Does polyploidy facilitate long-distance dispersal? 

Annals of Botany 113, 1175–1183. doi:10.1093/aob/mcu047. 

Lindqvist, C., and Albert, V. A. (2002). Origin of the Hawaiian endemic mints within North 

American Stachys (Lamiaceae). American Journal of Botany 89, 1709–1724. 

doi:10.3732/ajb.89.10.1709. 

Lindqvist, C., Motley, T. J., Jeffrey, J. J., and Albert, V. A. (2003). Cladogenesis and 

reticulation in the Hawaiian endemic mints (Lamiaceae). Cladistics 19, 480–495. 

doi:10.1111/j.1096-0031.2003.tb00384.x. 

Liu, L., Wu, S., and Yu, L. (2015). Coalescent methods for estimating species trees from 

phylogenomic data. Journal of Systematics and Evolution 53, 380–390. 

doi:10.1111/jse.12160. 



References 

 

178 

Liu, L., and Yu, L. (2011). Estimating species trees from unrooted gene trees. Systematic 

Biology 60, 661–667. doi:10.1093/sysbio/syr027. 

Liu, L., Yu, L., and Edwards, S. V. (2010). A maximum pseudo-likelihood approach for 

estimating species trees under the coalescent model. BMC Evolutionary Biology 10, 302. 

doi:10.1186/1471-2148-10-302. 

Lloyd, D. G. (1985). Progress in understanding the natural history of New Zealand plants. 

New Zealand Journal of Botany 23, 707–722. doi:10.1080/0028825X.1985.10434239. 

Lorence, D. H., and Perlman, S. (2007). A new species of Cyrtandra (Gesneriaceae) from 

Hawaiʻi, Hawaiian Islands. Novon 17, 357–361.  

Losos, J. B. (1992). The evolution of convergent structure in caribbean Anolis communities. 

Systematic Biology 41, 403–420. doi:10.1093/sysbio/41.4.403. 

Losos, J. B., and Mahler, D. L. (2010). “Adaptive radiation: The interaction of ecological 

opportunity, adaption and speciation.” in Evolution since Darwin: The first 150 years, 

eds. M. A. Bell, D. J. Futuyama, W. F. Eanes, and J. S. Levinton (Sunderland, MA, 

USA: Sinauer Associates Inc.), 381–420. 

Losos, J. B., and Ricklefs, R. E. (2009). Adaptation and diversification on islands. Nature 457, 

830–836. doi:10.1038/nature07893. 

Ma, X.-F., and Gustafson, J. P. (2005). Genome evolution of allopolyploids: a process of 

cytological and genetic diploidization. Cytogenetic and Genome Research 109, 236–249. 

doi:10.1159/000082406. 

Mable, B. K. (2004). Polyploidy and self-compatibility: is there an association? New 

Phytologist 162, 803–811. doi:10.1111/j.1469-8137.2004.01055.x. 

MacArthur, R. H., and Wilson, E. O. (1967). The theory of island biogeography. Princeton, USA.: 

Princeton University Press. 

Maddison, W. P. (2006). Confounding asymmetries in evolutionary diversification and 

character change. Evolution 60, 1743–1746. doi:10.1111/j.0014-3820.2006.tb00517.x. 

Maddison, W. P., Midford, P. E., and Otto, S. P. (2007). Estimating a Binary Character’s Effect 

on Speciation and Extinction. Systematic Biology 56, 701–710. 

doi:10.1080/10635150701607033. 

Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution 

20, 229–237. doi:10.1016/j.tree.2005.02.010. 

Mallet, J., Besansky, N., and Hahn, M. W. (2016). How reticulated are species? BioEssays 38, 

140–149. doi:10.1002/bies.201500149. 

Mann, H. (1866). Revision of the Rutaceae of the Hawaiian Islands. Proceedings of the Boston 

Society of Natural History 10, 312–319. 



References 

179 

 

Marques, D. A., Meier, J. I., and Seehausen, O. (2019). A combinatorial view on speciation 

and adaptive radiation. Trends in Ecology & Evolution 34, 531–544. 

doi:10.1016/j.tree.2019.02.008. 

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing 

reads. EMBnet.journal 17, 10–12. doi:10.14806/ej.17.1.200. 

Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F., et 

al. (2013). Genome-wide evidence for speciation with gene flow in Heliconius 

butterflies. Genome Research 23, 1817–1828. doi:10.1101/gr.159426.113. 

Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., and Emerson, B. C. 

(2015). Restriction site-associated DNA sequencing, genotyping error estimation and 

de novo assembly optimization for population genetic inference. Molecular Ecology 

Resources 15, 28–41. doi:10.1111/1755-0998.12291. 

Matschiner, M. (2019). Species tree inference with SNP data, GitHub repository. 

https://github.com/mmatschiner/tutorials/species_tree_inference_with_snp_data/ 

Matzke, N. J. (2013). BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary 

analysis in R scripts. R package version 1.1.2. 

https://github.com/nmatzke/BioGeoBEARS/. 

Matzke, N. J. (2014). Model Selection in Historical Biogeography Reveals that Founder-Event 

Speciation Is a Crucial Process in Island Clades. Systematic Biology 63, 951–970. 

doi:10.1093/sysbio/syu056. 

Mayer, C., Sann, M., Donath, A., Meixner, M., Podsiadlowski, L., Peters, R. S., et al. (2016). 

BaitFisher: A software package for multispecies target DNA enrichment probe 

design. Molecular Biology and Evolution 33, 1875–1886. doi:10.1093/molbev/msw056. 

Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist. New York: 

Columbia University Press 

Mayrose, I., Zhan, S. H., Rothfels, C. J., Magnuson-Ford, K., Barker, M. S., Rieseberg, L. H., et 

al. (2011). Recently formed polyploid plants diversify at lower rates. Science 333, 

1257–1257. doi:10.1126/science.1207205. 

McArthur, R. H., and Wilson, E. O. (1967). Island biogeography. Princeton, USA.: Princeton 

University Press. 

McMullen, C. K. (1987). Breeding systems of selected Galápagos Islands Angiosperms. 

American Journal of Botany 74, 1694–1705. doi:10.1002/j.1537-2197.1987.tb08770.x. 

McMurtry, G. M., Watts, P., Fryer, G. J., Smith, J. R., and Imamura, F. (2004). Giant 

landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Marine 

Geology 203, 219–233. doi:10.1016/S0025-3227(03)00306-2. 



References 

 

180 

McNab, B. K. (1994). Energy conservation and the evolution of flightlessness in birds. The 

American Naturalist 144, 628–642. doi:10.1086/285697. 

Medeiros, A. C. (2004). “Phenology, reproductive potential, seed dispersal and predation, 

and seedling establishment of three invasive plant species in a Hawaiian rain forest.” 

Dissertation. University of Hawaii at Manoa.  

Meier, J. I., Marques, D. A., Mwaiko, S., Wagner, C. E., Excoffier, L., and Seehausen, O. 

(2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature 

Communications 8, 1–11. doi:10.1038/ncomms14363. 

Mendizabal-Ruiz, G., Román-Godínez, I., Torres-Ramos, S., Salido-Ruiz, R. A., Vélez-Pérez, 

H., and Morales, J. A. (2018). Genomic signal processing for DNA sequence 

clustering. PeerJ 6, e4264. doi:10.7717/peerj.4264. 

Meng, C., and Kubatko, L. S. (2009). Detecting hybrid speciation in the presence of 

incomplete lineage sorting using gene tree incongruence: A model. Theoretical 

Population Biology 75, 35–45. doi:10.1016/j.tpb.2008.10.004. 

Meredith, R. W., Janečka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., et al. 

(2011). Impacts of the Cretaceous terrestrial revolution and KPg extinction on 

Mammal diversification. Science 334, 521–524. doi:10.1126/science.1211028. 

Miller, J. S., and Venable, D. L. (2000). Polyploidy and the evolution of gender dimorphism in 

plants. Science 289, 2335–2338. doi:10.1126/science.289.5488.2335. 

Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., and Johnson, E. A. (2007). Rapid and 

cost-effective polymorphism identification and genotyping using restriction site-

associated DNA (RAD) markers. Genome Research 17, 240–248. doi:10.1101/gr.5681207. 

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, 

A., et al. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic 

Inference in the Genomic Era. Molecular Biology and Evolution 37, 1530–1534. 

doi:10.1093/molbev/msaa015. 

Mirarab, S., Bayzid, M. S., Boussau, B., and Warnow, T. (2014a). Statistical binning enables an 

accurate coalescent-based estimation of the avian tree. Science 346, 1250463 

doi:10.1126/science.1250463. 

Mirarab, S., Bayzid, M. S., and Warnow, T. (2016). Evaluating summary methods for 

multilocus species tree estimation in the presence of incomplete lineage sorting. 

Systematic Biology 65, 366–380. doi:10.1093/sysbio/syu063. 

Mirarab, S., Reaz, R., Bayzid, M. S., Zimmermann, T., Swenson, M. S., and Warnow, T. 

(2014b). ASTRAL: genome-scale coalescent-based species tree estimation. 

Bioinformatics 30, i541–i548. doi:10.1093/bioinformatics/btu462. 

Mirarab, S., and Warnow, T. (2015). ASTRAL-II: coalescent-based species tree estimation 

with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52. 

doi:10.1093/bioinformatics/btv234. 



References 

181 

 

Misof, B., Meusemann, K., von Reumont, B. M., Kück, P., Prohaska, S. J., and Stadler, P. F. 

(2014). A priori assessment of data quality in molecular phylogenetics. Algorithms for 

Molecular Biology 9, 22. doi:10.1186/s13015-014-0022-4. 

Molloy, E. K., and Warnow, T. (2018). To include or not to include: The impact of gene 

filtering on species tree estimation methods. Systematic Biology 67, 285–303. 

doi:10.1093/sysbio/syx077. 

Montaggioni, L. F. (2005). History of Indo-Pacific coral reef systems since the last glaciation: 

Development patterns and controlling factors. Earth-Science Reviews 71, 1–75. 

doi:10.1016/j.earscirev.2005.01.002. 

Moore, B. R., Höhna, S., May, M. R., Rannala, B., and Huelsenbeck, J. P. (2016). Critically 

evaluating the theory and performance of Bayesian analysis of macroevolutionary 

mixtures. Proceedings of the Royal Society 113, 9569–9574. doi:10.1073/pnas.1518659113. 

Moore, J. G., and Clague, D. A. (1992). Volcano growth and evolution of the island of Hawaii. 

Geological Society of America Bulletin 104, 1471–1484.  

Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., and Torresan, 

M. E. (1989). Prodigious submarine landslides on the Hawaiian Ridge. Journal of 

Geophysical Research 94, 17465. doi:10.1029/JB094iB12p17465. 

Morawetz, W. (1986). Remarks on karyological differentiation patterns in tropical woody 

plants. Plant Systematics and Evolution 152, 49–100. doi:10.1007/BF00985351. 

Morden, C. W., and Harbin, S. C. (2013). Evolution and biogeographic origins of the endemic 

Hawaiian genus Hesperomannia (Asteraceae). Pacific Science 67, 219–235. 

doi:10.2984/67.2.6. 

Morgan, J. R. (1996). Hawaiʻi: a unique geography. Honolulu, USA: Bess Press. 

Morton, C. M., and Telmer, C. (2014). New subfamily classification for the Rutaceae. Annals 

of the Missouri Botanical Garden 99, 620–641. doi:10.3417/2010034. 

Mueller-Dombois, D., and Boehmer, H. J. (2013). Origin of the Hawaiian rainforest and its 

transition states in long-term primary succession. Biogeosciences 10, 5171–5182. 

doi:10.5194/bg-10-5171-2013. 

Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic 

amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor 

Symposium on Quantitative Biology 51, 263–273. doi:10.1101/SQB.1986.051.01.032. 

Murray, B. G., De Lange, P. J., and Ferguson, A. R. (2005). Nuclear DNA variation, 

chromosome numbers and polyploidy in the endemic and indigenous grass flora of 

New Zealand. Annals of Botany 96, 1293–1305. doi:10.1093/aob/mci281. 



References 

 

182 

Nathan, R., Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., and Tsoar, A. (2008). 

Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution 23, 638–

647. doi:10.1016/j.tree.2008.08.003. 

NCBI Resource Coordinators (2018). Database resources of the National Center for 

Biotechnology Information. Nucleic Acids Research 46, D8–D13. 

doi:10.1093/nar/gkx1095. 

Neall, V. E., and Trewick, S. A. (2008). The age and origin of the Pacific islands: a geological 

overview. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 3293–

3308. doi:10.1098/rstb.2008.0119. 

Nepokroeff, M., Sytsma, K. J., Wagner, W. L., and Zimmer, E. A. (2003). Reconstructing 

ancestral patterns of colonization and dispersal in the Hawaiian understory tree 

genus Psychotria (Rubiaceae): A comparison of parsimony and likelihood approaches. 

Systematic Biology 52, 820–838. doi:10.1080/10635150390251072. 

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: A Fast and 

Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. 

Molecular Biology and Evololution 32, 268–274. doi:10.1093/molbev/msu300. 

NTBG (2019). The herbarium catalogue. Assessed 03.09.2019. Available at: 

https://ntbg.org/database/herbarium. 

Nute, M., Chou, J., Molloy, E. K., and Warnow, T. (2018). The performance of coalescent-

based species tree estimation methods under models of missing data. BMC Genomics 

19, 286. doi:10.1186/s12864-018-4619-8. 

Ono, M., and Masuda, Y. (1981). Chromosome numbers of some endemic species of the 

Bonin Islands II. Ogasawara Research 4, 1–24. 

Otto, F. (1990). “DAPI staining of fixed cells for high-resolution flow cytometry of nuclear 

DNA.” in Methods in cell biology: Flow Cytometry, eds. Z. Darzynkiewicz and H. A. 

Crissman (London, UK: Academic Press), 105–110. doi:10.1016/S0091-679X(08)60516-

6. 

Paetzold, C., Kiehn, M., Wood, K. R., Wagner, W. L., and Appelhans, M. S. (2018). The odd 

one out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share traits 

associated with successful island colonization. Journal of Systematics and Evolution 56, 

621–636. doi:10.1111/jse.12454. 

Paetzold, C., Wood, K. R., Eaton, D. A. R., Wagner, W. L., and Appelhans, M. S. (2019). 

Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves species relationships 

and reveals ancient introgression. Frontiers in Plant Science 10, e1074. 

doi:10.3389/fpls.2019.01074. 

Palmer, M., Venter, S. N., McTaggart, A. R., Coetzee, M. P. A., Wyk, S. V., Avontuur, J. R., et 

al. (2019). The synergistic effect of concatenation in phylogenomics: the case in 

Pantoea. PeerJ 7, e6698. doi:10.7717/peerj.6698. 



References 

183 

 

Pancho, J. V. (1971). IOPB chromosome number reports XXXIV. Taxon 20, 794–795. 

Pannell, J. R. (2015). Evolution of the mating system in colonizing plants. Molecular Ecology 

24, 2018–2037. doi:10.1111/mec.13087. 

Paris, J. R., Stevens, J. R., and Catchen, J. M. (2017). Lost in parameter space: a road map for 

stacks. Methods in Ecology and Evolution 8, 1360–1373. doi:10.1111/2041-210X.12775. 

Pease, J. B., Brown, J. W., Walker, J. F., Hinchliff, C. E., and Smith, S. A. (2018). Quartet 

sampling distinguishes lack of support from conflicting support in the green plant 

tree of life. American Journal of Botany 105, 385–403. doi:10.1002/ajb2.1016. 

Pease, J. B., and Hahn, M. W. (2015). Detection and polarization of introgression in a five-

taxon phylogeny. Systematic Biology 64, 651–662. doi:10.1093/sysbio/syv023. 

Pelser, P. B., Kennedy, A. H., Tepe, E. J., Shidler, J. B., Nordenstam, B., Kadereit, J. W., et al. 

(2010). Patterns and causes of incongruence between plastid and nuclear Senecioneae 

(Asteraceae) phylogenies. American Journal of Botany 97, 856–873. 

doi:10.3732/ajb.0900287. 

Percy, D. M., Garver, A. M., Wagner, W. L., James, H. F., Cunningham, C. W., Miller, S. E., et 

al. (2008). Progressive island colonization and ancient origin of Hawaiian Metrosideros 

(Myrtaceae). Proceedings of the Royal Society B: Biological Sciences 275, 1479–1490. 

doi:10.1098/rspb.2008.0191. 

Poon, W.-S., Shaw, P.-C., Simmons, M. P., and But, P. P.-H. (2007). Congruence of molecular, 

morphological, and biochemical profiles in Rutaceae: a cladistic analysis of the 

subfamilies Rutoideae and Toddalioideae. Systematic Botany 32, 837–846. 

doi:10.1600/036364407783390692. 

Porter, D. M. (1979). “Endemism and evolution in Galápagos Islands vascular plants.” in 

Plants and islands, ed. D. Bramwell (London, UK: Academic Press), 225–258.  

Porter, D. M. (1984). “Endemism and evolution in terrestrial plants.” in Galápagos, ed. R. 

Perry (Oxford, UK: Pergamon Press), 85–99. 

Pratt, T. K. (2009). “Origins and evolution.” in Conservation biology of Hawaiian forest birds: 

implications for island avifauna, eds. T. K. Pratt, C. T. Attkinson, P. C. Banko, J. D. 

Jacobi, and B. L. Woodworth (New Haven, USA: Yale University Press), 3–24. 

Pratt, T. K., Attkinson, C. T., Banko, P. C., Jacobi, J. D., and Woodworth, B. L. eds. (2009). 

Conservation biology of Hawaiian forest birds: implications for island avifauna. New Haven, 

USA: Yale University Press. 

Price, J. P. (2004). Floristic biogeography of the Hawaiian Islands: influences of area, 

environment and paleogeography. Journal of Biogeography 31, 487–500. 

doi:10.1046/j.0305-0270.2003.00990.x. 



References 

 

184 

Price, J. P., and Clague, D. A. (2002). How old is the Hawaiian biota? Geology and phylogeny 

suggest recent divergence. Proceedings of the Royal Society B: Biological Sciences 269, 

2429–2435. doi:10.1098/rspb.2002.2175. 

Price, J. P., and Elliott-Fisk, D. (2004). Topographic history of the Maui Nui complex, 

Hawaiʻi, and its implications for biogeography. Pacific Science 58, 27–45. 

doi:10.1353/psc.2004.0008. 

Price, J. P., and Wagner, W. L. (2004). Speciation in Hawaiian Angiosperm lineages: Cause, 

consequence, and mode. Evolution 58, 2185–2200. doi:10.1111/j.0014-

3820.2004.tb01597.x. 

Price, J. P., and Wagner, W. L. (2018). Origins of the Hawaiian flora: Phylogenies and 

biogeography reveal patterns of long-distance dispersal. Journal of Systematics and 

Evolution 56, 600–620. doi:10.1111/jse.12465. 

Price, J. R. (1963). “The distribution of alkaloids in the Rutaceae.” in Chemical plant taxonomy. 

(London, UK: Academic Press), 429–452. 

Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., and Bird, C. E. (2014). 

Demystifying the RAD fad. Molecular Ecology 23, 5937–5942. doi:10.1111/mec.12965. 

Pyle, D. M. (2015). “Sizes of volcanic eruptions,” in The encyclopedia of volcanoes. Second 

edition, ed. H. Sigurdsson (Amsterdam, the Netherlands: Academic Press), 257–264. 

doi:10.1016/B978-0-12-385938-9.00013-4. 

R Core Team (2019). R: A language and environment for statistical computing. Available at: 

https://www.R-project.org/. 

Rabosky, D. L. (2014). Automatic detection of key innovations, rate shifts, and diversity-

dependence on phylogenetic trees. PLoS ONE 9, e89543. 

doi:10.1371/journal.pone.0089543. 

Rabosky, D. L., Donnellan, S. C., Grundler, M., and Lovette, I. J. (2014a). Analysis and 

visualization of complex macroevolutionary dynamics: An example from Australian 

Scincid lizards. Systematic Biology 63, 610–627. doi:10.1093/sysbio/syu025. 

Rabosky, D. L., Grundler, M., Anderson, C., Title, P., Shi, J. J., Brown, J. W., et al. (2014b). 

BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic 

trees. Methods in Ecology and Evolution 5, 701–707. doi:10.1111/2041-210X.12199. 

Rattenbury, J. A. (1957). Chromosome numbers in New Zealand Angiosperms. Transactions 

of the Royal Society of New Zealand 84, 936–938. 

Ree, R. H., and Hipp, A. L. (2015). “Inferring phylogenetic history from restriction site 

associated DNA (RADseq).” in Next-Generation sequencing in plant systematics, eds. E. 

Hörandl and M. S. Appelhans (Königstein, Germany: Koeltz Scientific Books), 181–

204. 



References 

185 

 

Ree, R. H., Moore, B. R., Webb, C. O., and Donoghue, M. J. (2005). A likelihood framework 

for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 

2299–2311. doi:10.1111/j.0014-3820.2005.tb00940.x. 

Ree, R. H., and Smith, S. A. (2008). Maximum likelihood inference of geographic range 

evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14. 

doi:10.1080/10635150701883881. 

Rieseberg, L. H. (1997). Hybrid origins of plant species. Annual Review of Ecology and 

Systematics 28, 359–389. doi:10.1146/annurev.ecolsys.28.1.359. 

Rivers, D. M., Darwell, C. T., and Althoff, D. M. (2016). Phylogenetic analysis of RAD-seq 

data: examining the influence of gene genealogy conflict on analysis of concatenated 

data. Cladistics 32, 672–681. doi:10.1111/cla.12149. 

Roch, S., Nute, M., and Warnow, T. (2019). Long-branch attraction in species tree estimation: 

Inconsistency of partitioned likelihood and topology-based summary methods. 

Systematic Biology 68, 281–297. doi:10.1093/sysbio/syy061. 

Roch, S., and Warnow, T. (2015). On the robustness to gene tree estimation error (or lack 

thereof) of coalescent-based species tree methods. Systematic Biology 64, 663–676. 

doi:10.1093/sysbio/syv016. 

Roderick, G. K. (1997). Herbivorous insects and the Hawaiian silversword alliance: 

Coevolution or Cospeciation? Pacific Science 51, 440-449 

Ronquist, F. (1997). Dispersal-vicariance analysis: A new approach to the quantification of 

historical biogeography. Systematic Biology 46, 195–203. doi:10.1093/sysbio/46.1.195. 

Roy, T., Cole, L. W., Chang, T.-H., and Lindqvist, C. (2015). Untangling reticulate 

evolutionary relationships among New World and Hawaiian mints (Stachydeae, 

Lamiaceae). Molecular Phylogenetics and Evolution 89, 46–62. 

doi:10.1016/j.ympev.2015.03.023. 

Rubin, B. E. R., Ree, R. H., and Moreau, C. S. (2012). Inferring phylogenies from RAD 

sequence data. PLoS ONE 7, e33394. doi:10.1371/journal.pone.0033394. 

Russo, C. A., Takezaki, N., and Nei, M. (1995). Molecular phylogeny and divergence times of 

drosophilid species. Molecular Biology and Evolution 12, 391–404. 

doi:10.1093/oxfordjournals.molbev.a040214. 

Sakai, A. K., Wagner, W. L., Ferguson, D. M., and Herbst, D. R. (1995). Origins of dioecy in 

the Hawaiian flora. Ecology 76, 2517–2529. doi:10.2307/2265825. 

Sakai, A. K., Wagner, W. L., and Mehrhoff, L. A. (2002). Patterns of endangerment in the 

Hawaiian flora. Systematic Biology 51, 276–302. doi:10.1080/10635150252899770. 

Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong 

phylogenetic signals. Nature 497, 327–331. doi:10.1038/nature12130. 



References 

 

186 

Salichos, L., Stamatakis, A., and Rokas, A. (2014). Novel information theory-based measures 

for quantifying incongruence among phylogenetic trees. Molecular Biology and 

Evolution 31, 1261–1271. doi:10.1093/molbev/msu061. 

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating 

inhibitors. Proceedings of the National Academy of Sciences 74, 5463–5467. 

doi:10.1073/pnas.74.12.5463. 

Sanmartín, I., and Meseguer, A. S. (2016). Extinction in phylogenetics and biogeography: 

From timetrees to patterns of biotic assemblage. Frontiers in Genetics 7, 35. 

doi:10.3389/fgene.2016.00035. 

Sax, D. F., and Gaines, S. D. (2008). Species invasions and extinction: The future of native 

biodiversity on islands. Proceedings of the National Academy of Sciences 105, 11490–

11497. doi:10.1073/pnas.0802290105. 

Schluter, D. (2000). The ecology of adaptive radiation. New York, USA: Oxford University Press. 

Schmidt-Lebuhn, A. N., Aitken, N. C., and Chuah, A. (2017). Species trees from consensus 

single nucleotide polymorphism (SNP) data: Testing phylogenetic approaches with 

simulated and empirical data. Molecular Phylogenetics and Evolution 116, 192–201. 

doi:10.1016/j.ympev.2017.07.018. 

Schranz, E. M., Mohammadin, S., and Edger, P. P. (2012). Ancient whole genome 

duplications, novelty and diversification: the WGD radiation lag-time model. Current 

Opinion in Plant Biology 15, 147–153. doi:10.1016/j.pbi.2012.03.011. 

Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology & Evolution 19, 

198–207. doi:10.1016/j.tree.2004.01.003. 

Seehausen, O. (2006). African cichlid fish: a model system in adaptive radiation research. 

Proceedings of the Royal Society B: Biological Sciences 273, 1987–1998. 

doi:10.1098/rspb.2006.3539. 

Seehausen, O. (2013). Conditions when hybridization might predispose populations for 

adaptive radiation. Journal of Evolutionary Biology 26, 279–281. doi:10.1111/jeb.12026. 

Seo, T.-K. (2008). Calculating bootstrap probabilities of phylogeny using multilocus sequence 

data. Molecular Biology and Evolution 25, 960–971. doi:10.1093/molbev/msn043. 

Shapiro, S. S., and Wilk, M. B. (1965). An analysis of variance test for normality (complete 

samples). Biometrika 52, 591–611. doi:10.2307/2333709. 

Shen, X.-X., Hittinger, C. T., and Rokas, A. (2017). Contentious relationships in phylogenomic 

studies can be driven by a handful of genes. Nature Ecology & Evolution 1, 0126. 

doi:10.1038/s41559-017-0126. 

Silvestro, D., Zizka, G., and Schulte, K. (2014). Disentangling the effects of key innovations 

on the diversification of Bromelioideae (Bromeliaceae). Evolution 68, 163–175. 

doi:10.1111/evo.12236. 



References 

187 

 

Simpson, G. G. (1953). The major features of evolution. New York, USA: Columbia University 

Press. 

Smith-White, S. (1954). Chromosome numbers in the Boronieae (Rutaceae) and their bearing 

on the evolutionary development of the tribe in the Australian flora. Australian 

Journal of Botany 2, 287–303. doi:10.1071/bt9540287. 

Solís-Lemus, C., Yang, M., and Ané, C. (2016). Inconsistency of species tree methods under 

gene flow. Systematic Biology 65, 843–851. doi:10.1093/sysbio/syw030. 

St. John, H. (1944). Diagnoses of Hawaiian species of Pelea (Rutaceae) - Hawaiian plant 

studies 13. Lloydia 7, 265–274. 

Stace, H. M., Armstrong, J. A., and James, S. H. (1993). Cytoevolutionary patterns in 

Rutaceae. Plant Systematics and Evolution 187, 1–28. doi:10.1007/BF00994089. 

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of 

large phylogenies. Bioinformatics 30, 1312–1313. doi:10.1093/bioinformatics/btu033. 

Staudigel, H., and Koppers, A. A. P. (2015). “Seamounts and island building.” in The 

encyclopedia of volcanoes. Second edition, ed. H. Sigurdsson (Amsterdam: Academic 

Press), 405–421. doi:10.1016/B978-0-12-385938-9.00022-5. 

Stebbins, G. L. (1951). Variation and evolution in plants. New York: Columbia University Press. 

Stegemann, S., Keuthe, M., Greiner, S., and Bock, R. (2012). Horizontal transfer of chloroplast 

genomes between plant species. Proceedings of the National Academy of Sciences 109, 

2434–2438. doi:10.1073/pnas.1114076109. 

Stevens, P. F. (2001). Angiosperm phylogeny website. Version 14, July 2017 [and more or less 

continuously updated since]. Assessed 01.11.2019. Available at: 

http://www.mobot.org/MOBOT/research/APweb/. 

Stone, B. C. (1969). The genus Pelea A. Gray. (Rutaceae, Evodiinae.) A taxonomic monograph. 3rd 

edition. Berlin, Germany: J. Cramer Verlag. 

Stone, B. C., Wagner, W. L., and Herbst, D. R. (1999). “Rutaceae,” in Manual of the flowering 

plants of Hawaiʻi. Revised edition., eds. W. L. Wagner, D. R. Herbst, and S. H. Sohmer 

(Honolulu, USA: University of Hawaii Press and Bishop Museum Press), 1174–1216. 

Streicher, J. W., Miller, E. C., Guerrero, P. C., Correa, C., Ortiz, J. C., Crawford, A. J., et al. 

(2018). Evaluating methods for phylogenomic analyses, and a new phylogeny for a 

major frog clade (Hyloidea) based on 2214 loci. Molecular Phylogenetics and Evolution 

119, 128–143. doi:10.1016/j.ympev.2017.10.013. 

Stroud, J. T., and Losos, J. B. (2016). Ecological opportunity and adaptive radiation. Annual 

Review of Ecology, Evolution, and Systematics 47, 507–532. doi:10.1146/annurev-ecolsys-

121415-032254. 



References 

 

188 

Stuessy, T. F., and Crawford, D. J. (1998). “Chromosomal stasis during speciation in 

Angiosperms of oceanic islands.” in Evolution and speciation of island plants, eds. T. F. 

Stuessy and M. Ono (Cambridge, UK: Cambridge University Press), 307–324. 

Stuessy, T. F., Greimler, J., and Dirnbôck, T. (2005). “Landscape modification and impact on 

specific and genetic diversity in oceanic islands.” in Plant diversity and complexity 

patterns: Local, regional, and global dimensions: Proceedings of an international symposium 

held at the Royal Danish Academy of Sciences and Letters in Copenhagen, Denmark, 25-28 

May, 2003, eds. I. Friis, H. Balslev, and K. D. videnskabernes selskab (Copenhagen, 

Denmark: Kgl. Danske Videnskabernes Selskab), 89–102. 

Stuessy, T. F., Marticorena, C., Rodriguez R., R., Crawford, D. J., and Silva O., M. (1992). 

Endemism in the vascular flora of the Juan Fernández Islands. Aliso: A Journal of 

Systematic and Evolutionary Botany 13, 297–307. 

Stuessy, T. F., Takayama, K., López-Sepúlveda, P., and Crawford, D. J. (2014). Interpretation 

of patterns of genetic variation in endemic plant species of oceanic islands. Botanical 

Journal of the Linnean Society 174, 276–288. doi:10.1111/boj.12088. 

Suarez‐Gonzalez, A., Hefer, C. A., Christe, C., Corea, O., Lexer, C., Cronk, Q. C. B., et al. 

(2016). Genomic and functional approaches reveal a case of adaptive introgression 

from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). 

Molecular Ecology 25, 2427–2442. doi:10.1111/mec.13539. 

Suarez-Gonzalez, A., Lexer, C., and Cronk, Q. C. B. (2018). Adaptive introgression: a plant 

perspective. Biology Letters 14, 20170688. doi:10.1098/rsbl.2017.0688. 

Suchan, T., Espíndola, A., Rutschmann, S., Emerson, B. C., Gori, K., Dessimoz, C., et al. 

(2017). Assessing the potential of RAD-sequencing to resolve phylogenetic 

relationships within species radiations: The fly genus Chiastocheta (Diptera: 

Anthomyiidae) as a case study. Molecular Phylogenetics and Evolution 114, 189–198. 

doi:10.1016/j.ympev.2017.06.012. 

Suchan, T., Pitteloud, C., Gerasimova, N. S., Kostikova, A., Schmid, S., Arrigo, N., et al. 

(2016). Hybridization capture using RAD probes (hyRAD), a new tool for performing 

genomic analyses on collection specimens. PLoS ONE 11, e0151651. 

doi:10.1371/journal.pone.0151651. 

Swofford, D. L. (2002). Phylogenetic analysis using parsimony (*and other methods). Sunderland, 

MA, USA: Sinauer Associates. 

Swofford, D. L. (2018). PAUP*: phylogenetic analysis using parsimony (and other methods), version 

4.a165. at https://people.sc.fsu.edu/~dswofford/ paut_test/. 

To, T.-H., Jung, M., Lycett, S., and Gascuel, O. (2016). Fast Dating Using Least-Squares 

Criteria and Algorithms. Systematic Biology 65, 82–97. doi:10.1093/sysbio/syv068. 

Twyford, A. D., and Ennos, R. A. (2012). Next-generation hybridization and introgression. 

Heredity 108, 179–189. doi:10.1038/hdy.2011.68. 



References 

189 

 

Volz, E. M., and Frost, S. D. W. (2017). Scalable relaxed clock phylogenetic dating. Virus 

Evolution 3. doi:10.1093/ve/vex025. 

Wagner, C. E., Keller, I., Wittwer, S., Selz, O. M., Mwaiko, S., Greuter, L., et al. (2013). 

Genome-wide RAD sequence data provide unprecedented resolution of species 

boundaries and relationships in the Lake Victoria cichlid adaptive radiation. 

Molecular Ecology 22, 787–798. doi:10.1111/mec.12023. 

Wagner, W. L., and Funk, V. A. eds. (1995). Hawaiian biogeography: Evolution on a hot spot 

archipelago. Washington, D.C., USA: Smithsonian Institution Press 

Wagner, W. L., Bruegmann, M. M., Herbst, D. R., and Lau, J. Q. C. (1999a). Hawaiian 

vascular plants at risk: 1999. Bishop Museum Occasional Papers 60, 1–58. 

Wagner, W. L., Herbst, D. R., and Sohmer, S. H. (1999b). Manual of the flowering plants of 

Hawaiʻi. Revised edition. Honolulu, USA: University of Hawaii Press. 

Wagner, W. L., Weller, S. G., and Sakai, A. K. (2005). Monograph of Schiedea 

(Caryophyllaceae subfam. Alsinoideae). Systematic Botany Monographs 72. 

Wallace, A. R. (1878). Tropical nature, and other essays. London, UK: Macmillan and Company. 

Wang, Y., and Nakhleh, L. (2018). Towards an accurate and efficient heuristic for 

species/gene tree co-estimation. Bioinformatics 34, i697–i705. 

doi:10.1093/bioinformatics/bty599. 

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for 

transcriptomics. Nature Reviews Genetics 10, 57–63. doi:10.1038/nrg2484. 

Wanke, S., Granados Mendoza, C., Müller, S., Paizanni Guillén, A., Neinhuis, C., Lemmon, 

A. R., et al. (2017). Recalcitrant deep and shallow nodes in Aristolochia 

(Aristolochiaceae) illuminated using anchored hybrid enrichment. Molecular 

Phylogenetics and Evolution 117, 111–123. doi:10.1016/j.ympev.2017.05.014. 

Warnow, T. (2017). Computational phylogenetics: An introduction to designing methods for 

phylogeny estimation. Cambridge, UK: Cambridge University Press. 

Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., et al. 

(2015). Islands as model systems in ecology and evolution: prospects fifty years after 

MacArthur-Wilson. Ecology Letters 18, 200–217. doi:10.1111/ele.12398. 

Waterman, P. G. (1975). Alkaloids of the Rutaceae: their distribution and systematic 

significance. Biochemical Systematics and Ecology 3, 149–180. doi:10.1016/0305-

1978(75)90019-8. 

Webb, C. J., and Kelly, D. (1993). The reproductive biology of the New Zealand flora. Trends 

in Ecology & Evolution 8, 442–447. doi:10.1016/0169-5347(93)90007-C. 



References 

 

190 

Welch, A. J., Collins, K., Ratan, A., Drautz-Moses, D. I., Schuster, S. C., and Lindqvist, C. 

(2016). The quest to resolve recent radiations: Plastid phylogenomics of extinct and 

endangered Hawaiian endemic mints (Lamiaceae). Molecular Phylogenetics and 

Evolution 99, 16–33. doi:10.1016/j.ympev.2016.02.024. 

Wen, D., Yu, Y., Zhu, J., and Nakhleh, L. (2018). Inferring phylogenetic networks using 

PhyloNet. Systematic Biology 67, 735–740. doi:10.1093/sysbio/syy015. 

Wendel, J. F. (2015). The wondrous cycles of polyploidy in plants. American Journal of Botany 

102, 1753–1756. doi:10.3732/ajb.1500320. 

Wenny, D. G., Sekercioglu, Ç. H., Cordeiro, N. J., Rogers, H. S., and Kelly, D. (2016). “Seed 

dispersal by fruit-eating birds.” in Why birds matter: Avian ecological function and 

ecosystem services, eds. Ç. H. Sekercioglu, D. G. Wenny, and C. J. Whelan (Chicago, 

USA: University of Chicago Press), 107–146. 

Wetterstrand, K. A. (2019). DNA sequencing costs: Data from the NHGRI genome 

sequencing program (GSP). Accessed 01.10.2019. Available at 

www.genome.gov/sequencingcostsdata.  

Whelan, F., and Kelletat, D. (2003). Submarine slides on volcanic islands - a source for mega-

tsunamis in the Quaternary. Progress in Physical Geography: Earth and Environment 27, 

198–216. doi:10.1191/0309133303pp367ra. 

Whittaker, R. J. (1998). Island biogeography: Ecology, evolution and conservation. 1st edition. 

Oxford, UK: Oxford University Press. 

Whittaker, R. J., and Fernández-Palacios, J. M. (2010). Island biogeography - Ecology, evolution, 

and conservation. 2nd edition. Oxford, UK: Oxford University Press. 

Whittaker, R. J., Ladle, R. J., Araújo, M. B., Fernández‐Palacios, J. M., Delgado, J. D., and 

Arévalo, J. R. (2007). The island immaturity – speciation pulse model of island 

evolution: an alternative to the “diversity begets diversity” model. Ecography 30, 321–

327. doi:10.1111/j.0906-7590.2007.04761.x. 

Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2008). A general dynamic theory of oceanic 

island biogeography: A general dynamic theory of oceanic island biogeography. 

Journal of Biogeography 35, 977–994. doi:10.1111/j.1365-2699.2008.01892.x. 

Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2010). “A general dynamic theory of oceanic 

island biogeography - Extending the McArthur-Wilson theory to accommodate the 

rise and fall of volcanic islands,” in The theory of island biogeography revisited 

(Princeton, New Jersey, USA.: Princeton University Press), 88–142. 

Willyard, A., Wallace, L. E., Wagner, W. L., Weller, S. G., Sakai, A. K., and Nepokroeff, M. 

(2011). Estimating the species tree for Hawaiian Schiedea (Caryophyllaceae) from 

multiple loci in the presence of reticulate evolution. Molecular Phylogenetics and 

Evolution 60, 29–48. doi:10.1016/j.ympev.2011.04.001. 



References 

191 

 

Wood, K. R., Appelhans, M. S., and Wagner, W. L. (2016). Melicope oppenheimeri, section Pelea 

(Rutaceae), a new species from West Maui, Hawaiian Islands: with notes on its 

ecology, conservation, and phylogenetic placement. PhytoKeys, 51–64. 

doi:10.3897/phytokeys.69.8844. 

Wood, K. R., Appelhans, M. S., and Wagner, W. L. (2017). Melicope stonei, section Pelea 

(Rutaceae), a new species from Kauaʻi, Hawaiian Islands: with notes on its 

distribution, ecology, conservation status, and phylogenetic placement. PhytoKeys, 

119–132. doi:10.3897/phytokeys.83.13442. 

Wu, G. A., Prochnik, S., Jenkins, J., Salse, J., Hellsten, U., Murat, F., et al. (2014). Sequencing 

of diverse mandarin, pummelo and orange genomes reveals complex history of 

admixture during citrus domestication. Nature Biotechnology 32, 656–662. 

doi:10.1038/nbt.2906. 

Wu, Z.-Y., Monro, A. K., Milne, R. I., Wang, H., Yi, T.-S., Liu, J., et al. (2013). Molecular 

phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three 

genomes and extensive generic sampling. Molecular Phylogenetics and Evolution 69, 

814–827. doi:10.1016/j.ympev.2013.06.022. 

Xu, Q., Chen, L.-L., Ruan, X., Chen, D., Zhu, A., Chen, C., et al. (2013). The draft genome of 

sweet orange (Citrus sinensis). Nature Genetics 45, 59–66. doi:10.1038/ng.2472. 

Yampolski, C., and Yampolski, H. (1922). Distribution of sex forms in phanerogamic flora. 

Bibliotheca Genetica 3, 1–62. 

Yang, Y., Morden, C. W., Sporck‐Koehler, M. J., Sack, L., Wagner, W. L., and Berry, P. E. 

(2018). Repeated range expansion and niche shift in a volcanic hotspot archipelago: 

Radiation of C4 Hawaiian Euphorbia subgenus Chamaesyce (Euphorbiaceae). Ecology 

and Evolution 8, 8523–8536. doi:10.1002/ece3.4354. 

Yi, T., Miller, A. J., and Wen, J. (2004). Phylogenetic and biogeographic diversification of 

Rhus (Anacardiaceae) in the Northern hemisphere. Molecular Phylogenetics and 

Evolution 33, 861–879. doi:10.1016/j.ympev.2004.07.006. 

Yoder, J. B., Briskine, R., Mudge, J., Farmer, A., Paape, T., Steele, K., et al. (2013). 

Phylogenetic signal variation in the genomes of Medicago (Fabaceae). Systematic 

Biology 62, 424–438. doi:10.1093/sysbio/syt009. 

Yu, Y., Degnan, J. H., and Nakhleh, L. (2012). The probability of a gene tree topology within a 

phylogenetic network with applications to hybridization detection. PLoS Genetics 8, 

e1002660. doi:10.1371/journal.pgen.1002660. 

Yu, Y., Than, C., Degnan, J. H., and Nakhleh, L. (2011). Coalescent histories on phylogenetic 

networks and detection of hybridization despite incomplete lineage sorting. 

Systematic Biology 60, 138–149. doi:10.1093/sysbio/syq084. 

Zhou, W., Ji, X., Obata, S., Pais, A., Dong, Y., Peet, R., et al. (2018). Resolving relationships 

and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq 



References 

 

192 

and species distribution modeling. Molecular Phylogenetics and Evolution 126, 1–16. 

doi:10.1016/j.ympev.2018.04.001. 

Zhu, J., Liu, X., Ogilvie, H. A., and Nakhleh, L. K. (2019). A divide-and-conquer method for 

scalable phylogenetic network inference from multilocus data. Bioinformatics 35, i370–

i378. doi:10.1093/bioinformatics/btz359. 

Zhu, J., and Nakhleh, L. (2018). Inference of species phylogenies from bi-allelic markers 

using pseudo-likelihood. Bioinformatics 34, i376–i385. 

doi:10.1093/bioinformatics/bty295. 

Zhu, J., Wen, D., Yu, Y., Meudt, H. M., and Nakhleh, L. (2018). Bayesian inference of 

phylogenetic networks from bi-allelic genetic markers. PLoS Computational Biology 14, 

e1005932. doi:10.1371/journal.pcbi.1005932. 

Zhu, J., Yu, Y., and Nakhleh, L. (2016). In the light of deep coalescence: revisiting trees within 

networks. BMC Bioinformatics 17, 415. doi:10.1186/s12859-016-1269-1. 

Zimmer, E. A., and Wen, J. (2015). Using nuclear gene data for plant phylogenetics: Progress 

and prospects II. Next-gen approaches. Journal of Systematics and Evolution 53, 371–

379. doi:10.1111/jse.12174. 

Zimmermann, T., Mirarab, S., and Warnow, T. (2014). BBCA: Improving the scalability of 

*BEAST using random binning. BMC Genomics 15, S11. doi:10.1186/1471-2164-15-S6-

S11. 

 



List of Publications 

193 

 

List of Publications 

 

Oelschlägel B, Nuss M, von Tschirnhaus M, Pätzold C, Neinhuis C, Dötterl S & 

Wanke S (2014) The betrayed thief: the unique strategy of Aristolochia rotunda to 

deceive its pollinators. New Phytologist 206(1) 

 

Appelhans MS, Reichelt N, Groppo M, Paetzold C & Wen J (2018) Phylogeny and 

biogeography of the pantropical genus Zanthoxylum and its closest relatives in the 

proto-Rutaceae group (Rutaceae). Molecular Phylogenetics and Evolution,  

doi: 10.1016/j.ympev.2018.04.013 

 

Paetzold C, Kiehn M, Wood KR, Wagner WL & Appelhans MS. (2018). The odd one 

out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share traits 

associated with successful island colonization. Journal of Systematics and Evolution. 

56(6): 621-636. doi: 10.1111/jse.12454 (impact factor: 3.657) 

 

Paetzold C, Wood KR, Eaton DAR, Wagner WL & Appelhans MS (2019). Phylogeny 

of Hawaiian Melicope (Rutaceae): RAD-Seq resolves species relationships and reveals 

ancient introgression. Frontiers of Plant Science, doi: 10.3389/fpls.2019.0107 (impact 

factor: 4.106) 

Tomasello S, Karbstein K, Hodač L, Paetzold C & Hörandl E (2020). Phylogenomics 

unravels Quaternary vicariance and allopatric speciation patterns in temperate‐

montane plant species: A case study on the Ranunculus auricomus species complex. 

Molecular Ecology 29, doi: 10.1111/mec.15458 

 

Appelhans M, Paetzold C, Wood KR & Wagner WL (2020). RADseq resolves the 

phylogeny of Hawaiian Myrsine L. (Primulaceae) and provides evidence for 

hybridization. Journal of Systematics and Evolution, doi: 10.1111/jse.12668 

 

Paetzold C, Wood KR, Wagner WL & Appelhans M (submitted). Historical 

biogeography and diversification of Hawaiian Melicope (Rutaceae): flexibility is key. 

Submitted to New Phytologist 



Thesis Declarations 

 

194 

Thesis Declarations 

 

Declaration of the author’s contribution to manuscripts with multiple authors. 

 

The odd one out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share 

traits associated with successful island colonization.  

CP and MSA conceived and designed this study. MSA, CP, and KRW collected leaf 

material for the Flow Cytometry and data analysis. MK collected meristematic tissue 

for chromosome counts. CP conducted Flow Cytometry analysis. MK conducted 

chromosome counts. CP drafted this article and all authors contributed to writing 

and editing. 

 

  

Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves species 

relationships and reveals ancient introgression 

MSA, CP, and WLW conceived and designed the study. MSA, CP, and KRW 

collected the samples. CP carried out the laboratory work and performed all 

analyses. DARE provided valuable input for the analyses. CP drafted the article and 

all authors contributed to writing and editing.  

 

 

Historical Biogeography and diversification of Hawaiian Melicope (Rutaceae): 

flexibility is key. 

MSA, CP, and WLW conceived and designed the study. CP performed all analyses 

and drafted the article. All authors contributed to writing and editing. 

 

 



Acknowledgments 

 

195 

 

Acknowledgments 

 

I would like to thank Dr. Marc Appelhans for placing his trust in me to carry out this 

research, for his excellent supervision, inspiring discussion and insightful advice 

throughout these last years. 

My sincerest thanks to Prof. Elvira Hörandl for helpful discussions and mentorship 

throughout this project, for providing opportunities to broaden my horizons and 

become involved in some of the department's projects. I would also like to express 

my gratitude to Prof. Alexander Schmidt for agreeing to be my second reviewer and 

for his helpful comments during the project's duration. 

Fieldwork and species identification would have been impossible without the help of 

Ken Wood, Susann Ching, Steve Perlman, Jonathan Price, Kobe Togikawa, Kerri Fay, 

and Hank Oppenheimer. I would like to thank the Hawaiʻi State Department of Land 

and Natural Resources (Permits: P-242, KPI2017-102, ODF-051316R, and MDF-

092216A) for the permission to collect plants in forest reserves on Kauaʻi, Oʻahu, 

Maui, and Hawaiʻi (Big Island); the Nature Reserve for the permission to collect 

plants at the Waikamoi Preserve on Maui; the Puu Kukui Watershed Preserve for the 

permission to collect along the Puu Kukui Trail; and the United States Fish & 

Wildlife Service for the permission to export samples (Permit: MA96221B-O) and C. 

Dang for help with collection permits. 

This project was financially supported by the German Science Foundation (DFG; 

Grant AP 251/3-1 to MA). 

I would also like to thank all my colleagues at the department for their help and 

advice for all kinds of issues and the many memories of tea breaks and cookies. A 

special thanks to Dr. Birthe Barke und Gabi Ließmann for many an entertaining 

lunch filled with silly and serious conversation. Thank you also to my friends in Bad 

Dürrenberg and Dresden, who lend long-distance helping hands when needed. 

Finally, for unwavering support and love in all my endeavors, I am eternally grateful 

to my parents, without whom I would not have made it to this point.  

 


