UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work

12-1-1999

A Genetic-Based Approach to Multi-layer Channel Routing In VLSI
Design.

Mark P. Cloyed

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Cloyed, Mark P, "A Genetic-Based Approach to Multi-layer Channel Routing In VLSI Design." (1999).
Student Work. 3586.
https://digitalcommons.unomaha.edu/studentwork/3586

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3586?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

A Genetic-Based Approach to Multi-layer Channel Routing

In VLSI Design

A Thesis
Presented to the
Department of Computer Science
And the
Faculty of the Graduate College

University of Nebraska at Omaha

In Partial Fulfillment
of the Requirements for the Degree:
Master of Science

University of Nebraska at Omaha

By

Mark P. Cloyed

December 1999

UMI Number: EP74785

All rights reserved

INFORMATION TO ALL USERS »
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

" Disseriation Publishing

UMI EP74785
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

Thesis Acceptance

Acceptance for the faculty of the Graduate College, University of Nebraska, in partial
fulfillment of the requirements for the degree of Master of Science, University of

Nebraska at Omabha.

Committee

Name Department

/'/fj‘ltam/\ A /; ()67\/‘7’)0 for ?C;r e Co

uLu SCien g

’/)7630\} A?chw\a
‘7‘-«)-%-@[" SLL v

Cﬂﬂ««‘n«}&’ % 2/2C'?[fo,q.‘cq Ccyla ~

—rrr— L

Chairman

' /ZC]/QG,

Date

II

A Genetic-Based Approach

To Multi-layer Channel Routing in VLSI Design

Mark P. Cloyed

University of Nebraska at Omaha, 1999

Advisor: Dr. Hesham H. Ali

As our reliance on electric and electronic devices increases, the need to improve the
design and manufacture of integrated circuits (ICs) grows. A microchip can be bettered
if it can be made more powerful, smaller, cheaper, and/or more easily manufactured. The

physical design phase of chip manufacture offers significant room for improvement.

This thesis intends to investigate the detailed channel routing phase of VLSI physical
design. Channel routing has been seen to be intractable, in that an optimal solution may
require too much time for calculation. Constraints severely limit many algorithms to an
approximate solution. The heuristics developed thus far have fallen short of an optimal

solution for similar reasons.

This thesis presents an evolutionary approach to channel routing. A genetic algorithm
makes use of a parent solution to derive next generation solutions in an attempt to
overcome local minimums. A three-layer approach is used to evaluate the use of various

layering schemes, and also to reduce the number of constraints involved. When multi-

III

terminal nets or multi-nets are involved, a division parameter is used to determine if the
best results are generated by treating the multi-net as a whole, or broken down into as
small as two-terminal nets. A greedy approach is used to generate the original parents,
and a compaction algorithm is used to further improve the output. The results are then
represented three-dimensionally by a computer-aided design program, where it can be

analyzed for accuracy.

Table of Contents

Thesis ACCEPEANICEcoc.eiiiiiiiiiieiie ettt e e eatee e et e e e eansreeeeieeanns I
ADbStract...........cooooiiiiiii ettt ettt e ae e e eera e II
Chapter 1 Introduction............coooooiiiiiiiiiiii e e 1
1.1 The History of VLSI DeVEIOPMENL.......c..coverriieiiieeereeeeieeetieeeeeeeereereereeeaeennenea 1

1.2 Previous Approaches to Channel Routingcccccoviiiiiiiiiniiiiiiniiiiiiens 4

1.3 What Has Been Lackingccccoiiiioiiiiiiiiice ettt 6

1.4 Project IdentifiCation.coovuiiiiiiiiiiieeiie ettt 7

1.5 Expected ReSUILS.....ccooiiiiiiiiiiiiii et 10

1.6 Thesis Organizationc..cceeeeuieeiieeneennieenieenieeeteesneeseeeseeeesoreeessenessseeense L L
Chapter 2 Defining the Problem and Its Terminology...............cc.occcoo i 12
2.1 An Overview of Channel ROUtingccooooiiiiiiiiiiiiiiiiiieeciee e 12
2.2 Definition of Terminologyccoceiiiiminiiiiiinieceeceee e 13
2.3 Problem Formulationccccciiiiiiiiiiiiiiiiiie e 15
2.4 INPUL ANALYSIS 1.uvveviieeiieeiiiieeeiee e stte et s rte s et e et e et e et e st eens e e s nreeeseeeeenee s 16
AN 01000 0 0F: 1 o O PPTPTUPPPTPP 20
Chapter 3 An Overview of Prior Research in Channel Routing.......................... 21
3.1 Two Layer APProaches........ccoccooiiiiiiiiiiaiiiiiiiieeeie ettt 22
3.1.1 The LEA Family of Algorithms..........cccccciiiiiiiiiiiiiiiiiceeeece 22

3.1.2 The Dogleg ROULET......ccooiiiiiiiiiiiiieeece et eeeeeeeeeeee e ae e e e e 23

5.1.3 The Net Merge ROUtET ..o 25

3.1.4 Yet Another Channel ROULETvveeeiiiieiieeeeeeeeeeeeeeeeeeeeeee e 26

3.1.5 The Greedy Channel ROULETccceeiieiiiiiiiieniiencentceiie e 27

3.1.6 The Hierarchical Methodccocccoiiiiiiiiiiiic e 28
3.1.7 The Genetic AlOrithImcoccuiiiiiiiiiiiiiiii e 28
3.2 Three-Layer APProachescccoceouieiiiiieniereee et 30
3.2.1 The Extended Net Merge and CWL Channel Routers..............ccceeeen.... 30
3.2.2 The Hybrid HVH-VHYV Routerccceeviiiiiiiiiie e 31
3.3 SUMIMATY .eeiiiiiiiiiiiiieieee ettt ee e et et e e e e e e e e e ttaeaeae e e e e e e anssbaebeeeeeaaeens 32
Chapter 4 The Genetic Algorithm ..., 33
4.1 AN OVEIVIEW .ottt ee ettt et e ettt e e ae e et e e e neeeebeeeennsaeeeneneeaens 33
4.2 How the Genetic Algorithm Works ... 34
4.3 The Mutation ProCESSccoceeeiiiiiiieeieeiiiiieeeeeeece e e e eeeae e e e 35
4.4 The Selection Processocoueuiiiiiiiiiiiiiiiiiiii 38
4.5 Global Control Parameters...........cc.eoovuiiiiiiiiininiiiiiiiiccee, 39
Chapter S The Multi-layer Channel Router....................ccoooiiiiiiiiin, 41
5.1 The Basis for the ROUter ProCess.........coocceiiiiiieiiiiiniiiiiieiieeececeee e 41
5.2 Data Structures USed.........c.ooiiiiiiiiiiiieiiieiiee ettt 44
5.3 Process ElabOration...........cccooouiiiiiiiiiiiiiiiiicceetct e 46
5.3.1 Creating NEtS ...oooiiiiiiiiieeee ettt ettt et eebeee e 47
5.3.2 Finding the Maximum CLHQUE.........c.cceeeerriiiiniiieeiieeereecie e 48
5.3.3 Evaluating the Vertical Constraints, Cycles and the Longest Path........ 49
5.3.4 Creating Parent SOIUtIONSccc.coiveuiieeeiiiieiiee et ee e eee e 52

5.3.5 Improving the Solution by Compaction............cccceeevieerevreeniieeeenereneennnne 54

5.3.6 Expressing the Value of the Solution..........ccccoeevveiiiniiiiiiicciinninneen. 56

5.3.7 The Mutation Phaseccoocceiiiiimiiiiiiiiiiiiicieieeeec e, 58

5.3.8 Choosing New Parents...........ccccoociiiiiiiiiiiiiiiiiniceenieeececeeeec e 60

5.3.9 The Reporting Mechanism..............ccoevieiiiiiiiiiiniiiiiiiieiiccceece, 61

5.4 The Main ProCeSS. ...cccuuiiiiiiiiiiiiieiie ettt 63

5.5 Generating a Graphic OUIPULccoovviiiiiiiiiiiiiiiiiiii e 64
Chapter 6 Experimental Results...................cc....occoccciiiiieeeee, 67
6.1 The Problem Sets Used........ccceeviiiiiiiiiiiiiiiiiiiieciieccieccc e 67
6.2 Separation ValUeccciiiiiiiiiiiiii e 70
6.3 The Control Parameter pO...........ccooiiiiiiiiiiiiiiiiiccceec e 73
6.4 The GEneration S1ZE........ccococuiiieeeeiiiiiiieeeeiiiieeeeeeeitiieeeeeeesteeeeesesbeeaeeesessnees 75
6.5 The Control Parameter Rcccooiiiiiiiiiic e 76
6.6 UsINg Elite MOdEooooiiiiiiiiiiiiiieiice et s 77
6.7 Two-Layer Versus Three-Layer Analysisooooeviiiiieriiiiiiiciinnniiiieeeceeeee. 79
6.8 TimeE COMPIEXILYoereiiiiiiieeiie ettt ettt e a e e en 81
6.8.1 Time Complexity of the Analysis Phase...........ccccocceiiniinnininnnn. 81

6.8.2 Time Complexity of the Parent Creation...........cccccceeeeviiiivniicennnnnnenn 82

6.8.3 Time Complexity of the Genetic Algorithm.............cccoeoinnniinn 83

6.9 Comparing the Parents to the Final Solutioncccoeeecniiiiinninininnn, 84
6.10 General ObSErVAtIONS.....cooouuiviiiieiiiitiiee ettt eee et ee s ebebee e 85
Chapter 7 ConclUSIONS................oooooiiiiiiiiiiiiiieeee ettt e e e e e 87

7.1 ARecap of the Benefits........cccccoeiiiiiiiiiiiiiniiiiiiicccccecc e 87

VII

7.2 Positive and Negative EffectSccoovviiiiiiiiiiieeiiec e 88
7.3 Directions for Future Researchccoooviiiiiiiiiiiiiiiiiie e 89
BibHOZraphy ...t e et et e e 90

Appendix A: Source Code..........ccccooeiiiiiiiiiiiiiiiiii e 92

VIII

List of Figures
Figure 1.1 The Design Cycle of VLSI . ..o 2
Figure 1.2 The Physical Design Process..........cccocoviiiiiiiiiiiie, 3
Figure 2.1 Typical Channel Layoutccccoeiiiiimiiiiiiiiiiniieeiceie e 13
Figure 2.2 Track and Vertical Layout...........c.ccooiiiiiiiiiiiiiiiecce e 15
Figure 2.3 Determining the Maximum Clique from the HCG...................ccooco. 16
Figure 2.4 Determining the Longest Path from the VCG...........cc...ccooiiiii 18
Figure 2.5 Identifying Cycles inthe VCGc...ooooiiiiiiiiiiiiieieceeeeeeeee e 19
Figure 3.1 An Example of the Left-Edge Algorithm............o.cccciiiiiiiiiiniinn. 23
Figure 3.2 The Dogleg Routing Algorithm..........cccceeiiviiiiieiiiiiieeeeeeeen, Ceeveeens 24
Figure 4.1 The Genetic Algorithm..........ccooeeiiiiiiiiiiiiii e, 35
Figure 4.2 Mutation by Switching ... ereeereeenas 36
Figure 4.3 Mutation by CrOSSOVETc..eoeeeiiiiiiiiriiiiiee et eeeee e eee e heereeens 36
Figure 4.4 Mutation by INVEISIONeeiiiiieeeiiiiiieceeeeee ettt 37
Figure 5.1 Structure for the Basic Net Storage........ccovveevvciiiiniciinniiciinniieeenieceene 42
Figure 5.2 HVH Layering Model............ccuuiiiiiiiiiieie ettt 42
Figure 5.3 VHV Layering Model............ccooiiiiiiiiiiiieeeeeeceec e 43
Figure 5.4 Structure for the Solution Storageccooceiiiiiiiniieiiiiiieeee e 45
Figure 5.5 INEt CratiON.ceeiiiiiuiiiiiaiieeiieiiiiieeeesiititaeeestbtteeaeesstreeeessnabebeseeeessennaneneeeas 47
Figure 5.6 Maximum CHQUE.........cccceeeviiiiiiiiiiiiiiceciccece e 49
Figure 5.7 Creating the Vertical Constraint Graph...............c..c.coci 50

Figure 5.8 CycCle CheCK.....cuiiiiiiiieiiiee ettt ee et e st ee s ens 51

Figure 5.9 Longest Path...........ccccciiiiiiiiiiiiiiicc e iree e 52
Figure 5.10 Making the Parent Solutionscoccceiiiiniiiniiiniiiiniccececs 53
Figure 5.11 Checking for Free SPacecccceevriiriiiiiiniiiiiiceicceeeee e 53
Figure 5.12 The Compaction Algorithm........c...ccccoevviiiiiiiiiinii e 55
Figure 5.13 The Expansion AlZOrithmccoccoiiiiiiiiniiiiiiiiiiiice e 55
Figure 5.14 The Costing Algorithmi.........cccccooviiiiiniiiiniiicccee 57
Figure 5.15 Counting Vias........ccovuiiiiiiiiiiiiiiiiiiiee et 58
Figure 5.16 Performing MuUtationcc.ceeieiriiiiiiiiiiiiiiieeniiieeeeeeieee e 59
Figure 5.17 The Sorting AIZOrthmcccooiviiiiiiiiiiiiiiicc e 61
Figure 5.18 The Output Algorithm ..., 62
Figure 5.19 AutoCAD® Output Screen Showing Track and Layer Assignment........ 65
Figure 6.1 The Effect of Separation on Timecocooviiiiininin, 69
Figure 6.2 The Effect of Separation on Costccoiiimiiiiiiiiiiiiieiiiiice e 70
Figure 6.3 Outputs Based on Separation..........cccccooooiiiiiiiiiiiiiiiiiiiniinseneveeeeeees 71

Figure 6.4 Layering Modes for 40 Terminal Problem Set..................ccocccoiinnninnn 80

IX

List of Tables

Table 6.1 Definition of Problem Setsccocoeiiiiiiiiiiiniiiiieec e 68
Table 6.2 Characteristics of 40 Terminal Problem Setscc.cccoceiiiiiiiinninnnn, 69
Table 6.3 Comparison of Separations of 2 and 4.........ccccccooeneee. reerreeereretesesereans 72
Table 6.4 Time and Cost on 40 Terminal Sets with Separationcc.cccccceeeneene. 72
Table 6.5 BeSt PO VAIUESc....ooveveveeieieeeiee ettt ee e es e en e eaeanaen, 73
Table 6.6 Effect of p0 on the 40 Terminal Problem Sets.......ccoooveveeeireeveecciniiiccenennn. 74
Table 6.7 The Effect of Generation Size on Cost and Time...........coooviiriiieiniinnnn, 75
Table 6.8 The Effect of R on the Cost........cccceeivviiiiiiiiiiiiiiiiieniiiiceeeeenee e 77
Table 6.9 Effect of Elite Mode on Cost and Time............ccccevveevvniicncnnneenn. reeeneeens 78
Table 6.10 Analysis of Layer Mode on the 40 Terminal Problem Sets.................... .79

Table 6.11 Comparison of Greedy and Genetic Algorithrﬁs 85

Chapter 1

Introduction

1.1 The History of VLSI Development

The development of the integrated circuit has changed dramatically over the last thirty-
five years. Integrated circuits (ICs) have affected electronic and electrical device
production in almost all facets of life. Circuit designs have changed from as small as
1000 circuits in a chip during 1965, to as many as five and one half million transistors
during 1995. The potential exists to create a chip with over a billion transistors in the
next 10 to 15 years. There can be seen several levels of integration from Small Scale
Integration, using typically as many as 20 gates per chip, to Medium Scale ‘Integration,
incorporating as many as 200 gates per chip. Large Scale Integration normally involves
as many as 5000 gates, while Very Large Scale Integration (VLSI) incorporates over

5000 gates per chip. VLSI design is now the largest part of production and research.

The physical design process for VLSI design involves multiple layers of metal oxide and
silicon insulator, arranged on a silicon wafer in such a way to form gates, transistors, and
circuits. An on-going limitation is the precision available in manufacturing, which limits
the size of the smallest feature within the chip. An additional issue to be researched, is
the increasing complexity of circuitry. As the feature size is reduced, either the chip size

can be reduced, or there is the availability of more circuitry per chip. The latter requires

more time and effort to design and test. Changes in technology and types of materials
used in the chip design can facilitate small changes in the precision size, which increases
the complexity of the circuit design process. This design process deserves further
investigation, because improvements to it can reduce the time from conception to market

delivery.

The design process is shown in Figure 1.1. System Specifications

It begins with the system specification. In

Functional Design

this phase, the function of the circuit is

determined in general terms. From the

) . X=(AB+BC+(CD-(C*BY))
Logic Deign Y=B+AC+(D*A-B)

system specification, a functional design of

the circuitry is created. This i1s done in Ciseuit Doci
ircuit Design

terms of a flow chart of the steps needed to

Physical Design

perform the function. The functional

design then leads to the logic design. In

Fabtication

this phase, the flow chart is converted into

an algebraic expression that represents the

Packaging and Testng

output from the process. The circuit design
Figure 1.1 The Design Process

phase follows, in which the algebraic

equation is analyzed and processed into a logic gate representation of the circuit. After

the circuit has been laid out, the physical design phase takes the circuit design, and

processes it into the physical layout of predefined circuit blocks and the connection leads

between those blocks. Finally, the fabrication cycle or phase implements this physical

design into a set of chips that are then packaged and tested for accuracy before finally

shipping to their ultimate destination.

The physical design process, as figure 1.2
shows, can be broken down into the following
stages: First, the circuits are partitioned into
blocks. Because of the nature of VLSI design
and the large number of gates involved, it is
impossible to work with all of them at one
time. The gates are partitioned into small
enough blocks to make them manageable.
After the partitioning has been determined, the
floorplanning and placement stage is
performed. In this stage, the gates are arranged

in such a way so that they are closest to the

Partitioning

Floorplanning
& Placement

Global Channel
Routing Routing

Compaction

Extraction &
Verification

Figure 1.2 Physical Design

gates to which they will be interconnected. After the floorplanning and placement stage

is accomplished, the routing stage begins. The routing stage occurs on two levels. The

circuit is first globally routed to define the major circuits that will connect the different

blocks and gates together. This is performed in general terms, following which the

channel routing is performed. In the channel routing phase, the circuits, or nets, are given

specific locations between chips or between blocks to connect the different blocks

together. Each connection requires a specific amount of space to make those
connections, without interfering with other circuits in the area. After the channel routing,
the compaction phase looks for unused areas of the layout, in an attempt to reduce the
overall chip size. Finally, the chip enters an extraction and verification stage, where the
chip is checked for design rule accuracy of the circuits. The circuit is checked to make

sure it falls within fabrication limitations.

Each phase of the physical design process is computationally intense, and so
improvements can yield significant benefits. The focus of this thesis is in the channel
routing phase. Channel routing has been proven to be an NP-complete problem, meaning
that no single algorithm has been found that handles all situations to provide an optimal
solution. With these points in mind, we offer a multi-layer channel routing algorithm. It
is intended to accept, as input, a wide range of problem sets, and return as output a near-
optimal solution for the routed nets. We must first look at the previous approaches that

have been taken in trying to solve this problem.

1.2 Previous Approaches to Channel Routing

Various approaches have been taken to resolve the channel routing problem. The
problem is of an intractable nature, as an optimal solution is not always practical. In
some instances, an optimal solution requires too much time and can be very

computationally complex. Constraints can also cause optimal solutions to fail.

Heuristics have been developed to try to find a reasonable solution, but tend to have
problems falling into local minimums. In 1971, Hashimoto and Stevens proposed the
Left-Edge algorithm [HS71], which organized the nets in order of ascending left node,
then used a type of greedy algorithm to assign nets to specific locations. Deutsch offered
a dogleg router algorithm [DD76]. A dogleg is a vertical segment connecting two
horizontal net segments. In this algorithm, analysis begins at either end of the channel,
with doglegs allowed between multi-terminal nets, to reduce track width. "A multi-
terminal net, or multi-net as it will be referred to, is a set of three or more pins requiring a

connection between all of them.

More recently, Yoshimura and Kuh offered a net merge channel router, called the YK
algorithm, which partitioned the connection region, or channel, into zones, and then
routed each zone [YK82]. The nets of adjacent zones are combined to create a composite
net that could be placed in a track. Reed, Sangiovanni-Vincentalli, and Santamauro
proposed the YACR2 (Yet Another Channel Router) algorithm that made use of vacant
columns, and tracks to resolve vertical constraint violations [RS85]. The greedy channel
router was developed by Rivest and Fiduccia to assign tracks to the nets column by
column, from left to right [RF82]. Its intent was to reduce track width, allow doglegs in
any column, and combine split horizontal nets where convenient. Burstein and Pelavin
offered an algorithm based on a hierarchical method [BP83]. The nets are routed
globally in the channel, and then the channel is repeatedly divided into smaller sections to

be rerouted as necessary to better define the track assignments.

Last year, Jingsen Zheng offered an evolution-based, or genetic, algorithm for two layer
channel routing [ZJ98]. In his graduate thesis, he presented a process that made use of
interim solutions to evolve new solutions. The intent was to overcome local minimums
by accepting less than optimal solutions as interim steps working toward an optimal

solution.

1.3 What Has Been Lacking

Prior solutions to the channel routing problem have been inconclusive. Optimal
algorithms can not handle constrained situations, or can take too much time to process
when evaluating large data sets. An evaluation of the heuristic algorithms reveals their
shortcomings. Several do not support doglegs or cyclic vertical constraints. This leads to
a channel width that is wider than necessary. Some algorithms give solutions with

excessive doglegs and vias, while others can be rather complicated to implement.

The genetic algorithm is of special interest, as it is the basis for this thesis. We are
extending the work of Zheng in his thesis, on an evolution-based two-channel router.
Zheng indicated the problems he encountered with the genetic algorithm [ZJ98].
Horizontal and vertical constraints posed the greatest challenge to overcome. The longest
path, as defined in the vertical constraint graph (VCG) can also affect the time required to
find a solution. Breaking down multi-nets into two-terminal nets was beneficial in some

cases, but detrimental in others. He also indicated that the technique used to create the

’

initial populations also played a part in the time required to derive a solution, and in the

quality of that solution.

All of these shortcomings help to point out that the channel routing issue is not a simple
one. The heuristics can have difficulty escaping from local optimums. This sets the
stage for less than optimal results. If we can reduce the constraints surrounding a routing
situation, we can more easily and more accurately route the channel with a'minimum
track width. If we can escape from local optimums, we may be able to derive a more

optimal solution.

1.4 Project Description

It is the intent of this thesis to evaluate alternative methods of channel routing. This
phase of VLSI design is known to be NP-complete, in that there is not a general solution
available that is optimal and can be performed in a reasonable amount of time for all
situations. There have been many heuristics proposed, but they have been seen to be too
narrow in scope or take too much time to process the input. Heuristics also tend to

involve too many constraints, which can affect the output dramatically.

We intend to extend upon the work that Jingsen Zheng presented in his thesis on an
evolution-based approach to channel routing. In this thesis, we will investigate the effect

of several factors on the channel routing question to allow for a more optimal solution.

e A three-layer approach

e A separation parameter, used to break multi-nets into smaller sub-nets
e The value of the parameter used in selecting valid solutions, py

e The value of the variable used to define the termination point, R

e Using an ‘elitist mode’ in selecting interim solutions

e The effect of the generation size, or number of children generated by a

parent solution

An evolutionary approach is still employed. We will use a three-layer approach, as the
latest developments in VLSI have allowed a third layer for circuitry. With this additional
layer, we have the ability to evaluate an HVH (horizontal-vertical-horizontal) layering
scheme and compare it to a VHV (vertical-horizontal-vertical) layering scheme. These
three-layer approaches can also be compared to the two-layer approach previously used.
We intend to use an array to maintain our list of net segments’ parameters, and another
array to store the track and layer onto which each net segment is assigned. This would

allow the use of doglegs in the channel routing.

A separation parameter will be employed to divide multi-nets into smaller network
sections. Using this parameter, we can evaluate a multi-net in its complete form, and in
smaller sections, with the two-terminal net as a lower bound. This separation parameter
can be adjusted to break the multi-nets into smaller multi-nets to fine-tune the output.

We would like to see how this parameter affects the overall solution.

The values of two control parameters, py and R, determine which solutions are kept to be
parents for succeeding generations, and what the point of termination should be,
respectively. In evaluating which solutions to keep, two final selection methods can be
incorporated. In an elitist mode, only the top solutions are retained to create future
generations. In a non-elitist mode, a random sample of the solutions is kept to become
parents. The number of children derived from each parent can also affect the quality of

the solution, as well as the time required to process the problem set.

A greedy routine will be used to create the initial populations. In this approach, the nets
are placed in the channel in a ‘first come, first served’ basis. The first net is randomly
chosen, and then the nets are processed in order to place them in the layers and tracks,
based on their terminal placement. Nets that have both terminals located on the top of the
channel will naturally be placed toward the top of the channel and those with both
terminals on bottom will be placed toward the bottom of the channel. This should give
better initial populations, so that the evaluation will be more robust, and hopefully allow

more time to overcome local optimums.

We also intend to incorporate a compaction phase in the circuit design. As the tracks
undergo mutation, the compaction phase will help further reduce the track width. In
evaluating the feasibility of the generation, a costing formula will be employed with

weights for horizontal and vertical violations as well as the track width.

10

Finally, the results of the channel routing algorithm will be used as input to AutoCAD®, a
computer-aided design program. A three-dimensional representation of the channel
routing will be generated, which can be viewed and rotated to check for accuracy and to

analyze it to determine whether it approaches an optimal solution.

1.5 Expected Results

By employing an evolutionary or genetic approach to channel routing, we allow some
less than optimal solutions as interim generations. The advantage to including these
solutions is that it allows the algorithm to mutate that solution into a possibly better
overall solution than is currently thought to be ‘best’. Using this approach, we can attack
the problem from different angles, so as to avoid falling into a local minimum that in

itself tends to only offer a poorer solution when trying to improve upon it.

By including a third metal layer in the evaluation, we take advantage of several things.
First of all, we have the ability to reduce the track width to as much as half of the two-
channel version. This can lead to a smaller chip design and possibly less wire length.
Secondly, we also have the ability to remove vertical constraints from the picture.. By
using a VHV layering model, we can route all net nodes efficiently where before a
vertical constraint would force more track width to allow room to overcome the

constraint.

11

By using a separation parameter, to adjust how we handle multi-nets, we should be able
to better minimize track width by the inclusion of doglegs. We can also evaluate the
option of handling a multi-net as one large net versus several smaller nets. We expect to
find a middle ground that better optimizes the solution, but doesn’t run into the extended
time constraints required for a large number of two-node nets to be processed. Lastly,
incorporating a compaction phase helps to keep the intermediate solutions from having

excessively wide tracks with significant amounts of unused track space.

1.6 Thesis Organization

In this thesis, we will define the problem at hand, including definitions as they apply to
channel routing. In chapter two, the basic terminology will be identified, as well as the
use of graph models to evaluate the conditions for the routing necessary. The objectives
of minimizing channel width and connections, and eliminating constraints, will be
detailed, as well. Chapter three provides an overview of the previous work done in the
study of channel routing from a two-layer and a three-layer aspect. An overview of the
genetic algorithm will be presented in chapter four, followed by an explanation of the
genetic algorithm for the multi-layer channel router in chapter five. Chapter six discusses
an analysis of the experimental results, as well as the performance of this algorithm.
Finally, in chapter seven, conclusions are offered, as well as possible options for future
research. We must next define the problem and the terminology used in the discussion of

channel routing.

12

Chapter 2

Defining the Problem and Its Terminology

2.1 An Overview of Channel Routing

As mentioned in the previous chapter, the problem of channel routing is difficult at best.
To further analyze the problem, we must first look at the task at hand. The blocks of
circuits have been physically arranged, relative to each other, and the interconnections
between the various blocks have been identified. The floorplanning and placement stage
has allotted areas between these blocks that are to be used to route the interconnections
between circuits. These areas are divided into rectangular regions, and those regions. are
evaluated. The regions that have a circuit block on opposing sides are known' as .the
‘channels’. Two-dimensionally speaking, channels can exist both horizontally and
vertically, but they are analyzed in the same fashion, without a loss of generality. A
region having circuit blocks on all sides is called a switchbox, and there can be 2D
switchboxes with circuitry on four sides, and 3D switchboxes, which have circuitry on all
six sides. Switchbox routing requires special analysis, and is beyond the scope of this

thesis, so we will limit our discussion to channel routing.

The channel is defined by the terminals along its opposing sides. Our evaluations will be
made on channels arranged in a horizontal orientation, with the terminals located along

the top and bottom of the channel. The various parts of the channel can be identified in

figure 2.1. The channel has its top and bottom row of terminals, with the terminals

numbered to identify their interconnections. These interconnections, or nets, are the

elements we must arrange in an orderly fashion. All pins marked with the number one

are to be connected, as are the pins marked with the number two, and so forth. The pin

location is defined by its count from the left most pin, counting to the right. The channel

length is defined by the number of pins included in the problem set. Those pins with the

number zero are empty terminals and are not to be connected. The terminal list contains

the order of the net connections for the pins, organized from left to right.

Empty Terminal .
Terminal : —\

1 4 5 3 0 6 7 6 4 2

Top Terminal List:

1452760312
Bottom Terminal List: 1 4 53 06 7 6 4 2

Figure 2.1 Typical Channel Layout

2.2 Definition of Terminology

Several terms will be used throughout this analysis of the channel routing problem. It is

appropriate that we define them at this time.

14

1 4 5 2 7 6 0 3 1 2

Trivial | Vertical —~
Net — e i
Via B \
\‘. —\‘ f Track
(o .}
Dogleg
—— l @ @ @ L @ @ i P

Figure 2.2 Track and Vertical Layout

net — the connection between similarly numbered pins

multi-net — a net that contains more than two connections to pins

sub-net — a portion of a multi-net having two or more terminals

terminal — the pin or connection point of a net to the circuit block

trivial net — a net that connects a terminal from the top terminal list with a terminal
directly below it in the bottom terminal list

track — the horizontal path that a net may travel along the channel

vertical — the vertical path that a net travels from its horizontal track to the terminal
of the circuit block

via — the connection between layers of circuitry that connects the track to the vertical
of a net

layer — refers to the physical layer within the circuit design on which the circuit lies
HVH - a three-layer model with two horizontal layers, one on the top and bottom,

with a vertical layer between

15

e VHY - a three-layer model with two vertical layers, one on the top and bottom, with

a horizontal layer between

We are using a reserved layer model. This means that one layer is designated strictly for
tracks, while another layer is strictly for verticals. In our treatment of the problem, we
will be using a two-layer and a three-layer model, with the third layer designated for
either tracks or verticals, as the problem set deems necessary. We complete the
connection between layers by implementing vias. Vias are used at the ends of tracks to
connect to the verticals, and may be used within multi-nets to connect two segments
where a dogleg exists. A dogleg is created when a multi-net is assigned to more than one
track. The dogleg is the vertical part of the multi-net between tracks, as shown in Figure

2.2.

2.3 Problem Formulation

Our objective is to create an arrangement of nets by assigning them to particular layers
and tracks within the channel so that they accurately complete the electrical connections
between blocks of circuits. The number of tracks required should be minimized, to offer
a more compact layout. Obviously, the exclusion of conflicts between the assigned
placement of nets is essential. Other goals can be to minimize the overall length of the
routing connections, or the total wire length, and the minimizing of the number of vias

required.

16

To better understand what kind of solution is expected, an analysis of the problem set is
in order. Several parameters exist that can give us an idea of what to expect for an

optimal solution. The use of graph models can be employed to aid us in this analysis.

2.4 Input Analysis

Analyzing the problem set offers us several important parameters that help us identify
what an optimal solution should look like. We can first look at the number of tracks
necessary to complete the connections. We can determine the minimum number of tracks
required by compaﬁng the nets’ beginning and ending points, with respect to how they
overlap. Two nets that require a common distance of the channel can not be assigned to
the same track. By looking at all the nets’ spatial relationship to each other, we can

determine the minimum number of tracks required. Figure 2.3 shows the terminal layout

W N
()]

Figure 2.3 Determining the Maximum Clique from the HCG

17

of a channel. Below it, the nets are arranged beside each other based on their starting and
ending points in the channel. Note that nets 5 and 6 are trivial nets and, as such, do not

require a track for routing.

If we draw a vertical line through the arrangement of nets, it may cross onc or morc of
them. If we find the placement that crosses the maximum number of nets, we can count
the number of nets crossed. This represents the point where the channel would need to be
the widest. We can incorporate graph theory to help us in determining this value. The
graph for the problem set is created with the nets as nodes, and the overlaps as undirected
edges between the nodes. This graph is known as the horizontal constraint graph, or
HCG. We can extract the maximum number of nets overlapping each other by
calculating the largest group of nodes in which each node contains an edge to every other
node in the group. This is more commonly referred to as the maximum clique of the
graph. In the HCG, the maximum clique gives us the maximum overlap of the nets, or
the minimum track width for the channel. If we use a three-layer model that incorporates
two horizontal layers, HVH layering, we have the ability to move half of the nets’ tracks
to that extra horizontal layer. This allows us to reevaluate the problem set so that now the

minimum tracks required is one-half of the maximum clique.

We can also evaluate any possible conflicts between the top and bottom terminal lists.
These conflicts are called vertical constraints, and can be easily evaluated using a graph

model. Again the nets are used as nodes of the graph, but in this case, we compare the

18

Figure 2.4 Determining the Longest Path from the VCG

top and bottom terminal lists, column by column, looking for a difference between the
top and bottom terminals. This difference is considered a constraint in that the nets can
not have their vertical components overlap. Figure 2.4 shows the terminal list with its

associated vertical constraint graph, or VCG.

In the VCG, the edge represents the constraint between the upper and lower terminal, and
therefore, is a directed graph. If we examine the VCG in figure 2.4, we see a directed
edge between nets 2 and 3, 3 and 7, and 1 and 4. Each of these edges indicates the need
for at least two tracks to allow room for the verticals of the nets to connect with their
respective tracks. To evaluate this graph, we look for the longest directed path between

nodes. The length of this path represents a lower bound on the number of tracks required

19

to connect the nodes of the problem set. In the example above, the longest path would be

two for the path from 2to 3 and 3to 7.

Another important parameter, which can be extracted from the VCG, gives us a different
perspective on constraints. We must also check the vertical constraint graph for the
existence of cycles within the directed edges. If a cycle can be detected, we will be
unable to define the longest path, as the cycle would provide an infinite path length.
Secondly, a cycle indicates that the routing problem being evaluated has a more serious
problem. Figure 2.5 shows the terminal layout containing a cyclic vertical constraint.
Unless doglegs are used, there is no way to successfully route the example in a two-layer

model. A three-layer model, however, will solve the problem by allowing one net’s

7 0 0 3 7 0 0 3
—
[o] e
e i} [rC
i | _—Layer 0
-
—_— ® - >— — >~—e
3 0 0 7 3 0 0
Two Layer Routing Three Layer Routing
With a Dogleg With VHV Layering

Figure 2.5 Identifying Cyclcs in the VCG

20

verticals on the first layer of a VHV layering mode, while the other net’s verticals can

overlap by placing them on the second vertical layer.

2.5 Summary

We now have an understanding of the channel routing problem, and how to evaluate the
problem set so that the parameters of an optimal solution are known. We have defined
the terminology used in the study of channel routing, and how we evaluate a problem set.
If we can find the maximum clique of the HCG, the longest path of the VCG, and
whether the problem set has cyclic vertical constraints, we know what we should expect

our algorithm to produce for an optimal solution.

Many others have developed algorithms in an attempt to solve the channel routing

problem. We will now provide an overview of several of those processes.

21

Chapter 3

An Overview of Prior Research on Channel Routing

The channel routing problem has existed for close to 35 years. There have been many
approaches to the problem, from the single layer approaches, such as those reviewed by
M. Marek-Sadowska and T. T. Trang [MT83]. While they appear to be a simpler
procedure, there is still intensive computation involved. Single-layer routing problems

are known to be NP-complete [RD84].

Two-layer approaches have been discussed in chapter one, but will be presented in
greater depth in section 3.1. Three-layer approaches have been more recently proposed.

They will be presented following the two-layer algorithms in section 3.2.

We would like to offer a new method of evaluating the channel routing problem. The
problem has been approached from many angles, but none have been able to completely
encompass all aspects of any given problem set. All seem to have their special
circumstances in which they excel. If we look at what has been proposed before, we can
then consider what other ways we can break down the problem to provide a more optimal

answer for a wider range of input conditions.

22

3.1 Two-Layer Approaches

As mentioned in chapter 1, several algorithms have been developed to tackle channel
routing from a two-layer point of view. As J. Zheng mentions in his thesis, most of the
research in this category has been on heuristic methods, due to the NP-hard nature of the
problem [ZJ98]. We will examine the LEA family of algorithms, the dogleg routing
algorithm, the net merger router, the YACR2 router, greedy channel router, hierarchical

method, and finally, the genetic algorithm.

3.1.1 The LEA family of Algorithms

The‘Left-Edge Algorithm, LEA, was first proposed by Hashimoto and Stevens [HS71].
This algorithm produces an optimal solution for the problem sets it can process, so it is
not one of the heuristic algorithms. The algorithm has a limitation in that it will not work

on problem sets with vertical constraints.

The Left-Edge algorithm begins by sorting the nets in ascending order of their left-most
terminal positions. It then places the nets, processing them in their sorted order, into the
first available track of the channel. It always begins with the top track and works toward
the bottom. A reserved layer policy is used here, so that there is a layer for the verticals

and a separate layer for the tracks. An example is shown in figure 3.1.

23

Figure 3.1 An Example of the Left-Edge Algorithm

This algorithm, while easy to prove its optimal nature, is not very practical. The
restriction of not allowing vertical constraints is too limiting, as most channel routing
problems contain some vertical constraints. Sherwani points out that it has been found to
be a good initial router, which would lay out the basis for the routing scheme, after

which, a clean-up procedure could be employed to handle constraints [SN95].
3.1.2 The Dogleg Router

The LEA algorithms were seen to have another shortcoming. Since they assigned the
entire net to a single track, in some cases it led to the use of more tracks than was actually
necessary. D. N. Deutch (1976) proposed an algorithm he called the Dogleg Router. It

was based on the Left-Edge theory, but it would break multi-nets down into simple two-

24

0 4 5 0 0 6 5 7 1 2
—_——— T ® ° * ¢ ® ®
l |
— | ==
& ° 1 ® e i >—

Figure 3.2 The Dogleg Routing Algorithm

terminal sub-nets before placing them. The vertical between two sub-nets was used to

connect them together.

While the algorithm offered benefits over the basic Left-Edge Algorithm, it did add a
wriﬁkle of ité own. It co;ld handle vertical constraints between the top and bottom
terminal list, but still did not handle cycles in the vertical constraint graph. The process
of finding the least number of doglegs to use has been shown to be NP-complete [SG85].
Badly placed doglegs can even increase the number tracks the solution requires. Another
problem caused by the excessive use of doglegs is in the length of the path. As this
algorithm is also a reserved layer algorithm, extra doglegs would require extra vias. This

lengthens the path and can reduce the reliability of the circuit.

25

3.1.3 The Net Merge Router

Another approach to improving upon the LEA, by handling vertical constraints, was
presented by Yoshimura and Kuh with their net merging algorithm, called the YK
algorithm [YK82]. While previovus research made use of the horizontal constraint graph,
HCG, to determine the minimum number of tracks required, YK algorithm also makes
use of the vertical constraint graph, VCG, to analyze relationships between the nets. The
intention is to combine nets that do not have vertical constraints between them so that the

number of nets and tracks required can be minimized.

Two conditions must be met to allow the nets to be combined:

1. There cannot be an edge between the nodes in the HCG.

2. There must not be a directed path from one node to the other in the VCG.
By evaluating two nets without common constraints as one net, the overall amount of
calculation can be reduced. The process looks at the channel in zones, rather than looking
at it on a column by column basis, so its efficiency is improved. If net i from one zone
meets the conditions from net j in another zone, they can be merged together to simplify
the analysis for track assignment. This process is repeated until nets can not be combined

further, after which the merged nets are placed in tracks.

The process produced good results, although it was restricted by two conditions, it did not

allow doglegs, and could not handle cycles in the VCG. Finding optimal pairs of nets for

26

the merging process was difficult to perform. When merging nets, the future effects were

difficult to predict.

3.1.4 Yet Another Channel Router

Others evaluating the left-edge approach were finding other ways to handle vertical
constraints. Reed, Sangiovanni-Vincentalli, and Santamauro proposed the YACR2 (Yet
Another Channel Router) algorithm based on the following observations [RS85]. A
vertical constraint is a localized problem. Further, there is usually unused space in the
surrounding verticals and tracks that can be used to resolve this constraint, by employing
a localized maze routing approach. If constraints cannot be resolved, extra tracks can be

added to offer additional space.

A basic LEA is employed to initially assign track placement. Several maze routing
techniques are employed to reroute constraints to one side or the other. The entire
process is performed in a four-phase process. It begins by finding the column with the
highest density in the channel. Phase 1 routes the high-density column, and then phase 2
routes the columns to the right. Phase 3 uses a modified LEA approach to route the left
side columns by using a right-edge evaluation, following which phase 4 uses various

maze re-routing techniques to resolve constraints.

27

While YACR2 was efficient, it was a much more elaborate implementation. It did handle

vertical constraints well, while minimizing the number of tracks required.

3.1.5 The Greedy Channel Router

In 1982, Rivest and Fiduccia developed another twist on the LEA, which they called the
greedy channel router [RF82]. They observed that assigning an entire net to just one
track was very restrictive. They proposed a process that evaluated the channel from left
to right, column by column. In the evaluation, each net within that column was placed in
a track, and then the process moves to the next column. In this way, nets may change
tracks part way through its path, i.e. a dogleg can occur. There are no restrictions to

where a dogleg can occur or how often.

If two ends of a net cannot be connected immediately, the nets are placed on tracks to be
pathed to the right. If space develops, the router will use a dogleg to reduce the number
of tracks separating them, until an unused vertical is available to connect them. The nets
when apart are referred to as split nets, and when the net is finally connected with a

vertical, it is referred to as a collapsed net.

The greedy algorithm’s biggest advantage is in handling cycles in the VCG. It deals
favorably with vertical constraints, and minimizing the number of tracks needed, but has

as its weakness the tendency to use too many doglegs and vias.

28

3.1.6 The Hierarchical Method

Others took very different approaches to the topic of channel routing. In 1983, M.
Burstein, and R. Pelavin presented their hierarchical router for two-layer channel routing
[BP83]. This method used a ‘divide and conquer’ point of view to net placement. In this
method, the channel is reduced in height to a 2 x n channel and this channel is used to
route all of the nets. Special Steiner trees are created to route the connections globally.
A cost is calculated for each step in the connection path, moving either horizontally or
vertically. The net is initially pathed by the lowest cost and then the channel is

recursively expanded out as the nets are divided out into individual rows.

The biggest drawback to the hierarchical method is that it cannot handle cycles in the
VCG. Otherwise, it also uses a reserved layer model and does allow doglegs. It is

reasonably efficient and produces a very good solution.

3.1.7 The Genetic Algorithm

As this thesis is an extension of Jingsen Zheng’s graduate thesis in 1998, it is important
to distinguish his work, for it lays the groundwork for our current research. The genetic
algorithm was first proposed by A. T. Rahmani and N. Ono [RO93]. Their approach was
to look at the channel routing problem as an optimization problem. A solution to the

problem was represented as a vector of positive numbers, with a cost associated that

29

measured how close the solution came to an optimal solution. The cost was calculated
based on the number of tracks required and number of violations that occurred. The

process created many solutions with the goal of finding the solution with the lowest cost.

Zheng used this as the basis for his genetic algorithm in the following manner. The
problem set was initially analyzed to determine its relevant characteristics. The
maximum clique was calculated, the VCG was evaluated for cycles, and if none, the
longest path was determined. He also calculated the number of nets, terminal density,
and average number of terminals per net. These parameters were used to select one of
two routing techniques. The first, router-1, did not allow doglegs, and therefore would
not handle a cyclic VCG. Router-2 broke down multi-nets into two-terminal sub-nets.and

would handle most cyclic VCG cases:.

The nets are routed, and then a mutation phase modifies the assignments looking for
vertical constraint violations. The mutation continues until no progress is made, at which
time the output is created and the entire process terminates. The algorithm was most
affected by constraints in the HCG and VCG, causing its solutions to vary from problem
to problem. Another limitation was that the size of the problem set greatly affected the

performance of the algorithm and the amount of memory needed for the computations.

This concludes our overview of the two-layer channel routing approaches. We will now

look at the three-layer methods that have been presented so far.

30

3.2 Three-Layer Approaches

Three-layer channel routing algorithms have begun to surface, due to the increasing
availability of three metal layers in chip design. Sherwani points out that the Motorola
2900ETL macrocell array, the Dec Alpha chip, and Intel’s 486 and original Pentium

chips were all designed using a three-layer design [SN95].

Most all of the three-layer approaches are extensions of two-layer methods. We will look
at an extension of the net merge algorithm by Chen and Liu [CL84], another extension of
the same by Cong, Wong, and Liu [CW87], and finally a hybrid HVH-VHV router by

Ptchumani and Zhang [PZ87].

3.2.1 The Extended Net Merge and CWL Channel Routers

The first of the three-layer approaches to be based on the net merge algorithm was
presented by Y. Chen and M. Liu [CL84]. Theirs was an extension of the YK algorithm
of Yoshimura and Kuh [YK82]. Their process was to perform two types of merging.
The first was serial merging, where two nets have neither horizontal nor vertical
constraints, and so can be assigned to the same track and layer. The second was parallel
merging, in which there exists a horizontal constraint between two nets, but not a vertical
constraint, so the nets can be put on the same track in different layers. The process of

creating zones is still incorporated.

31

Cong, Wong, and Liu [CW87] offered another extension of the YK algorithm, which can
referred to as the CWL algorithm. Their process was very similar to Yoshimura and Kuh
[YK82] in that it merges nets into composite nets based on not having horizontal
constraints between the nets based on their zones. They further merged composite nets
into super-composite nets where their only constraint was horizontal. This allowed the

super-composite nets to be assigned to the same track on different layers.

Evaluating the algorithms, they both suffered from less than optimal results if the net
pairings were less than optimal. CWL gave solutions with extra tracks due to adjacent

vias in nets being merged.

3.2.2 The Hybrid HVH-VHYV Router

As a final three-layer example, we look at the channel router developed by V. Pitchumani
and Q. Zhang [PZ87]. This process partitions the set of nets into two groups. One group
is made up of the nets that lend themselves to an HVH layering scheme, and the other
group is made up of those better suited in a VHV layering scheme. A transition track is
used to complete the connections between partitions.

The hybrid algorithm does not allow doglegs, and Sherwani indicates that this algorithm
is not for all situations [SN95]. He does say that it performs best when the problem set is

entirely an HVH or VHV layering group.

32

3.3 Summary

With this analysis of many channel routing algorithms, we see that the problem has been
addressed from many different points of view. There have been many two-layer
solutions offered, each providing a solution to a particular facet of the problem. Several
three-layer algorithms have been developed from two-layer versions to improve upon

their results. It is clear that no single algorithm is best for all situations.

We will now present the basis for our multi-layer channel router. First an understanding
of the genetic algorithm and how it is applies to solving computationally intensive
problems is in order. Afterward, we will present the algorithm for the multi-layer

channel router.

33

Chapter 4

The Genetic Algorithm

4.1 An Overview

The Genetic Algorithm is patterned after the evolutionary process of ‘survival of the
fittest’. It mimics the way nature will foster succeeding generations based on their ability
to change to better fit in with and make the most of their environment. In nature, a bird
with a more sharply pointed bill can better extract insects from a fallen log, and so
flourishes. In a similar way, the genetic algorithm creates temporary solutions to a
problem, and then uses those solutions to create new solutions, keeping the better

solutions and throwing away those that fall further from the optimal.

We first heard of Genetic Algorithms when J. Holland introduced them in 1975 [HJ75].
They were developed to help evaluate the adaptive processes of natural systems. Today,
we find them to be a valuable tool in evaluating processes that either have a large search
space, or are large in terms of calculations required for an optimal answer. To better
define the genetic algorithm’s properties, we will use a partitioning problem as an

example.

The partitioning problem comes from an earlier phase in the VLSI microchip design.

When initially laying out the locations for the circuits, each circuit is defined by a

34

minimum area it must occupy. These circuits are placed together, but must be partitioned
into groups for layout purposes. In our example, we will look at how the genetic
algorithm can be applied to evaluate the partitioning problem, so that two partitions are
created that require nearly the same surface area. This problem can be evaluated
optimally for rather small quantities of circuits, but quickly becomes difficult, if not
impossible, to analyze by optimal methods as the problem set increases in size, therefore
the genetic algorithm is well suited to provide a near optimal solution. Let us first

understand the Genetic Algorithm process.

4.2 How the Genetic Algorithm Works

There are several steps involved in the Genetic Algorithm process. The problem must
first be properly defined, as well as identifying the requirements the solution must meet.
Once defined, a representation of the solution can be determined. The representation
should take the form of a string, so that it can be easily manipulated, and is sometimes
referred to as the chromosome. A cost must also be defined so that the correctness of a

solution can be measured.

After the problem is well defined, initial solutions are derived. These first solutions,
called the parent solutions, are then used as the basis to derive additional solutions.
These are referred to as the child solutions or offspring. The child solutions are then

evaluated by the costing criteria for their ability to solve the problem. The best child

35

input the problem set
analyze input to formulate solution content
create parent solutions, cost them, and store best
while not done do {
for each parent {
mutate to create a child solution
if fit enough, keep it (cost)
)
for all children and parents {
store the best so far
choose new parents
)
}until done
report results

Figure 4.1 The Genetic Algorithm

solutions are kept and then used as the bases to derive more child solutions. The process
continues in this fashion, until it fails to show progress. A limiting variable controls the
process by increasing with failures until it reaches a maximum value, after which the
results are reported. Figure 4.1 shows the pseudocode for the genetic algorithm. We will

now look at the key portions of algorithm to analyze its inner processes.

4.3 The Mutation Process

The derivation of a child solution is accomplished by a type of mutation. Mutation can
be accomplished by several means. In one case, a parent solution can be modified by
switching either one or two parts of the solution to create a new solution. As an example,

figure 4.2 shows a parent string and the resulting child string after a mutation.

Example 1
Parent: 1001110010111011001
Child: 1000110010111011001
Example 2
Parent: 4536125798904532127
Child: 4539125798604532127

36

Figure 4.2 Mutation by Switching

The first example would be a possible mutation of the partitioning problem. In that
example, the fourth entry has been switched, so that the fourth circuit was changed from
one partition to the other. Generally this is performed one unit at a time and then the new
solution is evaluated and another switch may be performed. In the second example, the
fourth and eleventh positions have been switched. This could apply to a multi-partition

problem, or our channel routing problem, in which two nets’ placements are switched.

Example 1
Parent1: 1000110010111011001
Parent2: 0100101101010100100
Child1: 1000110101010100100
Child2: 1000110010111011001
Example 2
Parent1: 4536125798904532127
Parent2: 2487134956132727359
Child1: 4536125798902727359
Child2: 2487134956134532127

Figure 4.3 Mutation by Crossover

37

Another process, the crossover, involves using two parent solutions to create new child
solutions, by taking a portion of one parent and appending to it the complimentary part
from the other parent. In figure 4.3, we see two examples of this. For the partitioning
problem in example 1, the parents are crossed over starting with the eighth circuit. In the

second example, the crossover occurs with the twelfth position.

Still another form of mutation involves reversing the string or chromosome, end for end.
This type is referred to as inversion, and can be performed on a part or on the full length
of the string. In figure 4.4, example 1, for the partitioning problem, demonstrates the
sixth through the thirteenth positions of the string being inverted, while in example 2, the
entire string is inverted. Nearly any change can be useful as a means of deriving a new

and different solution.

Example 1
Parent: 1001110010111011001
Child: 1001111101001011001
Example 2
Parent: 4536125798904532127
Child: 7212354098975216354

Figure 4.4 Mutation by Inversion

Mutation offers several benefits. It should be a randomly applied change so that its result

is not necessarily predetermined. This gives us the opportunity to escape local

38

minimums, and try to reach an optimal solution for the problem. Using more than one
type of mutation offers increased opportunity for solutions to approach an optimal
solution. The value of that solution, to the common goal, is the next issue of

investigation.

4.4 The Selection Process

After the child solutions are derived, they are evaluated for their fitness, or their ability to
solve the problem. This evaluation is very specific to each problem, but usually involves
a cost for the solution’s suitability in solving that problem. As an example, ‘in the
partitioning problem, the total area of each partition can be calculated, and their
difference can be used as a cost. As there would be connections between the partitions,
another possible costing factor could be the number of connections that-travel between
the partitions. The overall partition size could have a maximum value, so that a third
partition may be required. All of these options can be used together, with a weighting
factor for each, to promote the more important criteria. Having been defined, we can
now use this costing procedure to evaluate both the parents and children for their ability

to solve the problem.

The costs for all children and parents are compared, and the lowest cost solution is stored.
Several of the solutions are then chosen as the parents for succeeding generations.

Multiple policies for retaining a solution as a parent can be used. The best can be saved,

39

or a random sampling can be kept. The important element here is to keep a varied
sampling, so that the succeeding generations have some diversity. This offers the

possibility to find better solutions and avoid falling into local minimums.

4.5 Global Control Parameters

There is also a global component to the evaluation process. As each new solution is
created, the evaluation criteria are also changing. There are several control variables
involved in the process that should be identified at this time. The first is the variable p,
which controls the selection of child solutions. When a new solution is generated, it’s
cost is calculated and is compared with its parent. The positive or negative gain is
compared with this control variable p to see if it is worthy of being retained. The value
of p can change depending on the success. or failure of child solutions created. If the
child solution shows a positive gain, p is kept at it’s origination value py. If the
succeeding solutions do not show a positive gain, the value of p can decrease to allow
solutions to be retained that do not show a positive gain. This again allows for diversity

so that local minimums can be overcome.

The other variable used to control the global process is defined as r. The value of r
begins at zero, and increases as the newly created generations fail to improve in their
suitability to solve the problem. If the new solution is an improvement, the value of r is

reduced by a user defined upper bound value, R, for the next child creation. Thus, the

40

variable, r, increases in value if the process stagnates in its search for a better solution.
When the value of r reaches the upper bound, R, the process stops generating new

solutions. After the evolution process has terminated, the stored best solution is output.

Another factor that influences the process concerns the manner in which the parent and
child solutions are created. The number of parents created and saved, as well as the
number of children generated can also affect the quality of the overall outcome. This can
also depend on the size of each generation, as a larger generation size will require more
memory and tend to reduce the number of parent and child solutions that can be stored.
Generally speaking, the greater the number of parents and children that are created, the

greater the possibility of reaching an optimal solution quickly and efficiently.

We will now look at the multi-layer channel router problem and how the Genetic
Algorithm can be applied to provide an efficient and effective solution. The basis for our
using the algorithm is first identified, as well as the way the algorithm is applied. An
analysis of the specific data structures used is followed by the details of the processes

involved in the algorithm, as they apply to the channel router.

41

Chapter 5

The Multi-layer Channel Router

Because of the complexity of the channel routing problem, a genetic algorithm seems to
be an excellent heuristic to find a near optimal solution. By its diversity, it can more
easily overcome local minimums. With technology rapidly changing, improvements in
the manufacturing process have allowed for an additional layer of circuitry within the
chip, to reduce channel width, and help resolve constraints. We can make use of these

two ideas as the basis for a new multi-layer channel routing process.

5.1 The Basis for the Router Process

The channel routing process begins by looking at the problem itself, to find the most
efficient method of connecting similarly numbered pins through a channel, where the
pins or terminals are on the top and bottom of the channel. The solution should offer a
design with as narrow a channel as feasible, and without conflicts in the circuitry layout.
The input for this process is a text file, with the number of terminals per side of the
channel as its first entry, followed by a list of the top terminal connection numbers and
then the bottom terminal connection numbers. This identifies the terminals that need to
be connected and their order along the channel. We want the ability to run the process in

a two-layer mode or a three-layer mode.

42

The process takes, as part of its command line, the input file name. The input file is
evaluated to determine the number of nets required, along with their beginning and

ending points in the channel. A user defined

separation variable determines how the nets are
struct net {

int net num;
int strt_pin;
int end_pin;

assigned. An array of structures, as shown in

figure 5.1, stores this information, as well as

¥

the net number, as defined by the terminal i
struct net netlist[|;

numbering sequence from the input file. The

Figure 5.1 Structure for Basic Net

control parameters are defined by the user,
Storage

following which the overall characteristics of

the problem set are analyzéd to determine the best way of approaching the problem. The
analysis also involves setting the expectations of a reasonable solution. The greater of
the maximum clique of the horizontal constraint graph and the longest path length of the
vertical constraint graph can be used as the lower bound for the number of tracks in an

optimal solution. The decision as to whether to use two or three layers is made, and if

1 2 2 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
1 23 4567 8 91 1 2 3 4 5 6 7 8 95 10 1 2 3 4 5 6 7 8 9 10
Layer 0 Layer 1 Layer 2

Figure 5.2 HVH Layering Model

43

1 2 3 4 5 6 7 8 9 10 1 2 3 45 6 7 8 35 10 e 345 6 7 8 90
1t 23 45 67 8 9510 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 10
Layer 0 Layer 1 Layer 2

Figure 5.3 VHV Layering Model

three layers are chosen, it is determined whether to use the HVH or VHV layering
scheme. Figures 5.2 and 5.3 give examples of channel routing using the HVH and VHV

layering schemes, respectively.

Following this analysis phase, the initial parent solutions are derived. The parent
solutions are sent through a compaction process that tries to minimize the number of
tracks necessary, as well as expanding when conflicts arise between two nets vying for
the same space. The parents are then evaluated using a costing routine to determine the
best solution so far, and that solution is stored for future evaluation. Each parent is then
used as the basis for generating several children via a mutation process. As each child is
produced, it is run through the compaction process, and then evaluated for its fitness.
Based on the evaluations of both the children and parents, a portion of the group is
chosen to be the parents for the next generation. This process continues until an exit

control variable reaches a user defined maximum value. All through the process, the

44

child solutions are compared against the best solution, and if an improvement is found,

the new solution is saved.

After the genetic portion of the algorithm has concluded, the reporting phase outputs the
best solution to a file that can be input into AutoCAD®, a computer-aided design
package, to visually display the channel layout. The display can then be analyzed for its

accuracy and desirability in a three-dimensional manner on screen.

Now that we have the basic flow of the process, we will look more closely at the actual
components of each process to get a better understanding of what takes. place. An

understanding of the data structures involved is presented first.

5.2 Data Structures Used

There are a number of arrays used in the process, several to store the net information and
layout, while others are used during the analysis phase. Two arrays, ¢ in and b_in store
the top and bottom terminal lists, respectively. Another two arrays, left pt list and
right pt list, store the nets by net number based on their left and right points in the
terminal list. NVetlist is an array of structures, see Figure 5.1 earlier, that stores the nets’
base information of net number, starting point and ending point. Seol is another array of
structures, this one storing the various solutions created by the process. This array, as

shown in Figure 5.4, is two-dimensional, the first index identifying the solution number,

45

and the second specifying which net in netlist

struct layout {
int track;
int layer;

it addresses. The structure within this array
defines what layer and track number are to be ¥
3

used for a particular net. The small storage struct layout sol[J;

space required for these two arrays, allows us

Figure 5.4 Structure for Solution

to handle larger problem sets without memory Storage

overflows. Finally, the array, Solcost, stores

the costs involved with each solution generated.

To handle the analysis of the problem set, vcg is a two-dimensional array used to
calculate the vertical constraint graph. Color is an array used to perform depth first
search analysis, while saved stores the solution numbers that will be used as parents for
the next generation. Within several of the subroutines, the array lyr ck is used to track

net placement so that conflicts in assigned location can be identified.

There are also a number of variables to be identified, that handle special storage needs.
The control variables, sep, p, py, r, and bigr are used to adjust the performance of the
algorithm. Sep controls the number of terminals a net can have. A value of two creates
two terminal nets, while a value of four would create nets with up to four terminals. The
variable, p, controls the selection of child generations, with py storing the base value.

The variable, r, controls the termination of the genetic process. The value of r increases

46

as the process doesn’t progress, or is reduced by bigr, when it does generate beneficial

solutions. As r increases, bigr also serves as a termination value for the value of r.

Additionally, there are several variables used to track some of the settings used within the
algorithm. The value of the highest numbered net is stored in fop_net, total_nets stores
the total number of nets created, total seg stores the number of non-trivial nets, and
total term stores the number of terminals contained in the problem set. The maximum
clique of the horizontal constraint graph is calculated and stored in max_clique,
longestpath stores the length of the longest path in the vertical constraint graph, layers
stores the number of layers in use, and vAv is set to true if the vertical constraint graph
signals that a cycle exists. This would require two vertical layers to resolve the conflict.
Several other less significant variables handle loop counting, true / false values, and

string values used for file access.

5.3 Process Elaboration

We will now look more closely at several of the modules involved in the genetic
algorithm for multi-layer channel routing to get a better understanding of their functions.
An examination of the sub-routines that handle creating nets, finding the maximum
clique, vertical constraints, and longest path will be performed. We will also look at the
routines that handle creating the parent solutions, costing and compacting them, mutating

parent solutions into child solutions, the update routine that modifies p, which determines

47

whether to keep possible solutions, and finally the output function that creates an output

file to create a graphic representation using AutoCAD® Release 2000.

5.3.1 Creating Nets

The process of creating nets, from the top and bottom terminal lists, makes use of the
variable sep. The terminal lists are evaluated from left to right. The process searches for
the terminal numbers corresponding to the first net, and then determines where net-1

begins and ends. Figure 5.5 shows an overview of the algorithm.

for 1=1 to the number of terminals do {
set the count for this net to zero
for each terminal do {
if the net # for top or bottom matches i then {
if count = 0 then store this as a starting point
else { store the point as an end point
add 1 to count
if count = the separation value then
use current point as start of new net

}
}
}
}

Figure 5.5 Net Creation

The variable sep is used to specify how many terminals can be included in each net. As

an example, if net X contains five terminals throughout the length of the channel, and if

48

sep has a value of two, then four nets would be created, between the first and second of
its terminals, between the second and third, etcetera. Under the same conditions, if

sep had a value of three, there would be two nets created between its terminals one and
three, and between three and five. If, as a final example, sep had a value of four, then
there would still be two nets created, but this instance would have a net from its first to

fourth terminal and a second net from the fourth to fifth.

The process continues by looking for the terminals marked as having net number two
attached, to create nets as defined by the value of sep, until the maximum number of

terminals has been evaluated.
5.3.2 Finding the Maximum Clique

The process of finding the maximum clique is taken from the work of Jingsen Zheng
[ZJ98]. On pages 39 and 40, he describes a process that calculates the maximum clique
of the problem set. We first want to identify the intervals that each net will require. Each
net is evaluated to retrieve its starting and ending points, and the net number is recorded
in the left pt list and right pt list arrays in the locations of these points, respectively.
We can then traverse the arrays from left to right, incrementing the value of the variable
clique for each net that is encountered in the left point list and decrementing each time a

net number is encountered in the right point list. The maximum value of clique is stored

49

for each net segment do {
place its net # in the left point list at its starting point
place its net # in the right point list at its ending point
}
for each entry in the list do {
if the left point list has a net starting then
add 1 to clique
if the right point list has a net ending then
subtract 1 from clique

}

return the maximum clique value

Figure 5.6 Maximum Clique

and is returned as the value of the maximum clique upon termination of the routine.

Figure 5.6 shows the algorithm for finding the maximum clique.

5.3.3 Evaluating the Vertical Constraints, Cycles, and the Longest Path

An evaluation of vertical constraints in the problem set offers several valuable pieces of
information. A graph of the vertical constraints, or VCG, can be created, which can then
be used to search for cycles in the net design, and can also be used to determine the
longest path of the VCG. This is particularly helpful in defining a lower bound on the

number of tracks when a single layer is used for the horizontal tracks.

The vertical constraint graph is stored in an n x n array called vcg, where n is the number

of terminals in the problem set. In figure 5.7, we see the algorithm used to create the

50

for each terminal do {
if the top net # is zero or the bottom net # is zero or
the top and bottom net #s are the same then
continue
else vcg[top net #][bottom net #] =1

}

Figure 5.7 Creating the Vertical Constraint Graph

VCG. The initial creation of the VCG is performed by evaluating the top and bottom
terminal lists together. The terminal lists are compared, starting with their first pins
respectively and moving toward the other end. The evaluation consists of checking to see
if at least one of the pins is labeled with a net number of zero, indicating that there is no
net on that pin, or that the pins have the same net number. If neither of these conditions
is true, then vcg is marked with the number one (1) to indicate a vertical constraint in the
position using the net numbers from the top list as the first index, and the net number

from the bottom list as the second index.

After the VCG has been created, it can be checked for cycles, which would indicate that
there are problems placing nets using a single vertical layer. The sub-routine, cycle ck,
is used to test for cycles, and its algorithm is shown in figure 5.8. It makes use of the
array, color, to determine if it has visited a node of the VCG more than once. Each node
is checked for its color, and if initially white (0), it is colored (1) and a search of other
nodes adjacent to it is performed, using the recursive subroutine, srch. Adjacent nodes

are likewise checked, thus creating a depth first search. If, during the search, a colored

51

for each node in the VCG do {
if its node is white then search for adjacencies

}

if a cycle is found then return true
Search

for each node in the VCG do {
if its node is white then search for adjacencies
if a cycle is found then return true

}

Figure 5.8 Cycle Check

node is found, the routine returns a positive response for a cycle. This sets the variable,
vhv to a value of one (1), indicating that the vertical-horizontal-vertical (VHV) layering is

favored to overcome the cycle.

The longest path can also be found by analyzing the VCG. The sub-routine, longest path
uses a modified depth first search to calculate the longest path between nodes. It
processes each node, visiting all adjacent nodes recursively, and counting each visit. The
longest path is stored as the greatest number of visits to adjacent nodes. Figure 5.9 lists

the algorithm used.

52

for each node in the VCG do {
perform a depth first search for adjacent nodes

}

return the longest path
Depth First Search

for each node in the VCG do {
add 1 to the path
perform a depth first search for adjacent nodes
return the path length

}

Figure 5.9 Longest Path

5.3.4 Creating Parent Solutions

After the problem set has been analyzed to find its specific characteristics, the process
proceeds by creating the initial parent solutions. The sub-routine, mk parent, who’s
algorithm is shown in figure 5.10, performs the function of evaluating the list of nets to
place them in tracks,bbased on the settings of vhv, the number of layers desired, and the
locations of the terminals in the net list. The process initially works with only the non-
trivial nets, and then places the trivial nets afterward. One of the non-trivial nets is
randomly selected, and placed in the first available track. If the net has both of its
terminals in the top list, it is placed in the track numbered for the maximum clique. This
keeps it from interfering with nets that have both of their terminals on the bottom, or one

in each terminal list.

Randomly choose a non-trivial net

for each non-trivial net do {
if both terminals are from top then

start at top track work down, use ck_space to find space

else start at bottom track work up, use ck_space to find space
store the track and layer position
mark Jyr_ck with the net # for the space used

}

for each trivial net do {
search for a track & layer with the same net number
store the track and layer position

} .

store maximum track number

Figure 5.10 Making the Parent Solutions

for the track and layer do {
check from left point to right point for space
}
if the space is free then {
mark the vertical components as used
return successful find
} else return failure testing that space

Figure 5.11 Checking For Free Space

53

The procedure, mk_parent, uses the sub-routine, ck_space, shown in figure 5.11, to verify
that the length of a chosen track is available for the placement of the net currently being

evaluated. The array, lyr ck, is used to coordinate the placement of the nets within the

54

channel. The array is a three dimensional array to hold the locations of the nets placed
into the channel based on their layer, track number, and location along the channel. The
purpose of ck_space is to make sure that the net currently evaluated has room in lyr_ck,
so that there isn’t a conflict with another net in that vicinity. In a similar fashion, the

other non-trivial nets are placed in a greedy fashion, by finding the first available space.

Finally, the trivial nets are placed by searching for a layer that already contains a non-
trivial net with the same number. If no layer exists, the net is placed on the first layer.
There is not a track required for the trivial nets, since their terminals are located at the

same pin number in opposing terminal lists.

5.3.5 Improving the Solution by Compaction

The sub-routine, compact, is used to evaluate the placement of nets into the layer and
track arrangement. The process strives to minimize the number of necessary tracks as
well as expanding solutions with conflicts in the track layout to try to resolve those
conflicts. The process also uses the array, Iyr_ck, to analyze the net layout,nlooking for

empty space and overlaps.

After clearing the array, the tracks and verticals are placed into the array. As the nets are
read, the space is checked to make sure it is available. If it is not, the net is noted for

relocation, and the next net is evaluated. The list of nets with overlaps is then sent to a

55

for each net do {
if its placement falls on another, then mark for expansion
else store its location

}

expand all nets without placements

for each non-trivial net do {
check up to present location for a more compact location
if found, then move it

}

check trivial nets for placement with same net # non-trivial nets
calculate maximum tracks used

Figure 5.12 The Compaction Algorithm

sub-routine, expand, which tries to place them in another track or layer where space is
available. Once the nets have all been recorded in the array, the nets are evaluated again
to see if space for any of them exists on a lower track and/or layer. If it can be moved,
the new location is recorded in the solution, and the array is updated to free its old
placement and fill the new one. Finally, the maximum number of tracks required by the
solution is stored to be referenced later. Figures 5.12 and 5.13 list the algorithms used to

do the compaction and expansion, respectively.

for each net not placed do {
use ck_space to find a track to locate the net
store the new track and layer

}

Figure 5.13 The Expansion Algorithm

56

5.3.6 Expressing the Value of the Solution

The solutions must be evaluated for their fitness. The sub-routine, cost, returns a value
describing how the solution organizes the tracks and vias, and how it minimizes the
number of each required, as well as indicating whether there are overlaps in tracks or
verticals between nets. This process also uses lyr_ck to place the nets, so that their
locations can be checked for overlaps. For each net, the track used is first evaluated. If
the area between the left point and right point has been assigned to another net, a track

error is logged.

Next the verticals are checked by comparing the net number with the left point terminal
values on the top and bottom. If the top matches, the vertical from the track to the
maximum track value is checked for free space to allow for the layout of the vertical. If
the bottom matches, the vertical space is checked from the current track down to track
zero. In a similar fashion, the right point of the net is tested for vertical space. All the
vertical tests are performed on the vertical layer(s) so that they do not affect the track

layer locations.

The vias are also counted in the sub-routine, via_count, to analyze the number of vias
required to complete the solution. Since the number of vias affects the quality of the
solution, via_count is included in the analysis of the cost of that solution. In via count,

lyr_ck is also used to mark their locations. As the nets are evaluated, the vias required

57

are marked in the array, and then a count is made of the number of vias required. This

number is later used in the sub-routine, cost, to help determine the quality of the solution.

After logging all track and via overlaps, or violations, the sub-routine calculates a cost
using the following function:

sol_cost = max_track + (4 * trk_err)+ (6 * via_err) + (2 * vias)
where sol_cost is the value returned as the cost, max_track is the maximum number of
tracks required for this solution, trk_err is the number of track violations found, via_err is
the number of vertical violations found, and vias is the number of vias required for the
solution. Sol cost is returned to the calling routine. Figure 5.14 shows the algorithm

involved in costing the solutions, and figure 5.15 shows the algorithm for counting vias.

for each net do {
check for free space on the track assigned
if failure, then add one to trk_err
check for free space in each via location if necessary
if failure, then add one to via_err
}
cost = maximum tracks + 4 * track errors + 6 * via errors + 2 * vias
return cost

Figure 5.14 The Costing Algorithm

58

for each net do {
if the net number matches a top or bottom terminal then {
mark lyr _ck with a via needed

}
}

count vias required
return the value

Figure 5.15 Counting Vias

5.3.7 The Mutation Phase

The mutation of the parent solutions creates a new generation of child solutions. The
sub-routine, mutate, performs this task. Earlier, we described several mutation processes.
The crossover method was discarded due to the complexity of the problem. If too many
nets were moved, the results would obviously be much worse than the parent offered.
Inversion was also excluded since inverting one layer with another would not offer an
improvement, and reversing the net locations would offer a very high cost because of
numerous track and via violations. The switch method was seen as the most effective

means of mutation.

59

The parent solution is first copied to a new solution location for manipulation. Two non-
trivial nets are chosen at random to have their track and layer locations switched. The
child solution’s cost is calculated and then subtracted from the parent solution cost to find
a positive or negative gain. This gain is compared with a random value between zero and
the value of the control parameter, p. For the current problem, the value of p is negative
to allow more solutions with less successful costs to be included in the parent solutions.
If the gain comparison is successful, the new solution is retained, and if not, the old layer
and track for the two nets are reset. The process repeats up to 20 times, looking for a

viable solution.

The sub-routine, update, is also involved in the mutation process. Update compares'the

parent cost with the child cost, and if the child cost indicates a poorer solution, the value

repeat {
pick two non-trivial nets at random
switch the layer and track between them
calculate gain as the cost of the parent — cost of the new child
if gain > a random value between 0 and p then return
} up to 20 times

Update Function

if old cost <new cost then p =p — 1
else p =po

Figure 5.16 Performing Mutation

60

of p is reduced to allow less fit solutions the opportunity to be used as parents, to
possibly create better child solutions in the future. If the solution is better, then p is reset
to its initialization value of py. Figure 5.16 shows the algorithms used for mutation and

update.

5.3.8 Choosing New Parents

After the mutation phase has modified the parents to create children, the process must
make a selection of the population to determine which to use as parents for succeeding
generations. The process can be run in two modes, elite and non-elite. In the elite mode,
the five solutions with the lowest cost are chosen to be parents. In the non-elite mode, a

random selection of five solutions are chosen as the parents for the next generation.

The process is handled in two steps. The first step is performed within the main routine.
When the user assigns the initial control parameters, the choice is made to run in elite
mode or non-elite mode. After the mutations are complete, the cost of each solution is
compared and the best five are chosen. Those five are then processed by the sub-routine,
sort_them. In sort them, the solutions are either sorted to be used as the next parents
(elite mode), or the parents are chosen again on a random basis and then sorted to be used
as future parents (non-elite mode). This random choice allows more diversity in the
generations to overcome the local minimums encountered. The algorithm for sort_them

is shown in figure 5.17.

61

the sub-routine is passed the top 5 solutions
randomly select between 0 and 2

if 0 then choose 5 solutions randomly

sort the five solutions and store them as parents

Figure 5.17 The Sorting Algorithm

5.3.9 The Reporting Mechanism

The final process to examine is the reporting mechanism. The sub-routine, output_sol, is
used to create a script file that can be used by AutoCAD® to create a graphical
repreSentation of the solution. The routine takes as its parameters, the solution number
and the name to be applied to the output file. The filename is created by concatenating
the name and solution number, along with the extension ‘.scr’, and the file is opened for

write purposes.

The terminals for the solution are calculated by finding the maximum track number for
the solution, and the length of the channel involved. The file is appended with the
command structure to create vertical lines representing the terminal pins. These are
placed below the track zero level and above the maximum track level, spaced one unit
apart. These will be placed on a layer called ‘terminals’ within AutoCAD®. The
information to print terminal numbers by each pin is then written to the file, followed by

a grid along the bottom layer to help visualize the track layout.

62

The nets are then written to file via a loop that processes the nets by the layer onto which
they have been designated. On the first pass, the nets for layer zero are recorded and on
the second pass, if necessary, the layer 2 nets are recorded. As each net is evaluated, the
command structure to place a line from the left point to the right point of the net is
created. The information to draw the vertical connections to the pins is also stored, as
well as lines to draw the vias connecting the tracks on their layer(s) to the verticals on
their layer(s). Each part of the net has its own layer on which it will be created. There is
a separate layer for the vias, and a separate layer for each of the track layers, if two are
used, in an HVH model, or two for the vertical layers in a VHV model. A small circle is
also drawn for the connections between the vias and the tracks or verticals. Figure 5.18

displays the algorithm for output_sol.

open output file

write commands to place terminals and number them

write commands to draw in the grid

for each net do {
write commands to draw the track used
write commands to draw the verticals to attach to the pins
write commands to draw the vias and place circles at the ends

}

Figure 5.18 The Output Algorithm

63

5.4 The Main Process

The main process pulls all the individual parts together, processing the problem set to
derive a solution that is near optimal. The main process takes as input the name of the
file containing the input information. After verifying that an input file was defined, the
user is asked to input the control parameters. The values of sep, py, and bigr are
requested, after which p is set to the value of py, and r is initialized to zero. The decision
to run in elite or non-elite mode is made. The sub-routine, reader, is executed to open the
input file and populate the top and bottom terminal list arrays, £ in and b_in. These

arrays are evaluated to find the maximum net number used.

The subroutine, create nets is called to create the array of structures that holds the base
information for each net. The analysis phase begins as the maximum clique is calculated,
followed by the initialization of the vertical constraints graph. Cycle ck is then executed
to test for cyclic references in the terminal structure. If a cycle is discovered, the user is
informed of this and the value of the variable, vhv, is set to one to identify the need for
two vertical layers. The user is then asked whether the output should use two or three
layers. Finally, the longest path is calculated. These parameters are used to determine

the type of solutions created.

It is now appropriate to begin the genetic process, and so the initial parent solutions are

created. The program has predefined, the number of parents to be used and the number

64

of children to be created from them. This causes mk parent to create five parent
solutions. Each has its cost calculated, and each is written out to a script file via the
output_sol sub-routine. The parent solutions are compacted, and then the solution with

the best cost is determined, and saved as the best solution so far.

Once the parents have been created and evaluated, four child solutions are created for
each parent by the mutation sub-routine. As each is created, it is compacted, and its cost
is calculated. Update is run to determine if progress is being made, and p is reduced if
necessary. Also each solution’s cost is compared with the cost of the best so far, and if
better, the best solution is replaced by the current solution. Following the creation of all
the child solutions, the child and parent solutions are all evaluated to find the five
solutions with the best cost. Those five are placed in the roles of parent for another
generation of solutions. This process repeats, with the value of r changing according to
the process’ success or failure to improve on the solution, until » reaches the value.of
bigr. The best solution is then printed to screen and output sol is called again to create
the script file for that solution. This script file can then be used as input into AutoCAD®

Release 2000, to give us a better visualization of the track and layer output.

5.5 Generating a Graphic Output

Once the script file has been created, it can be used as input into AutoCAD® Release

2000, to allow a three-dimensional look at the track layout. We have chosen to use

65

AutoCAD® Release 2000, for its ability to rotate the design in three dimensions in real
time, to better analyze the layer and track layout. Beforehand, a template was created as
the basis for the drawing that will be created by the script. This template has all the pre-
defined characteristics of the drawing. There is a layer defined for each of the tracks and
verticals in the design, as well as a layer for the vias. 'The separation ot intormation onto
separate layers allows us to color the tracks and verticals separately to aid in the

visualization.

223436799 PURAIMISKITIOL D]

—
—

1 23 4 356 78 » W12 is15ktrsnan

Layer O Layer 1 Layer 2

Figure 5.19 AutoCAD® Output Screen Showing Track and Layer Assignment

66

The script first creates the terminals on either side of the channel, and numbers them. A
grid is then drawn in on the track and vertical lines. The nets are then drawn in. As each
is drawn, the length of the net is checked to find terminals with that same net number,
and when one is found, a vertical is drawn in to connect it. A via is added to connect the
track and vetrtical layers to complete the connection. Figure 5.19 shows an example of

the visualization as provided by AutoCAD® Release 2000.

Now that the process has been defined, we will turn our focus to the experimental results
of the multi-layer channel router. We will analyze the performance of the algorithm

based on the type and size of the problem set, and our choice of control parameters.

67

Chapter 6

Experimental Results

An evaluation of the experimental results of the multi-layer channel router reveals many
of its characteristics, as well as its effectiveness. We will analyze the effect of each of
the control parameters on the algorithm. The following parameters were analyzed for
their effect:

e the separation value used to split multi-nets

e the value of the selection parameter, py

. »the generation size

e the value of the termination variable, R

o the effect of executing the process in elite mode or non-elite mode.
We will also offer a comparison of running the algorithm in the two-layer and three-layer
modes. The time complexity of the algorithm will also be evaluated, and general

observations will be presented.

6.1 The Problem Sets Used

Two groups of problem sets were employed to give a variety of situations with which to
evaluate the algorithm. Table 6.1 shows the characteristics of each problem set in the

first group. Channel lengths of 30, 60, 80, and 100 were used to determine how the size

68

Problem
Sets
Input file # Max Cycles? Longest
Terminals Clique Path
input30.txt 30 12 Yes Undefined
input30a.txt 30 10 No 3
input60.txt 60 15 Yes Undefined
input60a.txt 60 14 Yes Undefined
input60b.txt 60 14 No 10
input80.txt 80) No 7
input100.txt 100 6 No 4

Table 6.1 Definition of Problem Sets

affects the solution generation. Approximately half of the problem sets contained a cycle
in the vertical constraint graph. This forces the algorithm to address the layering
differently when three layers are used. The VHV layering scheme i1s employed: to
eliminate vertical constraints. Those without a cycle have a value for their longest path
identified. In the following sections, the problem sets are identified by the value of their
channel length, and those that do not contain cycles are marked with an ‘N’ following

their designation.

The second group consisted of six problem sets, each having a channel length of 40.
They were tested to allow evaluation of a controlled channel length. One-half of the
problem sets contained vertical constraint cycles. These sets were analyzed over the

control variable, py, and the separation variable, sep, to chart their solutions in three

69

Problem

Sets

Input file # # nets Max Cycles? Longest
Terminals Clique Path

input40.txt 40 36 6 Yes Nil

input40a.txt 40 37 6 No 9

input40b.txt 40 35 7 No 9

input40c.txt 40 38 6 Yes NIl

input40d.txt 40 39 8 Yes Nil

input40e.txt 40 35 6 No 9

Table 6.2 Characteristics of 40 Terminal Problem Sets

different modes, 3-layer VHV, 3-layer HVH, and 2-layer. Their set characteristics are

shown in Table 6.2.

=30 w Cycles
= 30 W/O Cycles.
w60 W Cycles.
= §0@ W Cycles
60 W/0 Cycles
=80 w/o Cycles
smenns 100 W/0 Cycles

Separation

Figure 6.1 The Effect of Separation on Time

70

6.2 Separation Value

Initial testing was done to determine the affect of the separation variable, sep, on the
solution. Figure 6.1 reflects the analysis time with respect to the value of sep, and figure
6.2 shows the change in cost, due to the change in the value of sep. The separation value
was incremented from an initial value of 2 to a final value of 11. This upper value
proved to be higher than necessary as each problem set had its own terminal separation
value, based on the longest multi-net. Values above this point gave redundant results

with most problem sets.

Analysis of the trials indicates that an increase in the separation variable causes a general

decrease in both the time required for analysis and the cost. This is evidence of several

=30 w Cycles :
s 30 W/0 Cycles
w60 W Cycles .
saweos 60@ W Cycles
e 5.0 ‘w/q Cycles
—— 80 w/0 Cycles
= 100 W/0 Cycles

Cost

Separation

Figure 6.2 The Effect of Separation on Cost

71

factors changing. First, the number of nets is reduced by an increase in the separation
value. This contributes to a lower time of analysis, due to shorter looping in the various
processes. We can also consider the position that fewer nets allows less manipulation of
those nets to find a better solution, so the termination value of R is reached more quickly.

The cost of a solution is also reduced by an increase in the separation value. The

reduction in nets also contributes to this, primarily because the number of vias is reduced.

Layerl Layer 1
TR (B “erese [I [".:""rl. sppenepomessaseare
U OO R 04414111 RASHR VAR 00 S B 1 111 411 0 AN [SN PO L AL LIS L
Layer 2 Layer 2
Separation of 2 Separation of 4

Figure 6.3 Outputs Based on Separation

Fewer vias are required as a multi-net is forced to reside on fewer tracks, or on one track
in the case of the terminal separation value. Therefore, we see fewer doglegs used when
the multi-nets are treated as larger sub-nets or as a single net. Figure 6.3 shows a 60-
terminal problem set, first modeled with a separation value of 2, and with a separation

value of 4. Table 6.3 shows a comparison of the solutions. As the separation value

72

increases, the nets, vias, and cost are reduced.

The time required is also reduced from 49 to 36 Sep2 Sep4
Nets 77 46

seconds. Tl.'aCkS 15 15
Vias 126 111
Cost 267 237

Tablc 6.3 Comparison of

An evaluation of the problem sets having a -
Separations of 2 and 4

channel depth of 40, reveals similar results.

Again we compare the time and cost as the variable, sep, increases, but we also want to
analyze the effect of the layering mode. Table 6.4 displays the results of the
experimentation. As expected, the time required reduces as the separation value

increases. The cost is not as obvious. We do see a similar reduction in cost as ‘the

Time Sep
VHV HVH 2Lyr
Set 2 | 3 4 5 2 3 4 5 2 3 4 5
input40.txt 18 14 4 3 84 46 16 26 55 47 42 19
inputd4Oa.txt | 26 3 4 4 24 | 27 | 23 | 23 | 24 | 21 32 16
input4Ob.txt| 19 11 4 4 36 27 27 31 23 32 16 24
input4Oc.txt| 15 15 4 4 50 | 34 16 8 46 | 27 16 11
input40d.txt | 30 11 4 4 50 51 16 | 29 59 39 | 23 32
input4Oe.txt| 27 7 4 4 51 31 27 38 72 30 22 14
Cost Sep
VHV HVH 2Lyr
Set 2 3 4 5 2 3 4 5 2 3 4 5
inputd0.txt | 112 [106 | 112 | 112 | 127 | 122 | 126 | 126 | 124 | 126 | 124 | 127
input4Oa.txt| 116 | 112 | 112 | 112 [140 | 123 | 121 | 120 | 134 | 119 | 117 | 118
input4Ob.txt| 119 | 109 | 115 | 115 | 125 | 125 | 123 | 121 | 142 | 120 | 124 | 120
input40c.txt | 112 | 106 | 110 [110 | 123 | 119 | 120 | 129 | 124 | 128 | 121 | 129
input40d.txt| 114 | 116 | 112 | 112 | 125 | 125 | 120 | 118 | 129 | 128 | 126 | 118
input4Oe.txt | 116 | 112 | 110 | 110 | 143 | 128 | 127 | 123 | 140 | 122 | 124 | 130

Table 6.4 Time and Cost on 40 Terminal Sets with Separation

73

separation value changes, but not in all problem sets. Problem sets 40 and 40c do not
exhibit this property, in regard to their costs. While both of these problem sets contains
cycles, it does not indicate this as a contributory factor. Further research would be

necessary to investigate this issue.

There was an exception seen in the times for some analysis periods after the terminal
separation value was reached. This was evidenced as an unusually long or short time for
a solution generation compared with other trials using similar parameters. This can be
attributed to the nature of the genetic algorithm itself. A trial may reach a local minimum
for a period, but before the terminal value of R is reached, a better solution is derived.
This would reduce the value of r by R to continue analysis until the value of r reaches R,
or another solution is found with a better cost. This loop can continue, which would
account for the extended times for some trials. Other trials may have had a short
evaluation time comparably, due to reaching a low cost solution quickly, and then not

having the ability to improve upon it.

Set Best p0
6.3 The Control Parameter p, 30 -5
30N 10
60 10
The second parameter examined was the effect 60 0
60N 5
of changes to the value of the variable, py. This 80N -5
100N -20

parameter controls the choice of whether a

Table 6.5 Best py Values
solution is accepted as an interim solution. The

74

value was varied in increments of five, from an initial value of 10, down to a value of
negative 65. In table 6.5, we see the values of py that gave the best cost for each problem
set of the first group. This variable is designed to be a tuning variable for the genetic
algorithm to help optimize the performance. As such, we find there is no standard value
that is right for every problem set. We see that there is no connection between the best
values of py and the problem size. All other variables were held static to maintain control
of the examination. Analysis of the 40 terminal problems sets gave a similar result. In
all problem sets, the py value of 10 gave a minimal cost, that could not be improved upon

by lower values. Table 6.6 shows the results of the 40 terminal problem sets.

40 40a 40b
Tracks | Vias | Cost | Tracks | Vias | Cost | Tracks | Vias | Cost
VHV 6 53 | 112 6 56 | 118 7 57 | 121
HVH 5 58 | 127 3 58 | 131 5 57 | 137
2Lyr 8 54 | 126 6 59 | 134 10 56 | 138

40c 40d 40e
Tracks | Vias | Cost | Tracks | Vias | Cost| Tracks | Vias | Cost
VHV 6 52 | 110 8 54 | 116 6 56 118
HVH 5 58 | 127 5 58 | 131 5 55 | 135
2Lyr 8 57 | 122 9 57 1129 6 56 | 138

Table 6.6 Effect of py on the 40 Terminal Problem Sets

75

Generation | Cost

size 30 30N 60 60a 60N 80N | 100N
1 120 113 241 256 287 270 309
1 118 114 241 257 284 264 315
2 115 120 231 258 303 268 308
2 124 115 241 266 286 268 315
3 112 115 241 268 290 264 318
3 115 115 240 251 296 264 324
4 111 120 231 268 295 262 324
4 113 112 241 254 296 266 319

Generation | Time
size .30 30N 60 60a 60N SON 100N

1 31 46 6 65 142 132 82
1 21 56 6 76 200 111 84
2 31 39 6 51 102 127 68
2 10 27 6 37 121 75 62
3 37 20 9 14 159 100 53
3 16 24 10 81 120 111 56
4 35 23 5 19 129 72 54
4 27 31 5 63 119 78 54

Table 6.7 The Effect of Generation Size on Cost and Time

6.4 The Generation Size

The generation size was evaluated by performing trials on the problem sets while varying
the number of child solutions created during each generation loop. The child solutions

were varied from an initial value of one child solution per parent, to a final value of four

76

child solutions per parent. Table 6.7 gives the experimental results for generation sizes of

one to four, on each of the problem sets.

We find no conclusive data to indicate that the generation size affects the quality of the
solutions, not does it dramatically affect the generation time. There are a few instances
where the generation time appears to be reduced by the increase in generation size,
indicating that having more diversity favors finding a solution more quickly, but the data
does not clearly point to this hypothesis. Another possible conclusion to be drawn by the
time statistics is to infer that the time saved by fewer generations to process is balanced
by the additional generations required to reach a best solution. The analysis of the costs
for various generation values does not poiht to a gain by larger populations of interim

solutions.
6.5 The Control Parameter R

The control parameter R is used to set the point of termination of the genetic algorithm.
To analyze this parameter’s effect on the algorithm, the problem sets were tested with the
value of R set to 100, 200, 400, 800, and 1600. As expected, the run-time doubles as R

doubles, so we see a linear relationship of growth in time as R grows.

77

R Value| 30 30N 60a 60N 80N 100N
100 110 105 241 243 250 329
200 112 108 241 242 245 332
400 112 105 240 239 244 304
800 110 108 240 245 238 316

1600 112 104 240 238 245 319

Table 6.8 The Effect of R on the Cost

In analyzing the cost as R increases, we see in Table 6.8 that the cost does improve as R
increases for most all problem sets. The first problem set of 30, containing a cycle, does
not reflect an improvement with an increase in R. This is because the mk parent sub-
routine, that creates the initial parents, is able to create an optimal solution, before the

genetic algorithm is invoked.

6.6 Using Elite Mode

Another feature of the multi-layer channel router is its ability to be run in an elite mode,
or in a non-elite mode. As mentioned earlier, when the elite modé is selected, the
selection of solutions from a generation, for the next generation’s parents, is handled by a
strict ‘lowest cost’ calculation. In the non-elite mode, the selection is randomly chosen
between the above mentioned lowest cost calculation, and a purely random selection of

solutions.

Problem Set

Elite 80N 60 100N 60N

Mode Separation| Cost Time Cost Time Cost Time Cost Time
0 2 266 90 257 50 365 85 282 121
1 2 268 76 265 23 368 96 282 112
0 3 250 69 243 22 327 79 261 99
1 3 248 50 243 23 335 58 289 42
0 4 248 50 241 18 308 74 276 66
1 4 240 66 237 24 321 51 280 35
0 5 252 27 241 4 323 46 250 77
1 5 248 35 241 5 325 33 256 22
0 6 245 46 241 4 314 63 252 84
1 6 244 56 231 4 328 53 256 36

Table 6.9 Effect of Elite Mode on Cost and Time

78

An analysis of table 6.9, showing the problem sets with elite mode selected and not

selected, offers two observations. We are comparing the cost for each problem set, and -

for a specific separation value, with the elite mode selected and not selected. The

comparison reveals that the cost is generally lower when elite mode is not selected. This

indicates that there is an advantage to selecting parents in a more random manner, so as

to offer a wider variety of parents. This broadens the creation of child solutions to better

reach an optimal solution.

The second observation is regarding the time component. It appears that most all the

problem sets, with most all the separation values, will terminate in a shorter period of

time when the elite mode is selected. This would indicate that we are using a more

79

narrow view of the solution set, and therefore, more likely to fall into a local minimum

and terminate before reaching the best solution.

6.7 Two-Layer Versus Three-Layer Analysis

The problem set having 100 terminal channel length was analyzed for the quality of
solutions in both a three-layer and two-layer mode. The relative costs of the solutions are
very similar, covering the same range of values in both modes. Since the number of
tracks used is a smaller portion of the cost, compared to the vias and conflicts, the costs

do not show a big change between the layer modes.

Evaluating the number of tracks needed for each solution does provide some comparison.
As a reference, the maximum clique for the 100 terminal problem set is six, and the
longest path is four. In the three-layer mode, the best solution requires four tracks, one

more than should be necessary. This solution also requires 134 vias. In the two-layer

Set Max Tracks Cost

Clique [VHV|HVH [2Lyr|VHV | Optimal | H\/H | Optimal | 2] yr | Optimal
input40.txt 6 6 5 8 112 | 112 | 127 | 121 [126 | 116
input40a.txt 6 6 3 6 |118 | 118 | 131 | 119 | 134 | 124
input40b.txt 7 7 5 10 {121 | 121 | 137 | 119 | 138 | 122
input40c.txt 6 6 5 8 | 110 | 110 | 127 | 121 | 122 | 122
input40d.txt 8 8 5 9 |[116 | 116 | 131 | 121 | 129 | 123
input40e.txt 6 6 5 6 |118| 118 | 135 | 115 | 138 | 118

Table 6.10 Analysis of Layer Mode on the 40 Terminal Problem Sets

80

mode, the best solution requires 6 tracks and 143 vias, which is optimal in terms of tracks
required. Both are using a terminal separation value, so that each multi-net is treated as a

single net, rather than several smaller nets.

Analyzing the 40 terminal problem sets in the two-layer and three-layer modes, we see
that the algorithm excels in the VHV mode. Table 6.10 shows the findings for each
problem set in the three different layering modes, and figure 6.4 shows an example of the
track layout in each layering mode. The maximum clique gives us the optimal number of
tracks required in the VHV and two-layer modes, while the HVH mode would have an
optimal number of tracks equal to one-half of the maximum clique. In all cases, the VHV
mode gave a solution with a minimal number of tracks required. The table also shows
the optimal cost based on the number of tracks required and the number of vias
necessary. Again, the VHV mode offered an optimal cost, with no extra costs due to

track or via conflicts.

'HIIIII'Ihl'”

Layer

e
Layer 1 Layer 1

1 I ﬁifii:ffiﬁ.filf

fayer 2

Figure 6.4 Layering Modes for 40 Terminal Problem Set

81

Now that we have an understanding of how the various parameters affect the

performance of the algorithm, an understanding of the time complexity is in order.

6.8 Time Complexity

The efficiency of the multi-layer channel router is found by evaluating its main processes
in terms of each of their individual sub-routines to find the accumulated overall
complexity of each process. The main process performs its initial evaluation of the
problem set in a linear fashion, so the evaluation of its sub-routines will give us the time
complexity of this portion of the program. The second portion involves the creation 'of
the parent solutions, followed by the genetic portion of the algorithm to generate child

solutions. Each of these two latter portions requires a separate analysis.
6.8.1 Time Complexity of the Analysis Phase

The initial problem set analysis requires that several sub-routines execute. If we evaluate
them in order, we can find the one with the highest time complexity, which will dominate
the complexity of this portion of the process. In this phase, the sub-routines: reader,
create nets, maximum clique, vertical constraints, and longest path are performed. An
evaluation of these reveals that the time complexity of reader and maximum clique are of

the order of the number of terminals in the problem set, or O(total term).

82

We see that the other three sub-routines all require a time of O(total term?) for their
execution. These will dominate the time complexity of this phase, giving us a final

complexity for the first portion of O(total term?).

6.8.2 Time Complexity of the Parent Creation

The creation of the parent solutions requires the sub-routines, mk_parent, cost, compact,
and output_sol. We have seen that maximum clique is of O(total term) and output_sol
requires the same amount of computation. The sub-routines, cost and compact require
less time. Their time complexity is of O(total seg), which is a subset of the total number

of terminals, excluding the trivial nets.

A look at the mk parent sub-routine shows a slightly more complex time requirement.
We find a loop based on the value of the maximum clique within a loop based on the
value of total seg. This gives us a complexity of O(total seg * max clique). This is the
dominant factor as compared with the other sub-routines. Even though the value of
total seg is smaller than total term, its multiplication with max_ clique causes it to
dominate the process. This gives us a time complexity of O(total seg * max_ clique) for

this phase of the algorithm.

83

6.8.3 Time Complexity of the Genetic Algorithm

The last phase to analyze is the genetic algorithm used to generate child solutions and in
the process, find the best solution. The sub-routines, mutate, compact, and cost are
involved, but special attention must be given to the Do-While loop that encloses all of
this phase. Mutate requires a loop based on the value of the total number of nets. Within
the mutate sub-routine, we call compact, which has a time complexity of O(total_seg).
This can be evaluated to an upper bound of O(total term), giving the sub-routine an

overall complexity of O(total_term * nets).

We have previously evaluated the time complexity of cost to be of O(total_seg), and so
we can disregard it for our analysis. Finally, we need to look at the effect the overall Do-
N
While loop has on this phase. The Do-While loop contains a number of executions,
including mutate, compact, and cost. Within this loop, we also find the control of the
variable r is maintained until it reaches the termination value of R. This implies that the
functions will be performed at least R times. If improvement is found, the value of r will
be reduced by the value of R, but this would occur a minimal number of times, and so is
considered constant. Multiplying the effect of R on the largest complexity, in this case

mutate, we calculate an overall complexity for the third phase, of O(R * total term *

nets).

84

Adding the complexities of all three phases gives a time complexity of:

O((total_term?) + (total_seg * max_clique) + (R * total_term * nets)

The middle term is dominated by the first and third terms, so we can see the time required
is affected by the number of terminals, the number of nets, and the termination variable,
R. This gives an understanding of the time required for the process. We see that as the
problem set size increases and as the termination value increases, the time complexity

grows quite quickly.

6.9 Comparing the Parents to the Final Solution

Our analysis of the genetic algorithm is not complete without a comparison of the parent
solutions, as created by the greedy algorithm, to the final solution via the genetic
algorithm. Table 6.11 compares the solutions created by the initial greedy algorithm with
the final solutions after the genetic algorithm is applied. The table shows the maximum

clique for each problem set, and the optimal cost for each solution.

We can see that in two examples, the greedy algorithm is able to create an optimal
solution, so that the genetic algorithm is unable to improve upon it. Overall, the data
indicates that the genetic algorithm is effective in reducing the cost of the final solution

and, in most cases, is effective in reducing the maximum number of tracks required.

Problem | Max | Parent Optimal | Final Optimal
Set Clique| Tracks |Vias|Cost| Cost |[Tracks|Vias| Cost| Cost
Input30 12 11 50 [117 111 12 50 | 112 112
Input30ON | 10 5 40 | 125 85 6 44 | 104 94
Inpul80 15 15 [115(245 | 245 15 | 110 | 235 235
Input6Oa | 14 15 |113] 241 241 15 | 113 | 241 241
Input6ObN | 14 10 (130]390| 270 7 124 | 287 | 255
Input80ON 5 3 93 |1305| 189 5 112 | 239 229
Input1OON| 6 3 113[363 | 229 6 147 | 310 300
Input40 6 6 53 11121 112 6 53 | 112 112
Input4d0aN| 6 4 531162 | 110 4 53 | 140 110
Input4ObN | 7 4 36 | 146 76 5 47 | 125 99
Input40c 6 7 53 1113 | 113 6 50 | 106 106
Input40d 8 8 56 1120 120 8 54 | 116 116
Input40eN| 6 3 43 | 155 89 4 47 | 128 08

Table 6.11 Comparison of Greedy and Genetic Algorithms

6.10 General Observations

85

There is an additional observation that merits discussion at this time. An overall analysis

of the solutions generated by the various tests reveals an interesting finding. The

algorithm favors a problem set with a cycle in its vertical constraint graph. In comparing

the solutions, we see that those problem sets with cycles generated solutions that had an

equal number of tracks to their maximum clique. They also returned solutions that were

without track and via violations. The problem sets without cycles frequently returned

solutions that were not optimal in the number of tracks required. In many cases, they

were one or two tracks above the expected value of one half of the maximum clique.

86

They also occasionally contained some track and via conflicts, and so were not always
viable solutions.
We can now offer our conclusions on the multi-layer channel router and identify possible

directions for future research.

87

Chapter 7

Conclusions

7.1 A Recap of the Benefits

The multi-layer channel router offers an alternative method of resolving the detailed
channel routing phase of VLSI design. Its use of a multi-layer design has proved its
flexibility, and performance. We have shown how its three-layer approach can remove
vertical constraints and overcome vertical constraint cycles that have been the limiting
factor in many other algorithms. We have also shown that the three-layer approach can

also narrow the channel width for those problem sets without vertical constraint cycles.

The separation variable has proven itself to be useful in determining the best way to
handle multi-nets. We have seen that the value of the termination variable, R, has had
little affect on the solution generation. The elite mode, of choosing the best solutions as
future parents, has proven itself to be less effective in generating diverse and better child
solutions, as compared with a more random approach to choosing parents. By the use of
the genetic algorithm as its basis, we can overcome local minimums to try to reach a
more optimal solution. We have also seen that the algorithm has very good performance,
due to an efficient time complexity. Using the control variable, py, and the separation
variable, we can optimize the performance to generate solutions in a very reasonable

period of time.

88

7.2 Positive and Negative Effects

There are two interesting features that make this algorithm attractive. The first is that it
works very favorably on problem sets with cycles. Its ability to resolve vertical
constraints and cycles, allows for an optimal solution in those situations. Secondly, by
using the tuning parameter, py, and the separation variable, the algorithm’s performance
is exceptional. The program took a minimal amount of time to process a problem set

with as many as 100 terminals.

Using AutoCAD® Release 2000, as the graphic display of the results, we can easily see
thé quality of the resulting solutions. The program offers a simple approach to displaying
the layers of the design to analyze any.tféck or vertical conflicts. When viewing the
solution, the 3D orbiting function can be used to rotate it in real-time, to better see how

the tracks, vias, and verticals are arranged. Connectivity can be easily checked.

It is fair to also offer the disadvantages seen in this algorithm. There can be a problem
with the initial parent creation. Since the algorithm uses a random approach to making
changes, it does not know how to resolve a specific conflict between two nets.
Experimentation shows that it has difficulty overcoming this. This problem was to be
corrected by a sub-routine that tries to move conflicts to a clear location, but seems to
have fallen short of its goal. This indicates a need for a more complex evaluation and

replacement method, possibly by swapping the positions of offending nets.

89

Another issue of note is that the algorithm did not always generate an optimal solution for
problem sets without vertical constraint cycles. These would have had an optimal
solution with the number of required tracks equaling one-half of the maximum clique.

The solutions approached this goal, but were usually one or more tracks over the optimal.

7.3 Directions for Future Research

One area of future research involves testing other algorithms as the basis for the parent
generation. The greedy algorithm worked well, and did occasionally generate an optimal
solution, but could also be responsible for the net conflicts that were previously
mentioned. Other algorithms may generate different parent solutions, which may add the

diversity needed to reach an optimal solution with every trial.

The compaction portion of the multi-layer channel router is also an interesting avenue of
further investigation. It has shown itself to be helpful in reducing unnecessary tracks, but
could be improved to be more robust in analyzing problem areas. Conflicts with track
assignments and vertical assignments require special attention to resolve them.
Alternative methods of reducing excess tracks, and placing nets with improper locations,

can be investigated.

[BP83]

[CL84]

[CW87]

[DD76]

[HI75]

[HS71]

[MT83]

[PZ87]

90

Bibliography

Burstein, M. and Pelavin, R. (1983), Hierarchical channel router, Proceedings
of the 20" ACM / IEEE Design Automation Conference, pages 519-597, 1983.
Chen, Y. and Liu, M. (1984), Three-layer channel routing, /[EEE Transactions
on Computer-Aided Design, CAD-3(2): pages 156-163, April 1984.

Cong, J., Wong, D. F., and Liu, C. L. (1987), A new approach to the three-layer
channel routing problem, Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 378-381, 1987.

Deutsch, D. N. (1976), A dogleg channel router, Proceedings of the 1 3"
ACM/IEEE Design Automation Conference, pages 425-433.

Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, The
University of Michigan Press.

Hashimoto, A. and Stevens, J. (1971), Wire routing by optimization channel
assignment within large apertures, Proceedings of the 8" Design Automation
Workshop, pages 155-163.

Marek-Sadowska, M. and Trang, T. T. (1983), Single-layer routing for vlsi:
Analysis and algorithms, /IEEE Transactions on Computer-Aided Design, pages
208-219, October 1983.

Pitchumani, V. and Zhang, Q. (1987), A mixed hvh-vhv algorithm for three-
layer channel routing, /EEE Transactions on Computer-Aided Design, CAD-

6(4), 1987.

[RD84]

[RF82]

[RO93]

[RS85]

[SG85]

[SN95]

[YKS2]

[2798]

91

Richards, D. (1984), Complexity of single-layer routing, IEEFE Transactions on
Computers, C-33(3): pages 286-288, March 1984.

Rivest, R. and Fiduccia, C. (1982), A greedy channel router, Proceedings of the
19" ACM / IEEE Design Automation Conference, pages 418-424, 1982.
Rahmani, A. T. and Ono, N. (1993), A genetic algorithm for the channel routing
problem, Proceedings of the ICGA, pages 494-498, 1993.

Reed, J., Sangiovanni-Vincentalli, A., and Santamauro M. (1985), A new
symbolic channel router: Yacr2, IEEE Transactions on Computer-Aided
Design, CAD-4(3): pages 208-219, 1985.

Szymanski, T. G., Dogleg channel routing is np-complete, I[EEE Transactions
on Computer-Aided Design, CAD-4: pages 31-41, January 1985.

Sherwani, Naveed (1995),‘Algorithms Jjor VLSI Physical Design Automation,
Kluwer Academic Publishers.

Yoshimura, T. and Kuh, E. S. (1982), Efficient algorithms for channel routing,
IEEE Transactions on Computer-Aided Design, CAD-1(1): pages 25-30,
January 1982.

Zheng, Jingsen (1998), An Evolution-Based Approach for the Channel Routing
Problem in VLSI Physical Design, Masters Thesis, University of Nebraska at

Omaha.

Appendix A: Source Cod

92

€

/***/

/* Mark P. Cloyed */
/* December 1999 508-82-1623 CSCI 8990 */
/* */
/* This program takes as input a text file containing to terminal */

/* lists and outputs a three layer net list containing net terminals, */
/* layer and track used to implement the nets most efficiently. A */

/* genetic algorithm is used to find the best solution. */
/***/

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <string.h>

#define TERMS 140
#define MAX NETS 170
#define TRAX 40
#define num prt 5
#define num_cld 4

int t_in[TERMS], b_in[TERMS],
left pt list [TERMS*2+1],
right_pt_list [TERMS*2+1],
top_net,
sep,
total_nets,
total_ term,
cur_net,
total_seg,
max_clique,
longestpath,
vcg [TERMS] [TERMS] ,
coloxr [TERMS] ,

/*declarations*/
/*top and bottom terminal list*/

/*stores net # by left and right most points=*/
/*highest numbered net*/

/*variable used to separate multinets*/

/*number of nets*/

/*total # of terminals*/

/*net currently evaluated*/

/*stores number of nets that require a track*/
/*stores the maximum clique value for the nets*/
/*stores the length of the longest path*/
/*vertical constraint graph to find cycles*/
/*array used to color visited nodes for cycles*/

oldcost, /*used to store old cost for comparison purposes*/
solcost (num_prt* (num_cld+1)+1], /*stores the cost associated with each solution*/
saved [num_prt], /*used to organize the top 5 solutions*/

layers, /*number of layers used for tracks*/

vhv, /*determines whether to use 2 vert or 2 horz*/

elite, /*determines whether to save best parents or random*/

r, /*incrementing variable*/

p.,p0,bigr, /*control parameters*/

j1, /*child generation counter*/

i,3,%; /*loop counters*/

char s[12],
out [13];

struct net {
int net num;
int strt _pin;
int end pin;

}i

struct layout {
int track;
int layer;

i

struct net netlist [MAX NETS] ;

/*outfile name storage*/

/*stores the net's number start and end points*/

/*stores the assigned track and layer for solutions*/

/*stores list of nets*/

struct layout sol[num_prt*(num_cld+1l)+1] [MAX NETS] ; /*stores the derived solutions*/

/***/

/************************ main program *********************/
/***/

main(int argc, char *argvl[])

{

int 1i,3,k;

if(arge < 1)
printf ("Usage: 3lyrchnl Input_file\n");
exit (1) ;
}
for (i=0;i< (num_prt* (num_cld+1)+1) ;i++) {
for (j=0;j<MAX_ NETS;j++) {
sol[i] [j] .layexr=0;
sol[i] [j] .track=0;
}
}

randomize () ;
k = 1;
do {
printf ("What is the separation value for multinets (2-99): ");
scanf ("%4", &sep) ;
if((sep > 1) && (sep < 100)) k = 0;
else printf ("Please input a number between 2 and 99.\n");

} while (k) ;
printf ("Separation = %d\n", sep) ;
printf ("Input an integer for p0: "); //input control parameters

scanf ("%d4", &p0) ;

printf ("p0 = %d\n",p0);

printf ("Input an integer for R: ");
scanf ("%d", &bigr) ;

printf ("R = %d\n",bigr);

printf ("Run in elite mode (0/1): ")
scanf ("%d", &elite) ;

printf ("Elite mode = %d.\n",elite);

p = po;
r = 0;
reader (argv({l]) ;
top_net=0; /*calulate largest net # */
for (i=1;i<=total term;i++)
if (t_in[i] > top_net) top_net = t_inl[il;
if(b_in[i] > top_net) top_net = b_inl[i];
}

create nets() ;
max_clique = m_clique();
vert_cnstrt();
if (cycle ck())
printf ("Terminal list contains cycles. VHV layering favored.\n");
vhv=1;
}
printf ("VHV 0/1? ");
scanf ("%d", &vhv) ;
printf ("VHV = %d.\n",vhv);
k=1;
do {
printf ("Create 2 or 3 layer model?");
scanf ("%d", &layers) ;
layers--;
if((layers > 0) && f(layers < 3)) k=0;
else printf ("Number of layers must be 2 or 3.\nPlease try again.\n");
} while (k) ;
printf ("\nUsing %d layers.\n", layers+l);
if (tvhv) {
longestpath=longest_path() ;

93

printf ("Longest path = %d.\n", longestpath) ;
} else printf("Longest path can not be calculated due to cycles in the Terminal
List.\n");
printf ("Creating Parent solutions.\n");
for (i=1;i<=num_prt;i++)

mk_parent (i) ; /*create parent solutions. */
sol[i] [0] .layer = via_count (i) ;

solcost [i] = cost(i);

printf ("Cost of %d.\n",solcost[i]);

}
sprintf (out, "%s", "parent") ;
printf ("Creating output files for %s.\n",out);
for(i=1;i<=num_prt;i++) {
sprintf (out,"%s", "parent") ;
output_sol (i, out) ;
compact (i) ;
sol[i] [0] .layer = via_count (i) ;
solcost [i] = cost(i);
}
oldcost = 19999;
for{i=1;i<=num_prt;i++) {
if (solcost [i] < oldcost) {
oldcost = solcost [i];
saved[0] = 1i;

}

printf ("Saving best of parents\n");
for(i=0;i<=total nets;i++) {
sol [0] [1i] .layer = soll[saved[0]] [i].layer;
sol[0] [i] .track = soll[saved([0]] [i] .track;
}
solcost [0] = solcost[saved[0]];
printf ("Best solution so far:\n");
print net (0) ;
dof{ //creates new generations
for(i=1;i<=num prt;i++) {
oldcost = solcost[i];
for (j=1;j<=num_cld;j++) {
j1 = num_prt+(i-1)*num_cld+j;
mutate (i, j1);
compact (j1) ;
sol(j1] [0] .layer = via_count(jl);
solcost [j1] = cost(j1);
update (oldcost, solcost [j1]);
if (solcost[jl] < solcost([0]) ({ //Save to best if it is the best so far.
solcost [0] = solcost[jl];
for(k=0;k<=total nets;k++) {
sol [0] [k] .layer = sol[jl] [k].layer;
sol [0] [k] .track = soll[j1] [k].track;

}
r=r-bigr;
}
else r++;
}
}

for(i:o;i<num_prt;i++){ //finds best to save
oldcost = 19999;
for (j=1;j<=num_prt* (num_cld+1) ;j++) {
if (solcost[j] < oldcost) {
saved([i] = j;
oldcost - seolceost([jl;
}
}
solcost [saved([i]] = 19999;
}
sort_them() ;
for(i=1;i<=num_prt;i++)

}

for(j=0;j<=total_nets;j++) {

sol[i] [j] .layer =
sol [i] [j] .track =

sol [saved[i-1]] [j] .layer;
sol[saved[i-1]] []j] .track;

sol[i] [0] .layer = via_count (i) ;
solcost [i] = cost(i);
sol[i] [0] .layer = via_count(i);

solcost [savedli-111

}
printf(".");
} while(r < bigr);

= solcest(il;

sprintf (out, "%s", "best") ;

printf ("\n\nCreating output file for %s.\n",out);

sol [0] [0] .layer = via_count (0);

solcost [0] = cost(0);

print _net(0);

output_sol (0, out) ;
exit(0);

/******************/

/******************************* End Main **************************/

/******************/

/* reader reads in the imput from the text file and translates it */
/* into two arrays of terminal lists
reader(char *finp) {

}

char rs(4];

int net_cnt,
i, t, r;

FILE *fp;

printf ("Loading Input File: %s\n", finp);
if ((fp=fopen(£finp, "xr"))==NULL) {
printf ("Cannot open file.\n");

exit (1) ;

}
fgets(rs,5, fp) ;
total_term = atoi(rs);

if (total term > TERMS-1) {

printf ("Number of terminals is beyond program limits.

exit (1) ;

printf ("Number of terminals:ﬁd\n",total_term);

for(i=1;i<=total_term;i++) {

fgets(rs,5, fp) ;
t = atoi(rs);
t in[i] = t;

for(i=1;i<=total_term;i++) {

fgets(rs, 5, fp) ;
t = atoi(rs);
b_in[i] = t;

fclose (fp) ;
printf ("\nPin #");

for(i=1;i<=total_term;i++) printf ("%44",1i);

printf("\nT_In:");

for(i=1l;i<=total_term;i++) printf ("%44",t_inl[i]);

printf("\nB_In:");

for(i=1;i<=total_term;i++) printf{("%4d",b_in[i]);

printf ("\n\n") ;
return 0;

/*** end rcader **+/

*/

Exiting now.\n");

/***/
/* create nets uses the terminal inputs to create a list of nets */
create_nets () {

int i,3j,

95

96

count ;

total nets=0;
cur_net=1;
for(i=1;i<=total term;i++) {

count=0;
for(j=1;j<=total_term;j++)
if(t_infil == i || b_infjl == i) {
if (! count) {
count++;

netlist [cur_net] .net_num=i;
netlist [cur_net] .strt_pin=j;

}

else(
netlist [cur_net] .end pin=j;
count++;
if (count == sep) {

cur_net++;
if (cur_net==MAX NETS) {
printf ("\n\nThe input has exceeded the bounds of this program.");
printf ("\nPlease reduce the input size and try again.\nExiting. . .");
exit (1) ;
}
count=1;
netlist [cur_net] .net_num=i;
netlist {cur net] .strt pin=j;
}
}
}
}
if (count > 1) cur_net++;
}
total_seg = cur_net-1;
for(j=1;j<=total_term;j++) {
if(t_in[j] == b_inl[j]) {
netlist [cur net] .net num=t_in([j];
netlist [cur_net] .strt_pin=j;
netlist [cur net] .end pin=j;
cur_net++;
}
}
total nets=cur_ net-1;
printf ("Number of Nets: %d\n\nNet List:\nNum Strt End\n",total_nets);
for(i=1;i<=total_nets;i++) printf("%3d %5d
%5d\n",netlist [i] .net num,netlist[i] .strt pin,netlist[i] .end pin);
return O;
} /*** end create_nets ***/
/***/
/* m_clique calculates the size of the maximum clique for the nets */
m_cligque() {
int i,3,
num, st,nd,
clique,mclique;

for(i=0;i<=total_seg*2;i++) left pt_list([il=right_pt_list([i]l=0;
for(i=1;i<=total_seg;i++) {
num=netlist [i] .net_num;
st=netlist [i] .strt_pin;
nd=netlist [i] .end_pin;
if(left_pt_list[2*(st-1)]==0) left_pt_list[2*(st-1)]=num;
else left pt list(2*(st-1)+1]=num;
if (right_pt_list[2*(nd-1)]1==0) right_pt_list[2*(nd-1)]=num;
else xright_pt list{2*(nd-1)+1]=num;
)
clique=0;
mclique=0;
for (i=0;i<2*total term;i++) {

97

if (left_pt list[i] > 0) clique++;
if(right_pt list[i] > 0) clique--;
if (clique > mclique) mclique = clique;

printf ("\nMaximum Clique is %d.\n",mclique) ;

return mclique;
} /*** end max_clique ***/
/***/
/* vert_constrt calculates the vertical constraints present in the */
/* terminal layout */
vert_cnstrt() {

for(i=1;i<TERMS:i++) {
for(j=1;j<TERMS;j++) vcglil) [j] = 0;

for{i=1;i<=total_term;i++) {
if((t_in[i)==0) || (b_in[i]==0) || (t_in[il==b_in[il))
else veglt_in[il) [b_in[i]]=1;

}

return 0;

’

/*** end vert cnstrt ***/
/***/
/* cycle_ck checks for cycles in the vertical contraints array */
cycle ck() {

int 1,3,
cycle;

printf ("Checking for cycles.\n");
cycle=0;
for (i=1;i<TERMS;i++) color[i] = 0;
for(i=1;i<=total term;i++) (
if (color({il==0) cycle = srch(i);
if (cycle) ({

printf (" create a cycle.\n"); //added to check cycle #
return 1;
)
}
return 0;
} /*** end cycle ck **x/

/**/

/* srch performs a depth first search for nodes that have already */
/* had a visit. This is used by cycle_ck to look for cycles. */
srch (int u)
int 1,3,
cycle;

color [u]l = 1;
for(i=1;i<=total_term;i++) {
if(veglu) [1)==1) {
if (color [i]l==1) {

printf("sd,",i); //added to check cycle #
return 1;
}
else if(color(i]l==0) cycle = srch(i);
if (cycle) {
printf("sd,",i); //added to check cycle #
return 1;
}
color[u]l = 2;
return 0;

/*** end srch ***/
/***/
/* longest_path calculates the longest path of the vertical */
/* constraint graph */
longest_path() {

int 1,3,
path_len,
longpath;

longpath = 0;
for(i=1;i<=total_term;i++) {
path_len = 0;
path_len = dfs(i,path_len):
if (longpath < path_len) longpath = path_len;

return longpath;

} /*** end longest path ***/
/*************************************'k***************************/
/* dfs performs a depth first search of nodes to calculate the */
/* longest path from the currently evaluated node to any other */
/* directly and indirectly adjacent node in the veg. */
dfs (int node, int p_len) {

int 1i; :

for (i=node+1l;i<=total_term;i++)
if (veglnode] [1] == 1) {
p_len++;
p_len = dfs(i,p_len);
}
return p_len;
} /*** end dfs ***/
/**/
/* mk_parent creates the initial parent solution upon which the */
/* children solutions will be derived. */
mk. parent (int sol_num) {
int netnum,
max_track,
lyr_ck (3] [TRAX] [TERMS],
1 pt,r_pt,
1,t,
ok,not_ok,
i,3.k;

max_track = 0;
for(i=0;i<=2;1i++) //clear matrix to check placement.
for (j=0;j<TRAX; j++)
for (k=1;k<TERMS; k++) lyr_ckl[il [j][k] = 0;

cur_net = random(total_seg)+1l;
for(i=1;i<=total_seg;i++) { //place non-trivial segments first.
netnum = netlist [cur net] .net num;

1 pt = netlist([cur_net] .strt_pin;
r pt = netlist[cur_net] .end pin;
if ((netnum==t_in[1l_pt])&&(netnum==t_in[r_ptl])&&(l_pt!=r_pt))
for (t=max_clique+l;t>=0;t--) { //if a top net, start at max_clique+l.
for(l=2-layers;l<=layers;1l=1+2) {
ok = ck_space(sol_num,netnum,lyr_ck,l,t,l_pt,r_pt);
if (ok) goto newnet;

}

else for(t=0;t<=max_c1ique+4;t++){ /*find layer and track to use¥*/
for (l1=2-layers;l<=layers;1l=1+2) {
ok = ck_space(sol_num,netnum,lyr ck,1l,t,l _pt,r pt);
if (ok) goto newnet;

}

newnet /* Gtering leeation */
if ((vhv) && (layers == 2)) {
for(j-1 pt;j«-xr pt;j++) {
lyr ck(1] [t] [j] = netnum;
if(b_in[j] == netnum) for(k=0;k<=t;k++) lyr ck[1] [k] [j] = netnum;
if(t_in[j] == netnum) for(k=t;k<max track;k++) lyr ckl[1l] [k] [j] = netnum;

}

} else {
for(j=1_pt;j<=r_pt;j++) {
lyr ck[1l] [t] [J] = netnum;
if(b_in[j] == netnum) for(k=0;k<=t;k++) lyr_ckllayers-1] [k] [j] = netnum;

}
}

sol [sol num] [cur net].track = t;
sol [sol_num] [cur_net] .layer = 1;
if (cur_net == total_seg) cur_net = 1;
else cur_net++;
if (max_track < t) max_track = t;
}
max_track++;
for (i=total_seg+l;i<=total_nets;i++) { //place trivial nets.
netnum = netlist[i] .net_num;
1l pt = netlist[i].strt_pin;
not_ok = 1;
for (t=0;t<=max_clique;t++) {
for(l=2-layers;l<=layers;1l=1+2) {
if (netnum == lyr_ckI[1] [t][1 pt]) {
sol [sol_num] [i] .track = t;
sol[sol_num] [i] .layer = 1;
not ok = 0;

if(t_in[j] == netnum) for(k=t;k<max_track;k++) lyr ckllayers-1] [k] [j] = netnum;

}
}
}
if (not_ok) {
sol[sol _num] [i] .track 0;
sol[sol num] [i] .layer = 2-layers;
}
}
sol[scl_num] [0] .track = max_track; /*store number of tracks used */
printf ("\nSolution %d4:\n", sol num) ;
print_net (sol_num) ;
return 0;

} /*** end mk_parent ***/
/***/

print_net(int sol num) {
int i;

for(i=1;i<=total nets;i++)
printf ("%2d. Net: %2d, 1 pt: %2d, r_pt: %2d, Track: %2d, Layer:

99

%d\n",i,netlist [i] .net_num,netlist{i] .strt pin,netlist[i] .end pin, sol[sol num] [i].track,s

ol[sol_num] [i] .layer) ;
if (solcost[sol_num] !=0) printf("Cost of %d.\n",solcost[sol_num]);
printf("Max track = %d\n",sol [sol_num] [0] .track) ;
if (scl [sol_num] [0] .layer!=0) printf ("Vias = %d\n",sol[sol _num] [0] .layer) ;
return 0;
/*** end print net **x/
/**/

/* ck_space looks in layer 1, track t for enough space to place */
/* the current net being examined. */
ck_space(int sol_num, int nett, int 1lyr[3] [TRAX] [TERMS], int 1, int t, int 1 _pt, int
r pt) {
int max_track,
i,j;
max_track = sol[socl_num] [0].track;
if ((vhv) && (layers == 2)) {
for (i=1_pt;i<=r_pt;i++) {
if ((lyr[1} [t] [1]) > 0) && (lyr[1][t] [i] != nett)) return O;
if(b_infil == nett) for(j=0:i<=t:j++) 1E£((Lyrll]l[j]1[i] > 0) && (lyr([l]l[4][i] !'=
nett)) return 0;
if(t_in[i] == nett) for(j=t;j<max track;j++) if ((lyr[l] [j][i] > 0) && (lyr([1l][j] [i]

!= nett)) return 0;

}

100

} else {
for(i=1 pt;i<=r pt;i++) {
if ((lyr[1] [t] [1) > O) && (lyr[1l] [t] [i] != nett)) return O;
if(b_in[i] == nett) for(j=0;j<=t;j++) if ((lyrl[layers-1]I[j]l[i] > 0) && (lyrl[layers-
1] [§] [i] != nett)) return O;
if(t_in[i] == nett) for(j=t;j<max track;j++) if((lyr[layers-1] [j][i] > 0) &&
(lyr [layers-1] [j] [i] != nett)) return O;

}

return 1;
} /*** end ck_space ***/
/***/
/* output_sol creates an output file in the form of a script file */
/* for AutoCAD to use as input to graphically draw the net diagram.*/
output_sol (int sol_num, char out_name[13]) {)
int max_track,
i,j,k,1,t,
1 _pt,r_pt;
char n[3];
FILE *fout;

if (sol num) {
sprintf (n, "%d", sol_num) ;
strcat (out_name,n) ;

strcat (out_name, ".scr") ;

if ({fout=fopen (out_name, "w")) ==NULL) {
printf ("Cannot open file.\n");
return 1;

max_track=sol [sol_num] [0] .track;

fprintf (fout, "$s\n", "osmode 0 -layer s terminals "); //create terminals
for(i=1l;i<=total_term;i++) {

fprintf (fout, "%$s%d%s%d%s\n","1line ",i,",-1,0 ",i,",-1,2 ");

fprintf (fout, "$s%d%s%d%s%d%s%d%s\n","line ",i,", ", max_track,",0 ",i,", ", max_track,",2

") ;

}
fprintf (fout, "%s\n", "-layer s text ");//labels the terminal positions
for(i=1;i<=total_term;i++) {

fprintf (fout, "$s%d%s%d\n", "text ",4i,",-1.5,0 ",i);

fprintf (fout, "%$s%d%s%f%s%d\n", "text ",i,",",max_track+0.2,",0 ",i);
fprintf (fout, "%s\n", "-layer s grid ") ; //draw in grid
for(i=1;i<=total_term;i++)

fprintf (fout, "$s%d%s%d%s%d%s\n","line ",i,",0,0 ",i, ", ", max_track-1,",0 ");
for (i=0;i<max_track;i++)

fprintf (fout, "$s%d%s%d%s%d%s\n", "line 1,",i,",0 ",total term,",",i,",0 ");

if ((vhv) && (layers==2)) {
for(j=0;3j<3;j=j+2) {
for(i=1;i<=total nets;i++) {

1 = sollsol num] [i] .layer;

if(1==3) {
fprintf (fout, "%s\n", "-layer s netl "); //draw in nets
t = sollsol_num] [i] .track;
1l pt = netlist|[i] .strt _pin;
r_pt = netlist[i] .end pin;

fprintf (fout, "$s%d%s%d%s%d%s%d%s%d%s%d%s\n", "line ", 1 pt,", ", g,",",1,"
n’r ptI"I"ItI"I"III" n)’.

if (i<=total_seg). fprintf (fout, "$s%d%s%d%s%dsstdsssdsssdss\n", "circle
",l_pt,",",t,",",1," 0.1 circle ",r_pt,",",t,",“,l," 0'111);

for (k=1 pt;k<=r_pt;k++) {
//put verticals on appropriate layer and add vias
if (b_in[k] ==netlist [i] .net_num) (
fprintf (fout, "$s%d%s\n", "-layer s net",j," ");
fprintf (fout, "$s%d%s%d%s%d%s%d%s%d%s\n", "line ",k,", ", t,",",1," ", k,", -

if (i<=total_seg) {

101

fprintf (fout, "%$s%d%s%d%s%¥d%s\n","circle ",k,",",t,",",1," 0.1");
fprintf (fout, "$s\n", "-layer s via ");
fprintf (fout, "$s%d%s%d%s%d%s%d%s%d%s%d%s\n", "line " ,k,",",t,",", 1, "

"lkl"I"ltI"I”Illn lr);

}

if (t_in[k]l==netlist[i] .net_num)

fprintf (fout, "%$s%d%s\n","-layer s net",j," ");
fprintf (fout, "$s%d%s%d%s%d%s%d%s%d%s%d%ss\n", "1line " ,k,",",t,",",1,"
",k,",",max_track,",",l,“ ||);
if (i<=total_seg) {
fprintf (fout, "$s%d%¥s%d%s%d%s\n", "circle " ,k,",",t,",",1," 0.1");
fprintf (fout, "%s\n","-layer s via ");
fprintf (fout, "$s%d%s%d%s%d%s%d%s%d%s%d%s\n", "1line ", k,",",t,",",1,"
Il,k,ll,ll't,ll'll’l’ll n);

}
}
}
}

} else {
for(j=2-layers;j<=layers;j=j+2) {
for(i=1;i<=total _nets;i++) {
1 = sol[sol num] [i] .layer;

if(l==3) {
" fprintf (fout, "%$s%d%s\n","-layer s net",j," "); //draw in nets
t = sollscl_num] {i] .track;

1l pt = netlist[i].strt_pin;
r_pt = netlist[i].end_pin;

fprintf (fout, "$s%d%s%d%s%d%$s%d%s%d%s%d%s\n", "1line ",1 pt,",",t,",",1,"
I"r_pt’"’ll,t,",ll,l,ll Il);

if (i<=total_seg) fprintf (fout, "%$s%d%s%d%s%d%s%d%s3d%s%d¥s\n", "circle
Il’l_pt’ll’lllt’II’Il,l,II 0.1 circle “lr_PtI"I"ItI“l"IlI" O.lll),.

for (k=1 pt;k<=r_ pt;k++) { //put verticals on

appropriate layer and add vias
if(b_in[k]==netlist[i] .net_num) {

fprintf (fout, "$s%d%s\n", "-layer s net", layers-1," ");
fprintf (fout, "$s%d%s%d%s%d%s%d%s%d¥s\n", "line ",k,",",t,",", layers-1,"
",k,",-1,",layers-1," ");
if (i<=total_seg) {
fprintf (fout, "¥s%d%s%d%¥s%¥d%s\n", "circle ",k,",",t,",",layers-1," 0.1");
fprintf (fout, "$s\n","-layer s via ");
fprintf (fout, "$s%d%s%d%s%¥d%s%d%s%d%s%d%s\n", "1line " ,k,",",t,", ", 1,"
"’k’ "/ ll,t'll' n'la},ers_l, " ") ;

}

if (t_in[k]l ==netlist[i] .net_num)

fprintf (fout, "%$s%d%s\n", "-layer s net",layers-1," ");
fprintf (fout, "%s%d%s%d%s%d%s%d%s%d%s%dss\n", "1line ",k,",",t,",",layers-1,"
n 'k' n , n ,max_track, n , " , layers-l, ” Il) ;

if (i<=total_seg) {
fprintf (fout, "$s%d%s%d%s%d%s\n", "circle ",k,",",t,",",layers-1," 0.1");

fprintf (fout, "%s\n","-layer s via ");
fprintf (fout, "%$s%d%s%d%s%d%s%d%s%d%s%d%s\n", "1line " ,k,",",t,",",1,"
Il,k,ll’ll’t’ Illll'layers_l’ll Il)’.
}
}
}
}
}
}
}
fclose{fout) ;
sprintf (out_name, "") ;

return 0;
} /*** end output_sol ***/

102

/***/

/*compact is used to compact the space within the tracks to try */
/*to minimize the number of tracks used */
compact (int sol_num) {
int netnum,

max_track,

lyr ck[3] [TRAX] [TERMS],

1 _pt.r_pt.

1l,t,11,t1,

reset [MAX NETS],

ok, not_ok,

iljlk;

for(i=0;i<=2;i++) //clear matrix to check placement.
for(j=0;j<TRAX; j++)
for (k=1;k<TERMS;k++) lyr_ ckl[i] [j] [k]=0;
for (i=0;i<MAX NETS;i++) reset[i]=0;
for(i=1;i<=total_seg;i++) {
netnum = netlist[i] .net_num;
1 pt = netlist[i] .strt_pin;
r pt = netlist[i] .end pin;
1 = sol[sol_num] [i] .layer;
t = soll[sol_num] [i] .track;
max_track = sol[sol_num] [0] .track;
not_ok = 0;
if ((vhv) && (layers==2))
for(j=1_pt;j<=r _pt;j++) {
if ((lyr_ckI[1] [t£] [J] > 0) && (lyr_ck[1][t] [j] != netnum))
not_ok = 1;
goto next_one;

if (b_in[j] == netnum) for (k=0;k<=t;k++) if((lyr_ ckI[1l] [k] [j] > 0) &&
(lyr_ckI[1} [k] [§] != netnum)) {
not_ok = 1;
goto next_one;

if(t_in[j] == netnum) for (k=t;k<max_track;k++) if((lyr_ckI[1l] [k] [j] > 0) &&
(lyr_ckI[1l] [k] [§] != netnum)) {
not_ok = 1;
goto next _one;
}
}
for (j=1_pt;j<=r_pt;j++) {
lyr_ck[1]1[t] [j]) =netnum;

if (b_in[j] == netnum) for (k=0;k<=t;k++) lyr ckl[l] [k] [J] = netnum;
if (t_in[j] == netnum) for (k=t;k<max track;k++) lyr ckl[l] [k] [j] = netnum;
} else {
for(j=1_pt;j<=r _pt;j++) {
if ((lyr_ck[1) [t) [§] > 0) && (lyr_ckI[1l][t] [j] != netnum)) {

not_ok = 1;
goto next_one;

if (b_in[j] == netnum) for (k=0;k<=t;k++) if((lyr_ckllayers-1] [k] [j] > 0) &&
(lyr _ckllayers-1] [k] [j] != netnum)) {
not_ok = 1;
goto next_one;

if (t_in[j] == netnum) for (k=t;k<max_track;k++) 1if((lyr_ckl[layers-1] [k] [j] > 0) &&
(lyr_ckl[layers-1] [k] [j] != netnum)) {
not_ok = 1;
goto next_one;
}
}
for(j=1_pt;j<=r_pt;j++) {
lyr ckI[1] [t] [j] = netnum;
if(b_in[j] == netnum) for(k=0;k<=t;k++) lyr ckllayers-1] (k] [j] = netnum;

103

if(t_in[j] == netnum) for (k=t;k<max_track;k++) lyr ckllayers-1] [k] [j] = netnum;
}
}
next_one:
if (not_ok) {
reset [0] ++;
reset [reset [0]] = i;

!
}

if (reset[0] > 0) expand(reset,lyr_ck,sol _num); //find a new location for violations
for(i=1;i<=total_seg;i++) {
netnum = netlist[i] .net_num;
1 pt = netlist[i] .strt_pin;
r pt = netlist[i] .end_pin;
11 = sol(sol_num] [i] .layer;
tl = sollsol_num] [i] .track;
// check up to existing location for a better place to put
it.
for(t=0;t<tl;t++) { /*find a layer and track to use*/
for(l=2-layers;l<=layers;1l=1+2) {
ok = ck_space(sol _num,netnum,lyr ck,1l,t,l pt,r pt);
if (ok) goto newnet;
}
}
goto nobetterplace;
newnet:
if ((vhv) && (layers==2)) {
for(j=1_pt;j<=r_pt;j++) {
lyr_ckI[1] [t1] [§] = O;
lyr_ck[1] [t] [§] = netnum;
if(b_in[j] == netnum) ({
for(k=0;k<=tl;k++) lyr_ckI[l1] (k] []j) = O;
for(k=0;k<=t;k++) lyr_ ckl[1l] [k] [J] = netnum;

if(t_in[j] == netnum) {
for (k=tl;k<max_track;k++) lyr_ ckI[1l1] [k] [j] = 0O;
for (k=t;k<max_track;k++) lyr ckI[l] [k] [j] = netnum;

}

} else {
for (j=1_pt;j<=r_pt;j++) {
lyr_ck[11] [t1] [§] = o;
lyr ckI[1] [t] [§J] = netnum;
if(b_in[j] == netnum) {
for (k=0;k<=t1l;k++) lyr ckl[layers-1] [k] [j] = O;
for (k=0;k<=t;k++) lyr ckllayers-1] (k] [j] = netnum;

}

if(t_in[j] == netnum) {
for(k=tl;k<max_track;k++) lyr ckllayers-1] (k] [j] = O;
for(k=t;k<max_track;k++) lyr ck[layers-1] [k] [j] = netnum;

}
}
}
sol [sol_num] [i] .track=t;
sol [sol_num] [i] .layer=1;
nobetterplace:
}
for (i=total_ seg+l;i<=total nets;i++) { //check trivial nets.
netnum = netlist[i] .net_num;
1 pt = netlist[i].strt_pin;
11 = sol[sol num] [i] .layer;
tl = sollsol_num] [i] .track;
not_ok=1;
for(t=0;t<=tl;t++) ({
for (1=2-layers;l<=layers;1=1+2) {
if (netnum == lyr ck([1] [t] [1_pt]) {
sol[sol_num] [i] .track=t;

}

sol([sol_num] [i] .layer=1;
not ok=0;
}
}

if (not_ok)
sol([sol_num] [i] .track=0;
sol[sol_num] [i].layer=2-layers:

}

max_track = 0; //calculate new # of tracks needed
if ((vhv) && (layers==2))
for (t=0;t<max_clique+4;t++) {
for(j=1;j<=total term;j++) {
if (lyr_ck([1] [£]1 (3] > 0) {
if (max_track < t) max_track = t;
goto newtrack;
}
}

newtrack:

} else {
for(t=0;t<max_clique+4;t++) {
for(j=1;j<=total_term;j++)
if ((lyr ck(2-layers] [t] [§] > 0) || (lyr_ckllayers] [t] [j] > 0)) {
if (max_track < t) max_track = t;
goto newtrackl;
}
}
newtrackl:
}
}
max_track++;
sol[sol_num) [0] .track=max_track; /*store number of tracks used */
return O0;
‘ /*** end compact ***/

/***/

/*expand tries to move track violations to valid locations */
expand (int reset [MAX NETS], int lyr ck[3] {TRAX] [TERMS], int sol num) {

int netnum,
1l pt,r_pt,l,t,
max_track,
ok, v,
irjtkr'

for (i=1;i<=reset [0] ;i++) {
v=reset [i];
netnum = netlist [v] .net_num;
1 pt = netlist(v].strt_pin;
r_pt = netlist(v].end pin;
max_track = sol[sol_num] [0] .track;
for (t=0;t<=max_clique+4;t++) { /*find a layer and track to use*/
for (1=2-layers;l<=layers;1l=1+2)
ok = ck_space(sol_num,netnum,lyr _ck,1l,t,l _pt,r_pt);
if (ok) goto newnet;
}
}

newnet :
if (ok) {
if ((vhv) && (layers == 2)) {
for{j=1_pt;j<=r_pt;j++) {
lyr ckl[1] [t] [J] = netnum;

if(b_in(j] == netnum) for(k=0;k<=t;k++) lyr ck[1l] [k] [j] = netnum;
if (t_in(j] == netnum) for(k=t;k<max_track;k++) lyr_ck[1l] [k] [j] = netnum;
} else {

for (j=1_pt;j<=r_pt;j++) {

104

105

lyr_ck([1] [t] [J] = netnum;

if(b_in[j] == netnum) for(k=0;k<=t;k++) lyr ckllayers-1] [k] [j] = netnum;
if (t_in[j] == netnum) for(k=t;k<max_track;k++) lyr_ck[layers-1] [k] [J] = netnum;
}
sol[sol_num] [v] .track = t;
sol[sol_num] [v] .layer = 1;
}
}
return 0;
} /*** end expand ***/

/**/

/*cost calculates a cost associated with the possible solution */
cost (int sol_num) {
int netnum,
max_track,
lyr ck[3] [TRAX] [TERMS],
1 _pt,r_pt,
1,t,
sol_cost,
trk_err,
via_err,
i,3.k,
known_prob;

for(i=0;i<=2;i++) //clear matrix to check placement.
for(j=0;j<TRAX;j++)
for (k=1;k<TERMS;k++) lyr_ckl[i] [j][k] = 0O;
sol_cost = trk_err = via_err = 0;
max_track = sol[sol_num] {0] .track;
for (i=1;i<=total seg;i++){ //populate matrix and check for violations
netnum = netlist[i] .net_num;
1_pt = netlist[i] .strt_pin;
r pt = netlist[i] .end_pin;
1 = sol[sol num] [i] .layer;
t = sol[sol _num] [i] .track;
if ((vhv) && (layers==2)) ({
known_prob = 0;
for(j=1_pt;j<=r pt;j++) :
if ((lyr_ck[1] [t] [§] > 0) && (lyr_ckI[1][t] [j] != netnum)) {
if (! known prob) {
trk_err++;
known_prob = 1;

} else lyr ck[1] [t] [j]=netnum;
known_prob = 0;
for (j=1_pt;j<=r_pt;j++) {

if(b_in[j] == netnum) {
for (k=0;k<=t ; k++)
if ((lyr_ck([1] [k] [j] > 0) && (lyr_ckI[1] [k] [j] != netnum)) {

if (! known_prob) {
via_err++;
known_prob = 1;

} else lyr ckl1] [k] [j]=netnum;

if (t_in[j] == netnum) {
for(k=t;k<max_ track;k++)
if ((lyr_ck([1] [k] [§] > 0) && (lyr ckl[1] [k] [§] != netnum)) {
if (! known_prob) {
via_err++;
known_prob = 1;

} else lyr_ck (1] [k] [§]=netnum;

}

} else {

known_prob = 0;
for(j=1_pt;j<=r_pt;j++)

if ((lyr_ck[1] [t] [§] > 0)

if (! known_prob) {
trk_err++;
known_prob = 1;

} else lyr_ckI[1l] [t] [j]=netnum;
known_prob = 0;
for(j=1_pt;j<=r_pt;j++} {

if(b_in[j] == netnum) {

for (k=0;k<=t; k++)
if ((lyx_ck[layers-1] (k] [j] >
if (! known_prob) {
via_err++;
known_prob = 1;
} else lyr ckllayers-1] [k] [j]

if(t_in[j] == netnum)
for (k=t;k<max _track;k++)
if ((lyr ckllayers-1] [k] [j] >
if (! known_prob)
via_err++;

known_prob = 1;

&& (lyr ck[1] [t] []]

'= netnum)) {

0)

&&

(1yr_ckl[layera- 1] [k] [j]

=netnum;

0) && (lyr ckl[layers-1] [k] [j]

} else lyr ckllayers-1] [k] [j]=netnum;

}
}
}

sol_cost = max_track +
return sol_cost;
} /*** end cost

(4 * trk_err) +

(6 * via_err) +

***/

/***/

/* via_count marks the matrix with via locations and then counts */

/* the quantity needed for the solution.
via_count (int sol_num) {
int lyr ck[3] [TRAX] [TERMS],
netnum,
1 pt,r pt,
1,t,
vias,
iljlki

for(i=0;i<=2;i++)
for (j=0;j<TRAX; j++)
for (k=1;k<TERMS; k++)
for (i=1;i<=total_seg;i++) {

netnum = netlist[i] .net_num;
1l pt = netlist[i].strt _pin;
r pt = netlist[i].end pin;
1 = sol[sol _num] [i] .layer;
t = sol[sol num] [i] .track; /*mark via locations*/
for (j=1_pt;j<=r_pt;j++) if((b_in[jl==netnum) || (t_in[j]==netnum))
1;
}
vias = 0;
for(i=0;i<=2;i++) /* Count vias used*/
for (j=0;j<TRAX;j++)
for (k=1;k<TERMS;;k++) if (lyr_ck[i] [j] [k] == 1) vias++;
return vias;
} /*** end wia_ count *+*/

lyr_ckI[i] [j]1 [k] =

*/

/*clear matrix to check placement.*/

0;

/***/

/*mutate switches nets'
mutate (int prt_num, int sol_num)
int net_1,net_2,

locations to overcome local minimums

*/

!+ netnum))

!= netnum)) {

(sol [sol _num] [0] .layer * 2);

lyr_ckI[1] (t] []]

106

temp_1,temp_t,
not_ok, check,

gain,

i;
check = 1;
do {

for(i=0;i<=total_nets;i++) {
sol[sol_num] [i] .layer=sol [prt_num] [i] .layer;
sol[sol num] [i] .track=sol [prt_num] [i] .track;

}

i = random(2);

if(i--0) {
net_1 = random(total_seg)+1l;
sol[sol _num] [net_1] .track = max clique + 1;

} else {
not_ok = 1;
do {

net_1 = random(total_seg) +1;
net_2 = random(total_seg)+1;
if(net_1 != net_2) not_ok = 0;

} while (not_ok);

temp_1l = soll[sol_num] [net_1] .layer;

temp_t = sol[sol_num] [net_1] .track;
sol[sol_num] [net_1] .layer = sollsol_num] [net_2] .layer;
sol [sol _num] [net_1] .track = sol[sol_num] [net_2] .track;

sol[sol_num] [net_2].layer = temp_1;
sol([sol_num] [net_2] .track = temp_t;
}
compact (sol_num) ;
sol[sol_num] [0] .layer = via_count(sol_num);
gain = solcost [prt_num] - cost(sol_num);
if (gain > (random(0-p) + p +1)){
check = 20;
solcost [sol_num] = solcost [prt_num] - gain;
}
check++;
} while(check < 20);
return O0;
} /*** end mutate ***/

/***/

update (int cl1, int c2) {

if(cl < ¢c2) p--;
else p = poO;
return 0;
} /*** end update ***/

/**************************,***************************************/

sort_them ()

int 1i,73,p, /*loop counters */
temp, /*temp storage */
done; /*loop check */
if(! elite) {
i = random(3); //occasionally selects a random 5 as parents
if(i==0) {
for(i=0;i<num _prt;i++) saved[i] = 0;

for (i=0;i<num prt;i++) {
temp = random{(num prt * (num_cld + 1)) + 1;
saved[i] = temp;
}
}

p = num_prt-1;

do
done = 0;
for(i=0;i<p;i++) {

107

108

if (saved[i] > saved[i+1])

temp = savedl[i];
saved[i] = saved[i+l1]; /*bubbles smallest to the top */
saved[i+1l] = temp; /*and largest to the bottom */
done = 1;
}
}
p=p-1;
} while (done);
return 0;

/*end sorter*/
/**/

	A Genetic-Based Approach to Multi-layer Channel Routing In VLSI Design.
	Recommended Citation

	tmp.1608220803.pdf.VWBAG

