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Bootstrap Percolation in the Random Geometric Graph
MeiRose Barnette, Arran Hamm, and John Herndon Winthrop University

Bootstrap Percolation

Bootstrap Percolation, sometimes used to model the spread of a
disease, is a dynamic process on a graph in which a vertex becomes
infected if it has too many edges to infected vertices. This can be stated
precisely as follows.

The Process:
1 Start with a set of “infected” vertices, I0, on a graph and select θ > 0.
2 For each t, define It to be It−1 along with vertices in V \ It−1 which
have at least θ edges into It−1.

3 We say the system percolates if all vertices eventually become
infected and does not percolate otherwise

t = 0

t = 1

t = 2

t = 3

θ = 2

In the above example, since θ = 2, the infection will continue to spread
until all vertices are infected, which means the system percolates.

The Random Geometric Graph

The Random Geometric Graph is sometimes used to model ran-
dom networks in which it is likely that vertices “cluster”. The following
is a rigorous definition of this random graph model.

The Process to Generate Gn,r:
1 Select an n ∈ N and an r satisfying 0 < r < 1.
2 Choose n points uniformly at random from [0, 1]2.
3 Join points by an edge if their distance is less than r.

Ex: G200,0.05

First Result

Theorem: Suppose θ is constant and r � n−0.25. If |I0| � ( 1
r2)θ−1/θ,

then Gn,r percolates whp.
Note: “whp” means with probability tending to 1 as n→∞.
Sketch of Proof: For this sketch, fix θ = 2 and r = 1

k with k ∈ N.
1 Create a grid of 0.5r × 0.5r boxes in [0, 1]2.
2 Claim: Every box contains at least 0.125nr2 vertices whp.
3 Claim: If any box contains at least θ infected vertices, then the
system percolates.

4 Claim: If |I0| � k, then some grid box contains at least θ vertices
from I0 whp.
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Together these claims imply that the system percolates. Claim 4 means
that some box (i.e. the one with the green dot) will have enough initially
infected vertices to become totally infected. Because of this, Claim 3
gives the result.

Misc Background Information

Connectivity: A graph is called connected if there is a path along
edges between any two vertices.

Theorem: If r �
√√√√√ln(n)/n, then Gn,r is connected whp.

Local Resilience of Graph Properties: This should be thought
of as a measure of how robustly a graph satisfies a property. Formally,
if G satisfies P , we say that G has local resilience α with respect to P
if deleting an α-fraction of the edges at each vertex results in a graph
which does not satisfy P .

Connectivity Threshold

Theorem: The local resilience for connectivity in Gn,r is 0.5.
Note: this matches the value for other random graph models although
the proof here is slightly different than in those models.
Sketch of Proof:
1 Deleting 0.5d(v) edges at each vertex is enough:

1 Delete every edge crossing the line x = 0.3.
• Notice that this disconnects the graph.

2 Claim: Any vertex (x, y) whose x-coordinate satisfies x < 0.3 or x > 0.3 loses at
most 0.5d(v) edges.
• This requires a standard concentration bound on how edges look at a vertex.

2 Deleting 0.5d(v) edges at each vertex is required:
1 ‘Grid’ [0, 1]2 with 1

`r ×
1
`r squares (` TBD).

• Vertices are adjacent to (2`− 1)2 boxes each of area (r`)
2

• Pairs of vertices in side-adjacent boxes share (2`− 1)(2`− 2) boxes
• So # of common neighbors for vertices in the same box or in side-adjacent boxes is at least:

(2`− 1)(2`− 2)
`2 r2n >

4−
6
`

 r2n

•Key Point: To destroy connectivity, at least one edge must be deleted per common
neighbor.

2 Fix ε > 0 and delete (0.5− ε)4r2n edges per vertex.
• 2(0.5− ε)4r2n = (4− 8ε)r2n ⇒ if ` > 6

8ε, we cannot eliminate all common neighbors.

Future Work

1 Our work extends previous work on this problem. In particular, our
results work with a larger r value than previous work. We are,
however, limited in what we can show. So, we hope to extend the
range of values of r and θ for which we know whether Gn,r is likely to
percolate or not.

2 To our knowledge, local resilience problems on Gn,r have not been
studied. Thus, we hope to examine such problems for other graph
properties such as, “has a perfect matching” or “is Hamiltonian”.
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