UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work
5-1-2006

Logic Programming with Solution Preferences: A Declarative
Method.

Miao Liu

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Liu, Miao, "Logic Programming with Solution Preferences: A Declarative Method." (2006). Student Work.
3587.

https://digitalcommons.unomaha.edu/studentwork/3587

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3587?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Logic Programming with Solution Preferences:
A Declarative Method

A thesis
Presented to the
Department of Computer Science
and the
Faculty of the Graduate College
University of Nebraska
In Partial Fulfillment
of the Requirements for the Degree
Master of Science

University of Nebraska at Omaha
by

Miao Liu

May 2006

UMI Number: EP74786

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Disssrtation Publishing

UMI EP74786
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College,

University of Nebraska, in partial fulfillment of the
requirements for the degree Master of Science,

University of Nebraska at Omaha.

Committee

}i’\e"q"\p‘ilvca« g‘;\o

H&wmr\f{ »42

%@ C/ N

i

Ha (:7[4?/}7‘?- Gro ,%ﬂ/”%‘?__,_/

Chairperson

OG4—12 — Do J

Date

iii
ABSTRACT OF THE THESIS

Logic Programming with Solution Preferences:

A Declarative Method

Miao Liu, Master of Science

University of Nebraska, 2006

Advisor: Professor Hai-feng Guo

Preference logic programming (PLP) is an extension of constraint logic program-
ming for declaratively specifying problems requiring optimization or comparison
and selection among alternative solutions to a query. PLP essentially separates
the programming of a problem itself from the criteria specification of its solution
selection. This thesis presents a declarative method of specifying and executing
preference logic programs based on a tabled Prolog system. The method intro-
duces a formal predicate mode declaration for designating certain predicates as
optimization predicates, and stating the criteria for determining their optimal so-
lutions via preference rules. A flexible mdde declaration scheme is implemented
in a tabled Prolog system, which provides an easy implementation vehicle for
programming with preferences. Finally, experimental results and performance

analysis demonstrate the effectiveness of the method.

Keywords: Preference Logic Programming, Tabled Prolog, Mode

to my parents

v

TABLE OF CONTENTS

1 Introduction. IR T .1
1.1 Overview. 1
1.2 Problem Statement and Approach 7
1.3 Significance of This Work 8
1.4 Organization 9

2 Background and Related Work 10
2.1 Prolog Systems e e e 10

2.1.1 Basics of the Prolog Language 11
2.1.2 Execution of a Prolog Program 12
2.1.3 Extra-logical Predicates 14
2.2 Implementation of Prolog and WAM 15
2.3 Extensions to the Traditional Prolog System 20
2.3.1 Tabled Prolog e e 21
2.3.2 Mode Declaration for Tabled Predicates 24
2.3.3 Preference Logic Programming T 26

3 Declarative Semantics e 30

6

vi

3.1 Syntax 30
3.2 Semantics 33
Procedural Semantics o000 41
4.1 Embedding Approaches oL 42

4.1.1 Previous Approach and Its Shortcomings 42

4.1.2 Overview of the New Approach 44
4.2 Predicates Supporting the New Approach 46
4.3 Embedding Preference Programs and Examples . . . A 48

4.3.1 Shortest Path 49

4.3.2 Multiple Optimal Solutions 51

4.3.3 Optimal Substructure Problems 53
4.4 Proof of Correctness 55
Typical PLP Applications 59
5.1 Dynamic Programming, 59
5.2 Ambiguity Resolution oo 63
Implementation of the PLP System 66
61 Data Structure of the Tabled Solutions 67

6.2 Management of the Tabled Solutions 71

vii

6.2.1 Retrieving All Tabled Solutions of a Table Predicate . . . 72

6.2.2 Removing a Set of Solutions From the Table 74

6.2.3 Adding a Solution To the Table 77

6.3 Argument Reordering 82
6.3.1 Need for Reordering 83

6.3.2 Reordering Based on Mode Declarations 84

6.3.3 Support-for Reordered Arguments in Table 85

6.3.4 Example of Argument Reordering 87

7 Experimental Results e e e 89
7.1 Performance on Numeric Domain 89
7.2 Performance on Structural Domain 90
7.3 Discussion on the Performances 91

8 Conclusion S 93
9 Future Extensions L. 95
9.1 Improvements on Structural Domain 95
9.2 ' Dynamic Preference and Incremental Computing 96

A Sample Testing Programs 98

viil

A.1 Numeric Domain - Matrix Chain Multiplication 98

A.2 Structural Domain - Dangling Else 102

References e 105

2.1

2.2

4.1

4.2

4.3

4.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

LisT OF FIGURES

Organization of the WAM,

DRA Resolution for Example 3

Pseudo-code: Managing Tabled Solutions
Definition of updateTable/2
Pseudo-code: Embedding of Peore and FPpreg . -

A Solution Set with Multiple Optimal Solutions

Tabled Solutions in the Trie Structure
Tabled Solutions in the Trie Structure with Path Information .
Type Define: Trie Answer
Type Define: Tabled Predicate e e e
Pseudo-code: Retrieving All Tabled Solutions of a Predicate
Pseudo-code: Removing a Set of Solutions From Table IR
Pseudo-code: Adding a New Solution to Table
Argument Reordering Technique

Pseudo-code: Retrieve Procedure Supporting Reordering

6.10 Reordered Solution in Trie e e

1x

1y

23

51

67

68

69

70

73

2.1

6.1

6.2

7.1

7.2

LisT OoF TABLES

Original Built-in Modes for Tabled Predicates 25
Extended Built-in Modes for Tabled Predicates 77
Prioritiesof Modes 85
Numeric domain running time comparisons (in seconds) 90

Structural domain running time comparisons (in seconds) 91

x1
ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis. Fifst and foremost I wish to thank my advisor Hai-Feng
Guo fpr his continuous support. Hai-Feng was always there to listen and to give
advices. He taught me how to ask questions and express my ideas. Thank you

for being there every step of the way.

The rest of my thesis committee: Zhengxin Chen, Haorong Li and Mahadevan
Subramaniam for their encouragements, good questions, insightful comments and

great suggestions.

Yinghua Zhu for her belief and support since day one. Without her school

and work would not have been possible.

And my family for their understanding, unconditional support and encour-
agement to pursue my education. They have given up many things for me to
become who I am today; for being there with me every single day of my life,

thank youl!

CHAPTER 1

Introduction

1.1 Overview

Traditionally when defining an optimization problem, we provide the objective
function and specify the way of finding the optimal solutions. However the ob-
jective functions may be very difficult to define in problems such as ambiguity
resolution. Moreover, since we have specified the way of finding the optimal
solutions within the problem itself, the program is more difficult to maintain.
An alternative approach is to declaratively define a program, and let the sys-
tem effectively determine the optimal solutions for us. In ambiguity resolution
problems for example, though the objective functions are hard to define, if we
are given two potential solutions we know which one is more preferred than the
other. We can describe such solution preferences using solution selection criteria
and the system will determine the best solutions for us based on these criteria.
This technique is an extension of constraint logic programming, and is referred to

as preference logic programming or PLP [9, 10]. It has been introduced for declar-

atively specifying problems requiring optimization or comparison and selection
among alternative solutions to a query. The PLP paradigm essentially separates
the constraints of a problem itself from its optimization or selection criteria, and

makes optimization or selection a meta-level operation.

There are two types of preferences related to logic programming. It is worth-

while to mention both of them here.

1. One type of preferences focuses on the constraints, which we refer to as
constraint preference [4, 1]. Informally, it deals with problems where con-
flicts among the constraints occur. For example, one may have various
constraints when buying a car, such as budget, safety, speed, etc. However,
it is possible for the safety constraints to conflict with speed constraints.
In such case, no car would satisfy all constraints and the customer has no
car to select from. To resolve this problem, constraint preference is used to
determine among these constraints which ones have higher preferences, and
overrides others in order to resolve the problem. In our car buying exam-
ple then, suppose safety constraints have the highest priority, the customer
may make the ultimate decision based on safety concerns over speed. Thus,

this type of preferences focuses on prioritizing‘ constraints.

2. The other type of preferences focuses on the solutions obtained by the
problem specification, and determines the optimum solutions based on user

specified preference rules. This is referred to as solution preference problem.

For example, one have specified several routes from point a to point b, each
with different costs. If the preference rule states that the route with the
lowest cost is the most preferred, then the system should automatically
determine the optimum solution(s) based on the cost of each route. Thus,

this type of preferences focuses on the “ranking” of the potential solutions.

The term preference logic programming or simply PLP [9, 10] refers to the
second type of preferences (i.e., solution preference), which is the focus of this
thesis. On the other hand, since constraint preference does not focus on the same
type of optimization problems we are interested in solving; it will not be further
discussed. However, it is possible to combine both types of preference together

since one does not conflict with another.

The PLP paradigm essentially separates the constraints of a problem itself
from its optimization or selection criteria, and makes optimization or selection
as meta-level operation. Preference logic programming has been shown useful in
practical applications such as artificial intelhgénce [2], data mining [3], document

processing and databases.

The original proposal of preference logic programming [9, 10] showed how
the concept of preferences provides a natural, declarative, and eflicient means
of specifying a host of practical problems using definite clauses. Optimization

predicates are explicitly defined by using special rules called optimization clauses,

which makes these optimization predicates semantically independent from the
clauses for the general problem. The declgrative semantics of a preference logic
program is given by its possible world semantics. To illustrate this, the following
two éxamples show how PLP may be used in numeric and structural problem

domains.

In Example 1, we are trying to search for a lowest-cost path, where predicate
path(X,Y,C,D,L) denotes a path from X to Y with cost C, distance D and path

route L.

Example 1 PLP used in a numeric domain (best path problem).

path(X, X, 0, 0, [1). (1)
path(X; Y, C, D, [e(X, V1) :-

edge(X, Y, C, D).)
path(X, Y, C, D, [e(X, Z) | P]) :-

edge(X, Z, C1, D1), path(Z, Y, C2, D2, P),

C is C1 + C2, D is D1 + D2. (3)
edge(a,b,4,10). edge(b,a,3,12). edge(b,c,2,14). €]
path(X,Y,C1,D1,.) < path(X,Y,C2,D2,) :- C2 < C1. (5)
path(X,Y,C1,D1,.) < path(X,Y,C2,D2,.) :- C1 = C2, D2 < Di. (6)

Clauses (1) to (4) make up the problem specification defining the path re-

lation and a directed graph with a set of edges; clauses (5) and (6) states the
solution selection criteria for optimizing the path/5 predicate. Clause (5) can
be interpreted as that a cheaper path is preferred, while clause (6) states that
in case the cost of two paths are the same, then we take the shorter path. The

symbol ‘<’ is used as a preference symbol.

Now we’ve seen how PLP is beneficial to problems in numeric domain, the
well-known dangling else problem is used to illustrate how PLP can be applied to

problems in structural domain as well, as shown in Example 2.

Example 2 PLP used in a structural domain (dangling else problem).

ifstmt (if(C, T)) --> ¢D)

[“if’], cond(C), [‘then’], stmt(T).

ifstmt(if(C, T, E)) -->)]

[fif’], cond(C), [‘then’], stmt(T), [‘else’], stmt(E).

ifstmt (if(C, T, E)) < ifstmt(if(C, NewT)) :- 3

combine(T, E, NewT).

Clauses (1) and (2) make up the problem specification defining the if state-
ment; clause (3) specifies the solution selection criteria for this DCG by stating
that if the else statement E can be combined into the then statement T to form a

syntactically valid new then statement NewT, then the latter is a more preferred

solution (a more detailed explanation is provided in Section 5.2 where typical
PLP applications are discussed). Without clause (3), this syntax is ambiguous.

Consider the following statement:

if (condA) then if (condB) then statementA else statementB;

Using the syntax specified by clauses (1) and (2) only, this statement can be

interpreted either as:

1: if (condAd) {

if (condB) statementA; else statementB;

or as:

2: if (condA) {
if (condB) statementl;

}

else statementB;

To overcome this ambiguity issue, users may need to rewrite the entire gram-
mar that the program was based on. As a result, many new terms may be
introduced and the grammar may get very corﬁplicated. With PLP, on the other
hand, a solution selection criterion (clause (3)) can be used to avoid ambiguity.

In this case, clause (3) states that the “else-statement” is to be associated with

the nearest conditional statement, i.e., interpretation 1 is more preferred than 2.
With the combination of all three clauses shown in Example 2, the PLP system
will parse the input stream using interpretation 1 automatically, while reporting

interpretation 2 as false.

As we have seen from these two examples that the concept of PLP, which
provides the separation of a problem definition and its selection criteria, really
simplifies problem definitions. The following section presents what shall be ad-

dressed in this thesis in order to achieve it.

1.2 Problem Statement and Approach

The problem of this thesis is twofold: design of a method to efficiently support

PLP, and implement the method into a Prolog system.

In order to support the above examples and preference programs in general,
we propose an effective implementation for preference logic programming based
on tabled programming. The method follows the PLP paradigm to separate the
constraints of a problem itself from its optimization or selection criteria. Each
preference logic program is defined using two disjoint sets of definite clauses,
where one contains the specification of the constraints of the problem and the
other defines the optimization or selection criteria. Connection between these two

sets are established by a mode declaration scheme [12], which embeds optimiza-

tion or selection criteria into the problem specification. Using this scheme, we do
not need to define the value of an optimal solution recursively; but the value of
a general solution suffices. The proposed tool is suitable for both numeric and

structural preference problems.

The implementation of the PLP system is realized using C programming lan-
guage on an UNIX environment. The system is a modification and extension
of the tabled Prolog system presented in reference [11]. Although still based on
dynamic reordering of alternatives (DRA), a different table management is imple-
mented to support problems with multiple optimal solutions as well as argument

reordering. These modifications will be discussed in detail in later chapters.

1.3 Significance of This Work

The proposed preference logic program implementation is the first complete PLP
system constructed. It extends the tabled Prolog systems with mode-declaration
scheme to support both numeric and structural solution preferences. New func-
tions, such as removing a list of tabled solutions, are designed to improve tabling
performance as well as the overall efficiency. A method of specifying and execut-
ing preference logic programming and preference logic grammars based on tabled

Prolog systems is the main contribution of this work.

1.4 Organization

The rest of this thesis is organized as follows: Chapter 2 gives a brief intro-
duction to the Prolog system, and a literature review of some relevant research
works. Chapter 3 presents the declarative semantics of the PLP. The procedural
semantics and the connection between solution selection criteria and the prob-
lem specification are discussed in Chapter 4. Then Chapter 5 discusses some of
the typical applications using PLP. The implementation of the PLP system and
experimental results are presénted in Chapters 6 and 7, respectively. And finally,

the conclusion and discussion on future extensions are given in Chapter 8 and 9.

10

CHAPTER 2

Background and Related Work

This chapter presents some background information regarding logic program-
ming and Prolog, followed by a brief introduction to the Warren Abstract Ma-
chine (WAM), a virtual abstract machine that is normally used for implementing
Prolog. Some major extensions to the traditional Prolog system, such as tabled

Prolog and PLP, and some of the recent studies in these areas are also discussed

in this chapter.

2.1 Prolog Systems

The name Prolog is derived from “Programming in logic”. This section briefly

introduces the language of Prolog and how Prolog programs are evaluated.

11

2.1.1 Basics of the Prolog Language

A Prolog program is composed of a set of Horn clauses. Using Prolog’s notation,

each clause is a formula of the form
Head:-By, Bs,...,B,

where Head and By, ..., B, are atomic formulae and n > 0.! Each clause repre-

sents a logical implication of the form
V(By A--- A B, — Head)

A separate type of clauses are those where Head is the atom false, which are
simply written as

Z—Bl,...,Bn

These type of clauses are called goals or gueries. Each atom in a goal is called a

subgoal.

Each atomic formula is composed of a predicate applied to a number of argu-
ments (also refered to as terms), and this will be denoted as ﬁ(tl, ..., tn) — where
p is the predicate name, and t¢i,...,t¢, are the terms used as arguments. Each
term can be either a constant (c), a variable (X), or a complex term, such as
f(s1,...,8m), where s1,..., sy, are themselves terms and f is the functor of the

term.

1If n = 0 then the formula is simply written as Head and called fact.

12

Execution of a Prolog program typically involves a program P and a goal
:=G1,...,G,. The objective is to verify whether there exists an assignment o of
terms to the variables in the goal such that (GiA- - -AG,)o is a logical consequence
of P.2 ¢ is called a substitution: a substitution is an assignments of terms to
a set of variables (the domain of the substitution). If a variable X is assigned
a term t by a substitution, then X is said to be bound and t is the (run-time)
binding for the variable X. The process of assigning values to the variables in ¢

according to a substitution o is called binding application.

2.1.2 Execution of a Prolog Program

Prolog, as well as many other logic programming systems, make use of SLD-
resolution to carry out program’s execution. Execution of a program P w.r.t.
a goal G proceeds by transforming a resolvent using a sequence of resolution
steps. Each resolvent represents a conjunction of subgoals. The initial resolvent

corresponds to the goal G. Each resolution step proceeds as follows:

1. Let us assume that :-A,, ..., A; is the current resolvent. An element A; of
the resolvent is selected (selected subgoal) according to a predefined compu-
tation rule. In the case of Prolog, the computation rule selects the leftmost ‘

element of the resolvent.

?Following standard practice, the notation ec denotes the application of the substitution o
to the expression e, i.e., each variable X in e will be replaced by o(X).

13

2. If A; is the selected subgoal, then the program is searched for a clause
Head:-By, ..., B, whose head successfully unifies with A;. Unification is
the process which determines the existence of a substitution o such that
Heado = A;o. If there are rules satisfying this property then one is selected
(according to a selection rule) and a new resolvent is computed by replacing
A; with the body of the rule and properly instantiating the variables in the
resolvent:

:_(Al) s aAi—luBla .- '7Bh)A'L'+17 s)Ak)o-

In the case of Prolog, the clause selected is the first one in the program

whose head unifies with the selected subgoal.

3. If no clause satisfies the above property, then a failure occurs. Failures
are cured using backtracking. Backtracking explores alternative execution

‘paths by reducing one of the preceding resolvents with a different clause.

4. The computation stops either when a solution is determined (i.e., the re-
solvent contains zero subgoals) or when all alternatives have been explored

without any success.

The operational semantics of a logic based language is determined by the choice
of computation rule (selection of the subgoal in the resolvent) and the choice
of selection rule (selection of the clause to compute the new resolvent). In the

case of Prolog, the computation rule selects the leftmost subgoal in the resolvent,

14

while the selection rule selects the first clause in the program which successfully

unifies with the selected subgoal.

2.1.3 Extra-logical Predicates

Many logic languages (e.g., Prolog) introduce a number of extra-logical predicates,

used to perform tasks such as:
1. input/output (e.g., read and write files);

2. add a limited form of control to the execution (e.g., the cut (!) operator,

used to remove some unexplored alternatives from the computation);

3. perform meta-programming operations; these are used to modify the struc-
ture of the program (e.g., assert and retract, which adds or removes
clauses from the program, respectively), or query the status of the execu-

tion (e.g., var and nonvar, used to test the binding status of a variable).

An important aspect of many of these extra-logical predicates is that their be-
havior is order-sensitive, meaniﬁg that they can produce a different outcome
depending on when they are executed. In particular, this means that they can
potentially produce a different result if a different selection rule or a different

computation rule is adopted.

Since most of Prolog implementations are based on the WAM, In addition,

the PLP system implemented in this thesis is realized by extending a WAM-based

15

Prolog system. Therefore, a brief introduction to the WAM is given in the next

section.

2.2 Implementation of Prolog and WAM

Implementations of Prolog follow the familiar activation record model that is
traditionally used for implementing standard programming languages such as C,
Java, etc. Thus, most Prolog’s implementations have a stack where an activation
record (called an environment, in Prolog’s parlance) is allocated, a heap where
dynamic data resides, plus other standard memory areas (code space, registers,
etc.). Because Prolog uses unification to instantiate parameters during a call,
parameter passing is a little more involved since the unification algorithm has to
be invoked to pass parameters. Likewise, because Prolog has backtracking, two
additional modifications are needed: First, a new data-structure called a choice
point has to be allocated on the environment stack where information about the
state that existed at that point is recorded, so that this state can be restored
if execution needs to backtrack to this point. The choice;—points correspond to
branch points in the search tree that a Prolog execution builds and traverses
in a depth-first manner. Second, a new stack called the trail stack is used to
store the addresses of all the variables that need to be reset to unbound status
upon backtracking; the trail stack stores those variables that are created before

branching takes place in the search tree but are bound to a possibly different

16

value in each of the branches.

Thus, most Prolog implementafions compile Prolog programs to an abstract
machine, called the Warren Abstract Machine (WAM) [26, 21). The WAM, which
has beccome a de-facfo standard for sequential implementations of Prolog and
Logic Programming languages, defines an abstract architecture whose instruction

set is designed to:

1. allow an easy mapping from Prolog source code to WAM instructions;

2. be sufficiently low-level to allow an efficient emulation and/or translation

to native machine code.

Most (sequential and parallel) implementations of Prolog currently rely either

directly on the WAM, or an architecture similar to the WAM.

The WAM is a stack-based architecture, sharing some similarities with imper-
ative languages implementation schemes (e.g., use of call/return instructions,
use of frames for maintaining procedure’s local environment), but extended in
order to support the features peculiar to Logic Programming, namely um’ﬁcatz’c;n
and backtracking (and some other variations, like the need to support dynamic
type checking). At any instance, the state of the machine is defined by the con-
tent of its memory areas (illustrated in Fig. 2.1). The state can be subdivided

into internal and external state.

1. Internal State: it is described by the content of the machine registers. The

17

Registers

CODE AREA [~ TRAIL)
......... * Machine

HEAP

- Instruction Pointer

- Return Address

-+t Heap Top at Prev. CP

Top of Heap

Current Env.

“Top of Stick
Cursent CP

Prev. Environment - Temp.
Return Address Local Stack . K _,?Regislers
1 Xk
. N environment Ny S e
Local AN X , :
Variabless :
; Yn
; Al
Call A2
Argumentsf_ : 7% choice point 7
Am . A
Arity Choice Point Stack

Next Alternative

Yoy, .
4’09 Se,
QU

Figure 2.1: Organization of the WAM

purpose of most of the registers is described in Fig. 2.1.

2. External State: it is déscribed by the content of the logical data areas of

the machine:

(a) Heap: data areas in which complex data structures (lists and Prolog’s

compound terms) are allocated.

(b) Local Stack: (also known as Control Stack or Environment Stack) it
serves the same purpose as the control stack in the implementation of
imperative languages — it contains control frames, called environments

(akin to the activation records used in implementation of imperative

18

languages), which are created upon entering a new clause (i.e., a new
“procedure”) and are used to store the local variables of the clause

and the control information required for “returning” from the clause.

(¢) Chaice Point Stack: choice points encapsulate the execution state for
backtracking purposes. A choice point is created whenever a call hav-
ing multiple possible solution paths (i.e., more than one clause success-
fully match the call) is encountered. Each choice point should contain
sufficient information to restore the status of the execution at the time
of creation of the choice point, and should keep track of the remaining
unexplored alternatives. In some implementations, the choice-points
are also placed in the local stack, and so there is no separate choice-

point stack.

(d) Trail Stack: during an execution variables can be instantiated (they
can receive bindings). Nevertheless, during backtracking these bind-
ings need to be undone, to restore the previous state of execution. In
order to make this possible, bindings that can be affected by this op-
eration are registered in the trail stack. Each choice point records the

point of the trail where the undoing activity needs to stop.

Prolog is a dynamically typed language; hence it requires type information to
be associated with each data object. In the WAM, Prolog terms are represented,

as tagged words: each word contains:

19

1. a tag describing the type of the term (atom, number, list, compound struc-

ture, unbound variable);

2. a value whose interpretation depends on the tag of the word; e.g., if the
tag indicates that the word represents a list, then the value field will be a

pointer to the first node of the list.?

Prolog programs-are compiled in the WAM into a series of abstract instruc-
tions operating on the previously described memory areas. In a typical execution,
whenever a new subgoal is selected (i.e., a new “procedure call” is performed),

the following steps are taken:

1. The arguments of the call are prepared and loaded into the temporary
registers X1, ..., X, — the instruction set contains a family of instructions,

the “put” instructions, for this purpose.

2. The clauses matching the subgoal are detected and, if more than one is

¥

available, a choice point is allocated (using the “try” instructions);

3. The first clause is started: after creating (if needed) the environment for
the clause (“allocate”), the execution requires head unification —i.e., uni-
fication between the head of the clause and the subgoal to be solved - to
be performed (using “get/unify” instructions). If head unification is suc-

cessful (and assuming that the rule contains somec uscr-defined subgoals),

3Lists in Prolog, as in Lisp, are composed of nodes, where each node contains a pointer to
an element of the list (the head) and a pointer to the rest of the list (the tail).

20

then the body of the clause is executed, otherwise backtracking to the last

choice point created takes place.

4. Backtracking involves extracting a new alternative from the choice point
that is topmost on the stack (“retry” will extract the next alternative,
assuming this is not the last one, while “trust” will extract the last al-
ternative and remove the exhausted choice point), restoring the state of
execution associated with such choice point (in particular, the content of
the topmost part of the trail stack is used to remove bindings performed
after the creation of the choice point), and restarting the execution with

the new alternative.

After the basic introduction to Prolog and its implementation, we now discuss

some extensions to the traditional Prolog system and related research works.

2.3 Extensions to the Traditional Prolog System

The system presented in this thesis utilizes and optimizes some extensions of
the traditional Prolog system, namely tabled Prolog and PLP. Hence some back-
ground information regarding these extensions is presented in this section, fol-

lowed by relevant research works in preference logic programming.

21

2.3.1 Tabled Prolog

One of a major extension to the traditional Prolog system is the tabled Prolog. As
discussed in Section 2.1, traditional Prolog systems use SLD resdlution [14] with
the computation strategy that subgoals of a resolvent are solved from left to right
and clauses that match a subgoal are applied in the textual order they appear in
the program. It is well known that SLD resolution may lead to non-termination
for certain programs, even though an answer may exist via the declarative se-
mantics. That is, given any static computation strategy, one can always produce
a program in which no answers can be found due to non-termination even though
some answers may logically follow from the program. In case of Prolog, programs

containing certain types of left-recursive clauses are examples of such programs.

Tabled Prolog [23, 24, 11, 19] eliminates such infinite loops by extending logic
programming with tabled resolution. The main idea is to memorize the answers
to some calls and use the memorized answers to resolve subsequent variant calls.
Tabled resqlution adopts a dynamic computation strategy while resolving sub-
goals in the current resolvent against matched progrém clauses or tabled answers.
It keeps track of the nature and type of the subgoals; if the subgoal in the current
resolvent is a variant of a former tabled call, tabled answers are used to resolve
the subgoal; otherwise, program clauses are used following SLD resolution. Thus,
a tabled' Prolog system can be thought of as an engine for efficiently computing

fixed points.

22

The tabled resolution employed in this thesis is named dynamic reordering of
alternatives (DRA) [11]. Other tabled resolutions, such as SLG [23], SLDT [24],
etc. perform similarly toward the computation of a fixed point. The DRA res-
olution computes a fixed point in a very similar way as bottom-up execution of
logic programs [14]. Ité main idea is to dynamically identify looping alternatives
from the program clauses, and then repetitively apply those alternatives until no
more answers can be found. A looping alternative refers to a clause that matches

a tabled call and will lead to a resolvent containing a recursive variant call.

Example 3 is used to illustrate the effectiveness of tabling. This program does
not work properly in a traditional Prolog system due to left-recursion defined in
clause (2). With the declaration of a tabled predicate reach/ 2 in a tabled Prolog
system, it can successfully find a set of complete solutions due to the fixed-point

computation strategy, which is illustrated in Figure 2.2.

Example 3 A tabled logic program defining a reachability relation:

:— table reach/2. (1)
reach(X,Y) :- reach(X,Z), arc(Z,Y). @)
reach(X,Y) :- arc(X,Y). 3)
arc(a,b). arc(a,c). arc(b,a). 4)

:- reach(a,X). (5

23

reach(a, X)

| reach(a, Z), arc(a, X) 1 reach(a, Z),

I

arc(z,X i
' . X) b / XE\) arc(2,X)
h h

'
Normal ' ly
 X=a 2=p/ 2=t
1+ New_answey \
‘ :
Looping —— fail g N i
[T LU S P o__
Tabled Answers Looping
Subgoals Alternatives
reach(a, X) reach(a, b) (1)

reach(a, c)
reach(a, a)

Figure 2.2: DRA Resolution for Example 3

As shown in Figure 2.2, the computation of reach(a,X) is divided into three
stages: mormal, looping and complete. The purpose of the normal stage is to find
all the looping alternatives (clause (2) leading to a variant subgoal reach(a,Z))
and record all the answers generated from the non-looping alternatives (clause
(3)) into the table. The new_answer label indicates that the new answer generated
from that successful path should be added into the table. Then, in the looping
stage only the looping alternative (clause (2)) is performed repeatedly to consume
new tabled answers until a fixed point is reached, that is, no more answers for
reach(a,X) can be found. Afterwards, the complete stage is reached. As a result,
the query :- reach(a,X) returns a complete answer set X=b, X=c and X=a, albeit

the predicate is defined left-recursively.

24

2.3.2 Mode Declaration for Tabled Predicates

Although tabled Prolog systems can successfully determine the solution set for
Example 3, just memorizing the answers in the table still has some potential
problems. Sﬁch problem could happen when a computing model contains infinite
number of solutions. Consider Example 4, which searches the paths for reachable
nodes and records the paths. Notice that the paths information is infinite, since
there are infinite number of paths from a to any node due to the cycle between a
and b. Suppose that we are only interested in finding one possible path from one
node to another reachable node, hence only one path information is required to
be recorded in the table for each pair of reachable nodes. Therefore, a meta-level
operation is useful to filter the infinite-size solution set to a finite one so that
the computation can be éompleted. This meta-level operation is also useful to
narrow a big finite-size solution set down to a smaller one. An. example is to
filter out from the general solution set the suboptimal ones in order to derive our

optimal solutions.

Example 4 A tabled logic program defining a reachability relation with path in-

formation:

:— table reach/3.
reach(X,Y,E) :- reach(X,Z,E1), arc(Z,Y,E2), append(Ei,E2,E).

reach(X,Y,E) :- arc(X,Y,E).

25

arc(a,b, [(a,b)]). arc(a,c,[(a,c)]). arc(b,a, [(b,a)]).

:- reach(a,X,E).

This meta-level operation can be achieved by a mode declaration [12] for
tabled predicate, which is described in the form of
:= table g(my,...,my,).
where g/n is a tabled predicate name, n > 0, and each m; has one of the forms

as defined in Table 2.1.

Modes Informal Semantics

+ an indexed argument

— a non-indexed argument

Table 2.1: Original Built-in Modes for Tabled Predicates

The mode declaration [12] was initially used to classify arguments as indexed
(‘+7) or non-indexed (‘-’) for each tabled predicate. Only indexed arguments are
used for variant checking during collecting newly generated answers into the table.
For a tabled call, any answer generated later for the same value of the indexed
arguments is discarded because it is a variant (w.r.t. the indexed arguments) of
a previously tabled answer. This step is crucial in ensuring that a fixed-point is
reached. Consider again the program in Example 4. Suppose we declare the mode

[43

as “:- table reach(+,+,-)”; this means that only the first two arguments of

26

the predicate reach/3 are used for variant checking. As a result, the computation
can be completed properly with three answers, that is, each reachable node from

a has a simple path as an explanation.

While the original mode declaration solves the problem presented above, there
are two limitations associated with it. First, the terms with mode ‘+’ are required
to appear prior to the terms with mode ‘-’ (e.g. “:- table reach(+,-,+)”
would not be supported). This is due to the way the table data structure is
managed. This limitation is addressed in the thesis by implementing a new
management system in order to support flexible ordering of mode declarations.
Second, the available built-in modes are limited to either indexed or non-indexed.
This thesis extends the mode directive table to associate a non-indexed argument
of a tabled predicate with some optimum constraint. User defined preference
symbols, such as ‘<<<’ used throughout this thesis, may be used to support user-
defined preferences. The types of preferences are flexible, varying from numerical
minimization/maximization to structural comparisons. The tabled data structure

and its management, as well as the extended modes are discussed in detail in

Chapter 6, where specific implementation issues are addressed.

2.3.3 Preference Logic Programming

Another important extension on the traditional Prolog systems is PLP, which was

first proposed in [9, 10] as a new programming paradigm even though preference

27

logics has been studied back to early 1960’s. However, most of the works carried

out were not implementation-oriented, and an effective PLP system was lacking.

Some of the early works such as [8] focused solely on numeric values and mini-
mum /maximum based on the problem specifications. Cui and Swift [3] extended
part of earlier work on preference logic grammars [15] to a three-value logic, and
provided an implementation for specific applications on data standardization via
normal logic programs using XSB (23]. Other efforts such as [16, 8, 22| have
been undertaken to incorporate optimization in a Constraint Logic Programming
(CLP) framework; and [6, 17] addresses semantics for optimization predicates in

a CLP framework.

Reference [7] proposed an approach for describing preferred criteria in CLP
as a problem of relational optimization. This approach allows the users to define
a preference relation which indicates when a solution is better than another so-
lution. However, the limitation of this approach is that its operational semantics
for the optimization require the underlying structures to be strict total orders.
Therefore, it woul_d not work if the problem contains potential solutions that are

not comparable with each other.

Reference [13] gives a precise formalization for the syntax and semantics of
PLP based on the Herbrand model theory. The specification of a general problem
itsclf is separated from the preference specification of its solution selection. Their

connection is established through a mode declaration scheme. Therefore, the

28

‘semantics can be declared correspondingly as follows: the computation model
of the general problem is defined as the Herbrand model [5, 14] and fixed-point
theory; the semantics of preferences is defined as a strict partial order relation*
among solutions. With this mode declaration scheme, some problems associated

with a simple tabled Prolog system aforementioned could be resolved.

'The PLP system presented in this thesis further extends the approach pre-
sented in [13]. Some of the major extensions and modifications are highlighted

as follows:

1.. The connection between problem specification and preference criteria is sim-
plified. The original connection was established using transformation, which
essentially transforms a user defined program P into P’, and automatiéally
create a new predicated to realize the connection. This transformation

procedure is not needed in the new system.

2. The requirement of a strict partial order relation among solutions is re-
lazed. E.g. one could specify as a preference criteria that solutionl <
solution2 and solution2 < solutionl. The PLP system, during evalu-
ation, will determine that neither solutionl nor solution?2 is an optimal
solution among the potential solutions to the problem specificatoin, and

report accordingly back to the user.

4An ordering which is irreflexive, antisymmetric and transitive.

29

We are, however, more interested in the problems with solutions forming

partial order relations.

3. A new table management system is designed and implemented. This new
system supports not only insert (which was supported in the original
system), but also remove, which is crucial for maintaining user defined

preference relations among the tabled solutions.

4. And as mentioned in Section 2.3.2, more built-in modes are supported.
More importantly, argument reordering based on mode declarations is real-

ized.

The necessities and realizations of these extensions and modifications are dis-
cussed in detail in the following chapters. Prior to this discussion, we first present

the declarative and procedure semantics of the PLP.

30

CHAPTER 3

Declarative Semantics

This chapter defines the syntax and declarative semantics of PLP. A user defined
preference symbol will be used in the actual preference programs to replace ‘<’.
The symbol — ‘<<<’ — is the choice of this thesis. Provided with a user defined

symbol, we now formally define the syntax and semantics of PLP.

3.1 Syntax

There are two components of an optimization problem: (i) specification of the
constraints in the problem; and, (ii) specification of what the optimal solution is
and how it can be selected. The main idea of preference logic programing is to

separate these two components and declaratively specify such applications.

We have already discussed a meta-level operation using mode declaration,
which is of the following form:
:= table g(my,...,my).

where ¢/n is a tabled predicate name, n > 0, and each m; has one of the forms as

31

defined in Table 2.1. Let m;, mus, -+ ,mu (0 < k < n) be all the modes ‘+’ such
that 1 <141 <2 < --- <1k < n; We define one operator K as follows: given an
arbitrary atom g(a1,as,-+ ,an), K(q(a1,a2, -+ ,an)) = (ai1, @i, - ,a;), which
is a sequence of indexed arguments in a left-to-right order. Now we can formally

define Preference Logic Programs.

Definition 1 (Preference Logic Programs)

A (definite) preference logic program P can be defined as a pair <Peore, Poref>,
where Peore and Py are two disjoint sets of clauses defined as follows: Py
specifies the constraints of the problem as a set of definite clauses; Py.s defines
the optimization criteria using a set of preference clauses (or preferences) of the
form:

p(Th) <<< p(Ty) :- By, Ba, ..., B,. (n>0)
where K(p(T1)) = lC(p(Tz)) and each B; (1 < i < n) is an atom defined in P. p

is referred to as an optimization predicate.

The informal semantics of p(T}) <<< p(T3) :- By, Ba, ..., B, is that the atom
p(Ty) is less preferred than p(T3) if By, Bs, ..., and B, are all true. Note
that the two atoms being éompared have the same predicate symbol p. Also,
K(p(T1)) = K(p(T3)) states that only two atoms with the same corresponding
indexed arguments (mode ‘+’) are comparable. We abbreviate “preference logic
program” to “preference program” and “tabled prolog program” to “tabled pro-

gram” throughout.

32

Example 5 The following is the preference program searching for a lowest-cost

path. It corresponds to Example 1 presented earlier.

path(X, X, 0, 0, [1). ¢))
path(X, Y, C, D, [e(X, Y1) :-

edge(X, Y, C, D). (2)
path(X, Y, C, D, [e(X, 2) | P]) :-

edge(X, Z, C1, D1), path(Z, Y, C2, D2, P),

C is C1 + C2, D is D1 + D2. 3
edge(a,b,4,10). edge(b,a,3,12). edge(b,c,2,14). (4)
:- table path(+, +, <<<, <<<, -). (5)

path(X,Y,Ci,D1,_) <<< path(X,Y,C2,D2,_) :-
C2 < C1. (6)
path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

Ci = C2, D2 < Di.)

Clauses (1) to (4) make up the core program P, defining the path relation
and a directed graph with a set of edges; clauses (5) to (7), the preference clauses
Pyrez, specify the predicate path/5 that is to be optimized and give the criteria
for optimizing the path/5 predicate. That is, the path for each pair of reach-
able nodes (according to the first two indexed arguments in path/5) should be

optimized based on the definition of <<<: the shorter path is more preferred.

33

Example 5 shows an optimization problem with compound objectives. This
type of problems are difficult to solve directly using traditional constraint pro-
gramming with objective functions. Instead, a two-step selection procedure is
usually involved, where, first, only the cost criterion is used to find all the lowest-
cost paths, and secondly the optimal path is selected by comparing distances
among the lowest-cost paths. However, the preference logic program, as shown in
Example 5, is intended to specify and solve this problem directly in a declarative
method. That is, it separates the constraints of a problem itself from the criteria
for selecting the optimal solutions. The responsibility of how to find the optimal
solution is shifted to the underlying logic programming system, in keeping with

the spirit of logic programming as a declarative paradigm.

3.2 Semantics

The semantics is being provided in order to facilitate a proof of correctness of
the implementation. The declarative semantics of a preference program is based
on the Herbrand model theory [5, 14]. The preferences are essentially interpreted
as a sequence of meta-level mapping operations over the least Herbrand model
for the core program. We use the following notational conventions: P is used to
denote a preference logic program <Fpore, Ppres>, Bp to denote the Herbrand base
of P, Bzre Lo denote the Ierbrand base of I, 28iers to decnote the sct of all

Herbrand interpretations of P,,.., a Herbrand atom to denote an atom in B

core’

34

~ w is the first infinite ordinal, and F T n(z) to denote applying the mapping F n

n

e —
times as F(F(--- F(z)--)).

Definition 2 (A Preference Relation) Let P be a preference program and
g/n be an optimization predicate. A preference relation over q/n is an ordered
relation <(g/n) s.t. for any two Herbrand atoms Ay and A, of the predicate q/n,

A1 <(g/ny Az if either of the followings is true:

o Ay <<< Ay €pp Tw(ME

ore)

e d an atom Az s.t. Ay <(q/m) Az and Az <(g/n) A2.

where McPore is the least Herbrand model for P.oe, and p : 287 — 2BP s defined
as follows: Yp(M) =M U {A; <<< Ay: A; << A, - By, , By, s a ground

instance of a clause inP and {By,--- ,Bn,} C M}.

‘We abbreviate the preference relation <(,/») to < whenever the optimization
predicate is obvious from the context. For instance, consider the Example 5. Its

preference relation < is the set

35

{ path(a,a,7,22,_) < path(a,a,0,0.),
path(a,a, 14,44,) < path(e,a,0,0,_),
path(a,a, 14,44,) < path(a,a,7,22,.), ---
path(a,b,11,32,_) < path(a, b, 4,10, _),
path(a,b, 18,54,) < path(a,b,4, 10, _),

path(a, b, 18,54,) < path(a,b, 11,32, _),

where the numbers 0,7, 11, ... are the possible costs, 0,22, 44, ... are the possible

distances, and ‘.’ means any ground term from the Herbrand universe.

Definition 3 (Model and Intended Model) Let P be a preference program,
and I be an interpretation for P.,.. We say I is a model for P if for any

optimization predicate q/n in P, we have

a). for any atom A in I, there exists a ground instance, A :- By,-++ ,B,, of a

clause i P s.t. {By,...,B,} CI;

b). for any two atoms Ay and Ay of g/n in I, neither Ay < Ay nor Ay < A is

true.

Further, we say I is an Intended model for P if

c). For any atom A of q/n in I, if there exists a Herbrand atom A; s.t. A < A;,

36

then A; is not in the least Herbrand model for P.r.. We call A an optimized

atom in I.

Note that the model for P,,. follows the standard model definition [14] for def-
inite clauses, which is different from Def. 3 for a preference program P. Def. 3(c)
says that no better-preferred atom A; than the optimized atom A can be found
in the least Herbrand model of P,,.., otherwise, A cannot be an optimized atom.

However, there may exist a Herbrand atom A; ¢ P.,.. that is better-preferred

than A.

We wish to obtain the link between the models of P and P.,.. so that we
can find out how preferences affect the semantics of a general program. For
this we need to introduce two new meta-level nﬁappings defined over Herbrand

interpretations.

Definition 4 Let P be a preference program, M be a Herbrand model for Pme,
and M, be a subset of M containing all the atoms of any optimization predicate.
We define a meta-level mapping ¢p : 9Boore — 2BLre gg follows:

QSP(M) =M — {A € M1 : ElAl € M; s.t. A=< Al}

Definition 5 Let P be a preference program. We define a meta-level mapping
7p : 2Blre s 2Biore qs follows: mp(M)={AeM:A: A,--- ,An'zs a ground

instance of a clause in Peyre and {Ay,--- ,An} C M}.

37

The above two mappings provides the link between the declarative and pro-
cedural semantics of a preference program. The mapping ¢p filters suboptimal
atoms from the model according to the preference relation; the mapping 7p filters
those atoms depending on the removed suboptimal atoms from the model. It is
obvious that mp(I) C I for any given Herbrand interpretation I. Thus, we come

to a major result of the theory as shown in the next theorem.

Theorem 1 Let P be a preference program and ML __ be the least Herbrand model
for Poyre. Then
Mp =7p T w(¢p(M%,.))

1s an intended model for P.

Proof: We show how Mp satisfies the propérties (a), (b), and (c) as defined in
the Def. 3 for an intended model:

1). Based on the definition of ¢p, it is clear that ¢p(ML,.) satisfies the property
(b); Since mp(I) C I for any given Herbrand interpretation I, 7p T w(ép(MZL..))
satisfies the property (b) too.

2). We associate a complete lattice with the program P. QBfore, the set of all
Herbrand interpretations of P,,.. and P, is a complete lattice under the partial
order of set inclusion C, where the top element is Bp and the bottom element is
0. Thus, Mp = 7p T w(ép(MZ,) must be a fixed point of mp over the lattice,
that is, 7TP(M p) = Mp. Therefore, Mp satisfies the property (a), and hence it is

a model for P.

38

3). Let g/n be an optimization predicate and A be one atom of ¢/n in Mp.
Assume that there exists a Herbrand atom A; € Mp s.t. A < A;. According
to the definition of ¢p in Def. 4, A ¢ ¢pp(MZL), and hence A ¢ Mp, which is a
contradiction to the fact that A € Mp. Therefore, Mp satisfies the property (c).

Thus, Mp is an intended mode for P. O

If we reconsider the preference program in the Example 5. Its least Herbrand

model ME and ¢p(M£re) are shown below.

core

Mbre ={
edge(a, b, 4, 10), edge(b, a, 3,12), edge(d, ¢, 2, 14),
path(a,q,0,0,[]), path(a, a, 7,22, [(a, b), (b,a)]), - - -

path(a, b, 4,10, [(a, b)]), path(a, b, 11, 32, [(a, b), (b, a), (a, b)]),

path(c,c,0,0,]])
}
¢p(Mbre) = {
edge(a, b, 4, 10),edge(d, a, 3,12), edge(d, c, 2, 14),
- path(a, a, 0,0, [}), path(a, b, 4, , 10, [(a, b)]),
path(a, ¢, 6,24, [(a,b), (b, ¢)]), path(b, a, 3,12, [(, a)]),
path(b, b,0,0,[]), path(b, ¢, 2,14, [(b, ¢)]),

path(c,¢,0,0,[])

39

We also have mp T w(édp(ME) = ¢p(MZ.,) for this program. However, if
we add an extra clause
shortest(X,Y,C,D,P) :- path(X,Y,C,D,P).,
then 7p T w(pp(MFE) is different from ¢p(MZL). e.g.,
shortest(a, a, 7,22, [(a, b), (b,a)]) € dp(ME), but

shortest(a, a, 7,22, [(a, b), (b,a)]) ¢ 7p T w(gp(MZE).
Theorem 2 Let P be a preference program. Then Mp exists and is unique.

Proof: Both the existence and uniqueness of Mp are determined respectively
by those of ML ., the least Herbrand model for P.y.. For each definite logic

program, MY _ exists and is unique [5, 14]. The proof is therefore completed. [J

core

Example 6 Consider the following preference program with contradictory pref-

erences:

qa).

q(b).

:- table q(<<<).
q(a) <<< q(b).

q(b) <<< q(a).

40

The intended model of this program is an empty set, since MZ, . = {q(a), q(b)}
and ¢p(MZ,.) = 0; ‘<<<’/2 is tabled to avoid the non-termination because it has

been cyclically defined.

Corollary 3 Let P be a preference program and q/n be an optimized predicate.

A is an atom of ¢/n and A € Mp if and only if A is an optimized atom in ML

core’

Proof: This is shown based on the Def. 3(c) since Mp is an intended model for

P. O

41

CHAPTER 4

Procedural Semantics

A preference logic program cannot be executed directly on any existing tabled
Prolog system. The main reason is that the mode-controlled table manipula-
tion is implemented at the system level, whereas preferences are defined at the
Prolog programming level. Therefore the optimization criteria P, needs to be
embedded into the general problem specification P, during execution. This em-
bedding procedure needs to be carefully designed to ensure that the procedural

semantics is consistent with the declarative semantics of the preference program.

This chapter first discusses the previous embedding procedure and how it is
improved in the new approach. Then we illustrate how it is realized in the system
followed by some preference program examples. Finally correctness of the new

approach is proven.

42
4.1 Embedding Approaches

In this section we first briefly discuss the cmbedding approach employed in [13].
The reasons for improvement are identified, and a new approach is designed to

address these shortcomings. An overview of the new approach is then followed.

4.1.1 Previous Approach and Its Shortcomings

In the previous approach [13], the embedding is achieved using transformation.
The idea is to take the user defined program P as its input, and'introdﬁces
(inserts) a new predicate as a wrapper to form the transformation output P’. This
procedure is illustrated using the following example. Consider the transformed

tabled program of the program in Example 5.

Example 7 Previous approach: transformed program of Ezample 5.

%%% RENAMED PREDICATE %%%
pathNew(X, X, 0, 0, [1). (1
pathNew(X, Y, C, D, [e(X, Y)]) :-

edge(X, Y, C, D). (2)
pathNew(X, Y, C, D, [e(X, Z) | P]) :-

edge (X, Z, C1, D1), path(Z, Y, C2, D2, P),

Cis C1 + C2, D is b1 + D2. (3

edge(a,b,4,10). edge(b,a,3,12). edge(b,c,2,14). (4)

43

% mode ‘last’ will be explained below %
1

:- table path(+, +, last, last, -). (5)
path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :- C2 < Ct. (6)
path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :- (7

€1 =C2, D2 < D1.

%%% NEW PREDICATE %%%
path(X, Y, C, D, P) :- (8)
pathNew(X, Y, C, D, P),
(path(X, Y, C1, D1, P1)
-> path(X, Y, C1, D1, P1) <<< path(X, Y, C, D, P)

; true,

The differences between P and P’ are: (i) The original predicate path/5
in Example 5 is replaced by a new predicate pathNew/5 to emphasize that this
predicate generates a new preferred path candidate from X to Y. (ii) The predicate
path/5, given a new definition in clause (8), represents the way for identifying
a preferred answer. The meaning of clause (8) is the following: given a path
candidate A by pathNew(X,Y.C.D,P), we need to check whether there already
exists a tabled answer, if so, they are compared with each other to keep the

preferred one in the table; otherwise, the candidate is recorded as a first tabled

44

answer. The mode ‘last’ declared in clause (5) is used to record the last answer
(of the corresponding argument) from a solution set. This procedure ensures that
the optimal solution is the last one left in the table after all the computation and
comparisons are done. Mode ‘last’ however is obsolete and is not necessary in

the new system.

Although this transformation procedure is effective and can be fully auto-
mated, there are some shortcomings that can be improved. Firstly, the trans-
formation alters the original program dramatically. Not only a new predicate
declared in clause (8) is introduced, but also the existing predicates are being
renamed. This process and the transformed program could become very complex
depending on the optimization criteria involved. Secondly, this approach only
supports one optimal solution. Hence it requires a strict partial ordering among

the potential solutions. To address these issues, a new approach is introduced.

4.1.2 Overview of the New Approach

The approach taken in this thesis addresses the embedding issue differently than
the previous transformation. A prolog level predicate updateTable (QueryName,
Criteria) is introduced to manage the tabled solutions. It is invoked every
time a new solution is obtained. Essentially it determines amongst the obtained
new solution (referred to as CurrentSolﬁtion) and the solutions reside in the

table, which ones shall be kept and discards the rest. There are two arguments

45

to the predicate updateTable/2: QueryName specifies the name of the query
that it needs to update; and Criteria specifies the optimization criteria to be
used (e.g. ‘<<<’). The procedure starts by retrieving all of the tabled solutions
for the specified query. Then it uses the optimization criteria to compare the
CurrentSolution against each of the tabled solution following the pseudo-code

presented below:

foreach tabled solution T in table
if T <<< CurrentSolution
flag T for removal from the table
if CurrentSolution <<< T
flag CurrentSolution as discard

endfor

Figure 4.1: Pseudo-code: Managing Tabled Solutions

The pseudo-code states that: any tabled solution that is less preferred than
CurrentSolution is removed from the table; on the other hand, CurrentSolution
is added to the table only if none of the tabled solutions is more preferred than it.
Note that the two if conditions in the pseudo-code are examined independently
from each other. Therefore, if contradiction exists in the preference declarations,
e.g. both soll <<< s012 and §012 <<< soll can be derived, then neither solil

nor sol2 are recorded in the table. On the other hand, if two solutions are not

46

comparable, they do not eliminate each other. Hence, multiple optimal solutions

are supported by this approach.

Tt will be proven later in this chapter that updateTable/2 guarantees the
solutions reside in the table (if any) for the specified query are the best solutions
obtained so far based on the specified optimization criteria. Since it is invoked
on all solutions, the tabled solutions obtained upon termination are the optimal
solutions for the particular query. If no tabled solution exists, it implies that the

preference program contains no solution.

4.2 Predicates Supporting the New Approach

New built-in predicates are introduced in order to support the new approach.
The definition of the predicate updateTable/2 strictly follows the description of
the approach presented in Section 4.1.2. The formal definition of this predicate

is presented in Figure 4.2, and detailed discussion of this process is followed.

Line 1 gives the top level definition of updateTable/2. When it is invoked, it
first (line 2) obtains a list of all tabled solutions for the tabled f)redicate (TabSol)
and the new solution (CurrentSol). TabSol as well as CurrentSol are then
examined (line 3) using the specified optimization criteria. This would determine
how the table should be updated in order to record the best solutions found so

far.

47

updateTable (QueryName, Criteria) :- | &)
allTabledSolutions (QueryName, TabSoi, CurrentSol), (2
updateTabledSolutions(TabSol, CurrentSol, Criteria). 3
updateTabledSolutions(TabSol, Sol,-Criteria) :- (4)
compareToTabled(Criteria, TabSol, Sol, Flist, SolFlag), (5)
removeTabledSolutions(Flist), (6)
SolFlag == 1. (7
compareToTabled(_, [1, _, [1, Flag) :- (8)
(var(Flag) -> Flag = 1 ; true), !. €))
compareToTabled(Criteria, [T|Ttaill, Sol, [F|Ftaill, Flag) :- (10)
Terml = [Criteria, T, Soll, % T less preferred than Sol? (11)
Term2 = [Criteria, Sol, TJ], % Sol less preferred than T? (12)
(Termi -> F =1 ; F=0), (13)
(Term2 -> Flag = 0 ; true), (14)
compareToTabled(Criteria, Ttail, Sol, Ftail, Flag), !. (15)

Figure 4.2: Definition of updateTable/2

48

We break down the predicate updateTabledSolutions/4 even further. In
line 5, compareToTabled/5 compares the new solution (Sol) against each tabled
solution and generates a list of flags (Flist) indicating which of these tabled
solutions shall be removed. A one (1) at position 7 of Flist indicates the tabled
solution at position i of TabSol shall be removed; zero (0) otherwise. Line 6 thus
removes 'the tabled solutions based on E’list. SolFlag is also determined in line
5 which indicates if Sol is more preferred than all the currently tabled solutions.
If it is, line 7 will evaluate to be true, and Sol is added to the table; otherwise,
Sol is simply discarded. Predicate compareToTabled/5 follows directly from the

pseduo-code presented in Figure 4.1, and its definition is given in lines 8 thru 15.

With these predicates defined, we can now embed Pere into Pprey. This is

illustrated using examples in the next section.

4.3 Embedding Preference Programs and Examples

This section presents the embedding procedure for a given PLP containing P.,..
and Fpres. The embedding is deterministic and can be fully automated by sim-
ply invoke updateTable/2 at the end of every optimization predicates defini-
tions. The two arguments of updateTable/2 may be determined automatically:
QueryName is the same as the predicate which invoked updateTable/2; Criteria
is specified in the mode declaration of this tabled predicate. This procedure is

formally presented in the Figure 4.3.

49

foreach optimization predicate Name/N in P,
foreach definition “Head :- Body.” of Name/N
replace “Body.”
with “Body, updateTable(Name, PreferenceSymbol).”
endfor

endfor

Figure 4.3: Pseudo-code: Embedding of P,y and Py

We further illustrates the embedding using concrete examples in this section.
These examples also show us how various types of preference programs are sup-

ported by the PLP system.

4.3.1 Shortest Path

The following example shows the embedded program of Example 5. The dif-
ference between the embedded program and the original one is the addition of
the sub-goals (updateTable/2) in the optimization predicate path/6 in clauses
(2) and (3). These sub-goals invoke the update table action every time a new
solution is obtained. Therefore the solutions selection criteria defined in F,,..r are
successfully applied to the problem specification P, and the desired embedding

is realized.

Example 8 Current approach: embedded program of Example 5.

%%hh P_core %%
path(X, X, 0, 0, [1) :-
updateTable (path, €<<<’).
path(X, Y, C, D, [e(X, YD1) :-
edge(X, Y, C, D),
updateTable(path, ‘<<<’).
path(X, ¥, C, D, [e(X, Z) | P]) :-
edge(X, Z, C1, D1), path(Z,.Y, c2, D2, P),
C is C1 + C2, D is D1 + D2,

updateTable(path, ‘<<<?),

edge(a;b,4,10). edge(b,a,3,12). edge(b,c,2,14).

:— table path(+, +, <<<, <<, -),.

%%h P_pref %h%

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-
C2 < Ct.

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

Ci = C2, D2 < D1.

oD

(2)

(3)

(4

(5)

(6)

P

50

o1

4.3.2 Multiple Optimal Solutions

We have pointed out earlier that the new approach is able to handle preference
rules that allow multiple optimal solutions. Consider Figure 4.4 below. Each
node represents a solution and each arc represents a preference relation where
the preference decreases downwards. i.e., solution a and d are the most preferred
and p is the least preferred. Since a and d are not comparable among themselves,

this preference yields two optimal solutions, namely a and d.

®

Figure 4.4: A Solution Set with Multiple Optimal Solutions

The corresponding embedded preference program of Figure 4.4 is presented

in Example 9.

Example 9 Support for multiple optimal solutions.

:— table letter(<<x). (1

Whh P_core %uh
letter(p):-

updateTable(letter, ‘<<<’).
letter(X) :-

member(X, [s, p, b, k, t, ¢, a, dl),

updateTable(letter, ‘<<<’).

%hh P_pref %hh

letter(b) <<< letter(a). letter(c) <<< letter(a).
letter(c) §<< letter(d). letter(k) <<< letter(b).
letter(t) <<< letter(c). letter(s) <<< letter(k).
letter(s) <<< letter(t). letter(p) <<< letter(s).

(2)

(3)

(4)

(5)

(6)

(7

52

Clause (2) sets the initial solution of letter/1 to be p. Clause (3) determines

the set of letters to be considered, and also embeds the selection criteria into the

problem specification. Clauses (4) thru (7) defines the preference relations among

the letters as shown in Figure 4.4.

When the program executes, despite letter p being the initial solution of

letter/1, the preference rules will replace the tabled solutions with the best

solution found so far. Thus when letter a is unified with variable X by predicate

member/2, all the previously tabled solutions are eliminated and a is added into

the table. However, the next letter, d, does not eliminate a, nor is eliminated by

a. Therefore, both a and d are tabled upon termination; and both of them are

53

" indeed optimal solutions of this preference program.

4.3.3 OUOptimal Substructure Probleius

A problem is said to have optimal substructure if its optimal solution can be
constructed efficiently from optimal solutions to its sub-problems. Problems that
have such property include matrix multiplication, alignment, etc. Optimal sub-
structure of a problem may be defined in the solution selection criteria when
applies, and it could simplify the preference declaration of the problem. This is

illustrated in Example 10 below.

In this example, we define the right association rule of ‘+’ (addition). The
optimal substructure property holds because in order for a+(b+(c+d)) to be the
optimal association for a+b+c+d, its sub-problem, e.g., b+(c+d) needs to be the

optimal association for b+c+d. The preference program is defined as follows.

Example 10 Support for problems with optimal substructures.

:- table rightAsso(<<<,+,+). ¢D)

%hth P_core %%

rightAsso(T1+T2,L1,L2) :- (2)
rightAsso(T1,L1,L3), L3=[+|L4], righlAssu(T2,L4,L2),
updateTable(rightAsso, ‘<<<’).

rightAsso(X,L1,L2) :- (3)

o4

Li1=[X|L2], member(X, [a,b,c,d]),

updateTable(rightAsso, ‘<<<’).

%%h P_pref %hh

rightAsso(T1,L1,L2) <<< rightAsso(T2,L1,L2) :- (4)
lesspref (T1,T2).

rightAsso(T1,L1,L2) <<< rightAsso(T2,L1,L2) :- (5)
1esspref(Ti,T3),

rightAsso(T3,L1,L2) <<< rightAsso(T2,L1,L2).

lesspref ((T1 + T2) + T3, T1 + (T2 + T3)). (6)
lesspref (Tl + T2, T3 + T2) :- lesspref(T1l, T3). 7
:- rightAsso(P, [a,+,b,+,c,+,d], [1). (8)

The first arguinent of rightAsso/3 represents the solutions that we are ex-
pecting. The second and the third arguments form a difference list. Difference
list is used to represent the information about grammatical categories not as a
single list, but as the difference between two lists. E.g., “[a,+,b,+,c,+d], [1”
is equivalent to “[a,+,b,+,c,+,d,+], [+]”, which is the list representation of
a+b+c+d for our input. The usage of the difference list here is the same as the

last two hidden arguments in DCG rules.

Clause (2) and (3) construct possible associations of [a,+,b,+,c,+,d], and

39

embed the selection criteria into the problem specification. The preference pred-
icate is defined in clause (4) and (5), where clause (5) emphasizes on the transi-
tivity rule. In the definition of predicate lesspref/2, clause (6) states that right
assoclation is more preferred than left association on the same level; and the
optimal substructure property is defined by clause (7). This preference program

yields a+(b+(c+d)) when clause (8) is executed.

Notice that the preference rule
lesspref(T1 + T2, T1 + T3) :- lesspref(T2, T3).
is not a part of the program because it is implied. The reason is that T1, T2 and
T3 are optimal solutions to the sub-problems. Adding an optimally structured
expression to the right hand side of ‘+’ would not violate the right associativity of
the expression as a whole. Clause (7) in the program however is required because

it adds the expression to the left hand side of the ‘+’, which may cause violation.

4.4 Proof of Correctness

We prove the correctness of the procedural semantics of the PLP system in this

section. Definition 6 states the procedural semantics of a embedded program.

Definition 6 Let P and Bp be a program and its Herbrand base. We define a
meta-level procedure Tp : 287 — 2BP Given a Herbrand interpretation I, Tp(I)

performs:

o6

Iy « 0;
foreach ground instance A :- Ay, -+, Am of a clause in P where
{Ar,--- A} C T
if 3ielyst A<
Ih—I—{ilicl,i<A}
else
Ipe(Io—~{ili€l,i<A})uU{A4}

return I

Thus, the fized point semantics of P can be described as Tp T w(0).

We can state the following theorem regarding the soundness and completeness

of embedded preference programs based on the mapping defined in Definition 6.

Theorem 4 (Soundness and Completeness) Let P be a preference program,
p(P) be the embedded program of P, and q/n be an optimization predicate. A is
an atom of g/n and A € Typy T w(0) if and only if A is an optimized atom in

MP

core’

Proof: This is shown based on the definition of updateTable/2. V atoms of
g/n, atom A; of ¢/n is pruned if 3 an atom Aj of ¢/n s.t. A1 < A,. Therefore,

Ais an atom of ¢/n and A € T,py T w(0) < A is an optimized atom in MZ, , O

57

Finally, Theorem 5 shows the equivalence between the declarative semantics
of a preference program and its procedural semantics over a transformed tabled

program.

Theorem 5 (Correctness) Let P be a preference program, and p(P) be the
embedded program of P. Then 7p T w(¢pp(MZL) = Typy T w(B), where ME =

core

TPcore T UJ(@)

Proof: Let A be a Herbrand atom. The proof is based on the following two
cases:

(i) If A is an atom of an optimization predicate,

A€ p T UJ(QSP(MCPore))

& A is an optimized atom in MZP

core*

Corollary 3

o AcT,p Tw®) Theorem 4
(ii) If A is not an atom of ¢/n, then the proof is a structural induction on the
definition of the predicate for A:

Base case: Let A be a ground instance of a fact clause in P,ye.

Ae7pw(op(ME,,))
& A-is an instance of a fact in P.,.. Def. 5
< Ais an instance of a fact in p(P). Embedding
& AcTyp Tw®) Def. 6

Inductive case: Assume that for any ground instance

58

A By,---, By, of aclausein Py, we have {By, ..., By} C 7p T w(¢pp(ME) &

{Bi,..., Ba} C Typ) T w(0), where n > 0.

A€ mp 1 w(dp(Mg,.))
<« 3 a ground instance: A :- By, , D,
st. {Bi,..., Bn} C7p Tw(op(ML,,)). Def. 5
< {B1,....,Bn} C Tppy T w(d) Hypothesis

& AeT,p 1w Def. 6

39

CHAPTER 5

Typical PLP Applications

We have shown some examples in Section 4.3 to help illustrating the embedded
preference programs. Typical applications utilizing preference declarations may
be more complicated than these examples. In this chapter we present a few of
these applications as representatives of the problems that can take advantages of

the PLP system.

5.1 Dynamic Programming

We have mentioned that problems with optimal substructure properties are sup-
ported by the PLP system. Dynamic programming is a typical type of algorithms
that is based on this property. In this sectoin we use the matriz-chain multiplica-
tion problem as an example to illustrate how preferences can be used for simpli-
fying the specification of dynamic programming problems in logic programming.

A product of matrices is fully parenthesized if it is either a single matrix or the

product of two fully parenthesized matrix products, surrounded by parentheses.

60

Thus, the matrix-chain multiplication problem may be stated as follows:

Problem 1 Given a chain (A, Ao, ..., A,) of n matrices, where fori=1,2,...,n,

matriz A; has dimension p;_y X p;, fully parenthesize the product A1A,...A, in a

way that minimizes the number of scalar multiplications.

For example we are given three matrices, M1, M2 and M3. Suppose the
dimensions of these matrices are as follows: M1 =10x100, M2 = 100x5 and M3
= 5 x 50. If we multiply M1 and M2 first followed by M3, i.e., (M1x M2)x M3
the number of scalar multiplications is (10 x 100 x 5) + (10 x 5 x 50) = 7500.
However, if we use the following computation, M1 x (M2 x M3), the number of
scalar multiplications is increased to (100 x 5 x 50) + (10 x 100 x 50) = 75000.

Hence, it is important to find the optimal way(s) to multiply matrices.

To solve this problém by dynamic programming, we need to define the cost of
an optimal solution recursively in terms of the optimal solutions to subproblems.
Let m][i, j] be the minimum number of scalar multiplications needed to compute
the matrix A; ;, which denotes a sub-chain of matrices A;A;;1...A; for 1 < i <
7 < n. Thus, our recursive formula for the minimum cost of parenthesizing the

product A; ; becomes

mli, j] =
1 min {mli, k] + mlk + 1, 7] + picipep;} i < 3.
1<k<j

61

This formula shows that the programmer has to find the optimal value by
comparing all possible multiplication costs explicitly. In fact, for a general op-
timization problem, the definition of an optimal solution could be quite compli-
cated due to heterogeneous solution construction. Then, comparing all possible

solutions explicitly to find the optimal one can be tricky and error-prone.

This explicit comparison can be avoided by utilizing preference declarations.
With preferences, the programmer is only required to define what a general solu-
tion is, while how to search for the optimal solution is left to the logic program-
ming system. For the matrix-chain multiplication, instead of defining the cost of
an optimal solution, we only need to specify what the cost for a general solution

is. The recursive definition for the cost of parenthesizing A; ; becomes

o 0 if 1 = 73,
mli, j] =
m[i, k] + m[k =+ l,j] + Di-1DkD; ifi <y

where 7 < k < 7. Therefore, we have a preference program as follows:

Example 11 A preference program that finds the optimal way to multiply ma-

trices.
:— table matrix(+, <<<, -). (1)
Y% P_core %%

matrix([D1, D2], 0, (D1, D2)). (2)

matrix([D1, D2, D3 | Dr], V, (El1 * E2)) :- 3

62

break([D1, D2, D3 | Dr], DL1, DL2, Dk, Dn),
matrix(DL1, V1, E1),

matrix(DL2, V2, E2),

V is V1 + V2 + D1 * Dk * Dn,

updateTable (matrix, ‘<<<?’).

%hh P_pref %hk

matrix(D, V, _) <<< matrix(®, V1, _) :- V1 < V. (5)

In this program, predicate matrix(D,V,E) is given D as a list of dimensions.
Both V and E are the output of this program indicating the optimal scalar multi-
plication and its corresponding parenthesization, respectively. Predicate break/5
is used to break a list of dimensions into two parts, say L1 and L2, at the point
of Dk. Dn represents the last dimension in the list L.

The output of this preference program is presented below. When we query

the system using matrix((10, 100, 5, 501, V, E), we obtain the following

unique solution:

V=7500

E=(10, 100)*(100, 5)*(5, 50)

Notice that we have assigned a non-indexed mode to the third argument (the
evidence), which tells the table to only record the very first instance of this argu-

ment. In case we want to record multiple evidences for a preferred solution, we

63

may assign the preference mode to this argument instead (:- table matrix(+,
<<<, <<<)). With this declaration, if there exist more than one optimal way
of multiplying specified matrices, all optimal solutions are recorded. For ex-
ample the query matrix([10, 10, 10, 10, 10], V, E) returns four optimal

solutions as follows:

V=3000

E=(10, 10)

*

((10, 10) * ({10, 10) = (10, 10))) ;
V=3000

E=(10, 10)

*

((10, 10) * (10, 10) * (10, 10)) ;
V=3000

E=(10, 10)

*

(10, 10) * ((10, 10) * (10, 10)) ;
V=3000
E=(10, 10) * ((10, 10) * (10, 10)) =* (10, 10) ;
V=3000

E=(10, 10)

*

(10, 10) = (10, 10) =* (10, 10) ;

5.2 Ambiguity Resolution

Another important application that can take advantage of PLP is ambiguity res-
olution. It is critical to the language prbcessing for precise syntax and semantics.
We have presented an example of syntactic ambiguity using the dangling else

problem in Chapter 1. And we have mentioned that to avoid such an ambiguity

64

it is often necessary to change grammar itself, which sacrifices the clarity of the
original grammar. In this section we present the preference program that is used

to solve the ambiguity problem with out modifying the grammar.

Example 12 A preference program that solves dangling else problem.

:— table stmt(<<<, +, +). (1)

%hh P_core %ih

stmt(A, B, C) :- (2)
cond(A, B, C),
updateTable(stmt, ‘<<<’).

stmt (if (A, B), [iflC], D) :- (3)
cond(A, C, E), E = [then|F], stmt(B, F, D),
updateTable(stmt, ‘<<<’).

stmt(if(A, B, C), [ifID], E) :- (4
cond(A, D, F),

F [then)G], stmt(B, G, H),

H [elselI], stmt(C, I, E),
updateTable(stmt, ‘<<<’).

cond(tt, [ttlAl, A). cond(£f, [££IA], A). (5)

Wit P_pret %%

stmt(if(A, B, C), L1, L2) <<< stmt(if(A, D), L1, L2) :- (6)

65

combine(B, C, D).

combine(if(A, B), C, if(A, D)) :- (n
combine(B, C, D), !.

combine(if (A, B, C1), C, if(A, B, C2)) :- (8)
combine(C1, C, C2), !.

combine(if (4, B), C, if(A, B, C)). (9)

Clauses (2) thru (5) make up the core program specifying the grammar. Note
that this could be further simplified using DCG rules, which would look similar
to Example 2 in Chapter 1. The emphasis here is the declarations of preference
clauses (6) thru (9). The recursively defined predicate combine/3 is utilized to
ensure that no if statements without else clauses can appear inside the then part
of an if-then-else statement. Using this preference, the else will bind to the last if
statement, and still allows chaining. Since this preference is recursively defined,

the optimal substructure property of this grammar is expressed.

The output of this preference program is presented below. When we query
the system using stmt(L, [if, tt, then, if, ff, then, tt, else, ff],

[1)., the unique solution is obtained as follows:

L = if(tt,if(ff,tt,ff))

This parsing result shows indeed that the dangling else is paired with the last

if statement.

66

CHAPTER 6

Implementation of the PLP System

The PLP system is implemented on top of a tabled Prolég system utilizing DRA
approach [11], and is realized using C programming language. It is the C level
procedures that carry out the WAM instructions that correspond to a given
Prolog program. Therefore all Prolog level predicates, both built-in and user

defined, rely on the C level implementation.

This chapter discusses the implementation of the PLP system at C level. The
data structure that is used to record the tabled solutions is shown first. Then we
discuss how the tabled solutions are managed. This is the C level correspondence
of the updateTable/2 predicate defined in Chapter 4. Following the table man-
agement, another aforementioned improvement — argumenf reordering is then

discussed.

67

6.1 Data Structure of the Tabled Solutions

The solutions that reside in the table should be easily retrievable dﬁring execu-
tion. Therefore, the trie data structure [18|, designed for data retrieval purposes
is the natural choice. The term trie comes from “retrieval”. It is an ordered
tree data structure that is used to store associative arrays. This concept may be
better illustrated using an example. Suppose we have three tabled solutions for
tabled predicate /3, say q(a,c,t), q(a,k,v), and q(a,k,s). These solutions
are stored using trie structure as shown in Figure 6.1. Symbol ‘A’ is used to
indicate grounded pointers. Notice that each element contains three portions:
1) the actual data, or a pointer to the data if it is complex; 2) a child pointer
(possibly null) pointing to the next argument of the predicate; and 3) a sibling
pointer (possibly null) pointing to the alternative solutions that differs from this

solution starting at this argument.

solutionRoot

g/3 ——| a N

¢

Figure 6.1: Tabled Solutions in the Trie Structure

Retrieving solutions from the tire structure is straightforward. Consider Fig-
ure 6.1, to retrieve a solution for q/3, we start the traversal at the first element

that the solutionRoot pointer of q/3 points to and extract its data. Hence the

68

value of the first argument is obtained. We continue extracting the value of the
second argument by following the child pointer of the current element. Now the
sequence (a, ¢y is obtained. This process continues utill the value of the last argu-
ment is extracted. In our case, sequence (a, ¢, t) is finally obtained, and therefore

we have obtained q(a,c,t) as a solutions for q/3.

To retrieve additional solutions for q/3, we would take the sibling pointers
instead of child pointers, and then follow the same procedure to obtain the rest of
the sequences. However, this would require us to record the choice points where
alternative traversals were taken, which could be a p'otential performance prob-
lem. To overcome this, we added one additional level of elements to the bottom
of the trie structure which explicitly indicates the traversal information. An ad-
ditional pointer, solutionStart, is introduced for quick access to the elements

at this level. These modifications are shown in Figure 6.2 below.

o3 e [T Tx
T ok [(A

t) A v ' s AN

rotusonssans [0 " 0.1.0 N 0.L1|A[A

Figure 6.2: Tabled Solutions in the Trie Structure with Path Information

The path information recorded at the bottom level of the structure indicates

how to obtain the solution expressed by the element that is pointing to it. The i-th

69

value in a path represents the number of siblings that need to be offset in order to
obtain the value of the i-th argument for the predicate. For example path (0, 1, 0)
indicates that traveling from the first element that q/3 is pointing to, offset 0
sibling to get the value of the first argument and move down to the second level.
Then offset 1 sibling to get the value of the second argument and move down to
the third level. Finally offset 0 sibling to get the value of the third argument. This
traversal yields (a, &, v)\, which is indeed the solution that points to path (0, 1,0).
Therefore, rather than recording the choice points at run time, we may simply
look up this information and retrieve the desired solution accordingly. Notice
that all bottom elements that contain traversal information are linked thether.
This feature further simplifies the process of retrieving multiple tabled solutions

for a predicate.

typedef struct Trie_Answer *TAptr;

typedef struct Trie_Answer

{

TAptr child; // a pointer to its child

TAptr sibling; // a pointer to its sibling

PWord atom; // abstract data type records the atom
}

Figure 6.3: Type Define: Trie Answer

Figure 6.3 defines the trie answer data type Trie_Anser as defined in the

70

system. Its definition follows directly from the structure of trie. Type PWord is
an abstract data type that is used to represent the data, or a pointer to the data,
that is associated with the current element. The same data type is used for both
elements carrying data as well as elements recording traversal information at the

bottom level of trie.

typedef struct Tabled_Pred *TABLEptr;

typedef struct Tabled_Pred

{
/* for retrieving tabled solutions */
TAptr solutionRoot; // a pointer to the root of solutions
TAptr solutionStart; // a pointer to the first solution path
TAptr solutionEnd; // a pointer to the last solution path
int arity; // the arity of the tabled predicate
/* for implementing DRA */
short pIndexState; // 1 = NORMAL, 2 = LOOPING, 3 = COMPLETE
CLAUSEptr loop; // a pointer to looping Alternatives
byte constFlag; // 1 = const, 0 = variable
TABLEptr next; // a pointer to the next tabled predicate
}

Figure 6.4: Type Define: Tabled Predicate

Figure 6.4 defines the tabled predicate data type Tabled_Pred as defined in the

system. Its definition is a little more complicated because it contains information

71

'needed to realize DRA as well. The implementation of DRA is out of scope of this
thesis, thus we only concentrate on the data members that are associated with
retrieving solutions from the table. These data members are: solutionRoot,
solutionStart, solutionEnd, and arity. solutionRoot is a pointer pointing
to the root of solutions. solutionStart is a pointer pointing to the first solution
path, while solutionEnd points to the last solution path. arity simply records
the arity of the tabled predicate. For easier understanding of these pointers, both

solutionRoot and solutionStart are visually represented in Figure 6.2.

After defining the data types of Trie_Answer and Tabled Pred, the next sec-
tion discusses how the tabled solutions are managed in the trie. These operations
corresponds to the predicates involved in the updateTable/2 predicate defined

in Figure 4.2.

6.2 Management of the Tabled Solutions

Three procedures dealing with the trie structure presented above are defined
at C level in order to support the Prolog level predicate updateTable/2 for
its tabling operations. They are: retrieve all tabled solutions for a specified
predicate, remove a set of solutions from the table, and add a new solution to the
table. These operations are essential to the implementation of the PLP system.

Thus each of them is discussed in detail in this section.

We will present these operations in the order of which they are invoked by

72

updateTable/2. The first operation invoked is to retrieve a list of all tabled
solutions of a specific predicate, hence it is discussed first. The retrieved list is
then compared against the new solution obtained, and a set of tabled solutions
to be removed are determine. Therefore we illustrate how solutions are removed

from the table next, followed by a discussion on adding solutions to the table.

6.2.1 Retrieving All Tabled Solutions of a Table Predicate

The first procedure invoked by updateTable/2 is to list all tabled solutions of the
specified predicate. This procedure is carried out by performing a traversal from
the start of the solution to the end. Since the predicate is specified, we can locate
the root of solutions and the first solution path using pointers solutionRoot and
solutionStart, respectively (as shown in Figure 6.2). Then for each element at
the path level, we ret;ieve the corresponding values based on the path information
to form a solution. The result of this traversal on each element at the path level

is the set of all tabled solutions for the specified predicate.

Figure 6.5 shows the C level implementation of this procedure. It illustrates
at which positions we should extract the data from in order to reconstruct valid
solutions from the a structure. The code for extracting the actual data is straight-

forward yet lengthy, thus has been omitted from this figure.

In this function definition, tptr is a pointer pointing to the specified tabled

predicate. The two TAptr pointers defined are used for traversal purposes:

void allTabledSolutions (TABLEptr tptr)

{
TAptr currentAnswerPtr; // points to a path level element
TAptr currentNodePtr; // points to a data level element

short *pathPtr; // points to a path value

if (tptr->solutionStart != NULL) {
for (currentAnswerPtr = tptr->solutionStart;
currentAnswerPtr != NULL;

currentAnswerPtr = currentAnswerPtr->sibling)

/* get the current tabled answer */
pathPtr = (short *)currentAnswerPtr->atom;

currentNodePtr = tptr->solutionRoot;

for (i = 1; i <= tptr->arity; i++) {
/* need to move to the sibling? */
if (xpathPtr >= 1)
for (k = 0; k < *pathPtr; k++)

currentNodePtr = currentNodePtr->sibling;
/* CODE FOR EXTRACTING DATA IS OMITTED */
/* move to the next argument */

currentNodePtr = currentNodePtr->child;

pathPtr++;

Figure 6.5: Pseudo-code: Retrieving All Tabled Solutions of a Predicate

74

currentAnswerPtr which points to the path level of the trie, and currentNodePtr
which points to the data level of the trie. Pointer pathPtr points to the path
information recorded in a path level element. If no tabled solution exists for
the specified predicate, no action is taken and the function terminates. Other-
wise, currentAnswerPtr is set to point to the first path element, and its path
information is assigned to pathPtr. Then currentNodePtr travels along the trie
according to the path information, so a tabled solution is retrieved. This process
is repeated until currentAnswerPtr points to null, i.e., all tabled solutions are ob-
tained. Notice that this function does not have any return value because it sets the
value of the argument List of the Prolog predicate allTabledSolutions(List)
directly. Upon termination of the C function allTabledSolutions, List will
contain the list of all tabled solutions of the tabled predicate, if any, currently

stored; or empty otherwise.

6.2.2 Removing a Set of Solutions From the Table

After Prolog receives the list of all tabled solutions for the specified predicate,
it constructs a flag list indicating the set of tabled solutions to be removed.
To remove this set of from the table, we just need to remove the desired path
level elements from the trie structure. This is similar to the standard linked list
removal procedure. However, it is a little more involved because we have multiple

elements that need to be removed. Luckily, the flag list (FList) generated by

75

compareToTabled/5 at Prolog level (in Figure 4.2) corresponds directly to the
elements in the path level. i.e., the i-th element in the path list is to be removed
if the i-th flag in the flag list is turned on; otherwise it stays in the trie structure.
This one-to-one correspondence allows us to accomplish the removal of multiple

elements still in one traversal.

Figure 6.6 shows the C level implementation of this procedure. It illustrates
how a path level element is determined to stay or discard depending on the flag
information. In this function definition, tptr is a pointer pointing to the specified
tabled predicate. flagPtr points to the starting location of flag list determined
by Prolog. Like addTabledSolutions function, the remove function also has two
TAptr pointers defined, but for different purposes. currentPtr points to the path
level element that is currently being examined according to its corresponding flag
list value. prePtr on the other hand points to either the last path level element
that is determined to stay, or nullif no such element has been determined yet. It
is used so that we can update the solutionEnd information upon termination.
Notice that the standard linked list removal procedure for one element is adapted
in this function as indicated, but the actual code is omitted. Notice also that
after removal, if solutionStart is pointing to null, i.e. all tabled solutions are
removed, solutionEnd and solutionRoot are also set to null. Since this function
operates directly on the trie structure that stores the tabled solutions, no return

values is needed.

76

void removeListed (TABLEptr tptr, long* flagPtr)

{

/* pointers to path level elements */
TAptr currentPtr; // element currently being examined

TAptr prePtr; // the last element determined to stay

if (tptr->solutionStart != NULL)
{
/* initialize prePtr */
prePtr->atom = 0;

prePtr->sibling = tptr->solutionStart;

for (currentPtr = tptr->solutionStart;
currentPtr != NULL;

currentPtr = currentPtr->sibling, flagPtr++)

if (*flagPtr)
/* STANDARD LINKED LIST REVMOVAL IS OMITTED */
else

prePtr = currentPtr;
/* prePtr is the LAST node that is NOT removed */
tptr—->solutionEnd = prePtr;

if (tptr->s§lutionStart == NULL)

tptr->solutionEnd = tptr->solutionRoot = NULL;

Figure 6.6: Pseudo-code: Removing a Set of Solutions From Table

77

6.2.3 Adding a Solution To the Table

The last operation needed to support updateTable/2 is to add a new solution to
the table. A solution can be added to the table if none of the tabled solution is
more preferred than 1tself. The actual adding operation is triggered automatically
at the Prolog level if SolFlag == 1 is a true statement (line 7 in Figure 4.2).
However, defining this operation at C level could be a little tricky, due to the

usage of different modes for different arguments.

Mode declarations of tabled predicates are discussed in Section 2.3.2. It was
initially used to classify arguments as indexed (‘+’) or non-indexed (‘-’) for each
tabled predicate. Only indexed arguments are used for variant checking during
collecting new generated answers into the table. An extension of the mode decla-
ration is introduced and presented in Table 6.1, while keeping the semantics for

b

‘+” and ‘-’ unchanged.

Modes Informal Semantics

+ an indexed argument
- a non-indexed argument

<<< | a user-defined pereference mode

Table 6.1: Extended Built-in Modes for Tabled Predicates

Mode ‘+’ indicates the corresponding argument is indexed and will be used for

variant checking during collecting new generated answers into the table. Mode

78

‘-’ indicates the corresponding argument is non-indexed and does not need to

be recorded into the table except the very first instance. Mode ‘<<<’ indicates
whether or not the corresponding argument is to be inserted ipto the table de-
pends on the defined preference rule ‘<<<’. As aforementioned, ‘<<<’ is only the"
choice of preference symbol of this thesis, and it could vary from user to user. In
anyways, it does not alter the semantics of the preference mode declared. Notice -
that modes such as ‘max’ aﬂd ‘min’ can all be expressed using mode ‘<<<’; given
that the preference rules are defined as such respectively. Therefore, we may

consider the extended mode table as a generalization of mode declaration.

We use an example to help understanding the new mode. For example, given
a predicate q(+,<<<,-) and assume that the optimization criteria is to mazimize
the second argument for a fixed first argument. Further assume that a solution
exists in the table for q/3, say q(a,5,3). If a new solution q(a,9,2) is generated
and is to be added to the table, it replaces q(a,5,3) because 5 < 9. Now another
new solution q(a,9,7) is generated, but it does not get added to the table because
the third argument, is declared to be non-indexed. On the other hand, if the new
solution were q(b,9,7), both q(a,9,2) and q(b,9,7) would reside in the table

because the first argument is indexed, and a is different from b.

It is obvious that the procedure for adding a solution into the table shall
follow the declared argument modes. However, we need to make an assumption

before discussing the adding procedure. The assumption states that the mode

79

declaration of a tabled predicate q does not have mode ‘+’ appearing after ‘<<<’

?

and ‘-’, and does not have mode ‘<<<’ appearing after ‘=’. i.e., mode declaration
such as q(-, +, <<<) would be inappropriate. The reason for this assumption
is that with the above declaration, all instances of the first argument will have to
be tabled for q in order to get to the rest of the arguments. Tabling all instances
of this argument violates the semantics of non-indexing ‘-’; hence not allowed.
This shortcoming is addressed in the next section when argument reordering is
discussed. Therefore the above assumption will no longer be necessary. However,
for the discussion of adding solution to the table for now, let’s assume all modes

are declared in the desired order. This procedure still applies with the support

of argument reordering, as will be discussed in Section 6.3.

Given the appropriate ordering of the argument modes, Figure 6.7 shows an
abstract pseudo-code for the procedure of adding a solution into the table. As
defined in the function, if the table was empty for the particular predicate prior
to adding the solution, we can simply insert the values of all arguments into the
trie accordingly, regardless of their modes. It is a little more complicated when

‘the table contains some solutions already. In this case we need to compare the
new solution against the tabled ones, and make decisions based on the mode
declaration of the predicate. Notice that this comparison is different from the
comparison using preference rules.as predicate compareToTabled/5 defined in

Figure 4.2. The comparison process performed here is done per argument basis,

80

void addNewSolution(TABLEptr tptr, Argument arg)

{
TAptr tabled = tptr->solutionStart; // points to data level
int insertFlag = 0; // indicates insert or not
if (tptr->solutionStart == NULL) // empty table, insert all
for (i=0; i<arg.count; i++) {
/* INSERT arg INTO TRIE, CODE OMITTED*/
}
else // non-empty table, need to make comparisons based on modes
for (i=0; i<arg.count; i++, arg++, tabled=tabled->child) {
swith(arg.mode)
{
case ‘-’:
return;
case ‘+’:
case ‘<<<?:
if (arg.value != tabled->atom AND any of its sibling)
insertFlag = 1;
}
if (insertFlag) {
/* INSERT REST OF args INTO TRIE, CODE OMITTED */
break; // break the for loop
}
}
b

Figure 6.7: Pseudo-code: Adding a New Solution to Table

81

and is solely depended on the mode declaration of the predicate. There are three

possible modes that can be associated with each argument:

1. The mode of the current argument is ‘~’, which implies that so are the rest
of the arguments, if any. In this case, the new solution is discarded. This is
because getting to this point implies the only differences between the new
solution and the tabled solution occur at the non-indexed arguments, which

would have instances tabled already.

2. The mode of the current argument is ‘+’. In this case, we compare the
current argument against the corresponding argument in the table as well
as all of its siblings. If no matching is found among the siblings, the new
solution is marked as to be added as a new sibling. However if we do
find a matching sibling, we move on to the next argument and repeat the

comparison process again.

3. The mode of the current argument is ‘<<<’. Notice that when we get to
addNewSolution function at C level, it implies that this solution has al-
ready been examined by updateTable/2 against the preference specifica-
tions. Therefore, the procedure for this case is the same as for ‘+’ described

above.

Figure 6.7 15 used to illustrate how to determine whether or not to iﬂsert a

new solution, and its position to be inserted in trie structure. The procedure for

82

inserting elements into a trie is as straightforward as to inserting elements into a

linked list. Therefore, the code has been omitted from the figure.

6.3 Argument Reordering

After discussing the procedure to add a new solution to the table, we now get back
to our assumption stated earlier that the mode declaration of a tabled predicate
does not have mode ‘+’ appearing after ‘<<<’ and ‘-’, and does not have mode

‘<<<’ appearing after ‘=’. One might ask the following questions:

e What if the mode of the predicate have to be defined as q(-, +, <<<)7

¢ and how would it be recorded in the table while not violating the ‘-’ mode

declaration?

| These concerns are addressed by a technique named argument reordering, and it
is discussed in detail in this section. It is important to emphasis that the new
order of the arguments in a tabled predicate only affects the order of the values
of these arguments recorded in the table. Thus the rest of the system does not

need to be aware of this new ordering.

In this section, we first discuss why such reordering is needed. Then we explain
how the new order is determined and managed. Finally, we address the changes

necessary to support reordering in both adding and retrieving procedures.

83

6.3.1 Need for Reordering

It is true that in most cases we can purposely order the arguments of a tabled
predicate to follow the condition specified in the assumption. However, it could
be cumbersome in practice. Predicates utilizing DCG declarations are a good
example. Notice that in a DCG rule, two arguments expressing the difference list
are hidden from the predicate declaration. The positions of these two arguments
always appear after the argument to be parsed, and they ought to be indexed
in the table. The argument to be parsed, on the other hand, shall be declared
with mode ‘<<<’ because we are interested in optimizing it. This yields a mode

declaration as follows:
:— table predicate(<<<, +, +).

Obviously, this declaration violates the assumption. Therefore, a mechanism is
needed to reorder the arguments based on their mode declarations. Notice again
that this reordering mechanism only affects the order of the arguments recorded
in the table. Therefore except adding and retrieving tabled solutions, all the rest
of operations aforementioned are independent from this mechanism, thus will not
be modified. Figure 6.8 below illustrates where the reordering takes place in the

PLP system.

As the figure indicates, the new order of a tabled predicate is not known to

the outside world except within the table. On the other hand, only the new

84

Original Predicate
€8 q (—r <<, +)

© Tablin g

Argument Reordering

e.g g(+,<<<,-)

Adding Retrieving
a solution a solution

Figure 6.8: Argument Reordering Technique

order of the arguments is known to the table. The advantage of this design
is that changes to the existing system are limited to be only within the table
management procedures, adding and retrieving to be specific. Yet, as we will see

in Section 6.3.3, even these changes are minor and can be easily implemented.

6.3.2 Reordering Based on Mode Declarations

As the title suggests, arguments are reordered based on their associated mode
declarations. To put these arguments into the desired order, we assign priorities
to each of the three modes as shown in Table 6.2 below, where the lower the

number, the higher the priority:

Each argument in a tabled predicate has a mode associated with it, which in

85

Modes | Priority

-+ 1
<< 2
— 3

Table 6.2: Priorities of Modes
turn has a priority assigned to it as well. With the priorities of the arguments
determined, a sbrting in increasing order of the priorities would put the argurﬁents
in the desired order. Therefore, all of the indexed arguments will appear at the
beginning, followed by the arguments with preference mode. All of the non-
indexed arguments are shifted to the rear end, and they will not be inserted into

the table if the table is non-empty.

These arguments, though sorted, still have their original positions recorded.
The original position information is necessary when retrieving a solution from the
table, because we need to put the retrieved values back to the original positions

they appear in the predicate definition.

6.3.3 Support for Reordered Arguments in Table

As we have already emphasized, only procedures for adding and retrieving tabled
solutions might be affected by the new reordering mechanism. It turns out that,
the procedure for adding a solution intu (he table does not need to be altered

at all. The reason is that a tabled predicate is only known to the table with

86

its arguments properly ordered, thus it can table the values of each arguments
as it receives using the algorithm presented in Section 6.2.3. The procedure for
retrieving a tabled solution, on the other hand, needs to be handled with a little

extra attention.

Since the values of the arguments recorded for a tabled predicate is in the re-
arranged order, we need an extra step to put them back to their original positions
after retrieval. Luckily, each argument still has its original position information
associated with it, so we can easily determine at which argument position of the
tabled predicate the value should be unified with. This is illustrated using the

pseudo-code presented in Figure 6.9.

foreach argument A in a tabled solution of predicate P
value «— extract value of A from table
n « get A’s original position in P
unify value with the n-th argument of P

endfor

Figure 6.9: Pseudo-code: Retrieve Procedure Supporting Reordering

While the above procedure is invoked when retrieving one tabled solution, it
is also a necessary step to be included in the pseudo-code for retrieving all tabled
solutions presented in Figure 6.5. However, it is by no means more complicated
than single solution retrieval. We can simply invoke this procedure at the data

extraction stage. i.e., the line denoted as

87

/* CODE FOR EXTRACTING DATA IS OMITTED =/

and it will make sure all solutions retrieved are rearranged back to their original

orders.

6.3.4 Example of Argument Reordering

A very simple example is used to show the reordering of the arguments, and how

a solution is stored in the table. Suppose we have a predicate declared as follows:
;- table q(-, <<<, +).

and suppose we have obtained the first solution of this predicate q(5, 4, a) and
it is determined to be tabled. Since the mode declaration of this predicate is not
in the desired order, this solution will be reordered as q(a, 4, 5) based on the
priorities of the modes. Hence the trie structure of this solution looks as shown
in Figure 6.10 (notice that the value of the non-indexed argument is tabled since

it is the first instance).

A

Figure 6.10: Reordered Solution in Trie

When we retrieve this solution from the table, ‘a’ is first obtained, and it is

unified with the third argument of q/3, which yields q(_, -, a). The value of

88

the next argument is 4, and is unified with the second argument of q/3, which
yields q(_, 4, a). Finally, 5 is obtained and unified with the first argument.

Solution q(5, 4, a) is hence successfully retrieved from the table.

89

CHAPTER 7

Experimental Results

The performance of the PLP system was tested under both numeric and structural
domains using logic programs with and without preference declarations. The
running times are compared and presented in this chapter followed by discussions.
All tests were performed on an Intel Pentium 4 CPU 2.4GHz machine with 512M

RAM running RedHat Linux 9.0.

7.1 Performance on Numeric Domain

For preference rules defined under numeric domain, ﬁve. typical optimization ex-
amples were used: matrix is the matrix-chain multiplication problem; lcs is
longest common subsequence problem; obst finds an optimal binary search tree;
apsp finds the éhortest paths for all pairs of nodes; and knapsack is the knap-
sack problem. Table 7.1 compares the running time performance between the

7

programs with and without preferences.

The experimental results show that preferences provide a declarative approach

90

matrix | lcs | obst | apsp | knapsack

with preferences 4.46 0.87 | 496 | 5.6 52.1

no preferences 7.26 1.47 | 22.69 | 6.8 79.0

Table 7.1: Numeric domain running time comparisons (in seconds)

without sacrificing efficiency of dynamic programming. In the preference pro-
grams, the tabled system collects optimal answers implicitly by applying the pre-
defined preferences; the programs without preferences adopt a tradi‘pional method
— e.g., use the built-in predicate findall/3 — to collect all the possible answers
explicitly and then locate the optimal one. The experimental data indicates that
the programs with preference declaration are better than those corresponding

programs without preference declaration.

7.2 Performance on Structural Domain

For preference rules defined under structural domain, two typical examples were
used: dangling is the dangling else problem x;vhich we have used through out
the thesis; and parser is a programming language parser supporting different
operator precedence and left associativity. Table 7.2 compares the ruﬁning time

performance between the programs with and without preferences.

In the preference programs, like those defined under numeric domains, the

parser | parser | dangling | dangling
(small) | (large) | (small) (large)
with preferences 0.21 10.1 0.05» 5.23
no preferences 0.01 0.02 0.01 0.01

Table 7.2: Structural domain running time comparisons (in seconds)

91

tabled system collects optimal answers implicitly by applying the predefined pref-

erences; the programs without preferences utilizes DCG rules with extra terms

defined explicitly to remove the ambiguities. Although the preferences provide

a more declarative approach, longer time was spent in determining the optimal

answer based on these rules by comparing potential solutions. The explicitly de-

fined DCG rules on the other hand, generate the sole solution by backtracking,

and no comparison of any kind was involved. Hence the latter outperforms the

former.

7.3 Discussion on the Performances

The performance differences on numeric and structural domains seem to be shock-

ing at first. However, a closer examination reveals the explanation.

The efficiency for preference programs are mainly credited to the mode dec¢-

larations. Tabled Prolog systems with mode declaration provides a concise but

92

easy-to-use interface for preference logic programming. Mode declarations are
flexible and powerful for supporting user-defined preferences, and the mode func-
tionality is implemented at the system level instead of the Prolog programming

level.

Despite its gain by utilizing mode declarations, two important disadvanta-
geous efliciency issues are the frequent access to the tabled answers, and com-
parisons using the preference rules every time a new solution is generated. The
retrieval of a tabled answer for comparison incurs time overhead due to having
to locate each argument of the answer in the table. For replacing a tabled an-
swer only involves numerals as arguments, the tabled answer will be completely
replaced if necessary. If the arguments involve structures, however, then the
answer will be updated by a link to the new answer. In addition, preference
rules defined on numeric domain only involve simple comparisons which can be
performed extremely efficiently. The ones defined on structural domains, on the
other hand, are much more involved and possibly recursively defined, which takes

much longer to determine the more preferred solutions.

Therefore, preference logic programs can be used without sacrificing effi-
ciencies on problems where preference comparisons can be evaluated relatively
quickly. They are also very useful for specifying problems with dynamically
changing preferences, as the preference criteria are separated from the problem

specifications.

93

CHAPTER 8

Conclusion

The underlying philosophy of preference logic programming may be expressed
using the equation: Program = Logic + Preferences + Control. This paradigm
is particularly suited to those optimization problems requiring comparison and
selection among alternative solutions. It allows logic (constraints of the problem)
and preferences (the criteria for the optimal solutions) to be specified separately

in a declarative fashion.

The declarative semantics of a preference logic program is based upon Her-
brand models. Preference specifications essentially induce a strict partial order
on ground atoms, and the intended model is defined in terms of the most pre-
ferred atoms according to this order. We sﬁow that this intended model can be
characterized as the least fixed point of a natural meta-level mapping operation
over the least Herbrand model of the core program. Furthermore, this semantics

paves the way for a proof of correctness of our proposed implementation.

This thesis presented an implementation scheme on how to extend a tabled

Prolog system with declaring and executing preferences. This implementation

94

has several advantages over [13]: (1) A new table management system is designed
and implemented, which enhanced the ability to manage user defined preference
relations among the tabled solutions. (2) The new table management system also
allows the connection between problem specification and preference criteria to be
simplified; hence transformation is no longer needed. (3) The requirement of a
strict partial order relation among solutions is relaxed. Contradictory preferences,
as well as preferences with multiple optimums are now supported. (4) Argument
reordering based on mode declarations is designed in efforts to support tabled

predicate definitions with arguments not in the desired order.

A PLP system based upon mode—direqted preferences has been successfully
implemented in the TALS tabled Prolog system. No major changes are required
to the Prolog engine and its tabled resolution scheme. Experimental results have
shown that tabled Prolog programming with preferences provide a declarative
yet efficient approach for generalized optimization. Additionally, the same im-
plementation idea can be easily applied to other tabled Prolog systems, since
essentially only'the variant checking operation during tabled answers collection

needs to be modified due to the mode declaration.

95

CHAPTER 9

Future Extensions

9.1 Improvements on Structural Domain

The results from our experiments in Chapter 7 indicated that though PLP has its
“advantages in solving problems in numeric domain, it could use some improve-
ments in structural domain. We noticed that the majority of the problems in
this domain, such as parsing, associativity, etc., have their solution sets forming
partial order relations. Therefore, we have considered the improvements possible

for problems having this property.

Given that the solution set always form a partial order relation, we may
represent this relation using a lattice with the most preférred solution at the
top and the less preferred solutions at lower levels. The idea is to quickly find
a possible solution to the problem regardless of its preference, then keep going
upwards on the lattice until the top is reached. The top solution is therefore the

sole optimal solution we are expecting.

This approach could be realized by two steps. (1) First we solve the problem

96

to get one solution without taking preference rules into consideration, and record
it as the base solution. (2) Once the base solution is obtained, we then keep
trying to find another solution that is more preferred than the base using only
the defined preference rules. The new solution is then considered as the new base,
and the process continues until no more solution can be produced. The solution

recorded at the end is our optimal solution.

This approach would improve the efficiency because solving the problem ini-
tially does not require preference comparisons. In addition, walking along the

lattice upwards only invokes the preference rules, so no re-solving is necessary.

9.2 Dynamic Preference and Incremental Computing

Preference logic programming provided with us the ability to separate the prob-
lem declaration from the solution selection criteria. This separation is important
and beneficial because not only it makes the program more declarative, but also
gives the users the ability to modify the preferences at run time. We refer to
this as dynamic preferences, which is commonly practiced in scheduling problems

where the requirements are changing rapidly.

Although the current PLP supports dynamic preferences (users can add/remove
preferences as a Prolog program file), some additional improvements could make
it more efficient. We are currently focusing on developing incremental solvers to

handle the changing preferences. The idea is that instead of solving the PLP ev-

97

ery time new preferences are added/removed from the program, the system can
determine the part(s) of the program that need to be re-solved, while keeping
the rest of the solved solutions unchanged. We can also take the advantage of
tabling to retrieve previously generated solution more quickly than starting from

scratch.

98

APPENDIX A

Sample Testing Programs

This appendix contains one pair of programs (with and without preferences) each

for numeric and strucutral domain.

A.1 Numeric Domain - Matrix Chain Multiplication
Preference Logic Programming:

matrix([D1, D2], 0, Di, D2, (D1, D2)).

matrix([D1, D2, D3 | Dr], V, D1, Dn, (E1 * E2)) :-
break([D1, D2, D3 | Dr], DL1i, DL2, Dk),
matrix(DL1, Vi, Di, Dk, E1),
matrix(DL2, V2, Dk, Dn, E2),

V is V1 + V2 + D1 * Dk * Dn.

break([D1, D2, D3], [Di1, D2], [D2, D3], D2).

break([D1, D2, D3, D4 | Dr], [Di1, D2], [D2, D3, D4 | Dr], D2).

break([Di1, D2, D3, D4 | Dr], [D1 | L1], L2, Dk) :-

break([D2, D3, D4 | Dr], L1, L2, Dk).

;- table matrix(+, <<<, -, -, -).

matrix(D, V, D1, Dn, _) <<< matrix(D, Vi, D1, Dm, _)

= V1 < V.

99

100

Traditional Prolog:

matrix([D1, D2], 0, D1, D2, (D1, D2)).
matrix([D1, D2, D3 | Dr], Vv, D1, Dn, (E1 * E2)) :-
findall(
(v, E1, E2),
(break([D1, D2, D3 | Drl, DL1, DL2, Dk),
matrix(DL1, V1, D1, Dk, E1),
matrix(DL2, V2, Dk, Dn, E2),
Vis V1 + V2 + D1 * Dk * Dn),
VL),

minimal ((V,E1,E2), VL).

minimal(V, [V]).

minimal ((V,E1,E2), [(V1,E11,E12), (V2,E21,E22) | VL]) :-
minimal ((V3,E31,E32), [(V2,E21,E22) | VL]),
(viL >v3

-> (V,E1,E2)

(V3,E31,E32)

i (V,E1,E2)

(Vi,E11,E12)

break([P1, P2, P3], [P1, P2], [P2, P3], P2).

101

break([P1, P2, P3, P4 | Pr], [P1, P2], [P2, P3, P4 | Pr], P2).
break([Pi, P2, P3, P4 | Pr], [P1 | L1], L2, Pk) :-

break([P2, P3, P4 | Pr], L1, L2, Pk).

A.2 Structural Domain - Dangling Else
Preference Logic Programming:

stmt (A, B, C) :-
cond(A, B, C).
stmt (if (A, then, B), [if]|C], D) :-
cond(A, C, E),
E = [thenl|F], stmt(B, F, D).
stmt(if(A, then, B, else, C), [ifID], E) :-
cond(A, D, F),

F

[then!|G], stmt(B, G, H),

H [elselI], stmt(C, I, E).
cond(tt, [ttl|A]l, A).

cond(ff, [ff]A], A).

:— table stmt(<<<, +, +).
stmt (1if (A, then, B, else, C), L1, L2) <<«
stmt(if (A, then, D), L1, L2) :-

combine(B, C, D).

102

103

combine(if (A, then, B), C, if(A, then, D)) :-
combine(B, C, D), !.

combine(if (A, then, B, else, C1), C, if(A, then, B, else, C2)) :-
combine(C1, C, C2), !.

combine(if (A, then, B), C, if(A, then, B, else, C)).

Traditional Prolog:

stmt (A, B, C) :-
cond(A, B, C).
stmt (if (A, then, B), [if|C], D) :-
cond(A, C, E),
E = [then|F],stmt(B, F, D).
stmt (if (A, then, B, else, C), [if|D], E) :-
cond(A, D, F),

F = [then|G],then_stmt(B, G, H),

H

[else|I],stmt(C, I, E).

then_stmt (A, B, C) :-
cond(A, B, C).
then_stmt (if (A, then, B, else, C), [ifl|D], E) :-
cond(A, D, F),
F = [then|G],
then_simt(B, G, H),
H = [elsel|I],

then_stmt(C, I, E).

cond(tt, [ttlAl, A). cond(ff, [fflAl, A). .

104

[1]

3]

[4]

[5]

[6]

105

REFERENCES

G. Brewka: Well-Founded Semantics -for Extended Logic Programs with
Dynamic Preferences. Journal of Artificial Intelligence Research, 4:19-36,

1996.

A. Brown, S. Mantha, and T. Wakayama: Preference Logics: Towards a
Unified Approach to Non-Monotonicity in Deductive Reasoning. Annals of

Mathematics and Artificial Intelligence, 10:233—-280, 1994.

Baoqiu Cui and Terrance Swift: Preference Logic Grammars: Fixed Point
Semantics and Application to Data Standardization. Artificial Intellz'gence,

138(1-2): 117-147, 2002.

J. Delgrande, T. Schaub, and H. Tompits: Logic Programs with Compiled

Preferences. FCAI, 464-468, 2000.

M.H. van Emden and R.A. Kowalski: The Semantics of Predicate Logic as

a Programming Language. JAMC, 23(4): 733-742, 1976.

F. Fages: On the Semantics of Optimization Predicates in CLP Languages.

In Proc. 13th FST-TCS, 1993.

F. Fages, J. Fowler, and T. Sola: Handling Preferences in Constraint Logic
Programming with Relational Optimization. In Proc. 6th International Sym-

posium on Programming Language Implementation and Logic Programming,

8]

[9]

[10]

[11]

[12]

[13]

[14]

106

261 - 276, 1993.

S. Ganguly, S. Greco, and C. Zaniolo: Minimum and Maximum Predicates

in Logic Programming. In Proc. Tenth PODS, 1991.

K. Govindarajan, B. Jayaraman, and S. Mantha: Preference Logic Program-

ming. In Proceedings of International Conference on Logic Programming

(ICLP), pages 731-745, 1995.

K. Govindarajan, B. Jayaraman, and S. Mantha: Optimization and Relax-

ation in Constraint Logic Languages. POPL 1996: 91-103.

Hai-Feng Guo and Gopal Gupta: A Simple Scheme for Implementing Tabled

.Logic Programming Systems Based on Dynamic Reordering of Alternatives.

In Proceedings of International Conference on Logic Programming (ICLP),

pages 181-196, 2001.

Hai-Feng Guo and Gopal Gupta: Simplifying Dynamic‘Programming via
Tabling. Practical Aspects of Declarative Languages (PADL), pages 163—

177, 2004.

Hai-Feng Guo and Bharat Jayaraman: Mode-directed Preferences for Logic
Programs. The 20th Annual ACM Symposium on Applied Computing, Mar.

2005.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

107
[15] Bharat Jayaraman, Kannan Govindarajan, and Surya Mantha: Preference
Logic Grammars. Computer Languages, 24(3): pages 179-196, 1998.

[16] M.J. Maher and Peter J. Stuckey: Expanding Query power in Constraint

Logic Programming Languages. Proceedings of NACLP, 1989.
[17] S. Parker: Partial Order Programming. In Proc. 16th POPL, 1989.

[18] P. Rao, I. V. Ramakrishnan, K. Sagonas, T. Swift, and D. S. Warren: Effi-
cient table access mechanisms for logic programs. Journal of Logic Program-

ming, 38(1):31-54, Jan. 1999.

[19] R. Rocha, F. Silva, and V. S. Costa: On a Tabling Engine That Can Exploit

Or-Parallelism. In JCLP Proceedings, pages 43-58, 2001.
[20] Warren Abstract Machine: A Tutorial. MIT Press, 1991.

[21] David H. D. Warren: An Abstract Prolog Instruction Set. Technical Note

309, SRI International, Menlo Park, CA, 1983.

[22] M. Wilson and A. Borning: Hierarchical Constraint Logic Programming

Journal of Logic Programming, 16:277-318, 1993.
[23] XSB system. http://xsb.sourceforge.net

[24] Neng-Fa Zhou, Y. Shen, L. Yuan, and J. You: Implementation of a Lin-
car Tabling Mcchanism. Journal of Functional and Logic Programming,

2001(10), 2001.

	Logic Programming with Solution Preferences: A Declarative Method.
	Recommended Citation

	tmp.1608220803.pdf.7O2BB

