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Abstract: This paper presents a study using a discursive perspective to develop a theoretical model of 

Mathematics for Teaching of the function concept, employing the following sources: a systematic 

review of the research literature, two series of textbooks and a discussion study with a group of 

teachers. The model presents a descriptive language with a theoretical structure that relies 

fundamentally on the realization and recognition rules inspired in Basil Bernstein's theory. Also, the 

model is based on categories of realizations (landscapes) of the concept of function. The landscapes 

that make up the model are the tabular, diagram, algebraic, transformation machine, graphic, pattern 

generalization and formal landscapes. The model provides a discursive transparency for the 

communication about function, which may inform curriculum development and curriculum material 

design for students and teachers as well as planning strategies to address this topic in educational 

contexts.  

 

Keywords: Mathematics for Education; Concept; Function; Realization; Recognition and Realization 

Rules. 

 

Introduction  
 

Investigations about the nature and the way Mathematics is developed, produced and used by the 

agents responsible for teaching it, have expanded considerably in recent decades (Barwell 2013; 

Chapman 2013; Davis and Renert 2009, 2013, 2014). The work done by Shulman (1987), that placed 

the knowledge of content and its integration with pedagogical knowledge at the forefront of 

education (Adler and Huillet 2008), is widely recognized as the theoretical starting point for research 

into fields that came to be known as Mathematical Knowledge for Teaching (MKT) and 

Mathematics for Teaching (MfT) (Adler and Davis 2006; Adler and Huillet 2008; Barwell 2013; 

Chapman 2013). 

The MKT and MfT constructions have been developed using different theoretical and 

methodological structures as their foundation. Cognitivist perspectives pervade research on these 

 
1 gracadom@ufba.br 
2 jonei.cerqueira@ufba.br 



Santos & Barbosa, p. 536    
 

constructs, but the approaches situated are growing and offer differentiated insights into such 

conceptualizations (Rhoads and Weber 2016).  

In this study, we are going to assume a discursive conceptualization of MfT. Considering that 

mathematical communication in educational contexts is produced referring to mathematical 

concepts, we understand MfT in terms of a certain concept, which in this research is the concept of 

function. 

The choice of the function concept emerges from the central role it plays in contemporary 

mathematics, permeating virtually many of its fields, and also being considered essential in other 

fields of science as a tool to model a wide range of phenomena (Güçler 2016; Steele at al. 2013).  

According to Sierpinska (1992), the importance of this concept has reverberated in the school 

context, which is reflected in a substantial body of theoretical and/or empirical research on the 

teaching and learning of this content in the field of Mathematics Education (Ayalon et al. 2015; 

Dubinksy and Wilson 2013). 

The function concept has a diversity of forms of communication (tables, algebraic expressions, 

graphs, etc. - usually called representations in the literature) and, consequently, of interpretations 

(Elia et al. 2007; Panaoura et al. 2017).  Contrary to what occurs in scientific mathematics, where the 

introduction of a mathematical construct is done through its definition (Tabach; Nachlieli, 2015), 

studies have shown that the presentation of a formal definition3 of the function concept, should be 

postponed in the teaching of this subject (Hansson 2006; Nachlieli, Tabach, 2012). Considering this, 

several alternatives and approaches have been presented to teach this concept (Callejo and Zapatera 

2014; Hitt and González-Martin 2015; Wilkie 2016). 

In light of the studies analyzed, we can infer there are varied communicative ways to realize4 the 

teaching of the function concept. As a consequence, the scope of this study is to identify, 

characterize, outline and structure such diversity in communicating the function concept in teaching 

 
3 For example: “Let E and F be two sets, which may or may not be distinct. A relation between a 

variable element x of E and a variable element y of F is called a functional relation in y if for all x∈E 

there exists a unique y∈F which is in the given relation with x” (Nachlieli; Tabach, 2012, p.14). 
4 Let us provisionally take the terms realize and realization as intuitive.   
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in terms of a conceptualization of the MfT of the Function Concept. We were inspired by concepts of 

Basil Bernstein's Theory of Codes (2000, 2003) to support and develop a conceptualization of MfT.  

 

Mathematical Knowledge for Teaching and Mathematics for Teaching 
 

The MKT model developed by Deborah Ball and colleagues stands out in the literature (for 

example, Ball at al. 2008). These authors built an MKT model that is composed of subdomains (Ball 

at al. 2008). According to Petrou and Goulding (2011), the MKT model proposed by Ball and 

colleagues is aligned with the cognitive tradition. Despite recognizing the context, therefore, the 

focus tends to be on the knowledge of an individual teacher (Petrou, Goulding, 2011). 

For Chapman (2013, 2015) it is not clear how cultural variability is accounted for in these 

models, even though the approaches that describe MKT in categories are more visible in the 

literature and provide useful constructs for investigating a teachers' knowledge for mathematics 

teaching.  

Hodgen (2011), who takes a situated perspective, argues that the mathematics teacher's 

knowledge is, like any other, "[...] situated within the complex and social world of the mathematics 

classrooms” (p. 27, emphasis added by the author).  In spite of this position, however, according to 

Barwell (2013), "[...] it is difficult to shift entirely away from a discourse of knowledge as possessed 

by the individual teacher" (p. 599). As noted by Stylianides and Delaney (2011), it seems that 

acknowledging the cultural dimension of teachers' mathematical knowledge is a relatively recent 

phenomenon. 

Adler and Huillet (2008) use the term MfT and, based on a social epistemological perspective, 

they assume that "[...] all mathematical activity is towards some purpose, and occurs within some or 

other (social) institution"(p. 22). Taking the same perspective, Kazima at al. (2008) argue that MfT is 

shaped both by the topic being taught and by the approach teachers use to introduce these concepts. 

Similarly, Andrews (2011) proposes the importance of recognizing not only the cultural context in 

which teaching and learning occurs, but also the topic under scrutiny.  
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Davis and Renert (2014) conceptualize Mathematics for Teaching5 as the "[...] subject matter 

knowledge of mathematics teachers [...]" (p. 3). According to the authors, MfT "[...] enables a 

teacher to structure learning situations, interpret student actions mindfully, and respond flexibly, in 

ways that enable learners to extend understandings and expand the range of their interpretive 

possibilities through access to powerful connections and appropriate practice." (p. 4).  

Summarily, we feel that the synthesis laid out allows us to corroborate the position taken by 

Rhoads and Weber (2016) that these constructs have been investigated based on the most varied 

epistemologies and, consequently, employing several methodological tools.  

Assuming that different interpretations and characterizations of a certain phenomenon, and even 

its existence, depend on the theoretical lens used to construct and analyze it (Barbosa 2013), this 

study develops and structures a conceptualization for MfT, which will be characterized by outlining 

its specificities and discursive boundaries, and by making clear how its communication is possible 

through specific descriptions of the communicative rules that constitute it. In order to operationalize 

this objective, we take inspiration in concepts from the Codes Theory concepts by the educational 

sociologist Basil Bernstein (2000, 2003), adapting them for the purpose of the study according with 

explanations ahead.  

The choice for the term MfT instead of MKT derives from the discursive theoretical framework 

used in the study. From this perspective, the communicative actions (discursive products) constitute 

the object of analysis itself; as such, no representations of cognitive categories will be attributed to 

them, which resonates with our discursive perspective. 

A Perspective for a Theoretical Model of MfT of a Concept 

According to Bernstein (2000, 2003), all communication is governed by inherent principles of 

the pedagogic practice in which it occurs. Pedagogic practice refers, for example, to the relationship 

between teachers and students in the teaching and learning of certain topics (Bernstein 2000). More 

broadly, Bernstein (2000) defines "[...] pedagogic practice as a fundamental social context through 

which cultural reproduction-production takes place" (p. 3).  

 
5 Davis and Renert (2014) use the Mathematics-for-Teaching or M4T nomenclature.  
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Given that the communication realized in the teaching and learning of mathematics at the school 

setting is organized referring to mathematical concepts, we assume that such communication at that 

context is governed by their own principles. These are called classification and framing by Bernstein 

(2000, 2003). The principle of classification creates, regulates and legitimates boundaries between 

subjects, spaces, discourses, contents, practices, and objects, placing them into categories by 

isolating them; in short, the categories symbolize these boundaries (Bernstein 2000, 2003; Cause 

2010). Isolation creates the space for a category to become specific (Bernstein 2000). The 

classification principle establishes recognition rules. These rules provide the means to distinguish the 

specificity of a category through the nature of its texts (Bernstein 2000, 2003). For Bernstein (2000), 

text is any communicative act expressed by someone, covering verbal, written, gestural or spatial 

texts. The relationships between the categories (the degree of isolation between them) are 

characterized by the variation in the classification values, and these values can vary from a stronger 

(C+) to a weaker (C-) classification. A C+ is said to exist when the categories are strongly isolated, 

that is, their borders are explicit; in this case, when the categories are more specialized. A C- occurs 

when the isolation is reduced (Bernstein 2000, 2003). For example, the gradation of the classification 

principle may be used to analyze the relationships intra-disciplinary in a given school. In this case, 

when there is a C+, contents are well insulated from each other by strong boundaries (Cause 2010; 

Morais and Neves 2007, 2011). Then there is a reduced or even absent relationship between their 

respective texts. Such a degree of classification generates a set of recognition rules that create a 

specific syntax for each content (Bernstein 2003; Cause, 2010). Morais and Neves (2011) suggest 

that one of the characteristics of the pedagogical practice that the research has shown to be 

fundamental for the scientific learning of the students is that with C- at the level of 

interdisciplinarity. 

The framing principle deals with the nature of the control over the communicative rules, 

governing and legitimizing the communication forms by/between the categories of any pedagogic 

practice (Bernstein 2000). Analogously to the classification principle, there is variation in the 

gradation of the framing principle, these values can vary from a stronger (F +) to a weaker (F-) 

framing.  The framing principle regulates the realization rules, which provide criteria for selecting 
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and putting in relation the legitimate texts for each category, that is, for generating what counts as 

legitimate communication and, hence the range of possible texts (Bernstein, 2003). According to 

Bernstein (2000), “[...] different values of framing act selectively on realization rules and so on the 

production of different texts.” (p. 18). Thus, “framing values shape the form of pedagogical 

communication in a given context”, […] “conveying different rules for texts creation” (Morais and 

Neves 2009, p. 119). 

At this point, we might say that classification and framing regulate the communication of the 

concept of function at school. Teachers and students are engaged in the process of recognizing rules 

to realize texts. It follows one may be able to find variations throughout different countries, regions, 

cities, schools, and classrooms. However, they are all part of which we call school mathematics, and 

it is possible to identify classification and framing rules that go through all those settings. 

From this perspective, a MfT of a concept (the function concept, in this study) will be established 

identifying and characterizing its boundaries and communicational forms by revealing the 

recognition and realization rules generated from their potential classification and framing values, 

respectively, which might operate in the pedagogic relationships expressed (or to be expressed) in 

schooling contexts. We use classification, framing, recognition and realization rules as analytic tools 

to help us construct categories that express different ways of communicate the concept of function. 

A mathematical concept is understood as a set of realizations (Davis and Renert 2014) (texts) that 

are associated or may be associated with the word that names it.  So, the function concept is 

constituted of a set of realizations associated or potentially associated with the word "function". The 

realizations are considered texts, which can take the form of definitions, algorithms, metaphors, 

analogies, symbols, applications, gestures, drawings or concrete objects (Davis and Renert 2014).  

Various realizations of the function concept known in the literature are usually referred to as 

representations, such as tables, algebraic expressions, and graphs. We chose to use the designation 

"realization" because the purpose is not to characterize a concept in a dualistic way, as if the 

mathematical object (function) had an autonomous existence, i. e., independent of its representations, 

(realizations, in our understanding). In short, a mathematical concept is constituted by its 

realizations, in such way that we can only speak of a concept in terms of its realizations themselves.  
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Based on these assumptions, we name Mathematics in the Teaching (MiT) of the Function 

Concept as the set of communicational acts (texts) properly being realized in the dynamics of the 

teaching of the function concept by the agents in charge of this task. It takes place according with the 

classification and framing principles that operate in a given pedagogic practice. So, to speak, MiT of 

the function concept refers to the way teachers participate in pedagogic practices carrying out their 

job of teaching the concept. 

In its turn, we see Mathematics for Teaching (MfT) of a mathematical concept is a re-

presentation of the MiT. We use the term re-presentation, separating the prefix with a hyphen 

because we want to suggest that the MfT of a concept refers to another communicative form 

(presented again) on the ways to realize the concept in pedagogic practices. Although MfT refers to 

MiT, the latter occurs only in the emergent dynamics of the pedagogic practice in the school context 

(i.e., in the pedagogical relations (to be) affected), whereas the former is only a re-presentation, that 

is, an idealization of the other. 

As examples of MfT of a concept, that is, of re-presentations of MiT of a concept, we can 

mention: instructional materials addressing this concept and teachers investigating and presenting 

proposals to teach this concept. Among those and other possibilities, this study focuses on a 

characterization of MfT as a theoretical model. The purpose is to present it in a structured and 

systematic way, identifying its categories and properties descriptively. 

In order to construct a model of MfT of a concept, we use recognition and realization rules as tool 

to form categories, which we call landscapes to employ Davis and Renert’s (2014) terminology. A 

theoretical model of The MfT of a Concept can be built by using different sources. In the current 

study, we used a literature review, textbooks and a discussion of a group of teachers as sources of 

realizations of the function concept in such as way we are going to explain the reasons in the 

following paragraphs.  

According to Davis and Renert (2014), there is an expressive body of research in the field of 

Mathematics Education investigating the variety of realizations (commonly named representations) 

in the understanding of a concept. The literature, therefore, appears to be a promising way to shed 

light on a wide range of realizations of the function concept. 
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The textbook is one of the main references of the pedagogic practice in the school context 

because it is a communication tool guiding and assisting teachers in their teaching tasks, providing 

support in the selection and sequencing of content, in the methodological strategies, in the 

assignment of tasks to students, and in the organization of evaluation activities (Alajmi 2012; Nicol 

and Crespo 2006; Reis 2014; Shield and Dole 2013). According to Mesa (2004) and Nicol and 

Crespo (2006), the textbook is an expression of the intended curriculum (objectives and aims for the 

teaching and learning of mathematics established by the regulatory bodies). In fact, from a 

Bernsteinian perspective, the textbook is the result of the selection and appropriation of texts arising 

in scientific fields and official documents established by the regulatory agencies in education, 

bringing all texts together in a special relation to one another, and transformed into texts for the 

purpose of teaching and learning. In Brazil, the textbook is legitimized by the educational system 

(Granville, 2008), which regulates, in its texts, the expression of the discourses from scientific fields 

and normative agencies in education through a textbook evaluation program.   

Teachers play a central role in the teaching and learning process (Even and Ball 2009) since they 

are vital participants in the production of the mathematical communication carried out in the 

pedagogic practice. According to Davis and Renert (2014), teachers working together generate rich 

lists of realizations of a concept since they examine it in order to situate it in the context of their 

teaching experiences.  

We understand that the three sources mentioned above provide a variability of realizations, 

which bring robustness to the theoretical model MfT of the Function Concept we aimed to construct. 

As we suggested above, we used the following sources for the construction of the theoretical model: 

analysis of studies investigating the teaching and/or learning of this concept (Santos and Barbosa 

2019), textbooks (Santos and Barbosa 2017) and a collective study with teachers analyzing the 

teaching of the function concept (Santos and Barbosa 2016). 

 

Methodological Aspects, Contexts, and Participants 
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In order to organize the realizations from the three sources into categories (landscapes) and to 

analyze their communicative implications, and, therefore, to construct a model, we get inspired not 

only the classification, framing, and recognition and realization rules concepts from Basil Bernstein's 

theory, but also part the organizational configuration of the Concept Study (CS) proposed by Davis 

and Renert (2009, 2013, 2014) as an analytical tool to structure the model.  

CS is a strategy originally developed by Davis and Renert (2009, 2014) as a tool to discuss a 

MfT shared by a group of teachers. It is a participatory strategy carried out with teachers with the 

purpose of engaging them in analyzing the wide range of realizations, associations, and 

interpretations that constitute a mathematical concept and providing support to its teaching and 

learning. The Concept Study was structured in emphases. In the present research, we have chosen the 

following emphases to organize the sources: realizations, landscapes, and entailments (Davis and 

Renert 2014). 

Based on the theoretical perspective that underlies this study, our way of using the entailments 

and landscapes emphases differs from the one originally given by those authors. Landscapes, here, 

are erected based on the convergence of recognition and realization rules. On the other hand, the 

entailments are seen as communicative potentialities and limitations arising from the different 

conceptual associations established by the realizations that make up each landscape, which reveal 

different understandings and communicative facets of a mathematical concept. In order to analyze 

the corpus of papers addressing the teaching and/or learning of the function concept, we employed in 

the systematic literature review, which is characterized as a method to identify, analyze, and 

synthesize large research bodies of acknowledged quality in a transparent, rigorous and integrative 

manner (Petticrew and Roberts 2006; Victor 2008). However, our approach on the corpus was to 

identify different realizations of the function concept. 

The corpus of the systematic review consists of articles dealing with the teaching and/or 

learning of the function concept in the following journals: Boletim de Educação Matemática 

(BOLEMA), Boletim do Grupo de Estudos e Pesquisas em Educação Matemática (GEPEM), 

Educação Matemática Pesquisa (EMP), Educational Studies in Mathematics (ESM), Journal of 

Mathematics Teacher Education (JMTE), and Zetetiké. These journals, among others, are recognized 
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for being responsible for publishing relevant studies in the field of Mathematics Education in Brazil 

and over the world, and all have been evaluated by the CAPES Brazilian Funding Agency as high 

reputation Since the current study was developed in Brazil, we sought to contemplate journals 

published in the country, in addition to journals that are considered international. We restricted the 

search period from 1990 to 20156, since we believe this timeframe is broad enough to compose a 

substantial and considerable corpus of studies to point out the realizations of the function concept 

circulating and being produced in the teaching of this concept. The selection was initially based on a 

reading of the title, abstract and keywords. As we recognized relevant data related to the research 

objective in the studies, these articles were fully read. This way, twenty-nine articles were selected, 

as shown in Table 1. 

 

 

 

Journal Authors 
BOLEMA Birgin (2012), Meneghetti and Redling (2012), Asghary, Shahvarani and 

Medghalchi (2013), Dazzi and Dullius (2013), Strapason and Bisognin (2013), Callejo 

and Zapatera (2014), Maciel and Cardoso (2014) 

EMP Rossini (2007), Beltrão and Igliori (2010) 

GEPEM Silva et al. (2001), Frant (2003), Maggio and Nehring (2012) 

ESM Even (1990), Confrey and Smith (1994), Schwarz and Dreyfus (1995), Slavit 

(1997), Yerushalmy (2000), Sajka (2003), Moschkovich (2004), Falcade, Laborde and 

Moriotti (2007), White (2009), Ayalon, Watson and Lerman (2015), Hitt, González-

Martín (2015), Ronda (2015), Tabach and Nachlieli (2015).  

JMTE Sánchez and Llinares (2003), Steele, Hillen and Smith (2013), Wilkie (2014) 

ZETETIKÉ Brito and Almeida (2005) 

Table 1 - List of articles selected per journal 

Source: authors 
 

The first textbook-selection step was carried out based on works recommended by the Brazilian 

Textbook Evaluation Program (BTEP) of 2014 (Brazil 2013a) and 2015 (Brazil 2014) for the final 

 
6 Some journals are not available online or started their activities after 1990: JMTE – 1998; 

BOLEMA – 2006; Zetetiké – 2001; EMP – 2004. 
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years of Middle School (Ensino Fundamental II) and High School7. The BTEP is run under the 

Ministry of Education in three-year cycles alternated for each education segment in order to provide 

teaching material to public basic education schools systematically, regularly and free of charge. The 

program selects the textbooks based on previously established criteria, which are both general and 

specific by area. The collections selected are endorsed in a written guide to teachers, which is 

composed of reviews, a brief description and an assessment of the characteristics of each textbook. 

Based on the analysis in the guides, the principal or the body of teachers at each school chooses the 

books that will be used in the three years following the publication of the Guide. 

We carried out a complete reading of the guides of the years 2014 and 2015, analyzing them in 

detail, especially regarding which textbooks had clearer and simpler texts, more contextualized 

activities, a diversity and significant amount of exercises, and quality illustrations, bearing in mind 

that these are the criteria that teachers use in their selection of math textbooks approved by the 

guides, according to Trindade and Santos (2012) and Vieira (2013). As a result, we selected the 

collections Matemática, by the authors Luiz M. Imenes and Marcelo Lellis, for the 6th to 9th grade 

(Imenes and Lellis 2010a, 2010b, 2010c, 2010 d), and Matemática, by the author Manoel Paiva, for 

high school students (Paiva 2013a, 2013b, 2013c). 

At last, the study with the group of teachers was implemented through an in-service teacher 

education program, organized and conducted by the first author, promoted by the Institute of 

Mathematics at the Federal University of Bahia (UFBA). The program took place between 

September and November 2015, and it had a total duration of 60 hours, thirty-two of which through 

face-to-face group discussions. All teachers who took part in the program had degrees in 

Mathematics and were teaching middle and/or high school at the time in the metropolitan region of 

the Brazilian city of Salvador of Bahia8. In Table 2, we present the profile of all participating 

teachers.  

 
7 In Brazil, the final years of basic education (Ensino Fundamental II, equivalent to middle school) 

lasts 4 years and teach students with an average age (standard) between 10 and 15 years. The 

following high school period lasts for 3 years. 
8 All participants signed the Informed Consent Form in compliance with Resolution 466/12, which 

governs research involving human subjects (Brazil, 2013b) and authorizes researchers to use all the 

information generated during a course on scientific research. 
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Name9 School level taught Time teaching in years 

Cibele Middle and High School 4  
Claudia Middle School 4  
Cledson Middle School 5  
Deise High School 15  
Elcio Middle and High School 30  
Prof. Eusébio Middle and High School 15  
Janice Middle School 13  
Luis Middle School 3  
Nadison Middle and High School 15  
Patrícia Middle School 3  
Regina Middle School 20  
Sampaio Middle School 25  
Talita Middle and High School 1,5 

Table 2 - Participant Profiles 
Source: authors 

 

The program was started with thirteen participants. However, after some were not able to show 

up regularly, in such a way there were seven participants left by the end of the fifth face-to-face 

meeting.  

The program format was inspired by the Concept Study groups carried out by Davis and Renert 

(2009, 2014), especially with respect to the sequential organization of activities. Only the first 

meeting was planned in advance, therefore, and the configuration of the other meetings emerged 

during the program of each previous session based on the discussions that took place.  

To record the data from the program, we used a field diary, audiovisual recordings of all 

meetings and the written productions of the participants (records on paper and on the blackboard). 

Despite the wealth of data from the study with teachers, due to the objectives of the article we restrict 

ourselves to presenting the realizations of the concept of function and their entailments.  

Summing up, we combined multiple sources: bibliographic research (Gil 2002), and two 

empirical studies - textbooks and a group of teachers10. In doing so, we intended to raise as many 

realizations of the concept of function as possible to build a rich model. Once the realizations had 

been collected, we read each of them, trying to identify which rules of recognition and realization we 

might derive from them. Then we were able to bring the realizations together by the convergence of 

those rules, allowing us to propose landscapes for the concept of function. Later, our interpretative 

 
9 Only the name of the teacher Talita is fictitious, the other participants disclosed their identification, 

using their first or last name. 
10 All analyzed sources focused on the function concept in middle and high school education. 
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work was to identify the entailments for each landscape. It allowed us to organize the landscapes into 

a structure, which we present below. 

The Landscapes and their Entailments  

The realizations identified as associated with the function concept in the three sources were 

grouped in the tabular, diagram, algebraic, transformation machine, graphic, pattern generalization, 

and formal landscapes.  

Tabular landscape 

The tabular landscape includes the realizations of a function as tables, which are realized by the 

organization of input data (elements of the domain of a functional relationship) and their 

corresponding output data (elements of the image of the functional relationship) in rows (or 

columns). Due to its nature, the realizations of this landscape have the communicative limitation that 

they can only be used for functional relationships that have domain and image sets with a finite 

number of elements. 

Tabular realizations can be introduced even before the word function appears in communications 

for education, such as in situations to investigate the relationship of direct and inverse proportionality 

(Imenis and Lellis 2010b; Steele at al. 2013), as in the example described in Part A of Table 3. In 

this example, there are two functional relationships, namely, the one associating the side of a square 

to its perimeter and the other associating the side of a square to its area. In the first case, there is a 

direct proportionality and in the second there is not. In a note to the teachers, Imenis and Lellis 

(2010b) observed that the direct proportionality would be thereafter described by equations of the 

type , in which k is the proportionality constant.  

Part A Part B 

kxy =
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Solve the questions related to 

the geometric figure of the 

square. 

A) The table shows some 

measures concerning the 

squares. Complete it: 

Side 

(cm) 

Perimeter 

(cm) 

Area 

(cm2) 

10 40 100 

15   

20   

25   

B) Is the perimeter directly 

proportional to the length of the 

side? 

C) Is there a direct 

proportionality between the area 

and the length of the side? 

A water reservoir with a capacity of 1,000 liters is full. The meter 

is opened to empty it and a timer is triggered as soon as a constant 

flow starts, as shown in the figures below. 

 
Fill out the table taking the above illustrations into account. 

Time 0 0.5 1.0 1.5 2.0 2.5 3 4 5 

Volume 1000 ___ 800 ___ 600 ___ ___ 200 __ 

Does the volume of water observed in the reservoir depend on 

elapsed time?  

 

Table 3 - Tabular  

Source: Imenis and Lellis 

(2010b, p.146-147) 

Source: Reproduced from Rossini (2007, p. 228 - 230) 

  

The question reported in Part B of Table 3 was suggested for the introduction of the function 

concept by a group of teachers in the study by Rossini (2007). The tabular realization is used to 

organize the data of the functional relationship and to characterize both the relationship of 

dependence between the variables (Rossini 2007; Silva et al. 2007) and the nature of these variables 

(Maggio and Nehring 2012; Strapason and Bisognin 2013) as notions of the function concept.  

Teacher Cybele, a participant of the in-service program, also suggests the tabular realizations of 

functional situations in daily life to introduce the function concept, emphasizing the importance of 

making clear that "all values of x are associated with the values of y and that each value of x is 

associated with a single value of y” (2nd Meeting) - where x is the independent and y is the dependent 

variable. In this case, the purpose is to present the univalent nature of a functional relationship - each 

element of the input set (independent variable) is associated with a single element of the output set 

(the dependent variable) (Even, 1990; Steele at al. 2013) -, and, therefore, to establish a criteria for 

the recognition of a table as a realization of a functional relation, in addition to linking the notion of 

association between variables as a way of interpreting a functional relation. 

Bloch (2003) and Schwarz and Dreyfus (1995) emphasize tabular realizations are generally 

partial, since these realizations only allow you to view some data of the functional relationship, 

which can lead to ambiguity, such as inferring that the functional relationship is linear or has an 
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extreme value, even when this is not the case. In this sense, Prof. Eusébio stated in the 5th meeting: 

"If we have a phenomenon and focus on part of this phenomenon, then we'll have mathematical 

models (functional relationships) representing that fragment, but not the phenomenon as a whole." 

These considerations point to some communicative limitations (entailments) of the tabular 

realizations. 

 

Diagram Landscape 

This landscape is composed of function realizations as arrow diagrams, which are realized with 

all elements of the domain and range sets (indicated here by A and B, respectively) in two disjoint 

diagrams, matching each element of A with only one element of B (through an arrow). Based on 

those realizations it is possible to make explicit the arbitrary character of a functional relationship, 

indicating a communicative potentiality of the realizations of this landscape. For example, Paiva 

(2012a) and Meneghetti and Redling (2012) define a functional relationship as a correspondence 

between two non-empty sets A and B, in which each element of set A matches a single element of 

set B. The arbitrary nature of the functional relationship concerns both sets A and B, which need not 

be numeric, and the correspondence, which need not follow a pattern (Even 1990, Steele et al. 2013; 

Tabach and Nachlieli 2015). In Part A of Table 4, we present a realization of a functional 

relationship with a diagram.  

Part A Part B Part C 

 
 

 

Table 4 - Diagram  

Source: Paiva (2013a, 

p. 121) 

Source: Records from Teacher 

Luis Sergio - 7th Meeting 

Source: Paiva (2013a, p. 143) 

 

In the textbook (Paiva 2012a) and the discussion with the teachers, the diagram realizations were 

recommended for an introduction to the function definition, signalize that it is possible both to 

identify the domain, range, and image (as a subset of the range) sets of a functional relationship, and 
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to present their respective symbolic notations. These elements, as Teacher Nadison emphasized, are 

part of the characterization of all types of functional relations, and as such, they compound the 

mathematical syntax of the function concept. 

In the study with the teachers, the diagram realizations were used because of their iconic 

character to provide visibility to the definitions of injective, surjective and bijective (two-way 

correspondence) functional relationships (Part B of Table 4). With this characterization and 

recognition of a bijective functional relationship, Paiva (2012a) presents the definitions of an 

invertible functional relationship and its inverse relationship (Part C of Table 4).  

As a communicative limitation of the diagram landscape, we mention the fact that they are 

restricted to functional relations with finite domain and range sets and a limited number of data, as 

well as hiding the notion of variation. 

Algebraic Landscape  

The algebraic landscape is made up of the function concept realizations establishing a functional 

relationship11 as a correspondence, mapping, association or relationship between the independent and 

dependent variables in a unique way12 through a law, formula or algebraic expression. When the 

independent variable is indicated by x and the dependent variable by y, the function realization as an 

algebraic expression is recognized and realized by the text 𝑦 = 𝑓(𝑥).  

For real functions with real variable, Paiva  (2014 a) points out that when only the law of 

formation of the function  (𝑦 = 𝑓(𝑥)) is presented, one must consider that the domain of f is the 

broadest subset of R in which f can be defined and its range is R. 

Imenis and Lellis (2010b, 2010c) introduce algebraic realizations even before the formal 

presentation of the function definition as formulas that express "[...] a relationship between 

quantities" (Imenis and Lellis 2010c, p.86).  The authors suggest teachers explore the expressions: it 

depends, varies and is a function of because "[...] the use of these expressions helps to transmit ideas 

that develop the function concept" (Imenis and Lelis 2010b, p. 216). In Part A of Table 5, we show 

 
11 In this landscape, we address the algebraic realizations of functional relations whose domain and 

range are subsets of the set of real numbers R.  
12 With the exception of equivalent algebraic expressions. 
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an example of one of these algebraic realizations (formulas), in which it is possible to explore that: Q 

depends on x, Q varies with x or Q is a function of x. In addition, this formula allows someone to 

determine a unique value for Q based on any x given (x ≥ 013), establishing the criterion for the 

recognition of an algebraic formula, law or expression as an algebraic realization of a functional 

relationship, that is, a formula of the type 𝑦 = 𝑓(𝑥) is the algebraic realization of a functional 

relationship 𝑓if, and only if, y is unique for each x (Confrey and Smith 1994). 

Part A Part B 

In a certain town, the cost of the 

water consumed in a household 

is calculated in accordance 

with:  

The formula for 𝑥 ≤ 20is 𝑄 =

2,5𝑥  

The formula for 𝑥 > 20 is 𝑄 =

4,7𝑥 − 44, where𝑥is 

consumption in m3 and 𝑄is the 

amount payable. 

In some factory, the production cost p, in R$, of each 

chocolate depends on the quantity q of chocolates 

manufactured, and this quantity depends on the number n of 

machine hours. These dependencies are described by the 

following functions: 𝑝 = 3 + (500/𝑞) and 𝑞 = 200𝑛 

A) If this machine runs for only 5 hours, what will be the 

cost of production of each chocolate? 

(B) Express p as a function of n.  

(C) Express n as a function of p. 

Table 5 - Algebraic  

Source: Imenis and Lellis 

(2010c, p.189-190) 

Source: Paiva (2014a, p. 147) 

 

Bertrand and Igliori (2010), Frant (2003), Maciel and Cardoso (2014), Rossini (2007), Prof. 

Nadison (2nd Meeting) recommend that the function concept should also be addressed in education as 

a mathematical model to describe natural, everyday life and other scientific phenomena, 

demonstrating its pragmatic nature, as well, in the first case bringing the academic texts closer to 

everyday texts. Corroborating this recommendation, the algebraic realizations of Parts A and B of 

Table 5 are used to model phenomena mathematically, translating their behavior by clarifying the 

relation of dependence between the variables in a concise and compact manner, thereby providing 

the quantification of the phenomenon under investigation (Beltrão and Igliori 2010; Teacher Eusébio 

- 2nd Meeting; Slavit 1997). 

In Part B of Table 5, we present a question proposed by Paiva (2014a), in which to solve item 

B, it is necessary to perform the composition poq algebraically based on the algebraic realizations of 

 
13 Because of the context of the problem. 
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p and q, and in item C its inverse, whose texts are 𝑝 = 3 + (5/(2𝑛)) and 𝑛 = 5/(2(𝑝 − 3)), 

respectively. 

 The algebraic realizations have concise texts that condensate information about the functional 

relationships into a single string of symbols (Schwarz and Dreyfus1995; Ronda 2015). This 

characteristic provides for both the recognition and characterization of types of functional relations 

(Wilkie 2014) regarding the execution of operations, such as adding, subtracting, multiplying, 

dividing, composing functional relations (when possible) and also determining the algebraic inverse 

of an invertible function (Sánchez and Llinares 2003; Ronda 2015; Yerushalmy 2000). 

However, despite of communicative potentialities of these realizations previously mentioned, 

emphasizing algebraic realizations in the teaching of the function concept may make the function 

concept indistinguishable from other algebraic realizations (Sajka 2003). This predominance can 

have the following consequences, for example, (i) not considering other elements of a functional 

relationship, compromising the recognition, for example, that 𝑓(𝑥) = 𝑥 + 3 and 𝑔(𝑥) = (𝑥2 + 𝑥 −

6)/(𝑥 − 2) can set the same functional relationship depending on the domain (Schwarz; Dreyfus, 

1995; Slavit, 1997); (ii) not taking into account that for a non-bijective algebraically feasible 

functional relationship, you can restrict your domain and/or range sets getting another functional 

relationship with the same algebraic realization, as long as it's bijective and, therefore, invertible14; 

(iii) preventing the recognition of functional relationships that can't realize algebraically (for 

example, the functional relationship that has a list of words as its domain, with each word matching 

its first vowel) (Steele; Hillen; Smith, 2013). 

 

Transformation Machine Landscape 

This landscape is composed of function concept realizations as a metaphor of a machine that 

transforms inputs (raw materials or input elements) into outputs (products or output elements). In 

 
14 For example, the square functional relationship 𝑓: 𝑅 → 𝑅; 𝑓(𝑥) = 𝑥2 is not bijective, but when its 

domain and range are restricted to the set of non-negative real numbers(𝑅+), we obtain the 

functional relationship 𝑔: 𝑅+ → 𝑅+; 𝑔(𝑥) = 𝑥2, which is bijective and, therefore, invertible. Its 

inverse is the functional relationship ℎ: 𝑅+ → 𝑅+; ℎ(𝑥) = √𝑥. 
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Table 6, we show two iconic texts of function concept realizations as a transformation machine, in 

which each input element is transformed/processed/modified into a (single) output element. 

Part A Part B 

 

x P(x) 

0 1 

1 2 

2 4 

3 8 

5 32 

8 256 

1

0 

1024 

 

 

Table 6 - Transformation Machine  

Source:  Rossini (2007, p. 243) Source: Records from Teacher 

Sampaio - 1st meeting 

 

A transformation machine is more informal and related to the daily experience of students. For 

this reason, they are recommended by Asghary at al. (2013), Rossini (2007), Wilkie (2014) and by 

Teacher Sampaio to introduce the function concept in teaching.  

Through the realizations as machine, it is possible to explore the relationship between the 

dependent and independent variables (Wilkie 2014), introduce the domain of a functional 

relationship as the set formed by the input elements and the image as the set consisting of the output 

elements (Rossini 2007; Teacher Sampaio - 1st Meeting), and also to incorporate the notions of 

process, change and transformation to the interpretative network of the function concept (Sánchez 

and Llinares, 2003; Teacher Sampaio - 1st meeting).   

By revealing the notions of process, change, and transformation, the function concept 

realizations as transformation machine are only compatible with functional relations with numeric 

input (domain) and output (image) data, and which obey a law or formula, as in Part A of Table 6, 

in which the algebraic realization of the functional relationship is 𝑃(𝑥) = 2𝑥, and in Part B, 𝑦 = 2𝑥. 

In addition, it is not possible to characterize the range of a functional relationship through such 

realizations. These considerations point to some communicative limitations of the realizations of this 

landscape. 
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Graphic Landscape 

The graphic landscape is formed of graphic realizations (graphs) of a functional relationship, in 

which the domain and range are subsets of the set of real numbers ( ). The graph of a functional 

relationship 𝑓: 𝐴 → 𝐵,of this nature is a subset of 𝑅 × 𝑅, consisting of all ordered pairs (𝑥, 𝑦), where 

𝑥is a domain element of 𝑓 (set A) and 𝑦 = 𝑓(𝑥). 

The recognition of a subset of the Cartesian coordinate system (𝑅 × 𝑅) as the graphic realization 

of a functional relationship may be operationalized through the so-called vertical line test (Paiva 

2014a; Teacher Sampaio - 7th Meeting; Slavit 1997; Steele at al. 2013). This test is based on the 

univalent nature of a functional relationship, and consists in drawing straight lines parallel to the 

vertical axis (of the dependent variables), passing through points of the abscissa x (independent 

variable), with x being a domain element of the relationship, so that this subset is a graphic 

realization of a functional relationship of this domain if, and only if, each one of these straight lines 

intersects the subset in a single point (Paiva 2014a; Teacher Sampaio - 7th Meeting; Steele at al. 

2013).  

The graphic realization of a functional relationship is presented in Imenis and Lellis (2010d) 

based on the algebraic realization. Considering the example of a functional relationship realized 

algebraically by 𝑓(𝑥) = −𝑥2 + 4, the process shown by the authors to build a graphic realization of 

this functional relationship consists in organizing a tabular realization, marking some points ((x, 

f(x))) in the  Cartesian coordinate system, repeating the process considering more points, connecting 

these points, assuming that a curve called a parabola passes through them, so that "if we drew infinite 

points we would have a continuous curve without jumps or gaps" (Imenis and Lellis 2010d, p. 214). 

In Part A of Table 7, we reproduce the above example. The authors argue that this approach is an 

accessible way to explain to a student at this level of education why "[...] the points should be 

connected so as to form a smooth curve" (Imenis and Lellis 2010d, p. 213, emphasis by the authors). 

Part A Part B 

R
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The following graph describes the 

index f(t) of a state's stock exchange 

in percentages, as a function of time 

t, in hours, since the beginning of 

trading at10 h, until its closing at 18 

h on a given day. 

 

Table 7 - Graphic  

Source:  Imenis and Lellis (2010b, 

p.214) 

Source: Paiva (2014a, p. 126) 

  

The adopted approach legitimizes not only the function realizations as graphs in the school 

context of basic education, but also the process of drawing them, which according to the authors is: 

"Formula→Table→Marking points→Joining points" (Imenis and Lellis 2010d, p. 214). We 

emphasize that this process is feasible15 as long as it acknowledges what the expected graphic 

realization is, and, therefore, which points should be considered to realize the functional relationship 

graphically, with the support of the algebraic realization. Such a procedure to graphically realize a 

functional relationship based on the algebraic realization is also adopted in the high school collection 

(Paiva 2014a, 2014b, 2014c) under analysis. As specific types of functional relationships and their 

respective algebraic realizations are inserted, the realization of the corresponding graphs follows 

procedures in accordance with the functional relationship.  

The aforementioned procedure establishes connections (bridges) between the algebraic and 

graphic landscapes. The use of digital technologies is recommended by Dazzi and Dullius (2013), 

Moschkovich (2003), and White (2009) to streamline and, therefore, encourage the establishment of 

bridges between the algebraic, graphic and/or tabular landscapes.  

Through the graphical realizations it is possible to infer and analyze the properties and 

characteristics of the functional relationships, including: domain, image, signal, limits, growth and 

decline intervals, injectivity, and the existence of extremes and zeros (Paiva 2014a; Sánchez and 

 
15 Assuming that the functional relationship is realizable graphically and continuous. 
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Llinares 2003; Strapason and Bisognin 2012). As in the example reported in Part B of Table 7, 

which describes a stock market index on a given day. The global or local behavior of the 

phenomenon modeled by a functional relationship can, therefore, be viewed, analyzed, recognized 

(Prof. Eusébio - 5th Meeting; Teacher Sampaio - 3rd Meeting; Sánchez and Llinares 2003) and 

legitimized, in this context, based on the analysis of its graphic realization.  This analysis of the 

graph presented in the previous paragraph enables the establishment, in our terms, of bridges 

between the algebraic and graphic landscapes through the recognition and legitimization of the 

equivalence between the procedures that are linked to the texts of each one of these landscapes 

(Bloch 2003; Moschkovich 2003; Slavit 1997).  

Despite the communicative potential of the graphic realizations already mentioned, some studies 

consider that its predominance in teaching with a focus on continuous functional relations, mostly in 

linear and quadratic functional relationships, can hinder the recognition of functional relationships 

with graphic realizations that are not easily realizable, for example, its graphic realizations feature 

leaps), or even functional relationships that cannot be realized graphically such as the Dirichlet 

function 𝑔(𝑥) = {
0, if 𝑥 is rational
1, if 𝑥 is irrational

  (Kleiner, 1993; Even, 1990; Steele; Hillen; Smith, 2013), 

which is discontinuous in all points of its domain. 

Pattern Generalization Landscape 

The pattern realization landscape of the function concept is composed of texts that can be used to 

determine the image of any element of the domain of a functional relationship (numerical sequences, 

sequences of geometrical shapes and functional phenomena16 that can be realized algebraically), 

which are realized based on the recognition of a relationship between quantities and/or variables, 

through an informal inductive process, relying on some information or descriptions of the 

corresponding functional relationship (Carraher at al. 2008; Mavrikis et al. 2012; Wilkie 2014). 

The recognition and realization of pattern generalizations can be operationalized through two 

types of approaches: the relational approach through correspondence, or the explicit, recursive or 

 
16 By functional phenomena we mean those phenomena that can be modeled by a functional 

relationship. 
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covariation approach (Asghary at al. 2013; Aylon at al. 2015; Callejo and Zapatera 2014; Maciel and 

Cardoso 2014; Maggio and Nehring 2012; Rossini 2007; Wilkie 2014). The covariation approach is 

based on establishing how the independent and dependent variables vary together, while the 

relational approach consists in determining a pattern or rule that associates the independent variable 

directly with the dependent variable (Aylon at al. 2015; Callejo and Zapatera 2014; Cooney et al. 

2013; Confrey and Smith 1994; Falcade at al. 2007; Hitt and González-Martin 2015; Slavit 1997; 

Wilkie, 2014).  

In Part A of Table 8, we present a sequence of geometric figures whose pattern generalization 

was realized according to two approaches. In the recursive approach, a variation of the number q for 

squares is related to the variation in the number P for toothpicks.  The recursive generalization in 

natural language described in Part B of Table 8 can therefore also be done through such symbolic 

texts as: P(1) = 4; 𝑃(𝑞 + 1) = 𝑃(𝑞) + 3, 𝑞 ≥ 1, q a natural number. In the relational approach, the 

relationship of functional dependence between the number of toothpicks P and the number of 

squares q is made clear, which if realized through the symbolic texts becomes 𝑃(𝑞) = 4 + (𝑞 −

1)3 = 1 + 3𝑞, with 𝑞 ≥ 1, q a natural number, which corresponds to the algebraic realization of the 

functional relationship17. As can be seen, the pattern generalization realization of this sequence of 

geometric figures is based on an informal inductive process, which is recognized and legitimized as a 

form of argumentation in this context, working as a "permission" to determine any element of the 

sequence. 

Part A Part B 
Observe the sequence of figures 

 
 

Recursive Pattern: 3 toothpicks suffice to form a 

new square, since 1 side of the last square can be 

used. As the number of squares varies (increases) 

from 1 in 1, the number of toothpicks varies 

(increases) from 3 in 3. 

Relational Pattern:  

(Figure 1) We started with 1 square and four (4) 

toothpicks. 

(Figure 2): Number of toothpicks: 4 + 3 = 4 + 1 ∙

3 

(Figure 3): Number of toothpicks: 4 + 3 + 3 = 4 +

2 ∙ 3 

(Figure 4): Number of toothpicks: 4 + 3 + 3 + 3 =

4 + 3 ∙ 3 

The number of toothpicks (dependent variable) is 

always equal to 4 plus the number of squares 

(independent variable) minus 1 multiplied by three. 

Table 8 - Pattern Generalizations  

 Source: Imenis and Lellis (2010a, p 260-261). 

 

 
17 Such a functional relationship is the restriction of an affine function to the set of natural numbers. 
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The function realizations as pattern generalizations of linear or affine functional relationships are 

recommended by papers in the corpus (Asghary at al. 2013; Callejo and Zapatera 2014; Maggio and 

Nehring 2012; Rossini 2007; Wilkie 2014)) and are presented in the textbooks under analysis 

(Imenis and Lellis 2010a, 2010b, 2010c) as an initial contact with texts that communicate this 

concept, even before explicitly addressing the formal content. The exploration of pattern 

generalizations may support the subsequent study of the function concept, considering that those 

realizations give visibility to the notions of variation and the relationship of dependence between the 

quantities/variables involved (Wilkie 2014), which subsequently can be recognized and legitimized 

as constituent notions of this concept’s interpretative possibilities (Steele at al. 2013; Wilkie 2014), 

in addition to enabling a distinction between the independent and dependent variables (Study with 

the teachers - 7th meeting). Corroborating this understanding, Imenis and Lellis (2010a) suggest 

teachers should include the expressions: “[...] depends on [...]","[...] varies [...]","[...] is a function 

of [...]" (P. 255, emphasis by the authors) in the analysis of pattern generalizations since they 

consider that these texts contribute to the development of the function concept.  

The covariation approach is intrinsically connected to the realization of a function as the rate of 

variation or rate of change (Confrey and Smith 1994; Aylon at al. 2015). The realization of a 

function as a rate of change expresses the relationship between the variation of outputs and their 

respective inputs (Aylon at al. 2015). For example, for the functional relationship described in Table 

8, the rate of change is 
𝛥𝑃

𝛥𝑞
=

𝑃(𝑞+1)−𝑃(𝑞)

(𝑞+1)−𝑞
=

𝑃(𝑞)+3−𝑃(𝑞)

1
= 3 (constant). A constant rate of change 

characterizes affine functional relationships (Birgin 2012). The functional relationship of the 

example is realized algebraically by𝑃(𝑞) = 1 + 3𝑞. Note that the rate of change corresponds to the 

coefficient of the linear variable of the algebraic realization, which can also be interpreted as the 

gradient or slope of the line, which would be the graphic realization of this functional relationship 

(Birgin 2012; Steele at al. 2013). From this perspective, it is possible to establish bridges between 

the graphic, pattern generalization and algebraic landscapes. 
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Members of some families of functional relationships share the same rate of variation or change 

(Cooney et al. 2013). As a result, knowing such a realization of a function as the rate of change may 

enable the recognition of the type of functional relationship under study (Slavit 1997).  These 

realizations can therefore work as a support to model functional phenomena (Aylon at al. 2015; 

Confrey and Smith 1994; Steele at al. 2013).  

The realization of the function concept through pattern generalizations can also be used when 

developing specific types of studies of functional relationships (Brito and Almeida, 2005; Confrey 

and Smith 1994), in the modeling of phenomena or situations that are "mathematized" by these 

functional relations. The teachers who took part in the in-service program point out that texts with a 

more direct relationship with the local and specific context of the students, which we call non-school 

texts, lead to the recognition of the function concept as significant from the point of view of its 

applicability in everyday situations. From our perspective, there is suggests possibility of 

recognizing that such situations demand explanations, which can be realized legitimately through the 

school math texts on the function subject. In a study by Wilkie (2014), the teachers pointed out that 

organizing data in a tabular realization assists in the recognition of the type of regularity in the 

function realization as pattern generalization. That is, they established bridges between these 

landscapes. 

For Ayalon at al. (2015), the two approaches for function realizations as pattern generalizations 

are complementary because they use distinctive interpretative perspectives for the function concept. 

Confrey and Smith (1995) consider the covariation approach to be more easily realizable. However, 

Callejo and Zapatera (2014) indicate that the emphasis on the recursive approach may prevent 

someone to obtain the (explicit) relational generalization, such as the choice of the linear model, 

although this is not the functional relationship that characterizes the phenomenon under analysis.  

Formal Landscapes 

This landscape consists of function concept realizations as formal definitions. We employ the 

adjective "formal" because these realizations are precise textual structures, similar to those 

characterizing legitimate definitions in the contemporary context of Academic Mathematics. 
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Function concept realizations as formal definitions, therefore, contain the necessary and sufficient 

conditions that assist in the recognition of functional relationships (Tabach and Nachlieli 2015) in 

their varied forms of realization.  

In Table 9 next, we reproduce three function realizations as formal definition extracted from the 

sources under analysis. The transcribed realization in Part A defines a functional relationship as a 

subset of a Cartesian product with special characteristics (it is based on set theory, therefore), and 

those in Part B and C define it as an association between variables with specific properties.  

Part A Part B Part C 

A function f is 

defined as any set of 

ordered pairs of 

elements such that 

if(𝑎, 𝑏) ∈ 𝑓, (𝑐, 𝑑) ∈

𝑓 e 𝑎 = 𝑐then 𝑏 = 𝑑. 

 

We say that a variable y is given as a 

function of one variable x if, and 

only if, for each value of x there is a 

single value of y.  

The condition that establishes the 

correspondence between the values 

of x and y is called the law of 

association, or simply the law 

between x and y. When possible, this 

law is expressed by an equation.  

Given two non-empty sets (A 

and B). A relationship that 

associates to each𝑥 ∈ 𝐴 one 

𝑦 ∈ 𝐵, receives the name of 

function. 

Table 9 - Formal Definition  

Source: Even (1990, 

p. 531). 

Source: Paiva (2014a, p. 117, 

emphasis by the author) 

 

Source: Transcript of the 

records from Prof. Sampaio - 

7th meeting. 

 

In the function realizations as formal definition, the univalent and arbitrary nature of the function 

concept is stated. Even (1990) and Steele at al. (2013) consider these two attributes as key 

characteristics of the function concept, since they allow to distinguish functional relationships (in 

any form of realization) from other relationships. The univalence characteristic is often used as a 

criterion for the recognition of functional relationships (Even 1990) realized by graphs (vertical line 

test) (Steele at al. 2013), tables and diagrams, as we outlined in the analysis of these landscapes. 

Although the function realization as a formal definition is accurate, for Even (1990) it doesn't 

convey the interpretative possibilities of how the function concept is often used in mathematics, 

science or everyday life. Echoing this statement, Falcade, Labordi and Mariotti (2007) state that the 

function realizations as formal definition are devoid of the variable concept 
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According to Tabach and Nachlieli (2015), studies have shown that even students who are able to 

reproduce such realizations may contradict their texts when using them as a tool to recognize 

functional relationships, especially, according to Lambertus (2007), when faced with unfamiliar 

functional relationships, such as Dirichlet's function. 

In the study we carried out with the teachers, Teacher Eusébio (7th Meeting) presented the 

function realization as formal definition reproduced in Part C of Table 9 in conjunction with the 

diagram, algebraic and graphic realizations of a functional relationship.  The teacher states that "[…] 

they are some possibilities we can use to illustrate the formal concept (realization as formal 

definition, from our perspective), let us say, with the representations (other realizations in our 

denomination) [...]" (7th meeting). Using a similar approach to first set out the function realization as 

formal definition (Part B of Table 9), Paiva (2014a) considers the functional relationship that 

correlates the average temperature of some days in a given month for a region, linking it to its 

diagram, table, graph, and algebraic realizations, highlighting the univalent and arbitrary nature. In 

these cases, we sought to establish connections (bridges) between those realizations in order to 

enable the recognition and realization of the texts of the function realizations as formal definition, 

from the logical structure perspective, considering the univalence and arbitrariness characteristics of 

different realizations.   

 

Synthesis of a theoretical model of Mathematics for Teaching of the Function 

Concept 

 
The present theoretical model of MfT of the function concept was organized in seven landscapes 

of the function concept identified in the three sources and was built using the recognition and 

realization rules as criteria to categorize the realizations.  

In the analysis of landscapes and their entailments in the previous section, we sought to explain 

in detail the specific orientation of each landscape for the recognition, selection, and realization of 

the legitimate texts and interpretations constituting the function concept in educational contexts. The 

recognition rules enable the identification of each landscape, distinguishing it from other landscapes 

due to the specificity of its texts, and therefore regulate what texts are legitimate in each landscape. 
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The realization rules enable the selection and production of the legitimate texts composing each 

landscape, regulating how the texts of each landscape can be made public. 

In Table 10, we present a synthesis of the analysis performed in the previous section, describing 

what texts characterize and constitute each landscape, and also how these texts may be realized in 

their different presentations. In addition, we summarize the entailments imposed by the realizations 

that are part of the landscapes. 

Landscape

s 

"What" 

(Recognition) 

"How" 

(Realization) 

Entailments 

Tabular 

landscape 

Relationship 

between data 

(numeric or not) 

arranged in a table, 

provided that each 

data point in a row 

or column (input) 

is associated with 

one single data 

point in the row or 

column (output), 

respectively.  

Organize data in a 

functional 

relationship in rows 

or columns so that the 

input data and the 

corresponding output 

data are on the same 

row or column. 

Potentials 

-Highlights the notions of 

association and dependence. 

-Identifies dependent and 

independent variables.  

-Organizes data in a functional 

relationship 

-Recognizes proportional and non-

proportional functions.  

Limitations 

- Doesn't infer correctly about the 

type of functional relationship and 

extreme value 

-Provides only a partial view of 

functional relationship. 

Diagram 

Landscape 

Correspondence 

between two 

arbitrary sets A 

and B arranged in 

separate diagrams, 

where each 

element of set A 

(input or domain) 

corresponds 

(through an arrow) 

with one element 

of set B (range or 

output). 

Identify the domain 

and range of a 

functional 

relationship, arrange 

them into two 

separate diagrams, 

and associate each 

element of the 

domain to its image 

(with an arrow). 

Potentials 

-Identifies the domain and range 

sets 

-Characterizes the image set.  

-Outlines the arbitrary and 

univalent nature of a functional 

relationship. 

-Presents the definitions injective, 

surjective and bijective functions. 

-Recognizes and defines invertible 

functional relationships.  

Limitations 

-Is restricted to functional relations 

with finite domain and range sets 

and a limited number of elements. 

-Hides the notion of variation. 
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Algebraic 

Landscape 

A law, rule or 

formula in an 

algebraic text 

through which it is 

possible to explain 

in a unique way 

(with the exception 

of equivalent 

algebraic 

expressions) a 

(dependent) 

variable in terms 

of another 

(independent) 

variable. 

Explain the 

relationship of 

dependence between 

the independent and 

dependent variables 

of a functional 

relationship through 

an algebraic law, rule 

or formula (using 

letters and symbols).   

Potentials 

-Models phenomena. 

-Deals with quantitative aspects. 

-Demonstrates the relationship of 

dependence and variability. 

-Recognizes and defines functional 

relationship families. 

-Performs operations with 

functional relationships. 

-Composes and inverts functional 

relationships. 

Limitations 

-Makes it impossible to recognize 

functional relations that can't be 

realized algebraically. 

-Doesn't consider other elements of 

a functional relationship - domain 

and range. 

Transforma

tion  

Machine  

Iconic text of a 

machine that 

transforms 

(obeying a rule) 

each data entry 

(input) into a 

single given of 

output (Output).  

Realize an iconic text 

that characterizes a 

functional 

relationship (which 

obeys a rule) as a 

machine that 

transforms each 

element of the 

domain set into its 

corresponding image.  

Potentials 

-Outlines the notions of process, 

change, transformation and 

relationship. 

-Introduces the domain and image 

set definitions of a functional 

relationship. 

Limitations 

 -Subordinates the function concept 

to computational aspects. 

-Hinders the characterization of the 

range of a functional relationship.  

Graphic 

Landscape 

A subset of points: 

𝐺 = {(𝑥, 𝑦), 𝑥 ∈
𝐴 e 𝑦 ∈ 𝐵}, With 

A and B as subsets 

of R, so that if 

(𝑥, 𝑦1) =
(𝑥, 𝑦2)then 𝑦1 =
𝑦2 (vertical line 

test). 

 Notations: is the 

set of real 

numbers; x is the 

independent 

variable and y is 

the dependent 

variable. 

Plot the set of points 

(x, y) on the 

Cartesian coordinate 

system, such that x 

and y are in a 

functional 

relationship, 

considering x as the 

independent variable 

and y as the 

dependent variable. 

This data can be 

extracted from a 

tabular, diagram or 

algebraic realization. 

Potentials 

-Identifies, characterizes and 

determines: domain, image, growth 

and decline intervals, signal, zeros 

and extremes. 

-Emphasizes the univalent nature. 

-Builds bridges with the algebraic 

landscape.  

-Recognizes functional relationship 

families. 

Limitations 

-Hinders the recognition of 

functional relations that can't or 

can't be easily realized graphically. 

R
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Pattern 

Generalizat

ion 

Landscape 

 

declaratory or 

symbolic text 

which, based on 

some data or 

information about 

a functional 

relationship, 

explains the nature 

of the relationship 

(as a general or 

recursive rule), 

enabling the 

determination of 

the image of any 

element of the 

domain in a 

functional 

relationship.  

Present a declaratory 

or symbolic text that 

expresses the general 

or recursive pattern 

of a functional 

relationship, based 

on some particular 

information. 

Potentials 

-Gives visibility to the notions of 

variation and the relationship of 

dependence. 

-Enables the distinction between 

independent and dependent 

variables. 

-Recognizes functional relationship 

families. 

-Operates as a support in the 

modeling of functional 

phenomena. 

-Builds bridges between pattern 

generalization, algebraic and 

graphic landscapes. 

Limitations 

-Generates misunderstandings in 

the characterization of functional 

relationships, with a prevalence of 

the linear of affine model. 

Formal 

Landscapes 

  

Declarative text 

establishing a 

functional 

relationship as an 

arbitrary and 

univalent 

relationship 

between the 

elements of any 

two non-empty 

sets A and B or as 

a subset of the 

Cartesian product 

A x B 

Realize a declaratory 

text defining a 

functional 

relationship 

explaining the 

characteristics of 

univalence and 

arbitrariness, with 

the use of quantifiers. 

Potentials 

-Highlights the characteristics of 

univalence and arbitrariness.  

-Enables the recognition of 

functional relationships in different 

realizations. 

Limitations  

-Omits and limits the 

understanding of concepts and 

interpretations associated with the 

function concept, such as the 

notion of variation and 

dependence. 

-Requires familiarity with the 

terminology of quantifiers. 
Table 10 - Synthesis of a theoretical MfT model of the function concept: the "what" and "how" of its 

texts and entailments  

Source: authors 
 

 

Bernstein's theory equipped us with a set of principles and a precise language to theoretically 

structure a re-presentation on the what and how of the Function Concept’s realizations. We therefore 

focused both on the characteristics constituting and distinguishing the specialized form of the texts of 

each landscape, and their interpretative implications and limitations, as we summarized in Table 10. 

The model presents a micro overview of the nuances and multiple discursive formations of the 

communications that might be realized in the teaching of the function concept in the basic education 

context, in accordance with the regulation used (classification and framing) in this context. 
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For individuals to be able to produce legitimate texts in a given context (MiT in this study), they 

must be able to recognize (recognition rules) and produce context-appropriate texts (realization rules) 

(Ferreira at al. 2010). That is why we focused on the characteristics both constituting and 

distinguishing the specialized form of the texts of each landscape, and their interpretative and 

communicative implications and limitations.  

In Figure 1, we present an iconic text to characterize the theoretical model of MfT of the 

function concept developed in this study. The landscapes were organized into separate rectangles 

with similar dimensions and arranged in a circular formation in order to outline that each landscape 

is characterized by specific texts with their own recognition and realization criteria. From the point 

of view of the model, it also indicates that the landscapes do not have hierarchical relationships, 

considering that these are categories of the function concept. We highlighted "from the point of view 

of the model" because the model is a re-presentation of the MiT of the function concept, which is 

dynamic and emerging, bearing in mind that this concerns the dimension of how the communicative 

participation might occur (discursive formations) of those who are responsible for teaching and 

learning the function concept in a pedagogic relationship. 

 

 
Figure 1 - A theoretical MfT model of the function 

concept  Source: authors  
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Finally, the dotted lines connecting all landscapes in pairs try to suggest the possibility of 

establishing (when possible) relationships (bridges) between them in the teaching process (that is, in 

MiT) of the function concept by the agents responsible for this task. The model has the potential to 

predict these bridges, but they only manifest themselves in pedagogical practice. Some of these 

bridges were identified in the analysis performed in the previous section, for example, in between 

pattern generalization, formal, graphic, tabular, and algebraic landscapes.  

The classification principle can be used to analyze the relationships (bridges) between the 

landscapes (which are categories) of the function concept; we call such relationships intra-concept 

relationships. From this perspective, there is a weaker classification (C-) in the intra-concept 

relationships when bridges are established between the landscapes. In this case, there is a stronger 

link between their respective texts, and as mentioned in the previous section, it is possible to both 

develop and legitimize the equivalence between the procedures and interpretations of these 

landscapes, and to minimize the existing communicative difficulties and limitations of the 

realizations of each landscape.  

Studies have pointed to the importance of establishing a weaker classification (C-) in the intra-

concept relationships for the teaching of the function concept (it said in our words) referring to the 

algebraic, graphic and/or tabular landscapes (Ronda 2015; Slavit 2003). Such an approach enables 

characteristics and properties of the function concept to emerge in the different realizations (Ronda 

2015), developing an integrated view of this concept instead of identifying it as one of its realizations 

(Elia et al. 2006; Nachlieli and Tabach 2012).  

Since each landscape establishes aspects and particular realizations of the function concept with 

its own communicative rules, we believe there should also be a place for a C+ classification in the 

intra-concept relationships in the teaching of this concept, in such a way that the boundaries between 

landscapes are outlines. For the more, according to Bernstein (2000), a permanently C- classification 

may generate ambiguities in the communicative recognition and realization. Following a 

Bernsteinian point of view (Cause 2020; Morais and Neves 2007, 2011), the classification amongst 

different landscapes of the function concept should vary during the teaching of content and even 

during a class, making the intra-concept relationships sometimes more visible, sometimes less. 
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Bernstein (2000, 2003) uses the framing principle to analyze the nature of control over the 

communicative rules. When agents responsible for teaching impose a C+ on intra-concept relations, 

we can also consider the framing to be F+. Morais and Neves (2011), in a similar approach, propose 

to use the framing principle to analyze the relationship between school texts and everyday texts, even 

without referring to the relationship between people. With this understanding, for example, when the 

texts of the transformation machine landscape are used for the teaching of the concept of function, 

we can consider that F-, because there is a relationship between the school texts (function) and those 

of everyday life. For this reason, the realizations of this landscape were suggested in some of the 

analyzed sources to introduce this theme in teaching.  

According to Bernstein (2000), the classification and framing values will define the pedagogic 

practice in the basic communication contexts, particularly in educational contexts. We believe that 

this analysis reveals the potential of the model to guide the planning of educational practices for the 

acquisition of the recognition and realization rules required to produce instructional texts about the 

function concept in accordance with the gradation in classification and framing values.  

 

Concluding Remarks 

In this study, we constructed a theoretical model of Mathematics for Teaching of the function 

concept. It uses a descriptive language for the context of textual production, which was developed by 

using inspiration in concepts of Bernstein's theory (adapted as descriptive), Concept Study (adapted 

as an analytical tool) and the sources we fore mentioned. The model aims to organize the 

characteristics in the function concept’s potential realizations, that identify, characterize, outline and 

structure such diversity in communicating the function concept in teaching. These characteristics can 

be analyzed in the micro and macro dimensions. The micro dimension is revealed in the summary 

presented in Table 10, where we focus on the textual indicators of the characteristics constituting 

and distinguishing the specialized forms of communication of each landscape, including their 

potentials and limitations. The macro dimension is represented in the iconic text of the model in 

Figure 1, which shows the multiple communicational instances of the function concept realizations, 
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which show the diverse ways of realizing the function concept in basic education. In addition, the 

iconic text of Figure 1 also reflects the possible and different modalities of relations (bridges) that 

can be established between these communicational instances (landscapes) in the pedagogic practice 

(in MiT), depending on the gradation of the classification and framing principles operating on the 

communicative rules. 

Although studies indicate that the establishment of these bridges is not a simple task 

(Mousoulides and Gagatsis 2004; Doorman et al. 2012), we argue that the macro and micro views of 

the concept of function evidenced by the model might suggest pathways to build them. 

According to Bernstein (2000), the legitimate textual production in a given context depends on 

dealing with both the recognition and realization rules (Morais and Neves 2007), and that such rules 

constitute a crucial factor for learning in educational contexts (Afonso and Neves 2000). As result 

we highly suggest that the constructed model can assist in the curriculum development and material 

production processes for students and teachers in basic education, by providing a discursive 

transparency regarding the recognition and realization rules for the communication of the function 

concept. 

The results of the study suggest communicative transparency in terms of systematization, 

variability, and specificity for teaching function. It might, therefore, give insights and provide 

support, contributing to the designing of strategies and resources, for example, for teaching the 

function concept in the school context, the authors of teaching materials, or the professional 

programs for teachers. Also, the analytical and methodological framework developed to build a 

theoretical model of MfT of the Function Concept might provide reflections future research 

investigating this topic.  
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