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Water management and irrigation practices are persistent challenges for many 

agricultural systems. Changing seasonal and weather patterns impose a greater need for 

understanding crop deficiencies and excesses (e.g. water, sunlight, nutrients) for optimal growth 

while allocating proper resources for prompt response. The wild blueberry industry is at 

heightened susceptibility due to its unique growing conditions and uncultivated nature. Early 

detection of stress in agricultural fields can prompt management responses to mitigate 

detrimental conditions including drought and disease. Remote sensing has provided timely and 

reliable information covering large spatial extents, while novel applications in hyperspectral data 

and imaging spectroscopy have shown potential in early stress detection. We assess airborne 

spectral data accompanied by ground sampled water potential over three developmental stages of 

wild blueberries to accurately detect water content. 



 

Airborne scans of spectral data were collected three times throughout the 2019 summer in 

Deblois, Maine. Data were collected over two adjacent fields, one irrigated and one non-

irrigated. Ground sampled data were collected in tandem to the UAV collection. The ground 

sampled data over the irrigated and non-irrigated fields guided digital sampling from the imagery 

to act as training for our models. Using methods in machine learning and statistical analysis, we 

related hyperspectral reflectance measurements to different water potential levels in blueberry 

plant leaves to decipher vegetation signals both spatially and temporally through utilizing the 

capacity of imaging spectroscopy.  

Models were developed to determine irrigation status and water potential. Seven models 

were assessed in this study with four used to process six hyperspectral cube images for analysis. 

These images were classified as irrigated or non-irrigated and estimated water potential levels. 

Our global water potential model had an R2 of 0.62. Models for the water potential predictions 

were verified with a validation dataset.  

Forest insect and disease pests have a significant impact on the well-being of individual 

trees and forest stands, affecting ecosystem processes and potentially human health. Dispersing 

through 35 states within only 17 years (USDA, 2020), the effect of emerald ash borer (Agrilus 

Planipennis Fairmaire) (EAB) in the United States has been particularly severe and devastating. 

Early detection of stress in forests can prompt management responses to mitigate detrimental 

conditions including drought and disease as well as pest outbreaks. Remote sensing has provided 

timely and reliable information covering large spatial extents, while novel applications in 

hyperspectral data and imaging spectroscopy have shown potential in early stress detection. We 

build on previous work by assessing airborne spectral data, and health classifications of EAB 

infested ash trees in aims to accurately detect stress. 



 

Airborne scans of spectral data were collected within three days in late July 2019 over 

three sites in southern New Hampshire. Ground sampled data were collected in November 2019 

and include sampled ash classified on a scale of 1-5 (1=healthy, no major branch morality, 

5=dead). The ground sampled data of different health classifications guided digital sampling 

from the imagery to act as training and validation for our models. Using methods in machine 

learning and statistical analysis, we related reflectance measurements to different classifications 

of ash tree health to understand tree stress signals while utilizing the capacity of remote sensing.  

Models were developed to classify health in ash trees impacted by EAB. The first 

entailed a shadow classifier, followed by one for health. Eighteen cube images contained ground 

sampled data and were processed with the two models, then further buffered. Pixel classification 

for each buffer sample was calculated. The health classifier model was used on a validation test 

set and had an prediction accuracy of 76.1%. 
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CHAPTER 1  

AIRBORNE HYPERSPECTRAL DATA APPLICATION IN ESTIMATING  

WATER POTENTIAL OF WILD BLUEBERRY FIELDS 

1.1. Introduction 

Maine is the top producer of wild blueberries (Vaccinium angustifolium Ait.) (also 

referred to as lowbush) in the world (Yarborough, 2004), acting as the state’s 4th highest 

agricultural revenue generator at 47.2 million dollars (Bertone, 2017). Lowbush blueberries 

require unique growing conditions including acidic and infertile soils, unsuitable for many other 

crop types (Glass, 2005). This distinctive environment increases vulnerability due to its 

uncommon land makeup, further amplified by climate change factors. In recent years, wild 

blueberry production has faced challenges relating to drought, freezing, and pathogens (Whittle, 

2018). As a result, forecasting land conditions and taking prompt mitigative action, including 

water management, have become increasingly necessitated. To assist farmers in water 

management practices, we analyzed reflectance rates of blueberry crops throughout different 

developmental stages to detect patterns of water potential temporally and spatially.  

The application and use of hyperspectral imaging technology has made great advances in 

the past decade. Hyperspectral imaging is a method in detecting and classifying objects based on 

the light reflectance rate (or spectral signature) on the electromagnetic spectrum. Objects project 

different signatures at different wavelengths as a result of their composition. Its current functions 

range from detecting human tissue damage (Leavesley, 2016) to aiding agricultural quality 

control (Nguyen-Do-Trong, 2018). One of its most valued benefits is its ability to collect 
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information in a non-destructive manner as it does not require direct contact with the scanned 

object (Nguyen-Do-Trong, 2018). In this project, hyperspectral data was used to classify the type 

of irrigation methods being implemented in blueberry crop areas, and determine water potential.   

Our goal was to use hyperspectral imaging processes to associate reflectance 

measurements to a categorical response (irrigated or non-irrigated) as well as to water potential 

as a continuous variable, to inform mitigation options for water management in wild blueberry 

fields. We planned to achieve this through: 

1. Collecting airborne data in Downeast Maine on an irrigated and non-irrigated field over 

three developmental stages. 

2. Acquire water potential measurements of samples in each field.  

3. Generate classified maps of irrigated/non-irrigated areas and water potential in order to 

determine locations of low or high water content.   

The objectives aim to configure methods and processes that will allow for more 

convenient detection. The process of configuration involves combining spatial measurements, 

ground data, as well as approaches in technology, processing, and computation (Nelson, 2018). 

Using its ability to unobtrusively capture and process different absorption and reflectance rates, 

this method in imaging spectroscopy can be applied to Maine’s wild blueberry industry, as well 

as its other agricultural sectors. We seek to classify water potential in wild blueberry fields as a 

means to offer new techniques in crop health monitoring. 
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1.2. Methods 

1.2.1. Study site 

Our research was conducted on commercial blueberry fields in Deblois, Maine owned by 

Jasper Wyman and Sons, a corporation specializing in frozen fruit. These crop fields tend to 

contain a number of different species clones, growing in sections within a particular field 

(Agriculture and Agri-Food Canada, 2008). Due to this pattern, a number of plots have been 

selected from the area in order to accurately assess the locations and tendencies of water 

potential. The site includes two separate fields, an irrigated and non-irrigated, each 

approximately 16 hectares in area. These two fields were selected to act as a comparison between 

two current water management practices in a single area. These fields serve other various 

research projects, but are not significantly impacted in relation to our goals.  

1.2.2. Workflow overview 

The project workflow is outlined in figure 1. Input data included the ground data 

(irrigated/non-irrigated classes and water potential) and manual digitizations from the imagery 

which trained the predictor models. Model process details are outlined in figure 3. The model 

was then applied to cube images for classification and prediction which were then used to verify 

the models.  
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Figure 1.1. Broad process flow from data collection to model verification. 

1.2.3. Image collection 

Our imaging spectrometer is a Micro A-Series Sensor by Headwall Photonics. The device 

is attached to a DJI Matrice 600 Pro unoccupied aerial vehicle (UAV), and operates as a line-

scanning (pushbroom) instrument. The sensor captures the visible and near-infrared portion of 

the electromagnetic spectrum from 400 nm to 1000 nm and collects 324 spectral bands. The 

number of flight lines, flying height, and flight speeds were determined on site size, takeoff 

distance from scanning area, land topography, and specific daylight conditions. Data collection 

with the UAV was conducted between 10:00AM and 2:00PM local time (period where sunlight 

is overhead in the northeastern region of the United States) to avoid shadows in the data. Image 
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collection was limited to these timeframes, battery capacity, and the amount of time that we had 

access to the field sites.  

1.2.4. Ground sampling 

Measurements were taken over the two fields three times in the 2019 spring and summer 

which were peak bloom (June 7), green fruit (July 3), and color break (July 25). These represent 

some of the development stages of wild blueberries throughout the summer growing season 

(Schilder, 2015). We chose to collect data over the different stages to determine temporal 

variation in water conditions and spectral response over the seasonal cycle of blueberry growth. 

Derived data could exhibit the characteristics in how water potential and intake varies throughout 

the season.  

We used 20 ground sample measurements on each field that were selected by a random 

sampling design and on the basis of clone morphological distinction. The samples entailed a 

branch of blueberry leaves attached to the stem. These were gathered as the drone captured 

image data approximately between 10:00AM-2:00PM EDT. The samples were stored in plastic 

ziploc bags in coolers and measured approximately two hours later for water potential. The 

measurements were taken using a leaf pressure chamber in a climate controlled laboratory space 

in Wyman’s facilities.  

Other measurements conducted by the collaborating lab include total leaf weight, SPAD 

(measure of chlorophyll), anthocyanin, leaf area, the number of leaves on the sampled branch, 

dry leaf weight, plant height, height of winter damage, total number of buds, injured buds, soil 

water potential, soil temperature, if mummy berry disease (caused by fungal pathogen Monilinia 

vaccinii-corymbosi) (Annis, 2004) was present as well as severity, and any other notes such as 
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tip-dieback. One clone group (Baxter-B11) on the non-irrigated field experienced winter damage 

in half the area, leading the group to take two samples in order to detect any differences.  

1.2.5. Image data & sampling 

Imagery was processed using the Headwall application Spectral View. A white tarp taken 

in the imagery and a spectralon panel were both considered as the white reference for image 

processing, however the spectralon provided more accurate spectra reflectances and greater 

consistency. Processing entailed transforming imagery from its raw form, to radiance, 

reflectance, and then orthorectification. The ground sampling distance was approximately 10x10 

cm per pixel.  

Using the collected imagery, we delineated pixels of ground sampled blueberry leaves 

through the ENVI software program (version 5.5 64-bit). These delineations were used to extract 

pixels as image samples from the imagery data in the R programming environment.  

Training pixels in the categorical model were digitized in large samples. With a binary 

response of irrigated and non-irrigated uninfluenced by the water potential ground reference 

data, we digitized large polygon areas within each field to gain a larger training size. Four 

samples from two cube images of each field were digitized for each stage. Figure 2 shows an 

example of the distinction between classification and regression model sampling.  

The water potential digitizations were guided by the water potential ground reference 

samples. Four to eight pixels were digitized around the coordinates of where samples were 

collected. Pixels that were in clouded or shadowed images were discarded. Two samples were 

removed from the first scan date, and eight from both the second and third. 
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Figure 1.2. (a) Image of a digitized sample for a continuous response (water potential).            

(b) Image of a digitized sample for a categorical response (irrigated/non-irrigated). 
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1.2.6. Model development 

 

Figure 1.3. Model outline process beginning with image sampling and outputs of 

classified images of both irrigated/non-irrigated, and water potential.   

Variables were calculated from reflectance values to use as predictors in our model which 

will be referred to as spectral indices. One of these methods in deriving the variables included 

resampling at 5, 10, 50, and 100 nm. These values were selected to show a range of resampling 

sizes and determine what significance they had, if any. The other method was calculating 

vegetation indices with the ‘vegindex’ function from package ‘hsdar’. The resampling and 

vegetation indices totaled to 260 variables. A random forest model was trained with the 

calibration data using the ‘Ranger’ package to determine the relationship between the health 

classification to the predictors. Ranger was selected rather than the ‘Random Forest’ package due 



9 

 

to its functionality in handling large spatial data. The Ranger package was designed to improve 

statistical analysis using random forests with modest computing power (Wright, 2015).  

In developing the model, our process produces accuracy rates at the different number of 

important variables utilized. We selected the model that utilized a lower number of variables to 

produce a lower error rate.  

We developed models that used the extracted pixel samples and water potential 

measurements as inputs to classify unsampled areas of imagery (Maschler, 2018). The product of 

the models would be generated maps of irrigated or non-irrigated areas as well as water potential 

classifications. Models were built upon those developed by the Nelson lab (Nelson, 2020). We 

also planned to calculate vegetation health indices that may assist in understanding what 

particular stresses are taking place (Zarco-Tejada, 2018).  

1.3. Results 

1.3.1. Data overview 

The data set used in this study includes 23 hectares of imagery over the irrigated field and 

16 over the non-irrigated field for each of the three stages. This included 48 cube images for each 

scan stage with a spatial resolution of approximately 10 cm. Ground referenced water potential 

measurements for 20 samples on each field were provided by the collaborating team.  

1.3.2. Model 

The errors for removing intercorrelated predictor variables were calculated at 0.9, 0.93, 

0.96, and 0.99 pair-wise absolute correlation cutoff levels. Removing those at a 0.99 cutoff 

produced the highest accuracy rates.  
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Numerous models were developed with the digitized samples used as training data. A 

model was created for each field stage with one for a binary classification (irrigated or non-

irrigated), and one for water potential. Additionally, a model for water potential was trained with 

combined samples from all three stages. Table 1 outlines the model information and error rates.  

Each model’s sample size is the number of digitized pixels. The categorical models had 

an out-of-bag (OOB) error of 25.2% for the first stage, followed by similar error rates of around 

17% for the last two stages. The stage-specific (or local) models for water potential had an R2 

ranging from 0.437 to 0.499. The global model utilized all pixel samples as training data and 

resulted in an error of 0.554. To further analyze, predictions were also conducted for all four of 

these water potential models.   
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Table 1.1. Model information used in image classification with each collection stage having a 

separate model for classification, and one global model for regression. 

 

1.3.3. Prediction 

To further analyze the performance of the continuous models, predictions using 

calibration and validation samples were conducted. Each local water potential model used a split 

of 70% calibration and 30% validation from the total sample set, randomly chosen from each 

field. The split was chosen due to the small sample sizes with peak bloom having 139, green fruit 

115, and color break 99. The global model prediction, however, used an 80% and 20% split of 

the total sample data. The sample size in the global model was three times that of the local 

models. This split ratio for calibration data was increased because it improved the model’s R2 

while still maintaining a validation size of about 70. Table 2 outlines each model’s OOB error, 

R2, and calculated RMSE.  
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Table 1.2. Outline of global and local regression model statistics on predicting water potential. 

 

The table shows that all three local models had very similar R2 values although calculated 

RMSEs were dissimilar and increased with each model. The global model had a comparable 

RMSE to the third local model but also had the highest R2. As a result of the prediction, we 

decided to use only the global water potential model for our image classifications.  

1.3.4. Variable importance 

Each model was developed through particular predictor variables and a certain number of 

those top predictors. These predictor variables, or spectral derivatives, consist of vegetation 

indices and resampled bands. Models of differing numbers (in multiples of five) of top predictors 

were generated in the process along with accuracy rates, however the one with a lower number 

of variables with a comparable lower error rate was selected in order to improve efficiency but 

maintain efficacy.  
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Figure 4 is a plot of the 35 most important predictor variables with the importance levels 

while table 3 lists the top 20 predictors that were used in the model. Figures 5 and 6 show these 

variables for each model of local classification and regression. These plots show the diminishing 

importance of each variable and how despite there being a level of relevancy, inclusion of certain 

variables does not improve model accuracy. The local regression plots were included to show the 

similarities and differences among these, as well as in comparison to the global model.  
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Figure 1.4. Displays the 35 most important predictor variables in the water potential 

model, the first 20 of which were included in the selected classifier, and corresponding 

importance level. 
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Table 1.3. Top 20 predictor variables used in the water potential model with description and 

band formula. 
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Figure 1.5. Plot of the 35 most important predictor variables in the local models and corresponding importance levels. 
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Figure 1.6. Plot of the 35 most important predictor variables in the water potential models and corresponding importance level.
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Most top predictor variables for each of the models focus on assessing chlorophyll levels. 

Some however include elements of soil adjustment such as TCARI2OSAVI2 and REPLi. Most 

of the vegetation indices and relevant bands range between 650 nm to 800 nm on the 

electromagnetic spectrum, or in the visible to near infrared region.  

The top predictors of the 3 categorical models showed very distinct variable selection 

results with no model containing a shared top five variable. The first shared predictor was CRI2 

as the fifth for color break and the eighth of green fruit. This predictor was the 24th for peak 

bloom. Green fruit and color break had predictors focused on chlorophyll while the top predictor 

of peak bloom was bandpass X897.593 resampled at 100 nm. The region in the far near infrared, 

or around 900 nm to 1000 nm, are understood to be indicative of water content levels in 

vegetation (Roberts, 2016), however, these findings may not have been as evident in this study 

due to omittance of that region as a result of noise. The second predictor was REPLi, used in 

monitoring wheat canopies using biomass, water content, and underlying soil characteristics 

(Baret, 1988). The distinction between predictor variables in the local models of classifying 

irrigated and non-irrigated may be a result of the variation in growing patterns that could be less 

of a factor in assessing water potential.  

In all three individual models for water potential, MTCI was a high predictor. Medium 

Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll index measures chlorophyll in 

the red edge region distinguishing it from other red edge position indices by its sensitivity to 

higher levels of chlorophyll (Dash, 2004). Overall, predictors in the local water potential models 

can be characterized as less variable than those of the categorical models, and can also be 

compared against the global water potential model.  
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The top five predictors in the global model all involve bands in the 700 nm to 800 nm 

region, a range associated with chlorophyll measures. The top predictor being the Datt index, is 

one that was developed to estimate chlorophyll content, particularly in higher plants or tree 

canopies (Datt, 1999). The Giltelson index is a measure of chlorophyll fluorescence which is 

proportional to actual chlorophyll content (Gitelson, 1999). The third most important variable 

was TOCARI2OSAVI2 which incorporates soil adjustment in chlorophyll measurements and has 

been recommended for agricultural applications (Rondeaux, 1996). These top three predictors 

had a significant level of importance over the following ones, whereas the three local models had 

a more even dispersal over the top variables. The most important global indices are likely a result 

of the consolidation of all three collection stages. Peak bloom, green fruit, and color break were 

different stages of blueberry development and the integration of all three results in predictors that 

will account for the variability. The model predictors are composed of reflectance values at 

different portions of the electromagnetic spectrum that can also be represented by the spectral 

signatures.   

1.3.5. Spectral signatures  

Various spectra of blueberry samples and pixels were analyzed and was mainly done so 

to assess radiometric calibration. The critical analysis, however, was using these spectra in 

development of the spectral variables, being the calculations of the vegetation indices and band 

resampling values. Nonetheless, the signatures can showcase information of interest. Figures 7, 

8, and 9 plot the signatures of four blueberry samples (two from the irrigated field, and two from 

the non-irrigated), over each development stage which are plotted in different combinations.         
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As can be seen in figure 8 (a), the spectra of the irrigated field tend to show higher 

reflectances across all wavelengths as the season progresses, but is much more evident between 

the first and last two stages. The non-irrigated field can be seen in figure 8 (b), as having less of a 

discrepancy between all three stages, however there is fluctuation between the last two stages 

where green fruit at times has higher reflectance rates than color break. It can be seen in figure 9, 

that generally for each stage, the irrigated spectra had lower reflectance rates than that of the 

non-irrigated although there are points in the first stage where the spectra of the irrigated field 

surpass the non-irrigated. These sample spectra display the collected data in a raw form, but the 

transformations of these is what the model is developed from.  

 

 



21 

 

 

Figure 1.7. (a) 12 spectral plots of four blueberry samples from all three stages. (b) The 

spectrum focused on 500-800 nm wavelengths.  
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Figure 1.8. (a) Spectral plots of six blueberry samples of the irrigated field from all three stages. (b) Spectral plots of six blueberry 

samples of the non-irrigated field from all three stages.  
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Figure 1.9. (a) Spectral plots of four blueberry samples from peak bloom. (b) Spectral plots of the same samples from green fruit. (c) 

Spectral plots of the same samples from color break.  
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1.3.6. Classification   

Cube images of the same area that were well-illuminated for all three stages were 

classified for analysis which amounted to 12 total. Most of the images were not classified due to 

time constraints and cloud shadows producing poor illumination. Though many are functional, 

they were not used for this study.  

Figures 10, 11, and 12 each represent a separate stage, or date, the image was taken with 

an irrigated image on top, and non-irrigated image on bottom. They first display a true color 

image, followed by a classified image being irrigated or non-irrigated, and then a predicted 

image of water potential. The cube images from the different stages represent the same area and 

have overlapping extents, but they are not exact.  

All categorical images were classified accurately in that a majority of each image was 

classified as it actually was. The water potential models show a large portion of the irrigated 

field with lower water potential throughout all three stages, and the non-irrigated field with more 

sections of higher water potential.  
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Figure 1.10. Images of processed data cubes over peak bloom (a) True color image of area. (b) 

Classified data cubes of irrigated and non-irrigated areas. (c) Processed data cubes of water 

potential.  
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Figure 1.11. Images of processed data cubes over green fruit (a) True color image of area. (b) 

Classified data cubes of irrigated and non-irrigated areas. (c) Processed data cubes of water 

potential.  
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Figure 1.12. Images of processed data cubes over color break (a) True color image of area. (b) 

Classified data cubes of irrigated and non-irrigated areas. (c) Processed data cubes of water 

potential.  

1.4. Discussion 

This study utilized machine learning and remote imaging spectroscopy to predict water 

stress in wild blueberry fields. The spectral indices produced using the Ranger package had 

shown effectual in classifying hyperspectral cube images, where the indices used had logical 

premise and emphasized the sensitivity spectral bands hold through the index transformations. 

The results presented similarities and differences within our models and cast light on the 

methods that can produce the desired outcome.  
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The results displayed temporal distinctions within the blueberry development stages. The 

model statistics and other outputs showed contrasts particularly between the first stage and the 

next two. These differences are supported in that the peak bloom stage was more distinct in 

phenology from the other two, where leaf area was much smaller and ground soil still exposed. 

This may be a factor in the soil adjusted indices that were important in the first blueberry 

scanning. Dissimilarly, the other two stages had much more vegetation coverage. With this, the 

water potential classification showed similar between the first and second stage. This 

distinguishes the processes in how the predictive models perform.  

The categorical models classified all processed data cubes accurately. All irrigated 

images were mainly classified as that, and the same result occurred with the non-irrigated. The 

predictor variables for the models were different from one another most likely as a result of it 

being local and used only samples from the day it was taken. The water potential models, 

however, used the ground sampled water potential values from all collection days. These factors 

produce different results and were evident in the predicted images where water potential was 

shown as higher in all non-irrigated fields. This raises notice to what information is most 

beneficial.  

An objective of this study was to associate reflectance measurements with a categorical 

treatment (irrigated or non-irrigated) in order to make predictions. This was achieved, however it 

prompts questioning in how constructive the answer actually is. The local models were separate 

for the irrigated and non-irrigated classification due to the relativity in deeming a field irrigated 

or not irrigated throughout a changing season. What is classified as irrigated at the beginning of 

the season may not be classified the same towards the end. The irrigated/non-irrigated is a more 
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convenient method in classification, but finding the utility in it may be the challenge. A more 

objective approach is predicting and calculating water potential which provides greater value.  

Measuring water potential and how it would impact irrigation practices is a more 

appropriate pursuit in providing farmers and landowners greater utility. The global water 

potential model had an R2 of 0.62 against the validation dataset. Adding more samples in water 

potential would assist in predictions and from more than a few select dates. Another addition in 

strengthening the model and prediction process would be including other types of variables from 

other functions or calculations. Spectral band derivatives and extensions of those, another 

common method in determining characteristics of vegetation (Thorp, 2017), were not heavily 

incorporated in this process aside from a few vegetation indices that include derivatives in the 

index formula. It may also be helpful in reducing the resampling predictors as it may not have 

had a significant effect on the predictors, especially as the number of band resampling increased.  

1.5. Conclusion 

The goal of this project was to use hyperspectral imaging processes in detecting 

measurements of water content practically for the benefit of the agricultural industry. This was 

mainly achieved through the development of our models, although there are a number of actions 

that could strengthen the outcomes. Models will be improved if larger training datasets are used. 

This is particularly relevant if other blueberry fields or varying crops are to be measured, such as 

fields in other areas. The process of streamlining by means of data collection, processing, and 

efficient programming, is also critical to provide timely and accurate data that can be practically 

used by industry workers, which would require greater computing capacity as well as data 
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management. With continued input additions and modifications, our methods can assist in 

improved agricultural practices.  

Maine’s economy is heavily based on its natural resources and agricultural industries 

with the blueberry industry being one of the top five revenue-generating crops. New technologies 

and methods such as those pertaining to precision agriculture are becoming more widely used 

(McBratney, 2015), necessitating the adoption of new methods in order to maintain standards for 

a competitive economy. With greater sampling and in-depth studies, the application of 

hyperspectral imaging methods is becoming a more viable option.  
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CHAPTER 2  

AIRBORNE HYPERSPECTRAL DATA APPLICATION IN  

STRESS DETECTION OF ASH TREES 

2.1. Introduction 

Ash trees (Fraxinus spp.) have a commercial value of 320 million dollars in Maine and 

are used in the production of snowshoes, canoe paddles, baseball bats, and other products. Black 

ash plays a large cultural role in Wabanaki folklore as well as the nation’s use in basket-weaving 

(Blackmore, 2019; Neuman, 2010; Ritter, 2017). The tree species however is under threat by the 

emerald ash borer (Agrilus Planipennis Fairmaire) (EAB), an invasive species from Asia. EAB 

is presumed to have migrated to the United States through wood packaging or shipping crates 

(Canadian Food Inspection Agency, 2014; Siegert, 2014). The insect bores the ash tree, 

oftentimes preferring those that are in preexisting stress conditions, and lays its eggs in bark 

crevices. When the larvae emerge, they feed on the tree’s sapwood depleting the tree’s water 

supply and forming serpentine galleries which can girdle the tree with increased EAB population 

density (McCullough, 2017; Wang, 2010). The spread occurs through adult EAB flight of up to 

1.6 km but additionally through infested firewood transported by humans unknowingly 

(Cappaert, 2005). The beetle was detected for the first time in the state of Maine in both southern 

and northern regions in 2018 (Sampson, 2018), prompting the state to take action in quarantining 

and monitoring. 

Understanding the spatial distribution and respective health conditions of ash trees is 

critical in early EAB detection. Infestations lead to mortality within three to five years and the 

retardation of this process can stop the spread with swift action (Sampson, 2018). Climate 
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change will also contribute to unpredictable and variable weather patterns, producing unforeseen 

disease and pest outbreaks (Lawrence & Labus, 2003). This constitutes a greater need for 

preparedness and innovative solutions in this sector. With threats from pathogens, hyperspectral 

imaging can detect areas of infestation and assist in preventing dissemination. 

The application and use of hyperspectral imaging technology has made great advances in 

the past decade. Hyperspectral imaging is a method in detecting and classifying objects or 

conditions based on the light reflectance rate (or spectral signature) on the electromagnetic 

spectrum. Objects project particular signature values at different wavelengths based on their 

composition (Adão, 2017). Its current functions range from detecting human tissue damage 

(Leavesley, 2016) to aiding agricultural quality control (Nguyen-Do-Trong, 2018). One of its 

most valued benefits is its ability to collect information in a non-destructive manner as it does 

not require direct contact with the scanned object (Nguyen-Do-Trong, 2018). In this project, 

hyperspectral data was used to detect stress in ash trees, a rapidly declining resource in the 

United States (Tallamy, 2016). 

Knowledge of EAB and its migration patterns are relatively well understood, and 

preventative measures have and continue to be taken by state and local municipalities. 

Nonetheless, having the ability in measuring stress of ash quickly and with high spatial capacity 

is critical in monitoring and conducting action. Remote sensing technology provides a targeted 

advantage in addressing these objectives. Hyperspectral research has been applied to vegetation 

stress, however the capability in determining specific disease or pest infestation is still a further 

endeavor (Lawrence & Labus, 2003). This project aims to link health classifications of ash trees 

impacted by EAB to airborne hyperspectral data, investigating the potential remote imaging 

spectroscopy holds in identifying targeted information.  
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Our overall goal was to use hyperspectral imaging processes to classify stress while associating 

the characteristics to emerald ash borer infestation to inform mitigation options for Maine forest 

management. We planned to achieve this through: 

1. Collecting airborne and ground measurements over infested sites in New Hampshire. 

2. Sample ash trees within those sites including health classifications encompassing the 

classification spectrum. 

3. Generate predictor maps of ash health in order to determine locations of infestation, 

susceptible areas of infestation, and potential solutions. 

These objectives seek to configure methods and processes that will make detection more 

efficient and reliable. The process of configuration involves combining spatial and spectral 

measurements, ground data, as well as new approaches in technology, processing, and 

computation (Nelson, 2018). Using its ability to unobtrusively capture and process different 

absorption and reflectance rates, hyperspectral imaging can be applied to Maine’s ash trees.  

2.2. Methods 

2.2.1. Study sites 

Our study sites include three infested areas in southern New Hampshire where EAB was 

detected in 2013 (Kovacs, 2010). The areas include ash trees of varying stages of infestation and 

stress levels. We used these sites to conduct our study across the health spectrum for 

classification. Having representation of different health classifications from infestation can also 
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show how EAB progression develops, especially in the early stages, potentially offering new 

techniques in monitoring and early detection.  

2.2.2. Workflow overview 

The project workflow is outlined in figure 1. Input data included the ground data (health 

classes) and manual digitizations from the imagery which trained the predictor models. Model 

process details are outlined in figure 2. The classifier was verified through a validation test set. 

The model was then applied to cube images for classification, and further buffered and extracted.  

 

Figure 2.1. Broad process flow from data collection to model verification. 
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2.2.3. Image collection 

Our imaging spectrometer is a Micro A-Series Sensor by Headwall Photonics. The device 

is attached to a DJI Matrice 600 Pro unoccupied aerial vehicle (UAV), and operates as a line-

scanning (pushbroom) instrument. The sensor captures the visible and near-infrared portion of 

the electromagnetic spectrum from 400 nm to 1000 nm and collects 324 spectral bands. The 

number of flight lines, flying height, and flight speeds were determined on site size, takeoff 

distance from scanning area, land topography, and specific daylight conditions. Data collection 

with the UAV was conducted on July 26, 27, and 28 of 2019, between 10:00AM and 2:00PM 

local time (period where sunlight is overhead in the northeastern region of the United States) to 

avoid shadows in the data. Image collection was limited to these timeframes, battery capacity, 

and the amount of time that we had access to the field sites.  

2.2.4. Ground sampling 

Ground sample measurements of individual ash trees were taken in November 2019. 

These include the health classification ratings (visually determined), crown width, diameter at 

breast height (DBH), and height. We used the health assessment approach reported by Pontius et 

al. (2008). This procedure was developed through various tree decline rating systems. It entails 

crown vigor ratings of 1-5 where 1=healthy (no major branch morality, 2=light decline (10-25% 

of crown damaged), 3=moderate decline (26-50% of crown damaged), 4=severe decline (>50% 

of crown damaged), and 5=dead (Pontius, 2008). Our study targeted all ash species but our 

sampling included only white (Fraxinus americana) and green (Fraxinus pennsylvanica). 

Coordinate locations of alternative species in the surrounding areas of sampled trees were 

gathered as reference for canopy cover in the acquired imagery. 
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2.2.5. Image data & sampling 

Imagery was processed using the Headwall application Spectral View. A white tarp taken 

in the imagery and a spectralon panel were both considered as the white reference for image 

processing, however the spectralon provided more accurate spectra reflectances and greater 

consistency. Processing entailed transforming imagery from its raw form, to radiance, 

reflectance, and then orthorectification.  

Using the collected imagery, we delineated the crown pixels of ground sampled trees 

through the ENVI software program (version 5.5 64-bit). These delineations were used to extract 

illuminated pixels as image samples from the imagery in the R programming environment. 

Additional sunlit pixels from the same crowns were also delineated to use as validation data. 

Although vigor ratings were assigned to trees in November during the leaf-off season while the 

digitized samples were taken of leaf-on crowns, we determined that this would not impose any 

issues. We assigned appropriate classes to the leaf-off ash and the comparison of the two types of 

sampling information would be of the same tree.  
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2.2.6. Model development 

 

Figure 2.2. Model outline process beginning with image sampling and outputs of 

classified pixels of sampled trees.   

Variables were calculated from reflectance values to use as predictors in our model which 

will be referred to as spectral indices. One of these methods in deriving the variables included 

resampling at 5, 10, 50, and 100 nm. These values were selected to show a range of resampling 

sizes and determine what significance they had, if any. The other method was calculating 

vegetation indices with the ‘vegindex’ function from package ‘hsdar’. The resampling and 

vegetation indices totaled to 260 variables. A random forest model was trained with the 
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calibration data using the Ranger package to determine the relationship between the health 

classification to the predictors. Ranger was selected rather than the Random Forest package due 

to its functionality in handling large spatial data. The Ranger package was designed to improve 

statistical analysis using random forests with modest computing power (Wright, 2015).  

In developing the model, our process produces accuracy rates at the different number of 

important variables utilized. We selected the model that utilized a lower number of variables to 

produce a lower error rate.  

Our aim was to develop models that would use the extracted pixel samples, health 

ratings, and ground scans as inputs to classify unsampled areas of imagery (Maschler, 2018). The 

product of these models would be classified crowns of predicted ash tree health based on the five 

vigor levels. Models were built upon existing frameworks developed through the Nelson lab 

(Nelson 2020). We also calculated vegetation health indices that may assist in understanding 

what specific stresses are taking place (Zarco-Tejada, 2018). We also further differentiated trees 

in declining health by causes due to either EAB infestation or other stress factors.  

2.2.7. Masking  

Our models were applied to whole data cube images, although buffers that contain the 

training pixels were ultimately extracted from the classified images. This was done to avoid 

errors in classification processing using nearest neighbors methods. The first model classified 

areas of shadows which were then masked out from the original data cube. Shadow was 

differentiated as it is the only category type that would be present in a buffered crown sample. 

Efforts in distinguishing other types such as water, grass, shrub, soil, rock as well as between tree 
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species were developed and considered, however forgone due to time constraints and some 

computing power.   

2.2.8. Buffers 

After applying the shadow predictor, mask, and then health classification, we extracted 

the buffer samples. The buffer was applied to each ground sampled tree and given a diameter of 

the ground measured crown width which was measured at the maximum length. This may have 

resulted in buffer areas larger than the actual tree crown and encompassed other trees. The 

extractions were performed in the R environment similar to the extraction process of the 

digitized samples.  

2.2.9. Model verification  

Our crown buffers were verified with an accuracy assessment. For each crown, the 

number of pixels correctly classified was divided by the total number of pixels in that crown. 

Another prediction test was conducted using the validation pixels. The model was applied on the 

validation data and assessed on accuracy. A confusion matrix was generated for each correctly 

predicted class.  

2.3. Results 

2.3.1. Data overview 

Imagery was collected over the 3 sites and covered approximately 152,827 m² of ground 

area. This included 67 cube images with a spatial resolution of approximately 10x10 cm. A total 

of 60 ash trees were sampled, and coordinates of 31 other tree species were taken as reference. 
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No analysis on the results in differences between green and white ash was conducted and though 

these contrasts may be present, understanding these differences was not a goal of this study. 

Table 4 outlines the number of ash trees sampled, each tree id, and pixel classification accuracy.  

2.3.2. Model 

A model categorizing different types of cover was originally created and tested. These 

included the referenced trees, ash trees, shadow, shrub, grass, water, rock, and soil. The results 

however were flawed for certain categories, particularly involving the discrimination among 

trees, shrub, and grass. Differentiating tree species also proved to be a challenge. We therefore 

applied the model to the entire data cubes where a shadow mask was then applied. The ash health 

model was then run over the masked data and then further buffered around the sampled ash tree 

points.  

The shadow model classified pixels that were either considered “shadow” or “other”. The 

input training data however consisted only of digitized shadow samples and ash tree pixels. The 

last step of the process would be to extract the buffers of sampled trees which would only 

contain shadow or ash, therefore, other categories were not included in the shadow mask process.  

The selected health classification model uses the twenty most important variables and has 

a prediction error of 8.89%. The shadow model uses the ten most important variables and had a 

prediction error of 0.05%. The model information can be viewed in table 1. 
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Table 2.1. Model information for shadow and health classification. 

 

2.3.3. Variable importance 

Each model was developed through particular predictor variables and a certain number of 

those top predictors. These predictor variables, or spectral derivatives, consist of vegetation 

indices and resampled bands. Models of differing numbers (in multiples of five) of top predictors 

were generated in the process along with accuracy rates, however the one with a lower number 

of variables with a comparable lower error rate was selected in order to improve efficiency but 

maintain efficacy.  

Figure 3 is a plot of the 35 most important predictor variables with the importance levels 

for the shadow model while table 2 lists the top ten predictors that were used in the model. 

Figure 4 and table 3 show the same information on the health classification model and used the 

twenty most important variables. The importance plots show the diminishing utility of each 

variable and how despite there being a level of relevancy, inclusion of certain variables does not 

improve model accuracy.  
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Predictors between the shadow and health classifier are similar although the shadow 

model utilizes less variables. Figures 3 and 4 also show that the shadow variable importance 

levels have a steady importance decline, whereas in the health model, the top 2 variables have 

very high importance, followed by a noticeable level drop in the third and fourth. This shows that 

the health model was much more influenced by particular predictors. For both models, predictors 

of importance mainly encompass wavelengths within 650 nm and 800 nm in the upper regions of 

the visible portion and the near infrared region, but also included wavelength values as low as 

400 and as high as 850. Many of these indices are geared towards measuring chlorophyll, green 

pigment, and leaf area index (Haboudane, 2002; Viña, 2011). The one predictor that was within 

the top five of both models, was the enhanced vegetation index (EVI), which was developed for 

application over a multitude of landscapes and vegetation types (Huete, 1997).   

The top two predictor variables had very high importance. The first was the double 

difference index (DD) and second was SumDr1, or fully written out as first-order derivative 

green vegetation index derived using zero baseline. These both relate to measuring chlorophyll 

(Elvidge & Chen 1995; le Maire, François, & Dufrêne, 2004), however the DD index is more 

pronounced in accounting for the change in chlorophyll. SumDr1 is based on leaf area index 

(LAI) and percent green cover, however this index has greater capability in removing 

background noise than others such as normalized difference vegetation index (NDVI) or ratio 

vegetation index (RVI) (Elvidge & Chen, 1995). The important variables are mainly focused 

vegetation indices with some variation in detail, such as the fourth variable RARS, which uses 

the absorption bands of chlorophyll a and b, and those of carotenoids (Chappelle 1992).  

The vegetation indices showed greater importance than the resampled bands themselves. 

Two of the twenty most important variables were resampled with the shadow classifier having 
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one. This predictor, however, was the most important variable in the model which was a 10 nm 

resampled predictor at a similar region of the resampled band predictor for the health classifier. 

The spectra of the ash samples also show the relevant areas of the electromagnetic spectrum in 

deciphering ash health. The model predictors are composed of reflectance values at different 

portions of the electromagnetic spectrum that can be represented by the spectral signatures.   

 

Figure 2.3. Displays the 35 most important predictor variables in the shadow model, the first 

10 of which were included in the selected classifier, and corresponding importance level. 
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Table 2.2. 10 most important variables in the shadow model including name or description, and 

band formula. 
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Figure 2.4. Displays the 35 most important predictor variables in the health classification model, 

the first 20 of which were included in the selected classifier, and corresponding importance level. 
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Table 2.3. 20 most important variables in the health model including name or description, and 

band formula. 

 

2.3.4. Spectral signatures 

Various spectra of tree samples and pixels were analyzed and was mainly done so to 

assess radiometric calibration. The critical analysis, however, was using these spectra in 

development of the spectral variables, being the calculations of the vegetation indices and band 
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resampling values. Nonetheless, the signatures can showcase information of interest. Figure 5 

shows a signature plot of eight ash samples, with two of each health class.  

The spectra of lower classes (healthier) generally have higher reflectance rates compared 

to those of the less healthy classes. The spectra also tend to have more noise as it progresses into 

the end of the near infrared region, a result of the spectrometer.  
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Figure 2.5. (a) Plots of eight ash spectra, two of class 1 (healthy) as light blue, two of class 2 as 

green, two of class 3 as orange, and two of class 4 (unhealthy) as red. (b) The spectrum focused 

on 550-800 nm wavelengths.  
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2.3.5. Classification  

All cube images that contained samples were classified in order to obtain the buffer 

classifications. In total there were 18 processed cubes with 59 ash samples. Figure 6 shows a true 

color scene on the Hooksett site along with the shadow and health classification. The fourth 

image shows buffered samples (with shadows removed) overlaid on the true color image. Figure 

7 similarly shows the overlaid buffers on the NHTI site.  
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Figure 2.6. (a) A color scene on the Hooksett site (b) The classified scene for shadow (c) The 

shadow-masked scene classified for health. (d) A cropped image within the scene over the 

buffered tree samples.  
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Figure 2.7. Cropped image over the NHTI site with 8 classified crown buffers 

2.3.6. Crown prediction 

Pixel classifications were calculated for each tree sample. To determine accuracy, the 

number of correctly classified pixels was divided by the total number of classified pixels, 

excluding shadows. Table 4 shows the individual tree id and its accuracy.  
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Table 2.4. Table of each buffer sample tree and its calculated accuracy (number of correctly 

classified pixels over the total). 
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2.3.7. Validation test 

The model was applied to a test validation dataset of pixels that were sampled on the 

same tree crowns of the calibration ash samples. The validation pixels were separate from those 

used to train the model. The prediction had an overall accuracy of 76%. 

The classifier performed most accurately on those pixels of class 4 and less accurately on 

those pixels of class 1. The model evidently classifies those categories containing high 

calibration sample sizes more accurately than those of smaller. The highest sample was of class 

4, followed by 2, 3, and then 1. The total number of class 1 ash trees was only 3.  

Table 2.5. Error matrix of health class predictions on validation dataset.   

 

2.4. Discussion 

This study utilized machine learning and remote imaging spectroscopy to classify tree 

health in ash trees. The spectral indices produced using the Ranger package had shown effectual 

in making predictions on the hyperspectral cube images. The indices used had logical premise 

and emphasized the sensitivity spectral bands hold through the index transformations. A possible 

addition in the process would be including other types of indices from other functions or 
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calculations. Derivatives and extensions of those were not heavily incorporated in this process 

aside from the vegetation indices that entailed the calculation. It may also be helpful in reducing 

the resampling predictors as it may not have had a significant effect on the predictors, especially 

as the number of band resampling increased.  

In analyzing the classified buffer samples, it could be observed that near-shadow pixels, 

or outlines of the shadows, were frequently classified as class 4 (unhealthy). Further analysis 

could be conducted in assessing the characteristics of semi-shadowed pixels and how this 

potential misclassification could be avoided. This shows that it may be advantageous to use an 

object-based approach in a future study. This however can prove challenging as it is much more 

time-consuming in relating to both ground sampling and remote collection. In cases where ash 

trees are dispersed, processing can require high computing power. Images can be cropped and 

then processed, however cropping also takes time and manual effort.  

Another consideration in the image classification process would be to add in a model to 

differentiate tree species. If this were effectively included, whole cube images could be 

processed which might negate the buffer process. The ability to at least decipher hardwood from 

softwood could be very conducive to the purpose of this project. This does impose challenges as 

species discrimination models are still being developed (Apostol, 2020; Kishore, 2020). It would 

also require a great deal more time and effort in the process and may be worthwhile to consider 

alternative model strengthening techniques.  

The models developed in this study could be improved with larger and more consistent 

sample sizes. Accuracies of the buffered samples were variable and there was a large number 

that had a low accuracy score. The predicted pixel validation set also had variable accuracies due 
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to inconsistent sample sizes despite the pixel approach providing much higher counts. With 

understanding the limitations from sample size and uneven training data, the models still 

performed moderately well. The processes developed in this project can be utilized for additional 

studies in vegetation health detection.  

A next step for these processes in further development could be to incorporate very 

recently infested sites in Maine using some destructive ash sampling to link EAB larval density 

to crown health. This would provide additions in other health classifications, assuming they are 

relatively healthy from no EAB infestation. Additionally, this could show if there are 

characteristics differentiating trees in declining health from borer infestation apart from other 

health factors. Pooling these data together will exhibit trends of infestation and may reveal early 

indications.  

2.5. Conclusion 

The goal of this project was to use hyperspectral imaging processes to practically classify 

stress through associating ground collected information to spectral data. Our collected 

information was impacted by EAB and factors into the overarching purpose of assisting in the 

provision of mitigation options for Maine land management. This was mainly achieved through 

the development of our models, although there are a number of actions that could strengthen the 

outcomes. Models may be improved if an object-based approach were taken. This would require 

a larger training dataset where each sample would be a whole crown rather than a pixel. In either 

case, a larger and more evenly dispersed data input will reinforce any model. The process of 

streamlining by means of data collection, processing, and efficient programming, is also critical 

to provide timely and accurate data that can be practically used by land managers (or other 
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interested groups), which would require greater computing capacity as well as data management. 

With continued input additions and modifications, our methods can assist in better tree 

monitoring practices.  

Monitoring the health of forests is critical in land management and understanding, but 

there are limited convenient and rapid methods in doing so. Most of these still currently involve 

numerous field crews with variable protocols, time, resources, and repeated updating. With 

advances in remote sensing techniques paired with imaging spectroscopy, accurate and timely 

data can be provided.  
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