
Contents lists available at ScienceDirect

Journal of Hydrology: Regional Studies

journal homepage: www.elsevier.com/locate/ejrh

Techniques for calibration and validation of SWAT model in data
scarce arid and semi-arid catchments in South Africa

Achamyeleh G. Mengistua,⁎, Leon D. van Rensburga, Yali E. Woyessab

aDepartment of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa
bDepartment of Civil Engineering, Central University of Technology, Bloemfontein, South Africa

A R T I C L E I N F O

Keywords:
Arid catchments
Calibration
Hydrologic models
Regionalization
SWAT model
South Africa

A B S T R A C T

Study region: This study was conducted in Soutloop River Catchment, Northern Cape, South
Africa.
Study focus: Although hydrologic models play a critical role in the management of natural re-
sources in arid areas, their application is challenged by the scarcity of data for calibration and
validation. Therefore, this study aimed at to configure, calibrate and validate SWAT model in a
data-scarce catchment by using the regionalization with physical similarity approach. This ap-
proach uses dual calibration and validation procedure, i.e., one in the donor catchment (by using
SWAT-CUP (SWAT Calibration and Uncertainty Programs) and the other on the study catchment
(by manual calibration and verification).
New hydrological insights for the region: Based on the sensitivity analysis, sixteen parameters were
calibrated by SWAT-CUP. The result from the uncertainty analysis indicated acceptable values of
both the R-factor (0.8**) and P-factor (0.7**). The model performance evaluation also showed
acceptable ranges of values (e.g., NS was 0.76** and R2 was 0.78**). However, the main cali-
bration and validation process was conducted outside the target catchment, though it was as-
sumed that the donor and target catchments have similar hydrological responses. Therefore, the
study suggested further inspection methods to minimize the model uncertainty in the study
catchment. This study enables researchers to exploit the river eco-regional classifications of
South Africa to apply hydrologic models to estimate the components of water balance in arid/
semi-arid catchments.

1. Introduction

Most hydrological systems incorporate extremely complex processes and are not easily understood (Xu, 2002). It is also im-
practical to measure every data about hydrologic systems and processes due to various reasons. This could be due to higher spatial
and temporal heterogeneity of the systems, limitations in measurement methods, and to the fact that measurement methods are
usually laborious, time taking and costly to implement. Therefore, hydrological models enable users to manipulate the system’s
variables/parameters easily and help in understanding the interaction between variables that make up complex systems (Sokolowski
and Banks, 2010, 2011). Hydrological models also enable the users to extrapolate both spatial and temporal information on the area
of interest (Pechlivanidis et al., 2011). It is assumed that hydrological models are simplified systems that represent the real hydrologic
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processes (Lundin et al., 1999; Tessema, 2011). Hence, Babel and Karssenberg (2013) described hydrologic models are mediators
between theory and practice or the real world. Therefore, hydrologic models are important tools in the study of hydrologic processes
at catchment, regional and global scales.

Even though it is an essential task, hydrologic modelling is challenging in arid and semi-arid environments because most
catchments in this environments are ungauged. It is obvious that the calibration and validation processes are integral part of
catchment hydrologic modelling due to the higher spatial and temporal variability of the hydrologic system. This is particularly
important for physics-based models. Catchments with available observed data, including but not limited to discharge data, evapo-
transpiration, profile water content, can be modelled with reasonable accuracies. On the other hand, the unavailability or the pre-
sence of limited observed data due to the high cost of spatial hydrological data acquisition makes the use of physics-based models
challenging (Ajami et al., 2004; Bekele and Nicklow, 2007; Bárdossy, 2007). Moreover, hydrological modelling in arid and semi-arid
catchments is challenging due to the distinctive feature of the hydro-climatological variables in those regions (Pilgrim et al., 1988;
Kan et al., 2017). Reports (e.g., Wheater, 2005; Li et al., 2015) indicate that most models are also developed for humid and sub-humid
areas where their performance in arid/semi-arid areas vary considerably.

The Soil and Water Assessment Tool (SWAT) is a continuous-time, semi-distributed and processed-based model developed and
supported by the USDA Agricultural Research Service (Neitsch et al., 2011; Arnold et al., 2012). The model was originally developed
to evaluate the impact of land management practices on water resources, sediment and agricultural chemical yields in large complex
catchments with varying soils, land use and management conditions (Neitsch et al., 2011; Daniel et al., 2011). Water balance is the
major driving force behind any process in SWAT. Hence, besides the different components of water balance, SWAT is being used to
model plant growth and the movement of sediments, nutrients, pesticides and pathogens in a catchment (Neitsch et al., 2011; Arnold
et al., 2012; Parajuli and Ouyang, 2013). The model requires several input data to simulate catchment hydrologic processes, and
these include a digital elevation model (DEM), land use–land cover data, soil types, and different daily weather data, including details
of precipitation, maximum and minimum air temperatures, solar radiation, wind speed, and relative humidity. SWAT has received
international acceptance as a robust interdisciplinary catchment-scale modelling tool. However, its application in arid and semi-arid
areas is still challenging due to the unavailability of flow data for model calibration and validation procedures.

Even though the calibration of hydrologic models is challenging for data scarce catchments, some methods have been proposed in
literature. These include: (i) the regionalization approach, in which a similar, but gauged, catchment will be parametrized and
calibrated. The model parameters will then be transferred to the ungauged catchment. It is one of the most widely used method in the
prediction of hydrologic variables in ungauged basins (Merz and Blöschl, 2004; Bárdossy, 2007; Bekele and Nicklow, 2007; Reichl
et al., 2009; Gitau and Chaubey, 2010; Farsadnia et al., 2014; Swain and Patra, 2017; Emam et al., 2017). (ii) Calibration based on
crop yield: this gives confidence on the evapotranspiration and simulates other hydrologic components better. Many researchers (e.g.,
Nair et al., 2011; Emam et al., 2015; Sinnathamby et al., 2017; Emam et al., 2017) used this method of calibration (calibration based
on crop yield). (iii) Calibration based on data retrieved from remote sensing: this method enables the acquisition of important spatio-
temporal data like the soil water content and evapotranspiration. Hydrologic models could be calibrated using such data, like the
Moderate Resolution Imaging Spectroradiometer (MODIS) and other satellite products (Jajarmizadeh et al., 2012; Zhang et al., 2017;
Tobin and Bennett, 2017; Emam et al., 2017; Rajib et al., 2018; Odusanya et al., 2019).

The first and widely implemented method (regionalization approach) has many types. Generally, this approach could be further
classified by three. These are regionalization by spatial proximity, physical similarity and regression methods. In the spatial proximity
approach, it is usually assumed that neighbouring catchments have homogenous physical and climatic characteristics and hence,
have similar hydrological responses (Blöschl et al., 2013; Emam et al., 2017). As a result of this, calibrated parameters could be
transferred from gauged to ungauged neighbouring catchments. Calibration with regression methods consist of developing some
empirical relationships between catchment descriptors (both physical and climatic) and model parameter values calibrated on gauged
catchments (Bastola et al., 2008; Emam et al., 2017). Once these relationships have been established, one determines the parameters
of an ungagged basin using its physical and climatic attributes. The regionalization with physical similarity is based on the similarity
between an ungagged catchment and one or more gauged donor catchments (Blöschl et al., 2013; Emam et al., 2017).

Focussing on the regionalization by physical similarity approach, catchments are evaluated and grouped based on their similarity
in selected physical variables (physiography, geology and soils, climate and potential natural vegetation). In this approach, catch-
ments categorized under similar regions or groups are assumed to have a similar hydrologic response. Hence, during catchment
modelling, parameters could be transferred from a gauged and calibrated catchment to ungauged catchments. The regionalization
approach has enabled researchers to exploit the potentials of hydrologic models in data scarce catchments. However, it is also
believed that the procedure is exposed to higher uncertainity of model outputs since the calibration and validation processes are
usually conducted ouside the target catchment. Therefore, the aim of this paper was to calibrate and validate SWAT model in an arid
and ungauged catchment by the regionalization with physical similarity approach. Some best practices valuable to minimise model
uncertainity in SWAT modelling were also suggested.

2. Materials and methods

2.1. The study area

2.1.1. Location of the study area
The study area is located in the Northern Cape Province of South Africa. It is a catchment that includes Kolomela Mine, with a

geographic location of between 22°11′00″ and 23°28″00″ E longitudes and between 28°03′00″ and 29°06′00″ S latitudes. The
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catchment is a combination of two quaternary catchments (D73A and D73B), according to the referencing system of the South African
Department of Water and Sanitation Affairs. The location and some hydrologic features of the study catchment (Soutloop Catchment)
are depicted in Fig. 1.

2.1.2. Description of the study area
The total area of the study catchment is 6769.7 km2, with an altitudinal range from 871 up to 1687 masl. Nearly 68% of the

catchment has a slope of less than 5%, while the remaining 32% of the area is above a 5% slope. Fig. 2 depicts the spatial distributions
of the slope classes in the catchment. The soil type in the area is dominated by Oxidic soils (59%, which includes Hutton and Clovelly
soil forms), followed by Lithic origins (21%, including Mispah and rock surfaces). Other soil groups include Calcic (12%, which
includes Coega soil form), Duplex soils (6% – Valsrivier soil form), Gleyic groups (1.6% – Katspruit and Kroonstad) and a very small
amount of Cumulic soil groups (Dundee and Fernwood). The spatial distribution of the soil groups is shown in Fig. 3. According to the
South African LULC classification of 2013/2014 (GEOTERRAIMAGE (South Africa), 2015), land cover within the catchment is
dominated by low shrublands (80%), which is classified as range-brush in the SWAT database, followed by gra

ssland (11%, range grass in SWAT), and bushland (7%, classified as forest-mixed), while the remaining 2% of the study area is
covered with other land cover classes. Fig. 4 shows the spatial variations of LULC classes in the study catchment. The area is also
known for its arid climate. Hence, mean annual precipitation varies from 214 to 365mm whereas the mean annual air temperature
varies from 17.7 °C to 19.7 °C spatially in the study catchment.

2.2. SWAT model inputs

Other than the topographic, soil and LULC data, SWAT requires spatially explicit datasets of climatic data at daily/sub-daily time
steps. Major input data for SWAT include DEM, LULC, soil properties, and daily weather data (precipitation, maximum and minimum
air temperature, relative humidity, wind speed and solar radiation).

2.2.1. Digital Elevation Model (DEM)
Digital elevation model is an important data, since all the topographic attributes of the catchment, sub-catchment up to the HRUs

Fig. 1. Location of the donor catchment (A21C Quaternary Catchment) study area (Soutloop Catchment, about 6770 km2) with its important
hydrologic features.
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level are derived from this dataset. Some of the attributes include area, slope, slope length, channel length, channel slope, channel
width, and channel depth. For this study, a 30-metre spatial resolution SRTM (Shuttle Radar Topography Mission) DEM was
downloaded from the USGS website (link: https://lpdaac.usgs.gov/data_access/data_pool) and was used as an input dataset.

2.2.2. Land use/land cover data
Details of land use/land cover comprise one of the most determinant datasets required in hydrologic models, like SWAT, when

creating the HRUs. For this study, the national land use/land cover layer of South Africa for the 2013/2014 year, with a 30-metre
spatial resolution (GEOTERRAIMAGE (South Africa), 2015), was used. It was also modified slightly so that it would be consistent
with the plant databases of SWAT.

2.2.3. Soil type and characteristics
Soil is another data that have major influence in catchment hydrology. In this study, the different soil classes were defined based

on the Land Type Survey database compiled by the Agricultural Research Institute of South Africa (ARC), Institute of Soil, Climate

Fig. 2. The spatial variation of the slope classes in the catchment.
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and Water (Land Type Survey Staff, 1972). The Land Type Survey data of South Africa do not consist of soil types only. Rather, it is a
combined spatial data that consists of mainly terrain, climate and soil distribution patterns. This Land Type data was also produced at
courser scale (1:250,000 scale). Therefore, there was a need to get the actual data of soil types and increase the scale of the data. As a
result of this, the soil units were disaggregated from the Land Type Survey data by the use of satellite data (e.g., DEM, Satellite

Fig. 3. Major soil groups in the study catchment.
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Imagery), software programs (ArcGIS, SoLIM-the Soil-Land Inference Model (Zhu, 1997), 3dMapper), field inspections, and expert
knowledge. The details of this procedure is explained in detail in Van Zijl et al. (2013).

Finally, ten soil forms were identified in the study catchment. Then, the soil forms were grouped into six soil groups and mapped
for the area, based on the criteria of Fey (2010), as shown in Table 1. The spatial variations of the major soil groups of the catchment
are also depicted in Fig. 3.

The values of all the soil characteristics required by SWAT were collected by field survey using the soil groups as a base map. As a
result, a profile was opened for each soil groups for soil sampling for laboratory and field analysis and also for field verification of the
soil groups.

2.2.4. Climatic data
The SWAT2012 model requires daily variables of precipitation, temperature, relative humidity, solar energy, and wind speed. The

Fig. 4. The spatial variation of land use/land cover classes in the catchment.
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SWAT software also has a weather generator tool that assists us to fill in missing data for certain periods of time in the simulation
periods. This tool also enables us to generate the relative humidity, solar energy and wind speed, if we can provide it with a long-term
daily precipitation rate and maximum and minimum temperatures. This study relies on meteorological stations inside, and in close
proximity to, the study catchment, as seen in Fig. 5 and Table 2. The long-term data details were provided by two organizations – the
South African Weather Service (SAWS) and the Agricultural Research Centre, Institute for Soil, Climate and Water.

2.2.5. Other data for model calibration and validation
For this study, two datasets were collected for calibration and validation purposes. These are the daily runoff (from the donor

catchment, A21C quaternary catchment) and daily soil water content from the target catchment (Soutloop River Catchment). As a
result, daily discharge data for the donor catchment were obtained from the Department of Water and Sanitation Affairs of South
Africa. Whereas the profile water content was measured in situ from the target catchment with DFM capacitance probes (installed in
four HRUs). The details for DFM capacitance probes can be referred from Zerizghy et al. (2013) and from the official website of DFM

Fig. 5. Some hydrologic features in the study catchment.

Table 2
Meteorological stations used for the generation of weather parameters in the study catchment.

No. Station Name Longitude Latitude Elevation Owner organization

1 Olifantshoek −27.950 22.733 1341 ARC_ISCW and SAWS
2 Onder-Ongeluk −28.683 23.033 1311 ARC_ISCW
3 Roodemanskloof −28.583 22.600 1204 ARC_ISCW
4 VaalWater −28.733 22.800 1109 ARC_ISCW
5 Marydale −29.324 22.246 928 ARC_ISCW
6 Saalskop −28.760 21.847 861 ARC_ISCW
7 Postmasburg −28.345 23.079 1321 SAWS
8 Woolharkop −28.400 22.859 1221 ARC_ISCW and SAWS
9 Aucampsrus −28.275 22.962 1293 ARC_ISCW and SAWS

ARC_ISCW refers to the Agricultural Research Commission, Institute for Soil, Climate and Water.
SAWS refers to the South African Weather Service.
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Technologies at: https://dfmtechnologies.co.za/product/probes.

2.3. Model setup and configuration

In this study, SWAT model was used to estimate all the components of the water balance in the study catchment. In the simulation
procedure, catchment delineation was the first procedure. The study catchment was delineated using GIS interface of the Soil and
Water Assessment Tool (SWAT2012). An SRTM DEM (digital elevation modelling), with 30-metre spatial resolution, was downloaded
from LP DAAC (being one of USGS’s data distribution centres, at link https://lpdaac.usgs.gov/data_access/data_pool) and was used
for this study. The details of the procedures can be referred to Neitsch et al. (2011) and Arnold et al. (2012).

After the catchment delineation process was completed, the definition of HRUs was continued. The definition of HRUs are also
done in the SWAT2012 interface. Three spatial data sets (slope, land use/land cover, and soil maps) are important for the definition of
HRUs. Therefore, HRUs are lands with similar topography, land use/land cover and soil types and all the components of the soil water
balance could be determined on an HRU basis, with the assumption that similar HRUs would have similar hydrologic characteristics
(Neitsch et al., 2011; Arnold et al., 2012; Winchell et al., 2013).

Then, all the required climatic variables were fed to the model, comprising rainfall, minimum and maximum temperature, relative
humidity, average wind speed, and solar radiation data. The weather generator tool in the ArcSWAT interface was assigned to fill in
the case of unavailability of station data. This tool also enables us to generate the relative humidity, solar energy and wind speed from
a long-term daily precipitation and maximum and minimum temperature (Neitsch et al., 2011). The rainfall runoff process was set to
be estimated by the curve number (CN-method), the potential evapo-transpiration was estimated by the Penman-Monteith equation,
and the channel water routing was simulated by the Variable Storage Routing. After all the above processes were completed, the
SWAT simulation was activated. During simulation, a three-year warming-up period was given. Including the three-year warming-up
period, the total simulation period (including the warmup periods) was set to run from 1977 to 2018 (i.e. 42 years). Hence, a 39-year
period of hydrologic variables were simulated for the study catchment (excluding the warmup periods). The framework, showing
major procedures in the simulation process, is summarized in Fig. 6.

2.4. Model calibration, validation and sensitivity analysis

2.4.1. The calibration approach
The successful application of hydrologic models is highly dependent on the calibration and sensitivity analysis of the parameters

(Abbaspour, 2015; Kouchi et al., 2017). The calibration and validation processes are only employed efficiently with observed data.
Particularly discharge data plays a critical role for this procedure. However, the study area does not have a gauging station for stream
flow measurement. Therefore, the regionalization with physical similarity approach (Bárdossy, 2007; Wheater et al., 2008; Blöschl
et al., 2013) was adopted here for the calibration and validation of the model. The regionalization approach is usually based on the

Fig. 6. General framework followed in the modelling process using SWAT2012.
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assumption that catchments with similar physiographic and climatic attributes would have similar hydrologic responses. As a result,
the selection of a catchment that has similar attributes to the catchment of interest and that has a fully functional gauging station is a
prerequisite. Therefore, there is a need to characterize, evaluate and categorize catchments for this purpose.

The evaluation and categorization of catchments is based on at least four types of information, i.e. soil type, land use, topographic
features, and potential natural vegetation (Omernik, 1987; Blöschl et al., 2013). For this study, however, the eco-regional typing and
river classification study conducted by the Department of Water Affairs and Forestry (Kleynhans et al., 2005, 2007) was used. This
study covers the whole areas of South Africa and grouped rivers based on their similarity. The main aim of the river eco-regional
classification was to group areas according to their similarities using a top-down nested hierarchy. The report also indicates that river
eco-regional classification helps to extrapolate information from data-rich to data-scarce catchments within the same hierarchical
typing concepts. Hence, the quaternary catchment called A21C (Fig. 7) was selected as a donor catchment for the calibration,
validation and sensitivity analysis for this study. The details of the river eco-regional classification for South Africa can be referred to
in Kleynhans et al. (2005) and Kleynhans et al. (2007). Some of the major attributes used in the classification include terrain
morphology, main vegetation types, mean annual precipitation, coefficient of variation of annual precipitation, drainage density,
stream frequency, slopes, median annual simulated runoff, and mean annual temperature of catchments. Some of the catchment
descriptors used in the evaluation between the donor and study catchments can be seen in Table 3. The comparison table shows that
the two catchments are more or less in a physically similar hydro-climatic and physiographic conditions. It is also worthy to note that
the two catchments have different sizes that may influence some hydrologic variables. However, the influence of catchment sizes on
the uncertainty of model outputs is primarily on sediment, nitrogen and phosphorus loadings (FitzHugh and Mackay, 2000; Jha et al.,
2004; Kumar and Merwade, 2009; Wallace et al., 2018). Therefore, the difference in the size of the donor and target catchments have
insignificant influences on streamflow estimations. As the focus of this paper is on the calibration of SWAT for estimation of flow in
arid and semi-arid catchments, the difference in the size of the donor and target catchments is ignored. However, during the study of
point and non-point source pollution, sediment, nitrogen and phosphorus loadings, the influence of catchment sizes could matter on
the regionalization process.

2.4.2. Procedures in the regionalization approach
In this study, all the sensitivity, calibration and validation procedures were facilitated by the use of a specialized computer

Fig. 7. Location of the study catchment (Soutloop) and the donor catchment (A21C) showing that both are in the same river eco-regional class
(Class-1).
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program, SWAT-CUP ver-2012 (the SWAT Calibration and Uncertainty Programs), particularly SUFI2 (Sequential Uncertainty Fitting
ver. 2). SUFI2 is one of the stochastic calibration programs in SWAT-CUP that was used in this study. The details for the description of
SUFI‐2 in the whole calibration procedure can be referred to in Abbaspour et al. (2004), (2007), and Abbaspour (2015). First, the
calibration, sensitivity analysis and model validation were conducted on the donor catchment (A21C quaternary catchment) and then
the model parameters were transferred to the ungauged catchment (Soutloop Catchment), based on the regionalization with physical
similarity approach. After the transfer of calibrated parameter values, the model was run, and the major components of the catchment
water balance (particularly long-term annual runoff volume and evapotranspiration) were compared with previous studies of the area
for simple inspection of model results. Based on this comparison with other similar studies, a manual calibration helper was employed
in the ArcSWAT interface for further parameter adjustments.

During calibration of parameters in the donor catchment, only sensitive parameters were calibrated, based on the results of the
sensitivity analysis in SWAT-CUP. The soil and some weather parameters were also excluded from the calibration processes since all
the soil parameters were measured directly by the field survey. Similarly, the weather parameters were derived from weather station
in the study area. To prioritize other sensitive parameters (other than the excluded parameters), a one parameter at a time (OAT)
procedure was followed. This was used to select sensitive parameters to stream flow as a first inspection for sensitivity. Then, the
sensitivities of all parameters, selected by one-at-a-time option, were further prioritized by the global sensitivity option. This was
done by running SUFI2 for one complete iteration (1000 simulations). The global sensitivity uses the p-value and t-stats for

Table 3
Catchment descriptors used for the evaluation of the similarity between the donor and study catchments.

No. Catchment descriptors Donor catchment Study catchment

1 Annual precipitation (mm) 320-497 214-365
2 Annual PET (mm) 1722-2644 1512.06-2802.07
3 Ratio of Precipitation to PET 0.19 0.13-0.14
4 Ratio of ET to PET 0.15-0.70 0.08-0.70
5 Soil textural class variation Sandy-loam to Sandy-clay-loam Clay-Loam to Sandy-loam
6 Dominant LULC Grasslands, residential with dense trees/bush and mixed forest Low shrub lands, Grasslands and open bushlands
7 Slope class (percentage) 80% of the catchment is < 10% 86% of the catchment is < 10%
8 Altitudinal range (masl) 1242-1825 871-1687
9 Runoff coefficients 0-0.12 0-0.1
10 Annual ET (mm) 252-1851 118-1961
11 Annual air temp (oC) 17-18.7 17.7-19.7
12 Mean solar radiation (MJ m−2) 22.6-21.7 21.2-23.1

PET - potential evapotranspiration ET - evapotranspiration.
LULC - land use and land cover masl - meter above sea level.

Fig. 8. Workflow for the calibration and sensitivity analysis using SWAT-CUP.
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prioritization. The general workflow of the calibration process is depicted in Fig. 8. The flow data from the donor catchment (A21C)
were divided into two, one for calibration and the other half for validating the model. Generally, a two-step calibration and validation
procedure was employed here; one in the donor catchment and the other in the study catchment. The calibration in the study
catchment was assisted by the ArcSWAT manual calibration helper whereas the validation was outside SWAT-CUP, which was in MS
excel with simple comparison of simulated versus in situ measured soil water content data.

The second model validation that was conducted in the target catchment was actually a simple verification of model results with
respect to simulated water content. The SWAT output for soil water content is in millimetre of depths and also excludes the residual
water content. Therefore, the observed soil water content at four HRUs measured by DFM capacitance probes (Zerizghy et al., 2013)
must also have similar units of depth. The readings from the probes is normally in percentage of total soil volume and it measures at
six depths at a time down the soil profile. The average of the six depths was multiplied by the bulk density of the soil profile and this
product again multiplied by the soil depth to get the total soil water content in millimetre of depth in the profile at that specific
measurement time. The residual water content (permanent wilting point) of the soil (estimated by SWAT model) was subtracted from
the observed total soil water content of the profile. Then, the resulting soil water content is the observed one and compared to the
output from SWAT model for each of the four HRUs.

2.4.3. Uncertainty and model performance indices
Reports (Blöschl et al., 2013; Abbaspour, 2015) indicate that the sources of model uncertainties could be from driving variables

(e.g. climate data), the conceptual model itself, measured data, or uncertainty during parametrization. The propagation of all sources
of model uncertainties to parameters and model outputs in SWAT-CUP is expressed as the 95% probability distributions, by using the
Latin Hypercube Sampling. The 95% probability distributions are calculated at the 2.5% and 97.5% levels of the cumulative dis-
tribution of an output variable and it is called 95% prediction uncertainty (95PPU). SWAT-CUP calculates two statistical indicators to
quantify all the sources of uncertainty. These are the P-factor, which is the percentage of observed data enveloped by the modelling
result (the 95PPU), and the R-factor, which is the thickness of the 95PPU envelope.

Regarding the model performance indicators, SUFI2 has many options of model performance indicators. For this study, the Nash-
Sutcliffe coefficient (NS) was used as a major objective function in the calibration and validation process. The coefficient of de-
termination (R2), percent bias (PBIAS), and ratio of the root mean squared error to the standard deviation of measured data (RSR)
were also additional criteria used for the evaluation. Eqs. (1–4) were used to calculate the performance indices:
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where NS is the Nash-Sutcliffe coefficient, R2 is the coefficient of determination, PBIAS is the percent bias, RSR is ratio of the root
mean square error to the standard deviation of measured data, Q is a variable (e.g., discharge), m and s stand for measured and
simulated variables, and i is the ith measured or simulated data.

3. Results

3.1. Parameterization and parameter sensitivity analysis

As stated earlier, the study area is an ungauged catchment and accordingly all the possibilities of using in situ measured data
(whether collected by the authors or second party, such as meteorological stations) were given priority. As a result, parameters that
were derived from the in situ measured data were not considered in the calibration and sensitivity analysis. On the other hand,
parameters other than the ones mentioned above and that are highly sensitive were calibrated by the regionalization with physical
similarity approach. The list of sensitive parameters is given in Table 4. Parameters are listed based on their sensitivity levels as
analysed by SWAT-CUP with the global sensitivity option. It shows that the top sixteen parameters were sensitive and were con-
sidered for calibration, from which the first three (the base flow alpha factor, curve number II and initial depth of water in the
shallow aquifer) were found to be the top sensitive parameters.

3.2. Model calibration and validation

The lists of calibrated model parameters, methods of change used and the final calibrated values are shown in Table 5. The
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graphical comparisons of measured stream flow at the outlet of the donor catchment and its simulated discharge values are depicted
in Figs. 9 and 10 for the calibration and validation processes, respectively. Similarly, the performance indices for the calibration and
validation processes are given in Table 6.

The performance of the best parameter sets selected in the sensitivity analysis (in Subsection 3.1 above) were evaluated by two
major types of statistical evaluations, i.e. model prediction uncertainty and model performance evaluation. The prediction un-
certainty in SUFI2 (one of the programs in SWAT-CUP) is expressed by the 95PPU (95 percent prediction uncertainty), which is
represented by the green-coloured region in Figs. 9 and 10 for the calibration and validation processes, respectively. Two indices are
calculated to evaluate the model uncertainty, the P-factor, and the R-factor. Table 6 shows that the P-factor estimated was 0.73 and
0.65 for calibration and validation, respectively. This means that 73% and 65% of the observed discharge is enveloped by the 95PPU
during the calibration (1982–1998) and validation periods (2000–2013), respectively. On the other hand, the R-factor, which is the
thickness of the 95PPU envelop, was 0.93 for calibration and 0.66 for validation periods, respectively.

Regarding the model performance evaluation, the results of the model performance indicators are shown in Fig. 5. The Nash-
Sutcliffe coefficient (NS) was used as the major objective function. Three other performance indices were also selected, namely the
coefficient of determination (R2), the percent bias (PBIAS), and the ratio of the root mean squared error to the standard deviation of
measured data (RSR). As the results shows that all the performance indicators for both the calibration and validation periods (R2 &
NS > 0.71, -9 < PBIAS < +12, RSR < 0.6) are in fairly acceptable ranges (Moriasi et al., 2007; Abbaspour, 2015; Almeida et al.,
2018). In other words, the statistical indices indicate that there is a good agreement between the measured and simulated streamflow.
Moreover, the PBIAS (+11.8 and -8.1 for calibration and validation, respectively) indicates that the model over-estimated by 11.8%
during calibration, and under-estimated by 8.1% during validation.

It is worthy to note that all the calibration and validation processes with SUFI2 program was completed in the donor catchment.
As a result of this, there was no chance of evaluating the model uncertainty in the catchment of interest. Therefore, after the

Table 4
Parameter sensitivity analysis.

No. Parameter Name t-Stat P-Value Definitions of abbreviations

1 ALPHA_BF.gw −9.3448 0.0000 Base flow alpha factor (days).
2 CN2.mgt −8.3021 0.0000 Curve number for soil water condition 2.
3 SHALLST.gw −7.9193 0.0000 Initial depth of water in the shallow aquifer (mm).
4 OV_N.hru −1.4871 0.1381 Manning's "n" value for overland flow.
5 CH_N2.rte 1.3869 0.1666 Manning's "n" value for the main channel.
6 CH_K2.rte 1.2528 0.2113 Effective hydraulic conductivity in main channel alluvium.
7 REVAPMN.gw −1.2125 0.2264 Threshold depth of water in the shallow aquifer for "revap" to occur (mm).
8 ESCO.bsn 1.06 0.2901 Soil evaporation compensation factor.
9 FFCB.bsn 0.9859 0.3250 Initial soil water storage expressed as a fraction of field capacity water content.
10 GWQMN.gw 0.9019 0.3679 Threshold depth of water in the shallow aquifer required for return flow to occur (mm).
11 GW_DELAY.gw 0.8032 0.4225 Groundwater delay (days).
12 EPCO.hru −0.67 0.5034 Plant uptake compensation factor.
13 MSK_CO1.bsn 0.6601 0.5097 Calibration coefficient used to control impact of the storage time constant for normal flow.
14 SURLAG.bsn −0.6265 0.5315 Surface runoff lag time.
15 GW_REVAP.gw 0.5637 0.5734 Groundwater "revap" coefficient.
16 RCHRG_DP.gw −0.2052 0.8376 Deep aquifer percolation fraction.

Table 5
Methods of a parameter change, initial adjustment intervals, and calibrated values for each parameter.

No. Parameter Name Method of change Min value Max value Fitted value onea Fitted value twob

1 ALPHA_BF.gw Replace 0.05 0.65 0.269 0.15
2 CN2.mgt Relative −0.15 0.48 −0.434 −0.10
3 SHALLST.gw Replace 500 10000 2100 1650
4 OV_N.hru Replace 0.01 0.48 0.435 0.21
5 GW_DELAY.gw Replace 20 566 496 35
6 EPCO.hru Replace 0.2993 0.82 0.439 0.67
7 GWQMN.gw Replace 500 3536 2898 1200
8 FFCB.bsn Replace 0.12 0.69 0.52 0.52
9 CH_K2.rte Replace 2.14 185.82 52.93 52.93
10 CH_N2.rte Replace 0.25 0.76 0.56 0.25
11 MSK_CO1.bsn Replace 1.33 8.15 5.75 5.75
12 ESCO.bsn Replace 0.11 0.94 0.201 0.85
13 REVAPMN.gw Replace 122 3670 285.51 850
14 SURLAG.bsn Replace 0.98 21.77 6.63 6.61
15 GW_REVAP.gw Replace 0.014 0.30 0.288 0.033
16 RCHRG_DP.gw Replace 0.01 0.51 0.367 0.072

a Fitted value one-it is the transposed value fitted by the SWAT-CUP program in the donor catchment.
b Fitted value two-it is the final fitted value by the manual calibration helper in ArcSWAT2012 software in the study catchment.
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Fig. 9. Comparison of measured and predicted monthly stream flow during the calibration period (1982–1998).

Fig. 10. Comparison of measured and predicted monthly streamflow during the validation period (2000–2013).
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calibrated model parameters were transposed to the catchment of interest, two model outputs (annual runoff volumes and annual
evapotranspiration) were compared with results of similar studies in the past. Then, sensitive model parameters were slightly ad-
justed with a manual calibration helper in ArcSWAT interface so that the simulated values would be closer to the values gained from
previous results. The comparison of the model outputs after SWAT-CUP calibration and after SWAT-CUP plus manual calibration is
shown in Table 7. The comparison (Table 7) indicated that the manual calibration helped to improve the annual runoff volume and
annual evapotranspiration by 23% and 16%, respectively. Finally, the model performance was also verified by the comparison of the
in situ measured and simulated soil water content, as shown in Fig. 11, panels a–d where the soil water content measurement was
taken in selected four HRUs in the study catchment.

4. Discussion

It is obvious that the different types of regionalization approaches play important roles in the hydrological modelling of ungauged
catchments in arid and semi-arid environments. However, it is also true that hydrological modelling in ungauged catchments is
exposed to significant amounts of model uncertainty due to the unavailability of data for calibration and validation processes. Hence,
the regionalization approach needs to be applied cautiously.

In this study, the regionalization with physical similarity approach was employed and some best practices are also recommended
to minimize model uncertainties in hydrological models. In hydrological modelling, sensitivity analysis shows the share of all
parameters in the uncertainties of the model output. Hence, more sensitive parameters will have a higher share of model un-
certainties than less sensitive ones in the model output, if that parameter is left uncalibrated. Therefore, sensitivity analysis is the first
step that should be taken into consideration in model calibration. However, not all the sensitive parameters may be calibrated in
ungauged catchments. For instance, in this study, all the soil parameters (collected from field or analysed in laboratory) and some
weather parameters (derived from available weather stations in the study area) were excluded from the calibration and validation
processes. This is because, as stated by (Faramarzi et al., 2015; Kumarasamy and Belmont, 2018; Abbaspour et al., 2018), measured
parameters contribute the least sources of uncertainty in hydrologic modelling. As a result of this, it is recommended to use all
available data sources of the catchment understudy and exclude those parameters from calibration to avoid unnecessary and arbitrary
adjustments of parameters.

Regarding the evaluation of the modelling process in the donor catchment, two types of statistics were used to, i.e., evaluation
with respect to model prediction uncertainty and evaluation of the model with performance indicators. The model uncertainty was
shown by the P-factor and R-factor. The P-factor was 0.73 and 0.65 for calibration and validation, respectively; whereas the R-factor
was 0.93 for calibration and 0.66 for validation periods. Generally, good model uncertainty is expressed by a higher value of the P-
factor (towards 100%) and a lower value of R-factor (towards 0). Abbaspour (2015) has recommended that a P-factor of at least 0.7
and an R-factor of around 1 are acceptable for the calibration and validation of a catchment with respect to its discharge. Therefore,
the results of this study indicated that 73% and 65% of the observed data from the donor catchment were enveloped with the 95PPU
(the region of lower uncertainty) during calibration and validation processes, respectively. Similarly, the smaller thickness of the
95PPU (R-factor of 0.93 and 0.66 for calibration and validation, respectively) also indicate that there was a lower uncertainty of the
modelling process in the donor catchment. Moreover, the model performance indicators (NS, R2, PBIAS and RSR) also indicated the
good performance of the model.

However, all the above model uncertainty and performance indicators were conducted outside the target catchment. There was no
any chance to statistically evaluate the model’s performance and uncertainty in the catchment of interest. As a result, this study
suggests some best practices to inspect model results with other sources of data. For instance, the comparison of long-term annual
runoff volume and annual evapotranspiration results from the model were compared with previous similar studies. The comparison
indicated that the model overestimated the two parameters and the manual calibration improved the model output by 23% and 16%
with respect to the previous results for runoff and evapotranspiration components, respectively. After the manual calibration, the
profile soil water content from the model was compared with measured soil water content data in the study catchment as means of

Table 6
Summary of statistics for calibration, validation processes with flow data in the outlet of the donor catchment.

Process P-factor R-factor R2 NS PBIAS RSR

Calibration 0.73 0.93 0.83 0.82 11.80 0.43
Validation 0.65 0.66 0.72 0.71 −8.10 0.55

Table 7
Summary of statistics for calibration, validation processes with flow data in the outlet of the donor catchment.

Variables compared Values from previous studies SWAT-CUP calibration only SWAT-CUP & manual calibration Percentage of improvement

Runoff volumea 16.5 25.4 21.6 23
Evapotranspirationb 188.1 268.3 238.5 16

a Sources for runoff data: DWAF (2009), Schulze et al. (2007), Kleynhans et al. (2005).
b Sources of evapotranspiration data: Jovanovic et al. (2015); Bennie and Hensley (2001).
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verification of the model. Hence, model results of four HRUs from the study catchment were selected and it showed a higher value of
coefficient of determination (average R2=0.71) indicating a good agreement between the observed and simulated profile soil water
content in the study catchment.

Generally, the following best practices are suggested here to minimize the model uncertainty of hydrologic models in arid and
semi-arid-catchments. (i) excluding some parameters from calibration: parameters that could be derived from data measured in situ
from the catchment of interest should be excluded from the calibration and validation processes. (ii) regionalize and transpose model
parameters from donor (gauged) to study (ungauged) catchment: this is the method that have been already operational and described
in the materials and methods section. (iii) comparison of model outputs to previous studies of any of the components of the catchment
water balance and identify the gap between the two results. (iv) Manual calibration: if the difference between the result from the
model and the previous study is larger, use manual calibration helper to adjust parameter values until the difference between the two
results is minimum. (v) conduct an in situ measurement: all possibilities of direct measurement of data from the catchment of interest
should be given priority. For instance, measurement of soil water content could be relatively easy. The acquisition of satellite soil
water content (e.g., Wanders et al. (2014); Alvarez-Garreton et al. (2015) and Rajib et al. (2016)) or evapotranspiration data (e.g.,
Franco and Bonumá (2017); Emam et al. (2017) and Ha et al. (2017)) are also good alternatives nowadays in arid and semi-arid
catchments. This data is important and could be used for the model verification and it gives the modeller a confidence on the model
outputs.

5. Conclusion

The aim of this study was to set up, calibrate and validate SWAT model in a data-scarce catchment by using the regionalization
with physical similarity approach. A two-way calibration and validation processes were employed, one in the donor catchment (A21C
quaternary catchment) with a semi-automatic calibration program, SWAT-CUP, and the second was conducted in the target catch-
ment (Soutloop) with the ArcSWAT interface of manual calibration helper. Generally, many studies have been conducted to simulate
the components of a catchment hydrology through utilizing the regionalization approach. However, this study shows that the transfer
of calibrated model parameters from a donor catchment to a target catchment, without further inspection of the outputs of the target
catchment, would cause a potential uncertainty in the model outputs. The modeller would then finally draw wrong conclusions.
There should be a way to conduct at least a simple inspection. In this study, the simulated values were compared with previous and

Fig. 11. Comparisons of measured and simulated daily soil water content variations inside Kolomela Mine, measured with DFM probes: (a) at HRU
No. 216 from 1/1/2013 to 10/30/2013, (b) at HRU No. 217 from 11/16/2016 to 8/22/2017, (c) at HRU No. 228 from 11/15/2016 to 8/24/2017
and at HRU No. 408 from 01/01/2014 to 12/31/2014.
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similar local studies, and additional manual calibration was conducted as one alternative for inspecting uncertainity. Moreover, some
in situ measurements (such as soil water content or evapotranspiration) are also advisable for model verification. The calibration of
some of the parameters that are measured in situ (for example, soil parameters in this study) could be unnecessary, since the main
calibration process is outside the target catchment. The use of weather station data is also advisable for minimizing the uncertainty in
model prediction in ungauged catchments. Finally, as the focus of this study was on the regionalization for streamflow estimation, the
influence of catchment sizes were ignored during evaluating the similarity between the donor and target catchments. Therefore,
during the study of point and non-point source pollution, sediment, nitrogen and phosphorus loadings, the influence of catchment
sizes should also be considered in the regionalization process.
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