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Over the past several decades, the Gulf of Maine (GOM) has experienced significant socio-ecological 

change. Extreme climatic variation increases in human population, and visitation of coastal areas have 

significantly impacted coastal ocean health and redefined multispecies ecologies. While pinniped 

populations in the Northeast United States have generally grown following federal protection, they have 

also experienced multiple mortality events over the past two decades. Long-term datasets from marine 

mammal stranding networks represent a valuable resource for investigating trends in marine mammal 

health during this period of change. Here, I evaluated potential drivers of marine mammal strandings 

using data collected from stranded harbor (Phoca vitulina), harp (Pagophilus groenlandicus) and gray 

(Halichoerus grypus) seals from 2002 to 2017 in Massachusetts, New Hampshire and Maine. I tested for 

spatio-temporal correlations between stranding density and potential social (e.g., population density) 

and environmental (e.g., sea surface temperature, North Atlantic Oscillation, snowfall and sea ice 

extent) factors. Our models reveal significant effects of location and human population density on 

stranding rates across species—signifying that, even after correcting for reporting effort, pinnipeds are 

more likely to strand near more densely populated human epicenters in the GOM—as well as species-



 

  

specific relationships with some environmental factors. These analyses increase our understanding of 

the circumstances that lead pinnipeds to strand in the Gulf of Maine and provide context within which 

these species may serve as sentinels of coastal ocean health.
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INTRODUCTION 

Pinniped abundance and distribution are influenced by a variety of human-related and 

environmental factors; however, accurately describing these trends can be difficult, costly and 

time consuming as these species spend much of their time at sea (Meager & Sumpton, 2016). 

Long-term data collected by marine mammal stranding response programs can be leveraged to 

help address these knowledge gaps. Stranding data can offer demographic (Mannocci et al., 

2012) and species diversity information (Pyenson, 2011) that is often lacking in landscape 

ecology studies1, thereby enriching our understanding of both species abundance and 

distribution as they vary over time and space. Spatio-temporal patterns of strandings can also 

provide valuable insight into the varied and interacting factors that influence when, where and 

why marine mammals strand.  

This type of information can be valuable to agencies involved in marine mammal 

management and conservation, as a means to anticipate shifts in marine mammal populations 

(Laidre et al., 2015), whether driven by human causes, environmental change, or a combination 

of the two. Climate change related range shifts have been observed in many marine mammal 

populations (Clarke et al., 2013; Hamilton, Lydersen, Ims, & Kovacs, 2015; Ijsseldijk et al., 2018), 

and it is predicted that as the climate progressively changes, these influences will be more 

widespread. Marine mammals are widely recognized as indicator species for ocean—and 

therefore global—health (Simeone, Gulland, Norris, & Rowles, 2015). They are considered 

sentinel organisms because they have long life spans, feed at high trophic levels, have extensive 

                                                
1 Studies in landscape ecology focus on the patterns and interactions between ecosystems within a region of 
interest, as opposed to individual species or ecological processes.   
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fat stores and they accumulate anthropogenic toxins (Reddy, Dierauf, & Gulland, 2001). They 

are also conspicuous (generally), and hold charismatic value to humans;  therefore, they are 

more likely to be observed (Bossart, 2011). As climate-induced changes to environmental 

health continue, the potentially negative effects on marine mammals, such as epizootic disease 

outbreaks, can serve as bellwethers for not only ocean health, but also human health (Bossart, 

2011). 

Previous studies have found that stranding densities can be predicted in part by 

environmental and ecological factors.  Studies of stranded pinnipeds, as well as cetaceans, have 

found correlations of stranding density with oceanic conditions, such as sea surface 

temperature (Ijsseldijk et al., 2018; Macleod et al., 2005), sea ice extent (Johnston, Bowers, 

Friedlaender, & Lavigne, 2012; Soulen, Cammen, Schultz, & Johnston, 2013), El Niño and La 

Niña (Colegrove, Greig, & Gulland, 2005; Hanni, Long, Jones, Pyle, & Morgan, 1997), and the 

North Atlantic Oscillation (Pierce, Santos, Smeenk, Saveliev, & Zuur, 2007; Truchon et al., 2013). 

Prado et al. (2016) found that strandings along the east coast of South America were strongly 

correlated with seasonality, and they theorized this was an indirect result of fishing effort 

impacting cetaceans and post-reproductive dispersal among otariids. However, numerous 

studies have also found that variation in stranding frequency and distributions can at least 

partially be explained by reporting effort, as this can vary between years and response agencies 

(Gulland & Hall, 2007; Papastavrou, Leaper, & Lavigne, 2017; Savenkoff et al., 2007). 

Although several studies have used strandings data to analyze abundance and distribution 

of seals in the US Gulf of Maine (Harris & Gupta, 2006; McAlpine, Donald F., Stevick, Peter T., 

Murison, 1999; Soulen et al., 2013; Stevick & Fernald, 1998), few have looked at the 
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interconnectedness between anthropogenic and environmental factors influencing when and 

where seals strand.  Here, I use generalized additive mixed models (GAMMs) to analyze the 

harbor (Phoca vitulina), harp (Phoca groenlandica) and gray seal (Halichoerus grypus) stranding 

record in the Gulf of Maine from 2002-2017 to better understand how anthropogenic and 

environmental factors, specifically human population, sea surface temperature, the North 

Atlantic Oscillation, snowfall and sea ice extent in the Gulf of St. Lawrence, influence seal 

stranding patterns. Our findings, that pinniped strandings in the Northwest Atlantic are 

observed most frequently at human population epicenters, independent of reporting effect, 

and that sea surface temperature and the North Atlantic Oscillation may have some predictive 

power, provide insights that are relevant to marine mammal policy. 

Study area and species 

Bordered by Cape Cod, Massachusetts to the south and Nova Scotia, Canada to the 

north, the Gulf of Maine (GOM) is a biogeographically distinct province (Byrd et al., 2014). 

Topographical features, temperature gradients, and ocean currents that limit recruitment and 

affect mortality define marine biogeographic boundaries that are known to have long-term 

influences on phylogeography and species diversity within their environments (Wares, Gaines, 

& Cunningham, 2001). These environmental discontinuities can have long term impacts on the 

ecological landscape. In the Gulf of Maine, Georges Bank, the Scotian Shelf and the Eastern 

Maine Coastal Current create environments that are biologically rich, creating what have been, 

historically, productive fishing grounds for marine mammals and humans alike. 

Concomitant to the long-term effects of these biogeographic features are the relatively 

recent—but potentially highly impactful—effects of socio-ecological stressors, such as 
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anthropogenic climate change, which also influence the ecology in the Gulf of Maine. Sea 

surface temperature (SST) in the Gulf of Maine is increasing at one of the fastest rates globally 

(Pershing et al., 2016), and alteration of SST phenology has extended the summer season by as 

much as two days per year over the last thirty years (Thomas et al., 2017). Extent of sea ice in 

the Gulf of St. Lawrence has decreased significantly over the last several decades (Ruest et al., 

2015), directly affecting the ecological landscape in the Gulf of Maine through shifts in the 

timing of seasonal migrations. The North Atlantic Oscillation (NAO), which has been shown as a 

driver of a rapidly changing climate (Delworth et al., 2016), has undergone marked variability 

over the last 4 decades (Li, Sun, & Jin, 2013). Simultaneously, tourism in the region has 

continuously increased, particularly in the summer months, bringing waves of people to already 

contested coastal landscapes, where a legacy of fisheries and other maritime industries are in a 

state of flux. 

This region, which comprises over 4,000 kilometers of coastline, including inlets and 

islands, encompasses all breeding habitats of harbor and gray seals in US Atlantic waters (Figure 

1). The southeastern half of this region is made up of sandy coastline and substantial human 

development, whereas the northeastern half consists of mostly rocky shores and is 

considerably more rural. Dense human population centers include Boston, Massachusetts and 

Portland, Maine. Active maritime industries and tourism dominate much of the coastal 

landscape, as well as the nearshore waters. Both fisheries and tourism experience strong 

seasonal trends. For example, Acadia National Park (in Downeast Maine) brings in over 2.5 

million visitors per year, predominantly in the summer months. Cape Cod, Massachusetts 

experiences similar trends. In addition to impacting the potential levels of reporting by the 
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public, these strong fluctuations in the phenology of human activity in these environments 

directly influence the local ecology, including the local pinniped populations.  

 

Harbor seals 

Harbor seals, the most abundant pinniped species in the GOM, inhabit the coastal 

waters of Eastern Canada and Maine year-round, but their numbers generally increase from 

spring through autumn when thousands migrate to the Northeastern US (Katona, Richardson, & 

Rough, 1993). It is during this time, from mid-April to mid-June, when adult females seek out 

protected areas to give birth to their pups. As autumn approaches, the seals migrate south to 

the Cape Cod region, with hundreds to thousands going as far as North Carolina. This migration 

then reverses in spring, and the harbor seals come back to Maine, New Hampshire and Eastern 

Canada to spend the summer. During the late 1800’s and well into the 1900’s, harbor—as well 

as gray—seal bounties caused the populations to be severely depleted, and even extirpated in 
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several localities. Lelli, Harris and Aboueissa (2009) estimate that roughly 40,000 seal bounties 

were collected during the late 19th and early 20th centuries. It was not until after these bounties 

were lifted, and the US Marine Mammal Protection Act (MMPA) was passed, that these 

populations rebounded (Roman et al., 2013). 

arbor seal abundance in Maine increased by 5.5% year-1 after the passage of the MMPA, 

with the majority of that increase being pups, which increased from 6.4% of the population in 

1981 to 24.4% of the population in 2001 (Gilbert, Waring, Wynne, & Guldager, 2005). As 

abundance has increased, so have the number of ledges used during pupping season,  

signifying an expansion of distribution during the summer months. More recent 

population estimates suggest a leveling off or potential reversal of population growth trends 

from the prior decades. Estimates from an aerial survey conducted in 2012 suggested a 

decrease in seals from 99,340 in 2001 to 75,834 in 2012 (Waring, DiGiovanni Jr., Josephson, 

Wood, & Gilbert, 2015). However, variation in methods between the 2001 and 2012 surveys 

and the lack of more recent data (estimates from an aerial survey conducted in 2018 are 

pending) have led to uncertainty around the current harbor seal population status. 

Gray seals 

Gray seals have a more northern distribution than that of the harbor seals, occurring 

from Nantucket Sound, Massachusetts, as far north as northern Labrador, Canada (Katona et 

al., 1993). The western Atlantic stock breeds in eastern Canada and the northeastern United 

States from mid-December to early February. For much of the 20th century, gray seals were 

nearly extirpated from US waters, largely due to a lack of protection and aggressive bounties 

(Wood, Murray, Josephson, & Gilbert, 2020). Similarly, in Eastern Canada, gray seal populations 
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declined to fewer than 10,000 beginning in the late 1800’s and persisting until the 1960’s 

(Lavigueur & Hammill, 1993). More recently, since the cessation of bounties and 

implementation of federal protection in US waters, gray seal populations across the Northwest 

Atlantic have experienced population growth. The population in Eastern Canada reached an 

estimated size of nearly half a million individuals in 2011, and gray seal populations have grown 

substantially in abundance in the Gulf of Maine (Hayes, Josephson, Maze-Foley, & Rosel, 2017).  

In Maine, haul out sites which were once dominated by harbor seals are now shared with gray 

seals (Gilbert et al., 2005). Prior to 1993, no gray seals were observed in aerial surveys 

conducted during harbor seal pupping season, but nearly 2,000 were observed in a 2001 

survey.  

 This shift in species composition has been even more dramatic on Sable Island, Canada, 

150 miles off the coast of Nova Scotia. Here, gray seals populations have increased 

dramatically, and harbor seals have declined to become virtually absent from the colony. Sharks 

represent a source of natural mortality in this region, specifically on the smaller harbor seals; 

and the rate of shark-induced mortality increased concomitantly with the decrease in harbor 

seal abundance during the 1990’s (Lucas & Stobo, 2000). However, shark induced-mortality 

alone is not enough to explain the decrease in harbor seals in Eastern Canada. It is feasible that 

interspecific competition with gray seals (Hall & Kershaw, 2012; Johnston et al., 2015), which 

have overlapping diets, could have caused the harbor seals to decline (Pace et al., 2019; Bowen 

& McMillan, 2003). There is evidence that dispersal of gray seals from Sable Island has played a 

role in the reestablishment of US pupping sites (Pace et al., 2019), and similar instances of 

harbor seals being displaced by gray seals at beaches and ledges have been observed in the 
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Northeast US (Pace et al., 2019). However, the increasing trend of gray seals in Sable Island, as 

well as that in Cape Cod, Massachusetts, has slowed compared to a decade ago (M. O. Hammill, 

Heyer, Bowen, & Lang, 2017). 

Harp seals 

The northwest Atlantic harp seal has a complex migration and reproductive cycle. 

During winter, they breed on pack ice in the Gulf of St. Lawrence and off Labrador, in Canada. 

As the ice retreats in late spring, the seals advance northwards, arriving in Baffin Island and 

southern Greenland (Katona et al., 1993). After summer, harp seals then head south again, 

ahead of the advancing ice. Although it is beyond the range of the larger colonies, individual 

seals do stray into the Gulf of Maine, and occasionally as far south as Virginia. This population 

has been commercially harvested since the 1700’s (Sergeant, 1991), and concerns over its 

future was one of the factors that contributed to the adoption of the MMPA (Hammill et al., 

2015). The MMPA, combined with a ban on the import of pelts and hunting quotas in Canada 

(Katona et al., 1993), as well as a shift in policy and attitudes in Canada, caused their population 

to rise from a low of 1.1 million in the early 1970’s to over 7 million in the last decade (Mike O. 

Hammill et al., 2015). Before 1994, there were no confirmed harp seal sightings in the Gulf of 

Maine; however, since then, sightings have consistently increased, possibly as a result of range 

expansion or changing oceanographic conditions (Stevick & Fernald, 1998). It has been shown 

that harp seals, particularly yearlings, strand more frequently during years of decreased ice 

cover (Soulen et al., 2013). With sea ice generally breaking up earlier in the year as the global 

climate warms, pagophilic seals will increasingly spend more time at sea, and it is probable that 

they will be more frequent visitors to the Gulf of Maine. 
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Stranding data 

In the United States, a national marine mammal stranding network was formed in 1992 as 

part of the reauthorization of the US Marine Mammal Protection Act (MMPA). This Act broadly 

aims to maintain marine mammal stocks as functional elements in the ecosystem. Towards this 

aim, the Marine Mammal Health and Stranding Response Program was created to collect and 

disseminate data, correlate the health of marine mammals with environmental parameters, 

and coordinate an effective response to unusual mortality events2 (Hofman, 1987; Simeone et 

al., 2015).  In application, a major responsibility of this program is to respond to stranded 

marine mammals. Under section 401(3) of the US MMPA, marine mammals are considered 

stranded either when they are dead, or when they are alive and: a) unable to return to the 

water, b) in apparent need of medical assistance, and/or c) unable to return to their habitat. 

This policy, by prohibiting any incidental takes (“takes” are defined as: to harass, hunt, capture, 

or kill, or attempt to harass, hunt, capture, or kill any marine mammal) of marine mammals, is 

among the most sweeping environmental policies in modern American history, and resulted in 

significant increases in many marine mammal populations—including harbor, harp and gray 

seals (Roman et al., 2013). In this study, I aggregated and analyzed the stranding data of harbor, 

harp and gray seals in Maine, Massachusetts and New Hampshire from 2002-2017, to better 

understand a) their abundance and distribution over the study period and b) what, if any, 

environmental and social variables effected where and when strandings were observed. 

 

                                                
2 An Unusual Mortality Event (UME) is defined under the Marine Mammal Protection Act” as a 
stranding event that is unexpected, involves a significant die-off of any marine mammal population, and demands 
immediate response.” 
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METHODS 

Stranding data for this study were extracted by request from the Marine Mammal 

Health and Stranding Response Program’s National Stranding Database which includes 

contributions from 11 organizations in Maine, New Hampshire and Massachusetts. Contributing 

organizations included (from north to south) the College of the Atlantic’s Allied Whale, National 

Marine Fisheries Service, Maine Department of Marine Resources, Marine Mammals of Maine, 

University of New England Marine Animal Rehabilitation Center, Marine Animal Lifeline, 

Seacoast Science Center, New England Aquarium, National Aquarium in Baltimore, International 

Fund for Animal Welfare, Riverhead Foundation, and the National Aquarium in Baltimore. 

Contact details for these organizations can be found in Appendix A. 

The data that these stranding networks collect varies in both complexity and detail, the 

most basic being “Level-A Data”, a benchmark that is minimally collected for all stranding 

events. Level-A data include date, species, morphology, health/condition, physical evidence of 

‘human interaction’ and location of stranding. These data detail, to whatever extent possible, 

the circumstances surrounding the marine mammal stranding. In this study, we analyzed 9,165 

records of Level-A data from harbor, harp and gray seal strandings that occurred from 2002 to 

2017. Although previous studies have utilized this type of data, this is, to my knowledge, the 

most extensive analysis of marine mammal stranding data in the Gulf of Maine region to date. 

I conducted a hierarchical quality assessment/quality control analysis on the location 

information associated with the records, as this information was critical to our spatial analysis. 

Location information for strandings is recorded by town and county name, as well as with 

latitude and longitude coordinates. These coordinates were first used to plot all points on a 
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map using ArcGIS or Google Earth. This allowed for a visual inspection of outliers, such as points 

that were too far from the coast or located outside of the Gulf of Maine. The outliers (n = 121; 

1.4% of all strandings) were removed from our analysis. After visual analysis, I then further 

inspected a random 10% of the records from each species to ensure the coordinates matched 

the locality information provided. Of the records randomly sampled, fewer than 7% had errors 

in latitude and longitude coordinates. 

When a stranding event is entered into the National Database, an associated confidence 

code: low, medium, high or unconfirmed, is chosen based on how confident the reporter is in 

the information provided. Observations with unconfirmed confidence codes (n = 621) were not 

included in this analysis. Furthermore, any stranding listed with a body condition of 

‘mummified’ (n = 170) was not included, because the temporal scale of the analysis might not 

accurately reflect the time of death of that seal given its advanced level of decomposition. 

Finally, a small sample of harp seal strandings from Massachusetts (n = 33) were not included in 

the analysis because they were sourced as part of another study reported by a scientist carrying 

out a study on Nantucket Island, rather than by reports to the stranding networks listed above. 

After these steps, our final dataset consisted of 8,220 observations. 

Study Design 

The data were aggregated into 5 separate datasets for analysis: harbor seal adults, 

harbor seal pups, harp seal yearlings, all age classes (AAC) of harp seals and all gray seals. These 

distinctions were made to better reflect the natural history of each species and age class, with 

an aim at understanding how and when they strand, as well as how the circumstances of their 

stranding are affected by social and environmental factors. Harp seals, for example, have very 
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different seasonal and temporal migratory patterns than harbor seals, and therefore utilize the 

Gulf of Maine in different seasons and in different areas than harbor seals do. Additionally, 

these distinctions in datasets were made based on available sample sizes. Gray seals, for 

example, could not be parsed into separate datasets based on age class because there were too 

few strandings. 

My study area was parsed into 0.2° grids (Figure 2). Although a variety of grid sizes were 

initially explored (0.05°, 0.1°, 0.4°), this size was ultimately used based on knowledge of the 

daily behavior of the pinniped species focused on in this study, and the relative size of the 

inlets, bays and islands along the coastal region in our study area. All analyses were completed 

at a seasonal time scale where Winter included December, January and February; Spring 

included March, April and May; Summer included June, July and August; and finally, Fall 

included September, October and November. From 2002 to 2017 in total, our analysis included 

64 seasons for which a seal stranding could be observed in any particular grid box. Grid boxes 

were only included in the models if there was at least one stranding of that particular 

species/age class in any given season over the 16-year time period; therefore, the number and 

location of boxes differ between models. For example, when modelling gray seals, if a certain 

grid box had 2 records of strandings in Spring 2004, but no other strandings in that grid box 

over the 16-year study period, then it would receive a 2 for that box in Spring 2004, and 63 0’s 

for the rest of the seasons in that box. Alternatively, if a grid box had no recorded strandings 

over the 16-year period it was excluded from the model altogether. 
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Figure 2. Maps portraying stranding density of five pinniped species/age classes. Study region is in the Gulf of 
Maine from 2002-2017. Grid size is 0.2°. 
 

Explanatory Variables 

 Based on a combination of ecological relevance and data availability, covariate 

exploration yielded inclusion of the following in my analyses: human population density, NAO, 

SST, previous season SST, snowfall and sea ice extent (Table 1). Latitude and longitude were 

also included as covariates, and year as a random effect. Variance inflation factors were 

calculated for all covariates and indicated that correlations between covariates were not a 

cause of concern, with the exception of longitude and human population, which had a 

threshold greater than 3 (Zuur, Leno & Elphick, 2010). For this reason, longitude was not 

included in the models and, instead, human population and latitude were included as an 

interacting term. 
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Table 2.1. Explanatory variables. Environmental and social variables utilized in generalized additive mixed models, 
their source, raw geographic range and raw temporal scale. 

Variable Source Scale and Resolution (Raw Data) 

Geographic Temporal 

Environmental 

Sea surface temperature Satellite Oceanography Data 
Laboratory, University of Maine 

1.1 kilometer Daily 

Sea Ice Cover NASA Sea Ice Concentrations - 
Nimbus-7 SMMR and DMSP 
SSM/I-SSMIS Passive 
Microwave Data algorithms 

Gulf of St Lawrence Monthly  

NAO Index NOAA Climate Prediction 
Center 

North Atlantic Monthly 

Snowfall Northeast Regional Climate 
Center, Cornell University 

Variable locations Daily 

Social 

Human population density US Census Bureau Coastal towns of ME, NH, MA Annual 

 

 Human population data were procured from the US Census Department, and 

aggregated by year and by town for all towns that contained at least one stranding over the 

time series. After correcting town names that were duplicates of each other in the stranding 

database, but with minor disparities (e.g., Addison vs. Addison Town), there were 253 towns in 

Maine, 155 in Massachusetts, and 49 in New Hampshire, for a cumulative total of 457 towns in 

our dataset.  Final values used in analysis were the sum of census counts for all towns in a given 

year in a particular grid box. Where values were missing because a grid box did not contain any 

towns, an average of nearest neighbor values was used. Nearest neighbors in this case refers to 

any grid box surrounding the grid box with a missing value, or approximately a circle with a 

radius of 29km. Population values were converted to a log scale for analyses, to correct for 

skewness created by large values, such as in Boston, Massachusetts or Portland, Maine. 
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 I utilized NAO index data from the National Oceanic and Atmospheric Administration 

(NOAA), Climate Prediction Center (“Daily North Atlantic Oscillation Index,” 2002). The NAO 

index is a measure of the sea-level pressure difference in the North Atlantic Ocean between the 

Subtropical High and the Subpolar Low. A negative NAO pressure value, which represents 

relatively small differences between these two pressure gradients, is typically conducive of 

colder, wetter winters in the Northeast US. This index serves as a proxy for climatic variability 

over the entirety of the North Atlantic Ocean, and several studies have found significant 

correlations between it and marine mammal strandings (Evans et al., 2005; Truchon et al., 

2013). Furthermore, this cyclical climatic variation has been linked with recruitment of multiple 

pagophilic seal species (Ferguson, Stirling, & McLoughlin, 2005; Friedlaender, Johnston, Fink, & 

Lavigne, 2006), positioning it as an important explanatory variable for this study. The 

standardized anomalies are calculated and collected by NOAA Fisheries, and therefore no 

further manipulation of the raw data were required for our analysis other than to convert the 

monthly values into seasonal averages.  

NOAA satellite SST data were received, processed and provided by Dr. A. Thomas, 

Satellite Oceanography Data Lab, University of Maine. Observations were made daily at a 

spatial scale of 1.1km, and converted into seasonal anomalies to coincide with our study 

parameters. Nearest neighbors (average of all data points contiguous to the missing value) and 

nearest-neighbors’ neighbors (average of data points abutting nearest neighbors) were used to 

fill in missing values, when possible (e.g., missing due to cloud cover). Grid boxes for which SST 

could not be imputed in this fashion (~1% of grid boxes for the harbor seal pup and adult 

models) were excluded from the analysis so that sample sizes were equal across all models and 
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AIC values were comparable. Using a cross correlation function, I identified that the strongest 

correlation between SST and stranding density in our dataset occurred at a 4-month lag; that is, 

the probability of a stranding being observed as a function of SST was most affected by values 

four months before that stranding. For that reason, SST for the season before the observed 

stranding (“prev SST”) was also included in our models. SST has been correlated with frequency 

of marine mammal stranding in all parts of the globe and across most marine mammal taxa 

(Forcada, Trathan, Reid, & Murphy, 2005; Ijsseldijk et al., 2018; Macleod et al., 2005; Truchon et 

al., 2013). 

It has been shown that pagophilic seals occasionally consume snow, presumably for the 

sake of hydration (Schots, Bue, & Nordøy, 2017), when other forms of freshwater are scarce—

potentially situating snow as a limiting resource during harp seal migration. Snowfall data were 

collected by the Northeast Regional Climate Center of Cornell University. From raw daily 

snowfall values, I calculated cumulative monthly values in each grid box. In the event a grid box 

did not have a snowfall value, nearest neighbors and nearest-neighbors’ neighbors were used, 

as described above. These monthly cumulative totals of snowfall were then converted into 

monthly anomalies. The three-monthly anomalies in a given season were then averaged to 

create one seasonal value per grid box. 

Hammill et al. (2015) found that poor sea ice conditions result in increased harp seal 

pup mortality, particularly if a threshold level of 60% decline in sea ice cover is met. Sea ice 

coverage data used in this study were produced by the US National Sea Ice Data Center in 

Boulder, Colorado. Given the seasonality of harp seal breeding, pupping and southern 

migration, only values during the winter and spring were utilized. The sea ice coverage values 
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were derived from the Defense Meteorological Satellite Program’s Special Sensor Microwave 

Imagers (satellites F8, F11, and F13) for 2002 through 2007 and Special Sensor Microwave 

Imager Sounder (satellites F16, F17 and F18) for 2008 through 2017. Monthly mean values were 

used to create seasonal averages, resulting in a single value for ‘winter’ and a single value for 

‘spring’ which were used in the harp seal models, regardless of which grid box a stranding was 

observed in. 

Model Description 

Generalized Additive Mixed Models (GAMMs) were used to analyze the relationship 

between the frequency of strandings in a grid box (with no observations being a ‘0’, a single 

stranding in one grid box in one season being a ‘1’, and so on) in a season and the explanatory 

variables using a tweedie distribution model. A tweedie model was utilized due to its ability to 

handle a substantial number of 0’s in the data (Tweedie, 1984), as is the case in this study since 

observed strandings can be scarce, particularly in more rural areas or outside of the seals’ 

migratory seasons. GAMMs are a useful tool here because they combine the use of linear mixed 

models, which incorporate random effects, and generalized linear models, which can handle 

non-normal data (Bolker et al., 2009). Additionally, this function allows for cross validation, 

which automatically determines the optimal amount of smoothing, capturing important 

patterns in the data (Zuur et al., 2009). The full GAMM, evaluated independently for each of 

five models—harbor seal adults, harbor seal pups, harp seal yearlings, harp seal AAC, and gray 

seals—included the variables latitude, season, human population, human population:latitude, 

SST for the current and previous seasons, NAO, and a random effect for year. To account for the 

time they spend in the GOM (either due to migration patterns or pupping season), harp seal 
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models (for yearling and all age classes) and harbor seal pup models were limited to two 

seasons—winter and spring for harp seals, and spring and summer for harbor seal pups. The 

harp seal models (yearlings and AAC) also incorporated the variables snowfall and sea ice 

extent. Human population and latitude were included in all models as control variables. Human 

population in particular was used as a correction term for sighting probability (i.e., observation 

effort). All modeling was completed using the ‘mgcv’ package in R Studio version 1.2.5 (R 

Development Core Team 3.0.1., 2013). 

‘Year’ was treated as a random effect to account for the effects of episodic or sporadic 

events that could not be included in our model, such as unusual mortality events (UMEs). 2006, 

for instance, had nearly three times greater strandings than the average of all years over the 

study period. During this time, NOAA Fisheries had declared an UME for pinnipeds between 

Virginia and Maine; in total, an estimated 800 pinnipeds were identified as part of this UME. A 

similar UME occurred in 2011, affecting 784 pinnipeds in Maine, New Hampshire and 

Massachusetts. Infectious disease was determined to be the cause in both of these cases. 

Modelling within each of the five datasets was done in a stepwise fashion, beginning 

with a base model (human population:latitude, human population, latitude and year), and then 

incrementally adding the remaining explanatory variables one at a time and cumulatively until 

all combinations had been explored. “Deviance explained” (analogous to variance in a linear 

regression), adjusted R2, and Akaike Information Criterion (AIC) scores were calculated. 

Smoother estimates for the selected covariates were plotted. When the slopes were positive, 

the covariates were related positively to the dependent variables, suggesting that an increase in 

the explanatory variable correlates with an increase in stranding density. 
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RESULTS 

 From 2002 to 2017, local marine mammal stranding response networks identified and 

recorded 9,165 stranded harbor, harp and gray seals in the Gulf of Maine between 

Massachusetts and Maine. Of these 9,165 records, 8,220 were considered viable for this study 

following the quality control/quality assessment procedures described above. The majority 

(69.0%) of stranded pinnipeds in our study area were harbor seals (Table 2). The most 

commonly stranded age class per species were pups (66.0%) for harbor seals, yearlings (69.8%) 

for harp seals, and adults (31.1%) for gray seals. Males stranded more frequently than females 

in all species, particularly with the harp seals, where 47.9% were males, 27.4% were females, 

and 24.8% could not be identified. 

 

Table 3.1. Number, sex, and age class of harbor, harp and gray seal strandings. Study area is Maine, New 
Hampshire and Massachusetts from 2002 to 2017 (N=8,220). 
 

 Total strandings Sex (%/Species) Age Class (%/Species) 

Species (n) (%) Male Female Unk. sex Pup Yearling Subadult Adult Unk. age 

Harbor seal 5,666 69.0 32.2 30.5 38.2 66.0 9.4 4.7 15.1 4.8 

Harp seal 1,277 15.5 47.9 27.4 24.8 1.2 69.8 10.8 8.5 9.7 

Gray seal 1,277 15.5 41.6 32.3 26.2 24.1 17.1 20.8 31.1 9.9 

 

The frequency of gray seal strandings increased significantly over the study period, from 17 in 

2002 to 168 in 2017, whereas the frequency of harp seal strandings decreased significantly, 

from 89 in 2002 to 36 in 2017 (Figure 3). Harbor seal stranding frequency was relatively flat 

over the 16-year period, with the exception of in 2004-2006 and 2011 when a 
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disproportionately high amount stranded due to UME’s, which were declared in 2—6 and 2011. 

Harp seals also saw a spike in strandings around that time, in 2004, and saw a general decline in 

stranding frequency over the stranding period. 

 
Figure 3. Annual strandings of 3 species of seals in the Gulf of Maine from 2002 to 2017. Dashed lines represent 
the linear trend for each species. 
 

Final models explained 29.4% to 47.3% of the total deviance in stranding density, with 

gray seal models explaining the least and harp seal AAC models explaining the most (Table 3). 

The majority of this explained deviance could be attributed to the four parameters included in 

the base model for all species and age classes examined here. Total deviance explained in base 

models, which include human population, latitude, human population:latitude, and year, 

ranged from a low of 29.4% in the gray seal model to a high of 45.8% in the harp seal AAC 

model.  Year, and the interaction between human population and latitude, were statistically 
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significant predictor variables in all models. When modeled with the random effect year alone, 

deviance explained and adjusted R2 were much lower than the base model, ranging from 2.69% 

explained in the harbor seal pup model, to 15.4% in the harp seal yearling model. 

Table 3.2. Generalized Additive Mixed Model statistics for all models (harbor seal pups, harbor seal adults, gray 
seals, harp seal yearlings and harp seal all age classes [AAC]). Models included human population density (pop), 
latitude (lat), the interaction of human population density and latitude (pop:lat), sea surface temperature (sst), sea 
surface temperature for the previous season (prev sst), North Atlantic Oscillation (nao), snowfall (snow), and sea 
ice extent in the Gulf of St. Lawrence (ice). Akaike Information Criterion (AIC) scores are presented as differences 
from the lowest score within each category. Asterisks denote statistical significance (‘<0.1, *<0.05, **<0.01, 
***<0.001). Sample size (n) for each model is the product of the number of grid boxes and number of seasons. 
 
Model Adjusted R2 Deviance %  Δ  AIC 

Harbor seal - pup, n = 4464    

pop:lat***, pop, lat, year*** 0.178 33.2 269.166 

pop:lat***, pop, lat, sst**, year*** 0.299 39.7 2.873 

pop:lat***, pop, lat, prev sst**, year*** 0.299 39.7 3.129 

pop:lat***, pop, lat, nao**, year*** 0.214 35.0 202.521 

pop:lat***, pop ,lat, nao*, sst**, year*** 0.302 39.9 1.242 

pop:lat***, pop, lat, nao*, prev sst*, year*** 0.302 39.9 0 

Harbor seal - adult, n = 4864    

pop:lat***, pop, lat*, year*** 0.140 32.5 3092.914 

pop:lat***, pop, lat*, sst**, year*** 0.266 39.7 14.882 

pop:lat***, pop, lat', prev sst**, year*** 0.276 39.6 36.574 

pop:lat***, pop, lat’, nao***, year*** 0.168 34.2 2240.95 

pop:lat***, pop, lat*, nao, sst**, year*** 0.266 39.7 10.47 

pop:lat***, pop, lat', nao*, prev sst**, year*** 0.283 39.8 0 

Gray seal, n = 4992    

pop:lat***, pop, lat, year*** 0.157 29.4 0 

pop:lat***, pop, lat, sst*, year*** 0.262 37.6 3715.675 

pop:lat***, pop, lat, prev sst**, year*** 0.266 37.6 3733.675 

pop:lat***, pop, lat, nao, year*** 0.254 37.3 3592.475 

pop:lat***, pop, lat, nao, sst**, year*** 0.260 37.6 3740.135 

pop:lat***, pop lat, nao, prev sst**, year*** 0.265 37.6 3740.855 

Harp seal - yearling, n = 2304    

pop:lat***, pop*, lat*, year*** 0.362 43.9 0 
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pop:lat***, pop*, lat*, sst*, year*** 0.368 44.2 90.998 

 
Table 3.2 continued    

pop:lat***, pop, lat, prev sst**, year*** 0.361 43.9 1.966 

pop:lat***, pop', lat, nao***, year*** 0.382 45 297.742 

pop:lat***, pop', lat*, snow, year*** 0.368 44.2 71.929 

pop:lat***, pop*, lat*, ice, year*** 0.368 43.9 15.128 

pop:lat***, pop*, lat*, nao***, sst, year*** 0.385 45.2 361.886 

pop:lat*** ,pop*, lat*, nao***, sst, ice, year*** 0.385 45.1 361.619 

pop:lat***, pop', lat*, nao***, sst, snow, year*** 0.385 45.3 432.527 

pop:lat***, pop', lat*, nao*** sst, snow, ice, year*** 0.384 45.3 429.599 

pop:lat***, pop', lat*, nao***, snow, ice, year*** 0.38 45.2 377.726 

pop:lat***, pop', lat*, snow, ice, year*** 0.367 44.1 71.798 

pop:lat***, pop', lat*, sst*, snow, ice, year*** 0.372 44.4 146.746 

pop:lat***, pop', lat*, nao***, snow, ice, year*** 0.38 45.2 377.726 

pop:lat***, pop', lat*, prev sst, snow, ice, year*** 0.366 44.2 81.209 

pop:lat***, pop', lat*, nao***, prev sst, snow, ice, year*** 0.38 45.2 380.506 

Harp seal AAC, n = 2464    

pop:lat***, pop, lat**, year*** 0.405 45.8 0 

pop:lat***, pop, lat**, sst**, year*** 0.412 46.1 105.721 

pop:lat***, pop, lat, prev sst, year*** 0.403 45.9 5.894 

pop:lat***. pop, lat, nao***, year*** 0.423 47.1 475.637 

pop:lat***, pop, lat, snow, year*** 0.408 46.1 117.457 

pop:lat***, pop, lat**, ice, year*** 0.404 45.9 8.4 

pop:lat***, pop, lat**, nao***, sst, year*** 0.424 47 448.873 

pop:lat***, pop, lat**, snow, ice, year*** 0.406 46 60.538 

pop:lat***, pop, lat**, prev, snow, ice, year*** 0.405 46 66.331 

pop:lat***, pop, lat**, sst**, snow, ice, year*** 0.413 46.3 169.354 

pop:lat***, pop, lat*, nao***, sst, snow, ice, year*** 0.423 47.3 555.619 

 

Although the environmental variables often showed significant impacts on the 

probability of observing a stranded seal, their effect size was relatively small (Table 4). The 

environmental variables that increased the total deviance explained by the greatest amount 
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when added to the base model were SST and previous SST, which increased deviance by 6.5%, 

7.2% and 8.2% in the harbor seal pup, harbor seal adult and gray seal models, respectively. 

These, along with NAO in the gray seal model, which increased total deviance explained by 

7.9%, were the only environmental variables that were, perhaps, biologically relevant. 

However, NAO was not statistically significant in the gray seal models.  

In the harbor seal pup model, both SST and previous SST predicted a doubling of 

stranding density, from 0.5 to 1.0 stranding per grid box per season, when temperatures 

increased from 0°C to 3°C warmer than the seasonal average (Figure 3). By contrast, the density 

of harbor seal adult strandings peaked at an SST anomaly of 0°C, and decreased three-fold 

(from 0.15 to 0.05 strandings per grid box per season) as the average seasonal SST increased or 

decreased by 3°C. When analyzing with SST for the previous season, the trend was similar but 

the peak was at 1.5°C, as well as when SST approached -3°C. Gray seals response to SST 

appeared minimal; from -3°C to 3°C, stranding density increased from 0.0 strandings to 0.03 

strandings—a very small magnitude. With prev SST, stranding density increased from 10 

strandings at -3°C to 15 strandings at 0°C, and then decreased again to 5 at 3°C. 

Among the harp seal yearling and AAC models, the only environmental variable that 

explained more than 0.3% was NAO, at 1.1% and 1.3% respectively. The relationship between 

harp seal stranding density and NAO was bimodal: higher stranding densities were found at 

index values of -0.6 and 0.6 (Figure 3). Harbor seal pup and adult strandings were not 

correlated strongly with NAO; the deviance explained by those parameters was 1.8% and 1.7%, 

and the confidence intervals were relatively wide. 
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Table 3.3. R2 (adjusted) and deviance explained for 5 species/age classes of observed pinniped strandings in the 
Gulf of Maine from 2002-2017. Base model includes human population:latitude, human population, latitude and 
year as explanatory variables. Additional explanatory variables equate to the base model plus that covariate alone. 
Deviance explained values in SST, previous SST, NAO, snowfall and sea ice extent columns are in addition to the 
value in the base model. 
 

Species Base model SST Previous SST 
 

NAO Snowfall Sea ice extent 

 Dev % Adj. R2 Δ Dev % Adj. R2 Δ Dev % Adj. R2 Δ Dev % Adj. R2 Δ Dev % Adj. R2 Δ Dev % Adj. R2 

Harbor seal pups 33.2 .178 6.5 .299 6.5 .299 1.8 .214 na na na na 

Harbor seal 
adults 

32.5 .140 7.2 .266 7.1 .276 1.7 .168 na na na na 

Gray seals 29.4 .157 8.2 .262 8.2 .266 7.9 .254 na na na na 

Harp seal yearling 43.9 .362 0.3 .368 0.0 .361 1.1 .382 0.3 .368 0.0 .368 

Harp seal AAC 45.8 .405 0.3 .412 0.1 .403 1.3 .423 0.3 .408 0.1 .404 

 
 

The model that explained the greatest deviance in seal stranding densities was the harp 

seal AAC model that included human population, latitude, and their interaction, year, SST, NAO, 

snowfall and sea ice extent in the Gulf of St. Lawrence. However, at 47.3% deviance explained, 

this is only 0.2% more than that same model without sea surface temperature, snowfall and sea 

ice extent. Based on AIC scores alone, “best” models were as follows:  

 

• Base model plus prev SST and NAO for harbor seal pups (AIC 8897) and adults 
(AIC 6999)  
 

• Base model for gray seals (AIC 6540), harp seal yearlings (AIC 5624) and harp seal 
AAC (AIC 4163).  

 

For the harbor seal models, the base model plus prev SST and NAO also explained the 

greatest deviance. In the gray seal models however, utilizing either SST, prev SST, NAO, or a 
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combination of them yielded an extra ~8% deviance explained and a ~0.11 increase in the 

adjusted R2 value. Using AIC scores to choose the “best” model, despite having a lower effect 

size, is reflective of the optimal tradeoffs between bias and variance (Richards, 2005). Thus one 

should decide which model(s) is an oversimplification of the system, and which are too 

uncertain due to the additional parameters (Burhnam & Anderson, 2002). Importantly, 

Burhnam and Anderson (2002) note that this rationale of minimizing bias and variance is a 

statistical concept and not necessarily reflective of a biological [ecological] reality. 

The highest density of strandings were observed across all models at the latitudes 

where human populations were high (Figure 3). The highest density of harbor seal pup and 

adult strandings occurred at a latitude of 43.5°, the location of Portland, Maine, when the 

population in a grid box was approximately 100,000 people. Gray seals also exhibited a narrow 

peak of high density strandings located further to the south at latitude 42°, in Cape Cod, 

Massachusetts, where the population in a grid box was about 10,000. Harp seals exhibited a 

bimodal distribution of peak stranding density, with a strong peak in the Portland, Maine region 

and a somewhat lesser peak in the Massachusetts region. They also exhibited a unique pattern 

of stranding density centered at latitude 43.5°, in which density was markedly high as 

population increased in a cone-like shape that became more broad and diffuse as population 

increased, signifying that at those higher population values latitude is not as strong a factor. 
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Figure 4. Density maps and smoother estimates of pinniped strandings and covariates. Density maps (left) are of 
the interaction between human population (log scale) and latitude of stranded pinnipeds. Smoother estimates 
(solid lines) are for the environmental predictors of sea surface temperature, North Atlantic Oscillation, snowfall 
and sea ice extent as obtained by generalized additive mixed models (GAMMs) for stranded pinnipeds. Each 
covariate smoother was chosen from the model that included the base model plus that individual covariate only. 
The approximate 95% confidence envelopes are indicated (gray shading). * in the top right corner of variables 
signify that they are statistically significant. Hash marks on bottom of plots represent observations with positive 
residuals, and those on the top are observations with negative residuals. 

 

Snowfall and sea ice extent in the Gulf of St. Lawrence were only utilized in the harp seal 

AAC and harp seal yearling models. The harp seal AAC models generally exhibited a linear 

increase in expected strandings as sea ice extent increased, whereas the harp seal yearling 
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models were relatively flat (Figure 3). Both had large confidence intervals (CIs), in which 95% of 

the density in strandings was expected to occur (Nakagawa & Cuthill, 2007). In the harp seal 

yearling and harp seal AAC models, neither sea ice extent nor snowfall showed substantive 

predictive power on stranding density.  
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DISCUSSION 

A tale of two species: seals and humans 

 This study utilized harbor, harp and gray seal strandings data to investigate spatial and 

temporal occurrence patterns in the Gulf of Maine over a 16-year period. It further identified 

potential links between stranding events and both anthropogenic and environmental 

conditions using GAMMs. Our results illustrate the influence of the interaction between human 

population density and latitude on stranded seal density. In all models, this relationship 

explained more than any other available explanatory variable, including SST, NAO, snowfall, and 

sea ice extent. Neither population nor latitude alone explained nearly as much variability as 

their combined interaction. From this interaction, I can infer that seals are not only stranding 

more frequently in specific geographic regions simply because of where they are, but because 

of how the landscape is being utilized by humans. I propose here two hypotheses as to why 

seals strand, or why stranded seals are more frequently observed, near more densely 

populated centers.  

First, when more humans are present there is an increased likelihood that a stranded 

seal will be observed (reporting effect), simply because there are “more eyes on the beach.” 

This theory is consistent with our study findings, considering that observations of stranded seals 

were significantly higher in areas surrounding the urban centers of Portland, Maine and Cape 

Cod, Massachusetts and significantly lower in more rural areas, specifically in Eastern Maine. 

However, to help correct for this observer bias in data analysis, human population density was 

also included as an explanatory variable in all models. As a linear correction term, human 

population should correct for increased observation as it relates to higher population levels. Yet 
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still, the interacting term of human population and latitude was a significant predictor of seal 

strandings. If population alone had the same level of influence on stranding observations, the 

density plot in Figure 2 would have been a gradient with density increasing from left to right. 

Similarly, if latitude had the same level of influence, the density plots would have a gradient of 

more frequent strandings across all population values at those latitudes where strandings were 

most frequently observed. 

 A second hypothesis proposed here on the link between human population, latitude and 

observed seal strandings is that human activities are leading to, or at least influencing, when 

and where a seal strands. This interaction term signifies that there are more strandings on a per 

capita basis in specific areas. That is to say, if you are on the coast in one of the stranding 

hotspots, you are more likely to observe a stranded seal than if you go to the coast in an area 

where fewer strandings have been observed. This may seem obvious, but it is an important 

distinction—that there are not simply more people in more urbanized areas to observe 

stranded seals; there are, instead, a greater number of stranded seals to observe. This line of 

inquiry is well supported in both the academic literature (Barcenas-De la Cruz, DeRango, 

Johnson, & Simeone, 2017; Moore et al., 2013; Truchon, Measures, Brêthes, Albert, & Michaud, 

2018) and in the Level-A datasheets created by the stranding response agencies. All Level-A 

datasheets include the presence/absence of Human Interaction (HI), and when present, these 

data include a HI Report. Evidence of HI was noted in the Level-A forms for 11.3% (n = 834) of 

stranded pinniped cases during the study period. Evidence of human interaction is noted only 

when the response team can reasonably assert that human activities were involved in the 

stranding, such as when interactions are observed or through physical evidence (i.e. fishing 
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gear, vessel wounds). This conservative approach to noting human interaction therefore likely 

underestimates the influence of humans on these seal populations, as there is often no 

evidence for an observer or professional marine mammal responder to say with certainty 

whether a marine mammal’s stranding was human induced. This is further confounded when 

multiple factors lead to a seal’s stranding, as is often the case (e.g. entanglement in debris leads 

to poor nutrition, etc.).  

It is important to note that the influence of human population and latitude on pinniped 

strandings in the GOM represents a strong spatial signal in these two coastal regions (Portland, 

Maine and Cape Cod, Massachusetts). Although the generalizability of these results has not 

been tested, it is likely that similar findings may be discovered in other coastal human 

epicenters. The coastal regions of the Northeast US encompass a contested landscape between 

humans and non-humans. The built environment at the land-sea interface has altered any 

concept of what was once “pristine.” The structure and function of marine ecosystems, as well 

as their ability to recover from anthropogenic and environmental perturbations, have been 

altered (Sherman, 2000), especially since colonization and industrialization. Recreation, 

tourism, resource use and industry have taken humans well beyond the confines of their 

terrestrial base and into the Gulf of Maine itself. Marine vessels (Vanderlaan & Taggart, 2007; 

Wilson et al., 2017), noise (Halliday, Insley, Hilliard, de Jong, & Pine, 2017; Koschinski et al., 

2003), pollution (Kucklick et al., 1994; Reijnders, 1986; Swart et al., 1994), toxins and debris 

(Engler, 2012; Simmonds, 2017), and competition for prey (Matthiopoulos et al., 2008; 

Overholtz & Link, 2007; Read, 2008) are all recognized as potential contributors to declining 

marine mammal health. These waters, once dominated by marine mammals and other aquatic 
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organisms are now increasingly shared. In this new ecology, multiple species are inextricably 

entangled - influencing each other's health and wellbeing, restricting each other’s survival and 

livability, and frequently redefining what it is to be resilient.  

Environmental variables 

Despite often being statistically significant (p < 0.05), many of the environmental 

variables used in this study are unlikely to be biologically relevant. A doctrine that statistical 

significance—the ability to reject our null hypothesis—has been given undue importance in the 

ecological sciences has begun to pervade science (Nakagawa & Cuthill, 2007). Instead, it is far 

more important to consider the strength of the relationships as indicated by the R2 coefficients 

and the deviance explained (Martínez-Abraín, 2008). These statistical metrics are more 

appropriate for the determination of whether or not an explanatory variable is biologically 

relevant; and in the case of this study, the R2 coefficients and the deviance explained were low 

for most environmental variables across models. 

The strength of the anthropogenic factors on expected deviance in seal stranding 

density are so strong that they may, in part, be overshadowing any impact that the 

environmental variables have. Both sea ice extent in the Gulf of St. Lawrence (Johnston et al., 

2012; Soulen et al., 2013; Truchon et al., 2013) and NAO (Ari S. Friedlaender, Johnston, & 

Halpin, 2010; Johnston et al., 2012; Truchon et al., 2013) have been correlated with pinniped 

strandings in other studies. At 7.9%, NAO is, perhaps, relevant in predicting gray seal strandings 

in our models; however, a very wide CI and higher AIC score (in relation to the other models) 

signify this may not, in fact, be biologically relevant. Harp seals require ice for successful 

molting, pupping, nursing and resting; thus a reduction in sea ice is potentially deleterious to 
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their general health and reproductive success. Yet, my models failed to find that either NAO or 

sea ice extent had any effect on stranding density. However, I would caution against 

straightforward thinking and linear causation in this case. Harp seals are adapted to cope with 

environmental variability and may be buffered against variations in climate (Friedlaender et al., 

2010). It is also possible that a loss of sea ice has opened up feeding pathways and increased 

productivity, both of which could, potentially, benefit seals in the region. Further confounding 

the relationship, sea ice melting sooner might induce earlier harp seal migration, allowing them 

to migrate farther than they ever have in recorded history. It may be that they are indeed 

stranding more frequently as a result of these changing climatic conditions, but the data are 

masked to the constraints of our study area. Related to this, it is plausible that the high mobility 

inherent in pinnipeds may allow them to escape adverse environmental conditions by rapidly 

responding to the effects of climate change or other disturbances (Harwood, 2001) and escape 

the adverse impacts of a fragmented landscape (Debinski & Holt, 2000). 

Harbor pup, harbor adult and gray seal models all reflected an effect of SST on stranding 

density; SST for the previous season had an even better fit within models than the current 

season, although only marginally. MacLeod et al. (2005) found that warming waters lead to a 

decline in cold water marine mammal species and an increase in warm water species. Although 

their study was limited to dolphins and porpoises, this hypothesis would be consistent with this 

study, as SST appears to be linked to harbor and gray seal strandings. It is also notable that harp 

seal stranding observations have decreased over the study period, in line with increased sea 

surface temperatures. Similarly, Ijsseldijk et al. (2018) contribute shifts in white-beaked dolphin 

distribution in the North Sea coast at least partially to anthropogenic climate change and its 
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concomitant effects (habitat suitability, prey distribution and prey availability). The effect of 

warming waters in the GOM on harbor and gray seal strandings cannot be analyzed in a 

vacuum, as these effects are inextricably linked with anthropogenic forcings, namely a changing 

climate – a reflection of a human population ruled by a global, capitalist market. 

Although marine mammal distributions may be influenced by oceanographic and 

environmental variables, such as those utilized here, it is often believed that marine mammals 

do not respond to them directly (Palacios, Baumgartner, Laidre, & Gregr, 2014), if at all. Many 

factors: prey availability, socializing, site fidelity, interspecies competition, direct removal (i.e., 

sealing), bycatch, etc., all may be indirectly influenced by environmental conditions and 

phenomena. Thus, these variables can be difficult to measure and model. Further complicating 

things is that, in marine ecosystems, predictor variables measured in the ‘present’ are often the 

manifestation of the past (Olson, 2002), or perhaps situated in the present and multiple pasts, 

potentially resulting in spatial and temporal mismatch (Grémillet et al., 2008). All of these 

interactions will lead to reduced explanatory power. 

Stranding data: a cautionary tale 

Marine mammal stranding data have the potential to be highly valuable to aid in our 

understanding of threats to individuals (e.g., entanglement), populations (e.g., epizootic disease 

outbreaks), and ecosystems (e.g., climate changes).  Yet, it is important to note that there are 

numerous challenges and potential issues with using strandings data for scientific research. The 

consistency of data can vary widely over time; it is opportunistic, making it vulnerable to 

reporting bias (Harris & Gupta, 2006). The coastline in the Northeastern US is extensive, and 

thus stranding networks rely substantially on public reporting and trained volunteers. 
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Additionally, it is not uncommon for stranding networks to change protocols over time, 

particularly as staff and volunteers change (Harris, Lelli, & Jakush, 2002), which can also lead to 

inconsistency, non-standardized protocols, and spatial or temporal gaps in reporting. “Carcass 

drift” can result in a carcass being discovered far away from where the original mortality event 

occurred (Peltier et al., 2014), if at all (Williams et al., 2011), creating ambiguity in both time 

and location, and sometimes cause of death. Finally, public reporting of animals on the beach 

may not be stranded at all, but could simply be resting, pupping or molting animals, leading to 

potential over-representation of observed strandings, particularly in populated areas. Despite 

these challenges, strandings provide a unique dataset that would otherwise be difficult and 

costly to collect. These data, when continuously collected—as is the case with the data used in 

this study—achieve high temporal and spatial resolution, yielding an invaluable resource to 

better understand the spatio-temporal patterns in marine mammal distribution and behavior, 

as well as how marine mammals are influenced by anthropogenic and environmental factors. 

As existing and emerging risks to marine mammals from environmental forcing and 

anthropogenic activities are realized, conservation and management-driven spatio-temporal 

models that account for these factors are increasingly salient. This study indicates that, in the 

GOM, proximity to dense, coastal human population centers is the greatest driver in pinniped 

stranding density. SST is also biologically relevant in harbor seal pup and adult stranding 

patterns, as is SST and NAO for gray seals. Future studies might consider more creative 

approaches to both modeling and methodology, including the use of local wisdoms. As highly 

migratory species that cross biogeographical and political boundaries, no one stakeholder 

group alone can fully address their health. Considered together, scientific and traditional 



 

35   

ecological knowledge can bring fresh perspectives. Successful conservation will require 

communication across a diversity of stakeholders that directly engage with the species (e.g., 

local and regional governments, indigenous groups, non-governmental groups), as well as 

continued engagement by federal governments.  
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APPENDIX 

Appendix A. Marine mammal stranding response organizations 

Organization Address Phone Number 
College of the Atlantic’s Allied 
Whale 

105 Eden St, Bar Harbor, ME 04609 
 

(207) 288-5644 
 

National Marine Fisheries Service 130 Oak St, Ellsworth, ME 04605 
 

(207) 664-0508 
 

Maine Department of Marine 
Resources 

32 Blossom Ln, Augusta, ME 04330 
 

(207) 624-6550 
 

Marine Mammals of Maine P.O. Box 751, Bath, ME 04530 (207) 844-8718 

University of New England Marine 
Animal Rehabilitation Center* 

11 Hills Beach Rd, Biddeford, ME 
04005 

N/A 
 

Marine Animal Lifeline* New Hampshire N/A 
Seacoast Science Center 570 Ocean Boulevard 

Rye, NH 03870 
(603) 997-9448 

New England Aquarium 1 Central Wharf, Boston, MA 02110 (617) 973-5200 
 

International Fund for Animal 
Welfare 

290 Summer Street, 
Yarmouth Port, MA 02675 

(202) 536 1900 
 

Riverhead Foundation 467 E Main St, Riverhead, NY 11901 
 

(631) 369-9840 
 

National Aquarium in Baltimore 501 E Pratt St, Baltimore, MD 
21202 

(410) 576-3880 
 

*No longer in operation 
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