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Abstract: In order to analyze advances in the resolution of combinatorial situations, due to the 

identification, conversion and treatment of semiotic registers, two studies were carried out. In 

the first study, 5th grade students identified, from problems in natural language, registers in 

trees of possibilities, lists and numerical expressions. The second study, carried out with 5th, 7th 

and 9th grade students, was configured as an intervention study in which trees or lists were used 

as an intermediate representation of the departure register (natural language) to the arrival 

register (numerical expression). The results of the studies confirmed the hypothesis that the 

conversion to numerical expression is more complex than the conversion to trees or lists. It was 

also confirmed that trees are more congruent, than lists, with registers in numerical expression. 

It is concluded that the use of intermediate representations, such as trees or systematic lists, is a 

good teaching strategy for advances in the combinatorial reasoning of students in the early and 

middle years of schooling. 

 

Keywords: Identification, Conversion, Treatment, Combinatorial situations, Intermediate 

representations. 

 

Introduction 

In the context of Mathematics Education, the importance of studying Combinatorics by 

students in the early and final years of Elementary School has been widely discussed and 

 
1 Juliana Azevedo Montenegro has a Doctorate in Mathematical and Technological Education 

and is a professor at the Department of Teaching Methods and Techniques of the Federal 

University of Pernambuco (UFPE). ORCID: https://orcid.org/0000-0003-3570-9581                

E-mail: juliana.azevedo2@ufpe.br   
2 Rute Elizabete de Souza Rosa Borba holds a PhD in Mathematics Education from Oxford 

Brookes University and is a professor at the Graduate Program in Mathematical and 

Technological Education of the Federal University of Pernambuco (UFPE). ORCID: 

https://orcid.org/0000-0002-5098-4461 E-mail: resrborba@gmail.com  
3 Marilena Bittar holds a PhD in Didactics of Mathematics from the Université Joseph Fourier, 

Grenoble and is a professor at the Graduate Program in Mathematical Education of the Federal 

University of Mato Grosso do Sul (UFMS). ORCID: https://orcid.org/0000-0001-9989-7871   

E-mail: marilenabittar@gmail.com  

 

mailto:juliana.azevedo2@ufpe.br
mailto:resrborba@gmail.com
mailto:marilenabittar@gmail.com


 Montenegro, Borba & Bittar., p. 579 

recommended. This has been a recommendation for some time in different countries, including 

Brazil, the country in which the present study was developed.  

The early years working group of the National Council of Teachers of Mathematics 

(Working Group (K-4)) of the Commission on Standards for School Mathematics (NCTM, 

1986) had already highlighted Combinatorics as an area of exploration within two of its themes 

for curriculum development. These themes were “Ways to build models of representations” and 

“Ways of counting / computation.” On the current NCTM page, on the Data Analysis and 

Probability axis, the content is recommended using organized lists and tree diagrams for the 

survey of possibilities in simple probabilistic events. 

In Brazil, according to the National Curriculum Parameters [PCN], a document officially in 

force until 2018 and still very present in school contexts, this content must be introduced at this 

level of education with the purpose of discussing “combinations, arrangements, permutations 

and, especially , the multiplicative principle of counting” (Brasil, 1997, p.40), through different 

types of representations. In the final years of Elementary School, it is expected that the 

discussion of this content will be expanded, so that the use of double-entry tables and tree 

diagrams (also known as trees of possibilities) favors the perception of a multiplicative 

calculation for solving problems involving combinatorial reasoning. (Brasil, 1998). 

The National Common Curricular Base [BNCC] (Brasil, 2018), the current document that 

regulates essential learning in Brazilian schools of Early Childhood, Elementary and Secondary 

Education, also indicates work with counting problems from the early years of schooling. 

Learning is recommended through situations in which students become familiar with 

combinatorial reasoning, indicating work through personal registers, trees of possibilities and 

tables. In the final years of Elementary School, BNCC indicates that these problems must 

already be addressed through the Multiplicative Counting Principle. This principle, also known 

as the Fundamental Principle of Counting 4 [FPC], is a way of solving combinatorial situations 

 
4 This principle is enunciated, according to Lima, Carvalho, Wagner and Morgado (2006, p. 

125), as, “If a decision D1 can be made in p ways and, whatever this choice is, the decision D2 



TME, vol. 18, no. 3, p. 580 

and the basis for the formulas used in the Combinatorial study, as it expresses the multiplicative 

nature of the different types of combinatorial problems (Lima, 2015, p .22). 

As indicated in the aforementioned curriculum documents, symbolic representations play a 

very important role in mathematical learning, particularly in Combinatorics. Mathematical 

Education theorists have highlighted the influence of semiotic representations, among them 

Raymond Duval – who discusses the identification, conversion and treatment of semiotic 

registers – and Gérard Vergnaud – who highlights the triad (situations, invariants and symbolic 

representations) in mathematics conceptualization. Central issues of these theories are dealt 

with in the section that follows. 

Thus, the present research is based on the Theory of Registers of Semiotic Representation 

(Duval, 2009) and the Theory of Conceptual Fields (Vergnaud, 1986), as well as authors who 

address both theories and the teaching of Combinatorics in elementary education. More 

specifically, the objective of this study was to analyze the role that the identification and 

transformations of conversion and treatment of representation registers play in the expansion of 

the knowledge of Combinatorics by Elementary School students. 

For this, it is necessary to discuss the different combinatorial situations and their 

invariants, important elements of the Theory of Conceptual Fields, which will be discussed in 

more detail in the next section. 

In the investigation, two studies were carried out. The first study is a survey of knowledge 

about the identification of conversions – from natural language to tree of possibilities or to list 

and from these to numerical expression – in different combinatorial situations (arrangements, 

combinations, permutations and products of measures). To this end, a test was applied to 5th 

grade students in which they were asked to identify which tree of possibilities and which list 

was the correct one in solving the different proposed situations. Then, students should identify 

the correct numerical expression to answer each problem. The second study was characterized 

by an intervention research in which the combinatorial situations were worked through 

 
can be made in q modes, then the number of ways to make the decisions D1 and D2 

consecutively is equal to pxq”. (Lima, 2015, p.24).  
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transitional auxiliary representations (tree of possibilities and systematic list), which are 

characterized as an intermediate representation between the departure register (natural 

language) and the arrival register (numerical expression). In this second study, 5th, 7th and 9th 

grade students took a pre-test, participated in two teaching sessions and, finally, took a post-test. 

Next, the theories used to support this research – its methodological procedures and the 

analysis carried out – will be discussed, as well as previous studies on Combinatorics, the 

current research method and the main results obtained. 

Theories regarding the role of representations in mathematical learning 

As previously stated, the present research is based on two theories for its realization, being 

an innovative aspect of this study to consider them as complementary. Initially, assumptions of 

the Theory of Conceptual Fields (TCF), developed by Vergnaud (1986), are discussed, followed 

by the Theory of Registers of Semiotic Representation (TRSR), developed by Duval (2009). 

The complementarity of these two theories is highlighted, since both consider representations as 

essential in mathematical conceptualization, but they discuss different aspects of 

representations. For Vergnaud, three sets are essential for conceptualization: representations, 

situations and invariants. Despite deeply discussing the importance of language for the 

apprehension and operationalization of concepts, this author does not make a study about 

representations as semiotic systems, as Duval does with the TRSR. The latter author does not 

work with any kind of representations, but with those that obey characteristics that define them 

as registers of semiotic representation systems, that is, a register must be identifiable and allow 

transformation operations, both internal to the same register (treatment) as from one system to 

another (conversion), as will be shown in the data of this research.  

Thus, in this research, the importance of investigating the identification and 

transformations (conversion and treatment) of registers of semiotic representations in different 

combinatorial situations is understood, taking into account their respective invariants. 

Vergnaud (1986) states that the concepts are inserted in conceptual fields. For this author 

(1986, p.84), "A conceptual field can be defined as a set of situations whose domain requires a 
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variety of concepts, procedures and symbolic representations in close connection". Therefore, 

for the formation of a concept, inserted in a conceptual field, Vergnaud (1986) highlights that a 

set of situations is necessary, which give it psychological meaning; a set of invariants, which 

are logical-operative properties; and a set of symbols used in the representation and 

operationalization of the concept. This theory, therefore, encompasses, in a single theoretical 

perspective, the development of progressively dominated situations, concepts and theorems 

necessary for the efficient operation in these situations and the symbols that can effectively 

represent these concepts and operations. 

The study of the analysis of different categories of problems that can be worked with 

students, as proposed in the Theory of Conceptual Fields, also involves the study of procedures 

and symbolic representations that students use. Vergnaud (1994) states that it is an essential 

investigative task to understand why a symbolic representation is useful under certain 

conditions and when it can be replaced by a more abstract and general one. 

The set of symbolic representations includes, among others, natural language, diagrams, 

graphs and numerical expressions. These are used to represent invariants and situations. In this 

sense, the teacher should help students develop their repertoires of representations and analyze 

which are the most appropriate for each situation worked on.  

In the Theory of Registers of Semiotic Representation (TRSR), Duval (2011, 2017) 

emphasizes that the main characteristic of mathematical thinking is that one only has access to 

mathematical objects through representations. This characteristic of mathematical thinking leads 

Duval (2011, 2017) to define the following paradox: if access to the mathematical object is only 

possible through representations and never directly to it, how can one not confuse an object with 

its representation? This author's answer goes through the importance of working with a variety 

of semiotic representations, making transformations from semiotic representations into other 

semiotic representations. Thus, this theory highlights representations and their essential 

character in mathematics activities. It is through this reflection that Duval (2009) highlights that 

“there is no noesis without semiosis” (p.17), because it is not possible to apprehend the meaning 

(noesis) of a mathematical object without the use of a semiotic representation (semiosis). 
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It is emphasized that, for Duval (2012), a system of registers of semiotic representations 

must satisfy three essential conditions: be identifiable, possible to perform conversion and 

treatment transformations. Thus, when a register is identifiable it means that the individual is 

able to identify the concept represented in different forms of presentation.  

Then, the individual must be able to transform this representation presented in a different 

representation of the same object, through a conversion transformation. Duval emphasizes that 

"to convert is to transform the representation of an object, a situation or information given in a 

register into a representation of that same object, that same situation or the same information in 

another register". (Duval, 2009, p.59). In addition, the individual also needs to make a 

transformation of treatment, a transformation internal to the register itself, in which an initial 

data of a representation is transformed within that same representation to obtain a terminal data. 

Thus, Duval (2009) exemplifies that "Calculation is an internal treatment to the registration of a 

symbolic writing of figures and letters [...]." (Duval, 2009, p.57). 

On conversion, Duval deepens his discussion and concludes that the success of this task 

depends on the levels of congruence between the two representations used in the transformation 

process. For this, Duval lists three essential criteria to assess the level of congruence between 

two representations:  

The first is the possibility of a 'semantic' correspondence of the 

significant elements: to each simple significant unit of one of the 

representations, an elementary significant unit can be associated. [...] 

The second criterion is the terminal 'semantic' univocity: each 

elementary significant unit of the departure representation corresponds 

to a single elementary significant unit in the arrival representation 

register. [...] The third criterion is related to the organization of the 

significant units. The respective organizations of the significant units 

of two compared representations lead to apprehend in them the units 

in semantic correspondence in the same order in the two 

representations. (Duval, 2009, p.68-69). 

 

Thus, when two representations meet the three criteria it means that they are congruent and 

the “success rate” in the conversion between these two representations is higher (DUVAL, 

2009, p.19). When the two representations in question do not meet, or meet only one or two 

criteria, it means that the conversion will be influenced by the level of congruence, so that when 
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they are totally non-congruent, that is, when they do not meet any criteria, one is less successful 

in converting one form of representation to another. 

In addition to the congruence between representations, another important aspect to be 

considered is the role of auxiliary representations in the conversion activity, especially when the 

departure and arrival representations are strongly non-congruent. In these cases, Duval 

highlights the importance of a transitional representation that will assist in the conversion 

process between two representations.  

With the example of addictive situations, Duval (2017, p. 93-94) highlights: 

It is necessary to resort to an auxiliary representation to understand the 

resolution of all additive problems, mainly those with non-congruent 

statements. [...] Such auxiliary representation is of course a 

transitional representation. The students abandon it as soon as they 

understand because its use seems to them a slow and costly procedure. 

Thus, situations in which there is a conversion transformation between two strongly 

non-congruent representations, refer to the need to use an auxiliary representation, that is, when 

the departure representation and the arrival representation are not congruent, an auxiliary 

representation – more congruent, both with the departure representation and with the arrival 

representation – favors the understanding of the situation. When the formation of the concept is 

consolidated, this auxiliary representation can be abandoned, as, in general, it is a more detailed 

procedure, which demands more time, while the arrival representation is configured as a more 

objective, less costly procedure. In this way, this auxiliary representation also materializes as a 

transitional one, that is, temporary – while it is necessary. There are also cases in which these 

representations are always necessary for the resolution of the proposed activity.  

Invariants and symbolic representations of combinatorial situations 

Combinatorial situations, with their invariants of choice, ordering and exhaustion of 

possibilities, can be represented in several ways. Borba (2010) argues that the four 

combinatorial situations should be worked on at different levels of schooling, highlighting their 

invariants, that is, the logical-operative characteristics of these situations, as well as the analysis 

of the exhaustion of all possibilities. Thus, since the beginning of schooling, not only situations 
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of product of measures can be discussed, but also those of combination, arrangement and 

permutation. In these situations, the invariants of choice and ordering are highlighted, to later 

discuss the exhaustion of possibilities. Thus, in a product of measures, there are two or more 

groups in which an element from each group is chosen to form different possibilities in which 

their ordering does not generate new possibilities. In the other situations, there is only one group 

and the choice depends on whether, or not, to select some elements for the formation of 

possibilities. In a combination, some elements are selected and the order of these elements does 

not generate new possibilities, unlike an arrangement situation in which the ordering generates 

new possibilities. In situations of permutation, all elements are used and the order generates 

new possibilities (Borba, 2010). 

In Figure 1 it is possible to see examples of the four combinatorial situations. 

Product of measures: 

Jane has four blouses (yellow, pink, orange and red) and two skirts (black and white). How 

many different ways will she be able to dress using one of her blouses and one of her skirts? 

 

Combination: 

Five people (Beatriz, Daniel, Joana, Carlos and Marina) shook hands. How many handshakes 

between different people were given? 

 

Arrangement: 

In how many possible ways can you write numbers with two different digits, using the five 

digits 1, 3, 5, 7 and 9? 

 

Permutation: 

How many different ways can three people (Maria, Luís and Carlos) position themselves in a 

row at the bank?  

Figure 1: Examples of distinct combinatorial situations. Source: Adapted from 

Montenegro, 2018 

In general, the starting representation of a combinatorial situation is a problem expressed in 

natural language. This problem, therefore, can be converted into a numerical expression. Such a 

numerical expression can be treated internally, so that it is possible to arrive at a solution that 

indicates the total number of possibilities. However, between the departure register (enunciated 

in natural language) and the arrival register (numerical expression), different auxiliary or 

intermediate representations can be used, such as lists, trees of possibilities and tables (Pessoa & 
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Borba, 2009; Azevedo, 2013). These intermediary representations are more detailed, so that 

they indicate all the possibilities, which goes beyond indicating just how many are those 

possibilities, being, therefore, slower and more costly representations. However, similarly to 

what was suggested by Duval (2011, 2017) regarding other concepts, when students understand, 

in combinatorial situations, the relation between these intermediate representations and the 

numerical representation, they can leave aside the most costly representations and start using 

more economical representations. 

Combinatorial situations are characterized by non-congruence in the conversion between 

the natural language register of the statement and the formal mathematical register of its 

resolution, since there is no semantic correspondence between the units of meaning of the 

departure and arrival representations. Thus, a transitional auxiliary representation is essential. In 

Figure 2 it is possible to observe an example of a combinatorial situation of permutation in 

natural language, being solved by a list and a tree of possibilities as intermediate representations 

and their corresponding numerical expression. 

How many different ways can three people (Maria, Luís and Carlos) position themselves in a 

row at the bank? Which numerical expression. solves this problem? 

 

Tree of possibilities 

 
 

Systematic list 

Maria, Luís e Carlos 

Maria, Carlos e Luís 

Luís, Maria e Carlos 

Luís, Carlos e Maria 

Carlos, Maria e Luís 

Carlos, Luís e Maria 

 

Numerical expression or Fundamental Principle of Counting (FPC) 

3 x 2 x 1 = 6 possibilities 

 

Multiplication: generalization of possibilities: 

3 x 2 = 6 possibilities 

(Each person being the first has two possibilities. Being three people, there are three times two). 

Figure 2: Permutation situation solved by tree of possibilities, list and Fundamental Principle of 

Counting (FPC). Source: Adapted from Montenegro, 2018  
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With this, it is expected that systematized lists and trees of possibilities are configured as 

transitional auxiliary representations to the arrival of a formal mathematical register, in the case 

of the present study, the use of the Fundamental Principle of Counting. Thus, in this study, the 

role of lists and of the trees of possibilities will be analyzed as auxiliary representations from 

natural language to numerical expressions in combinatorial situations. 

Previous studies on Combinatorics based on the Theory of Conceptual 

Fields and on the Theory of Registers of Semiotic Representation 

Borba (2010) indicates that Combinatorics requires a type of reasoning that stimulates 

the hypothetical deductive thinking of students, that is, thinking about possibilities and not just 

what actually happened5, which can be encouraged since the first years of basic schooling. In 

this sense, it is very important that students gradually develop their combinatorial reasoning, so 

that, when they reach High School - time for formal work with this content - they are already 

more familiar with this type of thinking. On combinatorial reasoning, this author emphasizes 

that it is  

[...] understood as a way of thinking present in the analysis of 

situations in which, given certain sets, the elements of them must be 

grouped, in order to meet specific criteria (of choice and / or ordering 

of the elements) and determine - directly or indirectly - the total 

number of possible groupings. (Borba, 2010, p. 3). 

 

Borba (2010) also points out that the different combinatorial situations (product of 

measures, combination, arrangement and permutation) must be worked on concurrently, so that 

the invariants involved in each of these situations are recognized. 

Working with only one type of situation (such as the product of measures - usually the only 

situation explicitly worked on in the early years) does not allow for widespread recognition of 

the properties of the different types of combinatorial problems. 

 
5 Inhelder and Piaget (1976, p. 241) emphasize that hypothetical deductive thinking is related to 

the “dissociation between the possible, the real and the necessary”. 
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Pessoa and Borba (2009), based on the Theory of Conceptual Fields (Vergnaud, 1991), 

carried out a survey with students from the 2nd grade of Elementary School to the 3rd grade of 

High School, in which they were asked to solve various combinatorial problems.  

Through this research, the authors highlight that combinatorial reasoning is a type of 

thinking that is developed over a long period of time, and it is necessary to think about teaching 

strategies for each level of schooling. The children of early years showed signs of combinatorial 

reasoning, which gradually increased and was demonstrated in the performance of students in 

the final years of Elementary and High School. It was observed that performance is influenced 

by the order of magnitude of the numbers involved and also by the form of symbolic 

representation used in solving situations, among other factors. 

Barreto and Borba (2010) analyzed, in the light of the Theory of Conceptual Fields – TCF, 

Mathematics textbooks from early years of schooling and concluded that combinatorial 

situations are present in different parts of the books, not only in the sections focused on working 

with multiplicative situations. There are activities of arrangements, combinations, permutations 

and products of mesaures, although only the latter type of problem is explicitly highlighted. In 

general, there is no information in the teacher's manual about the singular character of 

combinatorial thinking, nor about the invariants of each type of combinatorial situation, or about 

the different forms of representations that can be used for their development. 

Borba, Montenegro and Bittar (2019) analyzed textbooks from the early years of schooling 

with respect to transformations of representations in solving combinatorial problems. It was 

observed that all the problems proposed in the books involved at least one conversion – in 

general, converting natural language and illustrative drawings into numerical expressions 

(multiplications that solved the problems). Other conversions observed in the analyzed books 

were from natural language and drawings to lists, to trees of possibilities or to tables – these 

conversions being more frequently requested in product of measures problems, but not common 

in other types of problems. The authors recommend that in order for conversions to be aids in 

students' cognitive development, they need to be requested more widely in different 

combinatorial situations. 
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Azerêdo (2013), based on the Theory of Registers of Semiotic Representation (TRSR), 

developed research in the early years of schooling, in which she argued that the semiotic 

representations of the multiplication operation constitute instruments of pedagogical mediation 

in the process of teaching and learning this subject. Specifically about the combinatorial 

situations, the author investigated the students' performance and the evaluation given by the 

class teacher in a problem of product of measures. The author points out that the students' 

difficulty in this type of situation was more evident when compared to the other multiplicative 

situations. In addition, it was a surprise, especially for the teachers of the classes who, despite 

the question presenting the representation of an input and output map, this map was little used 

for the resolution. The author also indicates that, for the use of different representations to 

influence the correct answers, it is necessary for the teacher to use them as a mediation 

instrument, assigning meaning to them, being the semiotic representation registers produced by 

children potentially effective instruments for this mediation. 

Alves (2010), also based on the TRSR, after analyzing textbooks from the final years of 

Elementary School, developed an intervention project with a 9th grade class. In four modules, 

the author proposed solving activities in pairs, with the students having two lessons to respond 

to situations, and in the third lesson there was socialization of ideas and debate. The author 

found that, as the students were introduced to the different representation registers, they were 

able to better understand the different possibilities in Combinatorics calculations, as well as to 

discern about the importance, or not, of the order of the elements. 

Based on the results of these and other previous studies, in the present study, it is intended, 

based on the two theories presented, to analyze the role that the identification and 

transformation of treatment and conversion of registers have in expanding Elementary School 

students’ knowledge of different combinatorial situations. 

Method adopted in the two studies of the present research 

From the study of the two theories proposed in this research, as well as the research already 

carried out on Combinatorics involving these theories, the first study of this research was 
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elaborated, in which it was proposed that 5th grade students of Elementary School identify, in 

combinatorial situations , natural language conversions to lists or to trees of possibilities and 

from these to numerical expressions. In this direction, two types of test were applied to 16 

students from a private school in Recife, Brazil. 

In the tests, the same eight problems were proposed, two of each type of combinatorial 

situation, in which the students needed to identify between two alternatives which list or tree of 

possibilities responded correctly to the situation presented in natural language and, then, which 

of four alternatives corresponded to the numerical expression that would correctly answer the 

situation. The difference between the two types of tests was in the combination situations in 

which, one type of test had the repeated cases excluded and in the other type of test the repeated 

cases were not exposed, as it is possible to observe in Figure 3. After the students’ solving of 

the problems, the data were analyzed according to errors, successes and justifications, with a 

primarily qualitative focus. 

Márcia has four types of fruit at home (papaya, pineapple, orange and banana) and wants to 

make a salad using three of these fruits. How many different ways can she combine these fruits? 

 

Disregarding the repeated cases: 

Papaya, pineapple and orange 

Papaya, pineapple and banana 

Papaya orange and banana 

Pineapple, orange and banana 

 

Considering the repeated cases crossed out: 

Papaya, pineapple and orange 

Papaya, pineapple and banana 

Papaya, orange and banana 

Papaya, banana and pineapple 

Papaya, banana and orange 

Papaya, orange and pineapple 

 

Orange, papaya and pineapple 

Orange, pineapple and papaya 

Orange, papaya and banana 

Orange, banana and papaya 

Orange, pineapple and banana 

Orange, banana and pineapple 

Pineapple, orange and banana 

Pineapple, banana and orange 

Pineapple, papaya and orange 

Pineapple, orange and papaya 

Pineapple, banana and papaya 

Pineapple, papaya and banana 

 

Banana, papaya and pineapple 

Banana, pineapple and papaya 

Banana, papaya and orange 

Banana, orange and papaya 

Banana, pineapple and orange 

Banana, orange and pineapple 

Figure 3: Situation of combination with the resolution through list, disregarding, or not, the 

repeated cases. Source: Adapted from Montenegro, 2018 
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From the results of this first study, it was possible to elaborate an intervention proposal for 

the second study of this research. Thus, different forms of intervention were carried out, with 

121 students from the 5th, 7th and 9th grades of Elementary School, who took into account the 

TRSR, pointing out the conversions of representations as a strategy for the development of 

combinatorial reasoning, as well as the TCF, on the different combinatorial situations and their 

invariants. Thus, the study was carried out with two classes from each grade, with one class 

characterized by the group that worked with trees of possibilities as an intermediate 

representation from natural language to numerical expression and the second group used 

systematic lists as an auxiliary representation between the representation of departure 

(enunciated in natural language) and the representation of arrival (numerical expression). 

The two classes of each school grade carried out the three stages of the research, in which 

in the first stage they answered a pre-test with eight combinatorial situations (two of each type) 

in which the number of possibilities was between 4 and 24. In the second stage they participated 

in two intervention sessions, each of one hour approximately, answering the pre-test questions 

using trees of possibilities or lists and the Fundamental Principle of Counting (numerical 

expression). In the third stage the students answered a post-test with eight other combinatorial 

situations where the number of possibilities varied; thus, in the first four problems the number 

of possibilities was between 6 and 30, in the last four problems the number of possibilities was 

between 56 and 120. With this, it was expected to analyze the use of the FPC in favorable 

situations, since the the use of a list and a tree of possibilities would not be sufficient to answer 

situations with a high number of possibilities. 

The analysis of the results of the second study was carried out quantitatively using the 

SPSS (Statistical Package for the Social Sciences) software, comparing the performance of the 

three grades before and after the intervention, comparing each grades’ performance in the pre 

and the post-test, and also comparing the three school grades amongst each other. Qualitative 

analysis of representations and strategies used by students before and after the intervention was 

also carried out.  
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For the first study, there were two hypotheses: the first related to the more difficult 

character of the combination problems, since to identify the correct numerical expression, as 

well as to justify it, it would be necessary to understand the need to disregard the repeated cases 

– once that the order of the elements in combinations does not indicate different possibilities. 

The second hypothesis indicated that identifying trees and lists would be easier than identifying 

numerical expressions, due to the greater congruence between natural language and lists or trees 

than between these registers and numerical expressions. 

The first hypothesis for the second study was that both methods of intervention – using 

trees or lists as intermediate representations – would be effective in expanding combinatorial 

reasoning. The second hypothesis was that there would be greater progress in the group that 

used trees of possibilities, mainly due to the perception of the multiplicative reasoning implicit 

in combinatorial situations. This is because this representation seems to indicate with greater 

clarity the one-to-many relations involved in combinatorial situations, since the organization in 

branches that indicate this multiplicative idea (Figure 2) is apparently more congruent with the 

mathematical operation necessary to solve problems in Combinatorics.  

Results of Study 1: identification of conversions in combinatorial situations 

In the first study, it was probed how 5th grade students identify conversions made in 

registers of different semiotic representations (natural language, tree of possibilities, list, 

numerical expression). The purpose was to analyze whether and how these students coordinated 

different representations of the same combinatorial situation. As there were 16 students and two 

problems of each type, the maximum score for each type of conversion was 32 and adding the 

two tests together, 64 was the maximum score. 

In Table 1, it is possible to observe that, for the first conversion – from natural language 

(NL) to list (L) or to tree (T) – there are around 50% of correct identifications (NL – L: 36/64 

and NL – T: 33/64), with a higher performance in Test 2 (with repeated cases crossed out). As 

for the second conversion, when the objective was to identify which numerical expression 
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responds the situation, there are 25% of correct identifications (NL – L: 16/64 and NL – T: 

16/64), also with higher performance in Test 2. 

These results reinforce the greater difficulty of students in identifying numerical 

expressions in different combinatorial situations, than in identifying corresponding lists or trees 

of possibilities. They also seem to indicate greater congruence of natural language with the tree 

of possibilities and with the list and less congruence with the numerical expression. This is 

because the semantic units of the statement (in natural language) are in correspondence with the 

semantic units of the tree and the list, but not with the units of the numerical expression.  

Test type Situation 

type 

Conversion 1  Conversion 2 
Total 

NL → L NL → T L → NE T → NE 

1 

(Test without 

repeated cases) 

PM 3 4 0 2 9 

C 4 1 1 0 6 

A 2 6 0 0 8 

P 5 3 1 1 10 

Total Test 1  14/32 14/32 2/32 3/32 33/128 

2 

(Test with 

repeated 

crossed out 

cases) 

PM 4 3 4 3 14 

C 5 5 3 2 15 

A 6 4 2 4 16 

P 7 7 5 4 23 

Total Test 2  22/32 19/32 14/32 13/32 68/128 

Total (Test 1 + Test 2) 36/64 33/64 16/64 16/64 101/258 

Table 1: Correct identification in each conversion by type of test and situation 

NL: Natural language; L: List; T: Tree of possibilities; NE: Numerical Expressions; PM: 

Product of Measures; C: Combination; A: Arrangement; P: Permutation. Source: Research 

authors 

According to Duval (2009), the identification, by the subject, of a mathematical object in 

different registers of semiotic representation, indicates conceptual apprehension of that object. 

Each register, be it in natural language, diagrams or mathematical symbols, is configured as 

“[...] systems of representation that are very different from each other and that each pose 

specific learning issues” (p. 38). Thus, it seems to us that students already indicated some 

apprehension of combinatorial situations, but they still needed learning focused on the use of 

numerical expressions that can be associated with each type of situation. 
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Regarding the types of test, it appears that, although the only difference between them, in 

presenting the problems, is in the combination situations, the second type of test showed better 

results, with little more than twice the correct answers (33 correct identifications in Test 1 and 

68 in Test 2). To this fact, it is inferred that this difference in the combination problems may 

have resulted in a different analysis from the other types of problems, that is, having the 

repeated cases crossed out may have called attention (triggering a theorem-in-action, as called 

by Vergnuad) about when the ordering indicates, or not, different possibilities in the other types 

of situations, and this led students to think about other situations in which the order of the 

elements indicates different possibilities. From what the results indicate, there was in the test in 

which the repeated cases were crossed out a better performance in all combinatorial situations of 

the test, with emphasis on the correct identifications, including in the numerical expressions, 

because, of the 16 correct answers (in the total sets of the two tests), 14 (for conversion from 

list) and 13 (for conversion from tree) were in the second type of test. 

In Graph 1, it can be seen that the number of correct justifications is smaller, when 

compared to the number of incorrect justifications and blank justifications, especially if the last 

two are added as both justifications that do not meet what was requested. In addition, it is clear 

that the situations of combination and arrangement have even less correct justifications. In 

combination situations, it is understood that the difficulty in finding a correct justification is due 

to the fact that repeated cases must be disconsidered, since in this type of situation, the order of 

the elements does not indicate different possibilities. In arrangement situations, students should 

consider ordering, justifying that the same elements in different orders constitute different 

possibilities, as well as that some elements will be selected, differently from the permutations in 

which all elements are used. 
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Graph 1: Quantitative of the type of response (correct, incorrect and blank justifications) 

according to each type of situation. Source: Research authors 

In Figure 4, an arrangement situation can be observed in which the identifications of the 

presented conversions are correct, however, the justification presented is not consistent with the 

numerical expression, because when the student writes “Because he wants to use 4 letters and 

will write 3”, does not explain the correct multiplication: 4 x 3 x 2. This multiplication indicates 

that for the choice of the 1st letter there are four possibilities, for the 2nd letter there are three 

possibilities and for the 3rd letter there are two possibilities.  

 

 
Figure 4: Arrangement situation in which the identification of conversions (from natural 

language to list and from this to numerical expression) are correct, but incorrect justification is 

given by Student 16. Source: The authors 
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Figure 5 shows the example of a correct answer in both the first and second conversions, 

as well as with a consistent justification. In this example, in which the child responds that it is 

“4 classes x 3 second places x 2 third places”, it is understood that the child realized that any of 

the four classes can occupy the first place, leaving three classes for the second place and two 

classes for the third place, being necessary to make a multiplication between the factors. This 

adequate justification is a correct application of the Fundamental Principle of Counting – 

content not yet addressed in the classroom in the 5th grade of Elementary School, but an 

assumption (called theorem-in-action by Vergnaud) that the total number of possibilities can be 

obtained by multiplying the number of possibilities for each stage. 

 

Figure 5: Arrangement situation answered correctly (with solution presented in a tree of 

possibilities) and consistent justification by Student 2. Source: Montenegro, 2018 

Regarding the problems of combination, since the tests were different in presenting the 

resolution of this combinatorial situation, it is highlighted that, in the first conversion, from 
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natural language to list or tree, students presented approximately half of the correct answers 

(15/32 ), indicating that, for the first conversion, the level of difficulty was lower. As for the 

second conversion, from list or tree to numerical expression, the number of correct answers 

decreased a large amount (6/32). When the justification for the marked numerical expression is 

analyzed, it is perceived that students had even more difficulty, as they presented only one 

correct justification for this type of situation. In this correct justification, the student points the 

division by six due to the repetition of the possibilities, as shown in Figure 6. 

 

Figure 6: Combination situation, with the solution in a list, answered correctly by Student 2 and 

with a consistent justification. Source: Montenegro, 2018 

Taking into account the results of this first study, it is understood that the higher success 

rate of the first conversion may indicate a greater congruence between natural language and lists 

or tree representations. The lower success rate of the second conversion suggests less 

congruence between lists or trees and numerical expressions. The results also point out that it is 

necessary to consider the particularities of these conversions in the different combinatorial 
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situations. In addition, the better performance in the second type of test indicates that making 

explicit the exclusion of repeated cases in a combination situation seems to be a good way to 

discuss the invariants of this and other combinatorial situations – arrangements, permutations 

and products of measures –, a since it can draw attention to the ordering of elements, generating 

or not different possibilities.  

In view of the results already discussed, as well as the difficulty of 5th grade students in 

justifying their answers, for the second study, the need for an intervention study was considered. 

For the teaching of students, it was decided to use a tree of possibilities and systematic list as 

intermediate representations, since these representations can assist in the conversion of natural 

language to numerical expression. It was also decided to make explicit the exclusion of repeated 

cases from combinations to enable a greater discussion of the invariants of this and other 

combinatorial situations. In order to verify the feasibility of the intervention in different school 

grades, it was decided to carry it out with students from the 5th, 7th and 9th grades of 

Elementary School.  

Results of Study 2: trees of possibilities and systematic lists as intermediate 

auxiliary representations in combinatorial situations 

The second study was characterized by an experimental intervention research, in which a 

pre-test, two teaching sessions and a post-test were carried out with two classes of each of three 

school grades: 5th, 7th and 9th grade. The first class of each grade participated in the 

intervention using trees of possibilities as an intermediate representation (G1). The second class 

of each grade used systematic lists as an intermediate representation (G2). 

During the intervention sessions, students were encouraged to discuss the combinatorial 

situations solved in the pre-test, taking into account the specific invariants, that is, the 

appropriate choice to solve each type of situation, as well as whether the order of choice 

generated different possibilities, and, finally, they were asked if there was any other possibility 

not yet considered in the answer given. What differentiated one intervention group from another 

was the intermediate representations used. In Figure 7, two examples of problem solving during 
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the intervention can be seen with the example of a combination problem, using a tree of 

possibilities (G1) and a systematic list (G2). 

 
Figure 7: First intervention with Groups 1 and 2 of the 5th grade. Solving combination 

situations through auxiliary representations: tree of possibilities and systematic list.  

Source: Montenegro, 2018 

The tests were analyzed taking into account the students’ performance in the survey of 

possibilities, as well as presenting a mathematical operation for their solution. In this direction, 

there were two questions in each test item. The first related to what were all the possibilities and 

the second concerning which operation (numeric expression) solved the problem. 

In these two perspectives of analysis, were considered: 

• 0 point for error - when the student answered incorrectly the survey of possibilities or the 

numerical expression of the situation; 

• 1 point for partial correctness 1 - when the student indicated less than half of the 

possibilities or indicated a correct mathematical operation, but the operation was wrong; 

• 2 points for partial correctness 2 - when the student indicated half or more of the number 

of possibilities or indicated a correct mathematical operation, but solved the operation 

incorrectly; 

• 3 points for total correctness - when the student exhausted all possibilities and correctly 

indicated the operation with its correct resolution. 

Table 2 shows the average performance of students from different school grades, both in 

the survey of possibilities and in the numerical expression that answers the problem, before and 

after the intervention sessions. It is noteworthy that there was a significant increase in the 
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average performance in both intervention groups of all the school grades involved. Considering 

that the test had eight problems and each one could reach a maximum of 3 points, the total test 

score could be 24 points.    

Grades Groups Survey of possibilities Numerical expression  

Pre-teste Post-teste Pre-teste Post-teste 

5th 

Grade 

G1 (Tree) 1,89 6,11 0,31 4,57 

G2 (List) 2,85 5,15 1,20 3,30 

7th 

Grade 

G1 (Tree) 1,38 6,76 0,57 4,76 

G2 (List) 1,77 6,23 0,46 3,46 

9th 

Grade 

G1 (Tree) 6,74 9,52 3,68 7,89 

G2 (List) 6,25 8,43 2,56 5,93 

Table 2: Average performance in the pre-test and in the post-test by grade and by intervention 

group, in which the total score could be 24 points. 

Source: Research authors 

Comparing the pre-test result separately with the post-test result of each group and each 

grade, significant differences were observed, both for the survey of possibilities (p <0.0016) and 

for numerical expression (p <0.001) that answers the problems. Thus, it appears that the 

interventions had very significant effects in both intervention groups and in all grades of 

schooling studied.  

To analyze the difference between the intervention groups, the parametric T-test of 

independent samples was performed, comparing the G1 post-test (intermediate representation: 

tree of possibilities) with the G2 post-test (intermediate representation: list), in each grade. 

There were no significant differences between the intervention groups in any grade7. In this 

way, both the tree of possibilities and the list proved to be valid auxiliary representations that 

helped in the development of the combinatorial reasoning of the participants. 

 
6 In statistical language ‘p’ indicates whether something is likely to be true and not the result of 

a random situation. In the statistic stating that a result is highly significant, it means that the 

hypothesis being tested is most likely true. In general, when p <0.05 it is assumed that there is a 

probability of only 5% that the difference found is not true. Thus, the lower the p-value, the less 

likely it is that the difference is not true. 
7 5th grade G1 x G2: survey of possibilities (t (37) = 0.576; p = 0.568), numerical expression (t 

(37) = 0923; p = 0.362); 7th grade G1 x G2: survey of possibilities (t (45) = 0.440; p = 0.662), 

numerical expression (t (45) = 0.166; p = 0.300); 9th grade G1 x G2: survey of possibilities (t 

(33) = 0.650; p = 0.520), numerical expression (t (33) = 1.341; p = 0.189). 
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Examining in more detail, questions with a greater number of possibilities were analyzed 

separately, in which a numerical calculation would be recommended, since the indication of all 

possibilities would be very costly. In this sense, a T-test of independent samples was performed 

to compare the performance of G1 (tree) and G2 (list) on these test items. The results indicated a 

significant difference between the groups in the comparison made with the students of the three 

grades (t (119) = 3.162; p = 0.002). Group 1, which had an intervention using the tree of 

possibilities, performed better in situations where the use of a numerical expression was 

recommended, indicating that this intermediate representation seems to have a greater degree of 

congruence with the numerical expression necessary to solve combinatorial problems, as 

students produced their numerical expressions (application of the Fundamental Principle of 

Counting) more easily from the trees of constructed possibilities. 

An analysis by type of combinatorial situation was also carried out. Table 3 shows the 

progress in the comparison between pre-test and post-test for each situation, in each grade and 

each experimental group. In only one case, in the 9th grade G2 arrangement situation, there was 

no evolution between pre and post-test. It should be noted that, for each of the averages, the 

maximum to be obtained was six points. Although some advances seem small, they are 

surprising, in particular considering the reduced teaching time (two sessions of an hour each, as 

highlighted above). Thus, it is noteworthy the low performance in the pre-test in all types of 

problems and that, with only two intervention sessions, the results were better in the post-test. It 

is to be expected that with more intervention sessions the results can be even better. 

The best results were in product of measures situations, followed by permutations. In 

general, minor advances were observed in combination situations – as also observed in previous 

studies (Pessoa & Borba, 2009) – in which the ordering of elements does not imply different 

possibilities. 

It is noteworthy that, for the 5th grade of G1, the difference between the pre-test and post-

test averages was significant in the situation of product of measures (p = 0.003) and 

arrangement (p = 0.043); in the 5th grade G2, only in the permutation situation (p = 0.046). In 

the G1 of the 7th grade, the difference was significant in the situations of product of measures 
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(p <0.001) and permutation (p <0.001); in the 7th grade G2, the difference was significant in all 

types of problems (PM: p = 0.002) (C: p = 0.007) (A: p = 0.017) (P: p = 0.001). For the 9th 

grade, the difference was significant only in the product of measures in G2 (p = 0.025). Thus, it 

is indicated that advances were significant in different types of combinatorial situations, 

depending on the experimental group and the school grade. 

 
PM 

Pre 

PM 

Post 

C 

Pre 

C 

Post 

A 

Pre 

A 

Post 

P 

Pre 

P 

Post 

5th Grade 

G1  

(Tree) 

0,57 2,73 0,42 0,89 0,63 1,42 0,26 1,05 

5 th Grade  

G2 

(List) 

1,50 2,30 0,20 0,60 0,80 1,10 0,35 1,15 

7th Grade 

G1 

(Tree) 

0,57 2,76 0,38 0,71 0,28 0,95 0,14 2,33 

7 th Grade 

G2 

(List) 

0,92 2,23 0,26 1,23 0,19 0,96 0,38 1,80 

9 th Grade 

G1 

(Tree) 

3,52 4,26 0,89 1,89 1,0 1,63 1,31 1,73 

9 th Grade 

G2 

(List) 

2,56 4,31 1,62 1,81 1,06 0,68 1,00 1,81 

Table 3: Average performance in the survey of possibilities by type of problem, with 6 possible 

points in each problem. PM: Product of Measures; C: Combination; A: Arrangement; P: 

Permutation. Source: Research authors 

In Table 4, it is possible to observe the performance averages in the indication of 

numerical expressions for the situations presented. With the exception of the combination 

situation in the 5th grade, in all other cases there was an advance in the averages.  

In combination in the 5th grade, no student was able to indicate the corresponding 

numerical expression, even after the intervention, which corroborates the difficulty that students 

at this level have in operating this type of situation. In spite of this, it is noticed the progress of 

5th grade students in the indication of numerical expressions in the other combinatorial 

situations, mainly because, when the statistical analysis was performed, G1 showed a significant 

difference between pre-test and post-test in all other types of combinatorial situations (PM: p = 
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0.003; C: p = 0.014; A: p = 0.044), and G2 showed a significant difference in the permutation 

situation (p = 0.045). The 7th grade G1 showed significant differences in the situation of 

product of measures (p = 0.002), arrangement (p = 0.021) and permutation (p = 0.009); G2 

presented in situations of product of measures (p = 0.001) and permutation (p = 0.007). The 9th 

grade G1 showed a significant difference in the situations of product measures (p = 0.018), 

combination (p = 0.010) and arrangement (p = 0.037); G2 only in product of measures (p = 

0.007). As in the survey of possibilities, advances in the indication of numerical expressions 

were significant in different types of combinatorial situations, for different experimental groups 

and different school grades.   

 
PM 

Pre 

PM 

Post 

C 

Pre 

C 

Post 

A 

Pre 

A 

Post 

P 

Pre 

P 

Post 

5th Grade 

G1 

(Tree) 

0,31 2,57 0,00 0,00 0,00 1,26 0,00 0,73 

5 th Grade 

G2 

(List) 

1,05 2,05 0,00 0,00 0,15 0,70 0,00 0,55 

7 th Grade 

G1 

(Tree) 

0,57 2,33 0,00 0,42 0,00 0,71 0,00 1,28 

7 th Grade 

G2 

(List) 
0,46 1,80 0,00 0,23 0,00 0,53 0,00 0,88 

9 th Grade 

G1 

(Tree) 
2,68 4,26 0,00 0,94 0,42 1,47 0,57 1,21 

9 th Grade 

G2 

(List) 
1,81 3,87 0,00 0,18 0,37 0,68 0,37 1,18 

Table 4: Average performance in indicating numerical expressions by type of problem, with 6 

possible points in each problem. PM: Product of Measures; C: Combination; A: Arrangement; 

P: Permutation. Source: Research authors 

The results presented indicate that both representations - trees of possibilities and lists - are 

effective in advancing performance to survey possibilities and the use of these representations 

can favor the development of combinatorial reasoning. It is noteworthy that the results show 

that the tree of possibilities seems to have a higher level of congruence with the numerical 

expression, when compared to the list, even if systematic. This is because in situations where 
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the use of the numerical expression was recommended, with a high number of possibilities, G1 

(tree) showed a significant difference in relation to G2 (list). In addition, in the analysis by type 

of combinatorial situation, it was also noticed that G1 presented better results in the use of 

numerical expressions. 

Regarding the use of intermediate representations, in the pre-test some students already 

realized that the list was a good strategy for resolving situations, as can be seen in Figures 8 

and 9. In Figure 8 the 5th grade student performed a systematic list and then indicated a 

multiplication operation, thus presenting an intermediate representation in the list and the arrival 

representation, a mathematical operation. The list has also been observed as a spontaneous 

representation used by students from grades prior to the 5th grade in previous studies (Pessoa & 

Borba, 2009). 

Figure 9 shows how a 9th grade student used the systematic list in a simplified way, so that 

he listed the six possibilities for words starting with the letter 'A' and then performed a 

multiplication by means of a generalization of possibilities, since if for the letter 'A' there are six 

possibilities, the other letters will also have six possibilities, being possible then, to multiply the 

number of possibilities per letter by the total number of letters. 

 

Figure 8: Arrangement situation with correct answer through the list of possibilities, with 

indication of the numerical expression that answers the problem, performed by a 5th grade 

student in the pre-test. Source: Montenegro, 2018 

 



 Montenegro, Borba & Bittar., p. 605 

Figure 9: Permutation situation with correct answer by generalizing the possibilities, 

performed by a 9th grade student in the pre-test. Source: Montenegro, 2018 

In the post-test, in addition to the list as an intermediate representation, there was also the 

use of the tree of possibilities by the group that used this representation in the intervention 

sessions, as shown in Figures 10 and 11. In Figure 10 it is understood that the 5th grader 

started with a tree of possibilities and realized that the use of PFC would be sufficient to arrive 

at the desired answer. 

 

Figure 10: Arrangement situation with correct answer through the Fundamental Principle 

of Counting, performed by a 5th grade student in the post-test. Source: Montenegro, 2018 

In Figure 11, the student also represented a tree of possibilities, but did not finish this 

representation, realizing that the use of the FCP is configured as a less expensive method. It is 

understood that the student also performed the count of repeated cases to divide, since in 

combination situations, the total number of cases must be divided by the number of repeated 

cases. In this example, it is clear that the student made explicit the treatment given to the 

numerical expression, that is, he presented the calculations that were performed to arrive at the 

response of the situation.  
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Figure 11: Combination situation with correct answer through the tree of possibilities and 

the Fundamental Principle of Counting, performed by a 7th grade student in the post-test. 

Source: Montenegro, 2018 

In other cases, the students chose not to use an intermediate representation, possibly 

because, for that situation, its use was no longer necessary, being used the Fundamental 

Principle of Counting directly. This is because, on some occasions, the same student, when 

solving problems with fewer possibilities, used a list or tree as an intermediate representation, 

but when solving problems with a greater number of possibilities, he solved it directly with the 

FPC. Figures 12 and 13 show examples in which students did not use an intermediate 

representation. 

 

Figure 12: Arrangement situation with correct answer using the Fundamental Principle of 

Counting, performed by a 7th grade student in the post-test. Source: Montenegro, 2018 

 

Figure 13: Permutation situation with correct answer through the PFC, performed by 9th grade 

student in the post-test. Source: Montenegro, 2018 

Final considerations 

In this research, the objective was to analyze the role that identification and transformation 

of conversion and treatment of registers have in advancing the knowledge of various 

combinatorial situations. For this, two studies were carried out. 
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In the first study, with students from the 5th grade of Elementary School, the hypotheses 

raised initially were confirmed, highlighting that the type of conversion carried out is relevant, 

with the conversion of tree of possibilities or list to the numerical expression being more 

difficult to identify than the conversion of natural language to a tree or list. The identifications 

are also influenced by the type of situation (Vergnaud, 1986), since the students showed greater 

difficulty with the combinatorial situations of arrangement and combination, mainly in the 

identification of the conversion to the numerical expression. This can also be seen in the 

justifications given for the resolution by numerical expression, since only one correct 

justification was found for each of these two problems of combination, given by the same 

student.  

Depending on the results of the first study, highlighting the difficulty of 5th grade students 

in identifying conversions to numerical expression, in the second study, different interventions 

were proposed in 5th grade classes, as well as in 7th and 9th grade classes. Thus, the 

development of the combinatorial reasoning of children in the last year of the initial years (5th 

grade: 10-11 year old students) and youngsters in the middle of the final years (7th grade: 12-13 

year old students) and in the last year of Elementary School (9th grade: 14-15 year old students) 

was investigated. The students were divided into two groups, so that in the three years surveyed 

there were interventions with a group that used trees of possibilities as intermediate 

representations – G1 – and with a group that used lists – G2 – between the starting register 

(language natural) and the arrival register (numerical expression). 

In this second study, the results indicated that both intermediate representations – tree of 

possibilities and systematic list – are good resources for teaching Combinatorics, confirming the 

hypothesis that both intervention groups would advance in their combinatorial reasoning, since 

the two intervention groups advanced in performance, showing significant differences between 

the average obtained in the pre-test and the average obtained in the post-test. It is also 

noteworthy that there is additional evidence of advances in combinatorial reasoning, as students 

presented different analyses for each combinatorial situation, as well as, in each problem, 

thinking about distinct groupings and ordering and about the use of each representation in 
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problems with less or greater number of possibilities. Despite this, when analyzing by type of 

situation in each grade, it is noticed that in the post-test the group that worked with trees (G1) 

performed better, mainly in the use of numerical expressions, compared to the group that 

worked with lists (G2). It is also clear that in G1 there was a greater number of correct answers 

in situations with a greater number of possibilities in the post-test, showing a significant 

difference with G2, only in those problems with a high number of possibilities. Thus, when the 

correctness of the problem was directly related to the use of a numerical expression, students 

who worked with trees of possibilities showed better performance than students who worked in 

the intervention with systematic lists, as a predicted hypotheses for this study, indicating a 

greater congruence of the tree of possibilities with numerical expressions. 

Thus, it is concluded that it is possible to promote advances in the combinatorial reasoning 

of Elementary School students through the use of both intermediate representations used in this 

study, allowing, especially with the use of the tree of possibilities, a better performance in the 

presentation of expressions corresponding to the resolution of situations. 

The discussions carried out show how necessary and important is a discussion articulating 

the Theory of Conceptual Fields and the Theory of Registers of Semiotic Representation. It was 

observed that the conversions have different levels of difficulty, depending on the type of 

register used, and the combinatorial situation treated. Thus, there is a need to analyze 

representation registers (Duval, 2009) in the light of different situations and their respective 

invariants (Vergnaud, 1986), since identification, conversion and treatment are important 

aspects, but it is necessary to consider that they are differentiated according to the combinatorial 

situation treated, be it an arrangement, a combination, a permutation or a product of measures. 

In the first study, the students' difficulty in identifying the numerical expressions from trees 

of possibilities or lists, before a specific intervention process, gave space in the second study, 

after the intervention, to verify that it is possible to expand students’ combinatorial reasoning 

with a significant advance in the use of numerical expressions, through the use of these 

intermediate representations. 
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Thus, it is emphasized that work with different combinatorial situations, through the 

discussion of their invariants, and with the use of systematic auxiliary representations, in 

activities involving identifications, conversions and treatments of registers, must be taken into 

consideration for a more effective teaching and learning of Combinatorics in Elementary 

School. 
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