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Recent interest among consumers to avoid added chemical additives/preservatives has led to the 

recognition of seaweed as a healthy source of fibers, minerals, and antioxidants. Currently, global seaweed 

aquaculture is valued over US$ 6 billion and is increasing at a steady rate of 8% annually. Moreover, as per 

NOAA Fisheries the US imports more than 80% of the seafood consumed. This provides huge economic 

and workforce development opportunities in the seaweed aquaculture industry of Maine. Consequently, 

farming sugar kelp (Saccharina latissima), a brown seaweed, is gaining momentum along the northeast US 

coast. Due to its seasonal availability and limited shelf life, seaweeds are sun-dried or using hot-air to 

remove moisture, preventing oxidation and microbial growth. The goal of this research is to solve the 

bottlenecks of drying seaweed in Maine by developing an innovative technology focused on a clean, energy-

efficient and closed drying system for producing top-notch and local finished products for American 

consumers. For this project, the effect of drying and storage conditions (temperature, humidity) on the 

physical, chemical and thermal properties of the final product are studied. Also, a mathematical drying 

model is developed to understand the drying kinetics and rate of moisture removal in hot-air driers. 

Investigations carried out throughout this experiment shows controlled environment drying can improve 

the predictability of drying dynamics significantly for the preservation of health-beneficial components in 

sugar kelp. The developed model showed drying can be optimized to create a carbon negative and 

sustainable seaweed processing industry in Maine.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Seaweeds are marine macro-algae and are a rich source of dietary fibers, vitamins, minerals, antioxidants 

and medicinal bioactive compounds (Darcy-Vrillon 1993; Ito and Hori 1989; Morrissey et al. 2001; 

Tabarsa et al. 2012).  Seaweeds are harvested wild from the ocean in most places in the world. Seaweeds 

are classified into three major groups; the green algae (Chlorophyta), the brown algae (Phaeophyta), and 

the red algae (Rhodophyta) (Hurd et al. 2014). Sugar kelp (Saccharina latissima) belongs to the brown 

class of seaweeds and is mostly cultivated in Asian countries such as China and Japan, some parts of 

Europe and in the coastal fronts of North America. It is named sugar kelp because of its sweet-tasting 

powder containing considerable amounts of mannitol (Hurd et al. 2014). The frond of sugar kelp grows 

quickly from November to April and it lives for 2 to 4 years (Hurd et al. 2014). Cultivation of sugar kelp 

does not need any application of chemical pesticides; hence the food products are free from pesticide 

residues compared to land-based products.   

Drying is a phase change process governed by simultaneous heat and mass transfer (Mujumdar & 

Passos, 2000). It removes free water and makes food less susceptible to microbial attack, lipid oxidation 

and enzymatic browning (Argyropoulos et al. 2011; Zhang et al. 2006). To extend the shelf life of sugar 

kelp it is either conventionally sun-dried or hot air dried. Sun drying is one of the oldest techniques for 

food preservation, however, it is very slow, requires clear weather conditions and open drying may lead to 

pest, rodent and bird infestation (Ringeisen et al. 2014). Closed drying systems are energy-intensive but 

have proved to be better than sun drying in terms of nutrient retention and hygiene (Gallali et al. 2000; 

Murthy 2009). Higher drying temperatures (50 – 80°C) induce faster drying rates, but also lead to 

alterations in textural quality due to case hardening, undesirable color change and material shrinkage ( 

Russo et al. 2012).  Removal of free water attached to the solid matrix of food creates void space and 

stress at the cellular level, leading to material shrinkage. The material state (glassy or rubbery) can highly 
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influence its shrinkage while drying and hence, affects the textural properties and shelf-life. Hot air 

drying induces faster drying rate, but also leads to a reduction in heat-sensitive nutrients including vitamin 

C, antioxidants, phytochemicals, total flavonoid content and total phenolic content (Katsube et al. 2009; 

Shi et al. 1999). Also, the chemical and nutritional composition of seaweeds depends mostly on species, 

growth location, growth period, water temperature, salinity and light intensity (Miyashita et al. 2013; 

Schiener et al. 2015; Wells et al. 2016; Kumar et al. 2015, Suresh Kumar et al. 2015; Susanto et al. 2016). 

Hence, determining the thermal properties (thermal conductivity (k), thermal diffusivity (D), specific heat 

capacity (C)) of sugar kelp is important for predicting the drying rate under different drying conditions 

and its effect on the nutritional profile, functional and bioactive properties of the dried kelp.  

Thermal properties of foods vary with temperature and moisture content during thermal 

processing due to the changes in texture and/or composition (Karunakar et al. 1998). Furthermore, void 

formation during drying as a result of moisture removal can be characterized macroscopically by 

structural properties such as true density, bulk density, porosity, and shrinkage. General models for the 

prediction of thermal properties of food products (i.e., thermal conductivity, specific heat, thermal 

diffusivity and material density) as functions of basic food components (i.e., fat, protein, moisture, 

carbohydrate, fiber, and ash) of land-based products were developed by Choi and Okos (1986). However, 

in the case of seaweeds, empirical modeling has known limitations since the primary constituent groups in 

seaweeds consist of complex polysaccharides (alginates, cellulose, laminarin, mannitol, and fucoidan) 

that are completely different from those in land-based products. There have been many published 

experimental values of the thermophysical properties of foods and mathematical models to represent these 

data (Gonzo 2002; Wang et al. 2006; Carson 2006). However, there is no similar work done on the 

seaweeds. 

Mathematical modeling and simulation play a key role in designing and optimizing the 

processing of foods. Process models are increasingly being used to solve process problems and to help in 

decision-making for the process parameters. Real-world systems are generally simulated using complex 
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algorithms however, they never exactly imitate the real-world system. Therefore, a model needs to be 

verified and validated to the degree required for the model's intended purpose and application. The 

verification and validation of the simulation model can only be done after initial model development 

using certain process specifications identified at distinct levels and compared with the real-world 

experiments. This is an iterative process that takes place throughout the development of a simulation 

model. Measured thermal properties of sugar kelp will be essential for the modeling and evaluation of 

food processing operations involving heat and mass transfer, especially when energy costs, food quality 

and safety are the main considerations. 

1.2. Objectives 

The main objective of this study is to develop an innovative technology focused on a clean, 

energy-efficient and closed drying system for producing top-notch and local finished products for 

American consumers. 

The specific objectives of this research are as follows: 

1) Studying the moisture sorption isotherm and the effect of glass transition temperature on the 

shrinkage during hot-air convective drying for establishing storage parameters. 

2) Studying the effect of drying parameters (temperature, humidity and time) on the physico-

chemical properties of sugar kelp for establishing processing conditions. 

3) Studying the thermophysical properties of sugar kelp and developing the heat and mass transfer 

model during the hot-air drying for optimizing process parameters. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. History of Seaweeds 

Seaweeds or sea vegetables are marine macroalgae essential to the complex ecosystem required 

to support marine life. They act as a continuous source of oxygen in water by converting the inorganic 

carbon dioxide into organic compounds using solar radiation during photosynthesis (Thiel et al. 2007; 

Vásquez et al. 2013). Besides, they also provide dissolved organic matter mainly in the form of 

polysaccharides, an important food source for the marine microfauna and habitat for the marine animals 

higher in the food chain (Graham et al. 2007; Vásquez. 1992).  They have also been an important part of 

the human diet for thousands of years in China, Japan, Korea, Chile, and Ireland (Dillehay et al., 2008; 

Fleurence and Levine, 2016; Nash, 2010). In Japan, the lack of goiter is attributed to the high seaweed 

consumption in the form of dried nori sheets used in the preparation of sushi. In China, seaweeds are 

utilized for medicinal purposes including Sargassum for goiter, Gelidium for intestinal afflictions, and 

Laminaria for the dilation of the cervix in difficult childbirths (Dawson, 1966). In southeast Asian 

countries such as Malaysia and Indonesia, seaweeds are consumed fresh as salad. In North America and 

Europe, a red alga named Chondrus crispus, has been used for its medicinal properties in treating urinary 

tract infections, diarrhea, breast infections, and tuberculosis (Dawson, 1966). Due to antifungal and 

antibacterial properties, seaweed extracts were also historically used to cure fevers in 18th century 

England, headaches in Alaska, USA and scabies in New Zealand (Chapman and Chapman, 1980). In the 

European Union, seaweeds were primarily used for the commercial production of hydrocolloids for both 

food and nonfood applications e.g., alginates and agar. In Ireland and Scotland, seaweeds were used as 

fertilizers for farms. Currently, seaweeds are projected as the next superfood for the human diet, health, 

and well-being and are applied in several sectors including biopolymers, cosmetics, animal feed, and 

functional food additives with various health benefits.  
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2.2. The Economy of the Seaweed Industry 

Harvesting wild seaweeds from natural stocks is a common practice in Europe whereas in Asian 

countries seaweeds are cultivated for various applications. Currently, over the globe, the export value of 

the five cultivated genera including Laminaria, Undaria, Gracilaria, Porphyra and 

Eucheuma/Kappaphycus is valued at between US$ 10-16 billion and is increasing steadily at 8% annually 

(Tiwari and Troy 2015) (FAO 2014).  From 1995-2012, the amount of seaweed consumption has been 

increased by 176%; largely contributed by the growth of farming of seaweeds in Indonesia, China, and 

the Philippines. In terms of sustainability, seaweed cultivation has resulted in the decline of wild 

harvesting practice from 52% in 1995 to only 4% of the net production of seaweed in 2012. The values 

reported above indicate only the export value of the seaweed and do not give a true estimate of the 

industry size as most of the seaweeds are produced and consumed locally. Also, there is a lack of data on 

the individual dollar value of the variety of seaweed and type of product.   

2.3. Seaweeds: What are They? 

Seaweeds, the term includes over 9000 species of macroalgae, are majorly classified into three categories 

based on their primary appearance due to the presence of specific pigments: red (Rhodophyta), green 

(Chlorophyta) and brown (Phaeophyta). Among those three major groups, red seaweeds are the most 

diverse representing 73% followed by brown and green seaweeds with 21% and 6% of the total seaweed 

species, respectively. Brown seaweeds have the largest thalli or body size. Green algae are multicellular, 

oxygenic and photosynthetic eukaryotic algae. Ninety percent of all green algae are predominantly found 

in freshwater whereas the remaining 10% inhabits the marine environment (Smith, 1955). Green 

seaweeds are found on the shallow coastal shores and eutrophic zones due to high nutrient tolerance. Ulva 

is commonly found on rocky shores and due to its resemblance to the land-based lettuce, it is also known 

as sea lettuce. The red seaweeds are the oldest eukaryotic algae and widely found in filamentous shape 

around the world in temperate, tropical and arctic waters. They are characterized as having eukaryotic 

cells, a complete lack of flagellar structure, food reserves of floridean starch, the presence of phycobilins, 
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chloroplasts without stacked thylakoids, and no external endoplasmic reticulum. They can grow in deep 

seawater with low light intensity due to the presence of an additional pigment known as phycobiliproteins 

such as R-phycoerythrin and R-phycocyanin. Most common of the red seaweeds are Porphyra, popularly 

known as “nori” in Japan, “laver” in the UK, USA and Canada, and Gracilaria. Brown seaweeds are 

characteristically brown due to the presence of fucoxanthin and are found in between subpolar and 

equatorial regions. They are morphologically different as compared to the other groups of seaweeds and 

biologically evolved to uptake more carbon dioxide under blue light. Brown and red seaweeds are an 

important source of hydrocolloids including alginates, agar, and carrageenan. They are found commonly 

in sheltered waters on rocky substrata in the intralittoral zone and their sporophyte is differentiated into a 

basal holdfast, a firm cylindrical stipe slightly flattened at the top and the highly variable structure of a 

single, undivided blade (Braune and Guiry 2011). Sugar kelp (Saccharina latissima) belongs to the brown 

class of seaweeds and is named sugar kelp because of its sweet-tasting powder containing considerable 

amounts of mannitol (Hurd et al. 2014). It is mostly harvested in Asian countries such as China and 

Japan, some parts of Europe and in the coastal fronts of North America. Sugar kelp is the most common 

brown seaweed produced in the state of Maine, USA. Its spores are grown on a seedstring in a nursery 

system on land with proper environmental controls (i.e. intensity of light, water temperature, water 

filtration and circulation, nutrient supply, etc.). After 5-7 weeks, the kelp attains 1-2 mm in size and the 

seedstring is outplanted on the longlines supported by the buoy systems at a particular site in the ocean 

with good nutrient flow, especially nitrogen.  Afterward, the kelp is allowed to grow without any 

application of fertilizers between the period of mid-September and late March to attain the desired size. 

Finally, the fully-grown kelp is harvested from the longlines from April until June. In the wild, the frond 

of sugar kelp can live for 2 to 4 years (Hurd et al. 2014). 

2.4. Chemical Composition of Brown Seaweeds and Health Benefits 

Recent interest among consumers to avoid added chemical additives/preservatives in food 

products has led to the recognition of seaweed as a source of natural and healthy food. Moreover, reports 
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on the nutritional value of seaweeds have contributed to a growing demand for seaweed food products 

(Suleria et al. 2015). Seaweeds are a rich source of vitamins, minerals, antioxidants, omega-3 fatty acids 

and especially medicinal bioactive  compounds in the form of dietary fibers (alginates, carrageenan, 

fucoidan, laminarin, porphyran, ulvan) and secondary polyphenolic metabolites (fucoxanthin, 

phlorotannins) (Campo et al. 2009; Darcy-Vrillon 1993; Ito and Hori 1989; Kang et al. 2012; Kotake-

Nara et al. 2005; Mori et al. 2004; Morrissey et al. 2001; Tabarsa et al. 2012; Wang et al. 2009; Yang and 

Zhang 2009; Zubia et al. 2008). However, the chemical composition and nutritional content of seaweeds 

depend on multiple factors including: species, geography, location, season, water temperature, salinity 

and light intensity (Kumar et al. 2015; Miyashita et al. 2013; Schiener et al. 2015; Suresh kumar et al. 

2015; Susanto et al. 2016; Wells et al. 2016). The active metabolites found in seaweed have been 

documented to exhibit various biological activities based on their chemical structure and species, 

including: anticancer, antitumor, antiviral, anti-inflammatory and anti-angiogenic effects (Beppu et al. 

2009; Cumashi et al. 2006; Damonte et al. 2004; Ikeguchi et al. 2011; Sugawara et al. 2006). Brown 

seaweeds contain fats predominantly in the form of  saturated fatty acids (SFA) (myristic acid (14:0), 

palmitic acid (16:0), stearic acid (18:0)) and poly unsaturated fatty acids (PUFAs) (linoleic acid (18:2), γ-

linolenic acid (18:3n-6), α-linolenic acid (18:3), stearidonic acid (18:4), arachidonic acid (20:4), 

eicosapentaenoic acid (20:5n-3)), each group of fatty acids representing about 40% of the total fat/lipid 

content. PUFAs are abundant in seaweeds, especially ω -3’s and ω-6’s, which are essential fatty acids not 

biosynthesized by humans and must be consumed through the diet (Khotimchenko et al. 2002). The 

positive impact of these PUFA’s on human health are well studied, including: reduction in cardiovascular 

diseases (Burtin 2003), anti-cancer properties (Khotimchenko and Gusarova 2004) and pre-postnatal 

development of the brain (Guesnet and Alessandri 2011).  

Brown seaweeds generally contain very low amounts of proteins as compared to the other types 

of seaweeds (Fleurence and Levine 2016). The highest protein content (24 g (100 g)-1 dry solids) is 

recorded in Undaria pinnatifida and in most species, it can vary from 3 - 15 g (100 g)-1 dry solids 
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(Fleurence and Levine 2004; Smith and Young 1955). The carbohydrates in sugar kelp exist in two forms: 

structural (alginates and cellulose) and storage (laminarin, mannitol and fucoidan) and vary depending on 

the harvest season and environmental conditions (Schiener et al. 2015). Alginates exist primarily in the 

cell wall of brown algae, consisting of linear monomeric chains of β-D-mannuronic acid (M) and α-L-

guluronic acid (G) residues (Kraan 2012). These chains are comprised of GG, MM or GMGM blocks 

depending on the species, source and time of harvest (Lee and Mooney 2012). G-blocks of alginate are 

responsible for hydrogel forming activity in the presence of cations such as Ca2+ by intermolecular cross-

linking (George and Abraham 2006). Laminarin is also a linear polysaccharide consisting of glucose 

monosaccharide units linked by β-1,3-glycosidic bonds or β-1,6-glycosidic bonds (Rioux et al. 2010). It 

can represent around 2 – 34 g (100 g)-1 dry solids in the brown macroalgae (Kraan 2012). Mannitol is a 

six-carbon polyol that can vary between 12 – 30 g (100 g)-1 dry solids depending on the species and time 

of harvest (Holdt and Kraan 2011; Zubia et al. 2008). Fucoidans are the sulfated polysaccharides found in 

brown seaweeds up to 10 g (100 g)-1 dry solids (Holdt and Kraan 2011). Many studies have found that the 

consumption of high dietary fiber present in seaweed could help the prevention of obesity related 

disorders and metabolic syndrome (Lee et al. 2010; Yeh et al. 2011). Seaweeds are also an excellent 

source of calcium and phosphorus, the two essential minerals for calcification of the protein matrix, 

possibly lowering the risk of osteoporosis and bone mineral loss (Aslam et al., 2013; MacArtain et al., 

2007; Yamaguchi et al., 2001). The mineral content found in sugar kelp is higher than in any terrestrial 

plants and is the highest among the seaweeds (Omotoso 2006; Rupeŕez 2002). Because of this, it is a very 

good nutritional source of primary macro and trace elements in the decreasing order: Potassium (K), 

Sodium (Na), Calcium (Ca), Magnesium (Mg), Iodine (I), Strontium (Sr), Iron (Fe), Arsenic (As), 

Aluminum (Al), Zinc (Zn) and Titanium (Ti) (Scheiner et al. 2015).  

A vast range of pigments that absorb light in the visible spectrum for photosynthesis is found in 

the macroalgae, based on whether they are classified as brown, green or red seaweeds. In brown seaweeds 

chlorophyll a, chlorophyll c, fucoxanthin, violaxanthin and a precursor of vitamin A (β – carotene) are the 
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important light-harvesting pigments. Among these, fucoxanthin is the predominant pigment, it is 

generally yellowish-brown in color and masks the green color of chlorophyll, giving an overall 

appearance in the range of olive green to dark brown (Jefferey et al. 1997). Brown seaweeds have 

enormous amounts of phenolic compounds which are also known for exhibiting antioxidant activities 

(Dang et al. 2017; Gupta et al. 2011; Lann et al. 2008; Rajauria et al. 2010). These phenolic compounds 

include mainly chlorogenic acid, phloroglucinol, caffeic acid, kaempferol, 2, 5-dihydroxy benzoic acid, 

coumaric acid, cirsimaritin, ferulic acid, gallic acid, and syringic acid (Chakraborty et al. 2017; Rajauria 

et al. 2016). The continuous increase in life expectancy and low fertility rates have resulted in 

demographic shifts, causing an increase in neurological diseases such as autism, epilepsy, psychiatric 

disorders, neuropathic pain, or Alzheimer’s and Parkinson’s diseases among older adults. Several studies 

have documented that the natural bioactive compounds and minerals present in marine algae can act as a 

potential candidate for preventing neurodegenerative disease with no side effects as compared to the 

synthetic neuroprotective drugs (Cho et al., 2012; Ogara et al., 2015; Suganthy et al., 2010). 

2.4. Farming, Harvesting and Processing of Seaweeds 

Growing seaweeds in aquaculture has increased three-fold since 1997 from 7 million tons to 24 

million tons (FAO 2014). Food products for human consumption constitute around 83% of the annual 

cultivation, while the rest is used in developing hydrocolloids, fertilizers and animal feeds (Craigie, 

2011). This tremendous growth in production of seaweeds can potentially complement the land-based 

agricultural products. The productivity of some of the seaweed species is comparable with agricultural 

crops, for instance, the yield of giant kelp (Macrocystis spp.) is equivalent to sugar cane annually. Some 

of the research indicates that only 10% of the total ocean surface is required to produce fish and seaweeds 

equivalent to all the agricultural yield without the need for freshwater (Radulovich 2011). Brown 

seaweeds are present in shallow coastal waters attached to rocky substrates to receive adequate sunlight 

for photosynthesis. They absorb nutrients throughout their thallus and do not have true roots.  Most 

commonly, brown seaweed propagules are attached to a string in the nursery to provide a substrate for 



10 
 

their growth and after maturation, they are transferred on thick nylon long lines supported by buoys 

allowing them to grow underwater with access to required sunlight, carbon dioxide, and nutrients. 

Seaweed cultivation in dead eutrophic zones of oceans can remove excess nutrients and thus help in 

rebalancing the local ecosystem. Growing similar species in different water can be challenging due to 

changes in water salinity, different ecosystems leading to the presence of vertebrate and invertebrate 

herbivores or biofouling organisms. In Damariscotta Bay, Maine, USA, the seaweeds are grown 

downstream from oyster farms. The waste from oyster cages provides nutrients along with naturally 

present ocean nutrients.  

Fig 2.1 Sugar kelp grown on nylon long lines (Damariscotta Bay, Maine, USA) 

 

 

Harvesting seaweeds, especially sugar kelp, is a very labor intense and tedious process for the seaweed 

farmers in Maine, USA from April to June on sunny days. It involves lifting a section of the long line 

above water (Fig. 2.2), inspecting and washing it with ocean water to remove any biofouling (Fig 2.3), 

cutting the stipes along the line, and collecting and transporting kelp in hygienic totes to the coast for 

further processing (Fig 2.4) (Fig 2.5). This whole process is repeated along the several long lines attached 

to buoys parallel to each, other resembling row-like structure. On the coast, each blade of harvested kelp 

is loaded manually on the hanging lines inside the drying room assisted with solar drying and air 
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ventilation. Kelp blades are dried inside the drying chamber for approximately 48 hrs. to attain a final 

moisture content below 20% wet basis.   

Fig. 2.2 Sugar kelp farmers lifting a section of sugar kelp line  
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Fig. 2.3 Sugar kelp farmers inspecting and washing a section of sugar kelp line with ocean water 

 

Fig. 2.4 Cut and an uncut section of sugar kelp line  
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Fig 2.5 Sugar kelp totes unloading zone on the coast 

 

Seaweeds are stored in the dark in low-temperature ocean water to extending their storage life 

with low mesophilic microbes and satisfactory textural conditions (Paull and Chen 2008) (Liot et al. 

1993). Ninety percent of the total mass of fresh sugar kelp consists of water which makes it a lot harder to 

maintain its shelf life at room temperature. Therefore, fresh sugar kelp is processed using several methods 

including removal of water during drying (freeze-drying, sun drying and hot air drying) (Sappati et al. 

2019), addition of starter culture and fermenting to below a pH of 4.6 (Hermann et al. 2015), hot water 

blanching followed by freezing, and dry salting and refrigerated storage (Perry et al. 2019) (Nayyar and 

Skonberg 2019) for extending shelf life as well as imparting certain physical and sensory characteristics. 

Drying was one of the earliest techniques for food preservation and is governed by simultaneous 

heat and mass transfer effects on liquid-vapor phase change (Mujumdar and Passos 2000).  At present, 

dried seaweeds are commercially produced under direct sunlight or by using a convective hot air dryer 
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based on propane or natural gas heating.  Many areas, especially in the equatorial and subtropical zone of 

many developing countries in the Asia and Pacific region, use open drying systems to capture sunlight. 

However, sun drying has very limited application in the US state of Maine, due to lack of exposure to 

sunlight, warm dry air and clear weather conditions during the harvesting season of the year. In contrast, 

conventional convective dryers are energy-intensive but have proved to be better than sun drying in terms 

of nutrient retention and hygiene (Gallali et al. 2000; Murthy 2009). Hybrid drying technology such as 

solar-assisted with heat pumps (Fadhel et al. 2010), infrared-assisted (Fasina 2003) and microwave-

assisted drying (Wang et al. 2004) is being promoted along with several non-thermal pretreatments 

including CO2 drying, pulsed electric field (PEF), osmotic dehydration (OD) and ultrasound (Jin et al. 

2017) to increase food safety and reduce the drying time and power consumption.  

2.6. Drying Effects on the Chemical Composition, Physical and Thermal Properties 

Fresh seaweeds contain very high moisture content (∼75% - 90% w.b) and are highly perishable 

due to enzymatic deterioration, lipid oxidation, and microbial attack. The functional properties, bioactive 

compounds, volatile compounds (aroma, flavor) and antioxidant activity in the finished seaweed product 

are highly affected by the drying method applied, depending on the disintegration of the food matrix 

during the process (Costa et al. 2015; Dang et al. 2016; Gupta et al. 2011; Lann et al. 2008; Ling et al. 

2015; Neoh et al. 2016; Tello-Ireland et al. 2011; Vairappan et al. 2014; Wong and Cheung 2001). The 

most widely used method of drying seaweeds is open sun drying. It is currently the main drying method 

used in many areas, especially in the equatorial and subtropical zone of many developing countries in 

Asia and the Pacific region. Sun-drying (SD) has very limited application in the US state of Maine, due to 

lack of exposure to sunlight, warm dry air and clear weather conditions during the harvesting season of 

the year. For improving drying conditions, alternate methods like vacuum freeze-drying (FD) (Chan et al. 

1997; Le Lann et al. 2008), hot air oven drying (HAD) (Chan et al. 1997; Le Lann et al. 2008), 

hydrothermal drying (Rajauria et al. 2010), microwave drying (Dang et al. 2016) and dehumidified drying 

(Djaeni and Sari 2015) have been employed for drying several species of seaweeds. In brown alga 

Hormosira banksii, the levels of total phenolic compounds (TPC), total flavonoid content (TFC) and 
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proanthocyanidins were found to be higher as a result of vacuum drying, freeze-drying and dehumidified 

drying as compared to the sun and oven drying (Dang et al. 2016).  Similarly, lower phytochemical 

contents were also reported in the case of sun-dried and sauna dried red seaweed Kappaphycus alvarezii 

(Ling et al. 2015). The chemical profile of seaweeds is also highly dependent on the season of harvest as 

the proximate components undergo massive fluctuation depending on the temperature, pH, and the 

salinity of water and other environmental changes (Astorga-España et al. 2015; Kumar et al. 2015; 

Schiener et al. 2015).  HAD is the most common alternate method and is less expensive than FD, however 

it leads to reduction in heat-sensitive nutrients including vitamin C, antioxidants, phytochemicals, total 

flavonoid content and total phenolic content (Katsube et al. 2009; Sablani et al. 2011; Shi et al. 1999; 

Yang et al. 2010).  HAD also causes alterations in textural quality due to case hardening, undesirable 

color change and undesirable levels of material shrinkage (Kurozawa et al. 2012; Russo et al. 2012). Even 

though FD can yield better quality products in terms of maintaining the integrity of nutrient, texture and 

flavor profile in the finished product, its high-energy requirement, and capital costs make it unprofitable 

for large scale operations (Wojdylo et al. 2016). Heat pump based (HPD) drying systems are novel and 

promising for drying heat-labile food products as the drying systems consume little energy, ensure 

product quality and allow de-coupled control of drying conditions (air temperature, relative humidity, air 

velocity) (Deng et al. 2011; Othman et al. 2011). In a study performed on squids, HPD systems proved to 

result in better myosin integrity and the highest volatile content as compared to HAD (Deng et al. 2015). 

Costa et al. 2015 reported that HPD systems have 40% lower drying time than conventional tray dryers 

(CTD) while dehydrating Spirulina at a temperature of 50ºC. In the same study, while drying at 50ºC, 

they also found the total phenolic compounds and total antioxidant activity in Spirulina to be 60% and 

10% higher, respectively, in HPD as compared to CTD. These changes in the chemical profile due to 

seasonal variation and processing methods can have major impacts on the functional and bioactive 

properties of the dried seaweeds. 
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The drying process of seaweeds generally occurs under a falling rate period (Djaeni and Sari 

2015; Gupta et al. 2011; Moreira et al. 2016; Sappati et al. 2017). During this period, the moisture present 

in the porous structure of food material undergoes simultaneous vapor diffusion through the void pores 

due to vapor pressure gradient and outward liquid movement in the capillaries (Geankoplis 1993). Within 

the same species of seaweed, the morphological and structural differences of the tissue, its age, size, 

growing environment and seasonality influence the total moisture content (MC) of the fresh seaweed 

(Clendenning 2009). The water activity (aw) of a food is the ratio between the vapor pressure of the food 

to the saturated vapor pressure of pure water under the same temperature (Heldman 2013). It is the energy 

state of water in the food or simply a measure of the amount of free water available in the food. The aw 

has been used as an important factor in predicting the growth of bacteria, yeasts, and molds and hence 

provides a good estimate for the shelf life, microbial stability, undesired bioreactions and physical 

properties of dried kelp. The shelf life of the dried product under given conditions can be increased by 

controlling its acidity level (pH) or the level of aw or a suitable combination of the two (Singh and Shalini 

2016). It has been reported that the limiting water activity for all life forms (bacteria, mold, yeast) of 0.6 

is achieved in the final dried seaweed if its final moisture content is less than 20% on a dry basis 

(Stevenson et al. 2015). 

Vitamin C consists of ascorbic acid and dehydroascorbic acid and is an important antioxidant 

found predominantly in fruits and vegetables. Some of the common seaweeds contain high amounts of 

Vitamin C such as Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum (0.35 mg g-1 wet 

sample) (Matanjun et al. 2009). Pure ascorbic acid is stable in the presence of oxygen, light and room 

temperature for long durations. However, its stability is compromised in food systems and is vastly 

dependent on the storage conditions, pH, processing temperature, photo-oxidation and the presence of 

enzymes and metal ions (Moser and Bendich 1991). Several authors have investigated the role of air 

temperature in degradation kinetics of vitamin C in various foods (Erenturk et al. 2005; Goula and 

Adamopoulos 2006; Kaya et al. 2010).  

http://www.sciencedirect.com.prxy4.ursus.maine.edu/science/article/pii/S0960308508001077#bib9
http://www.sciencedirect.com.prxy4.ursus.maine.edu/science/article/pii/S0960308508001077#bib9
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Microscopic structural changes (pore formation) during drying as a result of moisture removal 

can be characterized macroscopically by structural properties such as true density, bulk density, porosity, 

and shrinkage. True density or particle density in the case of granular food is determined by the densities 

of its constituents and it decreases with an increase in the moisture content. The bulk density of granular 

food is measured experimentally depending on how the food is packed in the container. A vast amount of 

data has been presented on the structural properties of food (true density, bulk density, and porosity) with 

respect to its moisture content and temperature (Boukouvalas 2006a; Boukouvalas 2006b). It has been 

observed that the true density is always greater than the bulk density and lies in between the density of 

pure water and dry solids. The applied drying method and processing conditions can also highly influence 

the porosity of the dried product (Rahman 2003; Sablani and Rahman 2002). Choi and Okos have 

proposed empirical models based on the proximate composition of the food for predicting the thermal 

properties such as thermal conductivity (k), specific heat capacity (C), diffusivity (D) and bulk density (ρ) 

over a wide range of processing temperatures (Choi and Okos 1986). For instance, this model has been 

used to estimate the thermal properties of several different foods such as bakery products and carrot and 

meat alginate particles by considering all the major food components present including water, protein, 

fats, carbohydrate, fiber and ash (Sablani et al. 2002; Hassan and Ramaswamy 2011). However, the 

application of empirical modeling in the case of seaweeds has known limitations since the primary 

constituent groups in seaweeds consist of complex polysaccharides (alginates, cellulose, laminarin, 

mannitol and fucoidan) completely different from those in land-based products. Moreover, transport 

properties of food such as thermal conductivity, specific heat capacity and diffusivity are dependent on 

structural properties, especially porosity, and therefore the volume fraction of air should be considered 

while calculating the thermophysical properties from individual constituents (Rahman 2009). 

Alternatively, thermophysical properties (k, D) can be measured directly in a single experiment by the 

modified heat probe method using a dual needle probe (Carslaw and Jaeger 1959; Sweat 1974). In this 

method, a central heat source generates heat pulses, and the temperature response is monitored by the 

thermocouple placed parallel to the heating source at a fixed distance. The solution algorithm of this 
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method only accommodates conduction as the primary mode of heat transfer. Consequently, during the 

heating stage, a large temperature gradient can induce convective currents in low viscous foods and might 

change the food structure at the microscopic level, resulting in an inaccurate measurement. The 

pycnometer is currently used as the standard method for measuring the ρ of foods (Coimbra et al. 2006; 

Phinney et al. 2017; Rojas et al. 2013). The volume of the fixed mass of the food placed in the 

pycnometric flask is measured by displacing the non-wetting working liquid, indirectly allowing the 

density of the sample to be determined. The C of the various food samples including potato (Wand and 

Brennan 1995), chicken breast patties (Tang et al. 1991), lentil seeds (Sopade et al. 2006), and honey 

(Hua et al. 2011) has been measured in the past by the standard method of differential scanning 

calorimetry (DSC). DSC measures the specific heat by applying a constant rate of heating and measuring 

the temperature difference between the unit mass of the food material and the empty reference. Specific 

heat capacity can also be measured indirectly by measuring thermal conductivity, density, and thermal 

diffusivity by using equation (5.5) presented in this paper.  
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CHAPTER 3 

EFFECT OF GLASS TRANSITION ON THE SHRINKAGE OF SUGAR KELP 

(SACCHARINA LATISSIMA) DURING HOT AIR CONVECTIVE DRYING 

Nomenclature 

a, Constant of Eq. (9) 

Ao, Superficial area at instant t = 0 (m2) 

At, Superficial area at instant t (m2) 

aw, Water activity 

b, Ratio of unfreezable water to the total solid content 

B, Constant related to net heat of sorption 

C, Constant related to monolayer heat of sorption 

c, Constant of Eq. (9) 

Def, Effective diffusion coefficient (m2/s) 

E, Molecular mass ratio of water to solids 

k, Gordon Taylor parameter 

K, Constant related to multilayer heat of sorption 



20 
 

L, Sample half thickness (m) 

Mb, BET monolayer water content (kg H2O/kg dry solids) 

Mg, GAB monolayer water content (kg H2O/kg dry solids) 

Mw, Moisture content of the sample (kg H2O/kg dry solids) 

MR, Moisture ratio 

n, Coefficient of Suzuki model 

t, Time period (s) 

Tgm, Glass transition temperature of mixture (oC) 

Tgs, Glass transition temperature of solids (oC) 

Tgw, Glass transition temperature of pure water (oC) 

Xeqb, Equlibrium moisture content (kg H2O/kg solids dry basis) 

Xo, Initial moisture content (kg H2O/kg solids dry basis) 

Xs, Mass fraction of solid (kg solid/kg sample wet basis) 

Xt, Moisture content (kg H2O/kg solids dry basis) at any given time t 

Xw, Mass fraction of water (kg H2O/kg sample wet basis) 

, Freezing point depression 

, Molar freezing point constant of water (kg K/kg mol.) 
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,w Molecular mass of water (g/mol.) 

0 , Initial density (g/cm3) 

3.1. Introduction 

Sugar kelp is highly perishable due to its high moisture content (~ 92% w.b). To extend its shelf 

life it is either conventionally sun-dried or hot air dried. Sun drying is one of the oldest techniques for 

food preservation, however, it is very slow, requires clear weather conditions and open drying may lead to 

pest, rodent and bird infestation (Ringeisen et al. 2014). Closed drying systems are energy-intensive but 

have proved to be better than sun drying in terms of nutrient retention and hygiene (Gallali et al. 2000; 

Murthy 2009).  Drying is a phase change process governed by simultaneous heat and mass transfer 

(Mujumdar & Passos 2000). It removes free water and makes food less susceptible to microbial attack, 

lipid oxidation and enzymatic browning (Argyropoulos et al. 2011; Kurozawa et al. 2012; Zhang et al. 

2006). The drying rate is highly dependent on several process parameters including drying temperature, 

moisture diffusion coefficient, the difference in the partial pressure of water vapor in food and the 

surroundings, material thickness, surface area and phase transition (from glassy to rubbery state) (Lewicki 

and Jakubczyk 2004; Van Arsdel 1973).  Higher drying temperatures (50 - 80°C) induce faster drying 

rates, but also lead to reduction in heat-sensitive nutrients including vitamin C, antioxidants, 

phytochemicals, total flavonoid content and total phenolic content (Katsube et al. 2009; Sablani et al. 

2011; Shi et al. 1999; Yang et al. 2010) and alterations in textural quality due to case hardening, 

undesirable color change and material shrinkage (Kurozawa et al. 2012; Russo et al. 2012).  Removal of 

free water attached to the solid matrix of food creates void space and stress at the cellular level, leading to 

the material shrinkage. The material state (glassy or rubbery) can highly influence its shrinkage while 

drying and hence, affects the textural properties and shelf-life. Shelf-life of a food product depends on a 

number of intrinsic and extrinsic properties of the processed or stored product such as: water activity 

(available moisture), pH, available oxygen and nutrients, redox potential and glass transition temperature 
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(Buera et al. 2011; IFST 1993) and storage conditions such as temperature and relative humidity (Badii et 

al. 2014; Gonda et al. 2012). 

Glass transition temperature (Tg) in a food corresponds to the thermodynamic unsteady state at 

which the amorphous form of water, bound to the solid food matrix, transitions between the rubber and 

glassy states (Rahman 2012; Roos 2010; Sablani et al. 2010) In high moisture foods like seaweed, the 

amorphous water behaves as in the rubber state at the beginning of drying, until the moisture and 

temperature drop sufficiently to reach the glass transition state. In the rubbery state, the molecular 

movement is much higher than that in the glassy state and volume reduction during shrinkage in this stage 

is directly proportional to the moisture loss (Karathanos et al. 1996). Further, shrinkage in the rubbery 

state of a food product is compensated with the amount of moisture loss during dehydration i.e. volume of 

moisture loss is equivalent to the change in material volume (Bhandari and Howes 1999; Mayor and 

Sereno 2004). Below the glass transition temperature, the molecular diffusivity decreases significantly 

due to high viscosity (in the range of 1012-1013 Pa s) that restricts the movement of water and other 

organic components responsible for a rigid product (Bhandari and Howes 1999; Mayor and Sereno 2004). 

Highly concentrated water in the glassy state is dynamically immobile and does not support or become 

involved in any chemical reactions. Thus, the glass transition temperature can be taken as a reference 

temperature to assess the quality, safety and stability attributes of products during storage and to 

determine shelf-life.  

Shrinkage while drying reduces the path length for moisture diffusion and results in lower 

moisture diffusion coefficients as compared to models that assume no shrinkage. Several authors have 

compared models with and without shrinkage and found a significant difference between moisture 

diffusion coefficients.  In cases of papaya (Kurozawa et al. 2012), fish muscle (Park 1998) and carrot 

(Zielinska and Markowski 2010) the moisture diffusion coefficients were (18.75% - 31.81%), (42% - 

43.5%) and (15.68% - 77.5%) lower, respectively, as compared to models that assumed no shrinkage, 

depending on the air-drying temperature and velocity. However, in this study shrinkage is not considered 
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while solving Fick’s diffusion equation because sugar kelp’s thickness is very small (~ 2.5mm) as 

compared to its superficial area dimensions.  

This work aims to evaluate the effect of glass transition phenomenon on shrinkage of sugar kelp 

by achieving these specific objectives: 1) Determine the moisture sorption isotherm, 2) Study the glass 

transition temperature, 3) Model drying kinetics, and 4) Investigate the application of dehumidification at 

lower temperatures for decreasing drying time.  

3.2. Materials and Methods 

3.2.1. Materials 

Fresh sugar kelp (Saccharina latissima) grown in Damariscotta bay, Maine, was donated by 

Maine Fresh Sea Farms, Walpole, ME, USA. The holdfasts at the end were cut off and the blade and stipe 

parts were washed with running fresh water to remove the attached biofouling and salts. The seaweed 

samples were kept at -20oC for 24 hours before freeze-drying (Virtis Ultra 35EL, SP scientific, 

Warminster, PA, USA) at different cycles of temperature (-20oC, -10oC, 0oC, 10oC, and 25oC) for 4 hours 

each with vacuum maintained at 20 Pa. The initial moisture content of fresh sugar kelp was observed to 

be 0.924 kg H2O/kg sample (wet basis) before freeze-drying. After a 20-hour cycle of freeze-drying, the 

dried sugar kelp was pulverized to a fine powder using mortar and pestle and stored in an opaque brown 

container at 4oC until further analysis. The moisture content of the freeze-dried sample was 0.0592 kg 

H2O/kg solids (dry basis). 

3.2.2 Proximate Analysis 

            The moisture content of freeze-dried sugar kelp samples was measured using a gravimetric 

method. One gram of sample in triplicates was dried in an oven (VWR, VWR International, Radnor, PA, 

USA) at 105 oC until there was no further change in weight +/- 0.001 g (AOAC 1999). For measuring ash 

content, 0.5g of sample in triplicates was kept at 550 oC in a muffle furnace (Thermolyne Model F-
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A1730, Dubuque, IA, USA) for 6h (AOAC 1999). Total nitrogen content was determined using a dry 

combustion analyzer (TruMac CNS, LECO Corporation, MI, USA) (AOAC 1990). The total crude 

protein was calculated using an average nitrogen-to-protein conversion factor of 5.3 for sugar kelp 

(Schiener et al. 2015). The fat content of the sample was measured using the acid-hydrolysis method for 

seafood (AOAC 2005). The total carbohydrate content was calculated using the difference method (Merill 

and Watt 1973). The total soluble solids (TSS) of the supernatant was measured using refractive index  

(Palette Digital Refractometers 0-45o, ATAGO U.S.A Inc., WA, USA) on a sample prepared by taking 

0.5 g of sample  homogenized (Polytron homogenizer, Brinkmann Instruments, Westbury, NY) in 4.5 mL 

of water for 2 min and centrifuged at 7000 x g for 10 min. 

3.2.3 Moisture Sorption Isotherm 

For estimating the moisture sorption isotherm, the freeze-dried sugar kelp powder was kept in 

airtight glass jars in the presence of saturated salt solutions with known water activities at room 

temperature ~ 22°C. Triplicates of 1 gram freeze-dried samples were kept for three weeks to attain 

equilibrium in airtight bormioli rocco glass jars (500 ml) (Bormioli Rocco North America, NY, USA) in 

the presence of a salt solution (150 mL), with thymol (10 g) added to avoid microbial growth. The salts 

used for this experiment were: LiCl, CH3COOK, MgCl2.6H2O, K2CO3, MgNO3.6H2O, NaCl, NH4Cl, KCl 

and KNO3, with equilibrium water activities of: 0.113, 0.225, 0.328, 0.432, 0.529, 0.754, 0.792, 0.851 and 

0.946, respectively (Greenspan 1977). Change in weight of samples was recorded each day until there 

was no weight variation of +/- 0.0005 g. Final equilibrium moisture content (EMC) in dry basis was 

measured by the change in final and initial weight.  

3.2.3.1 Water Sorption Isotherm Modeling 

Water sorption isotherms of sugar kelp powder were modeled using the BET (Brunauer–Emmett–

Teller) and GAB (Guggenheim–Anderson–de Boer) models. The BET model provides the best fit for 

water activity in the range of (0.05-0.45) (Rahman 1995). The GAB model can be fitted for a vast range 

of water activity up to 0.9. 
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Eq. (3.1) represents the BET model 
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       (3.1) 

Eq. (3.2) represents the GAB model 
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       (3.2) 

GAB is an extended version of the BET model. The parameter K compensates for the modified properties 

in the multilayer region and bulk liquid properties. Non-linear optimization technique was used for 

estimating the BET and GAB model constants. 

3.2.4 Glass Transition Temperature 

Differential scanning calorimetry (DSC Q2000, TA instrument, New Castle, DE, USA) was 

performed on the freeze-dried sugar kelp to obtain thermal transition curves of heat flow with respect to 

temperature. Triplicates of samples having moisture content in the range of 0.05 to 3 kg H2O/kg dry 

solids were used for this experiment. The samples (4-10mg) were placed and sealed in standard aluminum 

hermetic pans. An empty aluminum pan was used as the reference. The instrument was calibrated using 

indium fusion. The samples were cooled to -80oC from room temperature (22oC) using a mechanical 

cooling unit using ramp function and allowed to attain equilibrium for 10 minutes. Initially, the samples 

with low moisture (< 0.3 kg H2O/kg solids) were scanned through a temperature range of -80 to 100oC at 

2, 5 and 10 oC/min scan rate. The scan rate of 2 oC/min was chosen for future analyses. Glass transition is 

generally indicated by the vertical shift in the thermogram. TA universal analysis software was used for 

analyzing the thermogram for the arrival, mid-point, and end of the glass transition temperature. The 

thermogram for samples with high moisture content (0.3 to 3 kg H2O/kg solids) also showed the melting 

curve. The enthalpy of melting (ΔH) was obtained by computing the area under the melting curve. The 

endpoint of the freezing curve (Tm) was given by the intersecting point of the baseline with the given 
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melting endotherm. The freezing point (Tf) of the high moisture samples was determined by making a 

tangent to the left side of the endotherm (Fig. 3.5). During the DSC scan, high moisture content samples 

were subjected to annealing at (Tm - 1) for 30 minutes (Bai et al. 2001; Syamaladevi 2009). After 

annealing, the freeze-dried sample was cooled to -80 oC from (Tm - 1) using ramp function and again 

heated from -80oC to 100oC at 5 oC/min. The glass transition phenomenon is influenced by the amount of 

moisture in the amorphous food system and is most commonly modeled using the Gordon and Taylor 

equation (1952) as given below: 

Eq. (3.3) represents the Gordon Taylor equation 

gmT = 
ws

gwwgss
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        (3.3)  

Tgm, Tgs and Tgw are the glass transition temperature of the mixture, dry solids and pure water, 

respectively. The glass transition Tgw of pure water was considered to be -135oC (Johary et al. 1987). 

Freezing point depression is a colligative property dependent on the concentration of solute. Freezing 

lines for ideal and dilute solutions are generally modeled using the Clausius-Clapeyron equation and is 

expressed in the given form:  

Eq. (3.4) represents the Clausius-Clapeyron equation 
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Due to its limited application, an extended form of the Clausius-Clapeyron equation was developed by 

Chen (1986). A new parameter b, which is the ratio of unfreezable water to the solid content, was 

introduced and is commonly used for modeling freezing point depression in food systems. Chen’s model 

is expressed as given below (5). 
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Eq. (3.5) represents the Chen’s equation 
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        (3.5)  

The parameters b and E are estimated using a non-linear optimization technique in Microsoft Excel.  

3.2.5 Drying Kinetics 

For drying kinetics of fresh sugar kelp, samples of approximately 50g (blades and stipes) were 

dried on perforated pans at an air temperature of either 40°C or 70°C with relative humidity levels of 

25%, 50% and 80% and air velocity of 10.0 m/s using convective dryer (Cincinnati sub-zero, CSG, OH, 

USA). The drying system consisted of automated air circulation, temperature and humidity control. 

During drying, the sample was weighed using a precision balance with a resolution of 0.01 g at regular 

intervals until no further change in weight was observed. Several authors have reported that the drying 

process of leafy plants occurs under the falling rate period (Demir et al. 2004; Doymaz 2006; Lebert et al. 

1992; Temple and Van Boxtel 1999). In this period, moisture transfer in such porous food material 

involves a complex mechanism which undergoes simultaneous vapor diffusion in the void pores due to 

the vapor pressure gradient and the outward liquid movement due to capillary action (Geankoplis 1993). 

The contribution of each mechanism to overall moisture diffusion is hard to estimate and therefore an 

average moisture diffusivity is obtained by the theoretical approach of solving Fick’s second law of 

diffusion (Datta 2007a and Datta 2007b). This approach has been applied for the modeling drying process 

of several food products (Djaeni and Sari 2015; Kurozawa et al. 2012; Pancharia et al. 2002). It is a 

second-order partial differential equation that describes the heat and mass transfer in a medium as a 

function of position and time (Welty et al. 2008). It is also applicable either in the glassy or rubbery state.  

Near the transition state, the fluid behaves in a non-Fickian way (Singh et al. 2004; Takhar 2008) due to 

the additional time-dependent stress term. In this case, the more general form of Maxwell-Stefan 

equations are applicable (Taylor & Krishna 1993).  
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Fick’s second law is considered in this study to model thin layer liquid-controlled diffusion as the 

drying occurred under the falling rate period and the shrinkage in the thickness of sugar kelp was 

infinitesimally small as compared to its superficial area. The solution of Fick’s law for planar geometry at 

constant temperature and diffusion along the thickness is an infinite series equation and is given below 

(Crank 1975). 
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Expanding the above equation and neglecting higher-order terms 

For n = 0, we obtain the following equation 
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Taking natural logarithm on both sides gives an equation of a straight line 
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The natural log of the moisture ratio (ln MR) is plotted on the Y-axis against time on the X-axis. Effective 

diffusivity (Def) is calculated from the slope of the above obtained graph.  

The drying rate was estimated by the empirical model approach using Newton (Vega et al. 2007), 

Page and Henderson & Pabis (Doymaz 2007) kinetic models, as shown in Table 3.1. Where MR is the 

dimensionless moisture ratio; k is the drying rate constant (s-1); a is Henderson & Pabis model constant 

and t is drying time (s). Model constants k, n and a are estimated using non-linear optimization in 

Microsoft Excel, 2016. The empirical approach is easy to handle compared to the analytical approach due 

to lower computational requirements and its representation of pure kinetics of the physical process. The 



29 
 

disadvantage of using the empirical model over the analytical approach is that it doesn’t provide 

necessary information regarding the state variables when the process control changes, and it is applicable 

only for particular processing conditions.  

Table 3.1. Models applied for estimating drying kinetics 

 

3.2.6 Shrinkage 

Triplicates of circular (2-inch diameter φ) shaped freshly harvested sugar kelp blades were dried 

at temperatures of 40oC and 70oC in an oven (VWR, VWR International, Radnor, PA, USA). Each sample 

was placed on a standard white background of size 10 x 10 cm2 and was photographed using a digital 

camera Nikon-3300 DSLR (Nikon Inc., Melville, NY, USA) at regular intervals. For studying the 

plasticization effect of water during shrinkage, an image processing algorithm based on pixel thresholding 

was developed in MATLAB. Superficial area of the image was calculated based on the following steps: 

(1) conversion of color image to binary (black & white) image (Fig. 3.1a, and 3.1b), (2) computing the 

total pixels in the white region of the image, and (3) comparing the number of pixels in white region with 

the pixels in the standard white background. Shrinkage data of the samples were fitted to the model 

proposed by Suzuki et al. (1976). This model correlates the relative superficial area reduction with the 

sample moisture content measured on a dry basis.                         

n

t

o

t cXa
A

A
][           (3.9)  

Drying Kinetic Model 

Newton  ktMR  exp  

Page  nktMR  exp  

Henderson & Pabis  ktaMR  exp  
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The model constant n is the coefficient of shrinkage and it is estimated using non-linear optimization 

technique in Microsoft Excel, 2016. 

3.2.7 Statistical Analysis 

All the models fitted to the experimental data were evaluated using the determination coefficient 

(R2), Sum squared error (SSE) and Root mean squared error (RMSE). 
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Where, N is sample size or no. of data points 

Fig. 3.1. Shrinkage analysis of oven-dried sugar kelp (2-inch diameter). Superficial area of dried kelp was 

calculated based on an image processing algorithm developed in MATLAB. a) Conversion of color 

image, and b) binary image using pixel thresholding algorithm. 
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3.3 Results and Discussion 

3.3.1 Proximate Analysis 

 Proximate analysis data of freeze-dried sugar kelp are summarized in Table 3.2. Carbohydrate 

content was highest (53.35 %) followed by crude protein (6.87 %) and fat (1.98 %) in the freeze-dried 

samples.   Total soluble solids (TSS) of the samples were found to be 50.33 oBx. TSS showed a linear 

relationship with the moisture content of the sample and can be given as Y = -58.766 X + 54.503, where 

Y is the TSS in (oBx) and X is the moisture content of the sample (kg H2O / kg sample) with correlation 

coefficient (R2 = 0.994) (Fig 3.2). The composition data of freeze-dried samples were compared with the 

composition of fresh sugar kelp reported by Schiener et al. (2015) (Table 3.2). The freeze-dried data 

showed comparable composition to the fresh sugar kelp. 

Table 3.2. Proximate Composition 

Analysis Freeze-dried sugar kelp Fresh sugar kelp (Schiener et al. 2015) 

Moisture 5.58 ± 0.015% (wb) 84.90±2.9% (wb) 

Crude Fat 1.98±0.053% (db) N.A 

Crude Protein 6.87±0.040% (db) 7.10±1.7% (db) 

Ash 37.79±0.202% (db) 31.70±7.6% (db) 

Carbohydrates 53.36±0.295% (db) 63.10±11.4% (db) 

TSS 50.33±0.577 (oBrix) N.A 
The mean values and standard deviations are for three replicates but crude protein. Duplicate analysis was performed 

for crude protein. db: dry basis; wb: wet basis 

N.A = Not Available 

3.3.2 Moisture Sorption Isotherm 

The moisture sorption isotherm (MSI) of freeze-dried sugar kelp at 20oC exhibited a typical type 

III behavior based on the Van der Waal’s classification (Brunauer et al. 1940) (Fig. 3.3). The sugar 

content of freeze-dried sugar kelp in terms of TSS was 50.33 oBx. The two major carbohydrates present in 

sugar kelp are alginates and mannitol (Scheiner et al. 2015). Alginates are extremely hygroscopic due to 

their ability to form hydrogen bonds with water molecule, whereas mannitol is low hygroscopic in nature 

(Tiwari & Troy 2015).  A steep increase in the absorption of moisture by powdered sugar kelp was 

observed when it was subjected to water activity higher than 0.543. This might be due to the increase of 
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interaction via hydrogen bonds between water, hydroxyl and carboxyl groups of sugar resulting in 

solubilizing the high amount of sugars and polysaccharides present in sugar kelp at high water activity. 

This is commonly observed in seaweeds which contains high amount of sugars and polysaccharides such 

as Gelidium sesquipedale (Ait-Mohamed et al. 2005) Gracilaria chilensis (Lemus et al. 2008), Bifurcaria 

bifurcata (Moreira et al. 2016a), Fucus vesiculosus (Moreira et al. 2016b) and Macrocystis Pyrifera 

(Vega-Galvez et al. 2008). These sugars exist in amorphous forms and are hygroscopic at low moisture. 

They absorb relatively low moisture at lower humidity (< 50%) levels but show a steep rise in absorbed 

moisture at higher humidity (> 50%) due to sugar dissolution (Hubinger et al. 1992; Moraga G. et al. 

2006; Tsami et al. 1990; Vasquez G. et al. 1999). 

Fig. 3.2. Plot of experimental TSS (oBx) vs moisture content (kg H2O/ kg wet sample). 
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Fig. 3.3. Moisture sorption isotherm of freeze-dried sugar kelp at 20oC 

 

 

The MSI was fitted to the BET and GAB models. The BET model is a monolayer based model 

and considers the amount of water required to cover the entire surface of food with a single layer of water 

molecules. It is applicable in low water activity range (0.05 – 0.45) (Rahman 1995). However, the BET 

equation becomes insignificant at higher water activity level when the dissolution of sugars and 

polysaccharides become more significant than surface sorption. The GAB model is an extended version 

of the BET model which considers moisture sorption in multilayer and is applicable over a wide range of 

water activity (0.05 – 0.9). 

The model coefficients of the BET and GAB models obtained using non-linear optimization are 

listed in Table 3.3. Based on BET constant C, the following isotherm in the lower water activity levels 

can be classified as Type II as the calculated constant C is greater than 2 (Brunauer et al. 1940). Sugar 

kelp, being a brown seaweed, contains high amounts of polysaccharides and showed a similar trend as 
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observed for red seaweed Gracilaria (Lemus et al. 2008). The goodness of fit of the GAB and BET 

models were evaluated using R2, SSE and RMSE (Table 3.3). 

Table 3.3. Model constants and fitness statistics 

Model Fresh-red alga (Gracilaria)a Freeze-dried sugar kelp 

BET Model   

Mb 0.071 kg H2O/kg dry solids 0.055 kg H2O/kg dry solids 

B 25.843 10.18 

R2 0.998 0.990 

SSE 0.0011 .00007 

RMSE 0.0979 0.002 

GAB Model   

Mg N.A 0.162 kg H2O/kg dry solids 

C N.A 2.14 

K N.A 0.998 

R2 N.A 0.986 

SSE N.A 0.104 

RMSE N.A 0.102 
a Coefficients from (Lemus et al. 2008) 

N.A = Not Available 

3.3.3 Glass Transition 

The glass transition curves of sugar kelp powders were obtained from a differential scanning 

calorimeter (DSC). Thermograms of prepared samples having a moisture content of less than 0.3 kg H2O/ 

kg dry solids revealed the existence of one glass transition with no ice formation (Fig. 3.4a). Similar 

behavior was earlier reported for terrestrially grown foods including strawberry (Roos 1987), pineapple 

(Telis and Sobral 2001), tomato (Telis and Sobral 2002), kiwi (Wang et al. 2008b), raspberry 

(Syamaladevi et al. 2009) and rice (Sablani et al. 2009). The sugar kelp samples were scanned at three 

different scanning rates of 2oC/min, 5oC/min and 10oC/min. The scan rates of 5oC/min and 10oC/min have 

been commonly used for observing the glass transition in foods (Rahman 2004; Syamaladevi et al. 2009; 

Sablani et al. 2009; Wang et al. 2008b). In this study a scan rate of 2oC/min was considered optimal since 

the glass transition was more clearly observed at this rate compared to scan rates of 5oC/min and 

10oC/min. This can be explained by a non-uniform heating of samples resulting from delayed temperature 
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response between the heater and the samples (Tang et al. 1991). The glass transition for a sample of 

moisture content 0.15 kg H2O/ kg dry solids at the three scan rates (2oC/min, 5oC/min and 10oC/min) is 

shown in Fig. 3.4. Thermograms of prepared sugar kelp samples of different moisture content scanned at 

2oC/min are shown in Fig. 3.5.  

The glass transition is primarily a function of moisture content and molecular weight of the solids 

present in the sample and occurs over a wide range of temperatures (Rahman 2006).  The initial Tgi, mid-

point Tgm, and end-point Tgf of glass transitions are shown in Table 3.4. The plasticizing effect of water 

due to the water – carbohydrate interactions via hydrogen bonding and the changes in the free matrix 

volume were observed as the glass transition decreased from 2.01oC to -49.84oC as the moisture content 

was increased from 0.05 to 0.5 kg H2O/ kg dry solids. The TSS of sugar kelp decreased linearly from 

50.33 oBx to 36.33 oBx when the moisture content was increased from 0.05 to 0.5 kg H2O/ kg dry solids, 

this suggests that the Tg of sugar kelp is associated with the soluble solid fraction present in the aqueous 

phase (Moraga et al. 2006; Zhao et al. 2015). Sugar kelp contains a high amount of total soluble solids in 

the form of water-soluble carbohydrates such as sodium alginate, laminarin and mannitol (Zvyagintsevaa 

et al. 1999). The glass transition lines were fitted non-linearly in the Gordon-Taylor (GT) equation 

(Gordon and Taylor 1952). The model constants in the GT model were Tgs = 30.44oC and k = 1.97. The 

glass transition of solids (Tgs) 30.44oC computed from GT model is close to the initial Tgi 34.16oC of pure 

solids.  
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Fig. 3.4. Glass transition curves of freeze-dried sugar kelp for moisture content (0.15 kg H2O/ kg dry 

solids) determined by a differential scanning calorimeter at scan rate of (a) 2oC/min, (b) 5oC/min and (c) 

10oC/min
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Fig. 3.4 continued
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Table 3.4. Glass transition temperature of sugar kelp (at a scan rate of 2oC/min, no ice formation) 

X, (kg H2O/kg dry 

solids) 

Xs, (kg solids/kg 

wet sample) Tgi, (oC) Tgm, (oC) Tgf, (oC) 

0 1.000  34.16 ± 2.317 47.02  ± 2.137  65.33 ± 4.172 

0.05 0.952  00.96 ± 0.586    2.01 ± 0.303  03.14 ± 0.440 

0.1 0.909 -04.92 ± 0.566 -06.78 ± 0.737 -07.84 ± 0.718 

0.15 0.870 -17.31 ± 0.722 -15.74 ± 0.676 -13.71 ± 0.574 

0.2 0.833 -18.79 ± 0.540 -17.28 ± 0.339 -15.69 ± 1.196 

0.25 0.800 -20.02 ± 0.382 -19.12 ± 0.446 -18.00 ± 0.629 
 standard deviation of three replicates 

Fig. 3.5. Thermograms of freeze-dried sugar kelp at moisture contents (a) 0.05, 0.10 and 0.15 kg H2O/ kg 

dry solids, and (b) 0.20, 0.25 and 0.30 kg H2O/ kg dry solids. The thermograms were generated using a 

Differential Scanning Calorimeter at a scan rate of 2oC/min 
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 Fig. 3.5 continued 

 

The glass transition of pure solids can be highly dependent on the chemical composition of the 

sugar kelp, especially the carbohydrates which comprise 53.36% of dry matter. The carbohydrates in 

sugar kelp exist in two forms: structural (alginates and cellulose) and storage (laminarin and mannitol) 

and vary depending on the harvest season and environmental conditions (Scheiner et al. 2015). Average 

values for alginate (28.5±3.9 % d.b), cellulose (11±1.4 % d.b), laminarin (8.2±5.3 % d.b) and mannitol 

(18.6±4.7 % d.b) in sugar kelp was reported by Scheiner et al. (2015). Each component of carbohydrate 

present in sugar kelp exhibits a different Tg in its pure state. Cellulose, sodium alginate and D-mannitol 

exhibit Tg of 220 oC (Szcześniak et al. 2008), 119 oC (Miura et al. 1999) and 11oC (Zhu et al. 2015), 

respectively. Several authors have shown that in binary polymer blends the Tg of the blend lies generally 

in between the Tg of pure components (Kalogeras and Brostow 2009; Kumar Naidu et al. 2005). The 

blending of carbohydrates may be a possible explanation in the case of sugar kelp as the Tgs of whole 

solids of sugar kelp (47.02 oC) lies in between of mannitol (11 oC) and alginate (119 oC). However, 

extrapolating this concept to more complex food systems would be oversimplified as interactions among 

the several different food components would likely deviate from the normal binary system behavior. 
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Sugar kelp samples of high moisture (> 0.3 kg H2O/ kg dry solids) exhibited ice formation during DSC 

scans(Fig. 3.6). The prepared samples were initially scanned at a rate of 5oC/min from -80 oC to 22 oC 

without annealing for estimating the end-point of freezing point (Tm). Glass transitions were not detected 

for samples having moisture content higher than 0.5 H2O/ kg dry solids as the transition endotherm was 

beyond the scanning range. For maximum freeze concentrated solid and ice formation the samples were 

scanned with annealing for 30 min at (Tm - 1) (Fig. 3.6). Depression in freezing point is a colligative 

property and depends on the concentration of total soluble solids and molecular weight of the solids. The 

initial freezing point (Tf) and Tm decreased from -3.4oC to -30.87oC and -17.78oC to -37.533oC, 

respectively as the moisture content was decreased from 3 to 0.3 kg H2O/ kg dry solids due to the increase 

in the TSS from 41.67 oBx to 9.67 oBx. The freezing point of sugar kelp was found to be linearly 

dependent on the TSS of the samples and can be expressed as Y = -0.8603 X + 6.2965, where Y is the 

freezing point (oC) and X is the TSS (oBx) and) with correlation coefficient (R2 = 0.984). Several authors 

have reported the linear correlation between the depression of freezing point and the TSS of the samples 

(Wang et al. 2003; Zhao et al. 2015). The enthalpy of the ice melting endotherm (∆H) was plotted linearly 

against the moisture content of the sample on a dry basis for determining the unfreezable water in sugar 

kelp. The unfreezable water determined by extending the line to zero ice melting enthalpy was 0.06 kg 

H2O/ kg dry solids (Fig. 3.7). The initial freezing point (Tf), end-point of freezing (Tm) and ice melting 

enthalpy (∆H) determined from the obtained thermograms are listed in Table 3.5. 
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Table 3.5. Initial freezing point (Tf), end-point of freezing (Tm) and ice melting enthalpy (∆H) of Sugar 

kelp (with formation of ice and scan rate of 5 oC/min) 

 a standard deviation of three replicates 
b standard deviation of two replicates 

N.D = Not detected 

Fig. 3.6. Thermogram of freeze-dried sugar kelp at a moisture content 1.0 kg H2O/ kg dry solids with 

annealing

 

X, (kg H2O/kg 

dry solids) Tgm,(oC) Tf, (oC) Tm, (oC) ∆H, (kJ/kg) 

0.3 -20.30 ± 0.115a -30.88 ± 0.632a -37.53 ± 0.240a 00.609 ± 0.035b 

0.5 -49.84 ± 4.970 -22.68 ± 0.542 -30.22 ± 0.387 011.74 ± 1.796 

0.75 N.D -17.72 ± 2.820 -25.12 ± 3.080 038.39 ± 20.43 

1 N.D -14.07 ± 0.684 -21.18 ± 1.390 084.71 ± 3.670 

1.5 N.D -11.10 ± 1.045 -18.17 ± 0.343 126.40 ± 6.500 

2.5 N.D -04.47 ± 0.517 -17.63 ± 0.145 148.83 ± 8.150 

3 N.D -03.40 ± 0.629 -17.78 ± 0.310 177.00 ± 9.050 
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Fig. 3.7. Plot of ice-melting enthalpy vs moisture content (kg H2O/ kg dry solids) 

 

The freezing lines were modeled using modified Chen’s equation. The parameters E in the 

equation were calculated using non-linear optimization as 0.099 after constraining B as 0.0592 kg H2O/ 

kg dry solids, equal to the moisture content of the freeze-dried sample (0.0592 kg H2O/ kg dry solids). 

The E values reported in the literature for apples (Bai et al. 2001), garlic (Rahman et al. 2005), kiwi 

(Wang et al. 2008b) and raspberries (Syamaladevi et al. 2009) are 0.238, 0.08, 0.101 and 0.064, 

respectively. The b value corresponds to the unfreezable water present in the sugar kelp and it is 

comparable to the unfreezable moisture data obtained from the enthalpy curve (0.06 kg H2O/ kg dry 

solids). Bound water is the fraction of unfreezable water that is held firmly by the solid matrix and is 

unavailable for microbial growth and chemical reactions. 

3.3.4 Drying Kinetics 

Study of drying kinetics of seaweed was conducted in two stages. The first was designed to assess 

the effect of temperature and humidity levels on the drying rate in terms of overall effective moisture 
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diffusivity of the process and the second stage was employed to verify the application of Newton, Page 

and Henderson & Pabis models for describing the experimental drying curves obtained under the 

examined conditions. Moisture content variation of sugar kelp with respect to drying time for different 

values of drying parameters (temperature and relative humidity) has been determined. The effects of 

temperature and relative humidity on the reduction of moisture content as a function of time are shown in 

Fig. 3.8. It has been observed that with an increase in temperature the drying rate increases due to a 

higher convective heat transfer coefficient while decreasing relative humidity increases the drying rate 

due to a higher mass transfer coefficient.  

Fig. 3.8. Effect of temperature and relative humidity on the moisture content of sugar kelp as a function 

of drying time at an air speed of 10 m/s 
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The EMC observed at the end of the drying process for 40oC and 70oC at humidity levels of 25%, 

50% and 80% are listed in Table 3.6. The drying time sugar kelp taken to reach EMC at 40 oC and RH of 

25%, 50% and 80% were 150 min, 240 min and 540 min respectively. At 70oC and RH of 25%, 50% and 

80% the drying times were 90 min, 150 min and 420 min respectively. It was also observed that the whole 

drying process occurred in the falling rate period with no or negligible constant rate period. While drying 

food materials, the soluble solids migrate to the surface along with the moisture and form an impervious 

layer (case-hardening) creating a situation where the inner moisture is trapped by the hard-outer surface 

(Heldman 2003).  This phenomenon is very common in foods which are dried at high temperature and 

contain a large amount of soluble solids. However, case hardening was not experienced while drying 

sugar kelp, which can be attributed to its thin profile allowing uniform diffusion. This behavior is similar 

to the findings reported in the literature for the drying of leafy plants like mint (Lebert et al. 1992), black 

tea (Temple and Van Boxtel 1999), bay leaves (Demir et al. 2004), and dill and parsley leaves (Doymaz 

2006). 

Table 3.6. Equilibrium moisture content 

 

The natural logarithm of the moisture ratio (MR) was calculated and linearly plotted against 

drying time for both drying temperatures of 40oC and 70oC, as shown in Fig. 3.9a and Fig. 3.9b. Effective 

diffusivity of moisture during the drying process was calculated using the slope obtained from the above 

curve. The values of moisture diffusivity coefficient along with slope and R2 of linear fit for different 

combinations of drying temperature and humidity are listed in the Table 3.7, where it can be seen that the 

Temperature (oC) Humidity (%) Xeqb (kg H2O/kg dry solids) 

40 25 0.0926 

 50 0.1259 

 70 0.6024 

70 25 0.0707 

 50 0.1270 

 70 0.2980 
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effective moisture diffusivity at 40 oC varied from 2.95 x 10-10 m2/s to 0.74 x 10-10 m2/s and 5.17 x 10-10 

m2/s to 1.47 x 10-10 m2/s at 70 oC, corresponding to relative humidities of 25% and 80%. The application 

of Fick’s diffusion law with the first term for modeling the drying process of sugar kelp can be justified 

since the R2 values for a linear fit of the natural log of moisture ratio vs. time were in the range of 0.949 – 

0.989. The obtained values of diffusivity coefficient are consistent with those existing in the literature for 

the leafy plants modeled based on Fick’s thin layer moisture controlled diffusion such as  1.744 x 10-9 

m2/s - 4.992 x 10-9 m2/s for nettle leaves and 1.975 x 10-10 m2/s - 6.172 x 10-10 m2/s for mint leaves (Kaya 

and Aydin 2009), 1.14 x 10-10 m2/s - 2.98 x 10-10m2/s for black tea (Pancharia et al. 2002) and 1.7 x 10-8 - 

1.2 x 10-7 m2/s for seaweed (Eucheuma cottonii) (Djaeni and Sari 2015). 

Table 3.7. Moisture diffusivity at temperatures 40 oC and 70 oC 

Temperature (oC) Humidity (%) Slope 

Diffusivity Coefficient, 

Deff, m2/s X 10-10 R2 

40 25 0.0004 2.95 0.9898 

 50 0.0003 2.21 0.9850 

 80 0.0001 0.74 0.9825 

70 25 0.0007 5.17 0.9612 

 50 0.0005 3.69 0.9792 

 80 0.0002 1.47 0.9499 
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Fig. 3.9. a) ln(MR) vs time for a drying temperature of 40oC at different relative humidity levels b) 

ln(MR) vs time for a drying temperature of 70oC at different relative humidity levels 
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The drying data for sugar kelp drying were fitted to the kinetic models of Newton, Page, 

Henderson and Pabis for estimating the drying rate. The model constants were calculated using non-linear 

optimization by minimizing the SSE and are listed in Table 3.8. The SSE for the Page model was the 

lowest and gave better predictions than the other empirical models. The Page Model was also suggested 

for seaweed (Eucheuma cottonii) (Djaeni and Sari 2015) as it satisfactorily described the thin-layer drying 

under certain process conditions. 

 Table 3.8. Drying kinetic model constants at different temperatures 

 

3.3.5 Effect of Glass Transition on Shrinkage 

The mid-point of glass transition (Tgm) of pure sugar kelp solids was observed at 47.02oC. 

Seaweeds are generally dried in the air temperature range of 30oC to 70oC (Djaeni and Sari 2015; Moreira 

et al. 2016).  Drying temperatures of 40oC and 70oC were chosen to evaluate shrinkage as 40oC was lower 

than the observed Tgm while 70oC was higher. The sample thickness reduction was negligible and the 

volume reduction while drying was considered to be the same as the superficial area reduction. It was 

observed that the relative area shrinkage in the case of drying suhgar kelp at 70oC is more when compared 

to drying at 40oC. This suggests that the air temperature had a clear impact on the shrinkage of sugar kelp 

while drying.  Levi and Karel 1995 showed that the rate of solid matrix mobility is directly proportional 

to the temperature difference between the product and its Tg at its specific moisture content. Drying at a 

higher temperature than the glass transition (Tg) keeps the product in a rubbery state, which allows a 

  Newton Page Henderson & Pabis 

Tem 

perature 

(oC) 

Humidity 

(%) 

k, X 10-3   

s-1 SSE 

k, X 10-3 

s-1 n SSE 

k, X 10-3 

s-1 a SSE 

40 25 0.462 0.002 0.802 0.929 0.0012 0.455 0.985 0.0018 

 50 0.335 0.003 0.156 1.094 0.0016 0.340 1.013 0.0033 

 80 0.147 0.002 0.162 0.907 0.0191 0.150 1.014 0.0014 

70 25 0.746 0.004 0.138 1.227 0.0001 0.756 1.014 0.0037 

 50 0.572 0.005 1.706 0.857 0.0019 0.559 0.978 0.0046 

 80 0.173 0.011 0.212 0.976 0.0110 0.167 0.971 0.0095 
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higher shrinkage rate due to its mobile solid matrix. As the drying process progresses at lower moisture 

content, the glass transition temperature increases, resulting in lower rates of shrinkage due to the change 

in state from rubbery to glassy.  

In Fig. 3.10a and Fig. 3.10b, the relative area during shrinkage while drying at 40oC and 70oC 

plotted against the moisture content (d.b) of the sample was fitted non-linearly to the Suzuki model 

(Suzuki 1976). The exponential constant (n) in the case of 40oC was n = 3.646; and in the case of 70oC, n 

= 4.665. Estimated model parameters a and b along with R2 and SSE are listed in Table 3.9. 

Fig 3.10. a) Relative area shrinkage at a drying temperature of 40 oC b) Relative area shrinkage at a 

drying temperature of 70oC 
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Fig. 3.10 continued 

 

 

Table 3.9. Suzuki model parameters at different drying temperatures 

Temperature, (oC) n a, g/cm3 c, g/cm3 R2 SSE 

40 3.646 0.0251 0.572 0.888 0.090 

70 4.665 0.0269 0.533 0.934 0.042 

 

For understanding the relationship between Tg and the relative shrinkage for sugar kelp, the data 

were plotted with respect to the moisture content of the samples (Fig. 3.11). The Tg of the dried seaweed 

while drying at 40oC and 70oC was in between -16oC and -20oC, corresponding to the final moisture 

content of dried samples (0.18- 0.22 kg H2O/kg dry solids). So, the sugar kelp samples while drying never 

underwent the transition and were dried entirely in the rubbery state. While drying at 70oC, the 

temperature gradient between the sample and its Tg was always more than when dried at 40oC. Due to the 

higher temperature gradient, the samples drying at 70oC exhibited higher viscoelastic behavior, resulting 

in more relative shrinkage as compared to 40oC at any particular moisture content. The impact of state 

transition on shrinkage while drying low moisture samples can only be seen when the glass transition of 

pure solids (Tgs) is much higher than the air-drying temperatures and there is no shell formation (case-
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hardening) (Kurozawa et al. 2012). The viscoelastic behavior of sugar kelp while drying can be explained 

using the concept of the temperature gradient between the air temperature and the Tg. However, this does 

not explain the controlling mechanism of material collapse which might be governed by surface tension, 

capillary forces and environment pressure (Rahman 2001).  

Fig 3.11. Comparative plot of glass transition temperature (oC) and relative shrinkage of sugar kelp with 

respect to its moisture content (kg H2O/kg solids) 
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3.4 Conclusions 

The temperature gradient between air temperature and glass transition temperature had a clear 

influence on the shrinkage rate of sugar kelp. Drying temperatures below Tg resulted in lower shrinkage 

rates as compared to higher drying temperatures. At higher drying temperatures, the amorphous form of 

water continued to stay in the rubbery state, exhibiting a more flexible solid matrix. As the drying was 

entirely in the rubbery state region, the diffusion mechanism did not deviate from ideal Fick’s law, which 

can thus be applicable for modeling thin layer diffusion for the falling rate period. Subjecting seaweed to 

drying at high temperatures (> 40 oC) gives rapid removal of water but causes a higher rate of shrinkage 

that may negatively impact the textural quality. Case-hardening was not observed at high-temperature 

drying, even though sugar kelp contains a high amount of water-soluble sugars. Low-temperature drying 

can be used for retaining maximum nutrient profile and textural attributes, and when carried out at low 

humidity can result in rapid drying rates as compared to high temperature drying with high humidity. The 

glass transition temperature, initial and end-point of freezing point can be used for optimizing a freeze-

drying method. Sugar kelp exhibited a type III moisture isotherm typically associated with foods that are 

highly porous, hygroscopic and contain high amounts of polysaccharides. A linear relationship was found 

between the TSS and the moisture content of the freeze-dried sugar kelp.  Glass transition and freezing 

point are functions of TSS and can be predicted using the developed relationships. This information can 

be utilized to determine the storage parameters of both low and high moisture sugar kelp and for other 

species of seaweed. 
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CHAPTER 4 

COMBINED EFFECTS OF SEASONAL VARIATION AND DRYING METHODS ON 

THE PHYSICO-CHEMICAL PROPERTIES AND ANTIOXIDANT ACTIVITY OF 

SUGAR KELP (SACCHARINA LATISSIMA)  

4.1. Introduction 

Seaweeds are a valuable source of bioactive agents and could potentially be introduced for the 

preparation of novel functional ingredients in pharmaceuticals and functional foods as an alternative 

approach for the treatment and or prevention of chronic diseases in humans. Commonly, seaweeds are 

dried to extend its shelf life under the sun or using hot air also known as convective drying and advanced 

drying systems attached with heat pumps to recover heat from exhaust air using a refrigerant and 

compression system. To retain the bioactive compounds and desired functional properties in dried kelp 

products, a detailed and simultaneous investigation of the seasonal variation and the effect of different 

drying methods and conditions (temperature, humidity) on the physicochemical properties, phenolic and 

antioxidant activity of sugar kelp is required. This comprehensive study was done over the harvesting 

period of sugar kelp to bridge the gap between the studies reported by other authors done earlier on the 

seasonal variation and the effect of the different drying methods on the physicochemical properties of the 

seaweeds. The objectives of this study were: (1) to determine the seasonal variation in the nutrient profile 

of the sugar kelp at the beginning and end of the harvesting period, and (2) to investigate the influence of 

different drying methods: freeze-drying, sun drying and heat pump drying (air temperature, relative 

humidity) on the physicochemical properties (moisture content, water activity, pH, color, fat content, ash 

content, crude protein, crude carbohydrate, water holding capacity, oil holding capacity, total soluble 

solids, vitamin C, total phenolic content and antioxidant activity) as compared to fresh sugar kelp. The 

results from this study will help in optimizing clean, energy-efficient heat pump drying systems for 

producing high-quality seaweed products for consumers. 
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4.2. Materials and Methods 

4.2.1. Sample Preparation 

For this study,  fresh sugar kelp grown in Damariscotta bay, Maine (43°56'15.4"N; 

69°34'53.0"W), was donated by Maine Fresh Sea Farms, Walpole, ME, USA and shipped to the 

University of Maine in the beginning of May 2017 for early season (S1) and end of June 2017 for late 

season (S2). Holdfasts were removed and the blades along with the stipes were washed under running 

water to remove any biofouling and surface salts. Raw sugar kelp was divided evenly into nine groups 

(1.2 kg each treatment: fresh, freeze-dried, sun-dried, 3 temperature (30 °C, 50 °C, and 70 °C) x 2 

humidity (25% and 50%) levels) for physicochemical analysis classified as experimental groups, to 

provide uniform and representative samples (Table 4.1). The sun-dried sample was dried in the open air 

as one batch on a sunny and cloudless day at the University of Maine. The sun drying conditions for S1 

and S2 were 19 °C, 40% relative humidity, 5 m s-1 wind speed and 7.2 UV index, and 25 °C, 70% relative 

humidity, 5 m s-1 wind speed and 9 UV index, respectively.  Fresh sugar kelp was freeze-dried for 4 h at 

each temperature of -20 ºC, -10 ºC, 0 ºC, 10 ºC and 25 ºC using a freeze dryer (Virtis Ultra 35 EL, SP 

scientific, Warminster, PA, USA) with vacuum maintained at 20 Pa. Fresh sugar kelp samples of 

approximately 1 kg were dried at 3 levels of air temperature (30 °C, 50 °C, and 70 °C) with 2 levels of 

relative air humidity levels (25% and 50%) and air velocity of 1.0 m s-1 in a convective dryer (Cincinnati 

sub-zero, CSG, OH, USA). The drying time required for each level is reported in Table 4.1.  After 

drying, the sugar kelp samples were ground into a fine powder using a food grinder (Magicbullet, 

Nutribullet LLC, Pacoima, CA, USA). The powdered samples were then sifted through a brass, multilevel 

sifter, and separated into two categories based on particle size: particles > 0.5 mm and particles < 0.5 mm. 

The final weight of the dried sugar kelp was measured and samples were kept in brown Nalgene bottles. 

These bottles were stored at room temperature (~22 ºC) in cardboard boxes to avoid any light interference 

until further analysis.  
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Table 4.1. Conditions (temperature, time and humidity) applied for producing dried sugar kelp during 

harvest season S1 (early May) and S2 (late June) 

Treatment/Temperature Drying time 

Freeze drying (FD) 2 cycles of each temperature level  

(-20 ºC, -10 ºC, 0 ºC, 10 ºC and 25 ºC) for 4 h 

Sun Drying (SD) 1 h under high air velocity (5 m s-1) 

30°C and 25% Humidity 3.5 h 

50°C and 25% Humidity 2.5 h 

70°C and 25% Humidity 1.5 h 

30°C and 50% Humidity 7.0 h 

50°C and 50% Humidity 4.0 h 

70°C and 50% Humidity 2.5 h 

 

4.2.2. Physicochemical Analysis 

4.2.2.1. Moisture Content 

The moisture content of the dried sugar kelp was determined gravimetrically in triplicate 

according to the AOAC method (AOAC 1999). Briefly, 0.5 ± 0.002 g of powdered kelp was measured in 

a pre-weighed glass scintillation vial and kept in a natural convection air-oven at 105 ºC (VWR 

International, Radnor, PA). After 48 h, the hot vials were allowed to cool in a desiccator allowing them to 

reach room temperature. The moisture content of the samples was expressed in dry basis (D.B) as g H2O 

(100 g)-1 dry solids. 

4.2.2.2. Ash Content  

Ash content was determined gravimetrically by heating the same glass scintillation vials 

containing the dried seaweed samples (after measuring moisture content) in a muffle furnace 

(Thermolyne Model F-A1730, Dubuque, IA, USA) at 550 °C for 7 h (AOAC 1999). The vials were 

cooled down to room temperature in a desiccator. The final weight of the vials plus sample ash was 

weighed. The ash content of the samples was calculated using formula (4.1).   

𝐴𝑠ℎ 𝐶𝑜𝑛𝑡𝑒𝑛𝑡, % (𝐷. 𝐵) =  
 𝑊𝑎𝑓 (𝑔)− 𝑊𝑠𝑣 (𝑔)

𝑊 (𝑔)− 𝑊𝑠𝑣 (𝑔)
 ×  100      (4.1) 
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Where W represents the initial weight of dried sample and vial together (after calculating moisture 

content), Waf signifies the resulting weight of the vial plus the sample ash and Wsv is the weight of empty 

scintillation vial. The ash content of the samples was expressed as g ash (100 g)-1 dry solids. 

4.2.2.3. Water Holding Capacity (WHC) 

Water holding capacity (WHC) of the samples were measured in triplicate by a modified 

centrifugation method described by Suzuki et al. (1996). Briefly, 20 mL of de-ionized water was added to 

50 mL centrifuge tube (CellTreat, Pepperell, MA, USA) containing 0.2 ± 0.001 g of dried kelp. The tubes 

were then shaken at a constant speed of 250 rpm using an agitator (Compact Digital Mini Rotator/Shaker, 

Thermo Scientific, Pittsburgh, PA, USA) for 24 h at room temperature (~ 22 ºC). The samples were then 

centrifuged (Beckman, Avanti J-25, Fullerton, CA, USA) at 14,000 x g for 15 min, the supernatant was 

collected, and the amount of the water absorbed by the pellet was determined by measuring the mass of 

the supernatant. The WHC of seaweed was calculated using formula (4.2) given below.  

𝑊𝐻𝐶 (%) =
𝑊𝑎𝑡𝑒𝑟 𝐴𝑑𝑑𝑒𝑑 (𝑔)−𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑐𝑎𝑛𝑡(𝑔)

𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)
  ×  100      (4.2) 

The WHC of the samples was expressed as the percentage mass of grams of water held by 1 g of sample 

dry weight (dried sample – remaining moisture content).  

4.2.2.4. Oil Holding Capacity (OHC)  

Oil holding capacity (OHC) of the samples were determined following the procedure of Caprez et 

al. (1986) with slight modifications. Corn oil (12 mL) (Hannaford, Scarborough, ME, USA) was added to 

50 mL centrifuge tube (CellTreat, Pepperell, MA, USA) containing 3 ± 0.002 g of dried kelp. The tubes 

were vortexed using a high-speed vortexer (Vortex 2 Genie, VWR Scientific, Radnor, PA, USA) for 1 

min per replicate to avoid any lump formation. The tubes were then shaken at a constant speed of 350 rpm 

using an agitator (Compact Digital Mini Rotator/Shaker, Thermo Scientific, Pittsburgh, PA, USA) for 30 
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min at room temperature (~ 22 ºC). After shaking, the mixture was centrifuged (Centrifuge 5430, 

Eppendorf NA, Hauppauge, NY, USA) at 2500 x g for 10 min. The excess oil supernatant was then 

removed and measured for its weight. Ten mL of oil was filled in 10 mL measuring cylinder and weighed 

for determining the density of the oil and the mass of oil absorbed. The density of the oil was found to be 

0.92 g mL-1 at room temperature (~ 22 ºC). The OHC of dried seaweed was calculated using formula (4.3) 

given below.  

𝑂𝐻𝐶 (%) =
𝑂𝑖𝑙 𝐴𝑑𝑑𝑒𝑑 (𝑔)−𝑂𝑖𝑙 𝐷𝑒𝑐𝑎𝑛𝑡(𝑔)

𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)
  ×  100       (4.3) 

The OHC of the samples was expressed as the percentage mass of oil held by 1 g of dry sample.  

4.2.2.5. Crude Fat Content 

Crude fat/lipid content of the samples was determined using the acid hydrolysis method for 

seafoods (AOAC 2005). Ten mL of 8.1 N HCl was added to 2.5 g of dried sugar kelp and placed in a 

water bath (Julabo SW22, Allentown, PA, USA) for 90 min at 85 ºC, ensuring complete digestion of 

carbohydrates and proteins. Samples were allowed to reach room temperature. Once cooled, 7 mL of 

ethanol was added and then agitated vigorously for 30 sec. Three-stage solvent extractions were 

performed on each of the samples. For the first stage extraction, 25 mL of diethyl ether was added in the 

bottle and mixed moderately for 15 sec followed by rigrous agitation for 45 sec. The second step to the 

first extraction was to add 25 mL of petroleum ether to the above mixture, followed by 15 sec of slow to 

moderate agitation, then rigorous agitation for 45 sec. In the final step, the mixture was kept still for 30 

min, allowing the digested sediments to settle out from the top floating layer consisting of a mixture of 

ether and lipids. This top layer was carefully extracted without disturbing the bottom sediments using a 

glass pipette and transferred to a pre-weighed beaker. The previous extraction steps were repeated two 

more times. For subsequent extractions, only 15 mL of diethyl ether and 15 mL of petroleum ether were 

used instead of 25 mL. The pooled mixture of ether and lipids was kept under the chemical hood 
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overnight allowing the ether to separate from lipids by volatilizing. This was followed by heating in the 

oven at 105 ºC for 15 min (VWR International, Radnor, PA) to remove any excess moisture and leaving 

behind only the lipids in the beaker. The fat content was calculated by reweighing the cooled beakers and 

using formula (4.4). 

 

𝐶𝑟𝑢𝑑𝑒 𝐹𝑎𝑡, % (𝐷. 𝐵) =
[ 𝐵𝑒𝑎𝑘𝑒𝑟 (𝑔)+𝐹𝑎𝑡/𝐿𝑖𝑝𝑖𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)]−[ 𝐵𝑒𝑎𝑘𝑒𝑟(𝑔)]

𝐷𝑟𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)
   ×  100  (4.4) 

Fat content was expressed as the g fat (100 g)-1 dry solids. 

4.2.2.6. pH 

One gram sample of dried sugar kelp was weighed and placed in a 50 mL centrifuge tube 

(Celltreat, Pepperell, MA) to which 15 mL of de-ionized water was added. Contents were mixed using an 

agitator (Thermo Scientific Compact Digital Mini Rotator/Shaker, Pittsburgh, PA) for 1 min. The pH was 

then measured with a digital pH meter (Benchtop pH / MV Meter – 860031, Scottsdale, AZ) calibrated 

with standard pH buffer solutions of 4, 7 and 10.  

4.2.2.7. Water Activity 

The water activity was determined using a water activity meter (AquaLab Decagon, Pullman, 

WA) by weighing approximately 1 g of dried sugar kelp in disposable cups. The water activity meter was 

calibrated prior to taking sample reading with the standard salts solutions with a known water activity of 

0.500 and 0.250.  

4.2.2.8. Color Analysis  

Color of the fresh and dried kelp was determined using a Hunter colorimeter (LabScan XE, 

Hunter Labs, Reston, VA) and expressed in L*a*b* values, in which: L* values are based on a scale of 

dark (0) to light (100); a* values are based on a scale of green (-) to red (+); and b* values are based on a 
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scale of blue (-) to yellow (+). Black and white ceramic standard plates were used to standardize the 

colorimeter before each use. An opening port size of 50.5 mm, area view of 44.5 mm, and D65 

illumination of the colorimeter was used. A disc with 5.1 cm diameter hole was used. Approximately 1 g 

of dried kelp was placed in colorimeter cups for analysis.  The overall change in the color (ΔE) of the 

samples with respect to the fresh samples was calculated using the formula (4.5). 

𝛥𝐸 = √(𝐿0 − 𝐿∗)2 + (𝑎0 − 𝑎∗)2 + (𝑏0 − 𝑏∗)2 
       (4.5) 

Where, L0, a0 and b0 represents the L*, a* and b* of the fresh samples. 

4.2.2.9 Crude Protein 

The total nitrogen content was determined using a dry combustion analyzer (TruMac CNS, LECO 

Corporation, MI, USA) (AOAC 1990). The total crude protein was calculated using an average nitrogen-

to-protein conversion factor of 5.3 for sugar kelp (Schiener et al. 2015). 

4.2.2.10. Crude Carbohydrate 

The crude carbohydrate was determined by the difference method (Merill and Watt 1973). It was 

expressed as g carbohydrate (100 g)-1 dry solids. 

4.2.2.11. Total Soluble Solids (TSS)  

Half-gram sample was homogenized (Polytron homogenizer, Brinkmann Instruments, Westbury, 

NY) in 9.5 mL of water (1:20 dilution) for 2 min and centrifuged (Centrifuge 5430, Eppendorf NA, 

Hauppauge, NY, USA) at 7000 x g for 10 min. The supernatant collected was used for measuring the total 

soluble solids (TSS) of the samples using a refractometer (Palette Digital Refractometers 0-45º, ATAGO 

U.S.A Inc., WA, USA). 
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4.2.2.12. Vitamin C  

Vitamin C was determined by titrating dried sugar kelp extractions using 2,6-

dichlorophenolindophenol dye method (AOAC 1968) (AOAC 1988). The precipitant solution was made 

by mixing equal amounts of solutions (A) and (B). The first solution (A) was made by dissolving 15 g of 

glacial metaphosphoric acid in 40 mL of glacial acetic acid and bringing it to 250 mL with distilled water. 

The second solution (B) was made by dissolving 0.9 g of ethylene diamine tetraacetic acid (EDTA) in 200 

mL of de-ionized water and bringing it up to 250 mL. One gram of dried sugar kelp was homogenized for 

2 min with 15 mL of cold precipitant solution using a polytron homogenizer (Brinkman Instruments, 

Westbury, NY).  The solution was then centrifuged (Beckman, Avanti J-25, Fullerton, CA, USA) at 

10,000 x g for 15 min at 25 ºC. Fifteen mL precipitant solution was again added to the suspended pellet 

and centrifuged again at the same specifications. Fifteen mL aliquots of sample extracts were titrated with 

the indophenol dye until the rose-pink endpoint lasted for 10 sec. The ascorbic acid concentration of the 

sample was calculated using formula (4.6). 

𝑉𝑖𝑡𝑎𝑚𝑖𝑛 𝐶, (𝑚𝑔 𝑎𝑠𝑐𝑜𝑟𝑏𝑖𝑐 𝑎𝑐𝑖𝑑 𝑔−1𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡) = 𝐶 ×  𝑉 ×  
𝐷𝐹

𝑊𝑇
   (4.6) 

Where C represents mg of ascorbic acid mL-1 of dye, V is mL of dye used for titration of the diluted 

sample (subtract blank volume first), DF is the dilution factor and WT is the weight of the dry sample (g). 

4.2.3. Sugar Kelp Extraction for TPC, DPPH and FRAP Assay 

 Dried sugar kelp (2 ± 0.002 g) was mixed with 20 mL of 60% (v/v) methanol and agitated 

(Compact Digital Mini Rotator/Shaker, Thermo Scientific, Pittsburgh, PA, USA) at 210 rpm for 24 h at 

room temperature (~ 22 ºC). The solution was centrifuged at 2100 x g for 10 min at room temperature. 

The supernatant was collected and pellet wash was performed twice by adding 10 mL of 60% (v/v) 

methanol to the suspended pellet, followed by vortexing for 30 sec and centrifuge for 10 min at 

specifications described in the previous step. The decanted supernatant from both the extractions was 
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pooled together with the first extraction supernatant and was brought up to a final volume of 50 mL using 

de-ionized water followed by 30 s vortexing to ensure homogenization. The samples were stored at -80 

ºC. The tubes were kept frozen at -80 ºC after dividing the final extract approximately in 3 equal parts to 

be used separately for TPC, DPPH and FRAP assay.  

4.2.4. Total Phenolic Content (TPC) 

The total phenolic content (TPC) in the methanolic sugar kelp extract was determined in duplicate 

using Folin-Ciocalteu’s reagent method (Taga et al. 1984). The following solutions were prepared fresh 

on the day of the experiment: 0.2 N Folin-Ciocalteu’s reagent, 6% w/v sodium bicarbonate solution and 

standard/stock 1000 µg/mL gallic acid solution. To prevent any light interference, all of the prepared 

solutions were kept in the round bottom flask covered with aluminum foil. The sample extract kept at -80 

ºC was thawed at room temperature (~ 22 ºC). 750 µL of prepared Folin’s reagent was added to the 100 

µL aliquot of sample extract taken in a 3 mL glass cuvette. After 5 min, 750 µL of 6% (w/v) sodium 

bicarbonate was added vigorously. The glass cuvette was incubated in the dark for 1 h. 40% (v/v) 

methanol was used as a sample blank. The absorbance was determined at 725 nm using a UV-vis 

spectrophotometer (Beckman Du 530, Brea, CA). A linear calibration curve of the standard solution of 

gallic acid (0 – 200 µg/mL) was constructed to quantify the total phenolic content. The TPC of sugar kelp 

was expressed as mg gallic acid equivalents (GAE) g-1 of dry weight sample.  

4.2.5. Ferric Reducing Antioxidant Power (FRAP) 

The Ferric Reducing Antioxidant Power (FRAP) of the methanolic sugar kelp extract was 

determined in duplicate using the modified method described by Benzie and Strain (1999). The following 

solutions were prepared fresh on the day of the experiment: 300 mM sodium acetate buffer, 10 mM 2,4,6-

tripyridyl-s-triazine (TPTZ) and 20 mM ferric chloride (FeCl3.6H2O) were added in the ratio (10:1:1) to 

make the FRAP reagent. This reagent was kept in a water bath maintained at 37 ºC. A timer set at 4 min 

was started as soon as 1.5 mL of prepared FRAP reagent was added to the 50 µL aliquot of sample extract 
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in a 3 mL glass cuvette. After 4 min, the absorbance was determined at 725 nm using a UV-vis 

spectrophotometer (Beckman Du 530, Brea, CA) maintaining the same speed and order of cuvettes. 40% 

methanol was used as a sample blank. A linear calibration curve of the standard solution of ferrous 

sulphate (50 – 500 µM) was constructed using a standard/stock solution of 1000 µM ferrous sulphate 

(FeSO4.7H2O). The FRAP value was expressed in µmol ferrous sulfate equivalents (FSE) g-1 of dry 

weight sample. 

4.2.6. DPPH (α, α-diphenyl-β-picrylhydrazyl) Assay 

DPPH radical scavenging activity of the methanolic sugar kelp extract was determined in 

duplicate using the modified method for 96-well microplate described by Blois (1958). 0.2 mM DPPH 

was prepared fresh on the day of the experiment by dissolving 78.8 mg of DPPH in 1000 mL of 100% 

(v/v) ethanol. Varying volumes of the sample (25 μL, 50 μL, 100 μL, 150 μL) were bought up to 150 μL 

with 40% (v/v) methanol. 150 μL of DPPH was added to the sample vigorously, ensuring uniform mixing 

in the microcell. Sample blank was prepared similarly to the sample except for 150 μL of DPPH, 150 μL 

of 100% (v/v) ethanol was added to account for the sample color. Equal volumes, 150 μL of 40% (v/v) 

methanol and DPPH solution are mixed to prepare the control. Control blank was made by mixing equal 

volumes, 150 μL, of 40% (v/v) methanol and 100% (v/v) ethanol each. The microplate was incubated in 

the dark for 30 min. The absorbance was determined at 517 nm using a 96-well microplate reader (Biotek 

Eon, Biotek Instruments, Winooski, VT). The following equation (4.7) is used for calculating the % 

DPPH inhibition (antioxidant activity).  

% 𝐷𝑃𝑃𝐻 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
[(𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐵𝑙𝑎𝑛𝑘)− (𝑆𝑎𝑚𝑝𝑙𝑒−𝑆𝑎𝑚𝑝𝑙𝑒 𝐵𝑙𝑎𝑛𝑘)]

[(𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐵𝑙𝑎𝑛𝑘)]
 ×  100  (4.7) 

The % DPPH inhibition of the samples was plotted against the varying volumes using MS excel 

(Microsoft Excel, 2013). Only an R2 value greater than 0.95 was considered as linear. The concentration 

of the sample required for a 50% reduction of DPPH (EC50) was calculated using the slope and constant 
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of the plotted line. The % DPPH inhibition of the sample were expressed as EC50 (mg mL-1). 

4.2.7. Statistical Analysis 

Analyses for each experiment were performed in triplicate. All the quantitative results are 

reported as mean ± standard deviation. Multi-way ANOVA was used to determine any significant effects 

(p ≤ 0.05) of the independent variables (temperature, humidity, drying time and season) at an individual 

level and the interaction effect (triple and double effect) on the response variable (physico-chemical 

properties).  Tukey’s honest significant difference (HSD) post hoc test was performed to identify any 

significant differences between the means of comparable treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

 

4.3. Results and Discussion 

4.3.1. Moisture Content 

The final MC on a dry basis of the obtained kelp with respect to their drying conditions 

(temperature and humidity), and the period of harvest are listed in Table 4.2 as mean ± S.D. Results show 

that the MC of dried sugar kelp was, as expected, less than 20% for dried kelp from both harvest periods 

and different drying conditions. The drying temperature and harvest season significantly (p < 0.05) 

affected the final MC. As expected, for samples from both seasons, the MC decreased as the temperatures 

increases. For both the seasons, MC for freeze-dryed (FD) samples was significantly lower (p < 0.05) 

than any of the sun-dried (SD) and heat pump dried (HPD) sugar kelp at 25% and 50% humidity. This is 

because freeze drying works on the principle of sublimation under vacuum and removes the freezable 

water, while the HPD depends on the temperature, humidity and the air velocity inside the drying 

chamber. Even though the drying time and the MC of the fresh sugar kelp in both seasons were similar, 

statistically, the MC of the S2 dried kelp was significantly (p < 0.05) higher than S1. Overall, the lower 

drying temperature and high relative air humidity increases the MC of dried sugar kelp and requires 

longer drying time.   
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Table 4.2. Proximate composition of sugar kelp harvested in season S1 (early May) and S2 (late June) 

 
Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured at p < 0.05.  

Small letter (a, b): denotes row-wise comparison between treatments or with air drying temperatures.  

Capital letter (A, B): denotes comparison between harvesting seasons, S1 and S2. 

x/y: denotes comparison between the drying humidity 

Drying 

condition/ 

Treatment 

Season 1 (S1) Season 2 (S2) 

Moisture  

(g (100 g)-1 

dry solids) 

Ash 

(g (100 g)-1 

dry solids) 

Fat  

(g (100 g)-1 

dry solids) 

Crude protein 

(g (100 g)-1 

dry solids) 

Crude 

carbohydrate 

(g (100 g)-1 

dry solids) 

Moisture  

(g (100 g)-1 

dry solids) 

Ash  

(g (100 g)-1 

dry solids) 

Fat  

(g (100 g)-1 

dry solids) 

Crude protein 

(g (100 g)-1 

dry solids) 

Crude 

carbohydrate 

(g (100 g)-1 dry 

solids) 

FD 

 

5.30 ± 0.1 aA 

 

29.4 ± 0.2 a 

 

1.6 ± 0.1 A 

 

10.8 ± 0.1 aA 

 

58.2 ± 0.0 aA 

 

8.0 ± 2.1 aB 

 

27.4 ± 0.8 a 

 

2.3 ± 0.1 B 

 

9.3 ± 0.0 aB 

 

61.1 ± 0.8 aB 

SD 

 

16.4 ± 1.8 bA 

 

29.6 ± 0.4 b 

 

1.7 ± 0.1 A 

 

10.9 ± 0.5 aA 

 

57.8 ± 0.9 bA 

 

18.2 ± 0.8 bB 

 

29.4 ± 0.5 b 

 

2.2 ± 0.2 B 

 

9.2 ± 0.5 aB 

 

59.2 ± 0.3 bB 

30°C, 

25% 

 

13.2 ± 1.5 cA 

 

28.5 ± 0.4 

bx 

 

1.7 ± 0.1 A 

 

10.4 ± 0.6 

abA 

 

59.4 ± 0.6 

baA 

 

15.0 ± 0.4 cB 

 

33.0 ± 0.9 bx 

 

2.0 ± 0.5 B 

 

8.4 ± 0.6 abB 

 

56.7 ± 0.8 baB 

50°C, 

25% 

 

11.1 ± 0.7 cA 

 

29.8 ± 0.3 

cx 

 

1.8 ± 0.0 A 

 

10.4 ± 0.2 bA  

58.1 ± 0.4 cA 

 

12.5 ± 0.4 cB 

 

28.1 ± 0.8 cx 

 

2.2 ± 0.2 B 

 

7.8 ± 0.2 bB 

 

62.0 ± 1.0 cB 

70°C, 

25% 

 

13.6 ± 0.3 cA 

 

22.9 ± 0.2 

dx 

 

2.2 ± 0.4 A 

 

11.5 ± 0.5 bA  

63.5 ± 0.3 dA 

 

19.5 ± 1.2 cB 

 

27.4 ± 0.3 dx 

 

2.1 ± 0.2 B 

 

7.4 ± 0.5 bB 

 

63.1 ± 0.3 dB 

30°C, 

50% 

 

14.5 ± 0.4 cA 

 

28.9 ± 0.2 

by 

 

1.7 ± 0.0 A 

 

10.5 ± 0.1 

abA 

 

58.9 ± 0.2 

baA 

 

16.6 ± 0.9 cB 

 

27.6 ± 0.3 by 

 

1.8 ± 0.0 B 

 

9.3 ± 0.8 abB 

 

61.3 ± 1.1 baB 

50°C, 

50% 

 

13.1 ± 0.2 cA 

 

28.0 ± 0.1 

cy 

 

1.7 ± 0.3 A 

 

09.9 ± 0.5 bA 

 

60.4 ± 0.6 cA 

 

18.0 ± 1.1 cB 

 

26.8 ± 0.3 cy 

 

2.0 ± 0.1 B 

 

9.7 ± 0.1 bB 

 

61.5 ± 0.5 cB 

70°C, 

50% 

 

10.7 ± 0.1 cA 

 

27.9 ± 0.1 

dy 

 

1.8 ± 0.1 A 

 

10.4 ± 0.2 bA 

 

60.0 ± 0.2 dA 

 

15.8 ± 1.6 cB 

 

27.4 ± 1.0 dy 

 

2.3 ± 0.1 B 

 

7.7 ± 0.5 bB 

 

62.6 ± 1.4 dB 

Fresh 

806.4 ± 31.4 

dA - - - - 

998.7 ± 49.1 

dB - - - - 
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4.3.2. Ash Content 

The ash content of the sugar kelp ranged from 22.85 ± 0.23 to 29.79 ± 0.31 g (100 g)-1 dry solids 

and 26.78 ± 0.34 to 33.03 ± 0.90 g (100 g)-1 dry solids for S1 and S2, respectively (Table 4.2). Manns et 

al. (2017) and Scheiner et al. (2015) reported that the average ash content of S. latissima is 21 - 38 g (100 

g)-1 dry solids, which is very similar to the values found in our study. In addition, the mean percentage of 

ash found in the dried kelp was comparable to those found in other species i.e., Hypnea japonica (22.1 ± 

0.72 g (100 g)-1 dry solids), Undaria pinnatifida (26.58 ± 4.24 g (100 g)-1 dry solids) and Sargassum 

wightii (25 ± 2 g (100 g)-1 dry solids) (Dawczynski et al. 2007; Smith et al. 2010; Syad et al. 2013).  

Moreover, other literature showed that the ash content in seaweed varies from 8 - 40 g (100 g)-1 dry solids 

(Indegaard and Ostgaard 1991; Mabeau and Fleurence 1993) and this variation in ash content  depends on 

seaweed species, composition of their cell walls, geographical origins, physiological stress, pH, the 

salinity of water and other environmental changes and  method of mineralization (Astorga-España et al. 

2015; Davis et al. 2003; Kumar et al. 2008; Mišurcová et al. 2011; Nisizawa 1987; Rao et al. 2007; 

Sánchez-Machado DI et al. 2004). Sugar kelp accumulates the highest amount of minerals during the 

winter period of sporulation followed by a decline in the summer and autumn months (Chapman 1987). 

During this winter period, the storage carbohydrate laminarin is at its lowest level, having been consumed 

to maintain growth during the freezing water temperatures and scanty sunshine by synthesizing more 

protein, lipid, and minerals (Black and Dewar 1949; Chapman and Craigie 1997; Chapman and Craigie 

1978; Scheiner et al. 2015).In this study, the ash content showed that the harvesting seasons, S1 and S2 

did not have a significant effect (p > 0.05). Similarly, there was no change observed in the ash content of 

sugar kelp for both wild-harvested and cultivated specimens in Danish waters, as reported by Manns et al. 

(2017) over the period of May-June. 
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4.3.3. Crude Fat Content 

The average values of fat/lipid content measured in the sugar kelp were 1.78 ± 0.24 g (100 g)-1 

dry solids and 2.11 ± 0.23 g (100 g)-1 dry solids for S1 and S2, respectively (Table 4.2). In general, the 

total mean fat/lipid content in Phaeophyceae was reported to be 3 g (100 g)-1 dry solids, varying from the 

lowest value of 0.1 g (100 g)-1 dry solids found in Leathesia marina to the highest value of 20 g (100 g)-1 

dry solids in Dictyota sandvicensis (McDermid and Stuercke 2003; Renaud and Luong-Van 2006). 

Several factors such as algal life cycle, physiological state, seasonal and environmental factors including 

water depth, pH, salinity, temperature, availability of nutrients and sunlight contribute to the varying 

degrees of total fats in seaweeds (Guschina and Harwood 2006; Khotimchenko and Kulikova 2000; Melo 

et al. 2015). A significant difference  was not found (p > 0.05) in the total fat content due to the drying 

conditions (temperature and humidity). This suggests that during drying, the fats present were not lost by 

dripping out of the porous structure or by converting into volatile oxidized compounds due to drying 

temperatures (Akonor et al. 2016; Tir et al. 2017).  

The fat content values for the early season, S1 were significantly (p < 0.05) lower than the late 

season, S2. Several authors have reported that the seaweeds contain the highest amount of fat/lipid during 

the period of winter through spring and the minimum during summer (El Maghraby and Fakhry 2015; 

Nomura et al. 2013; Scheiner et al. 2015). For our study, contrasting results were observed as there was 

an increase in the levels of lipids from S1 to S2. Olofsson et al. (2012) attributed these variations in lipid 

content to the seaweed growth cycle, water temperature and availability of light. In the above study on 

microalgae, it was found that the presence of abundant light and high-water temperature resulted in higher 

lipid accumulation due to extended photosynthetic rate and overall lower energy cell demand. A study 

conducted on Pavlova virdis, also a marine microalga, revealed that water temperature affected the fatty 

acid profile, where at higher temperature, the polyunsaturated fatty acids decreased, while the saturated 

fatty acids increased keeping the overall fat content unchanged (Hu et al. 2008). In Maine, US, the 

effective day length and the light intensity increases faster than the water temperature between May and 
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June. This relative increase in the available sunshine and approximately the same water temperature could 

result in a higher photosynthetic rate and accretion of a high amount of fatty acids without change in its 

profile.  Overall, drying conditions did not change the total crude fat in the sugar kelp, however, more 

studies on seaweeds are required to understand the possible impact of different drying conditions on the 

fatty acid profile.  

4.3.4. Crude Protein 

Traditionally, the crude protein content is calculated using a nitrogen-to-protein conversion factor 

also known as Jones’ factor of 6.25 (Jones 1931), based on the assumption that all the nitrogen exists as 

proteins in the sample. However, corrected conversion factors have been reported based on the considered 

species and their respective phylum. Consequently, Lourenço et al. (2002) reported a conversion factor of 

5.38 ± 0.50 for brown seaweeds, which corrected for the overestimated amounts due to non-protein 

nitrogen in the sample. Moreover, the studies performed by Manns et al. (2017) and Scheiner et al. 

(2015), also indicated seasonal variation in the Jones’ factor observed within the same species of some 

brown seaweeds. For this study, an average Jones’ factor of 5.3 was considered for calculating the crude 

protein content in sugar kelp (Scheiner et al. 2015).  

The average nitrogen content in the dried kelp was not affected (p > 0.05) by the applied drying 

conditions (temperature and humidity) (Table 4.2).  However, seasonal effects were significant (p < 0.05) 

and the average nitrogen values were found to be 2.01 ± 0.10 g (100 g)-1 dry solids and 1.64 ± 0.16 g (100 

g)-1 dry solids, for S1 and S2, respectively (Table 4.2).  These values are comparable with the average 

nitrogen content of 1.5 ± 0.5 g (100 g)-1 dry solids, reported for sugar kelp (Scheiner et al. 2015). As a 

result, the protein content (10.65 ± 0.53 g (100 g)-1 dry solids) was found to be higher in S1 as compared 

to the protein content (8.69 ± 0.85 g (100 g)-1 dry solids) in S2. Similar observations were also found in 

some studies, where the maximum value was observed during spring followed by the decline in protein 

content to a minimum during the summer (Kumar et al. 2015; Manns et al. 2017; Scheiner et al. 2015). 
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Like other chemical constituents, protein content can also fluctuate depending on several factors such as 

species, plant maturity, geographical locations, environmental conditions (water temperature, salinity, 

nutrient availability) and growing season (Fleurence 1999; Ito and Hori 1989). Irradiation has been 

identified as a major contributing factor to the varying amount of nutrient accumulation. During summer, 

the presence of high-intensity light activates the nitrogen metabolism. It induces higher nitrogen demand 

within the cell causing faster degradation rates of nitrogen, resulting in overall lower protein content. 

4.3.5. Crude Carbohydrate 

In this study, the carbohydrate content in sugar kelp comprised the major part of algal biomass (> 

55 g (100 g)-1 dry solids) and was found to be higher than the values reported earlier for sugar kelp 

ranging from 20 - 44 g (100 g)-1 dry solids (Vilg et al. 2015). Statistical analysis indicated a significant 

difference (p < 0.05) in the carbohydrate levels for the temperature parameter, which may be explained by 

the sum of responses of other components to temperature, since in this study the total carbohydrates were 

determined by difference (100 – rest of the components) (Table 4.2). However, no significant change in 

the total carbohydrates content (p > 0.05) due to the drying humidity parameter was observed (Table 4.2).  

Seasonal variability was significant (p < 0.05) as a higher carbohydrate content was observed in 

S2 than S1 (Table 4.2). The higher values during S2 can be possibly explained by higher levels of 

alginates that were found in brown seaweeds during summer, which made up almost 40% of the biomass 

(Rosell and Srivastava 1984). In addition to alginates, the storage levels of carbohydrates laminarin and 

mannitol have also increased due to the rise in the water temperature and irradiation during the summer. 

These can be used during cold winters as reserve carbohydrates to promote algal tissue growth (Adams et 

al. 2011; Black 1950). As a result, the elevated levels of carbohydrates in kelp were also accompanied by 

the lower levels of ash and crude protein content during S2. The corresponding r-values suggest a strong 

negative correlation between the carbohydrate and ash content of the sugar kelp for S1 and S2 and were r 

= -0.953 and r = -0.901, respectively, confirming the inverse relationship. Also, the carbohydrate content 
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of the sugar kelp was found to be linearly dependent with negative slope on the ash content and can be 

expressed as Y = -0.8803 X + 85.005, where Y is the crude carbohydrate value (g  (100 g)-1 dry solids) 

and X is the ash content (g  (100 g)-1 dry solids) with correlation coefficient (R2 = 0718) (Fig. 4.1).  

Fig.4.1 Correlation between crude carbohydrate and ash content of the sugar kelp samples dried under 

sun, freeze dryer and heat pump dryer for both the seasons, early May (S1) and late June (S2) 

 

 

4.3.6. Water Holding Capacity (WHC) 

The WHC of sugar kelp was higher than the three Sargassum species reported to be in the range 

of 506 – 1140 % (Wong and Cheung 2001). The statistical results indicated a significant effect (p < 0.05) 

of the drying conditions (temperature and humidity) on the WHC of dried sugar kelp (Table 4.3). The 

WHC was the lowest for SD and FD kelp, and no significant difference (p > 0.05) was observed between 

them.  The low values of WHC in FD kelp could be caused by slow freezing rates during the initial phase 
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of cooling, resulting in the formation of large ice crystals in the extracellular space between the cells, 

inflicting textural damage (Martino et al. 1998). Similar observations were also seen in the protein 

isolates of cowpea and bambara beans and carbohydrate-protein gum from durian fruit seed, where the 

WHC of the FD was less than the conventionally dried (Mirhosseini and Amid 2013; Mune and Sogi 

2016). Case hardening is very common in foods that are dried at a faster rate and contain substantial 

amounts of soluble solids. This might have affected the kelp dried under the sun, where drying at a faster 

rate might have caused the soluble solids to migrate to the surface along with the moisture to form an 

impervious layer, creating a situation where the inner moisture was trapped by the hard-outer surface, 

resulting in poor WHC in SD kelp (Heldman 2013). The highest WHC values are seen among the 

significantly similar (p > 0.05) kelp dried at 70 °C, 50 °C and 30 °C, for both the seasons S1 and S2. This 

suggests that the textural properties of the sugar kelp were not dependent on the drying temperature. 

Furthermore, these results also support findings from our previous study reporting the relationship 

between the glass transition temperature (Tg) and the shrinkage rates of sugar kelp. The amorphous form 

of water, bound to the solid matrix in kelp, never transitioned from the initial rubbery to glassy states as 

the Tg of sugar kelp solids (47.02 °C) was never achieved (Sappati et al. 2017). Similar observations were 

also reported by Moreira et al. 2017, where they also found no significant differences between the 

shrinkage and the air-drying temperature in Fucus vesiculosus. There was a significant difference (p < 

0.05) in the WHC of the dried kelp with respect to drying humidity (Table 4.3). The kelp dried at 25% 

humidity showed higher WHC compared to those dried at 50% humidity. Drying at 50% humidity at the 

same temperature might have damaged the porous structure due to shrinkage at the intracellular level, 

resulting in overall lower WHC (Kurozawa et al. 2012; Russo et al. 2012). 
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Table 4.3. Water holding capacity (WHC %) and oil holding capacity (OHC %) of sugar kelp harvested in season S1 (early May) and S2 (late 

June) 

Humidity 

(%) 

Treatment/ 

Temperature 

(°C) 

Season 1 (S1) Season 2 (S2) 

WHC (%) OHC (%) WHC (%) OHC (%) 

25 30 2368.8 ± 48.1 bxA 235.4 ± 1.6 axA 1800.4 ± 50.2 bxB 219.1 ± 3.7 axB 

 50 2289.4 ± 47.6 bxA 248.2 ± 3.5 axA 1872.4 ± 45.0 bxB 229.1 ± 5.1 axB 

 70 2764.6 ± 4.8 bxA 220.3 ± 0.6 bxA 1766.6 ± 39.3 bxB 150.1 ± 8.0 bxB 

      

50 30 2245.7 ± 48.2 byA 201.9 ± 8.7 ayA 1655.2 ± 20.5 byB 168.2 ± 2.8 ayB 

 50 2295.8 ± 111.6 byA 217.1 ± 1.5 ayA 1585.3 ± 42.3 byB 153.6 ± 4.5 ayB 

 70 2147.7 ± 30.9 byA 221.2 ± 5.6 byA 1633.5 ± 14.9 byB 190.3 ± 5.2 byB 

      

N/A FD 2061.6 ± 13.7 aA 225.7 ± 1.2 aA 1712.1 ± 60.0 aB 190.1 ± 2.9 aB 

 SD 2095.5 ± 126.0 aA 205.9 ± 1.2 bA 1559.5 ± 20.0 aB 175.6 ± 1.9 bB 

      

 
Results are mean ± standard deviation of triplicate for each sample (n = 3) for WHC and duplicate for each sample (n = 2) for OHC. Significant differences 

between the values are measured at p < 0.05. Small letter (a, b): denotes row-wise comparison between treatments or with air drying temperatures.  

Capital letter (A, B): denotes comparison between harvesting seasons, S1 and S2. 

x/y: denotes comparison between the drying humidity 

FD: Freeze dried samples 

SD: Sun dried samples 
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Irrespective of temperature and humidity, sugar kelp harvested during S1 exhibited significantly 

(p < 0.05) higher WHC as compared to S2 (Table 4.3). Alginates consist of GG, MM and GMGM 

sequenced blocks depending on the species, source and time of harvest (Lee and Mooney 2012). The G-

blocks of alginate are responsible for hydrogel forming activity in the presence of cations such as Ca2+ by 

intermolecular cross-linking (George and Abraham, 2006). The water holding ability and gel formation 

activity of alginates depends on the quantity and the length of the G blocks present in the alginate chain, 

hence low M/G ratios in alginates are associated with higher gel strength and WHC. Manns et al. (2017) 

have reported the seasonal variation of M/G ratio present in sugar kelp with respect to the harvesting 

period. According to their data, the M/G ratio during the month of May was 1.80, which increased to 2.34 

at the end of June. This supports our observation of higher WHC in S1 samples. Furthermore, dietary 

fibers are present at around 33-50 g (100 g)-1 dry solids in seaweeds and are mostly in the soluble form 

(Jiménez-Escrig and Cambrodon 1999; Rupérez and Saura-Calixto 2001). These soluble fibers exhibit a 

significant amount of water binding capacities and are prone to alteration due to processing methods such 

as grinding, drying, heating or extrusion (Camire and Flint 1991; Thibault et al. 1992). In Sargassum 

horneri, the dietary fiber content was found to be highest (6.68 g (100 g)-1 sample) in the month of March 

followed by gradual decline (Murakami et al. 2011). Also, the protein content can also impart certain 

desired functional characteristics in the food, especially emulsification, water/oil binding and foaming 

(Kinsella and Melachouris 2009). The polar groups present in protein can form hydrogen bonds with the 

water and enhance the hydration in the dried seaweeds (Ahmedna et al. 1999). In our study we found the 

corresponding r-value between the nitrogen content and WHC of the dried kelp was r = 0.676, suggesting 

higher protein in dried kelp may result in higher WHC. Finally, this suggests that the low M/G ratio, high 

% of dietary fibers and protein content in the sugar kelp belonging to S1, may all have contributed in 

varying degrees to the higher WHC as compared to S2.  

4.3.7. Oil Holding Capacity (OHC) 

Dried sheets of seaweeds are commonly consumed through use in soups or as sushi wraps. 
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However, some seaweed dishes and snacks are prepared by frying the sheets in oil. So, low OHC can also 

be one of the quantitative parameters in dried kelp of interest to consumers who are trending towards low-

fat containing products (Dana and Saguy 2006). In contrast, high OHC in some of the food ingredients 

imparts certain desirable functional properties such as stabilization of food emulsions, flavor entrapment 

and lipid binding (Brewer et al. 2016).  This suggests that, depending on its functional properties, dried 

kelp can be practically used in wide applications of food formulations.    

The OHCs of dried sugar kelp were found to be higher than the 84% reported for three Sargassum species 

(Wong and Cheung, 2001). The results from this study indicated that the drying conditions (temperature 

and humidity) significantly (p < 0.05) influenced the capacity for oil absorption (OHC) in the dried sugar 

kelp (Table 4.3). The highest average OHCs were seen among the significantly similar (p > 0.05) kelp 

dried at FD, 50 °C and 30 °C conditions. Slow initial freezing rate might have ruptured the cell walls 

resulting in more void space and overall increase in the pore surface area of the FD kelp (Setiady et al. 

2009).  On the other hand, surface tension within the capillaries of the food matrix may also play a vital 

role in the oil absorption process (Kinsella and Melachouris 2009). Therefore, the FD kelp showed the 

highest oil absorption due to an increase in the porosity caused by the bursting of the cell wall.  This also 

may have leached out the water binding components, such as dietary fiber, into the rehydration water, 

indicating lower WHC. The OHC was the lowest for the SD and 70 °C and no significant difference (p > 

0.05) was observed among them. Again, case hardening due to faster drying rates might have formed an 

impervious layer, resulting in poor OHC in these samples. Furthermore, the OHC of the kelp harvested 

during S1 exhibited significantly (p < 0.05) higher OHC as compared to S2, irrespective of the drying 

conditions (Table 4.3). It is also believed that in addition to oil absorption through capillary action, 

interactions between oil and the hydrophobic components, especially the lipid and protein content in the 

food, also binds the oil (Hayta et al. 2002). The major fatty acids present in the corn oil used for testing 

OHC are palmitic acid (16:0), oleic acid (18:1) and linoleic acid (18:2) (Baur and Brown 1945). As a 

result, the non-polar side chains of the lipids and protein present in the seaweed might have attracted to 
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the fatty acids present in the corn oil and contributed towards the OHC of the food (Mirhosseini and 

Amid 2013). The correlation between the nitrogen content and OHC of the dried kelp was r = 0.444, 

suggesting higher protein content might have resulted in higher OHC.  In our study, we also found higher 

lipid content and nitrogen content in the sugar kelp harvested during S1, possibly leading towards overall 

higher OHC. 

4.3.8. Color 

The change in color (ΔE) along with the colorimetric coordinates L* (black-white), a* (green-red) 

and b* (blue-yellow) for the fresh and the dried sugar kelp are presented in Table 4.4. The L*, a* and b* 

values for the fresh sugar kelp were 19.39 ± 1.44, 0.71 ± 0.26 and 8.99 ± 0.89, respectively for S1 and 

19.18 ± 0.72, 0.68 ± 0.17 and 10.06 ± 0.78, respectively for S2. From Table 4.4, all the treatment values 

for ΔE were significantly higher than 6.0 (p <0.05), showing a strong effect of the drying conditions 

(temperature and humidity) on the overall change in color (Silva and Silva, 1999). In addition, the ΔE 

values were the lowest for sun-dried, 30 °C, and 50 °C, while the highest difference is seen in 70 °C and 

freeze-dried kelp, for both the seasons, S1 and S2. Furthermore, the change in color ΔE was found to be 

positively correlated to the total phenolic content and the FRAP activity, which is discussed in detail in 

their respective sections of TPC and FRAP, below.  
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Table 4.4. Color analysis of sugar kelp harvested in season S1 (early May) and S2 (late June) 

Hum

idity 

Temp

eratur

e/Trea

tment 

Season 1 (S1) Season 2 (S2) 

L* a* b* ΔE L* a* b* ΔE 

25% 30°C 35.73 ± 1.04 

axA 

-0.34 ± 0.01 

bxA 

18.00 ± 0.20 

cxA 

18.7 ± 1.0 

bxA 

30.02 ± 0.58 

axB 

0.05 ± 0.05 

bxB 

14.54 ± 0.59 

cxB 

11.8 ± 0.3 

bxB 

 50°C 37.14 ± 1.30 

axA 

-0.80 ± 0.07 

cxA 

19.00 ± 0.42 

bcxA 

20.4 ± 1.1 

bxA 

28.23 ± 0.38 

axB 

0.63 ± 0.04 

cxB 

13.23 ± 0.16 

bcxB 

9.6 ± 0.4 

bxB 

 70°C 37.93 ± 1.31 

bxA 

-0.98 ± 0.02 

axA 

19.48 ± 0.69 

bxA 

21.4 ±1.2 

axA 

36.02 ± 0.34 

bxB 

1.17 ± 0.03 

axB 

16.43 ± 0.37 

bxB 

18.0 ± 0.2 

axB 

          

50% 30°C 39.39 ± 0.08 

ayA 

-0.48 ± 0.03 

byA 

18.71 ± 1.23 

cyA 

22.3 ± 0.5 

byA 

34.60 ± 0.52 

ayB 

0.11 ± 0.07 

byB 

15.96 ± 0.56 

cyB 

16.5 ± 0.3 

byB 

 50°C 39.07 ± 1.13 

ayA 

-0.28 ± 0.05 

cyA 

19.53 ± 1.29 

bcyA 

22.4 ± 0.4 

byA 

36.41 ± 0.19 

ayB 

0.87 ± 0.04 

cyB 

17.37 ± 0.26 

bcyB 

18.7 ± 0.1 

byB 

 70°C 40.88 ± 0.61 

byA 

1.09 ± 0.05 

ayA 

18.42 ± 1.30 

byA 

23.5 ± 1.1 

ayA 

36.11 ± 0.13 

byB 

2.37 ± 0.07 

ayB 

17.26 ± 0.19 

byB 

18.5 ± 0.1 

ayB 

          

N/A FD 39.67 ± 0.96 

aA 

0.96 ± 0.05 

aA 

14.11 ± 0.29 

aA 

20.9 ± 1.0 

aA 

37.17 ± 2.48 

aB 

0.85 ± 0.19 

aB 

13.68 ± 0.33 

aB 

18.3 ± 2.5 

aB 

 SD 36.82 ± 0.45 

bA 

-0.55 ± 0.04 

bA 

18.80 ± 0.51 

bcA 

20.0 ± 0.4 

bA 

31.86 ± 0.64 

bB 

0.15 ± 0.11 

bB 

15.93 ± 0.11 

bcB 

14.0 ± 0.5 

bB 

 Fresh 19.39 ± 1.44 

cA 

0.71 ± 0.17 

dA 

8.99 ± 0.89 

dA 

- 19.18 ± 0.72 

cB 

0.68 ± 0.89 

dB 

10.06 ± 0.78 

dB 

- 

          

 
Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured at p < 0.05. Small letter (a, b, 

c, d): denotes row-wise comparison between treatments or with air drying temperatures.  

Capital letter (A, B): denotes comparison between harvesting seasons, S1 and S2. 

x/y: denotes comparison between the drying humidity 
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The observed L* and b* values increased for all the drying treatments as compared to the fresh 

sugar kelp, resulting in all the treated kelp being more light and yellowish. Elevated temperatures during 

drying can possibly induce the replacement of the central magnesium ion in chlorophyll a with two 

hydrogen ions, resulting in an undesirable olive brown color due to the formation of pheophytin 

(Turkmen et al. 2006). Potisate and Phoungchandang (2010) found that the concentration of chlorophyll a 

was reduced by high drying temperature in ivy gourd leaf using a heat pump based drying system. 

Fucoxanthin, a major carotenoid in brown seaweeds, is quite stable as compared to chlorophyll a in the 

presence of organic solvents, high temperature, oxygen, and light.  Thermal processing such as blanching, 

boiling, steaming and sterilizing increased the free fucoxanthin content in Sargassum ilicifolium (Eko 

Susanto et al. 2017). A higher amount of available fucoxanthin content was also reported in dried 

Undaria pinnatifida while storing at 50 °C for 210 days and during baking at a temperature of 190 °C 

(Sugimura et al. 2012). Moreover, chlorophyll a can also be easily degraded by the chlorophyllase 

enzyme at temperatures higher than 60 °C (Erge et al. 2008). The b* values of the freeze-dried kelp were 

the closest to the fresh sugar kelp, while the second least differences were seen in the sample dried at 50 

°C and 25% humidity. This indicates that an increase in drying temperature and humidity resulted in a 

higher concentration of free fucoxanthin and formation of undesirable colored and volatile substances, 

due to the enzymatic or non- enzymatic degradation of chlorophyll a (Drążkiewicz and Krupa 1991; 

Maskan 2001).  

 Dried sugar kelp in S1 showed significantly (p < 0.05) higher values of L* and b* values 

compared to the sugar kelp from S2. It is speculated that the colder temperature coupled with lower 

radiation during S1 resulted in high production of fucoxanthin through the activated xanthophyll-cycle 

pathway, possibly a response due to overstressed conditions (Eonseon et al. 2003). A similar trend was 

also observed in the case of Sargassum horneri and Undaria pinnatifida, where the fucoxanthin content 

was higher in the winter and spring than in the summer (Campbell et al. 1999; Terasaki et al. 2017). 
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Finally, low concentration of fucoxanthin during S2 may have resulted in the overall lower values of L*, 

b* and ΔE, and less browning of the kelp dried under the same drying conditions. 

4.3.9. Total Phenolic Content (TPC) 

Phenolic compounds present in the seaweeds are highly heat-sensitive, and their chemical activity 

can be altered vastly due to the applied processing conditions (Dang et al. 2016; Randhir et al. 2007). In 

this study, the drying temperature and humidity had a significant effect (p < 0.05) on the TPC of the sugar 

kelp, where the levels dropped by approximately 10 fold as compared to the fresh kelp (Table 4.5). The 

highest amount of phenolic activity was exhibited by the freeze-dried and lowest by the kelp dried at 70 

°C.  The highest values in the FD were possibly due to less oxidation at low temperature and in the 

presence of little air under vacuum while drying, resulting in overall higher values of phenolic compounds 

(Hossain et al. 2010). The TPC values were not significantly different (p > 0.05) for the kelp dried at 30 

°C and 50 °C, or for the sundried and 50 °C. The heat treatment might have caused cellular damage, 

followed by the release of bound phenolic compounds, showing an increase in TPC activity until 50 °C. 

Further heating might have induced higher enzymatic activity and oxidative stress leading to thermal 

degradation of the phenolic compounds (Lim and Murtijaya 2007; Tomaino et al. 2005). In addition, 

phenolic compounds are bound within the carbohydrate, protein and fatty acid matrix of the food structure 

(Randhir et al. 2007). An increase in phenolic activity has been reported in Himanthalia elongata under 

hydrothermal processing at 95 °C for 15 mins (Rajauria et al. 2010) as the heat treatment released these 

bound phenolic compounds from the food matrix. Furthermore, some reports also suggested that oven 

drying is better than freeze-drying in retaining the phenolic compounds (Ling et al. 2015; Wong and 

Cheung 2001), however, in this study freeze-dried kelp exhibited overall higher phenolic activity. The 

kelp dried at 25% exhibited values higher (p < 0.05) than kelp dried at 50% humidity, suggesting the 

phenolic compounds may have deteriorated due to oxidative stress caused by longer drying times at the 

same temperature (Table 4.5). Low humidity reduces the drying time due to the increase in mass transfer 

rates at the same temperature (Djaeni and Sari 2015; Sappati et al. 2017). A similar finding was also 
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reported by Dang et al. (2017), where drying at high temperature (60 °C) and low humidity (11.1%), 

resulted in better retention of nutrients in H. banksii.  

The initial content of total phenolic compounds found in the methanolic extracts of sugar kelp 

was 3.58 ± 0.14 mg GAE g-1 dry solids and 4.84 ± 0.26 mg GAE g-1 dry solids, for S1 and S2, 

respectively (Table 4.5).  These values are in the range reported for other brown seaweeds such as 

Sargassum marginatum (0.29 mg GAE g-1 dry solids), Padina tetrastomatica (0.61 mg GAE g-1 dry 

solids) and Turbinaria conoides (0.86 mg GAE g-1 dry solids) and Himanthalia elongata (15.5 mg GAE 

g-1 dry solids) (Chandini et al. 2008; Rajauria et al. 2010). The highest levels of phenolic compounds in 

the fresh kelp were seen in the late harvest season S2, which are in agreement with the observations of 

Scheiner et al. (2015) and Vilg et al. (2015). The synthesis of phenolic compounds is shown to increase 

with the rise in water temperature and light intensity, resulting in higher observed values during S2 

(Aquino-Bolaños and Mercado-Silva 2004; Pavia et al. 1997). According to Lann et al. (2012), the 

increase in solar radiation during summer results in the production of higher amounts of phlorotannin, 

primarily responsible for the phenolic activity.  However, during summer, S2, the phenolic activity of the 

kelp dried under sunlight was reduced significantly (p < 0.05) as compared to the fresh sugar kelp (Table 

4.5). These findings can be possibly explained by the exposure to the higher intensity of the radiation 

(UVA-UVB, IR and Microwaves) causing faster deterioration rates and resulting in lower values of TPC 

(Klein and Kurilich 2000).  
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Table 4.5. Phenolic content and antioxidant activity (TPC, FRAP and DPPH) of sugar kelp harvested in season S1 (early May) and S2 (late June) 

Humidit

y 

Treatme

nt/ 

Tempera

ture 

Season 1 (S1) Season 2 (S2) 

TPC  

(mg GAE g-1 dry 

solids) 

FRAP  

(µmol FSE g-1 dry 

solids) 

DPPH, EC50  

(mg dry solids mL-1) 

TPC  

(mg GAE g-1 dry 

solids) 

FRAP  

(µmol FSE g-1 dry 

solids) 

DPPH, EC50  

(mg dry solids mL-1) 

25% 30°C 0.775 ± 0.041 cxA 6.43 ± 0.00 axA 8.61 cxA 0.376 ± 0.014 cxB 5.08 ± 0.54 axB 17.32 cxB 

 50°C 0.758 ± 0.036 bcxA 6.31 ± 0.14 axA 9.38 cxA 0.668 ± 0.032 bcxB 5.76 ± 0.33 axB 11.75 cxB 

 70°C 0.536 ± 0.037 dxA 6.34 ± 0.29 bxA 13.76 dxA 0.265 ± 0.019 dxB 3.33 ± 0.21 bxB 25.58 dxB 

        

50% 30°C 0.543 ± 0.014 cyA 5.40 ± 0.42 ayA 13.25 cyA 0.308 ± 0.014 cyB 3.79 ± 0.14 ayB 22.29 cyB 

 50°C 0.495 ± 0.036 bcyA 5.39 ± 0.29 ayA 12.75 cyA 0.238 ± 0.024 bcyB 2.95 ± 0.14 ayB 28.43 cyB 

 70°C 0.296 ± 0.018 dyA 3.41 ± 0.07 byA 20.60 dyA 0.220 ± 0.014 dyB 2.94 ± 0.20 byB 31.48 dyB 

        

N/A FD 0.565 ± 0.021 aA 4.54 ± 0.13 aA 11.05 aA 0.693 ± 0.043 aB 5.71 ± 0.70 aB 9.07 aB 

 SD 0.823 ± 0.014 bA 6.83 ± 0.29 aA 8.59 bA 0.282 ± 0.010 bB 3.60 ± 0.21 aB 19.53 bB 

 Fresh 3.580 ± 0.139 eA 31.36 ± 2.22 cA 1.71 eA 4.837 ± 0.265 eB 26.65 ± 2.22 cB 1.26 eB 

        

 
Results are mean ± standard deviation of triplicate for each sample (n = 3) except DPPH, where absorption value of triplicates are used for calculating EC50 

value. Significant differences are measured at p < 0.05. Small letter (a, b, c, d, e): denotes row-wise comparison between treatments or with air drying 

temperatures.  

Capital letter (A, B): denotes comparison between harvesting seasons, S1 and S2.  

x/y: denotes comparison between the drying humidity
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4.3.10. Ferric Reducing Antioxidant Power (FRAP) 

 The FRAP method measures the ferric reducing ability of the methanolic extracts of the sugar 

kelp based on the redox reaction. Previously, several authors have conducted FRAP assay on the various 

extracts of red and brown seaweeds (Dang et al. 2016; Ling et al. 2015; Neoh et al. 2016; Rajauria et al. 

2010). The antioxidants present in the seaweed act as electron donors and at low pH, the complex ferric - 

tripyridyltriazine (FeIII - TPTZ) is reduced to the ferrous form (FeII), producing an intense blue color 

solution showing maximum absorption at 593 nm.  

The initial FRAP values of the fresh sugar kelp were 31.36 ± 2.22 µmol FSE g-1 dry solids and 

26.65 ± 2.22 µmol FSE g-1 dry solids, for S1 and S2, respectively. The reducing potential of the dried 

sugar kelp extracts was significantly lower (p < 0.05) than the fresh kelp, for all the treatments. The 

values were not significantly different (p > 0.05) for the SD, 30 °C, 50 °C and FD kelp (Table 4.5). 

However, drying above 50 °C resulted in a significant loss of the reducing capacity, as the lowest value 

was observed at 70 °C. The kelp dried at 25% humidity exhibited higher values of FSE as compared to 

the 50% humidity, similar to the trend for TPC. The polyphenolic compounds derived from seaweeds can 

potentially act as antioxidants by forming metal complexes, reducers (electron donors), proton donors and 

free radical scavengers (Leopoldini et al. 2004). The reducing capacity of the sugar kelp was found to be 

linearly dependent on the phenolic content, and can be expressed as Y = 5.874 X + 1.928, where Y is the 

FRAP value (µmol FSE g-1 dry solids) and X is the TPC (mg GAE g-1 dry solids) with correlation 

coefficient (R2 = 0.857) (Fig. 4.2). The positive correlation between the FRAP and TPC values can also 

be quantified with the Pearson correlation coefficient (r), the values for S1 and S2 were r = 0.857 and r = 

0.936, respectively. The strong correlation between FRAP and TPC was also reported in several seaweeds 

such as Hormosira banskii (Dang et al. 2017), Sargassum muticum and Bifurcaria bifurcata (Lann et al. 

2008). Furthermore, the Pearson correlation between the change in color, ΔE and TPC was -0.729 and -

0.273, for S1 and S2, respectively. Similarly, the r-values between ΔE and TPC were found to be -0.546 

and -0.433, for S1 and S2, respectively. These moderately negative correlations suggest that the change in 
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color ΔE is a direct reflection of the loss of TPC and the FRAP activity in the sugar kelp. Contrasting 

results were reported by Rajauria et al. (2010), where the increase in ΔE value was reflected in higher 

phenolic and antioxidant content. An explanation of these observations may be that short exposure to 

elevated temperatures might have inactivated the deteriorative enzymes in seaweeds and released more 

pigments in the form of carotenoids bound in the solid matrix, resulting in higher change in color and 

overall phenolic activity. In contrast, drying at lower temperatures for extended periods might not have 

inactivated the enzymes responsible for the oxidation of these phenolic compounds, resulting in higher 

change in color with low phenolic activity.  

Fig. 4.2. Correlation of ferric reducing antioxidant power value (µmol FSE g-1 dry solids) and total 

phenolic content (mg GAE g-1 dry solids) of the sugar kelp samples dried under sun, freeze dryer and heat 

pump dryer for both the seasons, early May (S1) and late June (S2) 
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4.3.11. DPPH (α, α-diphenyl-β-picrylhydrazyl) Assay 

DPPH is stable organic nitrogen-based radical exhibiting maximum absorption at 515 nm. The 

underlying mechanism for DPPH is believed to involve the transfer of a hydrogen atom. However, in the 

presence of strong hydrogen bond-forming solvents such as methanol and ethanol, the fast electron 

transfer process to DPPH dominates the very slow transfer of hydrogen atoms, hence becoming the rate-

determining step for the kinetics (Foti et al. 2004). The FRAP and DPPH assays work on the same 

principle of electron transfer. In the case of DPPH, the electron-donating capacity of the compounds to 

quench free radicals is measured in a similar fashion to the electron transfer responsible for reducing the 

ferric Fe(III) to ferrous Fe(II) in the FRAP assay. The antioxidant activity measured using DPPH was 

expressed as EC50 value, defined as the concentration of substrate required to cause a 50% loss in the 

DPPH activity. Therefore, a higher value indicates weaker antioxidant activity.  

The EC50 values for the fresh kelp were 1.71 mg dry solids mL-1 and 1.26 mg dry solids mL-1, for 

S1 and S2, respectively (Table 4.5).  The effect of drying was observed on the EC50 as all the treatments 

significantly reduced (p < 0.05) the antioxidant capacity in the dried kelp (Table 4.5). The antioxidant 

activity measured by DPPH showed a similar trend as the TPC values. The lowest values of EC50 were 

observed in the FD followed by the kelp dried under the sun, 30 °C, 50 °C and the highest at 70 °C. The 

antioxidant activity of the sugar kelp was also found to be linearly dependent with negative slope on the 

phenolic content and can be expressed as Y = -30.576 X + 31.184, where Y is the EC50 value (mg dry 

solids mL-1) and X is the TPC (mg GAE g-1 dry solids) with correlation coefficient (R2 = 0.835) (Fig. 

4.3). The corresponding correlations between the TPC and EC50 for S1 and S2 were, r = -0.925 and r = -

0.910, respectively, suggesting a strong inverse relationship. The FRAP and DPPH also showed a strong 

negative correlation, r = -0.752 and r = -0.912, for S1 and S2, respectively, indicating that both the assays 

were able to capture all the potential antioxidant species in the sugar kelp. The kelp dried at 25% 

humidity exhibited lower values (p < 0.05) of EC50 as compared to 50% humidity at the same temperature 

(Table 4.5). These values are consistent with the trends observed in the TPC and FRAP data, where the 
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longer residence time at high humidity may have caused oxidative and thermal deterioration.  

Fig. 4.3. Correlation of DPPH radical scavenging capacity, EC50 (mg dry solids/ ml) and total phenolic 

content (mg GAE/ g dry solids) of the sugar kelp samples dried under sun, freeze dryer and heat pump 

dryer for both the seasons, early May (S1) and late June (S2) 
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have shown that under low light intensity, photosynthetic efficiency increases due to the higher 

production of light-harvesting molecules (Lüning 1990). Therefore, it can be assumed that the 

combination of cold-water temperature accompanied by elevated nutrients and lack of sunshine resulted 

in higher levels of fucoxanthin and lower level of phenolic compounds during S1 (Aquino-Bolaños and 

Mercado-Silva 2004; Lüning 1990; Pavia et al. 1997).  As a result, low concentration of fucoxanthin and 

elevated polyphenols during S2, might have resulted in the lower values of TPC, FRAP and DPPH radical 

scavenging activity due to the enzymatic and non-enzymatic degradation of the compounds responsible 

for the antioxidant and phenolic activity.  

4.3.12. Water Activity, pH, TSS and Vitamin C 

The water activity of fresh kelp was found to be 0.929 ± 0.025.  Drying decreases the water 

activity of the fresh kelp below the limiting water activity (aw < 0.6), which results in reduced storage 

volume, prolonged shelf life by retarding microbial growth and preserving the chemical/physical 

properties (Gupta et al. 2011). The corresponding values of water activity of dried kelp under different 

drying conditions are listed in Table 4.6. The lowest value of aw was exhibited by freeze-dried kelp for 

both season S1 and S2, with aw of 0.154 ± 0.003 and 0.189 ± 0.013, respectively. The rest of the dried 

samples were in the range of 0.401 - 0.484 for S1 and 0.387 - 0.566 for S2. There was a significant 

difference (p < 0.05) in the aw of the sugar kelp with different drying temperature, humidity or season. 

The Pearson correlation coefficient of water activity with respect to the moisture content of the sample 

was found to be r = 0.926. This shows the aw of the dried seaweed was positively correlated to its 

moisture content, which is described appropriately by nonlinear behavior of moisture sorption isotherm at 

constant temperature (Lemus et al. 2008; Mohamed et al. 2005; Moreira et al. 2016; Moreira et al. 2017; 

Sappati et al. 2017; Vega-Gálvez et al. 2008). Overall, water activity values for the dried kelp were higher 

for S2 than for S1. Moreover, kelp dried at 50% humidity had higher water activity when compared to 

25% humidity, as higher humidity increased the equilibrium moisture content of the sugar kelp. 

Therefore, this suggests that S2 dried kelp required a longer drying time due to higher free water in late 
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season kelp. 

The pH of both fresh and dried kelp under different treatments are shown in Table 4.6. Even 

though significant differences were found between drying temperatures (p < 0.05), there were no major 

changes in the pH of dried kelp. The pH values were highest for fresh kelp followed by FD, 30 °C, 50 °C, 

70 °C and SD in decreasing order and in the range of 6.39 ± 0.02 - 6.67 ± 0.02 and 6.06 ± 0.01 - 6.67 ± 

0.16, for S1 and S2, respectively. A similar phenomenon of increasing acidity in sugar kelp was also seen 

in case of tomato and mango, where the rise in drying temperature resulted in increase of the titratable 

acidity predominantly due to the concentration of biomass due to moisture loss (Das Purkayastha et al. 

2013; Kumar and Sagar 2014). The drop in pH of the dried kelp was significantly (p < 0.05) higher for 

the kelp harvested in S2 as compared to S1. Seasonal variations in several organic acids such as amino 

acids, fatty acids, alginic acid, and uronic acid might contribute to varying degrees towards the pH of the 

sugar kelp.  

The effects of drying conditions on the total soluble solids (TSS) of the sugar kelp were 

significant (p < 0.05) (Table 4.6).  The TSS represents the total soluble fraction present in the food which 

is present mostly in the form of soluble sugars. The TSS of the kelp was found to be in the range of 27.33 

- 38.00 and 27.33 - 40.00, for S1 and S2, respectively, which is similar to the soluble dietary fibers 

present in some of the seaweeds (33-50 g (100 g)-1 dry solids) (Jiménez-Escrig and Cambrodon 1999; 

Rupérez and Saura-Calixto 2001). The presence of considerable amounts of water-soluble 

polysaccharides such as sodium alginate, laminarin, and mannitol in sugar kelp might be responsible for 

high water solubility (Zvyagintsevaa et al. 1999). The TSS of the sugar kelp showed a negative linear 

correlation with respect to its moisture content in our previous study, primarily due to the concentration of 

solids in dried kelp (Sappati et al. 2017). This relationship was also observed here as the correlation 

between the TSS and MC of the sugar kelp was r = -0.554 and r = -0.599, for S1 and S2, respectively. The 

lowest TSS values were found in the SD and 70 °C dried kelp. A faster drying rate might have caused the 

trapping of the soluble dietary fibers within the impervious layer (case-hardening), resulting in poor 
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solubility (Heldman 2013). The FD kelp showed the highest TSS values as the formation of ice crystals 

might have ruptured cell walls, which could result in leaching of the soluble dietary fiber into water. The 

kelp dried at 25% humidity exhibited TSS values higher (p < 0.05) than 50% humidity, possibly due to 

the low moisture content in the 25% humidity dried kelp. Again, it has been previously discussed in the 

WHC section that the presence of higher percent of dietary fibers in the kelp harvested in S1 might have 

resulted in significantly (p < 0.05) higher TSS as compared to S2. 

The vitamin C content was studied to determine the effect of different drying temperatures and humidity 

on vitamin C in the sugar kelp. Vitamin C levels in fresh kelp were 0.452 ± 0.009 and 0.611 ± 0.074 mg 

ascorbic acid g-1 dry solids, for S1 and S2, respectively (Table 4.6). In dried kelp, the vitamin C levels 

dropped approximately 5-10 fold as compared to fresh kelp (Table 4.6). There was no significant effect 

(p < 0.05) of the drying conditions (temperature and humidity) as well as the season. In this study, 

vitamin C content in sugar kelp was found to be much lower (0.052 mg g-1 wet sample) than in some 

other seaweeds such as Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum (0.35 mg g-1 

wet sample) (Matanjun et al. 2009). 
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Table 4.6. Physico-chemical properties (Water Activity, pH, TSS and Vitamin C) of sugar kelp harvested in season S1 (early May) and S2 (late 

June) 

 

 
Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences are measured at p < 0.05. Small letter (a, b, c, d, e): denotes 

row-wise comparison between treatments or with air drying temperatures.  

Capital letter (A, B): denotes comparison between harvesting seasons, S1 and S2.  

x/y: denotes comparison between the drying humidity 

Hum

idity 

Temp

eratur

e/Trea

tment 

Season 1 (S1) Season 2 (S2) 

aw pH TSS (°Bx) Vitamin C  

(mg ascorbic 

acid g-1 dry 

solids) 

aw pH TSS (°Bx) Vitamin C  

(mg ascorbic 

acid g-1 dry 

solids) 

25% 30°C 0.401 ± 0.002 

cxA 

6.56 ± 0.03 

cA 

37.33 ± 1.15 

cxA 

 0.120 ± 0.022 a 0.456 ± 0.004 

cxB 

6.26 ± 0.01 cB 40.00 ± 2.00 

cxB 

 0.130 ± 0.024 a 

 50°C 0.352 ± 0.005 

dxA 

6.53 ± 0.02 

cA 

36.67 ± 1.15 

cxA 

 0.100 ± 0.004 a 0.387 ± 0.001 

dxB 

6.24 ± 0.02 cB 30.00 ± 2.00 

cxB 

 0.094 ± 0.010 a 

 70°C 0.446 ± 0.001 

bxA 

6.44 ± 0.01 

dA 

27.33 ± 0.00 

dxA 

 0.097 ± 0.049 a 0.566 ± 0.002 

bxB 

6.16 ± 0.04 dB 26.00 ± 1.15 

dxB 

 0.102 ± 0.016 a 

          

50% 30°C 0.484 ± 0.002 

cyA 

6.49 ± 0.04 

cA 

35.33 ± 1.15 

cyA 

 0.094 ± 0.009 a 0.516 ± 0.000 

cyB 

6.20 ± 0.02 cB 27.33 ± 2.00 

cyB 

 0.097 ± 0.023 a 

 50°C 0.475 ± 0.001 

dyA 

6.51 ± 0.04 

cA 

38.00 ± 1.15 

cyA 

 0.119 ± 0.010 a 0.561 ± 0.002 

dyB 

6.18 ± 0.01 cB 24.67 ± 1.15 

cyB 

 0.076 ± 0.016 a 

 70°C 0.431 ± 0.001 

byA 

6.39 ± 0.02 

dA 

36.00 ± 2.00 

dyA 

 0.124 ± 0.022 a 0.533 ± 0.001 

byB 

6.12 ± 0.01 dB 26.67 ± 1.15 

dyB 

 0.097 ± 0.008 a 

          

N/A FD 0.154 ± 0.003 aA 6.67 ± 0.02 

aA 

37.33 ± 1.15 aA 0.073 ± 0.115 a 0.189 ± 0.013 

aB 

6.35 ± 0.01 aB 36.67 ± 1.15 

aB 

0.115 ± 0.010 a 

 SD 0.462 ± 0.001 bA 6.44 ± 0.01 

bA 

30.67 ± 1.15 bA 0.121 ± 0.012 a 0.530 ± 0.002 

bB 

3.06 ± 0.02 bB 31.33 ± 2.31 

bB 

0.098 ± 0.012 a 

 Fresh 0.951 ± 0.001 eA 6.52 ± 0.08 

eA 

N/A 0.452 ± 0.009 b 0.907 ± 0.001 

eB 

6.67 ± 0.16 eB N/A 0.611 ± 0.074 b 
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4.4. Conclusions 

This is the first report comparing the effects of different drying methods (freeze drying (FD), sun 

drying (SD) and humidity and temperature-controlled drying (25% or 50% humidity and 30 °C, 50 °C or 

70 °C) applied to sugar kelp on its physical and chemical properties. The increase in air drying 

temperature combined with low humidity increased the drying rate and decreased the total drying time. 

The final moisture content in the dried samples was less than 20% on a dry basis. As a result, the water 

activity was lower than the limiting water activity (0.6). The effects of seasonal harvesting time were very 

significant (p < 0.05) for moisture, fat, protein and carbohydrate content of the samples. In Maine, USA 

the relative increase in the availability of sunshine and water temperature in the month of June as 

compared to May resulted in a higher photosynthetic rate and accumulation of fats, carbohydrates, and 

moisture at the expense of protein in the later harvested kelp. After carbohydrates, the second most 

abundant component of the sugar kelp biomass was ash (~ 22 – 33 g (100 g)-1 dry solids). In this study, 

ash contents were significantly similar (p > 0.05) for both the seasons S1 and S2. Results indicated the 

significant effect (p < 0.05) of the drying conditions (temperature and humidity) on the water and oil 

holding capacities (WHC and OHC) of dried sugar kelp. FD kelp exhibited the highest OHC and the 

lowest WHC likely due to bursting of cells and increased porosity, whereas SD performed poorly in both 

cases due to case hardening. Temperature-wise, the samples had similar WHC and OHC, however, at the 

lower humidity of 25%, the samples exhibited higher WHC and OHC. Seasonally, low mannuronic acid 

(M) and guluronic acid (G) (M/G) ratio in the alginate fraction, high % of dietary fibers and protein 

content in the samples belonging to S1 might be the possible reasons for higher values of WHC and OHC 

in S1. Change in color, ΔE, was also significantly affected (p < 0.05) by drying conditions and found to 

be negatively correlated to TPC and FRAP.  Higher ΔE is thus an indicator of the loss of phenolic and 

antioxidant activity in the sugar kelp. Processing under any condition was found to reduce the TPC and 

FRAP values as compared to the fresh kelp. As expected, these values decreased with an increase in 

drying temperature and humidity. Also, drying below 50°C and at lower humidity were shown to be 
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preferable in terms of preserving the antioxidant and phenolic compounds as compared to FD. The pH 

and TSS values of the kelp were not affected by drying conditions and were similar to the fresh kelp. It 

can be concluded that the nutritional composition of sugar kelp is greatly affected by different drying 

methods and the harvesting period (Table 4.7). Moreover, the equipment and operating costs for freeze 

drying are higher and its drying capacity is much lower than that of customized HPD based drying 

systems. Hence an optimal drying strategy can be employed depending on economic factors and the way 

that the seaweeds will eventually be used.  
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Table 4.7. Summary of the effects of drying conditions on the physico-chemical properties of sugar kelp 

 

S1 and S2 had significant differences for every parameter in this table, and so are not shown here. The pattern of significance in the experimental design was 

identical for both seasons. Small letter (a, b, c, d, e): denotes row-wise comparison between treatments or with air drying temperatures. 

x/y: denotes comparison between the drying humidity

Drying 

condition 

Physico-Chemical Properties 

MC AC Fat Protein Carbohydrate WHC OHC ΔE TPC FRAP DPPH aw pH TSS Vit C 

FD a a a a a a a a a a a a a a a 

SD b b a a b a b b b a b b b b a 

30°C, 25% c bx a ab ab bx ax bx cx ax cx cx c  cx a 

50°C, 25% c cx a b c bx ax bx bcx ax cx dx c cx a 

70°C, 25% c dx a b d bx bx ax dx bx dx bx d  dx a 

30°C, 50% c by a ab ab by ay by cy ay cy cy c cy a 

50°C, 50% c cy a b c by ay by bcy ay cy dy c cy a 

70°C, 50% c dy a b d by by ay dy by dy by d  dy a 

Fresh d - - - - - - - e e e e e - b 
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CHAPTER 5 

THERMOPHYSICAL PROPERTIES PREDICTION OF BROWN SEAWEED (SACCHARINA 

LATISSIMA) USING ARTIFICIAL NEURAL NETWORKS (ANNs) AND EMPIRICAL MODELS 

5.1. Introduction 

Knowing the thermal properties (thermal conductivity (k), thermal diffusivity (D), specific heat 

capacity (C)) of sugar kelp is important for predicting the influence of drying rate under different drying 

conditions on the overall chemical profile affecting the nutritional, functional and bioactive properties of 

the dried seaweeds. Furthermore, this information can also help optimize the design parameters of large-

scale dryers to obtain uniform product quality. Although several research articles have reported the 

physicochemical properties of seaweeds and their variation with season and processing conditions, very 

limited information is available on the thermophysical properties of any type of seaweed based on its 

proximate constituents as compared to fruits, vegetables, and meat products. Fresh sugar kelp is a thin 

leafy sea vegetable which can be characterized as a continuous material with low porosity. Moreover, the 

glass transition temperature (Tg) of the kelp while air drying is always lower than the air temperature 

(Sappati et al. 2017). Consequently, the volume shrinkage during drying can be completely attributed to 

the volume lost due to moisture removal without creating any void space for air as the whole process of 

drying occurs completely in the rubbery phase above its Tg. However continuous monitoring of 

thermophysical properties while drying sugar kelp using dual needle probe can be experimentally 

challenging due to following reasons: 1) Due to its thin structure multiple blades of kelp need to be 

stacked along the heating needle 2) While drying, sugar kelp blade undergoes irregular shrinkage and 

might create inconsistent contact surface with the heating needle, and 3) Dried kelp becomes brittle and 

might break while stacking along the heating needle. Therefore, the granulated powder of kelp can be 

rehydrated to different moisture contents and packed in a cylindrical tube to measure the thermophysical 

properties of sugar kelp with respect to its moisture content, temperature, and porosity. This study has 
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been done on a variety of brown seaweed, sugar kelp (Saccharina latissima) to evaluate the effect of the 

moisture content and the temperature of the sample on its thermophysical properties.  

Artificial neural networks (ANN), are models designed to function as a biological human brain, 

based on a progressive learning system. An ANN consists of a complex network of artificial neurons that 

perform in a function identical to biological neurons. The artificial neurons in one layer receive the input 

information and pass the activation value, calculated by subtracting the threshold value (bias) from the 

weighted input, through an activation function to the neurons connected in the next layer. The network 

training algorithm establishes a non-linear relationship between the input and output by adjusting the 

network weights and the threshold (bias) in order to minimize the error between the predicted value and 

training data set. Correspondingly, an ANN is capable of modeling complex nonlinear relationships due 

to its excellent fault tolerance, self-learning ability, and high computational capability as compared to 

traditional regression approaches based on individual food constituents. In recent years, ANNs have been 

applied across a wide range of problems in food science such as modeling microbial growth for food 

safety, interpreting spectroscopic data, process control and simulation, machine perception (electronic 

nose) and predicting physical, chemical, thermal and functional properties of food products during 

processing and storage (Hua et al. 2011; Huang et al. 2007; Topuz 2010).  

The objectives of this study were: (1) to evaluate the thermophysical properties (thermal 

conductivity (k), thermal diffusivity (D), bulk density (ρ) and specific heat capacity (C) of sugar kelp 

considering porosity with respect to its moisture content and temperature, and (2) To compare the 

experimental thermophysical data with the Choi and Okos empirical model and the ANN model.  The 

results from this study will help in optimizing the design parameters of large-scale dryers focused on 

clean, energy-efficient and closed drying systems for producing uniform and high-value products for 

consumers. 
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5.2. Materials and Methods 

5.2.1. Sample Preparation 

Fresh sugar kelp (Saccharina latissima) grown in Damariscotta bay, Maine (43°56'15.4"N; 

69°34'53.0"W), was donated by Maine Fresh Sea Farms, Walpole, ME, USA and shipped to the 

University of Maine at the end of June 2017. Holdfasts were removed and the blades along with the stipes 

were washed under running water to remove any biofouling and surface salts.  Fresh sugar kelp was then 

freeze-dried for 4 h at each temperature of -20 ºC, -10 ºC, 0 ºC, 10 ºC and 25 ºC using a freeze dryer 

(Virtis Ultra 35 EL, SP scientific, Warminster, PA, USA) with vacuum maintained at 20 Pa.  After 

drying, the sugar kelp samples were ground into a fine powder using a food grinder (Magicbullet, 

Nutribullet LLC, Pacoima, CA, USA). The powdered samples were then sifted through a brass, multilevel 

sifter, and particles < 0.5 mm were kept in brown Nalgene bottles. These bottles were stored at room 

temperature (~22 ºC) in cardboard boxes to avoid exposure to light until further analysis.  

5.2.2. Proximate Analysis 

The moisture content of the dried sugar kelp was determined gravimetrically using the AOAC 

method. Briefly, 1.0 ± 0.002 g of powdered kelp was dried in an oven (VWR, VWR International, 

Radnor, PA, USA) at 105 ºC until there is no further change in weight ± 0.001 g (AOAC 1999). Ash 

content was determined gravimetrically by heating a glass scintillation vial containing the dried seaweed 

samples (after measuring moisture content) in a muffle furnace (Thermolyne Model F-A1730, Dubuque, 

IA, USA) at 550 °C for 7 h (AOAC 1999). Total nitrogen content was determined using a dry combustion 

analyzer (TruMac CNS, LECO Corporation, MI, USA) (AOAC 1990). The total crude protein was 

calculated using an average nitrogen-to-protein conversion factor of 5.3 for sugar kelp (Schiener et al. 

2015). Crude fat/lipid content of the samples was measured using the acid hydrolysis method for seafoods 

(AOAC 2005). The total carbohydrate content was determined using the difference method (Merill and 

Watt 1973). 
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5.2.3. Thermal Properties 

Sugar kelp samples of different moisture content (0.06, 0.10, 0.30, 0.50, 0.70 and 0.90 kg H2O/ 

kg sample) were prepared by rehydrating the freeze-dried powder. Thermal conductivity (k) and thermal 

diffusivity (D) of the prepared samples were measured using a SH-1 dual needle of KD2 Pro thermal 

properties analyzer (Decagon Devices Inc., Pullman, WA, USA). The Dual-Needle sensor consists of two 

stainless steel parallel needles spaced 6 mm apart; one needle consists of a line-heating source while the 

temperature-monitoring thermocouple is enclosed in the other needle. Short duration heat pulses are 

applied to the heating needle and the temperature of the thermocouple needle is monitored during the 

heating phase and the cooling phase followed by the heating phase. The working principle of KD2 Pro is 

described using equation (5.1) for transient one-dimensional radial heat conduction equation for a long 

cylinder.  

𝑇 −  𝑇𝑖 = − 
𝑞

4𝜋𝑘
 𝐸𝑖 (

−𝑟2

4𝐷𝑡
)          (5.1) 

where T is the final temperature (°C); Ti is the initial temperature (°C); q is the heat generated in 

the heating needle per unit length (W m-1); k is the thermal conductivity of the medium (W m-1 K-1); Ei is 

the elliptic integral function; t is heating time (s); r is the radial distance between the heating and the 

temperature monitoring probe (m); and D is the thermal diffusivity of the medium (m2 s-1). Equation (1) 

can also be expressed using an infinite power series considering initial terms as below. 

𝑇 −  𝑇𝑖 ≅  
𝑞

4𝜋𝑘
 (ln(𝑡) −  𝛾 − ln (

𝑟2

4𝐷
))        (5.2) 

where γ is the Euler constant (0.5772). Sugar kelp samples were packed tightly inside the sample 

holder to avoid any air resistance during measurement and closed with a cap drilled with two holes (ϕ = 

0.813 mm) spaced 6 mm apart to insert the SH-1 dual needle. After insertion, the space between the top of 

the cap and the needle head was sealed with non-wetting clay to avoid any moisture loss while heating the 

sample. The sample holder along with the inserted needle was held at room temperature for 15 min to 
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equilibrate with the surroundings. Before measurement, the sample holder was held by a clamp stand 

inside a water bath (Julabo SW22, Allentown, PA, USA) for 15 min to equilibrate and attain the required 

temperature at which the thermal properties were measured. The readings of k and D were recorded for 

six replicates at each temperature (30, 40, 50, 60, 70 °C) and moisture content (0.06, 0.10, 0.30, 0.50, 

0.70, 0.90 kg H2O/ kg sample) of the sample. The KD2 pro sensor was calibrated with the two-hole 

Delrin block provided by the manufacturer to verify its performance, before the measurements.  

5.2.4. Particle Density, Bulk density and Porosity 

The particle density of the sugar kelp samples of moisture content 0.06g water (g sample)-1 was 

measured using liquid pycnometry (Bailey and Thomas 1912). Toluene was chosen as the working liquid 

due to its non-wettability, high boiling point and low specific gravity (Mohsenin 1986). In brief, the 

empty weight of the pycnometer was recorded along with its top head. After placing ~ 2 g sample in the 

glass flask of the pycnometer, toluene was poured in and stirred to remove the trapped air. The top head 

of the glass pycnometer was closed by the glass stopper with a capillary hole releasing the excess toluene. 

The particle density of the sample was calculated using formula (5.3).  

ρ𝑠 =  
𝑊𝑆  − 𝑊𝐸 

(𝑉𝑃 − (
𝑊𝑆𝑇  − 𝑊𝑆 

𝜌𝑇 
))

           (5.3) 

where, ρs is the  particle density of the sample (kg m-3) of moisture content 0.06 kg H2O/ kg 

sample, WS is the initial weight of the sample and the pycnometer together (kg), WE is the weight of 

empty pycnometer (kg), VP is the total volume of the empty pycnometer (m3), WST is the initial weight of 

the sample plus poured toluene and the pycnometer together (kg) and ρT is the density of toluene at room 

temperature ~ 22 °C (867 kg m-3).  

The bulk density (ρT) of sugar kelp samples of moisture content (0.06, 0.10, 0.30, 0.50, 0.70, 0.90 

g water (g sample)-1) was measured by packing tightly in a glass cuvette of known volume. The porosity 
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(φ) of the samples was calculated assuming no excess volume due to interaction between added 

components and negligible air weight using formula (4). 

𝜑 =
(𝑉𝐶− 

𝑀𝑆
ρ𝑆

− 
𝑀𝑊
ρ𝑊

)

(𝑉𝐶)
             (5.4) 

Where VC is the total volume of the glass cuvette, MS is the mass of the dry seaweed of moisture 

content 0.06 g water (g sample)-1, ρs is the particle density of the sample (kg m-3) of moisture content 0.06 

g water (g sample)-1, MW is the amount of water added to bring the final moisture content in the sample, 

ρW is the density of water at room temperature ~ 22 °C (1000 kg m-3).  

5.2.5. Specific Heat 

The specific heat capacity of the sugar kelp samples was calculated indirectly from the previously 

determined values of k, D and the ρT using the relationship (5). 

 C =  
𝑘

𝐷𝜌𝑇 
          (5.5) 

Where C is specific heat (J kg-1K-1); k is thermal conductivity (W m-1 K-1); ρT is bulk density (kg 

m-3); D is thermal diffusivity (m2 s-1) of the samples. 

5.2.6. Empirical Models 

The thermophysical properties were estimated by a predictive model approach based on the 

proximate content of the sugar kelp samples (Table 5.1) (Choi and Okos 1986). The empirical approach 

is easy to compute based on the proximate composition of the food samples. However, the major 

disadvantage of using the empirical model in estimating the thermal properties of sugar kelp is that these 

models were developed for specific land-based foods by studying the thermal properties of their 

proximate composition. It also does not provide necessary information regarding the geometric 



97 
 

arrangement of the major components of the food (perpendicular, parallel and dispersed), and it is very 

food-specific. 

Table 5.1. Thermophysical properties calculated using Choi and Okos (1986) model based on the 

proximate content of food 

Thermophysical 

Parameter 

Equation 

Thermal Conductivity     

(W m-1 °C -1) 

k = (0.57109 + 0.001762T – 6.7036 x 10-6T2) Xw + (0.18071 – 0.0027604T – 

1.7749 x 10-7T2) Xf + (0.17881 + 0.001958T – 2.7178 x 10-6T2) Xp + 

(0.20141 + 0.0013874T – 4.3312 x 10-6T2) Xc   + (0.32961 + 0.001401T – 

2.9069 x 10-6T2) Xa  

  

Specific Heat Capacity      

(J kg-1 °C-1) 

C = (4176.2 – 0.0909T + 0.0054T2) Xw + (1984.2 + 1.4373T – 0.0048T2) Xf  

+ (2008.2 +1.2089T – 0.0013T2) Xp + (1548.8 + 1.9625T – 0.00594T2) Xc  

+ (1092.6 + 1.8896T – 0.00368T2) Xa  

  

Density (kg m-3) ρ = (997.18 + 0.00314T – 0.00375T2) Xw + (925.59 – 0.41757T) Xf  

+ (1329.9– 0.5184T) Xp + (1599.1 – 0.36589T) Xc  

+ (2423.8 – 0.28063T) Xa  

  
Where Xi are the respective volume fractions of water, fats, protein, carbohydrate and ash present in each sample. T 

(°C) is the temperature of the sample. Thermal diffusivity of the samples is calculated using formula (5).  

5.2.7. Artificial Neural Network (ANN) Model 

The thermal properties of sugar kelp samples were fit into a two-layer feed-forward artificial 

neural network (ANN) programmed in MATLAB, 2017. In ANN, the processing of information occurs 

through multiple processing units called neurons. Each input parameter (I) passed through the neurons is 

multiplied by associated weights (W) of each neural connection to compute the net weighted input, 

followed by the addition of network bias (B). Subsequently, the output (O) of each neuron is calculated 

by applying a linear or non-linear transfer function (f) on its net weighted input. In this network, a 

sigmoid function was used for hidden layer neurons and a linear function was used in output layer 

neurons for function estimation. The network was trained with supervised Levenberg-Marquardt 

backpropagation algorithm. In this algorithm, the initial output parameter is computed by assigning 

random weights to each connection. Afterward, the network output is compared with the required target 

selected in the training dataset and the difference between target and output is propagated back to the 
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network in the form of mean square error (MSE). Consequently, the weights are adjusted until the 

produced output is close to the target by minimizing the MSE over the next iterations. The Levenberg-

Marquardt method solves nonlinear least-squares between the function and the measured data points by 

combining two minimization methods: the gradient descent method and the Gauss-Newton method. There 

are three stages involved in designing the neural network: the training stage, the validation stage, and the 

testing stage. During the training stage, the network is presented with the data for adjusting the connection 

weights according to the MSE. The validation stage is used to avoid the network overtraining or 

overfitting by measuring and simultaneously improving the network generalization. The training ceases 

when the generalization stops improving, indicated by no further increase in the MSE. The testing of the 

network is performed by presenting a completely new independent data set after the training. Finally, the 

performance of this network in estimating the required target is measured using R2 and MSE. In this 

study, 180 data points from 6 replicates at each temperature (30, 40, 50, 60, 70 °C) and moisture content 

(0.06, 0.10, 0.30, 0.50, 0.70, 0.90 g water (g sample)-) were used for prediction of thermal properties of 

sugar kelp samples. The 180 data points were split randomly for training (70% of the data points), 

validation (15% of the data points) and testing (15% of the data points) of various network architecture. 

The network performance was tested for one hidden layer of neurons comprised 4,6,8,10,12 and 14 

neurons to avoid complexity while choosing several architectural configurations. Out of 6 configurations, 

the one with minimized error parameters and higher R2 value was selected as the optimum model and 

compared with the experimental and the empirical models.  

5.2.8. Statistical Analysis 

The thermophysical properties were modeled as a function of input parameters (temperature and 

moisture content). All the quantitative results are reported as mean ± standard deviation of six replicates. 

Multi-way ANOVA was used to determine any significant effects (p ≤ 0.05) of the independent variables 

(temperature and moisture content) at an individual level and the interaction effect (double effect) on the 

response variable (thermophysical properties).  Tukey’s honest significant difference (HSD) post hoc test 
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was performed to identify any significant differences between the means of comparable treatment. 

Statistical software SAS Version 9.4 (SAS Institute, Cary, N.C, USA) was used for data analysis. 

Performance of different ANN configurations fitted to the experimental data was evaluated using the 

determination coefficient (R2), mean absolute error (MAE), mean relative error (MRE) and the standard 

error (SE) of the thermophysical properties (Sablani et al. 2002).  

5.3 Results and Discussion 

5.3.1. Proximate Analysis 

Carbohydrate content was highest (58.20 ± 0.4 g (100 g)-1 dry solids) followed by ash content 

(29.4 ± 0.2 g (100 g)-1 dry solids), crude protein (10.8 ± 0.1 g (100 g)-1 dry solids), moisture content (5.3 ± 

0.1 g (100 g)-1 dry solids) and fat (1.6 ± 0.1 g (100 g)-1 dry solids) in the freeze-dried samples. The fresh 

kelp was dried from 90 g moisture (100 g)-1 sample to 6 g (100 g)-1 sample to increase the shelf life by 

limiting the growth of bacteria, mold, yeast (Sappati et al. 2019). The composition of sugar kelp varies 

depending on several factors such as plant maturity, geographical locations, environmental conditions 

(water temperature, salinity, availability of nutrients, sunlight) and growing season (Schiener et al. 2015).  

The carbohydrates in sugar kelp exist in two forms: structural (alginates and cellulose) and storage 

(laminarin, mannitol, and fucoidan) (Schiener et al. 2015). In a previous study, the carbohydrate content 

in sugar kelp comprised more than 55 g (100 g)-1 dry solids of algal biomass (Sappati et al. 2019). After 

carbohydrates, the second most abundant component of sugar kelp biomass is ash (~ 22 – 33 g (100 g)-1 

dry solids). Besides, the average protein content and fat content in the sugar kelp ranged from 9 - 11 g 

(100 g)-1 dry solids) and 1.5 – 2 g (100 g)-1 dry solids, respectively (Sappati et al. 2019).  

5.3.2. Thermal Conductivity (k) 

Thermal conductivity (k) of the food determines the rate of heat transfer through the food during 

thermal processing. In this study, the sample temperature and moisture content had a significant effect 

(p<0.05) on the thermal conductivity of the sugar kelp samples (Table 5.3). The k for the sugar kelp was 
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in the range of 0.147 ± 0.001 – 0.626 ± 0.072 W m-1 K-1 for a temperature range of 30 - 70 °C and 

moisture content varying from 6 to 90 g water (100 g sample)-1. Balingasa and Elepaño reported the 

thermal conductivity of the red seaweed (Kappaphycus spp.) to vary from 0.221 to 0.304 W m-1 K-1 within 

a moisture content range of 90.7 to 31.9 g (100 g sample)-1, which is within the range of the values 

observed in our study (Balingasa and Elepaño 2009). Additionally, the k of sugar kelp was also 

comparable to some of the terrestrially grown foods (Table 5.2). The k of water is higher than for other 

components present in foods. Therefore, the thermal conductivity of food is highly influenced by the 

moisture content rather than the other food proximate (carbohydrates, ash, protein, fats) (Minh et al. 

1969). The obtained k of the sugar kelp samples was found to be in good agreement (R2 > 0.8) with the 

Choi and Okos proximate content-based regression model (Table 5.6). Also, the Choi and Okos model 

predicted closer but significantly (p<0.05) different values of k of sugar kelp as compared to the 

experimental values (Table 5.3). This slight difference could be because the primary constituent groups in 

seaweeds are completely different from the land-based products resulting in different k values calculated 

based on the Choi and Okos model. For instance, the major carbohydrates present in sugar kelp (alginates, 

cellulose, laminarin, mannitol, and fucoidan) are more complex polysaccharides than the ones considered 

in the Choi and Okos model (dextrose, lactose, sucrose, starch). Only the linear effects of sample 

temperature and the moisture content on the k of sugar kelp were significant (p<0.05). The interaction 

effect (moisture content X sample temperature) was found to be insignificant (p>0.05) on the k value. The 

regression model (R2 = 0.9055) developed based on the temperature and moisture content can be 

expressed as:  

k = 0.01199 + 0.003387 T + 0.004007 MC        (5.6) 

where T is the sample temperature (°C) and MC is the moisture content (g (100 g)-1 sample).  
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Table 5.2. Thermophysical properties (k, D and C) of terrestrially grown foods 

Thermophysical 

properties 

Food Temperature 

(°C) 

Moisture          

(% wet basis) 

Value Reference 

k (W m-1 K-1) Potato 20 63-83 0.541 Rao 1975; 

Puttongsiri 

et al. 2012 

Strawberry 28 87 0.462 Delgado et 

al. 1997  

Spinach 21 93 0.347 Delgado et 

al. 1997 

Rice flour 30 18 0.130 Muramatsu 

et al. 2005  

Whole milk powder 30 3.8 0.091 Muramatsu 

et al. 2005 

Veal meat 30 70 0.507 Elansari and 

Hobani 

2009 

     

D (mm2 s-1) Apple 0-30 85 0.14 Bennett et 

al. 1969  

Potato 0-70 63-83 0.13 Minh et al. 

1969  

Strawberry 5 92 0.13 Riedel 1969  

Beef chuck 40-65 66 0.12 Dickerson 

and Read 

1975  

     

C (J kg-1 °C-1) Gooseberry N.A 88 3950 USDA 1996  

 Lemon N.A 87 3950 USDA 1996  

 Strawberry N.A 88 3940 USDA 1996  

 Mango N.A 82 3740 USDA 1996  

 Veal meat N.A 76 3650 USDA 1996  
N.A Not available 
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Table 5.3. Thermal conductivity of sugar kelp measured using KD2 Pro and Choi and Okos model 

Analysis Sample 

Temperature 

Moisture Content (g water (100 g sample)-1) 

6 10 30 50 70 90 

Experimental 

Thermal 

Conductivity 

(W m-1 K-1) 

30°C 0.147 ± 0.001 

aAx 

0.175 ± 0.004 

aAx 

0.226 ± 0.009 

aBx 

0.342 ± 0.008 

aCx 

0.421 ± 0.021 

aDx 

0.473 ± 0.011 

aDx 

40°C 0.178 ± 0.005 

bAx 

0.205 ± 0.011 

bAx 

0.255 ± 0.014 

bBx 

0.374 ± 0.025 

bCx 

0.447 ± 0.025 

bDx 

0.497 ± 0.005 

bDx 

50°C 0.200 ± 0.006 

cAx 

0.219 ± 0.004 

cAx 

0.260 ± 0.011 

cBx 

0.402 ± 0.057 

cCx 

0.508 ± 0.014 

cDx 

0.519 ± 0.025 

cDx 

60°C 0.239 ± 0.016 

dAx 

0.252 ± 0.015 

dAx 

0.289 ± 0.019 

dBx 

0.444 ± 0.046 

dCx 

0.558 ± 0.048 

dDx 

0.543 ± 0.017 

dDx 

70°C 0.349 ± 0.017 

eAx 

0.284 ± 0.021 

eAx 

0.329 ± 0.026 

eBx 

0.459 ± 0.030 

eCx 

0.626 ± 0.072 

eDx 

0.580 ± 0.067 

eDx 

         

Choi and Okos 

Model Thermal 

Conductivity 

(W m-1 K-1) 

30°C 0.158 ± 0.000 

aAy 

0.165 ± 0.000 

aBy 

0.234 ± 0.000 

aCy 

0.356 ± 0.000 

aDy 

0.498 ± 0.000 

aEy 

0.562 ± 0.000 

aFy 

40°C 0.164 ± 0.000 

bAy 

0.171 ± 0.000 

bBy 

0.241 ± 0.000 

bCy 

0.366 ± 0.000 

bDy 

0.510 ± 0.000 

bEy 

0.575 ± 0.000 

bFy 

50°C 0.171 ± 0.000 

cAy 

0.177 ± 0.000 

cBy 

0.248 ± 0.000 

cCy 

0.375 ± 0.000 

cDy 

0.520 ± 0.001 

cEy 

0.589 ± 0.000 

cFy 

60°C 0.176 ± 0.000 

dAy 

0.182 ± 0.000 

dBy 

0.254 ± 0.000 

dCy 

0.384 ± 0.000 

dDy 

0.533 ± 0.000 

dEy 

0.602 ± 0.000 

dFy 

70°C 0.181 ± 0.000 

eAy 

0.187 ± 0.000 

eBy 

0.260 ± 0.000 

eCy 

0.391 ± 0.001 

eDy 

0.541 ± 0.001 

eEy 

0.611 ± 0.000 

eFy 
Results are mean ± standard deviation (n = 3) 

Small letter (a, b, c, d, e): denotes row-wise significant difference between sample temperature  

Capital letter (A, B, C, D, E, F): denotes significant difference between moisture content 

x/y: denotes comparison between the experimental and model data 
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Table 5.4. Thermal diffusivity of sugar kelp measured using KD2 Pro and Choi and Okos model 

Analysis Sample 

Temperature 

Moisture Content (g water (100 g sample)-1) 

6 10 30 50 70 90 

Experimental 

Thermal 

Diffusivity  

(mm2 s-1) 

30°C 0.244 ± 0.001 

aAx 

0.153 ± 0.018 

aBx 

0.135 ± 0.006 

aCx 

0.149 ± 0.009 

aCx 

0.144 ± 0.005 

aBCx 

0.152 ± 0.006 

aBx 

40°C 0.181 ± 0.002 

aAx 

0.158 ± 0.007 

aBx 

0.141 ± 0.004 

aCx 

0.153 ± 0.006 

aCx 

0.157 ± 0.005 

aBCx 

0.156 ± 0.003 

aBx 

50°C 0.171 ± 0.012 

aAx 

0.177 ± 0.013 

aBx 

0.149 ± 0.005 

aCx 

0.154 ± 0.006 

aCx 

0.166 ± 0.015 

aBCx 

0.173 ± 0.023 

aBx 

60°C 0.198 ± 0.024 

bAx 

0.187 ± 0.015 

bBx 

0.166 ± 0.009 

bCx 

0.171 ± 0.016 

bCx 

0.175 ± 0.006 

bBCx 

0.190 ± 0.012 

bBx 

70°C 0.213 ± 0.028 

cAx 

0.208 ± 0.009 

cBx 

0.189 ± 0.031 

cCx 

0.176 ± 0.022 

cCx 

0.188 ± 0.021 

cBCx 

0.188 ± 0.021 

cBx 

        

Choi and 

Okos Model 

Thermal 

Diffusivity  

(mm2 s-1) 

30°C 0.138 ± 0.000 

aAy 

0.147 ± 0.000 

aBy 

0.162 ± 0.000 

aCy 

0.153 ± 0.000 

aDy 

0.143 ± 0.000 aEy 0.151 ± 0.000 

aFy 

40°C 0.143 ± 0.000 

bAy 

0.152 ± 0.000 

bBy 

0.167 ± 0.000 

bCy 

0.157 ± 0.000 

bDy 

0.146 ± 0.000 bEy 0.154 ± 0.000 

bFy 

50°C 0.148 ± 0.000 

cAy 

0.156 ± 0.000 

cBy 

0.171 ± 0.000 

cCy 

0.160 ± 0.000 

cDy 

0.149 ± 0.000 cEy 0.157 ± 0.000 

cFy 

60°C 0.151 ± 0.000 

dAy 

0.160 ± 0.000 

dBy 

0.175 ± 0.000 

dCy 

0.163 ± 0.000 

dDy 

0.152 ± 0.000 dEy 0.160 ± 0.000 

dFy 

70°C 0.155 ± 0.000 

eAy 

0.164 ± 0.000 

eBy 

0.178 ± 0.000 

eCy 

0.165 ± 0.000 

eDy 

0.153 ± 0.000 eEy 0.162 ± 0.000 

eFy 
Results are mean ± standard deviation (n = 3) 

Small letter (a, b, c, d, e): denotes row-wise significant difference between sample temperature  

Capital letter (A, B, C, D, E, F): denotes significant difference between moisture content 

x/y: denotes comparison between the experimental and model data 
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5.3.3. Thermal Diffusivity (D) 

Thermal diffusivity (D) is a material-specific property for describing the ability of the material to 

conduct heat energy relative to its ability to store heat energy. The D of sugar kelp was identical to red 

seaweed (Kappaphycus spp.) reported in the range of 0.089 – 0.184 mm2 s-1 (Balingasa and Elepaño 

2009). The statistical results indicated a significant effect (p<0.05) of the sample conditions (temperature 

and moisture content) on the D of sugar kelp (Table 5.4). The D was lowest for samples held at 30 °C, 40 

°C and 50 °C, and no significant difference (p>0.05) was observed between them.  Additionally, the D of 

sugar kelp was also found comparable to some of the terrestrially grown foods (Table 5.2). However, the 

obtained D of the sugar kelp samples was found to be poorly correlated (R2 < 0.8) with the Choi and Okos 

model (Table 5.6). Moreover, similar to thermal conductivity, the Choi and Okos model predicted 

significantly (p<0.05) different values of the thermal diffusivity of the sugar kelp as compared to the 

experimental values (Table 5.3). Both linear and quadratic effects of sample temperature and moisture 

content on thermal diffusivity of sugar kelp were significant (p<0.05). Also, the interaction effect 

(moisture content X sample temperature) was found significant (p<0.05) on the D value. The regression 

model (R2 = 0.4689) developed based on the temperature and moisture content can be expressed as: 

D = 0.2624 – 0.003219 T – 0.001956 MC + 3.599 x 10-5 T2 + 6.817 x 10-6 T x MC + 1.472 x 10-5 MC2 

              (5.7) 

where T is the sample temperature (°C) and MC is the moisture content (g (100 g)-1 sample).  

5.3.4. Particle Density, Bulk Density (ρT) and Porosity (φ) 

Choi and Okos proposed an empirical equation to estimate densities of the main constituents of 

food and their temperature dependence (Choi and Okos 1986). However, in this study, the material 

density was considered to be independent of the sample temperature and only dependent on the moisture 

content.  During the experiment, the sample was prepared and packed hermetically at room temperature in 

a sealed container leaving no space for thermal expansion. The particle density of 0.06 g water (g)-1 
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sample was observed to be 1566 kg m-3. The moisture content of the kelp has a significant effect (p<0.05) 

on its ρT (Table 5.5). The bulk density of the high moisture samples (0.70 and 0.90 g water (g)-1 sample) 

was close to that of water with porosity equivalent to zero. This suggests that fresh sugar kelp can be 

characterized as continuous material with very low porosity.  Zabalaga et al. reported that the porosity 

was increased as moisture content decreased during the early stage of banana drying, reaching a 

maximum value at a moisture content of 46 g water (100 g sample)-1 (Zabalaga et al. 2016). Further 

drying decreased of porosity with reduction in moisture content resulted in a decrease of porosity of 

unripe banana. As the drying proceeds, previously occupied pores by water are either replaced by air or 

are collapsed due to shrinkage. Similar behavioral trends were also reported during drying of mango, 

banana slices and pineapple (Yan et al. 2008). In the case of fresh sugar kelp, the amorphous form of 

water always stays in the rubbery state as the Tg of kelp is below the air-drying temperature and therefore 

the volume shrinkage can be contributed to the volume of the water loss without creating any void 

fractions in the dried kelp (Sappati et al. 2017). Under this assumption, the thermophysical properties of 

the continuous thin matrix of kelp while drying can be estimated indirectly from granular rehydrated kelp 

without considering the porosity. At room temperature, the bulk densities of the samples varied non-

linearly with the moisture content (Table 5.5). With the increase in the water content, the primary 

carbohydrate alginate in the presence of cations such as Ca2+ binds excess amounts of water by 

intermolecular cross-linking resulting in swelling and a decrease of density (George and Abraham 2006). 

Irrespective of the sample conditions, porosity values calculated using Choi and Okos model assuming no 

excess volume due to interaction and negligible air mass were found to be similar to the experimental 

values (Table 5.5).  
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Table 5.5. Measured bulk density, calculated porosity and the Choi and Okos model porosity of sugar 

kelp 

Moisture Content            

(g water/ 100g sample) 

Measured Bulk Density 

(kg/m3)  

Calculated Porosity Choi and Okos Model 

Porosity 

6 806.00 ± 8.31 A 0.49 ± 0.01 A 0.51 A 

10 756.23 ± 2.70 B 0.51 ± 0.00 A 0.52 A 

30 753.85 ± 11.78 B 0.45 ± 0.01 B 0.46 B 

50 896.22 ± 16.79 C 0.29 ± 0.01 C 0.29 C 

70 1022.39 ± 38.71 D 0.11 ± 0.03 D 0.10 D 

90 969.59 ± 13.55 E 0.09 ± 0.01 D 0.06 E 
Results are mean ± standard deviation (n = 6) 

Capital letter (A, B, C, D, E): denotes significant difference between moisture content 

 

 

5.3.5. Specific Heat Capacity (C) 

The C of sugar kelp was calculated indirectly from the values of k, ρ and D, and was in the range 

of 749.00 ± 5.11 – 3270.62 ± 219.35 J kg-1 °C-1 for the temperature and moisture content varying from 30 

to 70 °C and 6 to 90 g water (100 g sample)-1, respectively (Table 5.6). The C of fresh sugar kelp was 

higher than for fresh Sargassum species (Sargassum Natans) at 50 °C (Wong and Cheung 2001). 

Furthermore, the C above the freezing point of terrestrially grown foods has similar values to sugar kelp 

(Table 5.2). Both linear and quadratic effects of moisture content on C of sugar kelp were significant 

(p<0.05), whereas only the linear effect of sample temperature was significant (p<0.05) (Table 5.6). The 

interaction effect (moisture content X sample temperature) was also found significant (p<0.05). The 

regression model (R2 = 0.8829) developed based on the temperature and moisture content can be 

expressed as:  

C =  297.6 + 17.73 T + 52.94 MC – 0.1986 T x MC – 0.2352 MC2          (5.8) 

where T is the sample temperature (°C) and MC is the moisture content (g (100 g)-1 sample). The 

samples held at 30 °C and 6 g water (100 g sample)-1 exhibited the lowest C and were significantly 

(p<0.05) lower as compared to the other conditions. The specific heat capacity is the measure of the 

ability of the material to store the thermal energy. As the temperature increases, the average kinetic 
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energy of the molecules increases contributing positively towards the net internal energy and thus raises 

the specific heat of the material. The experimental values of C of the sugar kelp samples were found to be 

in good agreement (R2 = 0.758) and were significantly (p<0.05) different than the Choi and Okos model 

(Table 5.6). On the other hand, the temperature had no significant effect (p>0.05) on the C as predicted 

by Choi and Okos model possibly due to less effect of temperature on C of individual food components in 

the considered range. Water has much higher specific heat capacity as compared to its counterparts 

present in the food, possibly resulting in higher specific heat capacity in samples containing high 

moisture.  
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Table 5.6. Specific heat capacity of sugar kelp measured using KD2 Pro and Choi and Okos model 

Analysis Sample 

Temperature 

Moisture Content (g water (100 g sample)-1) 

6 10 30 50 70 90 

Experimental 

Specific heat 

capacity 

(J kg-1 °C-1) 

30°C 749.00 ± 5.11 aAx 1535.22 ± 180.33 aBx 2152.60 ± 

155.98 aCx 

 2574.05 ± 

149.43 aDx 

2863.99 ± 166.46 

aEx 

 3204.58 ± 89.72 

aEx 

40°C 1218.84 ± 23.62 

bAx 

 1720.60 ± 93.12 bBx 2343.27 ± 

231.09 bCx 

 2722.60 ± 

102.43 bDx 

 2787.38 ± 

136.51 bEx 

 3287.35 ± 94.40 

bEx 

50°C 1455.73 ± 112.73 

bAx 

 1644.04 ± 109.82 

bBx 

2254.28 ± 

146.76 bCx 

 2907.37 ± 

310.37 bDx 

3024.32 ± 301.54 

bEx 

 3136.37 ± 

401.44 bEx 

60°C 1507.96 ± 159.27 

bAx 

1783.08 ± 104.49 bBx 2253.20 ± 

247.29 bCx 

 2902.34 ± 

284.22 bDx 

 3116.27 ± 

198.23 bEx 

 2963.44 ± 

199.14 bEx 

70°C 2060.26 ± 260.60 

cAx 

 1808.95 ± 98.98 cBx 2278.42 ± 

278.73 cCx 

 2946.88 ± 

443.30 cDx 

3270.62 ± 219.35 

cEx 

3213.65 ± 418.20 

cEx 

         

Choi and Okos 

Model Specific 

heat capacity 

(J kg-1 °C-1) 

30°C 1416.77 ± 0.04 Ay  1479.11 ± 0.41 By 1908.21 ± 0.33 

Cy 

 2589.54 ± 

0.24 Dy 

 3395.76 ± 0.31 

Ey 

 3827.27 ± 0.62 

Fy 

40°C  1423.79 ± 0.09 Ay 1486.03 ± 0.19 By 1915.72 ± 0.10 

Cy 

 2599.05 ± 

0.27 Dy 

 3407.15 ± 0.27 

Ey 

 3858.52 ± 0.40 

Fy 

50°C  1432.20 ± 0.41 Ay  1493.20 ± 0.17 By 1923.51 ± 0.31 

Cy 

 2609.86 ± 

0.44 Dy 

 3419.26 ± 1.44 

Ey 

3854.21 ± 1.11 

Fy 

60°C 1438.66 ± 0.97 Ay 1500.04 ± 0.17 By 1932.81 ± 0.36 

 Cy 

 2622.52 ± 

0.27 Dy 

 3437.83 ± 0.57 

Ey 

 3874.19 ± 0.33 

Fy 

70°C  1466.09 ± 0.77 Ay 1506.35 ± 0.19 By 1941.72 ± 0.72 

Cy 

 2634.13 ± 

2.12 Dy 

 3453.10 ± 2.89 

Ey 

 3893.01 ± 0.38 

Fy 

 
Results are mean ± standard deviation (n = 3) 

Small letter (a, b, c): denotes row-wise significant difference between sample temperature 
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5.3.6. Modeling with Artificial Neural Network (ANN) 

In the current study, ANN was used as an alternate tool for estimating the thermophysical 

properties (k, D, C) of the sugar kelp based on the parameters of sample temperature and moisture 

content. After repeated network training, assessment and validation with one hidden layer of neurons 

comprised of 2, 4, 6, 8, 10, 12, 14 and 16 neurons, the model with the lowest error in terms of mean 

absolute error (MAE), mean relative error (MRE), standard error (SE) and highest R2 value was selected 

as optimum (Table 5.7). Multiple hidden layers were not considered in this study as simple ANN 

configurations are a good predictor for the input dataset with an inherent variation. The output from the 

neural network with several configurations was obtained using a second data set consisting of similar size 

(180) input data points not used in the training. The best ANN configuration with maximum performance 

included ten, six and eight neurons in a hidden layer for predicting the k, D and C, respectively. Fig. 5.1 

demonstrates an excellent correlation fit between the experimental and predicted values by the ANN 

model. The corresponding network estimated the k with 0.019 W m-1 K-1  MAE, 0.049 MRE and 0.002 W 

m-1 K-1 (R2 = 0.961), D with 0.010 mm2 s-1 MRE, 0.054 MAE and 0.001 mm2 s-1 (R2 = 0.750) and C with 

152.25 J kg-1 °C-1 MAE, 0.060 MAE and 15.29 J kg-1 °C-1 (R2 = 0.920). Also, the optimum ANN model 

predicted the thermophysical properties with a higher coefficient of determination (R2) as compared to the 

regression model and the Choi and Okos model (Table 5.7). The regression equation can be written as Y 

= B2 + LW tansig(B1 + IW (x)); where Y is the output parameter, X is the input matrix, B1 and B2 are 

bias value for layer 1 and 2 respectively, IW is the input weight matrix and LW is layer weight matrix. 

The matrix value of B1, B2, IW, and LW for the best ANN configuration to predict the thermophysical 

properties are given in Table 5.8. Lastly, the developed ANN model in this study was able to capture the 

effect of sample temperature and moisture content on the thermophysical properties of sugar kelp with 

high confidence. 
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Table 5.7. Prediction errors in the thermophysical properties with different ANN configurations and Choi 

and Okos Model 

 

Thermophysical 

Properties 

Model Neurons Performance measures 

   MAE MRE SE R2 

Thermal 

Conductivity, k 

ANN 2 0.024 0.065 0.002 0.945 

4 0.020 0.055 0.002 0.957 

6 0.019 0.049 0.002 0.960 

8 0.019 0.049 0.002 0.961 

10 0.019 0.051 0.002 0.960 

12 0.020 0.054 0.005 0.956 

14 0.023 0.060 0.002 0.935 

16 0.020 0.054 0.003 0.957 

Choi and Okos NA 0.051 0.143 0.005 0.853 

       

Thermal 

Diffusivity, D 

ANN 2 0.012 0.070 0.001 0.640 

4 0.011 0.063 0.001 0.705 

6 0.013 0.077 0.001 0.576 

8 0.012 0.069 0.001 0.599 

10 0.012 0.067 0.001 0.619 

12 0.010 0.060 0.001 0.720 

14 0.010 0.054 0.001 0.750 

16 0.010 0.056 0.001 0.749 

Choi and Okos NA 0.024 0.128 0.002 0.014 

       

Specific Heat 

Capacity, C 

ANN 2 194.232 0.092 18.550 0.884 

4 184.356 0.082 17.726 0.893 

6 156.648 0.066 15.880 0.915 

8 177.051 0.080 16.854 0.905 

10 152.255 0.065 15.291 0.920 

12 163.899 0.070 16.611 0.907 

14 176.824 0.087 16.877 0.903 

16 164.575 0.077 15.890 0.914 

Choi and Okos NA 380.167 0.172 35.235 0.758 

 
One hidden layer was considered and the neurons in that layer were listed in the table. 

MAE, MRE, SE and R2 are the mean absolute error, the mean relative error, the standard error and the coefficient of 

determination of thermophysical properties (thermal conductivity, thermal diffusivity, specific heat capacity) of 

sugar kelp. 
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Table 5.8. Regression parameters for predicting the thermophysical properties of sugar kelp with best ANN configuration  
 

Thermal Conductivity, k for 8 neurons 

IW LW B1 B2 

1.60 -5.18 1.58 -0.19 -0.05 -0.44 -0.22 -0.09 -0.15 -0.23       -7.76     1.18 

-4.60 -8.92               7.30  

6.93 -6.40               -3.22  

-0.98 -2.61               0.07  

-2.52 6.85               -4.88  

-2.45 -2.55               -2.41  

5.88 -3.41               5.31  

-1.39 -3.60               -5.01  

Thermal Diffusivity, D for 14 neurons 

-4.12 -4.43 -0.63 -0.29 -0.56 -0.34 -0.04 -0.27 -0.19 -0.15 0.15 -0.12 -0.29 -0.23 0.72 -2.93 4.92    2.30 

-4.39 2.36               4.83  

4.59 2.30               -3.98  

-3.52 2.68               2.59  

-1.39 -5.06               1.88  

-3.14 -4.04               1.27  

3.91 3.42               -0.47  

-0.65 -5.30               -0.21  

4.75 -2.16               1.50  

-3.03 4.14               -1.95  

4.75 -2.37               2.66  

-3.40 3.81               -3.86  

3.88 2.76               5.23  

1.90 4.91               6.74  

Specific Heat Capacity, C for 10 neurons 

-5.08 8.04 0.35 -0.74 0.79 -0.22 2.04 -0.17 -1.19 0.24    0.24 -0.24  9.81 -0.96 

4.16 1.05               -3.64  

8.48 2.12               -7.66  

5.95 -3.42               -2.83  

0.57 3.33               4.48  

-4.93 0.26               0.80  

-1.53 1.58               3.12  

-1.09 -3.13               3.93  

0.91 5.72               0.68  

0.21 -3.98               4.00  

Where Y is the output parameter, X is the input matrix, B1 and B2 are bias value for layer 1 and 2 respectively, IW is the input weight matrix and LW is layer 

weight matrix. 
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Fig. 5.1. Correlation of experimental versus neutral network values of thermophysical properties of sugar 

kelp with training data set (a) thermal conductivity, (b) specific heat capacity, (c) thermal diffusivity. The 

best ANN configuration included eight, ten and fourteen neurons in each layer for (a) thermal 

conductivity, (b) specific heat capacity, (c) thermal diffusivity, respectively 
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Fig. 5.1 continued 
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5.4 Conclusions 

This is the first study reporting the effects of moisture content and the sample temperature of 

sugar kelp on its thermophysical properties (thermal conductivity, thermal diffusivity, material density, 

specific heat capacity). In the seaweed drying process, the thermophysical properties change continuously 

with the sample temperature and moisture content. A comparative study was performed between the 

regression analysis, Choi and Okos model and ANN model to estimate their ability to predict the 

thermophysical properties in a dynamic process of sugar kelp drying based on the sample temperature and 

moisture content. The bulk density of the kelp varied non-linearly  with moisture content, whereas k, C 

and D were in the range of 0.147 – 0.626 W m-1 K-1, 484.46 – 3954.26 J kg-1 °C-1 and 0.135 – 0.244 mm2 

s-1, respectively for a temperature range of 30 - 70 °C and moisture content varying from 6 to 90 g (100 g 

sample)-1. Choi and Okos model calculated significantly (p<0.05) different values of thermophysical 

properties of sugar kelp based on its major composition including water, fats/lipids, carbohydrate, protein, 

ash content and air fraction. Above the freezing point, in high moisture samples (> 30 g (100 g)-1 sample), 

water content significantly (p<0.05) influenced the specific heat capacity and the thermal conductivity of 

sugar kelp as compared to the other major food components. ANNs were proved to have the ability to 

learn from the training data set and model non-linear and complex relationships between inputs and 

outputs. Also, in this study, the optimum ANN model determined the thermophysical properties with less 

than 16 neurons in one hidden layer. The predicted values by the ANN model were in excellent 

correlation with the experimental values in terms of coefficient of determination (R2) as compared to the 

regression model and the Choi and Okos model with relatively low MAE, MRE, and SE. It can be 

concluded that the thermophysical properties of fresh sugar kelp are greatly influenced by the moisture 

content as compared to other food components and will not be affected by the seasonal variation in 

proximate composition. These results will help in estimating the necessary drying times for sugar kelp 

depending on the thermophysical properties and drying conditions. 
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CHAPTER 6 

MATHEMATICAL MODELING FOR PREDICTING DRYING TIME OF BROWN 

SEAWEED (SACCHARINA LATISSIMA) IN A PACKED BED HIGHLY TURBULENT 

HOT AIR CONVECTIVE DRYER 

6.1. Introduction 

For extending the shelf life of foods, water is removed through evaporation from the food product 

to the drying air. The process of drying is very energy-intensive (Sagar and Suresh 2010). Seaweeds are 

dried primarily using two methods: direct sunlight dryer and conventional hot air convective dryer. As 

seen in previous chapters, different dying methods and conditions highly influence the dried product 

quality in terms of chemical, physical, thermal and nutritional properties. Sun drying of seaweed is 

becoming more attractive in tropical and temperate zones due to its simple and low-cost design. However, 

in cold arctic zones, the use of conventional dryers is predominant. Even though the power consumption 

is relatively higher in conventional dryers, they give more control over sun drying in terms of selecting 

drying parameters and hence the final product properties.   

High rates of drying are achieved in a fluidized bed for products especially grains, seeds and light 

agricultural produce drying due to uniform heat and mass transfer across the bed. Long blades of kelp are 

hung vertically with uniform space in a convective dryer and hot air is either blown horizontally or 

vertically across the bed of kelp to produce a final dried product with desired moisture content. Sugar kelp 

is long, skinny and has a thickness less than 2 mm across its blade. It has been also observed that the 

drying of sugar kelp primarily occurs in a falling drying period due to its significantly lower thickness as 

compared to its length and width (Sappati et al. 2017). In the falling period, the surface of the product is 

not saturated and the rate of drying falls consistently over the drying period. The rate of water movement 

to the surface is determined primarily due to two physical phenomena: diffusion and capillary movement. 

The mechanism of liquid diffusion was observed during the drying process of sugar kelp as the thickness 

of sugar kelp is comparatively very low as compared to its net surface area (Sappati et al. 2017). During 
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this period, the rate of drying is governed by the rate of diffusion rather than the rate of mass transfer of 

the liquid from the surface to the surrounding gas phase. Experimental drying data are usually preferred 

over mathematical equations to predict the drying rate. However, this approach is tedious and consumes a 

lot of energy and time.  In this chapter, a mathematical model wass developed to simulate batch drying of 

vertically hanged sugar kelp in a hot air convective dryer. In the developed model the drying of material 

was considered to occur in a falling rate period and accompanied by simultaneous transfer of water vapor 

from the surface of kelp to the bulk air phase and heat transfer from the bulk air phase to the evaporating 

surface of kelp through convection. Also, the equations were derived considering no heat transfer by 

radiation from the surface of the dryer. The objectives of this study were: (1) to develop a mathematical 

model to simulate the drying process of sugar kelp hung vertically in hot air convective dryer, and (2) to 

investigate the influence of velocity, humidity and temperature of the inlet air on the drying time as 

compared to the experimental data. The results from this study will help in predicting the drying time and 

energy requirement in a packed bed setup for drying vertically hung kelp. The data can also be used to 

determine the inlet air condition for optimizing the energy consumption and the drying period for 

producing high-quality seaweed products for consumers. 

6.2 Materials and Methods 

6.2.1 Materials 

Fresh sugar kelp (Saccharina latissima) grown in Damariscotta bay, Maine (43°56'15.4"N; 

69°34'53.0"W), was donated by Maine Fresh Sea Farms, Walpole, ME, USA and shipped to the 

University of Maine at the beginning of May 2018. For this study, one batch of 28 kelp blades of 

approximately size 635 mm height, 152 mm  width and 2 mm thickness is hot-air dried at 6 different 

combination of 3 temperatures (30 °C, 50 °C, and 70 °C) and 2 relative humidities (25% and 50%) for 

estimating the drying time.  
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6.2.2 Drying Process 

The drying experiment was carried out in a hot air convective dryer of the cross-sectional area of 

30 x 30 inch and bed length of 50 inches. Each sugar kelp blade wass weighed initially and hung 

uniformly along the four rows and seven columns in the dryer. The air velocity inside the dryer wass 

maintained at 1 m/s using the butterfly valve at the exhaust. The temperature and humidity of the inlet and 

outlet air were constantly measured at an interval of 20 s during the entire drying process using datalogger 

thermocouple (EL-USB-2 Lascar Humidity and Temperature USB Logger, LASCAR Electronics Inc., 

PA, USA).  A total of nine data loggers were placed along the bed length of the dryer, three each on the 

inlet, mid-region and outlet.  A schematic diagram of the drying setup is shown in Fig. 6.1. Initial and 

final moisture content of the samples was measured in triplicate according to the AOAC method (AOAC 

1999). 

Fig 6.1. 2D representation of the drying cabinet  
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6.2.3 Mathematical Model 

An adiabatic drying system was assumed with no heat transfer between the drying chamber and 

the surrounding air.  The inlet air is entering at a temperature of T1 and humidity of H1 and leaves the bed 

with a temperature of T2 and humidity of H2. Hence, both the temperature and humidity will vary across 

the bed length. Now assuming a small cross-section of length dZ along the bed and balancing differential 

heat dQ across this small section, 

𝑑𝑄 =  −𝐺𝐶𝑠 𝐴 𝑑𝑇           (6.1) 

Where q is the heat-transfer rate (W), Cs is the humid heat of the air-water vapor mixture and G is the 

airflow rate (kg dry air m-2 s-1) across the cross-sectional area A (m2). 

Also, over the small differential section, the convective heat transfer equation between the product and 

the air can be written as 

𝑑𝑄 = ℎ 𝑎 𝐴 𝑑𝑍 (𝑇 −  𝑇𝑤)         (6.2)  

Where h is the convective heat-transfer coefficient (W m-2 k-1), a is the ratio of the surface area of the 

solids and bed volume (m-1) and Tw is the wet-bulb temperature of the product. On equating, rearranging 

and integrating eq. (6.1) and (6.2) across the bed length from 0 to Z and the temperature from T1 to T2, 

ℎ 𝑎

𝐺 𝐶𝑠
∫ 𝑑𝑍

𝑍

0
=  − ∫

𝑑𝑇

𝑇− 𝑇𝑤

𝑇2

𝑇1
          (6.3) 

ℎ 𝑎 𝑍

𝐺 𝐶𝑠
= ln  

𝑇1− 𝑇𝑤

𝑇2− 𝑇𝑤
          (6.4) 

Where Z is the bed length (m) 

In the falling rate period, the rate of drying, R (kg H2O s-1 m-2) is given by 

𝑅 = −
𝐿𝑠

𝐴
 
𝑑𝑋

𝑑𝑡
            (6.5) 
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Where Ls is the initial dry solids present in the dryer (kg), A is the net surface area of drying (m2), dX is 

the differential change in the moisture content (kg H2O (kg dry solids)-1) and dt is a small increment in 

time (s). It has been observed the rate of drying is directly proportional to the moisture content of the 

sugar kelp (Sappati et al. 2017) and therefore R can be written as, 

𝑅 = 𝑚𝑋            (6.6) 

Where m is proportional constant. On equating, rearranging and integrating eq. (6.5) and (6.6) from initial 

to final moisture content over the period of t. 

∫ 𝑑𝑡
𝑡

0
=  −

𝐿𝑠

𝑚 𝐴
 ∫

𝑑𝑋

𝑋

𝑋𝑓

𝑋𝑖
           (6.7) 

𝑡 =
𝐿𝑠

𝑚 𝐴
 ln  

𝑋𝑖

𝑋𝑓
            (6.8) 

From eq. 6.6, m can be also written for an initial rate of drying and moisture content as 

𝑚 =
𝑅𝑖

𝑋𝑖
             (6.9) 

Where, Ri is the initial rate of drying (kg H2O s-1 m-2), Xi is the initial moisture content (kg H2O (kg dry 

solids)-1) and Xf is the final moisture content (kg H2O (kg dry solids)-1). Substituting the value of m from 

eq. 6.9 in 6.8 will result in 

𝑡 =
𝐿𝑠

𝐴
 
𝑋𝑖

𝑅𝑖
 ln  

𝑋𝑖

𝑋𝑓
           (6.10) 

At any given instance of time let’s assume initially the air is at temperature T moving across the bed of 

solids at a temperature of wet bulb Tw. 

The convective heat transfer equation between the product and the air can be written as 

𝑄 = ℎ  𝐴  (𝑇 −  𝑇𝑤)          (6.11)  
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The same amount of heat is also providing the latent heat of evaporation λw to evaporate the water from 

the surface of kelp at wet-bulb temperature Tw and the Q can also be written as 

𝑄 = 𝑅𝑖  𝜆𝑤  𝐴           (6.12) 

Equating 6.11 and 6.12 we get 

𝑄 = ℎ  𝐴  (𝑇 −  𝑇𝑤) =  𝑅𝑖  𝜆𝑤  𝐴        (6.13) 

And, 𝑅𝑖 =
ℎ (𝑇− 𝑇𝑤)

𝜆𝑤
            (6.14) 

Also, 
𝐿𝑠

𝐴
=  

𝜌𝑠

𝑎
           (6.15) 

Where ρs is the bulk density of the dry solids in the dryer. Substituting the value of Ri and Ls/A from eq. 

6.14 and 6.15 in 6.10 will give, 

𝑡 =
𝜌𝑠

𝑎
 

𝑋𝑖 𝜆𝑤

ℎ (𝑇− 𝑇𝑤)
 ln  

𝑋𝑖

𝑋𝑓
           (6.16) 

Eq. 6.16 hold only for one small section of the drying bed. As the air temperature is varied throughout the 

bed a log mean temperature difference can be used as an approximation for the whole bed in place of T - 

Tw and can be represented as 

(𝑇 −  𝑇𝑤)𝐿𝑀  =  
𝑇1− 𝑇2

ln[
𝑇1− 𝑇𝑤
𝑇2− 𝑇𝑤

]
          (6.17) 

Substituting T2 from eq. 6.4 and (T - Tw)LM from 6.17 in 6.16 will result in 

𝑡 =
𝜌𝑠 𝜆𝑤 𝑍 𝑋𝑖

𝐺 𝐶𝑠 (𝑇1− 𝑇𝑤)
  ln  

𝑋𝑖

𝑋𝑓
 [

1

1− 𝑒
−ℎ𝑎𝑍
𝐺𝐶𝑠

]        (6.18) 

Convective heat transfer coefficients can be estimated using the formula given below considering uniform 

circulation of air throughout the bed (Geankoplis, 1993) 
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ℎ = 0.214 
𝐺𝑡

0.59

𝐷𝑝
0.41   if  

𝐷𝑝𝐺𝑡

𝜇
 < 350        (6.19) 

or 

ℎ = 0.214 
𝐺𝑡

0.49

𝐷𝑝
0.51   if  

𝐷𝑝𝐺𝑡

𝜇
 > 350        (6.20) 

Where Dp is diameter in m of a sphere having the same surface area as the kelp in the bed, Gt is the total 

mass velocity entering the bed (kg h-1 m-2), and μ is the viscosity of the air (kg m-1 h-1). 

The geometry factor of bed (a), the ratio of the surface area of the solids and bed volume (m-1) can be 

calculated using 

a = 
6(1− 𝜀)

𝐷𝑝
             (6.21) 

Where ε is the void fraction of the kelp in the drying bed 

6.3 Results and Discussion 

The average weight of 28 sugar kelp blades was 94.18 ± 47.36 g. The initial run was tested with an inlet 

air temperature and relative humidity of 40 ℃ and 25 % in the drying cabinet with an air velocity of 1 

m/s. The total drying time observed under these conditions was 3 hrs. The recorded relative humidity in 

the chamber was much higher than the setpoint of 25% for the first 60 minutes of drying time indicating 

that the dryer was working at the maximum saturated condition. After 60 minutes, due to the removal of 

significant moisture from the drying sample, the attached heat pump to the convective dryer was able to 

maintain the RH of 25% (Fig. 6.2). Throughout the run, the inlet air temperature was maintained at 40 ± 2 

℃ (Fig. 6.3).  Using this given information, sample calculations for the following parameter of air and the 

products wre computed for this run from eq. 6.1-6.21.  
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Fig 6.2. Variation in the surrounding, inlet, center and outlet air relative humidity for an initial air 

temperature and relative humidity setpoint of 40 ℃ and 25 % in the drying cabinet 

  

Fig 6.3. Variation in the surrounding, inlet, center and outlet air temperature for an initial air temperature 

and relative humidity setpoint of 40 ℃ and 25 % in the drying cabinet 
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6.3.1 Inlet Air Absolute Humidity 

Saturation vapor pressure is calculated using Benten's equation (6.22) 

𝑃𝑠(𝑘𝑃𝑎) = 0.61078 𝑒
(

17.24 𝑇

𝑇+237.2
)
          (6.22) 

Where Ps (kPa) is the saturated vapor pressure; T (℃) is the air temperature. 

Therefore, the inlet air saturation vapor pressure,  

Psi (kPa) = 0.61078 𝑒
(

17.24∗40

40+237.2
)
 = 7.3501 kPa 

Now, relative humidity at any specific temperature is calculated using equation (6.23)  

𝑅𝐻 =
𝑃𝑎𝑖

𝑃𝑠𝑖
 𝑥 100          (6.23) 

Where, RH is the relative humidity; Pai (kPa) is the partial vapor pressure of the inlet air; Psi (kPa) is the 

saturation vapor pressure of the inlet air at the same temperature. 

As, inlet humidity, RHi = 25% or 0.25  

0.25 =
𝑃𝑎

𝑃𝑠𝑖
  

0.25 =
𝑃𝑎

7.3501
  

Partial vapor pressure at an inlet temperature of 40 ℃, Pa = 1.8375 kPa 

Now, the absolute humidity is given by equation (6.24) 

𝐻 (𝑘𝑔 𝑤𝑎𝑡𝑒𝑟  𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟−1) =
18.02 𝑃𝑎

28.97(𝑃𝑎𝑡𝑚− 𝑃𝑎)
       (6.24) 
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Where Pa (kPa) is the partial vapor pressure of the air; Patm (kPa) is the atmospheric pressure. 

𝐻𝑖 (𝑘𝑔 𝑤𝑎𝑡𝑒𝑟  𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟−1) =
18.02 𝑥 1.8375

28.97(101.325 −  1.8375)
 = 0.0114 

Therefore, the inlet air absolute humidity, 𝐻𝑖  = 0.0114 𝑘𝑔 𝑤𝑎𝑡𝑒𝑟  𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟−1 

6.3.2 Inlet Air Wet Bulb Temperature 

Based on the equation describing wet bulb temperature Tw as a function of relative humidity RH and the 

inlet air temperature T (Stull, 2011). 

𝑇𝑤 = 𝑇 𝑡𝑎𝑛−1(0.151977(RH +  8.313659)0.5) +  𝑡𝑎𝑛−1(𝑅𝐻 + 𝑇) −  𝑡𝑎𝑛−1(RH −  1.676331) + 

0.0391838 𝑅𝐻1.5𝑡𝑎𝑛−1(0.023101 ∗ RH) - 4.686035 

Substituting, T = 40 ℃ and RH = 25% 

We obtain, wet bulb temperature of the inlet air, Tw = 26.70 ℃ 

6.3.3 Inlet Air Humid Volume 

Now, the humid volume of the moist air is given by equation (6.25) 

𝑉𝐻  (
𝑚3 

𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟
) = (2.83 𝑥 10−3  + 4.56 𝑥 10−3 𝐻)(273.15 + 𝑇)    (6.25) 

Where VH is the humid volume, H is the absolute humidity and T is the temperature of air in ℃ 

Therefore, the humid volume of the inlet air  

𝑉𝐻  (
𝑚3 

𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟
) = (2.83 𝑥 10−3  + 4.56 𝑥 10−3𝑥 0.0032)(273.15 + 40) = 0.90 m3 (kg dry air)-1 

 

6.3.4 Inlet Air Density 

Therefore, the density of inlet air, ρ =  (
1+𝐻

𝑉𝐻
)  = (1+0.0124)/0.89 = 1.1206 (kg dry air + kg H2O) m-3 
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6.3.5 Average Humid Heat Over the Drying Bed 

The inlet air saturation vapor pressure at the wet-bulb temperature Tw, kPa  

= 𝑃𝑤(𝑘𝑃𝑎) = 0.61078 ∗ 𝑒
(

17.24∗26.70

26.70+237.2
)
 = 3.4965 kPa 

The inlet air wet bulb humidity is Hiw 

 = 𝐻𝑖𝑤  (𝑘𝑔 𝑤𝑎𝑡𝑒𝑟  𝑘𝑔 𝑑𝑟𝑦 𝑎𝑖𝑟−1) =
18.02∗3.4965

28.97(101.325− 3.4965)
 = 0.0222 

The average of the absolute humidity over the bed = (Hi + Hiw)/2 = (0.0114 + 0.0222)/2 = 0.0168 kg water 

(kg dry air)-1 

Therefore, the average humid heat over the bed Cs = (1.005 + 1.88 H) kJ (kg dry air. K)-1 = 1.005 + 1.88 x 

0.0168 = 1036.69 J kg-1 K-1  

6.3.6 Void Fraction in The Drying Cabinet 

Blade length = 25 inch = 635 mm 

Blade width = 6 inch = 152 mm 

Blade thickness = 2mm = 0.002 m 

Box dimensions = 30 x 30 x 50 inch3 = 0.7373 m3 

Therefore, single blade surface area = 2 x 25 inch x 6 inch = 300 inch2 = 0.1935 m2 

Volume of single blade = 25 inch x 6 inch x 0.002 m = 0.0001935 m3  

Void fraction, ε = 1 – (Net volume of the blades/volume of the cabinet) = 1 – (no. of blades x volume of 

the single blade/volume of the cabinet) = 1-(28 x 0.0001935/0.7374) = 0.9853 

Therefore, ε or void fraction = 0.9853 

 



126 
 

6.3.7 Superficial Velocity 

As the void fraction is almost equal to 1, we can consider the superficial velocity will be equal to the inlet 

air velocity = 1m s-1 

6.3.8 Inlet Air Mass Velocity 

Mass velocity of dry air (kg dry air s-1 m-2) = Superficial velocity x density of inlet air x mass fraction of 

dry air in the inlet stream = 1m s-1 x 1.1206 (kg dry air + kg H2O) m-3 x (
1

1+0.0114
) = 1.107 kg dry air s-1 

m-2 

6.3.9 Equivalent Diameter, Dp  

Dp is the diameter in m of a sphere having the same surface area as the particle in the bed 

Blade length = 25 inch = 635 mm 

Blade width = 6 inch = 152 mm 

Blade thickness = 2mm = 0.002 m 

Therefore, single blade surface area = 2 x 25 inch x 6 inch = 300 inch2 = 0.193548 m2 

Therefore, surface area of sphere, πDp
2 = 2 x Blade length x Blade width,  

πDp
2 = 2 x 25 inch x 6 inch 

So, Dp = 0.2482 m 

6.3.10 Geometry Factor, a 

a, net surface area of drying per unit volume of the drying cabinet, m-1 

Single blade surface area = 2 x 25 inch x 6 inch = 300 inch2 = 0.193548 m2 
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Surface area of 28 blades = 28 x 0.193548 m2 = 5.419 m2 

Volume of the drying cabinet = 30 x 30 x 50 inch3 = 0.7373 m3 

Therefore, a = 5.419/0.7373 = 7.35 m-1 

6.3.11 Reynolds Number for The Air Flow, Nre 

Average air temperature, (Ti + Tw)/2 = (40 + 26.70) = 33.35 ℃ 

Therefore, average coefficient of viscosity =1.458 𝑥 10−6𝑥 
(273.15+33.35) 1.5

(273.15+33.35+110.4)
  = 1.8766 x 10-5 Pa.s 

Gaverage over the bed = Ginlet + Ginlet x Haverage = 1.107 + 1.107 x 0.0168 = 1.1265 kg dry air s-1 m-2 

Nre = Gaverage Dp/μ = 1.1265 x 0.2482 x (1.8766 x 10-5)-1 = 14904.23 

6.3.12 Convective Heat Transfer Coefficient, h 

As, the NRe is greater than 350 

Gaverage over the bed = Ginlet + Ginlet x Haverage = 1.107 + 1.107 x 0.0168 = 1.1265 kg dry air s-1 m-2 

Therefore, h = 0.151 𝑥 
(𝐺𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 0.59

(𝐷𝑝)0.41   = 35.95 W m-1 K-1 

6.3.13 Latent Heat at The Wet Bulb Temperature λw 

λw  = e
√(64.87678+11.76476 [0.35 ln (

1

Tr
)− 11.94431(

1

Tr
)

2
+6.29015(

1

Tr
)

3
−0.99893 (

1

Tr
)

4
])

 

Tr is the reduced temperature and given by  Tw  =
𝑇+273.15

647.096
 

Therefore, at Tw (26.70 ℃), Tr = (273.15+26.70 ℃)/ 647.096 = 0.4633 

Substituting Tr = 0.4633 in above equation we obtain, λw = 2551479.32 J kg-1 
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6.3.14 Drying Time, t 

On substituting all the variables in eq. 6.18, the calculated and experimental drying time was 3.13 hrs.  

and 3 hrs., respectively. This shows the developed model based on the assumption of drying kelp in a 

highly turbulent porous bed gives significantly closer values to the experimental values. The calculated 

values of the drying air and product parameters for different sets of inlet air temperature and relative 

humidity using the model are given in Table 6.1.  

Table 6.1. The calculated drying vs the experimental drying for different inlet air temperature and 

humidity 

Inlet air 

temperature, Ti  

Inlet air relative 

humidity, Hi   

No. of kelp 

blades 

Calculated drying 

time (hrs.) 

Experimental 

drying time (hrs.) 

40 ℃ 25% 28 3.13 3 

 50% 28 4.98 N.A 

70 ℃ 25% 28 1.19 N.A 

 50% 28 2.44 N.A 

 

N.A = Not Available 

 

Sugar kelp was dried at an air velocity of 1m s-1 from an initial moisture content of 92 kg water (100 kg sample)-1 to 

final moisture content of 10 kg water (100 kg sample)-1  
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6.4 Conclusions 

Working and maintaining very low humidity conditions in big drying chambers is challenging due to the 

regular opening and closing of drying cabinet doors while taking sample measurements. For an initial run, 

the experiment conducted at an inlet air condition of 40 ℃ temperature and relative humidity of 25%, the 

developed model predicted similar drying time as compared to the experimental value. The rate of 

moisture removal from the kelp was assumed to be directly proportional to the moisture content of the 

drying kelp based on the premise that drying of the thin layer of kelp is characterized by a falling rate 

period. More experiments are required to validate the model for its possible application in high turbulence 

porous bed drying with well mixing of solids irrespective of the particle size. The successfully validated 

model can also be used in optimizing the power consumption in the air blower and heating unit of the 

dryer based on the calculated drying time.  

 

 

 

 

 

 

 

 

 



130 
 

 

CHAPTER 7 

OVERALL CONCLUSIONS AND RECOMMENDATIONS 

With the increasing population of the world (approximately 9 billion in 2050) and limited land holdings 

for agriculture, food security is a concern to feed all the people (Melorose et al. 2015). Moreover, in the 

past few decades, the overall food production across the globe has been stagnant in comparison to the 

exponential surge in the population (FAO 2013). The availability of high quality and nutritious foods with 

all the essential nutrients needed for people of all ages is a major challenge for the scientists and 

engineers, who endlessly investigate to develop better post-harvest processing methods and systems to 

improve shelf-life of processed food products; one option for providing nutritious products is to focus on 

marine aquaculture sources such as seaweeds. It has been observed through different studies seaweeds are 

a good source of dietary fibers, vitamins, minerals, antioxidants and bioactive compounds with medicinal 

effects.  

Sugar kelp grown in Maine, USA is available seasonally and due to its limited shelf life, fresh sugar kelp 

is processed using basic principles of food preservation including the addition of heat, removal of 

moisture, fermentation, cold and refrigerated storage.  Sun-drying is the most common process for drying 

seaweeds around the world due to less investment cost in energy. However, the product’s textural, 

chemical and nutrient properties degrade significantly as compared to the other drying methods including 

freeze-drying and hot air convective drying. In the state of Maine, the average number of sunny days as 

compared to the US average is less as a result of higher precipitation in the form of snow, rain, sleet or 

hail, especially during the harvest season of kelp from April till June. In order to increase the dried 

seaweed producing capacity in Maine, farmers must rely on convective hot air dryers. These dryers 

require high capital and energy investment and might not be an affordable option for small scale farmers 

or wild harvesters. With the help of new technologies such as solar, heat pumps, ultrasound, microwave 

and infrared, now convective dryers are capable of processing large volumes of seaweed in less time to 
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produce premium quality products. Freeze-drying or lyophilization is used mostly in the extraction of 

beneficial compounds from the dried seaweeds in small scales. Application of several novel processing 

and extraction methods along with the knowledge of moisture sorption isotherm, glass transition 

temperature and freezing point of seaweeds might help in better processing, extending storage and 

retaining nutrient profile beneficial for overall human health and sustainability. Understanding seasonal 

variation in Maine, especially the available sunshine and water temperature over the period of growth can 

help in predicting the proximate composition (fats, carbohydrates, ash content, and proteins) of the kelp 

and thus, an appropriate harvesting, processing and storage strategy can be employed depending on the 

available capital, infrastructure, energy cost and intented use of the seaweeds.  

The drying rates are usually estimated by experimental data fitted to empirical models including the 

Newton, Page and Henderson & Pabis kinetic models. The empirical approach is easy to handle compared 

to the analytical approach due to lower computational requirements and only it represents pure kinetics of 

the physical process. Also, experimentally determining the empirical relationships requires a lot of labor, 

time and the experimental data doesn’t provide necessary information regarding the process variables 

such as pressure drop, temperature, and humidity and it is applicable only for certain processing 

conditions. To understand the microscopic movement of moisture inside kelp, the flow of air inside the 

sugar kelp packed bed, determining heat and mass transfer rates involves solving complex partial 

differential equations of heat and mass transfer phenomena. In the seaweed drying process, the 

thermophysical properties change continuously with the sample temperature and moisture content. 

Limited knowledge of the change in thermal properties during drying and the requirement of high 

computational power makes solving partial differential equationapproach less feasible. A simpler 

approach for modeling drying of sugar kelp packed bed in hot air convective dryer wass developed in this 

study as a highly turbulent porous bed for predicting the drying time using inlet air parameters, loading 

conditions of kelp inside the dryer, and initial and final moisture content of the product.  The rate of water 

removal from the kelp was observed to be directly proportional to the moisture content of the drying kelp. 
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The successfully validated model can be used for optimizing the energy consumption in the heating and 

ventilation unit based on the required drying time.  

As per the UN Intergovernmental Panel on Climate Change (IPCC), the mean Earth temperature 

is predicted to rise by 3°C by the end of the present century due to a continuous rise in the concentration 

of greenhouse gases (IPCC 2007). Consequently, over the past decade, the sea surface in the Gulf of 

Maine warmed faster than 99% of the global ocean resulting in prolonged summer conditions lasting two 

months longer than in 1982 (Pershing et al. 2015). With an increase in the ambient temperature, the 

moisture diffusion coefficient or the measure of the drying kinetics will likely increase resulting in more 

moisture migration from seaweeds. In closed greenhouse drying, an increase in ambient temperature will 

have a net positive effect on the performance of the solar collector and net heat loss reduction to the 

surrounding (Piacentini and Mujumdar 2009). However, in closed heat pump-based dryers the Carnot 

efficiency will decrease with an increase in the ambient temperature. Also, for land, the global surface 

specific humidity has significantly increased at the rate of 0.11 kg kg-1 per decade between 1977 and 2003 

(Willet et al. 2008). The rise in evaporative water transpiration in the Gulf of Maine will produce more 

cloud coverage augmenting the overall solar irradiation. Together, these effects are likely to change the 

dynamics of open-air drying of seaweeds and could make the drying conditions less predictable due to an 

increase in the frequency of storms and strong winds, warmer average air and water temperatures, higher 

humidity and more cloud cover. Increased challenges will also arise from more rain events that will 

reduce the times available for drying, while greater cloud cover and higher humidity will slow down the 

rate of drying. Together with the increase in harvest volume associated with seaweed farming, these 

climate effects may increase the use of closed drying methods. This will require higher capital 

investments in drying equipment and the added expense of drying energy, which in turn will likely result 

in farmers choosing to increase the scale of their operations to justify and make use of this expanded 

infrastructure. Some of the climate changes that affect open-air drying will also have an impact on 

controlled environment drying, since the ambient air will on average become warmer and more humid, 



133 
 

which will help and impede drying, respectively. Investigations carried out through the Sustainable 

Ecological Aquaculture Network (SEANET) project at the University of Maine  have shown that 

controlled environment drying can improve the predictability of drying dynamics and preservation of 

bioactive components in sea vegetables (Sappati et al. 2017, 2019). To reduce the carbon footprint of the 

conventional fossil fuel-based dryers, new solar dryers with non-concentrating or concentrating collectors 

need to be backed up for additional heating using latent heat phase change materials, photovoltaics, wind 

energy, or other renewables sources.   

A search for alternative renewable energy and the development of its application for energy-

efficient uses are on the rise. One such constant source of renewable energy is the ground source heat 

pump (GSHP). It relies on indirect heating of earth crust by the constant source of solar energy. Heat 

transfers from the surface of the earth to the lower levels through conduction and is stored in the available 

groundwater. Water having high specific heat capacity acts as good heat storage and maintains at a near-

constant temperature even though the air temperature varies significantly throughout the year.  This 

available energy can be used for heating, cooling and supplying hot water without relying on the burning 

of fossil fuels. The ground source heat pump (GSHP) is a system that uses the groundwater as a heat sink 

or heat source for operating  refrigeration cycles used for either heating or cooling the surrounding space. 

Its indirect dependence on solar energy makes it a more reliable and feasible option for heating in very 

cold places (Maine, US) where the availability of solar energy is uncertain. The variation in groundwater 

temperature in Maine is very low  (~7-10 oC) as compared to the variation in the ambient air temperature  

(~-20 to 30 oC). These conditions are suitable for the application of GSHP for providing heating during 

cold winters and cooling during summers. The US Environmental Protection Agency (EPA) and the 

Department of Energy (DOE) have done economic and energy analysis and concluded that the geothermal 

heat pumps are the most environmentally friendly and highly cost-efficient for heating and cooling the 

surrounding space.   
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In general, ground source heat pumps (GSHP) comprise two loops; the first is a refrigerant loop 

and the second is the groundwater loop. The refrigerant is a fluid which boils at very low temperature and 

has a high latent heat of evaporation for high absorption of heat at low temperatures. The refrigerant loop 

comprises four pieces of equipment (evaporator, compressor, condenser and expansion valve). In the 

evaporator, the refrigerant enters as liquid and starts absorbing latent heat from the surrounding air and 

changes its phase to gas. The surrounding air is cooled below its dew point for condensing the dew in the 

surrounding air, resulting in separating the moisture from the surrounding air. This method will be useful 

in generating de-humidified air, which can be used for low-temperature drying of heat-sensitive food 

materials.  The hot refrigerant after the compression stage is cooled using the groundwater pumped in the 

second loop.  

GSHP can be used to generate cold dehumidified air, which can be further heated by the 

superheated refrigerant after the compression stage through the heat exchanger. This hot dehumidified air 

can be used for the low-temperature drying of the seaweeds for producing high quality dried seaweed and 

will be helpful in boosting the Maine economy in an eco-friendly way. Also, to increase the productivity 

of the seaweed farmers in Maine, the whole process of harvesting and processing needs to be mechanized 

to reduce the physical labor and time involved. Currently, all the harvested sugar kelp is hung manually 

on the vertical lines in a drying chamber. Mechanizing this one aspect of the whole process of growing, 

harvesting and drying can certainly increase the overall productivity by decreasing the run time.  

On the other hand, overconsumption of sugar kelp can also cause serious health concerns due to 

elevated levels of iodine, inducing either hyper or hypothyroidism and a substantial risk of thyroid cancer 

(Miyai et al. 2008; Teas et al. 2004). The presence of the inorganic form of arsenic in food can also have a 

carcinogenic effect leading to a higher incidence of skin, lung and urinary tract cancer (Wells et al. 2016; 

IARC 2012). However, aquatic life such as fish, crustaceans, mollusks and algae, detoxifies the inorganic 

arsenic by converting it to nontoxic organic forms such as arsenobetaine, arsenosugars and 

arsenophospholipids (Garcia-Salgado et al. 2012; Molin et al. 2015). Several researchers have conducted 
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studies on the bioaccumulation of heavy metals in the commercially available and processed dried 

seaweed products (Almeda et al., 2006; Besada et al., 2009) and found their concentration is less than the 

toxic limits. However, some brown seaweeds such as Laminaria digitata (Hansen et al. 2003) and 

Laminaria hyperborean (Taylor and Jackson 2016) tend to accumulate higher amount of the inorganic 

form of arsenic. Especially Sargassum fusiforme, commonly known as hijikia, contains levels of total 

arsenic and inorganic arsenic, 149 mg/kg dry solids and 117 mg/kg dry solids, respectively (Almela et al., 

2006) far exceeding thelimit of 3 mg/kg dry solids or less by the French, Canadian, UK and US 

regulatory limits for food products (CFIA 2012; UK FSA 2016). It has been shown that the concentration 

of iodine and arsenic in the seaweed can be reduced considerably by cooking or rehydrating in boiling 

water (Ichikawa et al. 2006; Nitschke and Stengel, 2016) and found no significant change in 

concentration by applying drying methods. However, more studies are required to understand and 

quantify the toxicity, bioavailability, and metabolism of these minerals derived from seaweeds in the 

human digestive system, to potentially act as a supplemental source of essential macro and trace minerals. 

Sixty-five percent of the total estuaries present in the contiguous US arebe moderately to severely 

degraded in terms of water quality and coastal ecosystems due to excess nutrient input from fertilizer 

runoff. Studies using model projects have shown promising results in reclaiming these estuaries by 

removing excess nutrients using bivalve aquaculture. These projects have also demonstrated that bivalve 

aquaculture requires less investment as compared to traditional nutrient-reduction methods including 

wastewater treatment improvements and best agricultural management practices. However, with the rise 

in ocean temperature and solubility of carbon dioxide, lowering of the seawater pH (ocean acidification) 

may prevent shell formation in bivalves resulting in lower yield and making it a less commercially viable 

option. The excess nutrient load in the form of nitrogen and phosphorus might be reduced by seaweeds, 

especially green seaweeds, due to their high nutrient tolerance. However, seaweeds harvested from 

eutrophic zones can possess food safety issues and might not be appealing to the consumers. Microalgae 

have been identified as a future source of producing biofuels due to theirits high lipid content as 
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compared to macroalgae. Converting green seaweeds grown in eutrophic zones into biofuels as compared 

to the other groups may provide a possible solution for producing alternative fuel options and restoring 

the native ecosystem in these dead zones. The process of producing biofuels is not yet profitable and 

commercially viable due to high energy/cost as compared to the conventional nonrenewable fuels. 

Alternatively, the seaweeds grown can also be utilized as animal feeds. A large number of studies have 

shown algal supplementation in the diets of aquaculture and land-based animals improved the animal 

health and quality of the finished products.  

With reference to drying seaweeds, especially sugar kelp in Maine, seaweed farmers need to 

establish or identify a potential market and understand their customer behavior related to seaweed usage. 

Currently, several seaweed products are being consumed including extracts for cosmetics, animal feed, 

fertilizers, and human food (seaweed chips, food ingredients, dried sheets, flavor enhancers). This 

provides a huge opportunity for seaweed farmers in Maine to benefit economically and establish a 

sustainable seaweed industry. At present, sugar kelp is grown in aquaculture systems in Maine for the past 

seven years and the involved method of producing fully grown kelp from reproductive propagules is well 

understood. However, this study was done to provide the required information to seaweed farmers on the 

post-harvesting practices, especially drying and storage inputs to extend the shelf life of sugar kelp. Apart 

from drying, seaweed farmers can also look for other methods to process fresh seaweed including 

blanching, blanch freezing, and fermentation to produce different varieties of products. However, these 

processing methods further require additional infrastructure, energy inputs, and an in-depth understanding 

of the processing effects for producing high-quality finished products for consumers.  

Conducting various scientific experiments and making a final conclusion based on the 

observation throughout this study has certain limitations. Sampling location was limited to one seaweed 

farm in Damariscotta bay, Maine to avoid the interference of geographical factors such as water 

temperature, available sunshine, and nutrient flux. In order to increase the accuracy of the study and make 

robust conclusions in future more sampling location and frequency over the harvesting period are needed. 
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This study can be further improved by quantifying specific minerals, amino acids, and fatty acids to better 

understand the impact of processing on the qualitative aspect of the final product.  Scanning electron 

microscopy can also be used as an additional tool to assess the microscopic structural changes during 

drying processes under different conditions. Overall, seaweed farmers in Maine may rely on the results 

from this study to make decisions involving suitable harvesting period, post-harvest processing methods, 

and storage conditions to prolong the shelf life of sugar kelp for various applications and also extrapolate 

the same knowledge for other applicable seaweeds as well.  
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