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 After beginning life in the Sargasso Sea, American eel enter river systems as juveniles 

and swim upstream in pursuit of freshwater habitat. Many encounter dams during this migration 

which act as barriers to upstream movement and limit eel establishment in headwater systems. 

Some dams have been retrofitted with fishways to improve watershed connectivity, but the 

individual selection imposed by these structures remains uncharacterized. We considered 

whether individual differences in behavior (i.e., personality) may be used to predict the 

propensity of juveniles to use a passage structure, suggesting that eel personality may predict 

access to habitat upstream of dams. Migrating, juvenile eels (n=63) were captured from a tidal 

tributary, and we measured the expression of bold and exploratory behaviors in classic animal 

personality assays (open field and emergence). Then we assessed the propensity for individuals 

to volitionally climb through a passage structure and assessed passage outcomes. Finally, we 

compared consistent behavioral tendencies and climbing propensity.   

We show evidence for personality in young eels by demonstrating among-individual 

variation in bold and exploratory behaviors that were consistent across repeated trials in open 

field and emergence assays. Mean swimming speed in the open field was a predictor of climbing 

propensity; faster fish were less likely to climb through a passage structure. For successful 

climbers, climbing time was negatively associated with fish length, offering evidence for 



 
 

potential size-based selection on climbing ability during upstream passage at dams. Our results 

suggest strong potential for selective pressure on both climbing motivation and ability during 

fish passage Preventing a subset of individuals from accessing upstream habitat may have 

unintended consequences for both aquatic ecosystems and American eel populations.  

Eels that successfully recruit to habitat upstream of dams may spend decades in 

freshwater systems before making a single, terminal migration to spawn in the Sargasso Sea. 

Therefore, individuals that ascended dams as juvenile, must navigate these same dams while 

moving downstream as mature adults, where passage is commonly associated with mortality and 

delay. We conducted a four-year acoustic telemetry study that characterized passage risks 

through two hydropower dams (West Enfield and Milford) in the Penobscot River, Maine, USA. 

We released tagged fish (n=355) at two sites, estimated survival and delay under variable river 

conditions, and compared performance among dammed and free-flowing river sections. Survival 

rates (standardized per river km) were lower at West Enfield (Φrkm = 0.984 ± 0.006 SE) and 

Milford (Φrkm = 0.966 ± 0.007 SE), compared to undammed River sections (Φrkm = 0.998 ± 

0.0003 SE). This accounted for 8.7%, 14.2%, and 8.7% cumulative mortality through sections 

classified as West Enfield (4.4km), Milford (5.5km), or River (58.1km) respectively. Fish that 

already passed an upstream dam incurred higher downstream mortality compared to individuals 

without passage experience. Additionally, fish endured long delays at dams, and >10% of fish 

were delayed >24h. Low flows exacerbated the risk of mortality and delay. These results offer 

evidence for direct, latent, and sub-lethal consequences of dam passage for migrating eels..
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CHAPTER 1 

PERSONALITY INFLUENCES CLIMBING PROPENSITY  

IN JUVENILE AMERICAN EELS 

Abstract 

After beginning life in the Sargasso Sea, American eel enter river systems as juveniles 

and swim upstream in pursuit of freshwater habitat. Many encounter dams during this migration 

which act as barriers to upstream movement and limit eel establishment in headwater systems. 

Some dams have been retrofitted with fishways to improve watershed connectivity, but the 

individual selection imposed by these structures remains uncharacterized. We considered 

whether individual differences in behavior (i.e., personality) may be used to predict the 

propensity of juveniles to use a passage device, suggesting that eel personality may predict 

access to habitat upstream of dams. Migrating, juvenile eels (n=63) were captured from a tidal 

tributary, and we measured the expression of bold and exploratory behaviors in classic animal 

personality assays (open field and emergence). Then we assessed the propensity for individuals 

to volitionally climb through a passage structure and assessed passage outcomes. Finally, we 

compared consistent behavioral tendencies and climbing propensity.   

We show evidence for personality in young eels by demonstrating among-individual 

variation in bold and exploratory behaviors that were consistent across repeated trials in open 

field and emergence assays. Mean swimming speed in the open field was a predictor of climbing 

propensity; faster fish were less likely to climb through a passage structure. For successful 

climbers, climbing time was negatively associated with fish length, offering evidence for 

potential size-based selection on climbing ability during upstream passage at dams. Our results 

suggest strong potential for selective pressure on both climbing motivation and ability during 
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fish passage. Preventing a subset of individuals from accessing upstream habitat may have 

unintended consequences for both aquatic ecosystems and American eel populations.  

Introduction 

Juvenile dispersal is a fundamental life history process for many taxa and the import of 

non-natal individuals is necessary for maintaining populations (Trenham et al. 2000; Harrison et 

al. 2012). In natural systems, dispersal distance and recruitment may be constrained by abiotic 

(e.g., geography, weather, marine currents) or biotic (e.g., morphology, physiology, species 

interactions) factors (Gaines and Bertness 1992; Sutherland et al. 2000; Delgado et al. 2010; 

Vercken et al. 2012; Radinger and Wolter 2014; Hardouin et al. 2014). Anthropogenic influence 

on natural systems have amplified these constraints by imposing barriers to dispersal through 

habitat degradation and human development, which have the potential to block, impede, and 

prolong this life stage (Bulleri and Chapman 2010). Disruptions to the dispersal process can have 

severe consequences for populations by altering gene flow (Dixon et al. 2007; Marianna 2009), 

but also for ecosystems that depend on the annual nutrient subsidies transported by immigrating 

individuals. Through the impoundment of watersheds, dams are one of many human-made 

structures that have modified the natural processes within ecosystems, populations, and 

individuals.  

There are over 58,000 large dams distributed across the global aquatic landscape.  Dam 

purposes vary by region but are generally designed to support human populations through 

hydropower production, flood control, or irrigation (International Commission on Large Dams 

2020). In contrast to these societal benefits, dams modify the surrounding environment by 

altering flow regimes, disrupting natural connectivity, and changing ecological communities 

living within and along impounded watersheds (Graf 2006; Poff et al. 2007; Perkin et al. 2015). 
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Dam structures also impede inter-habitat movement necessary for many migratory fish to 

complete their life cycles, and loss of spawning habitat is considered one of the leading causes of 

diadromous fish declines (Nehlsen et al. 1991; Limburg and Waldman 2009). In response to 

declining fish populations, dam operators have employed a variety of strategies (elevators, 

fishways, trap and transport) to facilitate safe and efficient passage through dam structures. 

While considerable research has been dedicated to assess the population-level performance of 

fish passage systems (Keefer et al. 2010; Bunt et al. 2012; Cooke and Hinch 2013) very little is 

known about their selectivity on individuals within these populations. The average efficiency at 

upstream fish passages is low (< 50%; Noonan et al. 2012), therefore imposing selection at the 

individual level based on motivation and ability to navigate these passage systems. For many 

migrating fish, there is potential for selection to occur during adult migration, when some 

individuals are unable to access spawning habitat (Haugen et al. 2008; Maynard et al. 2017). 

Alternatively, many catadromous species encounter during upstream movement as juveniles, 

when dams act as barriers to rearing habitat and may influence early life history processes.   

 The American eel (Anguilla rostrata) is one of many diadromous fish species threatened 

by dams (Castonguay et al. 1994). After beginning life in the Sargasso Sea, currents deposit 

young eels throughout coastal waters of eastern North America where they then begin directed 

movement towards land. During the eel’s initial settlement, there is high variation in movement 

propensity; some individuals may remain entirely in marine or estuarine systems until 

maturation, while others swim significant distances upstream to inhabit freshwater environments 

(Jessop et al. 2008; Clément et al. 2014). In many river systems, individuals that continue 

moving upstream must navigate dams which are known to delay eel movement and limit 

establishment in headwater reaches (Wiley et al. 2004; Hitt et al. 2012). Many dam structures are 
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retrofitted with “eel ladders” (irrigated ramps lined with various substrates) that offer 

opportunities for upstream passage (Schmidt et al. 2009; Welsh and Liller 2013).   The 

effectiveness of these passage systems on individuals and their ability to accommodate among-

individual variation in climbing ability and motivation is not well understood.   

The ultimate reasons for eels to pursue upstream habitats (and encounter dams) likely 

rests in tradeoffs between competition, predation, energy expenditure, and resource availability 

(Gross et al. 1988). Less is known about the proximate controls on eel movement.  Edeline et al. 

(2006) offers evidence that body condition and water temperature may lead to a preference 

between settlement in salt and freshwater in European eels (Anguilla anguilla), and upstream 

movement may be guided by a magnetic compass (Cresci et al. 2019), but any subsequent 

variation once in freshwater invokes further exploration. Additional research on this species 

offers some evidence for differences in size, gene transcription levels, and climbing behavior 

among fish found upstream or downstream of multiple, lowhead ( 2m) dams (Podgorniak et al. 

2016, 2017).  

In this study, we consider whether personality might influence climbing behavior and 

provide a potential mechanism for the stratification of eels within river systems. “Personality” 

refers to behavioral differences among individuals that are consistent through time and across 

contexts (Wolf et al. 2007; Carere and Maestripieri 2013). Personalities have been observed 

across taxa and are used to help explain a variety of ecological processes including growth, 

fitness, movement, and species interactions (Coleman and Wilson 1998; Réale et al. 2000; Réale 

and Festa-Bianchet 2003; Sneddon 2003; Ward et al. 2004; Brehm et al. 2019). Previous 

research on fish behavior describes relationships between personality and movement (Fraser et 

al. 2001; Zavorka et al. 2015; Nakayama et al. 2016; Villegas‐Ríos et al. 2018), where bolder 
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and more exploratory individuals had higher movement rates. We considered if behavioral 

differences in young eels may result in differences in climbing ability and motivation that 

ultimately promote upstream movement through fish passage structures. 

Our primary goals of this research were to 1) use classic personality assays (open field 

and emergence) to test for among-individual variation in bold and exploratory behaviors,  2) 

assess climbing propensity in laboratory setting, and 3) test for relationships between repeatable 

behaviors and climbing outcomes. Given that eel ladders are designed for a single species, we 

expect any behavior-mediated variation in passage performance to be amplified in other passage 

systems that must also account for differences in size, experience, and morphology among 

species. Therefore, American eel are an ideal candidate for investigating the influence of 

personality on fish passage, where evidence of a relationship would offer a better understanding 

of watershed connectivity and have major conservation implications for diadromous fishes.  

Methods 

Fish collection and housing 

We dip-netted pigmented (Stage 7 as described in Haro and Krueger 1988) young-of-year 

American eels from a 1km stretch of the Souadabscook Stream in Hampden, ME, USA (44.76° 

N, 68.86° W), in late June 2019. This capture location was downstream of all major barriers, so 

we assumed that all fish had recently entered the river system and lacked any climbing 

experience. Eels were transferred and housed communally at the Aquaculture Research Center at 

the University of Maine in a 375L tank maintained at 16C (±1°C) with a 12:12 photoperiod.  

Eels were fed frozen bloodworms (San Francisco Bay Brand, Newark, California, USA) ad 

libitum daily and acclimated for three weeks prior to marking.  
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To identify individuals throughout the study, we marked fish with unique color 

combinations of acrylic paint tags. Animals were anesthetized in MS-222 (100mg/L, buffered 

with 3.0 mM sodium bicarbonate, pH=7.0) until they failed to maintain vertical orientation. We 

then measured each fish and injected them with < 50μL of non-toxic acrylic paint 

subcutaneously in two locations posterior to the anus. After marking, eels were transferred to an 

aerated cooler for 1h before being returned to housing tanks where they recovered for two weeks 

prior to behavioral testing  

Personality Assays  

While bold and exploratory behaviors have been evaluated in a variety of tank designs, 

we selected the “open field” and “emergence” tests because of their demonstrated ability to 

reveal repeatable behaviors in other fish species (White et al. 2016; Polverino et al. 2016; Baker 

et al. 2018; Coates et al. 2019). Tanks (described below) were filled with filtered, oxygenated 

well water heated to within 1.5°C of housing temperatures. Water was changed after each trial to 

minimize the effect of olfactory cues from conspecifics on eel behavior. We recorded eel activity 

with video cameras (ANNKE Y200, Shenzhen City, China) fixed directly above the arena. Tanks 

were screened with dark fabric to minimize disturbances and were illuminated from below to 

increase contrast during video processing. After trials ended, we identified individual fish and 

transferred tested eels into a new housing tank to reduce stress for fish in the testing queue.  Fish 

were left unfed on testing days and all individuals were subjected to the same assay within a 

single 12h daylight period. Although American eel are largely nocturnal (Hedger et al. 2010; 

Aldinger and Welsh 2017), previous research on juvenile European eel show high correlation 

between diurnal and nocturnal behavior (Geffroy et al. 2015), which justifies performing tests 
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during the day. We performed open field and emergence tests weekly for three weeks, and 

individual eels were allowed at least 36h to recover between assays.  

Open Field Test 

Open field assays consisted of square (74 x 74cm), natural colored, polyethylene tanks 

with a convex bottom (Figure 1.1.A). Tanks were filled to a depth of 5.2cm along the perimeter 

(2.5cm in the center). Fish were individually netted from housing tanks and immediately placed 

into the open field.  Following a 30s acclimation period, we recorded fish behavior for 5min. 

Videos were analyzed post-hoc using ANY-maze behavioral tracking software (Wood Dale, 

Illinois, USA), and we measured average speed (mean speed) and the proportion of time spent in 

different sections of the tank (Figure 1.1A). Since many individuals demonstrated climbing 

behavior in the open field (i.e., breaking the surface of water in an attempt to climb the tank 

wall), we also counted the number of independent climbing events throughout the trial (escape 

attempts). Some fish were too large for ANY-maze to accurately track movement, so we used 

ImageJ 1.52a (Schneider et al. 2012) and JWatcher V0.9 (Blumstein et al. 2000) to manually 

measure mean speed and the time spent in different sections, respectively. During a preliminary 

analysis we observed high agreement comparing ANY-maze to both JWatcher (R2 = 0.93) and 

ImageJ (R2 = 0.99) outputs.  

Emergence Test 

Emergence testing started at least 36h following the open field test. The emergence assay 

was conducted in a rectangular (58 x 74cm), natural colored, polyethylene tank (Figure 1.1B).  

We used a dark, plastic cylinder (26cm diameter) with a gate valve (5cm diameter) at the base as 

the “refuge” area, and the tank was filled with enough water to submerge the valve opening. Four  
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Figure 1.1. Overview of behavior assays. A) Open field. Labels represent different sections of 

the open field used to estimate the repeatability of proportional behaviors. B) Emergence. 

Shaded, “Start” region represents covered refuge area with entrance to rest of tank. Shaded 

rectangles are concrete bricks used as obstacles post-emergence to inhibit eels from immediately 

crossing dotted line which was used to calculate exploration time. C) Climbing test. All eels 

were placed in start tank and afforded the opportunity volitionally move through irrigated pipe 

lined with mesh substrate (jagged lines). Dotted arrows = eel movement. Solid arrows = water 

flow.  
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concrete blocks were arranged 15.7cm in front of refigure to provide additional obstacles for 

exploration (see Figure 1.1B). Eels were transferred from housing tanks to the refuge, and the 

refuge covered to create a stark contrast in light level compared than the rest of the tank. After a 

1min acclimation, we lifted the gate valve and allowed the eel 5min to leave the refuge. We 

recorded whether an individual emerged (binary emergence), and for those that did emerge, we 

recorded emergence latency (emergence time) and the time to cross the dashed line opposite the 

refuge door (exploration time, Figure 1.1B). 

Climbing Test 

Three weeks after personality assays, we subjected eels to a climbing test designed to 

measure propensity to move between tanks through an irrigated ramp similar to the eel ladders 

employed at dams. This assay consisted of two, adjacent 375L tanks connected by an opaque, 

PVC tube (1.2m long, 10cm diameter) at a 32° incline (Figure 1.1C). The tube was lined with 

2.5cm polypropylene netting, and some material extended beyond the openings of the tube. A 

pipe at the top of the tube supplied filtered, recirculated water at a rate of 67cm3·s-1; enough to 

create an attractant flow yet maintain a constant water level in the starting tank. All fish were 

placed in the starting tank simultaneously within 1h of beginning of the  12h daylight cycle and 

allowed to volitionally move to the neighboring tank over 8h. To limit disturbance from 

observers, successful climbers were identified each hour, and the start tank was screened while 

testing. We performed the climbing test for all fish three times over 10d, allowing at least 36h 

between trials. 
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Data analysis 

Assessment of repeatability 

We estimated the repeatability of each response variable in open field and emergence 

tests, and all analysis was conducted in Program R (R Core Team 2013). We used the lme4 

package (Bates et al. 2015) to create a linear mixed effect model for each focal personality 

metric (dependent variable), and treated fish ID as a random intercept. We controlled for testing 

order (1–31), open field tank/emergence apparatus, and fish length by including these variables 

as fixed effects in each model. To determine if individuals behaved consistently through time 

(i.e., personality), we estimated the adjusted repeatability (R; referred to as repeatability 

hereafter), by dividing the variance between individuals by the total variance (between individual 

variance combined with marginal variance associated with fixed effects; Dingemanse and 

Dochtermann 2013). We used rptR package (Stoffel et al. 2017) to generate 95% confidence 

intervals around repeatability estimates by performing 1000 parametric bootstrap iterations. 

Variables were considered highly repeatable if R > 0.5 or at least marginally repeatable if R > 

0.2,  and the lower bound of the confidence interval (CI) was > 0.0 in both scenarios 

(Dzieweczynski and Crovo 2011; Aplin et al. 2015; Baker et al. 2018). 

For each continuous behavioral variable, we visually inspected Q-Q and residual vs fit 

plots to check for normality and homoscedasticity. This revealed that proportional response 

variables in the open field (i.e., time spent in different sections) and emergence variables 

(emergence time, exploration time) were highly skewed. To meet normality assumptions, we 

applied the optimal Box-Cox power transformation for these variables using the EnvStats 

package (Millard 2013) and then re-inspected plots to verify an appropriate application of a 
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gaussian error distribution. For personality variables that were inherently non-gaussian (binary 

emergence, escape attempts), we used the link-scale approximation of R (Stoffel et al. 2019). 

Relationship between personality and climbing 

Three different climbing outcomes were used to assess climbing propensity and each 

were treated as dependent variables in generalized linear and linear mixed-effect models. We 

first considered whether each fish did or did not climb during any of the trials (climb ever) or 

within a trial (climb binary). Both assessments were modeled as binomial responses and fish ID 

was treated as random intercept in the climb binary analysis. For all fish that successfully 

climbed during a climbing trial, we also assessed the time taken to climb (h, climbing time) and 

treated fish  ID a random effect to control for multiple observations for some individuals. 

Although we measured climbing time in discrete, 1h intervals, a relatively modest sample size 

(n=29) of climbing observations led to poor model convergence using a Poisson error 

distribution. Instead, we log10 transformed climbing time and assumed a gaussian error term, 

which improved model fit and increased homoscedasticity.  

To determine if personality was a predictor of climbing propensity, we incorporated 

repeatable personality variables as fixed effects in climbing outcome models. For all continuous, 

repeatable behaviors, we estimated the best linear univariate predictor (BLUP) for each 

individual as has frequently been employed in recent personality studies (Dingemanse et al. 

2020; Gharnit et al. 2020). Using repeated observations of each fish across multiple personality 

trials, BLUPs represent the mean response variable (or mean optimal Box-Cox transformation if 

used in the repeatability assessment), controlling for tank, testing order, and fish length for each 

individual following 1000 simulations using the arm package (Gelman and Hill 2007). Distinct 
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from the repeatably models, we only considered fish length as a controlling covariate in this 

assessment as all eels started the trial simultaneously in the same tank.  

Since, proportional responses in the open field were highly correlated with each other (r 

> 0.8) we used the proportion of time spent along the edge of the tank (time along edge, Figure 

1.1A) in the climbing analysis because it was the only proportional variable that was nonzero for 

all fish and therefore most reflective of an individual’s behavior (i.e., fish spent most of the trial 

around the edges of the tank). We then tested for correlations between all combinations of 

personality BLUPs (time along edge, mean speed, exploration time, escape attempts) and a fish 

length covariate. These variables were not highly correlated with each other (|r| < 0.3) except for 

time along edge and exploration time which were marginally correlated (r = -0.46). Since these 

behaviors were repeatable, we decided to consider both in the climbing analysis because they 

were measured in different assays, suggesting fundamentally different behaviors. Variables were 

z-standardized to directly compare effect sizes among independent variables. 

For each climbing outcome, we used Akaike’s Information Criterion (AICc) adjusted for 

small sample size to evaluate the relative support for competing models using ΔAICc < 2.00 as a 

threshold for model support. We first evaluated the support for fish length, which was retained in 

personality models if it improved by >2.00 AICc against the null model. Each repeated behavior 

was then incorporated into the climbing model in a univariate framework (or with fish length, if 

supported), and we retained personality variables if they improved support by > 2.00 AICc. We 

also tested for non-linear responses (quadratic, exponential, logarithmic) for each behavior, 

which we considered to be more supported if they outperformed a linear response by > 2.00 

AICc. For all supported models, we validated support by analyzing the effect sizes for each 
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behavior (β) and those with 95% confidence intervals not overlapping zero were considered to 

significantly influence the climbing outcome. 

Results 

We assessed the repeatability of behaviors for 61 individuals in open field and emergence 

assays. Two observations were removed from open field Trial 1 and one observation was 

removed from emergence Trial 1 due to protocol error. We evaluated the climbing propensity of 

60 fish as one individual died before the start of trials. Additionally, one fish (that did not exhibit 

climbing behavior during Trial 1), died before the second climbing trial. This fish was included 

in the climb binary but excluded from the climb ever assessment. A summary of the observations 

is shown in Table 1.1 

Table 1.1. Overview of observations used to evaluate American eel behavior in personality 

and climbing assays. Observations reflect the number of samples per individual that we used to 

estimate repeatability of behaviors in open field and emergence assays or assess one of three 

climbing responses1.  

Assay 
Observations per fish  

Total fish2 
3 2 1 

Open field 59 2 0 61 

Emergence 60 1 0 61 

Climb ever 59 0 0 59 

Climb binary 59 0 1 60 

Climbing time 2 6 11 19 

 

1Climb ever = a binary response describing if an individual successfully climbed at least once during three climbing 

trials. Climb binary = a binary response describing if an individual successfully climbed within a trial. Climbing 

time = for successful climbers within a trial, the time taken to reach (h) the adjacent tank 

2We tested 63 fish in total. Two fish were removed prior to analysis because a marking failure did not allow 

consistently ID them between trials. An unequal number of observations per fish between open field and emergence 

assays reflect protocol errors. Two fish died before completing all three climbing trials, absent observations were 

excluded from the climbing analysis. 
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Personality Assays 

We found evidence of repeatable behavior in both open field and emergence trails (Table 

1.2). Most variables measured in the open field showed significant repeatability and mean speed 

was highly repeatable (R = 0.54 ± 0.07 SE). On average, fish traveled at 0.091m·s-1 (range = 

0.041–0.145) and spent the majority of the trial swimming along the perimeter of the tank (mean 

= 0.92, range = 0.50–1.00), and only entered the center-most area on 37.6% of all observations 

across trials. There was high variation in the number of escape attempts (ranging from 0–33 

unique attempts across all trials), which likely explains the relatively larger confidence intervals 

around this repeatability estimate. 

Table 1.2. Repeatability of behaviors measured in the open field and emergence assays of 

juvenile American eel). R = repeatability; highly repeatable variables are bolded and 

highlighted and moderately repeatable behaviors are highlighted only. SE = standard error. CI = 

confidence interval.  

Behavior Assay  R SE 95% CI 

mean speed Open field  0.537 0.072 (0.397–0.671) 

time along edge Open field  0.433 0.082 (0.272–0.587) 

escape attempts Open field  0.292 0.106 (0.061–0.478) 

binary emergence  Emergence  0.215 0.107 (0.000–0.415) 

emergence time Emergence  0.168 0.123 (0.000–0.443) 

exploration time Emergence  0.294 0.134 (0.034–0.561) 

 

We found that exploration time was significantly repeatable in the emergence test (R= 

0.29 ± 0.13 SE). Once fish exited the refuge, fish reached the back of tank relatively quickly 

(mean = 29s, range= 6–75s). Over three emergence trials, fish emerged from the refuge in 56%  

of all observations and 82% of fish emerged at least once. The occurrences of emergences 

increased from 35% of observations in the first trial to 64% and 69% in Trials 2 and 3, 

respectively, which suggests that fish may have become acclimated the apparatus following 

initial exposure. Given the increase in emergences after Trial 1, it is unsurprising that we did not 
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find significant repeatability for binary emergence. Any acclimatization to the assays that 

occurred may have also prevented us from detecting repeatability in emergence time which 

averaged 106s (range = 9–290s), but the mean emergence time  decreased by >30s after Trial 1. 

Climbing Test 

Individuals varied in climbing propensity. Over three climbing trials, 32% of fish climbed 

at least once and fish climbed successfully (i.e., reached adjacent tank within 8h) in 16% of all 

observations (Table 1.1).  The most climbing observations occurred in Trial 2 (n=15). Of the 19 

individuals that climbed, 8 fish climbed at least twice and 2 climbed during all three trials.  

When we assessed the relationship between climbing outcomes, repeatable behaviors, 

and fish length, there was support for both fish length and mean speed, but predictors varied 

among the three climbing outcomes (Table 1.3). First, we found support for both quadratic and 

exponential effect of mean speed on both climb ever and climb binary. Both models improved 

supported by > 9.00 AICc (climb ever)  and > 5.00 AICc (climb binary) against the null model. 

Upon closer examination of the slope coefficients from these models, there was a support for a 

negative exponential relationship (β = -1.24 ± 0.64 SE) of mean speed in the climb ever model 

which suggests that we were less likely to observe climbing behavior for faster moving fish 

(Figure 1.2). Coefficients from the other supported models also reflect this trend (where faster 

individuals were the least likely to climb), but the upper confidence limits of these effects 

include 0.00. Relationships between the most supported model for other repeatable behaviors in 

the climb ever assessment are show in Figure 2.  
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Table 1.3. Relative performance of models used to assess climbing propensity of 

American eel.  Variable = response variable in climbing model1. Model = independent variables 

used in in climbing model2. ΔAICc = difference in AICc from most supported model. R2 = 

variance described by fixed effects. β = effect size for the univariate effect (i.e. quadratic effect 

for quadratic model, for models with fish length and personality variable, β =effect size of 

personality variable).  

Assessment Model ΔAICc R2 β SE 95%CI 

Climb ever (mean speed)2 0.00 0.19 -1.24 0.64 (-2.49 – 0.01) 

 exp(mean speed) 0.34 0.15 -1.16 0.54 (-2.22 – -0.10) 

       

Climb binary exp(mean speed) 0.00 0.04 -0.95 0.51 (-1.95 – 0.05) 

 (mean speed)2 0.54 0.05 -1.08 0.63 (-2.31 – 0.16) 

       

Climbing time fish length 0.00 0.27 -0.17 0.06 (-0.28 – -0.06) 

 (time along edge)2 + fish length 0.27 0.42 0.10 0.04 (0.03 – 0.17) 

 exp(escape attempts) + fish length 0.79 0.32 -0.06 0.04 (-0.15 – 0.02) 

 log(fish length) 0.99 0.26 -0.33 0.11 (-0.55 – -0.11) 

 exp(time along edge) + fish length 1.19 0.33 0.05 0.04 (-0.02 – 0.12) 

 exp(fish length) 1.33 0.20 -0.05 0.02 (-0.09 – -0.01) 

 exp(mean speed) + fish length 1.80 0.31 -0.04 0.04 (-0.11 – 0.03) 

  log(exploration time) + fish length 1.96 0.30 -0.17 0.17 (-0.49 – 0.16) 

 

1Climb ever = binary response describing whether an individual ever climbed during three 

climbing trials, climb binary = mixed effect model describing whether an individual climbed 

within a climbing trial with fish ID treated as a random effect, climbing time = mixed effect 

model where the time taken (h) to move through eel ladder to adjacent tank with fish ID treated 

as a random effect 

2mean speed = the average swimming speed in the open field, time along edge = the proportion 

of time spent along the edge of the open field (Figure 1.1B), escape attempts = number of wall-

climbing attempts in open field, exploration time = time to fully explore emergence tank. 
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Figure 1.2. Probability of fish successful climbing at least once (climb ever) in climbing trial 

for each repeatable behavior in the personality assessment. Univariate personality models 

were used to predict the probability of climbing at least once across four repeatable behaviors 

and the most supported relationships for each behavior are represented here . The horizontal axis 

represents the best linear univariate predictor for each variable. Panel A is an exponential 

response, while Panels B–D are linear responses.  
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When assessing the time taken to climb into the adjacent tank (log10 transformed), 

including a linear effect of fish length improved model support by > 4.00 ΔAICc against the 

baseline. The coefficients from this model reflect a negative relationship between fish length and 

climbing time (β = -0.17 ± 0.06 SE), which suggests that the largest individuals ascended the 

apparatus quicker than smaller individuals (Figure 1.3). Adding behavior variables to the fish 

length model did not improved model support which indicates that the behaviors measured in  

personality assays were not good predictors of climbing time. When contrasted with the lack of 

support for fish size in the climb ever and climb binary assessments, this result suggests that 

larger fish may not have a greater motivation to climb, but rather a greater climbing ability 

relative to smaller conspecifics. 

 

Figure 1.3. Predicted climbing time by fish length. Fish were afforded 8h to volitionally move 

through simulated fishway into an adjacent tank, and successful climbers were identified every 

8h. Since this analysis was performed in a mixed-effect framework (i.e. random intercept), the 

mean intercept is represented here.  
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Discussion 

Evidence for Personality 

We observed repeatable behaviors of response variables in two classic personality tests 

which provides evidence for variation in individual behavior for juvenile American eel. Among 

behaviors tested, mean speed in the open field was the most repeatable (R= 0.54), which suggests 

high variation in individual activity levels and swimming speed during this life stage. Our results 

are consistent with Geffroy et al.’s (2015) study on young European eels which also found high 

repeatability (R=0.71) in activity level, and our results are within the ranges of estimates (R= 

0.40– 0.73) from other fish species (Dzieweczynski and Crovo 2011; Baker et al. 2018). 

Repeatability of time along edge was the next most repeatable behavior (R=0.43) which we 

suggest offers evidence for variation in both boldness and exploratory behavior among 

individuals. Fish that spent less time along the edge of the open field also spent more time in the 

middle two sections (r = -0.84). These sections may be perceived as risky environments for eels 

given their distance from tank walls and shallowness relative to the edges of the arena. Our 

results are corroborated by other fish personality studies which found significant repeatability in 

the time spent in different sections of the open field (Boulton et al. 2014; Baker et al. 2018) 

We expected to observe significant repeatability in emergence latency given its support in 

other fish personality studies (Mazue et al. 2015; Polverino et al. 2016; Coates et al. 2019). Point 

estimates of repeatability for both binary emergence and emergence time were relatively low (R 

< 0.25), and high within individual variation resulted in 95% confidence intervals that included 

0. Given the large difference in the number of individuals that emerged between Trial 1 (n= 23) 

and Trials 2 and 3 (n= 40, n=44), we suspect that individuals became acclimated to the either the 

emergence apparatus or the handling procedure. The first emergence trial occurred two days after 
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the first open field trial (following 2 weeks without handling), so stress induced by the first open 

field trial may have carried over to the initial emergence trial. While we did not observe 

significant repeatability in either emergence variable, once fish left the refuge there was 

moderate repeatability (R=0.29) in time to reach the back of the emergence tank (exploration 

time). This result provides further evidence for differences in exploratory behavior among 

individuals, and here we consider that fish that took longer to reach the back of the emergence 

tank to be more interested in exploring a novel environment.  

Variation in Climbing and Ecological Applications  

Slower swimming fish in the open field were less likely to climb. This result was 

unexpected given the demonstrated relationship between boldness and movement propensity in 

other fish species (Fraser et al. 2001; Chapman et al. 2011; Myles-Gonzalez et al. 2015). We 

propose two potential hypotheses for this outcome. First, more exploratory fish may have been 

more likely to locate and climb through the tube. In the open field trials, slower moving fish 

appeared more methodical and there was a negative correlation between mean speed and time 

spent in the middle three sections (r = -0.35) of the open field. This suggests that on average, 

slower moving fish explored more of the open field. The trends, although not statistically 

significant, between both exploration time and time along edge and climbing propensity support 

this hypotheses as more exploratory fish (i.e., less time along edge, increased exploration time) 

were, on average, more likely to initiate climbing (Figure 2).  

As we argue for the above scenario, we cannot ignore the possibility that faster moving 

fish may have outcompeted slower individuals for space within the starting tank. While we 

removed all structure from the start tank, some shelter was available underneath the climbing 

tube, in the overhanging mesh, and around the tank standpipe. Throughout the study, fish were 
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frequently seen entangled with each other, which may suggest potential social structure within 

the study group. Geffroy et al.’s (2014) research on juvenile European eels observed high 

sociability during this life stage in the laboratory, so position on a social-asocial behavioral axis 

(which was not tested in our study) may have influenced the decision to use the passage device. 

Previous research suggests that asocial individuals are more likely to disperse (Blumstein et al. 

2009; Cote et al. 2010). Either hypothesis, however, is congruent with the idea that individual 

differences in behavior influenced climbing propensity within the trial, and these same socio-

behavioral factors would also be present in a field setting.  

For fish that demonstrated high climbing propensity, there was negative relationship 

between climbing time and fish size, where larger fish reached the adjacent tank sooner. Since an 

effect of fish length was unsupported in the climb ever or climb binary analyses, support for 

length in the climbing time assessment indicates that larger fish were faster climbers, but 

climbing motivation was not influenced by fish size. This result provides evidence that size-

selectivity in passage efficiency may occur at eel ladders, especially when scaling our study to 

conditions encountered by fish in the field.  

Size selection is observed in numerous fishways and can favor individuals of a specific 

size range (Mallen-Cooper and Stuart 2007; Haugen et al. 2008; Maynard et al. 2017). We note 

that our passage device was similar to some eel ladder conditions at dams (Solomon and Beach 

2004), but we did not replicate the scale of these fishways in the laboratory. Of the 892 

hydropower dams in U.S. states where American eels are regulated by the Atlantic States Marine 

Fisheries Commission, 623 (~70%) exceed 5m in height (U.S. Army Corps of Engineers 2020). 

Therefore, most eel ladders will need to be at least this long to allow eels to move upstream of 

dams, and we would expect any selection that occurs during upstream passage to be greater in 
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functioning fishways. Previous research show increased energy expenditure for fish moving 

under increased flows and slope (Standen et al. 2002; Wang and Chanson 2018). Given the 

steepness of many eel ladders, we assume climbing activity to be energetically demanding for 

young eels, so longer climbing times for smaller individuals may result in lower body condition 

for successful climbers or cause fish to abandon climbing behavior. This hypothesis is supported 

by Podgorniak et al. (2017) who found evidence for potential size selectivity in eel ladders 

during this life stage, where fish upstream of multiple ladders were ~10cm larger than those 

found downstream of these obstacles.  

Implications for American eel Conservation  

Freshwater systems across the Atlantic coast receive marine-derived nutrients from 

diadromous fish which are then integrated throughout aquatic food webs (West et al. 2010; 

Guyette et al. 2014; Weaver et al. 2018). Most species embark on seasonal migrations into 

freshwater to spawn (anadromy), which constrains the range and frequency of these 

contributions. However, American eels may spend decades in freshwater and travel hundreds of 

kms upriver before returning to the marine environment during adult spawning migrations 

(Oliveira 1999; Jessop 2010). As the only catadromous species found throughout eastern North 

America, their ability to occupy a range of freshwater habitats (Wiley et al. 2004; Johnson and 

Nack 2013) may offer an infrequent link to the marine environment in systems and that are 

otherwise absent of catadromous imports (Gross et al. 1988).  Dams limit eel establishment in 

upstream habitat (Wiley et al. 2004; Machut et al. 2007; Hitt et al. 2012), which may disrupt the 

natural flow of nutrients within these systems. While extensive effort has been dedicated to 

restoring the historical connectivity of impounded watersheds thorough the implementation of 
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fish passage systems, most of these structures suffer from poor passage efficiencies (Noonan et 

al. 2012)  

Our findings provide evidence for differences in climbing propensity among individual 

fish which may be related in innate behavioral characteristics. Eel ladders are engineered to 

facilitate the movement of juvenile eels when small body mass allows fish to overcome the force 

of gravity. Following the juvenile migratory stage, American eel continue growing and 

metamorphose into a sub-adult (yellow) eels, where they can reach lengths upwards of 1m 

(Jessop 2010). While yellow eels have been observed using eel ladders, most fish that use these 

systems are < 20cm (Schmidt et al. 2009).  Upstream movement is not only associated with the 

juvenile migratory stage, as some yellow eels undergo extensive movement between freshwater 

and saline habitats in unobstructed rivers systems (Jessop et al. 2006; Lamson et al. 2006). Since 

fish personalities, especially activity level, are plastic through time and across contexts (Frost et 

al. 2007; Biro et al. 2010; Polverino et al. 2016), eel personality, and any underlying relationship 

to climbing propensity may also change through time. Therefore, individuals that choose to 

move upstream during this yellow stage, or fish that were unable to pass dams successfully as 

juveniles, may develop climbing motivation later in life but when they are at suboptimal size to 

use these existing passage systems. Additionally, research on the European river lamprey 

(Lampetra fluviatilis), another anguilliform, show that few fish can effectively pass more 

conventional fishways (Foulds and Lucas 2013). Therefore, despite multiple options for 

upstream passage (through fishways or eel ladders), opportunities to access upstream reaches 

may occur in a short time window when fish have both climbing motivation and are small 

enough to utilize eel ladders. 
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Selection at fishways may have unrecognized consequences at the population level. 

These costs are clearer for anadromous species (e.g. salmonids) that must pass dams to reach 

upstream spawning habitat, and where the exclusion of some proportion of the population limits 

the spawning stock biomass and reduces the phenotypic and genetic variation contributed by 

those individuals (Caudill et al. 2007; Lundqvist et al. 2008; Maynard et al. 2017). Although 

catadromous species do not necessarily need to access reaches upstream of dams to complete 

their life cycles, suboptimal performance of eel passage systems that prevent a subset of 

individuals from reaching rearing habitat may have indirect effects.  

First, limiting access to upstream habitat may increase intraspecific competition 

downstream, especially in smaller, resource limited tributaries. Second, American eel are found 

throughout watersheds and contribute substantial biomass to aquatic systems (Ogden 1970; Hitt 

et al. 2012; Kiraly et al. 2015). Selection against some individuals at dams may ultimately limit 

eel establishment in upstream reaches, with the potential for ecosystem-wide implications for 

fish communities (Hitt et al. 2012). Third, fish that spend their lives in higher reaches after 

successful upstream migration face major challenges while passing dams during their eventual 

downstream spawning migration where passage is known to increase mortality and migratory 

delays (Norrgård et al. 2013; Stich et al. 2014; Nyqvist et al. 2016; Eyler et al. 2016). In 

aggregate, selectivity at juvenile eel ladders may have the potential for individual, population, 

and ecosystem-wide implications. While this study does not provide direct evidence for selection 

in the field, we demonstrate a link between eel personality and climbing behavior. These results 

would be complimented by additional research that characterizes variability in behavioral traits 

and climbing activity at the watershed-level. Collectively, we hope this information will be 
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useful to dam operators, fisheries managers, and fishway engineers and that fish personality 

merits consideration when discussing methods to improve fish passage.  
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CHAPTER 2 

THE CONSEQUENCES OF DAM PASSAGE FOR MIGRATING  

AMERICAN EEL IN THE PENOBSCOT RIVER, MAINE  

Abstract 

American eel (Anguilla rostrata) often pass hydropower dams during adult spawning 

migrations. We conducted a four-year acoustic telemetry study that characterized passage risks 

through two dams (West Enfield and Milford) in the Penobscot River, Maine, USA. We released 

tagged fish (n=355) at two sites, estimated survival and delay under variable river conditions, 

and compared performance among dammed and free-flowing river sections. Survival rates 

(standardized per river km) were lower at West Enfield (Φrkm = 0.984 ± 0.006 SE) and Milford 

(Φrkm = 0.966 ± 0.007 SE), compared to undammed River sections (Φrkm = 0.998 ± 0.0003 SE). 

This accounted for 8.7%, 14.2%, and 8.7% cumulative mortality through sections classified as 

West Enfield (4.4km), Milford (5.5km), or River (58.1km) respectively. Fish that already passed 

an upstream dam incurred higher downstream mortality compared to individuals without passage 

experience. Additionally, fish endured long delays at dams, and >10% of fish were delayed 

>24h. Low flows exacerbated the risk of mortality and delay. These results offer evidence for 

direct, latent, and sub-lethal consequences of dam passage for migrating eels.  

Introduction 

 

Diadromous fish species have experienced substantial population declines over the last 

200 years, with many Atlantic stocks currently < 10% of historic estimates (Limburg and 

Waldman 2009). These losses are attributed to anthropogenic stressors fueled by 

industrialization, pollution, climate change, overfishing, and reduced habitat connectivity caused 

by hydroelectric dams (Hall et al. 2011). Among these species, the American eel (Anguilla 
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rostrata) stock has seen declines range-wide and the population remains near historic lows (Haro 

et al. 2000; ASMFC 2017). Commercial harvest occurs across all three continental American eel 

life stages. Fueled by Maine’s lucrative glass eel fishery, the U.S. eel fishery has evolved into a 

multimillion-dollar industry which peaked at >$40million (USD) in 2012 (Brust et al. 2017). 

Low recruitment has led to conservation concern, emphasized by 2004 and 2010 petitions to the 

United States Fish and Wildlife Service (USFWS) to list American eel for protection under the 

Endangered Species Act (Bell 2007; Shepard 2015). Although the USFWS determined that 

protection was unwarranted, the complex American eel life cycle presents major challenges for 

the conservation and management of this species. 

After beginning life in the Sargasso Sea, American eel larvae are dispersed across the 

eastern coast of North America (Tesch 2004). They eventually transition to a translucent, “glass” 

stage near coastal waters and begin actively swimming upriver, and many encounter dams in 

pursuit of freshwater lakes, rivers, and streams. Although these barriers delay movement and 

limit eel establishment in headwater reaches (Hitt et al. 2012), many dam structures have been 

retrofitted with juvenile eel ladders that offer upstream passage opportunities (Schmidt et al. 

2009; Welsh and Liller 2013). Once in freshwater, eels may spend more than 20+ years before 

beginning a transoceanic spawning migration and return to the Sargasso Sea (Oliveira 1999; 

Jessop et al. 2008; Jessop 2010), during which they must pass the same dams ascended as 

juveniles. Such late-life mortality in this long-lived, semelparous fish is likely to have 

disproportionate consequences for populations trajectories, and the risks associated with 

downstream passage through hydropower facilities is considered one of many stressors 

contributing to population declines (Castonguay et al. 1994). 
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Migrating American eel face two major challenges when navigating hydropower dams. 

First, eels must locate a downstream passage route, which may occur through spillways, 

downstream fishways, or turbine intakes, depending on specific facilities and river conditions. 

Some individuals spend hours or even days searching for passage routes, drawing on energy 

stores reserved for migration (Carr and Whoriskey 2008; Piper et al. 2013; Eyler et al. 2016). 

Anguillid eel migrations are also synchronized with environmental cues (river flow, water 

temperature, lunar phase, tidal cycles) which are presumed to promote successful migration, and 

long delays at dams may cause fish to miss an optimal migratory window (Barbin et al. 1998; 

Durif et al. 2008; Acou et al. 2008). When routes are selected, eels risk impingement on dams 

structures, impact-related injuries from falling overtop spillways, and lethal strikes by turbine 

blades in power generating stations (Piper et al. 2013; Eyler et al. 2016). Even when direct 

mortality is avoided,  salmonid research showed that non-lethal injuries sustained during dam 

passage may result in mortality downstream (Mathur et al. 2000; Ferguson et al. 2006; Stich et 

al. 2015). Despite the mounting evidence attesting to the negative interaction between eels and 

hydropower,  the most recent USFWS American eel biological assessment concluded that  

“turbine mortality is not considered a significant stressor to the American eel at a population 

level” (Shepard 2015).  However, relatively few studies have fully described mortality and 

delays at dams during outbound migration, and the net reduction in survival associated with dam 

passage remains unknown in many systems or under variable river conditions 

American eel are ubiquitous throughout the Penobscot River watershed (Kiraly et al. 

2015; Watson et al. 2018), which is the largest river drainage in Maine, USA. The river harbors 

14 federally regulated hydropower projects within its main stem and tributaries. By 2030, eight 

of these dams will undergo relicensing by the Federal Energy Regulatory Commission (FERC) 
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and licenses can last anywhere from 30–50 years (Maine DEP 2014). Fish passage is among the 

criteria discussed throughout the relicensing process, which offers an infrequent opportunity to 

make federally mandated improvements to promote the safe movement of fish through dam 

structures.  

The co-occurrence of American eels and dams within the watershed makes the Penobscot 

River a convenient system to study the interactions between fish and hydropower generation. 

Our primary goals with this research were to: 1) characterize mortality and delays experienced 

by migrating eels at two hydroelectric projects, and 2) understand the effect of passing multiple 

dams during adult spawning migration. We conducted a four-year acoustic telemetry study to 

track eel movement through West Enfield and Milford Dams in the Penobscot River to more 

broadly understand the risks of dam passage for migrating eels under varying river conditions, 

while also offering site-specific information ahead of impending relicensing decisions 

Methods 

 

Study Site 

The Penobscot River runs 175km through Maine’s interior before entering Penobscot 

Bay at 0 river kilometers (“rkm” hereafter; relative to the upstream distance from the river’s 

terminus). Recently, the lower river has undergone major changes in connectivity through the 

removal of two dams in 2012 and 2013, which left West Enfield Dam (101rkm) and Milford 

Dam (62rkm) as the final dams encountered by migrating eels each fall. At both projects, dam 

structures extend across the entire river and downstream fish passage is available via spillways 

(under high flows), sluiceways, power generating facilities, and fish-specific passages which are 

intended to prevent detour fish around turbine intakes and guide them to alternative passage 

routes.  Downstream fish passage at West Enfield consists of five surface bypasses positioned 
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above turbine intakes while Milford Dam has a vertical bar system with a gated, bottom intake 

designed for adult eel passage.  West Enfield has two turbines (13MW total capacity), while 

Milford has four (8MW total capacity). Operations at both dams are regulated by FERC and 

existing licenses expire in 2024 at West Enfield and 2038 at Milford (Gallagher 2005; 

Kleinschmidt Group 2015; Dorman 2019) 

Fish Collection and Tagging 

We collected fish from Souadabscook Stream in Hampden, Maine, U.S.A, using a weir 

located 3km upstream from the stream’s confluence with the Penobscot River (31rkm). 

Downstream movement in this tributary is unimpeded by anthropogenic barriers, and we 

assumed fish experienced similar migration histories prior to sampling. Since American eel 

migrate throughout the fall (Parker and McCleave 1997; Verreault et al. 2012), we operated the 

trap nightly from September–November and selected eels for further processing that were >40cm 

and exhibited clear characteristics of adult metamorphosis (i.e., enlarged eyes, dark dorsal 

surface; Pankhurst and Lythgoe, 1982).  

Eels were anesthetized in a cold-water tricaine methanesulfonate (MS-222, 250mg/L) 

bath for approximately 10min prior to surgery. We surgically implanted each fish with an 

acoustic transmitter (InnovaSea, V9-2x) through a small incision in the peritoneal cavity and 

secured the wound with 2-3 braided, absorbable sutures (Ethicon Inc., VICRYL 3-0). These 

transmitters had an estimate tag life of 649d and were programed to emit a 69kHz signal (once 

every 3–60s for the first 90d, 150–250s for 210d, 30–60s for 150d, and 150–250s for 200d, 

before the cycle repeated, given enough battery life). We programed this sequence to maximize 

detection efficiency throughout the fall migration, but also have the ability to detect individuals 

that remained in the system for subsequent seasons (i.e., fish that abandoned migration, but 
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survived). After surgery, eels recovered in aerated, 100L coolers for at least 1h during transport 

to release sites. We tagged and released 100 fish/year from 2016–2018, and 55 fish in 2019.   

Release Sites 

We transported eels to one of two release sites in the Penobscot River (Figure 2.1A). In 

2017 and 2019, all fish were released in South Lincoln, Maine, 12km upstream of West Enfield 

Dam (“Upstream release”, 113rkm). In 2016 and 2018, we released approximately half of tagged 

fish at this upstream release site and the remaining fish were released in Passadumkeag, Maine, 

9km downstream of West Enfield Dam (“Downstream release”, 92rkm). These paired releases 

were used to understand the relative risk for fish that pass multiple dams during migration.  

Acoustic Array 

Eel movements were tracked from release sites to the Penobscot River estuary with an 

array of >60 acoustic receivers (InnovaSea, VR2W). Receivers were moored to the river bottom 

and multiple receivers were clustered near dams or in areas where detection efficiency was 

compromised due to high flows or in-river obstructions. Each receiver (or group of receivers) 

was assigned to 1 of 15 unique receiver Stations (Figure 2.1A, 2.11C), and detections were 

pooled for stations that consisted of multiple receivers. The tidal section of the river ends at 

48rkm, below receiver Station 14. Since the primary objective of this study was to compare 

passage through dams with free-flowing river sections, we pooled all tidal receivers into a single 

receiver station (Station 15). We considered all fish detected at least once from 44.6–17.3rkm 

(site of most downstream estuary receiver) to have survived to the estuary.  The array was 

deployed prior to tagging and retrieved from the river before ice-in (Nov 16–Dec 9) to allow  
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Figure 2.11. A) Overview of study area. Open circles and corresponding numbers represent 

receiver stations and capture occasions in the main stem of the Penobscot River. Open circles 

without numbers represent additional receiver stations. Shaded circles are receivers in the 

Stillwater Branch. R1 = Release site upstream of West Enfield Dam in South Lincoln (Upstream 

release), ME. R2 = Release site downstream of West Enfield Dam in Passadumkeag, ME 

(Downstream release). B) Potential fates of individual fish following post-release. Telemetry 

tracks were extracted from four fish released upstream of West Enfield in 2017 (pink diamonds, 

purple triangles, and orange circles) and 2018 (green squares). Days represent the relative time 

spent in the river post-release. C) Conceptual model of acoustic array. Red circles represent 

receiver stations where mortalities in the next downstream reach were attributed dam passage 

and SW arrows represent potential exit and re-entrance of the main stem through the Stillwater 

River. 
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enough time for fish to move through the study area. A subset of receives were deployed through 

the winter each year so that any fish moving would still be detected. 

Survival Analysis 

All survival analysis was performed using a Cormack-Jolly-Seber (CJS) mark-recapture 

framework (Pollock et al. 1990) in Program R (R Core Team 2013) using the RMark package 

(Laake 2013). We created capture histories for each fish contingent on if individuals were 

detected (1) or not detected (0) at each receiver station. This approach allowed us to estimate 

apparent survival (Φ; “survival” hereafter) in the intervals between receiver stations and also 

estimate the probability of detecting a fish (p) at each station, given that the fish was still alive to 

be detected. We assumed fish movement was unidirectional, which allowed us to create a space-

based analysis similar to time-based models in a traditional CJS framework, such that Φ 

represented the survival between receiver stations corrected for imperfect detection, as is 

frequently employed in fish movement studies (Halfyard et al. 2013; Michel et al. 2015; 

Zydlewski et al. 2017; Hawkes et al. 2017). Fish entered the capture history at the time of first 

detection, which usually occurred at Station 1 (Upstream release) or Station 6 (Downstream 

release). 

 Each interval between receiver stations was categorized as either “River”, “West Enfield” 

or “Milford”, referencing the type of river section that eels moved through. Dead fish are known 

to drift considerable distances in rivers (Calles et al. 2010; Havn et al. 2017),  and some eels may 

suffer sub-lethal injuries during passage, potentially leading to mortality further downstream 

(Besson et al. 2016). To capture both direct and latent mortality during passage, we classified 

intervals between Stations 2–5 (102.1 – 96.6rkm) as “West Enfield”, Stations 9–11 (62.5 – 

58.1rkm) as “Milford”, and all other intervals were classified as “River” reaches. Unless 
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explicitly mentioned, survival was scaled to units of rkm-1 (Φrkm; “relative survival” hereafter) to 

account for differences in reach length among reach type. To estimate cumulative survival 

through dammed and undammed reaches, we back-transformed the relative survival estimates by 

raising them to the power of the length of the focal river section. Additionally, dynamic river 

conditions prevented complete recovery and deployment of the receiver array each season, 

resulting in an inconsistent number of receiver stations per year. Therefore, to maintain the same 

number of capture occasions across all years, we fixed p = 0 for “missing” receiver stations 

during years in which data were not available (0–3 stations/year). 

Near 62rkm, the Stillwater River branches from the main stem before rejoining the river 

11km downstream, circumnavigating Milford Dam (Figure 2.1A, 2.1C). Previous research on 

juvenile Atlantic salmon (Salmo salar) has shown that a minor proportion (≤ 26% annually) of 

fish select this alternative route (Holbrook et al. 2011; Stich et al. 2014). In our study design, fish 

that survived until Station 9 and moved through the Stillwater River were temporarily 

unavailable for detection at Stations 10 and 11. We first explored constructing a multistate 

framework to address this problem (where use of the Stillwater River constituted an alternative 

state) similar to Holbrook et al. (2011) and Stitch et al. (2014). However, the added complexity 

of the multi-state model, coupled with the modest sample size of eels that we observed using the 

Stillwater Branch, compromised our ability to produce robust survival and detection estimates 

under the multi-state framework (as evidenced by poor model convergence). Instead, fish that 

were detected in the Stillwater Branch were censored from Stations 10 and 11, but contributed to 

parameter estimation in all other reaches.  
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Comparison of dammed and undammed river 

 One objective of this study was to estimate the total mortality attributed to dam passage 

throughout the study area. To distinguish dam-related mortality from background river mortality, 

we compared cumulative survival from our observed estimates to a hypothetical “dam-free” 

scenario. We estimated cumulative survival through the study area using results from our 4-year 

aggregate, reach-dependent model, which generated different relative survival estimates for each 

reach (i) that were aggregated across study years. Cumulative survival throughout the study area 

is given as:  

 

   

Equation 2.1 

where Φcumulative is the product of all reach-specific estimates raised to the power of their 

respective lengths (L ; km). In the “dam free” counterfactual, we substituted the aggregate 

relative survival estimates of “River” section, for reaches classified as either “West Enfield” (i = 

2–4) or “Milford” (i = 9,10) in the previous framework. The resulting estimate of Φcumulative 

provided an approximation of the expected survival through the system if it was comprised 

entirely of free-flowing River reaches.  In both scenarios, all eels were theoretically released at 

the Upstream release site, and we assumed perfect survival until Station 1. We derived standard 

errors (SE) for all cumulative survival estimates using the Delta method (Powell 2007) to 

propagate variance via the deltavar() function offered through the emdbook package (Bolker 

2020).  
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Assessment of environmental factors on survival 

To better understand the relationship between survival and environmental conditions, we 

included river flow as a continuous, reach-dependent covariate. Flow data was obtained from the 

United States Geological Survey’s (USGS) stream gage (hydrological unit 01020005) located at 

98.5rkm, 3.5km downstream of West Enfield Dam. Both river discharge (m3·s-1) and river stage 

(m) are available in 15min intervals, and since both measurements are highly correlated (r > 

0.99), we used river discharge in this analysis (“flow” hereafter). For all detections, we used the 

last detection time for each fish at each Station and assigned a flow measurement using the most 

proximate gage reading. We also included fish length as a continuous, individual covariate to 

investigate potential size-dependent mortality during dam passage (Calles et al. 2010).  

Assessment of passing multiple dams 

We included an additive, group effect of release site in the survival analysis that 

described whether eels were released upstream of 1 or 2 dams. While only the Upstream release 

group passed West Enfield, both groups traveled through Milford Dam and free-flowing River 

sections. Therefore, an additive effect of release group described the overall effect of release site 

through Milford and River sections combined, but was limited in its ability to detect differences 

in survival between release groups at Milford Dam specifically. We considered adding an 

interaction between release group and reach type, but annual variation in survival within the 

system complicated this assessment. Instead, we conducted a post-hoc analysis to evaluate the 

effect of the release group Milford Dam survival.  Using only data from years with paired 

releases (2016 and 2018), we implemented a “virtual release” for all fish detected in the Milford 

Dam headpond (Station 9; similar to Skalski et al. 2009), and classified whether fish were (1) or 
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were not (0) detected at any point downriver from the Milford section. Because the cumulative 

detection probability for all receivers in the estuary was essentially 1.00, this simple binomial 

trial provides a proxy for the probability of survival through this section of the study area. We 

then used a generalized linear model with a binomial error distribution a fixed effect of release 

group to assess whether previous dam passage influenced survival at Milford Dam.  

Survival model interpretation 

We used Akaike’s Information Criterion (AICc) adjusted for small sample size to 

evaluate relative support for competing survival models using ΔAICc < 2.00 as a threshold for 

model support. Starting from the null model, we first added single, categorical covariates (reach 

number, reach type) and assessed if they improved model fit. We then incorporated spatially-

independent covariates (release site, fish length) as additive terms to base models and retained 

supported covariates. Lastly, we included space-dependent (flow) and time-dependent (year) 

covariates as interactive terms to supported models, which allowed for categorical and group 

effect sizes to vary among seasons and river sections. All continuous covariates were z-

standardized, which allowed us to directly compare effect sizes among competing variables. 

Coefficients (β) from supported models were further assessed to understand their effect on 

survival estimates, and those with 95% confidence limits not overlapping zero were considered 

to differ from a slope of 0.0. Since we were most interested in estimating p at all receiver stations 

each year, we only considered a station-year interaction for this parameter (i.e., the most general 

form of the detection model) and used this structure in all analyses. A preliminary analysis 

validated that this model configuration as it consistently outperformed models with more 

constrained detection structures (e.g., constant or aggregated p) 
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Delay Analysis 

Delays experienced during dam passage were assessed by calculating passage times (h) 

between receiver stations using the time of first detection at each station. If fish were not 

detected at the next downstream receiver station, they were removed from the analysis for that 

reach, and fish that were not detected in the estuary were removed from the analysis for reaches 

downstream of their last detection. To ensure that potential “holding” patterns post-release, 

(described by Carr et al. 2008), were not reflected in passage times for the first reach, we used 

the last detection at Station 1 to calculate the time to move between Stations 1 and 2. Passage 

time through West Enfield was calculated from the headpond (Station 2) to the confluence of the 

Piscataquis River (Station 4) because of consistently lower p in the tailrace (Station 3).  Time to 

pass Milford Dam was calculated from the headpond (Station 9) through the tailrace (Station 10). 

Passage times were scaled (i.e., h·km-1) which allowed us to directly compare migration time 

among different reach lengths. Detections at Station 12 (53.3rkm) were removed from the delay 

analysis because its proximity to Station 13 (51.4rkm) resulted in overlapping detection ranges 

that sometimes produced unrealistic passage times (i.e., < 0h). We also removed one observation 

at Milford Dam that estimated passage time at 0.00h. Since this approach lead to multiple 

observations for each individual in undammed reaches, we applied a general linear mixed effect 

model using the lmer() function in the lme4 package (Bates et al. 2015) to compare delays in 

different sections of river. Passage times were log10-transformed to meet the assumption of 

normally distributed residuals and Fish ID was treated as random intercept to account for 

inherent differences in mean passage time among individuals and address the issue of repeated 

measures as fish moved through multiple free-flowing river reaches within the system. We used 

a similar tiered approach to model selection as described in the survival analysis, where we first 
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started with a categorical effect of reach type (again classified as “West Enfield”, “Milford” and 

“River”). We then added spatially-independent covariates (fish length, release site) before 

integrating interaction terms of release year and river flow. We used ΔAICc < 2.00 as a threshold 

for model support in conjunction with an evaluation of β coefficients to assess the effect of 

covariates on passage time. 

Results 

Of the 355 fish tagged and released, we included capture histories from 343 in the 

survival and delay analysis (Table 2.1).  Migratory status was verified by observing sustained, 

downstream movement post-release, and individuals were excluded from analysis if they did not 

meet this criterion. Specifically, we removed fish that were not detected post-release (n=5) or did 

not move through the study area during the release year and were detected in subsequent seasons 

(n=6). The six fish that overwintered in the system had a variety of fates: i) Two were detected in 

the West Enfield headpond the following spring and then initiated downstream movement (one 

with an apparent mortality at West Enfield Dam, while the other survived to the estuary).  ii) One 

was detected in the West Enfield headpond during the release year but was last detected below 

the dam the following fall. This behavior is characteristic of a mortality event but we were 

unable to conclusively determine if the fish moved through the dam during the release year.  iii) 

Two fish passed West Enfield and were last detected in the Milford headpond in December of 

the release year, but were later detected in the estuary the next spring. iv) One fish moved past 

West Enfield during the release year, but then appeared to abandon migratory behavior before 

reaching Milford Dam and was last detected at a receiver, supplementary to the array, between 

Stations 8 and 9. In addition to the fish detected the following seasons, we also removed one 

2016 fish because it was only detected at Station 4 (98rkm) before being detected by an estuary 
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receiver (24rkm) three days later (likely caused by a tag malfunction or avian predation). 

Telemetry tracks representative of some potential fates are shown in Figure 2.1B. Of the 313 fish 

that were detected above Milford Dam, 41 (13.1%) moved through the Stillwater River. Across 

all study years, we detected 282 fish in the Penobscot River estuary, which represents 82.2% of 

all fish included in the analysis.  

Table 2.1. Summary of releases by year. Eels were released at one of two sites in the 

Penobscot River relative to West Enfield Dam (Upstream = released upstream of West Enfield at 

113rkm, Downstream= released downstream of West Enfield at 92rkm; Figure 2.1A). N = 

number of fish released. Fish length = mean total length (cm) of each release group with ranges 

in parentheses.   

Year Release site N Fish length 

2016 Upstream 45 59.2 (48.0-74.0) 

 

Downstream 50 61.0 (45.5-78.9) 

2017 Upstream 100 63.3 (51.0-90.2) 

2018 Upstream 46 64.1 (51.0-89.5) 

 

Downstream 49 61.4 (43.5-83.5) 

2019 Upstream 53 60.2 (48.5-86.0) 

 

Survival 

We found that eels had lower survival when moving through dammed reaches compared 

to the free-flowing river sections. Over four years, relative survival was lowest for fish passing 

Milford Dam (Φrkm = 0.966 ± 0.007 SE), and survival at both Milford and West Enfield (Φrkm = 

0.984 ± 0.006 SE) was lower than free-flowing River sections (Φrkm = 0.998 ± 0.0003 SE; Figure 

2.2). When we used the reach-dependent estimates (Table A.1) to propagate survival throughout 
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the study area, cumulative survival was estimated at 0.795 ± 0.023 SE, which was lower than the 

theoretical undammed scenario (Φ = 0.930 ± 0.014 SE; Figure 2.3). 

 

Figure 2.2 Relative survival  in each section of the study area. Yearly estimates were pulled 

from the reach type survival model with a year interaction and aggregate estimates reflect the 

mean survival in each river section aggregated across all four years. Error bars represent 95% 

CIs. 

Survival varied across study years (Figure 2.2; A.2). Incorporating a year interaction to 

the reach type model improved support by > 15 ΔAICc from the reach type model alone, and the 

year interaction was included in the most supported survival model (Table 2.2). Cumulative 

survival through dammed sections was lowest in 2016 for both West Enfield (Φ = 0.818 ± 0.059 

SE) and Milford (Φ= 0.800 ± 0.044 SE) and highest in 2017 for both dams (West Enfield: Φ = 

0.980 ± 0.014 SE, Milford: Φ = 0.993 ± 0.011 SE; complete breakdown in Table A.2). Survival 

in free-flowing River sections was consistently high, and the cumulative survival throughout the  
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Figure 2.3. Cumulative survival from the upstream release site to the Penobscot River 

estuary using reach-specific survival estimates in the current (dammed) and theoretically 

dam-free (undammed) study area. Survival in the current, dammed scenario (solid line, red-

shaded region) was propagated using relative (Φrkm) reach-dependent survival estimates 

aggregated across all four years (Table A.1). Grey rectangles represent river sections where we 

attributed mortality to passing West Enfield Dam (left) and Milford Dam (right).  Dashed lines 

and blue-shaded regions represent the expected survival if both dams were removed from the 

river, which was estimated by replacing the aggregate Φrkm associated with passing West Enfield 

and Milford Dam  with the aggregate Φrkm in free-flowing River sections. In this simulation, all 

fish were released at the upstream release site. Shaded regions represent 95% CIs.  
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Table 2.2 Relative performance of CJS mark-recapture models to evaluate American eel 

relative survival during outbound migration. Φrkm = structure of survival parameter*. 

Structure of detection parameter (p) was kept constant with independent estimates for each 

receiver station/year. K = number of parameters used in each model, AICc = Akaike’s 

Information Criterion adjusted for small sample size, ΔAICc = difference in AICc from most 

supported model, weight = relative support for each model.  

Φrkm p K AICc ΔAICc weight 

reach type × year + release year × station 64 1976.69 0.00 0.77 

reach type × year year × station 63 1979.74 3.05 0.17 

reach type × year + fish length year × station 64 1981.83 5.14 0.06 

reach type × river discharge  year × station 57 1990.27 13.58 0.00 

reach type year × station 54 1994.09 17.40 0.00 

reach type + fish length year × station 55 1995.68 18.99 0.00 

reach type + release year × station 55 1995.98 19.29 0.00 

reach year × station 65 2001.15 24.46 0.00 

reach × river discharge year × station 79 2001.16 24.47 0.00 

reach × year year × station 107 2041.09 64.40 0.00 

null year × station 52 2089.58 112.89 0.00 

fish length year × station 53 2091.20 114.51 0.00 

*reach = reach-dependent survival estimates for intervals between each receiver station, reach type = intervals were 

classified as free-flowing River, West Enfield Dam or Milford Dam, year = group effect of release year, release = 

group effect of release site, river discharge = river flow (m3·s-1) treated as a continuous, reach-specific variable for 

each fish, fish length = total fish length. 
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entire 58.1km of free-flowing River sections varied between 0.944–0.976 depending on year, 

consistent with the near perfect River Φrkm (0.999–1.000) throughout the study. We did not find 

support for an effect of fish length on survival (βlength = 0.001 ± 0.016 SE).  

Survival through dams increased under high flow conditions. Tagged fish appeared to 

experience the most favorable conditions when passing dams in 2017 when maximum daily flow 

was consistently > 300m3·s-1 (Figure 2.4) and survival was at a four-year high (Figure 2.2). In 

other years, flow generally fell between 100–300 m3·s-1 when eels passed West Enfield and 

Milford Dam. We assessed the effect of flow on survival in each reach type using β estimates  

 

 

Figure 2.4. Variation in seasonal river discharge across sampling years. Flow data was 

downloaded from the USGS hydrologic unit deployed downstream of West Enfield Dam near 

receiver Station 4. Flow represents the maximum daily river discharge. Horizontal lines represent 

the range of dates when tagged fish had the potential to pass West Enfield or Milford Dam each 

season. 
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from a model where the reach type interacted with flow; a configuration that improved support 

by > 4.00 ΔAICc over the effect of reach type alone (Table 2.2). Upon closer examination of β 

coefficients from this model, we found a positive relationship between flow and survival at  

Milford (βflow = 0.969 ± 0.431 SE), but the effect size was not demonstrated to be different than 

0.00 when passing West Enfield (βflow = 0.291 ± 0.327 SE) or free-flowing River sections (βflow = 

-0.183 ± 0.271 SE; Figure 2.5).  

  Fish in the Upstream release group had lower survival than those in the Downstream 

release group (Figure 2.6; Table A.3). Adding release site as an additive, group effect (βupstream = 

-0.829 ± 0.373 SE) was also included in the top model and improved support by >3.00 ΔAICc 

over the same model without release group (Table 2.2). Cumulative survival through Milford 

was estimated to be lowest for the upstream group in 2016 (Φ = 0.715 ± 0.069 SE), which was 

14.6% (± 8.1%) lower than the downstream group (Φ = 0.861± 0.042 SE). When the effect of 

release group was applied to 43.3rkm of River sections shared by both release groups (Stations 

6–9 and 11–15), we estimated cumulative survival to be lower for the upstream group in 2016 (Φ 

= 0.951 ± 0.028 SE) and 2018 (0.944 ± 0.028 SE) when contrasted with the downstream group 

during both years (2016: Φ = 0.978 ± 0.014 SE; 2018: Φ = 0.975 ± 0.014 SE).  

When we considered a virtual release immediately upstream of Milford Dam in 2016 and 

2018, we did not find support for an effect of release site on survival at Milford Dam (βupstream = -

0.141 ± 0.535 SE, p = 0.792). When combined with the larger CJS framework, the results from 

the post-hoc analysis suggest that while the Upstream release group experienced higher 

downstream mortality, the data do not allow us to disentangle the effect size at downstream dams 

from free-flowing river sections.  
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Figure 2.5. Predicted survival under changing flow conditions at West Enfield (A) and 

Milford (B) Dams juxtaposed with density plots representing the percent of observations 

across a range of river flows experienced by fish during the last detection at reach receiver 

station. Predictions were generated from β coefficients that allowed for the effect of flow on 

survival to vary for each section type. Shaded regions represent 95% CI’s. 
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Figure 2.6. Cumulative survival through Milford Dam and free-flowing River sections by 

release group. Fish in the Upstream group (shaded shapes) were released upstream of West 

Enfield Dam, so Milford Dam was the second dam encountered during spawning migrations. 

The Downstream group (unshaded shapes) was released downstream of West Enfield Dam and 

Milford Dam was the first and only dam encountered when moving downstream. Estimates 

reflective a single, additive, effect of release group when applied to River (triangles) and Milford 

Dam (squares) sections. Cumulative survival through River sections was truncated for the 

upstream group to reflect survival through 43.3km of river shared by both release groups. Error 

bars reflect 95% CIs. Specific estimates are offered in Table A.3. 
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Detection probability  

Overall, p at each receiver station was high throughout the study (mean p = 0.871, 

median p = 0.983; Table A.4). Detection probabilities were lowest in 2017 when river flows 

were highest (Figure 2.4), which likely lowered detection efficiency by increasing acoustic 

“noise” and reducing the amount of time fish were within detections areas of each station. 

Stations 3 and 10 had relatively low detection efficiency (p < 0.500) in 2016 and 2017. In effort 

to increase p in the following seasons, we deployed additional receivers at these stations in 2018 

and 2019, which likely contributed to higher detection efficiencies during subsequent seasons.  

Delay  

Fish moved slower in dammed than free-flowing reaches (Figure 2.7). On average, fish 

spent 5.2-fold longer passing West Enfield (mean=11.80h, median = 1.42h) and 5.9-fold longer 

passing Milford (mean=13.30h, median = 0.98h) compared to free-flowing River sections 

(mean=2.25h, median = 0.38h). Throughout the study, there was high variation individual 

passage time at both West Enfield (0.13h – 170h) and Milford (0.21h – 457h). Of the fish 

detected immediately above each dam, at least 28 fish at West Enfield (16%) and 15 fish at 

Milford (10%) were delayed >24h.  Of the 15 fish that spent more than one day upstream of 

Milford, all but two fish survived until the estuary, which suggests that passive carcass drift was 

not a major influence on these passage times.  

Adding an interactive effect of release year improved support by >14 ΔAICc over the 

effect of reach type alone, but annual variation in passage efficiency was most likely explained 

by inter- and intra-seasonal changes in river conditions (Table 2.3). Passage times through 

dammed sections were faster under high flow conditions (Figure 2.8), where there was a strong, 
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negative relationship between flow and log passage time at West Enfield (βflow= -0.607 ± 0.046 

SE) and Milford (βflow = -0.430 ± 0.081 SE) compared to weak relationship in free-flowing River 

sections (βflow = -0.147 ± 0.062 SE).  These effects were substantial enough that predicted 

passage time at West Enfield decreased from nearly 8h to < 15min when river stage rose from 

100m3·s-1  to 1000m3·s-1 

 

 

Figure 2.7. Fish velocities by river section. Histograms represent the proportion of 

observations of each velocity across all years through river (A) and dammed (B, C) reaches. 

Dotted lines represent the median velocity in each section and the number of observations for 

each section are listed below labels.  

 

Poor detection efficiency (p= 0.201 ± 0.050 SE) below Milford Dam in 2016 resulted in 

small sample of passage times this season, which forced us to assess a combined effect of release 

group for 2016 and 2018. Given the effect of river conditions on passage time, we excluded 
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years without two release groups (2017, 2019) from this analysis, and used a general linear 

model to isolate the effect of release group on passage time only at Milford Dam. We did not 

find support for an effect of previous dam passage on log passage time in this river section 

(βupstream = -0.103 ± 0.169 SE, p-value = 0.546).  

Table 2.3. Relative performance of generalized linear mixed models to characterize fish 

passage time (h·km-1) through different river sections. Model = parameter structure for fixed 

effects*, fish ID was treated as a random effect for all models. K = number of parameters used in 

each model, AICc = Akaike’s Information Criterion adjusted for small sample size, ΔAICc = 

difference in AICc from most supported model, weight = relative support for each model, R2 = 

reflects the variance described by fixed effects 

 

Model K AICc ΔAICc weight R2 

reach type × flow 8 3600.09 0.00 0.60 0.21 

reach type × flow + fish length 9 3600.91 0.82 0.40 0.21 

reach type × year + fish length 15 3626.23 26.14 0.00 0.21 

reach type × year 14 3626.59 26.51 0.00 0.21 

reach type × flow 6 3677.86 77.78 0.00 0.18 

reach type × fish length 6 3817.38 217.29 0.00 0.10 

reach type 5 3819.89 219.81 0.00 0.09 

reach type × fish length 8 3821.20 221.11 0.00 0.10 

length 4 4027.76 427.68 0.00 0.00 

null 3 4029.38 429.30 0.00 0.00 

 

*reach type = intervals were classified as free-flowing river, West Enfield Dam or Milford Dam. 

year = group effect of release year, river discharge = river flow (m3·s-1) as a continuous, reach-

specific variables for each fish, length = total fish length (cm). 
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Figure 2.8. Predicted passage times through West Enfield (dashed line), Milford (solid line) 

and free-flowing River reaches (dotted line), under different river flow. Flow data was 

downloaded from the USGS hydrological unit deployed downstream of West Enfield Dam near 

receiver Station 4. Passage time are scaled to reflect the number of hours for fish to move 1km in 

each river section. Shaded regions represent 95% CI’s.   
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Discussion 

Survival through dams 

Migrating American eels experienced lower survival through dams compared to free-

flowing river sections. Relative survival probabilities varied each year at West Enfield (96.4–

99.6%) and Milford (95.1–99.8%), but were substantially lower when compared to free-flowing 

River sections where survival was consistently high throughout the study (99.9–100.0%). In 

aggregate, this resulted in 1.4% and 3.2% lower Φrkm at West Enfield and Milford Dam 

respectively, relative to River section. While these differences may seem trivial, when we 

consider the total length of impounded river section, the two dams in our study resulted in 

removal of > 13% of fish, on average, compared to the expectation under a totally free-flowing 

river. Furthermore, our analysis was conducted in a system where fish encountered only two 

hydropower dams during outbound migration, and we would expect even greater losses in 

system with additional dams. For this long-lived, semelparous fish species, we anticipate any 

additional, unnatural mortality on reproductively mature individuals to adverse consequences for 

at the population level.  

Despite the inherent differences in dam structures encountered by migrating Anguillid 

eels across the globe, these survival estimates generally fell within the range of other eel passage 

studies where dam-specific mortality ranged between 6–42% (Winter et al. 2006; Calles et al. 

2010; Eyler et al. 2016). Our results further illustrate the potential for high variability in survival.  

In 2016, cumulative mortality was substantial through West Enfield (18%) and Milford (20%), 

compared with 2017 when mortality was ≤ 2% through both dams. Since eels were released 

under a range of river conditions (Figure 2.4), we suspect the majority of variation in passage 
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success is attributed to inter-seasonal changes in environmental conditions rather than the 

inherent stochasticity of risk imposed by each dam.  

 Seasonal changes in river flow likely afford eels different migration routes 

through dam structures during fall migration. When survival at both dams was nearly perfect in 

2017, river flows were consistently high. Survival through Milford was positively influenced by 

river discharge, and we predicted cumulative survival to exceed 95% when flows were 

>520m3·s-1. While survival at West Enfield was highest in the high flow year, βflow was not 

exclusive of 0.00. This result was unexpected because the downstream fish passage facility does 

not have an eel-specific bypass system. However, generally higher survival at West Enfield 

(relative to Milford) may have made it more difficult to detect the interaction because there was 

less room for high flows to increase survival relative to the baseline.  

While we were unable to specify passage route in  this study, previous work observed 

near perfect survival for fish passing through spillways, suggesting that most dam passage 

mortalities are turbine-related (Muir et al. 2001; Skalski et al. 2002; Eyler et al. 2016). Therefore, 

increased survival under high flow conditions observed in this study is likely the result of 

passing over spillways at Milford and West Enfield, effectively lowering the probability of 

passing through power stations. Our results are corroborated by Wertheimer and Evans (2005) 

study on steelhead (Oncorhynchus mykiss) where migratory success was reduced by 11.5% 

during non-spill years. Given the relationship between flow and survival observed in this study, 

adult American eels would benefit from dam operations that maintain spillway passage that is 

well synchronized with fall migration.  

Although we found a generally negative effect of dams on survival, it is likely we 

underestimated the full scope of mortality associated with West Enfield. First, two fish that likely 
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died when passing West Enfield were excluded from the analysis because we were unable to 

confirm migratory status during the release year. Additionally, we suspect that natural mortality 

in the freshwater-phase of adult eel migrations in the Penobscot River is negligible given a lack 

of large piscivores (Kiraly et al. 2015; Watson et al. 2018) and limited fishing activity, which are 

known to cause mortality in estuarine and marine phases of eel spawning migrations (Aarestrup 

et al. 2009; Béguer-Pon et al. 2012). Since adult eels can survive turbine strikes (Saylor et al. 

2019; Heisey et al. 2019), injured eels may continue migration (or be transported during high 

flow events), but succumb to injuries further downstream. In our study, all apparent losses in 

River sections below dams (n=10) occurred downstream of West Enfield before fish reached 

Milford. We assume that these disappearances are reflective of delayed mortalities related to 

passing West Enfield, but we cannot definitively distinguish these losses from natural mortality, 

tag loss, or failed detections. While these individuals only represented 4% of all fish released 

upstream of West Enfield, we expect aggregate, cumulative mortality at West Enfield would 

increase to 13.5% if these losses were attributed to dam passage.  Our conclusions are supported 

by a Ferguson et. al (2006) study which estimated that 46–70% of all dam-related mortalities of 

migrating Pacific salmon smolts (Oncorhynchus tshawytscha) were indirect, occurring 

downstream of dam infrastructure.  

  Although we may not have characterized the latent mortality attributed to West Enfield 

in the survival estimates, these effects may be imbedded within the model that included an 

additive, effect of release group. This effect suggests that previous dam passage experience 

increased mortality as eels continued downstream migration. However, we were unable to 

disentangle whether the previous passage experience resulted in lower survival at downstream 

dams or free-flowing sections of river. Either scenario implies a complex system-wide influence 
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of dam passage that can be well-removed from hydropower facilities.  We assume that latent 

mortality is the result of severe, turbine-related injuries (e.g. bruises, lacerations, fractured 

vertebrae, severed tails) as evidenced by other studies that have recaptured eels following dam 

passage (Besson et al. 2016; Heisey et al. 2019). Fish may die further downstream as a result, or 

these injuries may compromise swimming ability limit their capacity to locate safe passage 

alternatives at downstream dams. Research tracking the downstream movement of adult 

steelhead (Oncorhynchus mykiss) and juvenile Atlantic salmon (Salmo salar) characterized the 

severe implications for fishing pass multiple dams as few fish (0–16%) survived eight, 

consecutive passage events (Wertheimer and Evans 2005; Norrgård et al. 2013; Nyqvist et al. 

2016). Given the evidence of direct and latent mortality found in this study, we expect eels that 

begin migration upstream of multiple dams to have a relatively low probability of surviving to 

the marine environment.  

Delays at dams 

 Overall, eels moved slower in impounded than free-flowing sections of river (Figure 2.7). 

We offer evidence for high variation in individual passages times where some navigated dams in 

minutes while others spent days delayed in dam headponds before passing successfully. The high 

variability in delay aligns with other eel passage studies which also showed similar variation in 

site-specific passage efficiencies (Carr and Whoriskey 2008; Piper et al. 2013; Eyler et al. 2016). 

The magnitude of delays were exacerbated under low flow conditions (Figure 2.8). For example,  

passage times at both dams were not predicted to be comparable to free-flowing river reaches 

until flow exceeded 800m3·s-1, a condition that occurred in < 17% all dam passage observations. 

These long passage times suggest that when eels encounter dams under low flow conditions, 

passage routes are limited or difficult to locate. Our results are not surprising, given the 
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demonstrated influence of increased flow on downstream migration rates in other fish species 

(Smith et al. 2002; Wertheimer and Evans 2005; Norrgård et al. 2013). Some delays at dams, 

especially those delayed < 11h (approximately the average duration of daylight during eel 

migration) may reflect individual differences in arrival time at dam structures. American eel are 

largely nocturnal (Hedger et al. 2010; Aldinger and Welsh 2017), and downstream movements 

by adults occur at night (Béguer-Pon et al. 2014). Therefore, fish that arrive in dam headponds 

near sunrise, may discontinue movement until sunset, which would elongate passage times for 

reasons mostly independent of dams. This constraint of migration is likely also experienced by 

fish moving through free-flowing River sections and may explain why some migration speeds 

that were slower than otherwise expected in this region of the study area. Nevertheless, we found 

strong differences in passage times between Dam and River sections (Figure 2.7), highlighting 

the overall negative effect of dams on the speed of eel spawning migrations.  

 In combination with increased mortality, long delays during passage events may have 

further consequences for spawning success. Studies using three-dimensional telemetry reveal 

that eels exhibit extensive searching behavior in headponds and some individuals may briefly 

move upstream before making additional passage attempts at dams (Brown et al. 2009; Trancart 

et al. 2020). Downstream eel movements through the river and into the marine environment are 

highly synchronized with environmental triggers (flow, lunar cycle, tides) that are assumed to 

promote migratory success (Barbin et al. 1998; Durif et al. 2008; Acou et al. 2008; Béguer-Pon 

et al. 2014; Verhelst et al. 2018). The extensive delays experienced by migrating eels may 

prevent fish from moving under ideal conditions and may ultimately limit spawning potential, as 

excessive swimming associated searching activity may deplete energy stores reserved for 

migration (van Ginneken 2005).  However, given the sparse information about American eel 
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spawning activity, we know little about the reproductive consequences of migratory delays. 

Salmonid research has demonstrated that inefficient barrier passage during adult spawning 

migrations limit reproduction and are an impediment to population recovery  (Caudill et al. 2007; 

Lundqvist et al. 2008). Given the length and timing of American eel spawning migrations, we 

assume that extensive delays have sub-lethal consequences on eel populations of which the 

severity remains unknown. 

Implications for eel conservation 

In aggregate, our results offer compelling evidence for direct mortality, latent mortality, 

and sub-lethal consequences of dam passage for migrating adult eels. While many eel passage 

studies are limited to one season, our four-year study allowed us to track fish movement under a 

variety of conditions, and demonstrate that survival is conditional river flow and previous 

passage experience. Nightly turbine shutdowns and downstream, eel-specific bypass mechanisms 

are proven to be effective measures to mitigate the risk associated with hydropower dam passage 

(Eyler et al. 2016; Baker et al. 2019).  Our results support implementing these strategies, 

especially under low flow conditions, to maximize both safe and efficient passage.  However, we 

recognize both the physical and opportunity costs incurred by dam operators that implement 

these solutions, so a mitigation approach that considers in-river conditions may be an effective, 

interim solution. When river flows crest, usually after the cumulative response to frequent and 

heavy precipitation events throughout fall migration, we estimated the risks associated with dam 

passage to be relatively low. Therefore, fish that migrate during high flow events may benefit 

from more favorable migratory conditions and pass dams via spillways, which effectively 

reduces the probability of encountering turbine blades and increases passage efficiency.  Until 
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these flow thresholds are reached each year, our results suggest that eels are at serious risk of 

mortality and delay at dams.   

These findings would be most informative when paired with eel forecasting data that 

allows both fisheries managers and dam operators to predict when eels are moving through the 

system and modify dam operations accordingly.  While, the ASMFC American eel benchmark 

stock assessment and 2015 USFWS American eel biological report recognize the effectiveness of 

turbine shutdowns, they lament on the challenges of predicting downstream eel movement 

(Limburg et al. 2012; Shepard 2015). Despite the demonstrated relationship between Anguillid 

eel migration and high flow events (Durif et al. 2008; Acou et al. 2008), turbine shutdowns that 

are synchronized with large pulses in eel movement may simultaneously occur when passage 

conditions are most favorable and the risks of passage are naturally mitigated. Although these 

efforts are intended to protect large proportions of the population, they may neglect periods when 

eels are most vulnerable. Therefore, careful consideration of flow regimes may be beneficial 

when implementing mitigations strategies to balance losses of American eels and hydropower 

production.  
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APPENDIX A 

Table A.1. Relative survival estimates (annual and aggregate) of each reach throughout the 

study. Length = reach length (km). Estimated were extracted from stand-alone reach survival 

model. SE = standard error. CI = confidence interval. Length = length of each interval. 

Year Reach  Φrkm SE 95% CI Length 

2016 1 0.996 0.003 (0.983–0.999) 10.5 
 2 0.946 0.075 (0.498–0.997) 2.2 
 3 0.999 0.118 (0.000–1.000) 1.4 
 4 1.000 0.000 (1.000–1.000) 1.9 
 5 0.981 0.011 (0.943–0.994) 4.3 
 6 0.999 0.001 (0.995–1.000) 17.7 
 7 1.000 0.000 (1.000–1.000) 8.4 
 8 1.000 0.000 (1.000–1.000) 3.7 
 9 1.000 0.000 (1.000–1.000) 2.4 
 10 0.893 0.025 (0.835–0.933) 2 
 11 1.000 0.000 (1.000–1.000) 4.8 
 12 1.000 0.000 (1.000–1.000) 1.9 
 13 1.000 0.000 (1.000–1.000) 3.2 
 14 1.000 0.000 (1.000–1.000) 3.6 
      

2017 1 1.000 0.000 (1.000–1.000) 10.5 
 2 0.997 0.005 (0.940–1.000) 2.2 
 3 1.000 0.000 (1.000–1.000) 1.4 
 4 0.994 0.007 (0.944–0.999) 1.9 
 5 0.993 0.004 (0.976–0.998) 4.3 
 6 0.999 0.001 (0.995–1.000) 17.7 
 7 1.000 0.000 (1.000–1.000) 8.4 
 8 1.000 0.000 (1.000–1.000) 3.7 
 9 0.996 0.004 (0.969–0.999) 2.4 
 10 1.000 0.000 (1.000–1.000) 2 
 11 1.000 0.000 (1.000–1.000) 4.8 
 12 1.000 0.000 (1.000–1.000) 1.9 
 13 1.000 0.000 (1.000–1.000) 3.2 
 14 1.000 0.000 (1.000–1.000) 3.6 
      

2018 1 1.000 0.000 (1.000–1.000) 10.5 
 2 0.993 0.011 (0.867–1.000) 2.2 
 3 0.980 0.021 (0.860–0.997) 1.4 
 4 0.975 0.017 (0.906–0.994) 1.9 
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Table A.1 continued 

 

  
5 1.000 0.000 (1.000–1.000) 4.3 

 6 0.998 0.001 (0.994–0.999) 17.7 
 7 1.000 0.000 (1.000–1.000) 8.4 
 8 0.997 0.003 (0.978–1.000) 3.7 
 9 0.968 0.013 (0.930–0.985) 2.4 
 10 0.991 0.009 (0.942–0.999) 2 
 11 1.000 0.000 (1.000–1.000) 4.8 
 12 1.000 0.000 (1.000–1.000) 1.9 
 13 1.000 0.000 (1.000–1.000) 3.2 
 14 1.000 0.000 (1.000–1.000) 3.6 
      

2019 1 1.000 0.000 (1.000–1.000) 10.5 
 2 0.983 0.012 (0.933–0.996) 2.2 
 3 0.985 0.015 (0.903–0.998) 1.4 
 4 1.000 0.000 (1.000–1.000) 1.9 
 5 0.995 0.005 (0.968–0.999) 4.3 
 6 1.000 0.000 (1.000–1.000) 17.7 
 7 1.000 0.000 (1.000–1.000) 8.4 
 8 1.000 0.000 (1.000–1.000) 3.7 
 9 0.975 0.017 (0.909–0.994) 2.4 
 10 0.965 0.031 (0.819–0.994) 2 
 11 1.000 0.010 (0.000–1.000) 4.8 
 12 1.000 0.000 (1.000–1.000) 1.9 
 13 1.000 0.000 (1.000–1.000) 3.2 
 14 1.000 0.000 (1.000–1.000) 3.6 
      

Aggregate 1 0.999 0.001 (0.997–1.000) 10.5 
 2 0.989 0.006 (0.968–0.997) 2.2 
 3 0.981 0.010 (0.948–0.993) 1.4 
 4 0.992 0.005 (0.973–0.998) 1.9 
 5 0.994 0.003 (0.985–0.998) 4.3 
 6 0.999 0.000 (0.998–1.000) 17.7 
 7 1.000 0.001 (0.995–1.000) 8.4 
 8 1.000 0.001 (0.000–1.000) 3.7 
 9 0.974 0.008 (0.953–0.985) 2.4 
 10 0.978 0.009 (0.953–0.990) 2 
 11 1.000 0.000 (1.000–1.000) 4.8 
 12 1.000 0.000 (1.000–1.000) 1.9 
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Table A.1. continued 

 13 1.000 0.000 (1.000–1.000) 3.2 
 14 1.000 0.000 (1.000–1.000) 3.6 
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Table A.2. Relative (Φrkm) and cumulative survival (Φ) by river section each year. Yearly 

estimates were extracted from model with reach-type and release year interaction, while 

aggregated estimates were extracted from reach-type model alone. Φ = Φrkm raised to the length 

of the section. SE = standard error. CI = confidence interval. Length = length of each river 

section (km)   
 

Year Section Φrkm SE 95% CI Φ SE 95% CI Length 

2016 River 0.9992 0.0005 (0.9975–0.9997) 0.953 0.026 (0.902–1.000) 58.1 
 West Enfield 0.9641 0.0127 (0.9290–0.9822) 0.818 0.059 (0.702–0.934) 5.5 
 Milford 0.9507 0.0118 (0.9216–0.9693) 0.800 0.044 (0.715–0.886) 4.4 

2017 River 0.9990 0.0004 (0.9977–0.9996) 0.945 0.024 (0.898–0.992) 58.1 
 West Enfield 0.9964 0.0026 (0.9854–0.9991) 0.980 0.014 (0.953–1.000) 5.5 
 Milford 0.9983 0.0025 (0.9703–0.9999) 0.993 0.011 (0.971–1.000) 4.4 

2018 River 0.9990 0.0005 (0.9974–0.9996) 0.944 0.027 (0.892–0.997) 58.1 
 West Enfield 0.9838 0.0081 (0.9576–0.9939) 0.914 0.041 (0.833–0.995) 5.5 
 Milford 0.9790 0.0077 (0.9574–0.9897) 0.911 0.031 (0.849–0.972) 4.4 

2019 River 0.9996 0.0004 (0.9971–0.9999) 0.976 0.023 (0.930–1.000) 58.1 
 West Enfield 0.9893 0.0061 (0.9675–0.9966) 0.943 0.032 (0.880–1.000) 5.5 
 Milford 0.9717 0.0118 (0.9369–0.9875) 0.881 0.047 (0.789–0.973) 4.4 

Aggregate River 0.9984 0.0003 (0.9977–0.9989) 0.913 0.016 (0.881–0.945) 58.1 
 West Enfield 0.9836 0.0056 (0.9679–0.9917) 0.913 0.029 (0.857–0.970) 5.5 

 Milford 0.9657 0.0070 (0.9490–0.9771) 0.858 0.027 (0.804–0.911) 4.4 

 
 

Table A.3. Relative (Φrkm) and cumulative (Φ) survival through Milford Dam and free-

flowing River sections. Φ = Φrkm raised to the length of the section (Milford = 4.4km, River = 

43.3km), and River estimates Φ reflect cumulative survival through river sections navigated 

group. SE = standard error. CI = confidence interval 
 

 

Year Section Release site Φrkm SE 95% CI Φ SE 95% CI 

2016 Milford  Downstream 0.9666 0.0108 (0.9377–0.9823) 0.861 0.042 (0.778–0.944) 

  Upstream 0.9266 0.0202 (0.8758–0.9576) 0.715 0.069 (0.580–0.850) 

2018 Milford  Downstream 0.9862 0.0059 (0.9681–0.9941) 0.941 0.025 (0.892–0.990) 

  Upstream 0.9690 0.0120 (0.9347–0.9855) 0.870 0.047 (0.778–0.963) 

2016 River Downstream 0.9995 0.0003 (0.9983–0.9999) 0.978 0.014 (0.952–1.000) 

  Upstream 0.9988 0.0007 (0.9963–0.9996) 0.951 0.028 (0.895–1.000) 

2018 River Downstream 0.9994 0.0003 (0.9982–0.9998) 0.975 0.014 (0.948–1.000) 

  Upstream 0.9987 0.0007 (0.9964–0.9995) 0.944 0.028 (0.889–0.998) 
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Table A.4. Annual detections probabilities (p) at each receiver station. * indicate stations 

where we fixed p= 0.00. SE = standard error. CI = confidence interval. 

 

Receiver station Year p SE 95% CI 

2 2016 1.000 0.000 (1.000–1.000) 

3 2016 0.000 0.000 (0.000–0.000) 

4 2016 1.000 0.000 (1.000–1.000) 

  5* 2016 0.000 0.000 (0.000–0.000) 

6 2016 1.000 0.000 (1.000–1.000) 

7 2016 1.000 0.000 (1.000–1.000) 

8 2016 1.000 0.000 (1.000–1.000) 

9 2016 1.000 0.000 (1.000–1.000) 

10 2016 0.201 0.050 (0.120–0.317) 

11 2016 0.733 0.057 (0.608–0.830) 

12 2016 0.940 0.029 (0.851–0.977) 

13 2016 0.985 0.015 (0.902–0.998) 

14 2016 0.955 0.025 (0.870–0.985) 

15 2016 1.000 0.000 (1.000–1.000) 

2 2017 1.000 0.000 (1.000–1.000) 

3 2017 0.261 0.044 (0.184–0.356) 

4 2017 0.682 0.047 (0.584–0.767) 

5 2017 0.949 0.022 (0.883–0.979) 

6 2017 0.925 0.027 (0.851–0.964) 

7 2017 0.968 0.018 (0.904–0.990) 

8 2017 0.978 0.015 (0.918–0.995) 

9 2017 1.000 0.000 (1.000–1.000) 

10 2017 0.380 0.053 (0.283–0.487) 

11 2017 0.298 0.050 (0.210–0.403) 

12 2017 0.239 0.044 (0.163–0.337) 

13 2017 0.880 0.034 (0.797–0.933) 

14 2017 0.522 0.052 (0.420–0.622) 

15 2017 1.000 0.000 (1.000–1.000) 

2 2018 1.000 0.000 (1.000–1.000) 

3 2018 0.752 0.065 (0.606–0.857) 

4 2018 0.977 0.023 (0.854–0.997) 

5 2018 1.000 0.000 (0.000–1.000) 

6 2018 1.000 0.000 (0.000–1.000) 

7 2018 0.989 0.011 (0.923–0.998) 

  8* 2018 0.000 0.000 (0.000–0.000) 

9 2018 1.000 0.000 (1.000–1.000) 

10 2018 0.940 0.029 (0.852–0.977) 

  11* 2018 0.000 0.000 (0.000–0.000) 

  12* 2018 0.000 0.000 (0.000–0.000) 
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Table A4. continued  

13 2018 0.937 0.027 (0.857–0.973) 

14 2018 0.987 0.013 (0.916–0.998) 

15 2018 1.000 0.000 (1.000–1.000) 

2 2019 1.000 0.000 (1.000–1.000) 

3 2019 0.959 0.028 (0.851–0.990) 

4 2019 1.000 0.000 (1.000–1.000) 

5 2019 1.000 0.000 (0.000–1.000) 

6 2019 1.000 0.000 (1.000–1.000) 

7 2019 0.980 0.020 (0.869–0.997) 

8 2019 1.000 0.000 (0.000–1.000) 

9 2019 1.000 0.000 (1.000–1.000) 

10 2019 0.948 0.035 (0.816–0.987) 

  11* 2019 0.000 0.000 (0.000–0.000) 

  12* 2019 0.000 0.000 (0.000–0.000) 

13 2019 0.558 0.076 (0.409–0.698) 

14 2019 0.884 0.049 (0.749–0.951) 

15 2019 1.000 0.000 (1.000–1.000) 

 
 



80 

 

BIOGRAPHY OF THE AUTHOR 

Matthew Allen Mensinger was born in Nashville, Tennessee on October 22, 1993. He 

grew up near Duluth, Minnesota, but spent his first 22 summers in Woods Hole, Massachusetts 

where he grew interested in fish and science. Matt graduated from Hermantown High School in 

2012 and went to play football and study biology at Carleton College. After earning his Bachelor 

of Arts in 2016, he moved to East Greenwich, Rhode Island where he worked commercial 

fisheries observer across southern New England and coached high school lacrosse. Eager to 

return to school, Matt joined the Maine Cooperative Fish and Wildlife Research Unit and 

Department of Wildlife, Fisheries, and Conservation Biology at the University of Maine in 

August 2018. Matt is a candidate for the Master of Science degree in Wildlife Ecology from the 

University of Maine in December 2020. 


	American Eel Behavior and Survival in an Impounded River System
	Recommended Citation

	tmp.1609255838.pdf.khtJB

