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Abstract 
 
  
 Molecular chaperones are highly conserved, ubiquitous enzymes that maintain 

proteostasis by mediating protein structure in vivo. Post-translational modifications 

(PTMs) can act as a functional switch between chaperone pathways, allowing for cells to 

enact a coordinated response to cellular perturbations. Several PTMs are well-

characterized in the context of chaperone function, though the role of N-terminal 

acetylation is commonly overlooked, leading to an overwhelming lack of scientific 

understanding in this area of study. Ssa1, a Hsp70 class chaperone endogenous to 

Saccharomyces cerevisiae, is likely N-terminally acetylated, though in vitro studies of 

Ssa1 are limited by current purification methods which are resource-intensive. To address 

these limitations, we developed a one-step purification scheme that uses a Protein-A 

fusion transformant strain in combination with IgG-conjugated magnetic Dynabeads to 

facilitate Ssa1 pull-down.  Using this method, Ssa1 was natively isolated in high purity 

and yield while retaining its activity and our modification of interest. This study also 

established the basis for evaluating differences Ssa1 chaperone activity due to disruption 

of N-terminal acetylation by purifying Ssa1 in N-terminal acetylation deficient 

backgrounds. Through the expression and purification of the Ssa1 co-chaperone, Ydj1, 

this study has additionally provided components needed to facilitate future co-chaperone 

binding experiments, which will help determine the contribution of N-terminal 

acetylation to Hsp70 chaperone activity and efficiency.  
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Introduction 

 The majority of proteins expressed in cells must achieve a specific, highly defined 

three-dimensional structure, known as the native state, to execute proper enzymatic 

function (Petrescu et al. 2000; Klaips et al. 2018; Turoverov et al. 2010). The native state 

is dictated by the amino acid sequence of a given protein (Anfinsen, 1973), though now, 

the native state considered a designation of function rather than of structural character 

(Turoverov et al. 2010). The conceptual redefinition of native state is attributable to the 

discovery that several proteins retain their biological function while exhibiting notable 

structural disorder. Regardless of structural disorder, the majority of eukaryotic proteins 

require the assistance of chaperone proteins to assume their respective native 

conformations efficiently and within a biologically relevant timescale (Klaips et al. 

2018).  

Since their initial discovery, several families of chaperone proteins were 

identified across all domains of life, illustrating their highly conserved functional role in 

maintaining proteostasis. Molecular chaperones and their regulatory cofactors both 

mediate and coordinate the processes of protein synthesis, protein folding, 

conformational maintenance, and protein degradation (Klaips et al. 2018). In doing so, 

molecular chaperones prevent protein misfolding, aggregation, and the accumulation of 

toxic protein species (Kellner et al. 2014; Vjestica et al. 2013; Klaips et al. 2018) that is 

characteristic to several diseases linked to aberrant protein folding (Lee et al. 2013; 

Barral et al. 2004). Continued study indicates that post-translational modifications 

(PTMs) likely regulate alternative chaperone function (Griffith and Holmes, 2019). 
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Accordingly, the effects of PTMs on chaperone activity have become of increasing 

interest to both scientific and medical fields. 

 PTMs are known to be of critical importance to the efficiency of Hsp70 

chaperones. Hsp70 chaperones are the most evolutionarily conserved family of chaperone 

proteins, with the number of isoforms expressed increasing with organismal complexity 

(Gupta et al. 1993, Boorstein et al. 1994). Hsp70s exhibit extreme functional diversity 

and are able found to interact with a wide variety of client substrates within all major 

intracellular compartments (Gupta et al. 1993; Boorstein et al. 1994). Hsp70 expression  

was traditionally characterized as inducible because of their initial discovery under 

conditions of thermal stress, though it is now recognized that Hsp70s are also expressed 

constitutively (Lindquist and Craig, 1988).  

Organelle-associated Hsp70s are typically encoded by a single gene in the 

majority of organisms; conversely, cytoplasmic Hsp70s are usually encoded by a series 

of homologous genes. In Saccharomyces cerevisiae (yeast), there are at least fourteen 

identified Hsp70 isoforms, which are further categorized into five subclasses according to 

amino acid sequence identity conservation (Boorstein et al. 1994). Only two subclasses, 

Ssa and Ssb, exhibit a cytoplasmic distribution, with the expression of members of the 

Ssa subclass considered essential for cell viability (Boorstein et al. 1994) 

It is well established that Hsp70 chaperones are subject to several PTMs. PTMs 

modify the biochemical characteristic of specific amino acid side chains, resulting in the 

modified protein exhibiting both an altered form and dynamic, which serves to increase 

proteomic diversity (Truman et al. 2012; Morgner et al. 2015).To date the roles of several 

PTMs, including phosphorylation and lysine acetylation, have been characterized in the 
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context of Hsp70 activity; however, the role of N-terminal acetylation in Hsp70 

chaperone function remains comparatively limited (Griffith and Holmes, 2019).  

N-terminal acetylation is a PTM that leads to proteomic diversity through the 

constitution of a cellular acetylome, wherein N-terminally acetylated proteins exhibit an 

alternate function and dynamic, subsequently allowing cells to react specifically to 

environmental stressors or cellular perturbations by various intracellular signaling 

pathways. N-terminal acetylation is catalyzed by a collection of N-terminal 

acetyltransferases (NATs), which transfer acetyl moieties from acetyl-coenzyme A to a-

amino groups at specific N-terminal residues. One theoretical target of N-terminal 

acetylation is Ssa1, a member of the Ssa subclass of Hsp70 chaperones that are 

endogenous to S. cerevisiae. As an Hsp70 chaperone, Ssa1 works in tandem with its co-

chaperones, to maintain cellular proteostasis by restoring the native conformations of 

misfolded proteins via a transient, ATP-driven mechanism. 

There are several factors that implicitly hinder the study of Ssa1, though one of the 

most limiting factors is its purification. Purifying Ssa1 is often both a resource-intensive 

and time-consuming process, requiring expensive technologies and large starting volumes 

of culture to obtain a satisfactory yield. 

 To facilitate studies that further probe the functional and mechanistic changes 

associated with the N-terminal acetylation of Ssa1, we developed an efficient, user-

friendly, one-step purification method. Our method uses previously transformed strains 

expressing  Protein-A-tagged Ssa1 in combination with IgG-conjugated magnetic 

Dynabeads to facilitate pull-down without disrupting our modification of interest . Our 

results indicate that our method is able to natively isolate high yields of pure acetylated 
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and unacetylated Ssa1 without compromising enzymatic activity, allowing for future 

investigation of the effects of N-terminal acetylation on Hsp70 function and dynamic.  

 

Molecular Chaperones 

To maintain proteostasis, cells utilize the coordinated action of molecular 

chaperones to preserve the appropriate synthesis, folding, conformation, and degradation 

of target proteins (Jayark et al. 2020). The amino-acid sequence of any given protein, 

encoded in genomic DNA, dictates its native conformation. This fact exemplified by the 

ability of small proteins re-fold (within a microsecond timescale) without assistance 

when removed from denaturant in vitro (Hartl et al. 2011). This is a considerably more 

difficult feat for multi-domain proteins, which often requires several minutes to hours to 

achieve their respective native states, if even possible (Hartl et al. 2011). In vivo 

conditions further complicate protein folding due to macromolecular crowding within the 

cytosol, increasing the tendency of non-native and conformationally flexible proteins to 

aggregate (Hartl et al. 2011). By preventing aberrant intermolecular interactions and 

lowering entropic costs, chaperone proteins minimize protein aggregation, maintain 

protein solubility, and promote protein refolding (Griffith and Holmes, 2019).  

Chaperone proteins are best described as proteins that interact, stabilize, or assist 

a substrate protein in acquiring its native conformation without being present in its final 

structure (Hartl FU, 1996; Hartl et al. 2001).  Traditionally, chaperone proteins are 

categorized within families. Though structurally unrelated, members of chaperone 

families are often referred to as heat-shock proteins (Hsps) due to their induction under 

thermal stress and are classified according to molecular weight in kDa (Hartl et al. 2001). 
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sHsps  

Small heat shock proteins (sHsps) are a diverse chaperones chaperone family that 

is expressed in all domains of life (Liu et al. 2015; Jaya et al. 2009; Uji et al. 2019). The 

number of genes encoding sHsps increases with organismal complexity. Bacteria, 

Archaea, and unicellular eukaryotes usually possess one or two genes encoding sHsps, 

while multicellular eukaryotes may contain several, reaching 19 in Arabidopsis thaliana 

and 10 in humans (Żwirowski et al. 2017; Uji et al. 2019). Among the Hsps, the low-

molecular-weight sHsps (12-43-kDa) are the most strongly upregulated under stress 

conditions, when they may constitute >1% of the total cell protein concentration in 

certain cell populations (Liu et al. 2015; Rutsdottir et al. 2017; Uji et al. 2019). sHsps are 

known interact with a wide variety of substrates, and consequently have roles in several 

physiological processes including cell proliferation, cell differentiation, and cytoskeletal 

organization, among others (Giese et al. 2005; Uji et al. 2019). 

Generally, sHsps identify and bind to aggregation-prone, partially unfolded 

substrates, acting to stabilize and promote a refolding-competent state in an ATP-

independent manner (Liu et al. 2015, Giese et al. 2005; Cashikar et al. 2005; Uji et al. 

2019). While this is ongoing, ATP-driven chaperones, namely Hsp70 and Hsp100, will 

together rescue and restore the native conformation of the substrate initially bound by the 

sHsp (Liu et al. 2015, Giese et al. 2005; Cashikar et al. 2005; Uji et al. 2019; Żwirowski 

et al. 2017; Peschek et al. 2013). A striking feature of sHsps is assembly into oligomeric 

complexes, ranging from the inclusion of 12 to over 24 subunits (McLoughlin et al. 

2016). While oligomerized, sHsps preserve quaternary structure, which limits their ability 
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to interact with substrates (Liu et al. 2015; Poulain et al. 2010). Notably, the equilibrium 

between the oligomeric and smaller sHsps species shifts under increased temperatures, 

with sHsps assuming a dimeric formation that promotes binding of exposed hydrophobic 

patches belonging to partially misfolded proteins (Żwirowski et al. 2017).  

Monomeric sHsps contain a signature a-crystallin domain (ACD) that is bordered 

by a variable-length N-terminal region (NTR) and a short C-terminal region (CTR) 

(Rutsdottir et al. 2017; McLoughlin et al. 2016). The ACD is a conserved C-terminal 

domain that acts as supportive structure within the sHsp (Cashikar et al. 2005; Rutsdottir 

et al. 2017), while the CTR directly contributes to sHsps oligomerization by the presence 

one of the following conserved motifs, I-X-I, I/V-X-I, I-X-I/S, or I/V-X-I/V (Rutsdottir et 

al. 2017, Poulain et al. 2010). The N-terminal region (NTR), which facilitates substrate 

binding, often varies in composition between sHsps, likely contributing to differences in 

substrate specificity between different sHsps (Rutsdottir et al. 2017).  

 

Hsp90 

Hsp90s are both a highly conserved and ubiquitous chaperone family that exist in 

all living domains except Archaea (Johnson et al. 2009; Sullivan et al. 1997; Hoter et al. 

2018). Hsp90s can constitute £ 2% of mammalian proteins present under non-stress 

conditions (Johnson et al., 2009; Sullivan et al. 1997; Hoter et al. 2018), and it is known 

that the expression of at least one isoform is required for eukaryotic viability (Johnson et 

al. 2009). Hsp90 function is ATP-dependent, requiring the association of Hsp70, Hsp40, 

and other co-chaperones (Johnson et al. 2009; Prodromou et al. 1997). In eukaryotic 

cells, cytosolic Hsp90s interact with specific client proteins that are involved in several 
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cellular processes including signal transduction, cell cycle regulation, cell viability, cell 

differentiation, apoptosis, adaptive immunity, and hormone responsiveness (Prodromou 

et al. 1997; Hoter et al. 2018). The additional co-chaperones that may be affiliated with 

the Hsp90-70-40 complex are shown to be dependent on the identity of the client protein 

(Prodromou et al. 1997).   

Twelve Hsp90 co-chaperones are observed in S. cerevisiae, all of which are 

present as homologs in mammalian cells, though mammals have additional co-

chaperones that are not otherwise present in yeast (Johnson et al. 2009 While the specific 

functions of Hsp90 co-chaperones remain unknown, though their association to Hsp90 

can either be spontaneous or may require the binding of ATP to the Hsp90 NTD for 

successful association (Sullivan et al. 1997; Prodromou et al. 2000). Mutations of the 

Hsp90 N-terminus which prevent ATP binding are known to alter co-chaperone binding 

(Prodromou et al. 2000). 

The overall molecular structure of Hsp90 comprises three conserved domains, the 

ATPase N-terminal domain (NTD), the C-terminal domain (CTD), and the middle 

domain (MD) (Hoter et al. 2018). Eukaryotic Hsp90s also include a flexible charged 

linker domain (CR) between the NTD and MD, which was shown to be essential for 

chaperone function, client interaction, and conformational flexibility (Hoter et al. 2018).  

Under physiological conditions, Hsp90 typically exists as a homodimer, though 

when dimerized, Hsp90 assumes a molecular clamp conformation that allows for 

substrate interaction (Hoter et al. 2018). Hsp90 dimerization is regulated by the NTD and 

occurs by interaction of CTDs via conserved MEEVD or KDEL motifs, the presence of 

which are isoform and cellular localization dependent (Prodromou et al. 2000; Hoter et 



 12 

al. 2017). Co-chaperone binding occurs in the NTD, MD, and CTD, though client protein 

binding occurs primarily in the MD and CTD (Hoter et al. 2018). When ATP is bound, 

Hsp90 exhibits a conformation that exhibits decreased substrate affinity by means of 

decreasing the overall hydrophobicity of the chaperone. Assuming this low-affinity 

conformation, Hsp90 is able to bind and stabilize client proteins in substantially folded 

states (Prodromou et al. 2000).  

 

Hsp100 

Hsp100 chaperones, or Clp proteins, belong to the AAA+ family of ATP-

dependent molecular chaperones (Zeymer et al. 2013; Krzewska et al. 2001). Generally, 

Hsp100s promote the disassembly of protein aggregates, though specific members can 

also convey cellular thermotolerance or act as subunits of ATP-dependent proteases 

(Krzewska et al. 2001). There are two classes of monomeric Hsp100s that are designated 

by the number of NBDs (nucleotide binding domains) present. Class I Hsp100 

chaperones have two NBDs, while class II chaperones contain a single NBD (Lee et al. 

2003; Xeymer et al. 2013). When not present in a monomeric state, Hsp100s typically 

oligomerize into hexameric ring complexes. 

Of the Hsp100s, Hsp104 is especially notable for its essential role in conveying 

thermotolerance in S. cerevisiae (Okuda et al. 2015). While there are prokaryotic 

homologs of Hsp104, such as ClpB in Escherichia coli, a mammalian equivalent has not 

been identified (Okuda et al. 2015; Vacher et al. 2005). When acting in cooperation with 

the Hsp70/40 chaperone system, Hsp104 solubilizes aggregates in a multistep fashion 

(Okuda et al. 2015). The protein aggregates are initially bound by an Hsp70/40 complex, 
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which then recruits Hsp104/ClpB (Okuda et al. 2015). Once recruited, Hsp104/ClpB uses 

the hydrolysis of ATP to thread the aggregate through the central pore of its hexameric 

ring, promoting reactivation and solubilization of the aggregates (Okuda et al. 2015; 

Weibezahn et al. 2004).  

 

Hsp70 

Hsp70 chaperones associate with client proteins during the early stages of the 

folding process (Jana et al. 2009). Hsp70s are capable of acting dynamically and may 

promiscuously associate to aberrantly folded substrates or preferentially binding to folded 

substrates (Laufen et al. 1999; Umehara et al. 2018; Rosenzweig et al. 2019). Hsp70s are 

the most evolutionarily conserved protein known and are expressed in all organisms 

(Daugaard et al. 2007). The conserved nature of Hsp70 is reflected structurally, as the 

prokaryotic Hsp70, DnaK, shares 50% amino acid identity with eukaryotic Hsp70s 

(Daugaard et al. 2007). Furthermore, Hsp70 exhibits extreme functional conservation, as 

demonstrated by its ability to complement chaperone action both in vitro (Jäättelä et al. 

1992; Li et al. 1990) and via its transgenic expression (Li et al. 1990; Pelham HR, 1984).     

Hsp70s have a universal structure comprised of a N-terminal 44-kDa ATPase 

nucleotide binding domain (NBD) and an 18-kDa C-terminal substrate-binding domain 

(SBD), which interacts with short hydrophobic regions of client proteins (Kellner et al. 

2014; Taneva et al. 2010; Lui et al. 2007; Mayer and Kityk, 2015; Sharma et al. 2009).  

The NBD contains four subdomains which are further separated into two lobes (I and II) 

by an intervening central ATP binding pocket. The SBD contains a two-layered b-

sandwich domain (SBDb) that surrounds the substrate binding site, an a-helical lid 



 14 

domain (SBDa), which shields the SBD when the chaperone assumes a closed 

conformational state, and an intrinsically disordered region present at the extreme C-

terminus (C-IDR) (Gong et al. 2018; Zhang et al. 2014). Notably, the C-IDR contains an 

EEVD motif and a GGAP motif which promotes co-chaperone and substrate recognition, 

respectively (Gong et al. 2018; Zhang et al. 2014). Notably, the substrate diversity of 

Hsp70 is due to the degenerative recognition motif within the SBDb, which features an 

amino acid composition that is highly advantageous for client binding (Jaya et al. 2009; 

Rüdiger et al. 1997).  

The NBD and SBD domains are connected by a highly conserved interdomain 

linker, which is largely hydrophobic and  allosterically coordinates the respective 

domains, which is essential for Hsp70 function (Umehara et al. 2018; Zhang et al. 2014). 

Interdomain allosteric communication allows proper Hsp70 function via the cycling 

between two main conformations, as dictated  by the inherent ATPase activity of the 

chaperone (Jana et al. 2009). When ATP is bound within the NBD, Hsp70 assumes an 

open conformation which exhibits a low substrate affinity along with high rates of 

substrate association and dissociation (Rippmann et al. 1991; Shorter et al. 2008; Abrams 

et al. 2014; Mayer and Kityk, 2015). Conversely, ATP hydrolysis promotes a closed 

conformation, which displays a 100- and 1000-fold decrease in substrate on/off rates, 

respectively, and a 10- to 50-fold increase in substrate affinity (Rippmann et al. 1991; 

Abrams et al. 2014; Shorter et al. 2008; Mayer and Kityk, 2015). The reiteration of these 

two conformations ultimately result in the promotion of the substrate to its natural state 

(Abrams et al. 2014).  
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The regulatory mechanisms underlying Hsp70 allostery remain to be 

characterized, though the conformational cycling by which Hsp70 facilitates substrate 

refolding is regulated by nucleotide binding, substrate identity, Hsp40 co-chaperones, and 

nucleotide exchange factors (NEFs), respectively. Both the association of Hsp40s, which 

coordinate Hsp70 ATP-ase activity with substrate binding, and NEFs, including the 

members of the GrpE, Snl1 (Bag-1), Sse1/Sse2 (Hsp110), Fes1 (HspBp1) families, which 

expedite nucleotide exchange, greatly enhance chaperone efficiency (Abrams et al. 2014; 

Mayer and Kityk, 2015; Sharma et al. 2009; Ngosuwan et al. 2003).  

 

Hsp40s and NEFs 

When acting in concert with members of the Hsp70 family, Hsp40s target Hsp70s 

to specific substrates by modulating Hsp70 ATPase activity and stabilizing Hsp70-

polypeptide complexes (Vjestica et al. 2013; Lu and Cyr. 1998; Laufen et al. 1999). 

Hsp40 activity is essential for Hsp70 efficiency though the mechanism by which Hsp40 

chaperones target Hsp70s to substrates is not yet known (Fan et al. 2005).  Hsp40 

members exhibit unique combinations of four characteristic domains that were initially 

described in the prototypic DnaJ endogenous to Escherichia coli : the J-domain, a C-

terminal peptide fragment, a G/F-rich containing region, and a zinc finger-like domain 

(Lu and Cyr, 1998; Greene et al. 1998; Hu et al. 2008). Conservation across the four 

characteristic domains occurs only in a small selection of Hsp40s; therefore, Hsp40s are 

categorized into three subtypes according to their domain composition. Only Type I 

Hsp40s, including Ydj1 in S. cerevisiae and Hdj2 in humans, share all four canonical 

domains with DnaJ (Hu et al. 2008; Kityk et al. 2018; Cheetham et al. 1994; Cyr and 
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Douglas, 1994). Overall, the J-domain, a helical harpin structure (70-75 residues), is the 

most conserved of the Hsp40 domains (Kityk et al. 2018; Lu et al. 1998; Cheetham et al. 

1994; Wall et al. 1995). Additionally, the J-domain contains the signature HPD motif 

which is responsible interacting with Hsp70 and regulating the ATPase activity of Hsp70, 

modulating substrate binding (Fan et al. 2005; Misselwitz et al. 1998; Sha et al. 2000) 

 Conversely, NEFs, which bind to the Hsp70 NBD, hasten the process of 

nucleotide exchange (Abrams et al. 2014). Four families of NEFs are known to interact 

with Hsp70: GrpE, Sse1/Sse2 (Hsp110), Fes1 (HspBp1), and Snl1 (Bag-1); the last three 

have homologs present in humans (Abrams et al. 2014). Overall, each NEF family is  

structurally distinct and varies from one another in terms of general mechanism, 

interaction, and affinity for Hsp70 (Abrams et al. 2014; Sondermann et al. 2001).  

 

Molecular chaperones in disease and treatment   

 The medical relevance of protein folding is considerable. A number of human 

diseases, including the classic examples of Alzheimer’s disease (AD) and cystic fibrosis 

(CF), are now suggested to result from aberrant protein folding (Barral et al. 2004). 

While there are various mechanisms by which aberrant protein folding contributes to 

cellular dysfunction, it is evident that chaperone proteins play an increasingly direct role 

in protein-folding diseases. Consequently, the overall contribution of chaperone proteins 

to disease onset and their potential as therapeutic targets have become subjects of 

increased study.  

 To date, several inheritable diseases have been linked to mutations occurring in 

chaperone-encoding genes. There are too many examples to discuss extensively within 
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this body of work; however, this point is easily exemplified by the study of a-crystallins, 

a well-known sHsp (Barral et al. 2004; Jaya et al. 2009; Giese et al. 2005).  In humans, a-

crystallin is composed of two subunits, aA and aB, both encoded by separate genes 

(Barral et al. 2004). Missense mutations of a conserved arginine residue within the core 

domains of each subunit implicated in the onset of human disease.  The R120G in αB-

crystallin results desmin-related myopathy (DRMs) (Ojha et al. 2010; Treweek et al. 

2005), while the R116C mutation in aA-crystallin results in hereditary cataracts (Litt et 

al. 1998).  

aA-crystallin is a major cytosolic constituent of the lens within the eye. While it 

is not well understood how R116C aA-crystallin affects lens opacity, it is likely that the 

inability of aA-crystallin to promote the folding of other major lens proteins leads to the 

precipitation of b- and g-crystallin and subsequent cataract formation (Litt et al. 1998; 

Barral et al. 2004). Conversely, aB-crystallin interacts desmin protein within skeletal 

muscle cells and is suggested to promote either folding or intermediate filament assembly 

(Djabali et al. 1997; Barral et al. 2004).  

Hsp90 is also known to contribute to several pathologies, though most notably 

Parkinson’s disease (PD). PD is a neurodegenerative disorder that is characterized by 

bradykinesia, rigidity, resting tremors, the loss of dopaminergic neurons in the substantia 

nigra and the formation of Lewy bodies in patients (Wang et al. 2008). Some inherited 

cases of PD are the result of a toxic gain of function in leucine-rich repeat kinase 2 

(LRRK2), which normally complexes with Hsp90 (Wang et al. 2008). 

The importance of Hsp70 chaperones in disease is impossible to overlook (Barral 

et al. 2004), especially polyglutamate expansion diseases. To date, at least eight inherited 
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human neurodegenerative diseases are linked to polyglutamate expansion, including 

Parkinson’s disease, prion diseases, and Alzheimer’s disease (Magrane et al. 2004). 

Polyglutamine domain expansion promotes protein toxicity, dysfunction, and neuronal 

loss, promoting aggregation and formation of ubiquinated nuclear inclusions (NI) 

(Warrick et al. 1999). Though while chaperone proteins contribute to disease, it is 

increasingly apparent that Hsps are of notable importance in devising novel treatments. 

For example, on a Drosophila melanogaster model of polyglutamine disease, directed 

expression of Hsp70 suppressed polyglutamine-induced neurodegeneration in vivo, 

indicating that Hsp70 may provide a means of treatment (Warrick et al. 1999).  

Another example is found in the transgenic expression of Hsp27, which was 

determined to reduce cortical damage after cerebral ischemia through mediating cell 

death in mice (van der Weerd et al. 2009). Similarly, the use of Hsp90 inhibitors 

promotes the degradation of mutant LRRK2 by blocking the disassociation of Hsp90-

LRRK2, establishing a potential route of treatment for PD (Wang et al. 2008).  

Overall, it is clear that modulating chaperone function holds incredible 

therapeutic potential thought it is worthwhile to also consider the role of post-

translational modification (PTMs) in both disease pathology and altered chaperone 

function. PTMs occur in response to dynamic cellular conditions and are catalyzed by 

highly specialized enzymes. Several PTMs, including phosphorylation, methylation, and 

acetylation involve the covalent addition of small functional groups to target proteins at 

specific residues, though macromolecules, including carbohydrates and lipids, may also 

be used to modify target substrates.  
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It is well known that PTMs can act as a functional switch between different 

chaperone pathways by altering chaperone binding to both clients and co-chaperones; 

however, the role of N-terminal acetylation in chaperone function is commonly 

overlooked, leading to an overwhelming lack of scientific understanding in this area of 

study. 

 

N-terminal acetylation 

N-terminal acetylation is an irreversible protein modification in which an acetyl 

moiety is transferred from acetyl-coenzyme A (Ac-CoA) to the a-amino group of a 

polypeptide chain (Polevoda et al. 1999). N-terminal acetylation increases proteomic 

diversity by constituting an intracellular “acetylome,” wherein  N-terminally acetylated 

proteins exhibit altered function and provide the basis for cell signaling, allowing a given 

cell to react specifically to perturbation. The prevalence of N-terminal acetylation in 

eukaryotes is undebatable as approximately 85.0% of eukaryotic cellular proteins have 

been shown to be N-terminally acetylated by global analyses (Arnesen et al. 2009; 

Polevoda et al. 2000.; Polevoda et al. 1999). Notably, the modification occurs rarely, if at 

all, in Archaea and Bacteria (Arnesen et al. 2009; Polevoda et al. 2000.; Polevoda et al. 

1999), which is in agreement with the frequency of N-terminally acetylated proteins 

occurring in accordance with organismal complexity (Polevoda et al. 1999; Arnesen et al. 

2009). While  N-terminal acetylation constitutes a complex regulatory system in 

eukaryotes, the physiological consequence of N-terminal acetylation remains to be 

understood. 
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NAT Complexes 

N-terminal acetylation is catalyzed by a collection of enzymes known as N-

terminal acetyltransferases (NATs).  As mentioned previously, NATs catalyze the 

transfer of acetyl functional groups from acetyl-coenzyme A to the a-amino group at the 

N-terminal residues, neutralizing the positive charge of the residue and barring further 

modification of the N-terminus (Kontaxi and Piccardo,  2017; Polevoda et al. 2002).  

While referred to generally as a PTM, N-terminal acetylation occurs co-translationally 

when ³ 20 residues extrude from the ribosome (Kontaxi and Piccardo, 2017; Polevoda et 

al. 2002).Because N-terminal acetylation is not dependent on the identity of a single 

residue,  the N-terminal sequences subject to this modification exhibit high sequence 

diversity. Consequently, attempts to predict the likelihood of N-terminal acetylation on 

the basis N-terminal residue identity are largely ineffective (Helbig et al. 2010). Most of 

the current insights concerning the NAT complex specificity are credited to knockout 

studies performed in yeast. It is now known that NATs exhibit highly characteristic 

substrate specificities that depend on the identity of multiple residues, typically those 

present in the P2 and P3 positions (Singer and Shaw, 2003). Collectively, serine, alanine, 

methionine, glycine, and threonine constitute over 95% of N-terminally acetylated 

residues observed in eukaryotic organisms (Polevoda and Sherman, 2000; Polevola et al. 

1999).  

NATs are part of the GCN5 (general control non-derepressible 5)-related 

acetyltransferase (GNAT) superfamily (Coleman et al. 1996). Characteristic to the GNAT 

superfamily, all NATs contain the conserved motif, Q/RxxGxG/A, which is responsible 

for binding of acetyl-CoA (Coleman et al. 1996). While NATs can exist in monomeric 
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states, they typically function in multimeric complexes that consist of one major subunit, 

which dictates both substrate specificity and catalytic activity, and up to two auxiliary 

subunits, which have varied functions (Liszczak et al. 2013).  

To date, six different NAT complexes (NatA-F) are currently described in 

mammals, though NatA-E are also observed in S. cerevisiae (Arnesen et al. 2009; Forte 

et al. 2011). Approximately 50% of the yeast proteome is proposed to be N-terminally 

acetylated by the collective action of NatA, NatB, and NatC, along with their respective 

catalytic subunits, Ard1, Nat3, and Mak3 (Pezza, et al. 2009; Arnesen et al. 2009; Aksnes  

et al. 2015; Gautschi et al. 2003; Singer and Shaw, 2003).  

In terms of substrate specificity, NatA acetylates alanine, glycine, threonine, and 

serine residues exposed by methionine cleavage (Gautschi et al. 2003; Arnold, et al. 

1999), while NatB targets methionine residues for acetylation when they are followed by 

either alanine, glutamine, asparagine, or methionine at the P2 position (Forte et al. 2011; 

Polevoda et al. 2003). While thought to be influenced by other sequence elements, NatC 

acetylates methionine residues adjacent to either isoleucine, leucine, tryptophan, or 

phenylalanine at P2 (Forte et al. 2011; Polevoda, 2001).  Of the NAT complexes,  NatD 

appears to be more specialized, catalyzing the N-terminal acetylation of histones, while 

NatE only acetylates substrates with leucine at P3 and proline at P4 (Forte et al. 2011). 

 

NatA 

NatA is comprised of two main subunits: its adaptor subunit, Nat1, and its 

catalytic subunit, Ard1, a GNAT homologue which recognizes a wide range sequences, 

allowing for a diverse collection of appropriate substrates. (Eiyama et al. 2015; Gautschi 
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et al. 2003) The genes encoding  the respective NatA subunits were first suggested by 

nat1- and ard1- mutants, which lacked NAT activity and exhibited the similar pleiotropic 

phenotypes of slow growth, temperature sensitivity, failure to enter G0, and failure to 

sporulate (Mullen et al. 1989). In the same study, the co-linear functionality of Nat1 and 

Ard1 was further emphasized through a 20-fold increase in NAT activity, reported only 

when both genes were overexpressed (Mullen et al. 1989). Subsequent studies have since 

confirmed that both NatA subunits are essential for activity, as single mutants were 

unable to execute N-terminal acetylation of characteristic substrates in vivo (Mullen et al. 

1989; Polevoda et al. 1999; Arnesen et al. 2005). It is proposed that a third subunit, Nat5, 

may also be present in NatA complexes. While the function of Nat5 is unknown, single 

deletion mutants for either Ard1 or Nat5 exhibited nearly identical phenotypes, exhibiting 

slow growth, temperature and salt sensitivity, and osmotic sensitivity, among others 

(Geissenhoner et al. 2004). 

Nat1, the non-catalytic NatA subunit, mediates the stable interaction of the NatA 

complex with the large ribosomal unit and promotes association with nascent 

polypeptides of approximately 50 to 80 amino acids in length (Gautshi et al. 2003). 

Tetratricopeptide repeat (TPR) motifs within Nat1 likely mediate this interaction (Gautshi 

et al. 2003; Blatch, G.L., Lassle, M. 1999), guiding the nascent polypeptide to the 

catalytic subunit, Ard1, and the functionally undefined subunit, Nat5, allowing for N-

terminal acetylation to occur (Gautshi et al. 2004; Geissenhoner, et al. 2004). 
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NatB  

NatB is composed of one catalytic and one auxiliary subunit, requiring both 

subunits for it activity (Van Damme et al. 2012; Polevoda et al. 2003; Ametzazurra et al. 

2008). Nat3, the 22-kDa catalytic subunit of NatB, was first identified by DNA sequence 

alignment, wherein it was determined that while sequence similarity to other Nat subunits 

was limited overall, Nat3 contained several motifs that of high sequence similarity 

(Polevoda et al. 1999; Coleman et al. 1996).  Most notably, residues 144-149 of Nat3  

resembled the acetyl-CoA binding motif of the GNAT superfamily, Q/RxxGxG/A, 

allowing for the function of the subunit to be deduced and later confirmed (Polevoda et 

al. 1999; Coleman et al. 1996). 

 In contrast, the 93-kDa subunit, Mdm20, exhibits no homology to previously 

characterized proteins (Hermann, et al. 1997). Mdm20 was initially identified as a protein 

essential for tropomyosin-F-actin interaction, though it was later determined that Mdm20 

complexes Nat3 to acetylate substrates, including tropomyosin 1 (Tmp1p) (Caesar et al. 

2005). While both subunits are required for NatB activity, subsequent work demonstrated 

that single knockout strains for each subunit displayed many distinctive phenotypes 

relating to stress resilience and when challenged to grow under minimal media (Caesar et 

al. 2005). NatB may play regulatory role in the cell cycle, as bioinformatic analyses 

revealed a notable overrepresentation of proteins involved in cell cycle regulation and 

DNA processing among NatB substrates (Caesar et al. 2005). Notably, such an 

observation was not made for NatA or NatC knockouts, which failed to display 

significant phenotypic differences upon knockout of functional subunits (Caesar et al. 

2005).  
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NatC 

NatC is responsible acetylates of polypeptides with Met-Ile, Met-Leu, Met-Trp, 

and Met-Phe N-termini, although other sequence elements are thought to influence 

processing as well (Polevoda et al. 2001; Forte et al. 2011). In contrast to other NAT 

complexes, not much is known about the NatC complex or its targets (Wenzlau et al. 

2006). NatC acetyltransferases contain three subunits: the catalytic subunit, Mak3, and 

auxiliary subunits, Mak10 and Mak31 (Polevoda et al. 2001). All three subunits are 

required for catalytic activity, as the deletion of any subunits results in abnormal, 

pleiotropic phenotypes, including the inability to acetylate NatC substrates in vivo, and  

diminished growth under stress conditions or while in minimal media (Polevoda et al. 

2001). 

 

Implications of N-Terminal Acetylation 

Overall, N-terminal acetylation is thought to be important to many cellular and 

molecular processes, but its definitive purpose is debated (Van Damme et al. 2011; Lee et 

al. 1989). Most often, N-terminal acetylation is associated with its role in the N-end rule 

pathway and ubiquitin-mediated proteolysis (Persson et al. 1985; Hershko et al. 1984; 

Hwand et al. 2010).  

The N-end rule pathway regulates the half-life of a protein by the specific 

targeting of degradation signals, N-degrons, which promotes polyubiquitination and 

subsequent degradation of the targeted protein (Shemorry et al. 2013; Varshavsky, A. 

2011; Kim et al. 2014). Together, the complimentary nature of N-end rule pathway and 
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ubiquitin-mediated proteolysis enables the degradation of a majority of cellular 

polypeptides, which in turn mediates a legion of physiological functions (Varshavsky, A., 

2011).  

In addition to mediating protein degradation, N-terminal acetylation also holds 

key roles within cellular differentiation, viability, metabolism and proliferation, protein 

translocation, membrane attachment, and protein complex formation (Van Damme et al. 

2014). Unsurprisingly, because of its wide involvement in many processes, the 

phenotypic and physiological effects of N-terminal acetylation are highly varied, 

seemingly dependent on multiple variables, including the protein affected, the NAT 

complex responsible for acetylation, and the organism in which the process occurs. As 

mentioned previously, reduced N-terminal acetylation due to knockout of certain NAT 

complexes lead to fragile growth phenotypes but general viability in yeast. Such a result 

suggests that N-terminal acetylation is important to maintaining function in only some 

proteins; however, the consequence of organismal complexity must be considered. 

 Notably, disturbances in N-terminal acetylation often resulting in the onset of 

potentially lethal diseases in humans.  For example, N-terminal acetylation has a 

suggested  role in the onset of  neurodegenerative disease. a- synuclein is a primarily 

neuronal protein that is known to assemble into amyloid fibrils, the onset of which 

characterizes the often-lethal Parkinson’s disease (PD) and dementia with Lewy Bodies 

(DLB) (Kang et al. 2012; Anderson et al. 2006).  N-terminal acetylation is known to 

affect the secondary structure of a-synuclein in important functional regions, likely 

attributable the stabilization of helicity by neutralization of charge. N-terminal 
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acetylation of a-synuclein generally results in both short and long-range conformational 

effects accompanied by altered rates of fibril assembly (Kang et al. 2012).  

Ogden’s syndrome, the first human genetic disorder directly linked to a mutation 

in NatA, provides another striking example of N-terminal acetylation in human disease 

(Van Damme et al. 2014). Ogden’s syndrome is an X-linked disorder that manifests 

symptomatically by the appearance of cranial abnormalities, hypotonia, and cardiac 

issues, eventually culminating in infant mortality (Van Damme et al. 2014).  NATs have 

also been implicated as both potential oncoproteins and tumor suppressors, with NAT 

expression being varied in cancerous and non-cancerous tissues (Kalvik et al. 2013). 

Furthermore, manipulated NAT expression in cancer cells resulted in apoptosis, 

autophagy or even cell-cycle arrest (Kalvik et al. 2013). 

The purpose of N-terminal acetylation in cells continues to be enigmatic due to 

the variety of effects resultant of this modification. However, its evolutionary importance 

is clear due to its appearance prevalence in eukaryotes. Move over, due to its known 

regulatory roles in cellular processes and implied roles in disease, it is of great 

importance to continue to define the downstream N-terminal acetylation as it may 

improve scientific understanding in these areas.  

 

Purification of Hsp70  

A majority of studies focused on Hsp70s use S. cerevisiae as an expression system 

due to its similarity to higher eukaryotes in protein processing and modification 

(Needham et al. 2015). Among the fourteen Hsp70 homologs expressed in yeast, the 

cytoplasmic Ssa (Stress seventy A) proteins, comprised of Ssa1-4, are the most well-
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studied (Needham et al. 2015; Shaner et al. 2005). The Ssa subfamily is the only 

cytosolic subfamily of Hsp70s that is essential (Needham et al. 2015; Shaner et al. 2005; 

Wegele et al. 2003b ). While all Ssa proteins are expressed differentially, at least one of 

the possible four Ssas must be expressed for cell viability (Shaner et al. 2005; Wegele et 

al. 2003b). Of the other Ssa chaperones, Ssa1 is of particular interest due to its dynamic 

gene expression under varied physiological conditions and its roles in proteostasis and 

prion propagation (Needham et al. 2015; Shaner et al. 2005; Wegele et al. 2003b).   

Current studies of Ssa1 prove limited due to the capacities and intentions of current 

purification methods. While several methods exist, they are fairly similar in approach, 

and are often both resource intensive and time-consuming. To demonstrate this point, the 

details common to Ssa1 purification methods that are used within the field will be briefly 

summarized. 

The majority of Ssa1 purifications require a high initial cell density prior to lysis, as 

most protocols require cell density measurements to approximate 10 ODs to achieve 

sufficient chaperone yield (Cyr et al. 1992, Needham et al.2003). One method calls for a 

starting OD of 2.5, though in this method, Ssa1 is expressed in Pichia pastoris rather than 

its endogenous yeast. P. pastoris is a notable eukaryotic expression system because it can 

achieve gram amounts of recombinant protein per liter of culture by secretory and 

intracellular means (Ahmad et al.2014; Wegele et al. 2003.) Noting this exception, 2-6 

liters of starting cell culture is typical for methods using S. cerevisiae, emphasizing the 

need for high starting cell densities to obtain a reasonable yield (Cyr et al. 1992). 

Often cells are lysed via glass bead lysis (Cyr et al. 1992; Needham et al. 2003; 

Wengele et al. 2003), followed and several rounds chromatography. A combination of 
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affinity chromatography and ion-exchange chromatography is commonly used to obtain 

Ssa1 fractions from cell lysates (Cyr et al. 1992; Needham et al. 2003). By utilizing both 

ion-exchange column chromatography, which separates ionizable molecules based on 

their total charge (GE Healthcare, 2018), and affinity chromatography, a technique which 

utilizes the specific interaction between an immobilized ligand and the protein of interest 

to isolate the desired protein from its surrounding mixture (GE Healthcare, 2016), it is 

relatively ensured that pure Ssa1 protein will be isolated.  

If not immediately precipitated (Wengele et al. 2003),  chaperone fractions are 

combined, dialyzed, concentrated, and subjected additional rounds of chromatography in 

order to ensure purity of the sample (Cyr et al. 1992; Needham et al. 2003; Wengele et al. 

2003). Some methods will alternate different chromatographic approaches to enhance 

purity and yield, as exemplified by one method which used hydrophobic interaction 

chromatography, a technique that separates based on hydrophobicity (GE Healthcare, 

2018) followed by size exclusion chromatography, which separates molecules based on 

molecular size (GE Healthcare, 2018c; Wengele et al. 2003).  

Protein purity was seldom reported, though one method stated that Ssa1 preparations 

were 98% pure (Cyr et al. 1992). Chaperone yields reported varied between methods, 

though several yields were within the milligram range, indicating reasonable purification 

efficiency (Needham et al. 2003; Wengele et al. 2003).  Notably, only one method 

utilized an affinity tag, namely a His tag, to purify Ssa1 by affinity chromatography 

(Aron et al. 2005). While this method was efficient and obtained a reasonable yield, its 

use of an affinity-tag emphasized its novelty when compared to other purification 

schemes for Ssa1. 
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From parsing protocols used in the field, it is clear that Ssa1 purifications are 

generally demanding in terms of resources, time, and experience. Most methods are 

large-scale, multistep, and produce similar chaperone yields and purity. Whiles such 

methods suit their general purpose, they are generally exclusionary to smaller institutions 

that lack the necessary resources.  

Realizing this opportunity, we developed a highly efficient, one-step purification 

method that is both user-friendly and affordable. By using a Ssa1-Protein-A fusion strain 

in combination with IgG-conjugated magnetic beads, our method facilitates purification 

by the high-affinity interaction between the Protein-A tagged Ssa1 and IgG-conjugated 

magnetic beads. Using this purification method, we avoid using expensive of 

chromatography columns in lieu of magnetic Dynabeads, which are more affordable, and 

can be conjugated to IgG in house.  We have eliminated the need for large starting culture 

volumes as this method obtains high yields of Ssa1 from a starting OD of 5, which can 

typically be achieved by 25mL cultures. Notably, the yields that are achieved by this 

purification are in a 3-fold increase compared to those reported by similar methods 

(Griffith et al. 2018). Furthermore, our method is compatible with native elution, yielding 

enzymatically active chaperone (Griffith et al. 2018), allowing for the future study of 

Ssa1 in the context of N-terminal acetylation. 
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Materials and Methods  

Cell culture 

Yeast were grown in standard rich media YPD in either a roller drum or shaking 

incubator at 30°C and harvested at mid-to late-exponential phase as determined by optical 

density (OD600). E. coli were grown in standard LB in either a roller drum or shaking 

incubator at 37°C and harvested when OD600 ³ 0.5.  

 

SDS-PAGE and Western blotting 

Samples were resolved on a polyacrylamide gel and stained with Coomassie BB R-250 

(Thermo Fisher) or transferred to a PVDF membrane for Western blot analysis. Anti-

Ssa1/2 (Invitrogen), anti-Gpd1 (Thermo Fisher), anti-GAPDH (Thermo Fisher), and anti-

Ydj1 (Thermo Fisher) were used to probe resolved proteins, with Goat-anti-rabbit HRP 

(Thermo Fisher) used as a secondary antibody. Proteins were visualized by ECL (Thermo 

Scientific) and imaged using a ChemiDoc XRS+ imaging system (Bio-Rad).   

 

Ssa1-PrA Purification  

Cultures were grown in YPD liquid media and were continually diluted to maintain 

exponential phase growth for 24 hours before lysis. 15 OD of exponentially growing 

culture were pelleted and washed with cold distilled water. Cells were pelleted in a 

2.0mL flat bottom microcentrifuge tube at 13,000 rpm for 5 minutes at 4°C. Cells were 

then resuspended in cold lysis buffer (20mM Tris-HCl (pH 8.0), 150mM NaCl, 10mM 

MgCl2, 2mM PMSF, protease inhibitor tablet (Thermo Fisher Scientific), and 1mM 

EDTA). Glass beads were then added to a total volume of 1mL and vortexed for 7 
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minutes at 4°C. Cell lysates were separated from glass beads and mixed with 10x 

detergent (20mM Tris-HCl (pH 8.0), 150mM NaCl, 10mM MgCl2, 1% NP-40, and 

0.25% Na-deoxycholate). 

500µL of lysate-detergent mix was introduced to 50µL of IgG conjugated magnetic 

Dynabeads and allowed to nutate at 4°C for at least 1.5 hours. The supernatant was 

removed, and magnetic beads were washed once in wash buffer (20mM Tris (pH 8.0), 

150mM NaCl, 10mM MgCl2, 1% NP-40, 0.25% Na-deoxycholate) at 4°C and three times 

at room temperature. Magnetic beads were washed once with 1mL of 50mM Tris-HCl 

(pH 7.0) at room temperature. Proteins were prepared for SDS-PAGE by either heating 

for 10 minutes at 70°C in non-reducing SDS buffer (150mM Tris-HCl pH 6.8, 30% 

glycerol, 6% SDS, 0.03% bromophenol blue) to detect any non-covalently associated 

proteins or boiled for 3 minutes in SDS-PAGE sample buffer for total protein detection.  

 

Native Elution of Ssa1  

Ssa1 was eluted under native conditions by incubating washed magnetic beads with 30µL 

of elution buffer (0.1M sodium acetate pH 3.5), followed by immediate neutralization by 

the addition of 3µL of 1.5M Tris (pH 8.8). Native Ssa1 elution was achieved by 

incubating washed magnetic beads with a 1:300 dilution of PreScission Protease (PPX, 

GE Healthcare) for 16 hours at 10°C.  
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Proteinase K digestion 

Eluted Ssa1 protein was concentrated using a Micron YM-30 centrifugal filter and 

reservoir (Millipore) at 14000 x g for 14 minutes at 4°C. A buffer exchange was 

performed the concentrated protein by adding 25µL of cold Proteinase K assay buffer 

(25mM Tris pH 7.4, 50mM KCl, 5mM MgCl2) and repeating centrifugation under the 

previous specifications. The concentrated protein was resuspended in 22.4µL of 

Proteinase K assay buffer and transferred into a new reservoir. 2.5µL of 50mM ATP was 

then added and the mixture remained at room temperature for 20 minutes. An 8µL 

sample was taken before addition of the Proteinase K as a negative control. 1µL of 1:100 

Proteinase K was added to the mixture. 8µL samples were taken at 5 and 15 minutes, 

respectively. All samples were introduced to an equal volume of 40% T.C.A. and 

remained at 4°C for 30 minutes after completion of the digestion reaction. Samples were 

centrifuged at 13.3 x 103 min-1 at 2°C for 20 minutes. Pelleted protein was then washed 

with 500µL of cold 100% acetone and resuspended in SDS-PAGE sample buffer.  

 

Isoelectric Focusing of Ssa1-PrA 

55µL of 10x detergent was added yeast cell lysates. Lysates were then mixed with IEF 

sample buffer (Bio-Rad) in a 1:5 proportion and remained on ice until gel loading. 

Lysates were resolved on a Criterion IEF Pre-Cast gel pH 3-10 (Bio-Rad) on a Criterion 

cell (Bio-Rad) as per manufacturer’s instructions. The IEF gel was protonated in 0.1% 

acetic acid mixture for 5 minutes, followed by submersion in distilled water for 1 minute. 

Resolved proteins were transferred to a PVDF membrane using a Trans-Blot Turbo 

Blotting System (Bio-Rad) and were probed by Western blot.  



 33 

 

Cross-linking of Ssa1 and associated proteins  

Duplicate cultures were grown in YPD liquid media and were continually diluted to 

maintain exponential phase growth for 24h before lysis. 15 OD equivalents were pelleted 

and washed twice with reaction buffer (1M HEPES pH 7.5) before resuspension in 

reaction buffer. 75µL crosslinker solution (20mM DSP (Thermo Fisher) in dry DSMO) 

was added to reach a final concentration of 1.5mM of the crosslinker solution. The 

reaction mixture remained at room temperature for 30 minutes. Stop solution (1M Tris 

pH 7.5) was then added to the reaction mixture to a final concentration of 15mM, 

remaining at  room temperature for 15 minutes. After 15 minutes, cells were pelleted and 

washed three times with cold lysis buffer. Cells were lysed by glass bead lysis and Ssa1-

PrA and any  associated proteins were co-purified from cell lysates as previously 

specified.  

 

Transformation of Ydj1 plasmid 

1µL of purified Ydj1 plasmid was added to 50µL of DE3 competent cells and the mixture 

sat on ice for 30 minutes. Cells were heat-shocked for 3 minutes at 37°C and immediately 

transferred back to ice. Cells remained on ice for  at least 2 minutes, after which, 250µL 

of LB was added to the cells and allowed to grow in a roller drum at 37°C for 20 minutes. 

75µL of transformed cells were then plated onto a solid LB +amp plate and sat for 1 

minute at room temperature before the plates were inverted and incubated for 12 hours at 

37°C.  

 



 34 

Purification of Ydj1 

Transformed cells were grown in LB+amp liquid media and continually diluted to 

maintain exponential phase growth for 24 hours. Before lysis, cells were transferred to 

500mL of fresh LB+amp followed by induction with IPTG for 3 hours under standard 

growth conditions. Induced cells were pelleted, resuspended in 50mL lysis buffer (50mM 

Tris pH 9.0, 50mM NaCl, 1 protease tablet; 50µM PMSF), and lysed by sonication. Cell 

lysates were pelleted at 15000 RPM for 30 minutes at 4°C. Ydj1 was purified using a 

5mL HisTrapFF nickel Sepharose affinity column on a fast protein liquid 

chromatography (FPLC) ÄKTA system, both obtained from GE Lifesciences. The 

column was initially washed before sample injection with Buffer A (50mM Tris pH 9.0; 

150mM NaCl) (flow rate: 3.0mL/min). 41mL of cell lysates were then loaded onto the 

column (flow rate: 2.0mL/min). Column bound proteins were washed with 10 column 

volumes of Buffer A and followed by elution with 4 column volumes of Buffer B (50mM 

Tris pH 9.0; 150mM NaCl; 250mM imidazole). 1mL fractions were collected manually 

during each phase of the purification with the exception of the elution, wherein a 5mL 

fraction was collected during the corresponding mAU peak that indicated the elution of 

column bound Ydj1. All chromatographic data and the execution of the purification 

protocol was administered and recorded by Unicorn start software version 1.1. 15µL 

samples were obtained from the respective collected fractions and were then mixed with 

SDS-PAGE sample buffer. 
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Results  

To understand the effects of N-terminal acetylation on Ssa1 chaperone function, 

we needed to develop a specific pull-down protocol of Ssa1 without disrupting any 

modification of the N-terminus.  To accomplish this goal, a Ssa1-PrA fusion construct 

was transformed into both wild-type (WT) and N-terminal acetylation-deficient 

backgrounds, (Dard1 and S2P, respectively). The Ssa1-PrA fusion construct features a 

Protein-A affinity tag at the extreme C-terminus of Ssa1. Because of the naturally 

occurring affinity between IgG and Protein A, the Protein-A tag allows for pull-down of 

the tagged chaperone when used in combination with magnetic Dynabeads conjugated 

with rabbit IgG. The Ssa-PrA fusion construct additionally encodes a precision protease 

cut site located upstream of the C-terminal affinity tag, allowing for specific proteolytic 

cleavage of the affinity tag from the chaperone when desired.  

WT Ssa1 is known to be N-terminally acetylated, though is expected that the 

chaperone will not be N-terminally acetylated by the NatA when expressed in either the 

Dard1 or S2P backgrounds. In Dard1 background, the NatA complex lacks its catalytic 

subunit, blocking the N-terminal acetylation for all targets of NatA, including Ssa1. In the 

S2P strain, the serine residue at the second position of Ssa1 within the N-terminus is 

changed to proline, specifically blocks N-terminal acetylation of Ssa1 via the XPX rule. 

Expression of the Ssa1-PrA fusion construct in these three genetic backgrounds 

respectively allows for comparison-based chaperone activity studies in the context of N-

terminal acetylation. 

The expression of our fusion protein in WT and N-terminal acetylation-deficient 

genetic backgrounds was previously confirmed. To quantify Ssa1-PrA expression, the 
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total protein content of cell lysates was resolved by SDS-PAGE. Cell lysates were probed 

with an Hsp70-specific antibody to ensure the specificity of the Protein-A fusion, while a 

GAPDH-specific antibody established the load control. Because Protein-A is bound 

specifically by antibodies containing an IgG-heavy chain, Protein-A is recognized by 

goat anti-rabbit HRP, allowing for visualization of the Ssa1-PrA fusion protein; therefore, 

both Ssa1 and Protein-A were visualized by immunoblot (Figure 1). Ssa1-PrA was 

expressed consistently in all three of the evaluated genetic backgrounds. Parent-strains 

produced a single band by Western blot, while transformed strains produced two bands. 

The band present at the higher molecular weight represents the Ssa1-PrA fusion protein, 

which has a higher molecular weight than endogenous Ssa1 due to its Protein-A affinity 

tag; while the band present at the lower molecular weight is endogenously expressed 

Ssa2.  

After confirming expression, we next developed a protocol that would purify 

Ssa1-PrA from WT cell lysates. Therefore, we adapted a purification method that used 

magnetic Dynabeads conjugated with rabbit IgG to facilitate Ssa1-PrA pull-down the 

naturally high-affinity interaction between Protein-A and IgG.  Ssa1-PrA pull-down was 

highly specific, as non-specific proteins were not observed with colloidal Coomassie 

Blue stain (Figure 2). A single band of approximately 55-kDa was observed, though this 

band is the heavy chain of the rabbit IgG and is expected under the denaturing conditions 

of the SDS-load buffer (Figure 2, lanes 5 and 6). Silver stain confirmed the specificity of 

Ssa1-PrA pull-down as non-specific proteins were not observed (Figure 3). 

Immunoprecipitants from WT, Dard1, and S2P strains resolved by gel electrophoresis 

indicated that Ssa1-PrA pull-down was consistent for all generated strains (Figure 4).  
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While Ssa1-PrA immunoprecipitants were highly pure, we next wanted to assess 

the quantity of chaperone that was obtained via our pull-down method. Ssa1-PrA 

immunoprecipitants obtained from a 5 OD equivalent of WT cells were resolved by SDS-

PAGE alongside a BSA titration, ranging from 10 to 25µg (Figure 5). The band intensity 

corresponding to the immunoprecipitated Ssa1-PrA was intermediate to that of the 10 and 

25µg BSA, suggesting that approximately 15µg of Ssa1-PrA can be obtained from 5mL 

of exponentially growing culture as starting material.  

Though Ssa1-PrA pull-down was both highly specific and efficient,  the Ssa1 

chaperone network is diverse and subject to interaction of Ssa1 with a wide variety of co-

chaperones, nucleotide-exchange factors, and client proteins; all of which modulate 

chaperone activity. In addition to these factors, both x-ray crystallographic analyses 

(Wilbanks and McKay, 1995) and kinetic assays (Feifel et al. 1999) indicated that 

monovalent ion identity dramatically influences enzymatic activity by stabilizing the N-

terminal nucleotide binding cleft. From these studies, it was determined K+ promoted 

maximal ATPase activity and client binding, while Na+ induced minimal levels of these 

activities (Feifel et al. 1999); therefore, we next assessed if our method could co-purify 

Ssa1 in complex with one of clients by repeating Ssa1-PrA pull-down under low and high 

salt concentrations (150mM and 300mM, respectively) and with NaCl substituted for 

KCl. While we did not observe confirmed pull-down of Ssa1 clients, different amounts of 

Ssa1-PrA were pulled-down under each condition (Figure 6), demonstrating that pull-

down is robust under altered experimental conditions. These data suggest that our method 

may have an alternative use in the quick optimization of pull-down conditions necessary 

for downstream analyses.  
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Though pull-down was highly specific, efficient, and robust, the removal of Ssa1-

PrA from magnetic beads was achieved under denaturing conditions. Denaturing 

conditions inactivate the chaperone, rendering it unsuitable for downstream analyses 

requiring enzymatic activity. The dissociation of IgG bound to Protein-A Sepharose 

columns can be achieved using an elution buffer with a pH of 3.5 (Duhamel et al. 1979); 

therefore, we repeated the immunoprecipitation of Ssa1-PrA to determine whether a 

similar pH shift could elute our fusion protein from our magnetic beads sufficiently. 

Proteins were eluted with 0.1M sodium acetate buffer (pH 3.5) followed by subsequent 

neutralization of eluates with 1.5M Tris buffer (pH 8.8). Ssa1-PrA was found to elute 

under these conditions, though a portion of the fusion protein remained associated with 

the beads post-elution (Figure 7). Nevertheless, using the pH shift acted sufficiently as a 

native elution technique for Ssa1-PrA, preserving both native chaperone structure and 

ensuring compatibility with downstream assays.  

Using the pH shift as a native elution technique allowed for timely elution of 

Ssa1-PrA from the IgG-conjugated magnetic Dynabeads, though it did not address the C-

terminal Protein-A affinity tag, the presence of which may inherently hinder structural 

characterization of natively isolated chaperone. The Ssa1-PrA construct was designed to 

include a PreScission protease (PPX) cut-site upstream of the C-terminal Protein-A 

affinity tag. PreScission protease is highly specific, cleaving between Gln and Gly 

residues of its recognition sequence LeuGluValLeuPheGln/GlyPro, resulting in a reduced 

likelihood of off-target proteolysis. Digestion of Ssa1-PrA by PreScission protease results 

in the removal of the Protein-A tag and the native elution of Ssa1 (Figure 8a). Ssa1 
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elution appears to be complete with no uncut fusion protein associated with the magnetic 

beads, as only IgG and Protein-A are visible by colloidal Coomassie stain (Figure 8b).  

 Eluting Ssa1-PrA by PreScission protease yielded highly pure Ssa1 chaperone 

under native conditions. Presumably, removal of the Protein-A affinity tag yields 

chaperone that was structurally comparable to endogenously expressed Ssa1. It was 

reported that partial proteinase K digestion of Ssa1 in the presence of ATP produces a 

distinct 45-kDa fragment, indicative of N-terminal nucleotide-binding domain (NBD), as 

well as a transient fragment of approximately 60-kDa, representing the protected C-

terminal substrate-binding domain (SBD) in the ATP-bound state (Needham and Masison 

2008). To determine whether characteristic features of Ssa1 structure could be observed, 

we attempted a partial Proteinase K digestion of our eluted Ssa1 protein (Figure 9). 

Before the introduction of Proteinase K, two distinct bands were observed at 75- and 45-

kDa, indicative of our undigested chaperone and the N-terminal NBD, respectively. A 

third band was also observed at 60-kDa, which is consistent with the C-terminal SBD. At 

five minutes after the introduction of the Proteinase K, the 75-kDa band was no longer 

visible. Furthermore, the 60-kDa band becomes highly faint by this time-point. The 60-

kDa band completely disappears by fifteen minutes, leaving only the 45-kDa band 

present by the end of the observation period. These data suggest that eluted Ssa1 is 

structurally comparable to endogenous chaperone. 

  While it is predicted that N-terminal acetylation is necessary for proper Ssa1 

function, both non-N-terminally acetylated and N-terminally acetylated chaperone are 

required to fully elucidate the effect of this modification on chaperone activity via 

comparative analyses. We next focused on confirming the expected N-terminal 
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acetylation status of Ssa1 in our established genetic backgrounds by isoelectric focusing 

(IEF). IEF is an electrophoretic procedure wherein zwitterionic molecules are separated 

by isoelectric point (pI), the pH wherein the net charge of the resolved molecule is zero 

(Brasher and Thorpe, 1998).  pI values are known to change when target proteins are 

modified, resulting in a discernable change in protein migration between the modified 

and unmodified forms. There is a visible migratory shift between WT Ssa1-PrA and 

Dard1 Ssa1-PrA when resolved by IEF and probed by Western blot with Ssa1/2 specific 

antibody. The band for WT Ssa1-PrA runs more acidic than Dard1 Ssa1-PrA, indicating 

the N-terminal acetylation of WT Ssa1-PrA and the absence of this modification in the 

Dard1 background (Figure 10).  

There are various mechanisms by which N-terminal acetylation may alter Ssa1 

activity; however, altering the association of Hsp70 co-chaperones is a likely mechanism 

which would stand to affect several downstream processes due to the expansiveness of 

the Hsp70 chaperone system.  By reconstituting components of the Hsp70 chaperone 

system in vitro, it is possible to use a comparative approach to assess whether N-terminal 

acetylation alters co-chaperone binding, and therefore, Ssa1 activity. We began our effort 

to reconstitute the Hsp70 chaperone system by attempting to co-purify Ssa1-PrA with 

endogenous Hsp40, a major co-chaperone family to Hsp70. To co-purify Hsp40, we 

intracellularly crosslinked Ssa1-PrA with endogenous co-chaperone with DSP prior to 

purification. Coomassie stain revealed that Ssa1-PrA failed to facilitate pull-down of 

endogenous Hsp40 or other co-chaperones involved in the Hsp70 chaperone system 

(Figure 11).  
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 The inability to co-purify endogenous co-chaperones by crosslinking suggests that 

the purification of Hsp40 would likely have to occur separately from that of Ssa1 to allow 

for future studies requiring the co-chaperone to evaluate in Ssa1 activity in the context of 

N-terminal acetylation.  We first expressed an Hsp40 co-chaperone of Hsp70, Ydj1, in 

competent E. Coli DE3 cells.  While the Hsp40 is endogenously expressed in S. 

cerevisiae, expressing Ydj1 in a prokaryotic system blocks post-translational 

modification, preventing downstream changes in Ssa1 activity that may be attributable to 

the modification of Ydj1 rather than changes in Hsp70 N-terminal acetylation. DE3 cells 

were transformed with an expression plasmid containing His-tagged Ydj1 under an 

IPTG-inducible promoter. Cell lysates from uninduced cultures and those induced with 

IPTG were resolved by SDS-PAGE and probed by Western blot using Ydj1-specific 

antibody, which revealed that induced cells expressed His-tagged Ydj1 (Figure 12).  

 Once the expression of His-tagged Ydj1 was confirmed, we then purified Ydj1 for 

use in binding assays. Using immobilized metal affinity chromatography (IMAC), it is 

possible to use the affinity between the histidine tag and the nickel Sepharose 

immobilized within a fast protein liquid chromatography (FPLC) HisTrapFF column (GE 

Lifesciences) to isolate our protein of interest from cell lysates. Protein concentration is 

measured by absorbance at 205nm as a function of flow through the nickel Sepharose 

column, producing the chromatograph in Figure 13a. The total protein content of the cell 

lysates (FT: 0-45mL) were run through the column, washed, and the elution of His-

tagged Ydj1 from the column is indicated by the peak in mAU absorbance at 100mL. 

When proteins from purification fractions were resolved by SDS-PAGE, pull-down of 
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His-tagged Ydj1 appears to be relatively specific as few contaminating bands were 

present within the elution fraction, as indicated by Coomassie Blue stain (Figure 13b). 
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Figure 1. Protein-A fusion Ssa1 chaperone (Ssa1-PrA) is expressed in both WT and 
N-terminal acetylation deficient backgrounds, allowing for purification and future 
comparative analyses. Lysates from wild-type (WT) and N-terminal acetylation 
deficient (△ard1, S2P) backgrounds were resolved by SDS-PAGE, transferred to PVDF 
membrane, and probed for Ssa1/2. Membrane was re-probed for GAPDH as a load 
control.  
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Figure 2. IgG-conjugated magnetic beads facilitate pull-down of Ssa1-PrA from cell 
lysates. (FT) Lysates nutated end-over-end with IgG-conjugated magnetic Dynabeads for 
1.5 hours at 4°C. (IP) Beads were boiled with SDS. Proteins were separated by SDS-
PAGE and stained with Coomassie Blue dye. 
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Figure 4. Quantification of purified Protein A-tagged Ssa1 by BSA titration indicates 
that method is highly efficient, yielding 15 ug per 5 OD equivalent. (IP) Beads were 
heated in LDS to interrupt non-covalent interactions. Proteins non-covalently associated 
with beads were boiled in SDS. Proteins were separated by SDS-PAGE and stained with 
Coomassie Blue dye. *confirmed by Bradford assay (data not shown) 
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Figure 3. Silver stain of Ssa1-PrA pull-down indicates that method is highly specific 
and yields pure chaperone. (IP) Beads were boiled with SDS. Proteins were separated 
by SDS-PAGE and stained with Silver Stain (Pierce) per manufacturer’s instructions. 
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Figure 5.  Ssa1-PrA pull-down is unaffected by altered ionic conditions, indicating 
that method is robust and may prove useful in prototyping experimental conditions. 
To investigate claims on the differential effects of Na+ and K+ on the stability of Hsp70-
polypeptide complexes, Ssa1-PrA pulled -down under different ionic conditions. Salt 
type and concentration are shown. Beads were boiled with SDS. Proteins were separated 
by SDS-PAGE and stained with Coomassie Blue dye. 
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Figure 6. Purification method is compatible with pH shift, facilitating elution of 
Ssa1-PrA under native conditions. IgG-conjugated magnetic Dynabeads with non-
covalently linked Ssa1 were incubated in 0.1M sodium acetate pH 3.5 at 35°C for 16 
minutes. Eluates were neutralized using 1.5M Tris pH 8.8. Post-elution beads are shown. 
Arrows indicate remaining IgG heavy chain (HC), light chain (LC). Proteins were 
separated by SDS-PAGE and stained with Coomassie Blue dye. 
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Figure 7. PrA tag is cleaved from Ssa1 via Pre-Scission protease (PPX) providing a 
second native elution technique that addresses C-terminal PrA tag. The native 
elution of Ssa1 was achieved by using 1:300 dilution of Pre-Scission protease (GE 
Healthcare) at 10°C for ³16 hours. Post-elution beads are shown. Arrows indicate 
remaining IgG heavy chain (HC), light chain (LC), or Protein-A (PrA). Proteins were 
separated by SDS-PAGE and stained with Coomassie Blue dye. 
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Figure 8. Partial-digestion of PPX-eluted Ssa1 by Proteinase K indicates 
characteristic Ssa1 structure.  Ssa1 protein was incubated at 25°C with 5 mM ATP for 
20 minutes, and then digested by proteinase K (PrK) for 5 or 15 minutes at 25°C. 
Proteins were separated by SDS-PAGE and stained with Coomassie Blue dye. Arrows 
indicate the positions of reaction products previously characteristic to Ssa1 digestion. 
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Figure 9.  Ssa1-PrA pull-down is consistent across both WT and N-terminal 
acetylation deficient strains (△ard1, S2P), allowing for future comparative analyses. 
(IP) IgG-conjugated magnetic Dynabeads were heated in LDS, interrupting non-covalent 
interactions. Non-covalently associated proteins were boiled in SDS load buffer. Proteins 
were separated by SDS-PAGE and stained with Coomassie Blue dye. 
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Figure 10. Isoelectric focusing of Ssa1-PrA from WT and △ard1 knockout indicates 
that Ssa1 is N-terminally acetylated by the NatA complex. Cell lysates from both WT 
and △ard1 yeast strains expressing Ssa1-PrA were resolved by isoelectric focusing on a 
Criterion IEF Pre-cast gel pH 3-10 (Bio-Rad) per manufacturer’s instructions. Gel was 
protonated in 0.7% acetic acid for 5 minutes and transferred to PVDF membrane. 
Membrane was probed by for GPD1.  
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Figure 11. Failure of Ssa1-PrA to crosslink with endogenous Hsp40 suggests that 
purification of exogenous Hsp40 is necessary to conduct future Hsp70 
characterizations. Intracellular Ssa1-PrA was crosslinked to associated binding partners 
prior to IP using DSP. Lysates nutated end-over-end with IgG-conjugated magnetic 
Dynabeads for 1.5 hours at 4°C. (IP) Beads were boiled with standard SDS load buffer. 
Visualized by SDS-PAGE/Coomassie stain. 
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Figure 12. Ydj1 is expressed in transformed DE3 cells upon induction with IPTG. 
Lysates from uninduced and induced DE3 cells transformed with Ydj1 plasmid were 
resolved by SDS-PAGE, transferred to PVDF membrane, and probed for Ydj1. 
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Figure 13. His-tagged Ydj1 is pulled-down via IMAC. A. (Induced) Cell lysates of 
induced DE3 cells prior to loading onto the HisTrapFF column. (FT) After column 
loading, proteins that did not bind to column were collected. (Wash) Proteins that 
dissociated from column upon wash stage of purification were collected. (Elution) 
Column-bound proteins separated from column. Sample fractions were separated by 
SDS-PAGE and stained with Coomassie Blue. B. Chromatograph corresponding to Ydj1 
purification. Total volume processed by the column during purification is indicated at the 
X-axis. Absorption of mAU values (indicating protein detection at 205 nm) recorded 
during the course of purification is shown at the Y-axis. Stages of purification are 
marked.  
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Discussion 

            In this study, we developed a one-step purification of Ssa1 from S. cerevisiae 

through the collective integration of several purification techniques. This method utilizes 

the high affinity interaction that occurs between Protein-A and IgG to facilitate a highly 

specific pull-down of Ssa1, as indicated by Coomassie Blue stained (Figure 2) and Silver-

stained SDS-PAGE (Figure 3). The use of IgG-conjugated magnetic Dynabeads enhances 

purification efficiency as the beads remain mobile in solution, allowing for maximum 

contact with soluble protein while also exhibiting a low rate of non-specific binding. 

While the IgG can be stripped from the beads during elution, it is possible to re-conjugate 

IgG to the beads after use, minimizing unnecessary cost. Elution by pH shift should not 

affect the conjugation of the IgG to the beads and  if elution is accomplished using 

PreScission protease, the interaction between the Protein-A and IgG can be interrupted by 

pH shift and the IgG-conjugated beads can be separated from the Protein-A tag. 

Additional cost is also avoided as this method is able to purify a significant amount of 

Ssa1 from a limited amount of starting material, as 3.0µg of chaperone is obtained per 

mL of exponentially growing culture, which stands as a significant improvement to yields 

obtained by similar methods (Griffith et al. 2018). In all cases, material cost is reduced.  

   Is it notable that this method yields highly pure chaperone in one-step, 

considering that most proteins require a series of steps to be purified (Labrou N., 2014). 

The ability to purify in one-step is highly desirable in protein purification, as it negates 

costs associated with subsequent purification steps, additional materials and technologies, 

and maximizes time-efficiency. The degree of chaperone purity is maintained under 

native elution conditions (Figure 6, Figure 7), and  while an additional step is required to 
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remove the PreScission protease, it is performed with common reagents due to the 

PreScission protease containing a GST-affinity tag. It should be noted that removal of the 

PreScission protease from purified Ssa1 is unnecessary except in very specific cases due 

to the highly specific action of the enzyme. 

 All data suggests that the Ssa1 obtained this method is representative of its 

endogenous condition, as elution by PreScission protease cleavage did not affect the 

structural integrity of the chaperone, evidenced Proteinase K digestion (Figure 8). A 

potential concern arises in the placement of the Protein-A tag at the extreme C-terminus 

of the chaperone, as this region facilitates interactions with Hsp70 co-chaperones and 

substrates via the C-terminal SBD (Gong et al. 2018). Additionally, the combined effects 

of the location and relative size of the Protein-A tag may impede client and co-chaperone 

interactions, which may explain the failure of our cross-linking attempt (Figure 11). 

However, due to the presence of functionally redundant isoforms of Ssa within the 

cytosol, it is unlikely that such an inability of Ssa1-PrA to engage in typical chaperone 

interactions would pose any detriment to cell viability. 

Arguably, the positioning of the Protein-A tag at the C-terminus is non-

negotiable, as it preserves the structural integrity of the N-terminus and permit its 

modification, as emphasized by the determination that WT Ssa1-PrA is N-terminally 

acetylated by IEF (Figure 10). A potential solution may be to express a new construct that 

extends the linker sequence which connects the extreme C-terminus and the Protein-A 

tag, thereby removing any steric hindrance that is associated with the Protein-A tag, 

allowing for normal chaperone interaction to occur. However, the retained ATPase 

activity of WT Ssa1-PrA after cleavage of its Protein-A tag suggests that the tag does not 
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permanently impair chaperone function (Griffith and Holmes, 2018). While the presence 

of the tag may impede the co-purification of Ssa1-associated proteins, the effect of the 

tag on chaperone activity or binding should be negligible in vitro upon its removal, 

allowing for any observed significant difference to be attributed to differences in N-

terminal acetylation. Nevertheless, the effects of the Protein-A tag on Ssa1 chaperone 

function and binding should be addressed in the future. 

 Because we were unable to co-purify endogenous co-chaperone with Ssa1-PrA in 

S. cerevisiae, we instead expressed and purified the Hsp40 co-chaperone, Ydj1, in an 

exogenous prokaryotic system. The purification of Ydj1 by IMAC was successful and the 

resulting yield was reasonably pure, as determined by SDS-PAGE and the mAU peak 

seen during the corresponding chromatograph, respectively (Figure 13a, Figure 13b). 

While we did not quantify the yield of co-chaperone attained by this purification method, 

the appearance of protein bands following Coomassie staining indicated that our eluted 

protein concentration was within a milligram range. While it is highly unlikely that a 

protein other than Ydj1 would be purified in high concentrations using this approach, we 

did not confirm the identity of our purified protein by Western blot. It still remains 

necessary to assess whether that the His-tag can be cleaved from the purified Ydj1, and 

that the co-chaperone is enzymatically active. These are all necessary steps before 

initiating Ssa1 co-chaperone binding studies. Acknowledging these limitations, the Ydj1 

that is obtained by this purification is arguably sufficient for its intended use in future 

studies.  

 Understanding the various factors which contribute to chaperone function, 

efficiency, and mechanism is of great importance. This importance is only further 
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stressed after assessing the cooperative and dynamic relationships ongoing between the 

major chaperone families and their various co-chaperones in order to maintain 

proteostasis. Of the chaperone families, the need for the continued study of Hsp70 and its 

modification is emphasized when considering the apparent incongruity between the 

number of Hsp70-encoding genes and its numerous functional roles within the cell.  

Prior to this study, the functional role of N-terminal acetylation in the context of 

Hsp70 chaperone activity has largely been overlooked, and previous purification methods 

used to obtain Hsp70 were relatively inaccessible due to their expensive, time-consuming 

and materialistic natures. This study established a highly efficient, one-step purification 

of Ssa1 that yields highly pure, enzymatically active chaperone that can be used to further 

elucidate the effects of N-terminal acetylation. Furthermore, this study has also taken the 

steps to establish the basis for evaluating the differences in Ssa1 chaperone activity that 

are attributable to N-terminal acetylation by purifying Ssa1 in N-terminal acetylation 

deficient backgrounds and confirming that WT Hsp70 is N-terminally acetylated by IEF. 

Through the expression and purification of Ydj1, this study has also provided the 

groundwork for future co-chaperone binding experiments, which will provide further 

insight to the contribution of N-terminal acetylation to Hsp70 chaperone activity and 

efficiency.  
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