View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Nebraska, Omaha

UNIVERSITY J OF
e University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work

4-1-1985

The effects of various error messages and error types on program
debugging time.

David L. Dawson

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Dawson, David L., "The effects of various error messages and error types on program debugging time."
(1985). Student Work. 3584.
https://digitalcommons.unomaha.edu/studentwork/3584

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

https://core.ac.uk/display/368327386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3584?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

THE EFFECTS OF VARIOUS ERROR MESSAGES AND ERROR TYPES

ON PROGRAM DEBUCCING TIME

A Thesis
Presented to the
Department of Psychology
and the
Faculty of the Graduate College

University of Nebraska at Omaha

In Partial Fulfillment
of the Requirements for the Degree
Master of Arts

University of Nebraska at Omaha

by
David L. Dawson

April, 1985

UMI Number: EP74782

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

“ Dissartation F’aab?ish&ng ‘

UMI EP74782
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

Accepted for the faculty of the Graduate College, University of
Nebraska at Omaha, in partial fulfillment of the requirements

for the degree Master of Arts,

C\{_L,\ @cﬂv\ Ps/t,é
Graduate Committee Name Department
e & el U
. Q %/ J/Mi/ 7K S

éﬁg@’ 3%’4&4 Soyeh

e L5 Lre

N

Acknowledgements

First, and most importantly, I wish to express my gratitude
to my wife, Leigh Anne, for her unending understanding, support,
and hard work., Without her uncomplaining financial and emotional
support I certainly could not have finished this project.

I must express a deep admiration and appreciation to Dr.
Evan Brown. Many times and in many situations during my studies
at the University of Nebraska at Omaha Dr. Brown has supported
and assisted me, I am grateful for the personal interest that
resulted in my beginning graduate study, for the time taken to
argue my case so that I could get an assistantship, and for so
many small kindnesses that made me feel like part of the
psychology department.

My parents certainly must share a part of this as well, for
feeding me when I struggled to finish my graduate studies; but
beyond this for teaching me to never say "can't" and to believe
in myself,

I must also express appreciation to Dr, Deffenbacher who
gave me many insights while I prepared this paper and was able

to organize someone as disorganized as I.

iii

TABLE OF CONTENTS

ABSTRACT . . ¢ ¢ o o o o
INTRODUCTION ., . . .+« + .« .
METHOD . * * - * * L] - L] L]
Subjects and Desig .
Materials

The selection quiz

The listings . . .

The reference card.
Procedure
RESULTS . L] L] . L] L] . L] -
DISCUSSION . . . +« ¢« « .« .
REFERENCES . ., . « « « « .

APPENDIX A - BASIC SUMMARY

CARD - .

APPENDIX B - SELECTION QUIZ.« « +« « « .

APPENDIX C - BASIC LISTING
APPENDIX D - BASIC LISTING
APPENDIX E - BASIC LISTING
APPENDIX F - BASIC LISTING
APPENDIX G - BASIC LISTING
APPENDIX H - BASIC LISTING
APPENDIX I - BASIC LISTING
APPENDIX J - BASIC LISTING
APPENDIX K - BASIC LISTING
APPENDIX L - BASIC LISTING
APPENDIX M - BASIC LISTING
APPENDIX N - BASIC LISTING

APPENDIX O - BASIC LISTING

SYNTAX ERROR/TYPE .

SYNTAX ERROR/TYPE+LN,

SYNTAX ERROR/PLACE.

SYNTAX ERROR/TEXT .

SYNTAX ERROR/D+TRACE.

MISUSE ERROR/TYPE .

MISUSE ERROR/TYPE+LN,

MISUSE ERROR/PLACE,

MISUSE ERROR/TEXT .

.

MISUSE ERROR/D+TRACE.

FLOW ERROR/TYPE .

FLOW ERROR/TYPE+LN,

FLOW ERROR/PLACE.

iv

vii

.12
.12
.13
.13
.14
.17
.17
.19
.27
.31
.37
.39
.42
.45
.48
.51
.54
.57
.60
.63
.66
.69
.12
.75

.78

APPENDIX P - BASIC LISTING FLOW ERROR/TEXT . , . . .81

APPENDIX Q - BASIC LISTING FLOW ERROR/D+TRACE, . , .84

Table

II.

ITI.

Iv.

VI.

Figure

l.

LIST OF TABLES

Analysis of variance and Covariance on

RaW Data' . * ” L . L

Table of Cell Means for

Raw Data. . . . « . . .

Analysis of Variance and Covariance on Log
Transformed Data Including Only Syntax and

Flow Error Data . . .

Table of Cell Means for
Including Only Syntax

Analysis of Variance on
Syntax and Flow Error
No Line Number. . . .

Table of Cell Means for
Syntax and Flow Error
No Line Number. . . .

3 . . . 3 . . 3 . . . 3

Log Transformed Data
and Flow Error Data . .

Log Transformed Data
Data Line Number Versus

Log Transformed Data
Data Line Number Versus

LIST OF FIGURES

Structures of the Shneiderman Model and the

General Cognitive Model

. o

The Thought Process in Program Generation . . ,

vi

Page

.20

.21

.23

.24

.25

.26

Page

. 3

Abstract

Using the Shneiderman model, programs were bugged with three
classes of errors and then flagged with five classes of error
messages both to test the the Shneiderman theory and to attempt
to develop more useful messades for programmers,

Forty subjects, all of whom passed a general selection quiz
on the programming language BASIC, participated in the study.
Each subject saw three versions of a BASIC statistics program
listing, the versions represented the three different types of
errors and all shared a common sort of error message.

The error types strongly affected the time subjects required
to find the bug in the printed listing and correct it, As
predicted by the theory, the syntax error was found most
gquickly. However, the speed at which the flow error and misuse
error were detected was reversed from the order predicted by the
theory. Using the scores on the BASIC gquiz as a covariate, the
error messages were found to affect the time to debug a listing
with knowing which line caused the error reducing the time most
but having a greater effect on the syntax error over the flow

error.,

vii

Though computer user errors have been studied in both
controlled experiments and in less obtrusive designs, the
error message, which has the potential to improve the system
directly, has received little attention. Using as a frame of
reference the Shneiderman model (Shneiderman, 1980), certain
error messages were selected from suggestions made in the
literature and these, along with the errors that created the
messages, become the focus of this investigation.

As in other areas in human factors research, many of
the published papers regarding computer-human interaction
tend to be problem specific. For example, there are papers
such as one by Geiselman and Samet (1982) regarding -a
specific sort of army intelligence message., Another paper
discusses patients' attitudes regarding a system that
obtains medical histories (Lucas, 1977). Historically,
certain specific issues have dominated the human-computer
interaction literature. For example, the controversy over
the superiority of batch versus on line systems (e.dg.
Pollack, 1976) or the dispute about the best and safest
video display (e.g. Baron, & Levenson, 1977; Helper, 1976;
Huchingson, Williams, Reid, & Dudek, 1981). There are also
studies limited to system specific problems (e.g. Bevan,
1981; Hansen, 1976; Jacob, Egeth & Bevan, 1976; Janelle &

Polis, 1980; Rouse, 1977).

In addition to the limitations resulting from extreme
specificity, quite a few studies lack empirical support.
Many present a system that the author has just constructed
and mainly serve as a place to show off this new piece of
software (for examples see Boies, 1974; Helander, 1981;
Singer, Ledgard, & Hueras, 1981; Treu, 1982; Zloof, 1982),.

To pull together these diverse studies a number of
theoretical frameworks have been suggested -- many converted
from popular psychological theories. Peace and Easterby
(1973) suggest using notions about constructs developed in
psycholinguistics to aid in our understanding of
human/computer dialogs. Using another converted theory,
Oberquelle, Kupka, and Maass (1983) suggest a human
communication model to help understand human communication
with computers,

The prevailing theory is the Shneiderman model (also
known as the Shneiderman/Meyer model), an obvious variant on
a common view of cognitive psychological theorists
concerning human functioning. The model is shown in Figure 1
along with my view on how this might be contrasted with the
common cognitive model, The most important two concepts in
this view are semantic knowledge and syntactic knowledge
(Shneiderman, 1980). Semantic knowledge is defined by

Shneiderman as low level concepts shared by most programming

Topow aAT3Tubod TeiIsuab aYyjl pue [9poW UBWISPTISUYS @Yj JO S21In3onijzs °T ainbig

(sarna (s3daduod
XejUis) Teiauab) (¢éTopou
(Tean (Aaowauw ?y3y o3
-paooiad DTjuRWSS jueasTaia
2I1T3Ud 91T3Ud jou-~ pa3
Jo 3aed Jo 31ed ~uoT3USW
A1uo) ATuo) jou) F(WIS) uoT
AIowsw 1 ATousw I ATowsu waw! waw ||-3dedoiad
ot3ejuks ! orjueuwss m O1IposTdD mcﬂ_Euwu uo 13
(WL1) Aaowsuw wisly buol quoz“uuosm Landurt,
(stttas) [(s3oe3) [(A703s10)
Alowal | Aaouwast | Azowsuw KIS
Teanpsdsoid | orjuewss ! DIpOSTde Aaowauw KAIouauw
(WITy AJousw widy buoTt wis3 3aoys}| Aiosuss

soIn3onils Aiouwauw

ToPOK
uzwWIdpPTLOUYS

Ki1oayj
butssedoad
uoTjewiojur
TeuoOT3uUaAUOD

languages., An example would be an understanding of what an

assignment statement does. Syntactic knowledge is then the

precise way that a specific language expects each statement
to be phrased.

This view is not really that divergent from a common
cognitive view (e.g. Bourne, Dominowski, & Loftus, 1979;
Seamon, 1980), with Shneiderman's semantic knowledge being
only a small part of what is normally labeled as semantic
knowledge. But syntactic knowledge, I feel, translates to
part of what is commonly called procedural knowledge by
cognitive theorists as this is only the skill of producing
the correct set of symbols (see Figure 1).

Many of the findings concerning errors in systems seem
to confirm the existance of these two different structures
in program generation. Several descriptive studies, that
simply recorded and described errors that occurred on
existing systems, found that some errors are corrected
quickly while some others take quite a bit longer. Lang,
Lang, and Auld (1981), looking at errors in a batch
environment, found that 70% of the errors made in programs
were found right away while 6% of the errors required more
runs. In a study of errors made by users of an SPSS
statistics package (Davis 1983), the researchers found two

types of errors which they called "quick" errors and "slow"

errors, Gade, Fields, Alison, Maisano, & Marshall (1981)
found that 7% of the errors made by army data entry
personnel seemed to be what they called "cognitive" errors
that normal error corrector software could not help with.
Gould and Drongowski (1974) bugged a series of programs and
showed that errors that required the programmer to
understand the deeper structure of the program took
significantly longer to find than those that were simple
errors of syntax. Authors of error correctors (Fischer &
Mauney, 1980; Tai, 1978) have often noticed a different sort
of error that cannot be repaired by simply comparing correct
syntax to a line containing an error. Several other studies
also suggest that there are typing or simple errors and
something else (semantic errors) (Ehrenreich, 1981; Ripley &
Druseikis, 1978).

It would seem that the Shneiderman theory would predict
these various results with the "quick" errors being errors
of syntax and the "slow" errors ones of semantics, In the
Shneiderman book, cited earlier, the author further links
his theory to these findings by hypothesizing that debugging
a program involves rethinking the author's program
generation process in reverse -- understanding the syntax
first, then the program flow. This would necessitate more

time be taken to find errors earlier in the thought process,.

Arblaster (1982) faults the Shneiderman model fo; being
too simplistic and not showing the greater amount of
integration that he feels is present in any cognitive
system, In answer to this charge, I believe that
Shneiderman's model represents only the structures that he
feels are present in the system, not the process involved.
Later in his book Shneiderman discusses this point, giving
the mental process of program generation which is shown in
Figure 2, This process uses the structures shown in Figure
1., I have added what I feel is the material expression of
each of these stages and the structures in long term memory
that are most involved at each stage. This diagram also
indicates the error types discussed in the Shneiderman book,
and where I believe they occur in this thought process,

These three kinds of errors are, listed from the
beginning of the thought process to the finished product:
(1) errors that occur in the transformation from problem
solution to semantics -- hereafter called Flow errors, (2)
errors in transforming the semantics to syntax (Misuse
errors) and (3) errors in typing the statements into the
computer (Syntax errors). The last error type would commonly
be called a typing error, the second an error in
understanding the function of a statement, and the first an

error in the strategy used to solve the problem, requiring

uoTjersusab weiboad utr sssooad jybnoyl syL °z 8Inbtd

(s3juswajeys

putpueas (10119
(10118 - Jopunsiu) 3da0uo0d)
butdil) Saull weib sdoIjuRWAS 013
101319 -0ad 03 Abs UOT3INTOS W8T
Xejuds -3el13s woiJ -qoid wo1j 10119
(xejuls) (osnsTur) (mOT3) Terjusjod
v J d
weiboiad waTqoad /
ayy jo A 3ATOS 03 N watqoad jo
butdiy Abojeigs Jjuawale]s
o) of ©e obeas
sjuawaitnbax uo1ssai1dxa
weibpoad TetTiajeu
we 1boad us331iIM
papoo 3I1eyoMOT]d J0 Teqisa
obpsTMouy (---j---> obpaTmouy POATOAUT
013e3UA S (=--j---> OIjurWas sainioniis

WLT

perhaps a complete program rewrite.

Error classification schemes exist for many other tasks
as well as that of computer programming (Rouse & Rouse,
1983; Huchingson, 1981; Reisner, 1977) and although the
present scheme follows the Shneiderman model generally,
there is really no data to justify the existence of more
than the simple syntax error and some other "deeper" sort of
error,

Findings in feedback studies were also consulted when
considering the error classification scheme to be used to
generate the specific errors to be studied here (Gleitman,
1981; Wexley & Yukl, 1977), as error messages are really a
form of feedback. Unfortunately, the recommendations made by
feedback theory are usually limited to suggestions that the
feedback be as specific and immediate as possible., This
seems to lack the explanatory power of the cognitive
theories, especially with the complex task of program
construction.

No systematic experimentation has been applied to error
messages for programmers, The Gould and Drongowski (1974)
article mentioned earlier has come the closest, In their
exploratory study of program debugging, they provided
varying conditions for programmers, including sample output

and the line number of the problem line., This line number

information did reduce the time to find the bug by half,
unlike the assistance of sample output. Mostly though, the
suggestions on error messages have been vague and limited to
suggesting that an error message should be "understandable,
non-threatening, and low-key" (e.g. Maguire, 1982).

Huchingson (1981) cites a Pew and Rollins study that
bases several error message construction suggestions on "the
author's background and limited interviews with the
Department of Agriculture system analysts." These authors
suggest that the location of the error, its nature, and a
suitable recovery procedure be given. Other authors
(Mcponald & McNally, 1982; Nickerson, Elkind, & Carbonell,
1968; Sondheimer & Relles, 1982) all make suggestions
relating to error messages or help functions, but in all of
these, as in much of the literature, no data were collected.
Prescriptions were made on the basis of some head scratching
by the people in the data processing department.

In the proposed study three sorts of errors will be
constructed based upon the Shneiderman model. These errors
will then be flagged with several different sorts of error
message and the time to find and correct each error will
then be measured. The expectation is that the error message
dealing with the stage of thought the error came from should

be most effective in assisting the programmer in finding it

10

and correcting it, BASIC will be used as it is the most
often encountered langquage by newcomers and it has been
shown to be easier to write in than FORTRAN (Jutila & Baram,
1971).

Many theorists seem to believe that only syntax errors
produce error messages (e.g. Gould & Drongowski, 1974),
Though the error messages produced by Flow or Misuse errors
are certainly somewhat misleading (see the listings in the
Appendices) it is possible to get indirect error messages
from these errors. Many error messages may appear when
running a syntactically correct program, Some examples are
overflow, division by zero, bad subscript, functional call,
and type mismatch errors. Most of these situations occur
when data values become too large or take the wrong form.
These are definitely not problems that a compiler would
detect (which has been suggested as a definitional test for
syntax errors) but the events still produce error messages.

In designing this study much thought was given to the
points brought forward by Moher and Schneider (1982) in
their paper dealing with experimental methodology of
computer human factors research, I believe I have avoided
the problems they discuss in subject selection. Mainly,
there have been questions concerning the possibility that

novice and experienced users are enough different to make

11

generalization very difficult, This appears as a major
concern when researchers use novice undergraduates to make
suggestions about programming techniques. By using a pretest
to screen for persons with a certain level of ability in
BASIC programming and by defining the subject population as
such I feel I have reduced this problem, I have avoided
problems in language selection by using BASIC, a very common
microcomputer language, instead of some experimental and
unknown language.

Several predictions about the effectiveness of certain
error messages can be made using the Shneiderman . model, and
this theoretical model guided the selection of the
particular error messades included, The first prediction is
that the message that shows where on a line the computer
stopped parsing should help most with the simple syntax
error. Generally, this should be the case because the
message putting its "electronic finger™ on the misspelled
keyword should immediately pinpoint simple typing errors.
Errors created by misunderstanding the statement used
(Misuse errors) should be less clarified by just pointing to
where the computer stopped because this kind of message does
not instruct how the statement should be used. Similarly,
errors in missing code and other general problem solving

strategy errors (Flow), should not be helped as much by just

12

knowing where the computer stopped on a particular line,

Secondly, reminders of command syntax in a problem line
should help most where a given statement is not understood
by the programmer (Misuse error) than when the error is
problem solving strategy or simple typing error.

Finally, messages that give a listing of the last few
lines run and that dump the value of variables when the
program stopped should be of little help if a simple typing
error was made (Syntax) or the function of a statement is
misunderstood (Misuse) but should give valuable information
about the overall program functioning and the effectiveness
of the problem solving strategy used (Flow errors).

Method

Subjects and Design.

The experimental design was a simple 3 X 5 factorial,
the first variable concerning three error types (syntax,
misuse, and flow) and the second variable five types of
error messages (see Appendcies C through Q). Error type was
within subjects, while message a type is a between subjects.

Since there are 5 between-subject conditions in this
study and inasmuch as a minimum of 8 subjects per cell were
desired, 40 subjects were selected from three computer user
groups in the Omaha Nebraska area (the TRS-80 Colof Computer

user group, the TI99/4a user group, and the VIC-20 user

13

group) and the undergraduate population at the University of
Nebraska at Omaha, including psychology students, and
computer science undergraduates. Some professors in the
Psychology Department and graduate students that were
capable in BASIC were also called upon. Even with these
divergent groups it was quite difficult to find a sufficient
number of programmer-level subjects. Course extra credit was
offered to all university subjects as inducement, and
computer programs written by the author were offered to all
computer group members. All of the subjects were randomly
assigned to conditions. All participants had to reach the
criterion score of 4 points on a BASIC languade pretest (see
Appendix B) before any data was collected on them. This was
an attempt to define the population at issue here as BASIC
programmers with an intermediate to advanced knowledge of
the language., These subjects were, of course, debriefed and
awarded any reward that was due them. Each also read and
signed an informed consent statement before participation,
Materials

The selection quiz. The selection quiz is included in

Appendix B, It is made up of both background questions and
guestions about BASIC languade syntax. A score of 4 out of a
possible 9 was the criterion for inclusion in this study.

All participants who contributed data attained this score.

14

The listings, Fifteen program listings were constructed

by bugging the same BASIC program with three different bug
types (Flow, Misuse, and Syntax) and then providing five
different sorts of error messages for each of these bugs
(see the appendices). The BASIC listing was run on a TRS-80
Color Computer, a Commodore 64, and a VIC-20 to be sure that
the code used was of a fairly universal BASIC dialect. Each
bugged version was then run on all three aforementioned
computers to make sure all three machines reported the same
sort of error occurring in the same line of the program. All
bugs introduced into the program were restricted to a change
in a single program line,

The first type of error was a simple syntax error
constructed by misspelling a randomly selected keyword
within the program. The keyword TO was misspelled TU in one
line of the program, This same listing was used throughout
the study. Data values within the program could also have
been mistyped, but as this could also be considered an error
in program solving strategy (Flow error) this was avoided.

The second kind of error (Misuse) is an error made in
changing semantics (program flow) into syntax, Here the
error is not in typing but in understanding the statement
used. The .general flow of the program is correct, as is the

typing of the user. I used the FORTRAN abbreviation of "LT"

15

for less than in place of the less than symbol (<) which
is legal in BASIC to simulate this error.

The last kind of error (called Flow in Figure 2) is an
error in overall problem solution., This error includes not
anticipating data values, missing code, or any other error
in the plan to solve the problem at hand. I constructed an
error of this type by neglecting to dimension a variable and
feeding the program too much data for the array.

Each of these errors were then flagged by five
different error messages., Each subject saw all three types
of errors but a single sort of error message., The first
error message type was constructed by merely listing just
the description of the error without a line number at the
bottom of the program listing., This description was the
error label the tested machines' BASIC interpreters
presented when the bugged program was run on them (see
Appendix C). The second type of error message involved the
addition of the number of the line that was causing the
error to the general error message given by the tested
machines (e.g. Appendix D).

A third variety of error message involved giving text
about the type of error involved and the BASIC statement the
error occurred in (see Appendix F). The text used here was

very closely based upon the TRS-80 Color Computer BASIC

16

manual, "Getting Started With Color BASIC" (Smith & Yankel,
1981). Attention was also paid to The Commodore 64
Programmer's Reference Guide~(Commodore Business Machines,
1982) and The Applesoft BASIC Programming Reference Manual
(Apple Computer, Inc., 1978). Any major topics addressed in
these other reference books not included in the TRS-80 text
on an error message or BASIC statement was then worked into
the appropriate error message.

A fourth type of error message included an indication
of where the computer stopped translating the code on the
line in error (e.g. Appendix E), These messages were
produced by taking the actual location the TRS-80's BASIC
stopped when the error message was generated by the BASIC
interpreter.

The last type of error message involved a dump of the
variables at the time the error message was denerated and a
listing of the last twenty lines run by the computer prior
to the detection of the error condition (see Appendix G). As
before, these diagnostics were actually produced by the test
computers by simply using the program TRACE function and
printing out the variables when the program "blew up".

In all of these messages, a deliberate effort was made
to reduce the artificiality of the messages presented to the

subject and to use diagnostics generated by a computer. This

17

would help answer the question of whether error messages
similar to those used here actually could be incorporated
into an operating system.

The Reference Card, A BASIC reference card was also

given to each subject. It is reproduced in Appendix A. This
was based on the reference cards of several micro computers
-~ removing the graphics commands which are more specific to
an individual machine. No other reference materials were
allowed during the subject's task,

Procedure

Each subject was first given a copy of the BASIC
language guiz to complete. Ten minutes were allowed for this
which proved to be ample time to consider the test as one of
power rather than one of speed. The test was then scored
privately. If the criterion score was not reached, the
subject was then dismissed at this point after debriefing
and awarding them any compensation due.

Because it was necessary for the experimenter to
indicate whether the program was debugged correctly during
the session, the experimenter sat behind a wooden screen
across from the subject throughout. This divider was
intended to reduce the subject's anxiety as much as
possible.

Directions were then read to the subject and three

18

listings were presented one at a time along with the BASIC
language summary card.

The order of presentation of the type of error was
randomized for each subject to prevent practice from being
confounded with the experimental effects.

The subject was then instructed to look at each listing
and find the one error in it with the aid of the error
message that followed the printed program listing. When the
subject felt that he or she had found the error they were to
then write the corrected line next to the one in error and
present the listing to the experimenter, The directions
emphasized that their performance was timed. The stop watch
was stopped each time the listing was resubmitted and
started again if the correct solution had not been reached.
The subject was allowed 20 minutes to find and correct each
error. Once a listing was debugged, or time had run out, it
was collected before the next was presented,

Each subject was given one of three sorts of feedback
when he/she presented a listing with a proposed correction.
One type of feedback was that the error had been
satisfactorily corrected; his/her time was then recorded. A
second sort was that the error message would have been
eliminated, but that the correction given did not make the

program work right. A final kind of feedback was that the

19

error message would remain. In all but the first case the
subject was urged to keep trying.
Results

When this experiment was designed it was intended that
an analysis of covariance be used to analyze the time to
debug data. This analysis appears in Table I and the cell
means in Table II. The covariate is the pretest given to
each subject that is designed to measure BASIC programming
ability. As there is only one covariate score for each
subject, the within-subject factor cannot be corrected by
the analysis of covariance (Winer, 1971).

The pretest does seem to be a good covariate as it is
correlated r(df=38)=-.606 (p<.0005) with the total time to
debug all three listings, and does seem to actually test
programmer skill as the first two demographic questions
("How long has it been since you programmed?" and "How long
is your longest program?") were combined and correlated r(df
= 36)=.531 with the rest of the test (p<.0005),

Unfortunately, the distributions here appear to depart
from normality. Hence two Chi-square statistics were
computed to compare with the analysis of covariance. For the
error type variable (the within subjects factor) a Friedman
analysis of variance with ranked data for related samples

was computed. The effect was at least as large as the

20

€TG9°6G6GYT
8€78°69907%

9GE EETEVT

GZZ°6¥%060T

0TE"GELEBGE

GL8°GT89GT

£€9€°TTESIT
SW

GYT1°820G6% ye(Lpe)ddo/m *qns
G62°6L9291 4 (Cpe)ssay *13
06°7££9200T 0L M=-10113
08°€6€0¥8 8 uoT30BISUT
Z9°0L¥L96L Zz sadk] 119
19°66688%6G St dyo/Mm ‘ans
Pv°G8Z10L v sobesson 113
SS ip A2¥N0S

aTge] Aieuuns

e3jed mEY UO OSOUBTIJIPAO) pue SoUBTIRA JO SISA[eRUY
I a1qeL

21

G 19% €L VTL E¥° L8 obeisae pasdel1o0

) LS9°6EY 0°8€9 88°9%9 €1 %€ a0e1]} 3 dunp+

$+ od&3 10119

GL 86¢E SLE TGV GL TSS9 €1°€¢9 3X93+

§+ odA3 301318

SLE'90€E GLB BET GT'9%9 0°¥v¢ paddojs soeTd+

#+ odhk3 101189

LT6° 9TV GZ°¥G¢ GZ1°198 8E°GE # SUTT +

— odAk3 10119

GLE VS 0°68S €97L9L G087 ATuo

9dA3 10119

9brviaae MOTI 98NS W Xejuls sobessaw 101319
pasdeIT00 sodhky 10119 .

'

eled Meyd I10J sueol TI°D

IT =19ey

22

analysis of covariance indicated: (2,N = 40)=45,096
p<.001. A multiple comparison technique (Daniel, 1978) was
applied and all of the group means were found to be
significantly different from each other at the p<.05 level,

Then, using a Kruskal-Wallis one way analysis of
variance by ranks a nonsignificant Chi-square was likewise
obtained for the between-subjects factor of error messages:
(4,N = 40)= 5.214 p>.05. The Spearman correlations on the
same data mentioned above were also very close to the
Pearson values.

Because these non-normal distributions also exhibited
somewhat heterogeneous variances a lograrithmic
transformation was performed on the data. Also, the data in
the misuse error type condition was truncated at the high
end with a number of subjects not finishing the task in the
required 20 minutes. To correct for this, an analysis of
covariance was performed on the transformed data with the
misuse condition data eliminated (see Table III & IV). The
results also confirm the original analysis of covariance
with the error type variable showing strong effects but with
the error messadge variable making weak statisical
significance and no interaction.

Taking these transformed data the four error message

conditions with a line number were pooled (see Table V & VI)

23

*x09L°G

06L°CT
0v9°8

T0° >dsx ‘60" >ds

ve(Lpe)gus/m *qns
i (Cpe)sson *ad

- ——— —— ———— - —— ——————————— T ———— T — — —— —— ————— — ——————— — ———— ————— T — — ——— —— ———

vl
*x96T1°L9

*xCVL €
d

0EL"89
6C0°T
L¥8° €

SH

66L°GE
6TL"9
0€EL"89
666°G€E
G6€°GT
SS

a1qe] Azewuwns

St M- 0113
¥ uoT3doeI93UI
1 sadlk1 114
GE dds/mM “qgng
¥ sobessay 113
3p d24N0s

eje(d 10115 MOT4 pue XB3UAS

ATUoO

buipnioul e3ed poWiojsuel] HOT UO SOUBTIBAO) pUE soUBliBA JO SISA[euy

ITII °19eL

24

76 g 89°¢ abeisae pasdelToo

LL Y 60°9 9y °¢ 9013 8 dwnp+

#+ 9dA3 10110

8G9 ¥ 09°¢ 96 °¢ 3X93+

#4+ 2dA3 10118

80°¥ 68"V 9z°¢ paddojs ooerd+

. $#+ odA3 10110

_ L'y ZE"S £z ¢ # o2uTT +

adA3 10119

veE"S 6L°S 06" ¥ ATuo

o2dA3 10118

obelsAe MOT3J ' Xealulks sobessall 10118
pasdeT100 sod&3 J011®

eijed uOuum MOTd

pue xejuks ATuQ buipnioul ejed @@EuOumcmua boT 103 suesy (190 JO °olqeL

Al 8TqelL

25

966"
xL9°¥ 99 ¥
*¥6G°8C 6% ° 82

L0°T
»»TT 0T 18°0T
d SK

98°LE
99° ¥
6% °82C
65707
18°0T1
SS

algel Aieuwuwns

10° >dxx ‘60" >dx

8¢
1
T
8¢
T
3P

M-10119
uoT3ovISUI
sadAy 119
dys/M ‘gns
sobessoN 114
€424d0n0s

I9qUNN_SUTT ON SNSJoA JOQUON 9UT1

eled MOTd pue Xe3julkS eleQ pPawIoJIsuel] bO'T UO @oURTIeA JO SISA[euy

A °Tqey

26

£9°G PT' ¥ sbeisae pasdelTod

Iy Zv°s LE'E § 2utT +

o2d&3 10119

) VE'S 6L°S 06"V ATuo

A o9dAy 10119

abelaAer MOTJ XeqUis sabessaw 10119
pasde1100 sadAl 10113

J9GWNN_SUTT ON_SNSisA IoqUAON SUIA

‘ejeq 10117 MOTJ Pue Xe3lUAS ‘ejeQd pawiojsuel] boT I03J suUea| [I°D 30 °ldel

IA ®TqeL

27

to produce a line number versus no line number analysis
which revealed a stronger interaction effect F(1l, 38) =
4,673, p<.05, which stemmed from a decrease in debug time
with the help of a line number for the syntax errors (simple
main effect F (1,38) = 13.87, p<.0l), but a lesser effect on
debug time for flow errors when line numbers were provided
(simple main effect F (1,38) = 6.11, p<.05).
Discussion

Based upon all of the analyses presented, the largest
effect is attributable to the different error types. Both
the parametric and nonparametric statistics seem to strongly
indicate this. Looking at Table II, the error type means
will be found to be 87.425 sec., 461.5 sec. and 714,725 sec.
for the syntax error, the flow error and the misuse error in
that order, According to the Shneiderman model, the syntax
error should require the least time as it does, but the
ordering of the other two error types is reversed according
to the theory. Though, as was pointed out earlier, only the
syntax error and "something else" have been identified in
the literature. I believe the most likely explanation for
this reversal is that the example of the misuse error that I
chose interacted with the interpreter that was the basis for
the error messages and produced a very misleading error

message. The computer reported that the error was one of

28

allowing a subscript to go out of range while the code that
was actually in error sat quietly, apparently working,
Through discussions with professional programmers I have
found that this "computer getting lost" phenomena is not all
that rare, This is certainly at least another variable that
must be worked into the theory and does seem to suggest
error messages may play an important role -- though not
always a helpful one., Of course, finding that there are
other sorts of errors besides just syntax errors and
"everything else" is important by itself.

The other variable, error messages, seem to have a weak
effect that is obscured if the ability of the programmer is
not controlled for. With the non-normality and truncation of
some of the data here, this result, based solely on
parametric statistics, should be interpreted with caution.

Most of the difference in error message groups lies
between the no line number group and all of the other error
messages., An outgrowth of this, thedinteraction in the
second transformed analysis (Table V) is interesting from a
theoretical standpoint with just knowing the line number
helping with the debug of the syntax error while having a
lesser effect upon the flow error. This is with the four
different messages containing line number information lumped

into one group. The line number alone was enough information

29

to find a simple typing error but was less useful when
repairing an error in the problem solving strategy of the
program. The flow error condition still had some truncation;
however, so this result should be considered only
suggestive,

Two main difficulties appeared in doing the analysis of
the data collected here, but I believe they both say
something about this task and perhaps about computer
programming in general, First, the distributions all had a
bit of a bimodal shape to them, suggesting an "ah-ha"
realization for some people and a "stumped" effect for the
rest with very few between the extremes, Perhaps, then,
either a programmer sees the problem right away or may go
quite a time before doing so. Is this the immediate solution
some programmers have reported whenever someone new looks at
a listing that the first programmer cannot find the error
in? Is this true of programming in general? Does this
suggest that programmer interaction in a data processing
department is very important?

The second difficulty was the effect of programmer
ability. There are several indirect indications that
programmer ability is an important variable in this task.
First, without the analysis of covariance adjusting using

the pretest (a test designed to measure programming

30

ability), the error message effect is much weakened. The
strong correlation between the time to find the bug and the
pretest score seem to speak for programming ability having
quite an effect upon time to find a bug. This was found
despite a strong attempt to test only groups with an
appreciable BASIC programming background. This seems to
suggest that the ability of the programmer is a very
important factor indeed and should be considered carefully
in future research. A topic for future research might
concern to what extent programming ability can make up for

debugging aids like error messages,

31

References

Apple Computer Inc. (1978)., Basic programming reference

manual. Cupertino, CA: Apple Computer.
Arblaster, A, (1982). Human factors in the design and use of

computing languages. International Journal of Man-

Machine studies, 17, 211-224,

Baron, S., & Levison, W. H, (1977). Display Analysis with
the optimal control model of the human operator.

Human‘Factors, 19, 437-457,

Bevan, N. (1981). Is there an optimum speed for presenting

text on a VDU? International Journal of Man-Machine

Boies, S. J¢ (1974). An interactive computer system. IBM

System Journal, 2-15.

Bourne, Jr., L. E., Dominowski, R. L., & Loftus, E, F,

(1979). Cognitive Processes., Englewood Cliffs,

NJ: Prentice-Hall.

Commodore Business Machines, Inc, (1983). Programmer's

reference guide., Wayne, PA: Commodore Business

Machines,

Daniel, W. W, (1978). Applied Nonparametric statistics.

Boston: Houghton Mifflin,
Davis, R. (1983). User error or computer error? Observations

on a statistics package., International Journal of Man-

Machine Studies, 19, 359-376,

32

Ehrenreich, S. L. (1981). Query languages: Design
recommendations derived from human factors literature,.

Human Factors, 23, 709-725,

Fischer, C. N., and Mauney, J. (1980). On the role of error
productions in syntactic error correction. Computer
Languages, 5, 131-139,

Gade, P, A,, Fields, A. F,, Maisano, R, E., & Marshall,

C. F. (1981). Data enﬁry performance as a function
of method and instructional strategy. Human
Factors, 23, 199-210.

Geiselman, R, E., & Samet, M, G, (1982). Personalized

versus fixed formats for computer-displayed

intelligence messages. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-12, 490-495,

Gleitman, H. (1981). Psychology. New York, NY: W,

W. Norton.
Gould, J. D., and Drongowski, P, (1974), An exploratory

study of computer program debugging, Human Factors,

16, 258-277,

Hansen, J, V. (1976). Man-machine communication: An
exXperimental analysis of heuristic problem-solving
under on-line and batch-processing conditions. IEEE

Transactions on Systems, Man, and Cybernetics,

SMC-6, 746-752,

Helander, G. A. (1981). Usability for business

professionals. IBM System Journal, 20, 20-40.

Helpler, S. P. (1976). Continuous versus intermittent

display of information. Human Factors, 18, 183-188.

Huchingson, R, D. (1981)., New horizons for human

factors in design. New York, NY: McGraw-Hill.

Huchingson, R, D.,, Williams, R, D., Reid, T. G., & Dudek
C. L. (1981). Formatting, message load, sequencing
method, and presentation rate for computer-generated

displays. Human Factors, 23, 551-559.

Jacob, J. K., Egeth, H. E., & Bevan, W. (1976). The

face as a data display. Human Factors, 18,

189-200.
Janelle, A., & Polis, M. P. (1980). Interactive hybrid
computer design of a signaling system for a metro

network, IEEE Transactions on Systems, Man, and

Cybernetics, SMC-10, 555-570.

Jutila, S. T., & Baram, G. (1971). A user-oriented
evaluation of a time-shared computer system. IEEE

Transactions on Systems, Man, and Cybernetics,

SMC-1, 344-349,

33

Lang, T., Lang, K., & Auld, R. (1981)., A longitudinal study

of computer-user behaviour in a batch environment,

International Journal of Man-Machine Studies,

4, 251-268,

34

Lucas, R. W. (1977). A study of patients' attitudes toward

computer interrogation. International Journal of

Man-Machine Studies, 9, 69-86.

Mayuire, M, (1982). An evaluation of published
recommendations on the design of man-computer

dialogues. International Journal of Man-Machine

studies, 16, 237-261.
McDonald, N., & McNally, J. P. (1982). Query language

feature analysis by usability. Computer Languages,

7, 103-124,
Moher, T., & Schneider, G. M. (1982). Methodology and
experimental research in software engineering,

International Journal of Man-Machine Studies,

16, 65-87.
Nickerson, R. S., Elkind, J. I., and Carbonell, J. R.
(1968)., Human factors and the design of time sharing

computer systems. Human Factors, 10, 127-134,.

Oberquelle, H., Kupka, I., & Maass, S. (1983). A view
of human-machine communication and co-operation.

International Journal of Man-Machine Studies,

19, 309-333.
Peace, D. M. 8., & Easterby, R. S. (1973). The evaluation

of user interaction with computer-based management

information systems. Human Factors, 15, 163-177.

35

Pollack, M. (1976). Interactive models in operations
reserach -- an introduction and some future research

directions. Computers and Operations Research,

3, 305=312.
Reisner, P, (1977). Use of psychological experimentation as
an aid to development of a query language. IEEE

Transactions on Software Engineering, SE-3,

218-229,
Ripley, G. D., & Druseikis, F. C. (1978). A statistical

analysis of syntax errors. Computer Languages,

3, 227-240,
Rouse, W. B. (1977). Human-computer interaction in multitask

situations. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-7, 384-392,

Rouse, W, B,, & Rouse, S. H. (1983). Analysis and

classification of human error. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-13, 539-549,

Seamon, J. G. (1980). Memory and cognition: An

introduction, New York, NY: Oxford,

Shneiderman, B. (1980). Software Psychology. Cambridge,

MA: Winthrop.
Singer, A., Ledgard, H., & Hueras, J. F. (1981). The
annotated assistant: A step towards human engineering.

IEEE Transactions on Software Engineering, SE-7,

353-374.

36

Smith, D. G., & Yankel, L, (1981) Getting started with

color BASIC. Fort Worth, TX: Tandy.

Sondheimer, N. K., & Relles, N. (1982). Human factors
and user assistance in interactive computing systems:

An introduction. IEEE Transactions on Systems, Man,

and Cybernetics, SMC-12, 102-107.

Tai, K. (1978). Syntactic error correction in programming

languages. IEEE Transactions on Ssoftware Engineering,

SE-4, 414-425,
Treu, S. (1982), Uniformity in user-computer interaction

languages: A compromise solution. International

Journal of Man-Machine Studies, 16, 183-210.

Wexley, K. N. & Yukl, G. A. (1977). Organizational

behavior and personnel psychology. Homewood, IL:

Richard D, Irwin,

Winer, B. J. (1971). Statistical principles in experimental

design. New York: McGraw-Hill.
Zloof, M. M, (1982). A business language that unifies data

and electronic mail. IBM Systems Journal, ,21,

272-304.

Appendix A

BASIC language summary

37

WORD

ABS

ASC

ATN

CHRS

cos

DATA

DEF FN

DIM

END

EXP

FOR...TO
STEP/NEXT

GOSUB

GOTO

IF,...THEN

INT

LEFTS

LEN

LET

LOG

MIDS

ON...GOSUB

ON...GOTO

PEEK

POKE

PRINT

PRINT TAB

READ

REM
RESTORE
RETURN
RIGHTS
SGN

SIN
STOP
SQR
STRS
TAN

VAL

BASIC language summary

PURPOSE
computes absolute value
returns ASCII code
returns arctangent in radians
returns character of ASCII
returns the cosine of angle
stores data--use READ to assign
defines numeric function
dimensions arrays
ends program
returns exponential of number
creates a loop

sends computer to a subroutine
sends computer to a line number
performs a test
converts number to integer
returns left portion of string
returns the length of a string
assigns value to a variable
returns natural logarithm
returns substring of a string
multi-way branch to subroutine
multi-way branch to line nos.
returns memory loc. contents
puts a value into a mem. 1loc.
displays a number or -message
moves printing to column pos.
assigns next item in DATA
statement to a variable
allows insertion of comment
sets pointer to first DATA item
returns computer from subrout.
returns right part of string
returns the sign of a number
returns sin of angle
stops program execution
returns square root of a number
converts numeric to a string
returns tangent of angle
converts a string to a number

38

EXAMPLE
Y=ABS(5)
A=ASC(TS)
Y=ATN(2)
P$=CHRS (T)
Y=CO0S(7)

DATA 12,14
DEFFN(X)=X*3
DIM R(65),W(40)
END

Y=EXP(7)

FOR L=1 TO 10:
PRINTX :NEXT L
GOSUB 800

GOTO 300

IF A=5 THEN 300
X=INT(5.2)
P$S=LEFTS$(MS,7)
X=LEN(SES)

LET AS="JOBA"
Y=LOG(353)
F$=MIDS(AS,3,2)
ON Y GOSUB 5,10
ON Y GOTO 19,20
A=PEEK(32076)
POKE 15872,255
PRINT "HI"
PRINT TAB(5)X
READ AS,BS

REM IGNORED
RESTORE
RETURN
2$=RIGHTS(AS$,5)
X=SGN(A*B)
Y=8IN(5)
STOP
¥Y=SQOR(5+3)
S$=STRS (X)
Y=TAN(45.,7)
A=VAL(BS)

Appendix B

BASIC language pretest

39

Circle your one answer to the below questions

1) How long is the longest BASIC program you have written:
-1 a)I have not written any programs
b)less than 10 lines
c)between 11 and 20 lines
d)between 21 and 50 lines
+1 e)more than 50 lines
2) How long has it been since you wrote in BASIC:
+1 a)less than a week

b)less than a month but more than a week

c)a month
-1 d)a couple of months or more
3) What would appear on the screen when this BASIC program

is RUN:

(+1 for

answer C)

a)l,

b)

10 READ C,A,B
20 IF A<>2 THEN A=3
30 B=C*A
40 PRINT B
50 END
60 DATA 1,2,3
6, c)2, 4)3,)0

4) What would happen when this program is RUN?

10 GosuB 30
20 RETURN
30 X=X+1

40 PRINT X
50 RETURN
60 END

a)the computer would print an error message
b)the computer would print a "1"
c)nothing would happen
+1 d)the computer would print a "1" then an error message
5) What would appear on the screen when the following line
is RUN:

a)HI
b)0

10 REM PRINT "HI"
+1 d)nothing
e)PRINT HI

c)an error message
6) What does the STOP statement do?
a)clear
b)stops
+1 c)stops

d)tur
e)it
7) Which
if A
a)IF
+1 b)IF
c)IF
d)IF

ns
is
of

i5

variables

text from going to the printer
program execution

off a TRACE command

illegal--an error would occur
the following lines would print
larger than 57

A<5 THEN PRINT "TOO BIG"

A>5 THEN PRINT "TOO BIG"

A<>5 THEN PRINT "TOO BIG"

A THEN PRINT "TOO BIG"

e)FOR A=1 TO 5:PRINT "TOO BIG":NEXT A

"TOO BIG"

only

8)What does this statement do?
10 DIM S(5)

+]1 a)dimensions the array S to five elements

b)sets S=5

c)divides S by 5

d)adds 5 to S

e)produces an error as it is not a BASIC statement
9)What COULD the following statement PRINT on the screen

when RUN?
100 PRINT XS$;X
+1 a)HELLO 5 d)nothing
b)5HELLO e)HELLO

C)HELLO HELLO

41

Appendix C
BASIC program listing
Syntax error

Type only message

42

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM **kkkhkkhkhhkhkkhhhhhhhhkhhhkhkkkhhkk*

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt, a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ..."
REM SORT ROUTINE.

FOR X=1 TU N
PRINT "...";
FOR Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W

NEXT Y

NEXT X .

REM CALCULATE MODE.
co=1

W=0

FOR X=1 TO N
CO=X+1

43

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1:C0O=CO+1:GOTO 370

IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION,

T=0

PRINT" ***",

FOR ¥X=1 TO N
T=T+{(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510 PRINT

520 PRINT"

SUMMARY STATISTICS"

530 PRINT"CENTRAL TENDENCY"

540 PRINT"
550 PRINT"

560 PRINT
570 PRINT

580 PRINT"
590 PRINT"STANDARD DEVIATION";SD

600 PRINT

MEAN" ;M
MODE" ; MO

"VARIABILITY"
RANGE" ; RA

?2SYNTAX ERROR

44

Appendix D
BASIC program listing
Syntax error

Type and line number message

45

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
3160
320
330
340
350
360
370
380
390
400
410
420
430
440
450
450
470
480
490
500

REM khkkdhkkhkdkhkkhhkhhhkhkhkhhhhdhkhdkhhkhhhkr ik

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES":N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #";X;

INPUT D{(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ..."
REM SORT ROUTINE.

FOR X=1 TU N

PRINT "...":

FOR ¥=1 TO N

46

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X) :D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

co=1

W=0

FOR X=1 TO N

CO=X+1

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370
IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.

T=0

PRINT " *%%" .

FOR X=1 TO N
T=T+(D(X)-M) "2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"

540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT

2SYNTAX ERROR IN 260

47

Type,

Appendix E
BASIC program listing
Syntax error

line number, and place message

48

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM khkhhkhkkhkhkkhkhkkkkhkhkkhkkhkhkhhkkkhkhkkkk

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES":N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":;X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ..."
REM SORT ROUTINE.

FOR X=1 TU N

PRINT "...":

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W

NEXT Y

NEXT X

REM CALCULATE MODE,.
Cco=1

W=0

FOR X=1 TO N
CO=X+1

49

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370

IF IW>W THEN W=IW:MO=D(X)
IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.
T=

PR?NT"***";

FOR X=1 TO N
T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510 PRINT

520 PRINT"SUMMARY STATI
530 PRINT"CENTRAL TENDE
540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"
580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVI
600 PRINT

2SYNTAX ERROR IN 260

STICS"
NCY"

ATION";SD

LINE WAS: 260 FOR X=1 TU N

X
X MARKS WHERE COMPUTER

STOPPED ON LINE

50

Type,

Appendix F

BASIC program listing

syntax error

line number,

and text message

51

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM **kkkkkhkkkkhhddhdhhddhkdhhhhhhkhhrdd

REM Purpose of this program:
REM Tn compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user,
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":;X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N .
PRINT "COMPUTING ... PLEASE WAIT ..."
REM SORT ROUTINE.,

FOR X=1 TU N

PRINT "...";

52

FOR Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W

NEXT Y

NEXT X

REM CALCULATE MODE.

co=1

W=0

FOR X=1 TO N

CO=X+1 .
IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GO0TO 370
IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.

T=0

PRINT"***",

FOR X=1 TO N
T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"

540 PRINT"MEAN" ;M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT

?2SYNTAX ERROR IN 260

SYNTAX ERROR. This could result from a
misspelled command, incorrect punctuation,
open parentheses, or an illegal character,.

FOR STATEMENT, Creates a loop in your
program which the computer must repeat
from the first to the last number

you specify,

examples of this statement:

FOR X=2 TO 5

FOR A=1 to 10 STEP 5

53

Type,

Appendix G

BASIC program listing

syntax error

line number,

dump and trace message

54

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

REM *k*kkkkdhhhhkhkhkkhhhhhhhkhhhhkhdhkdhdhkd

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt., a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user,
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES":N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X:

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ..."
REM SORT ROUTINE.

FOR X=1 TU N

PRINT "...":

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W

NEXT ¥

NEXT X

REM CALCULATE MODE.
Co=1

W=0

FOR X=1 TO N
CO=X+1

55

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370

IF IW>W THEN W=IW:MO=D(X)
IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.
T=0

PRINT"***",

FOR X=1 TO N
PT=T4+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510
520
530
540
550
560
570
580
590
600

PRINT

PRINT"

SUMMARY STATISTICS"

PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ;M

PRINT"

PRINT
PRINT

PRINT"
PRINT"

PRINT

MODE" ; MO

"VARIABILITY"
RANGE" ;RA
STANDARD DEVIATION";SD

?SYNTAX ERROR IN 260

LAST 20 LINES RUN:
-170- -180- -190- -170- -180- -190- -170-

-210-

VARIABLES WHEN PROGRAM STOPPED WERE:

N=3

o

22X Hm g
I e
MHEOWN W

Nt N et N

wnuwnuwun
COCWNH-

~-180- -190- -200-

-220- -210- -220- -210- -220- -230- -240- -250- -260-

56

Appendix H
BASIC program listing
Misuse error

Type only message

57

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
370
380
390
400
410
420
430
440
450
460
470
480
490

58

REM khkkkkkkkhhkkkkkkhkhkhkhkhkhkkhhkhkhkkkkkkkk*k

REM Purpose of this program:
REM To compule Mean (the average of a

REM
REM
REM
REM
REM
REM

set of numbers), Mode (the most
often occuring score), Standard
deviation (average amt. a set of
numbers varies), and the RANGE
of the set of numbers input by
the user.

REM**kdkkhdkdkhohkhhkkhkhkhkdhrhrhddhhdkhkhdhhd

PRINT
PRINT

"DESCRIPTIVE STATISTICS"
"BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.
INPUT "NUMBER OF CASES";N
DIM D(N), F(N)

FOR X=1 TO N

PRINT

"ENTER CASE #";:X;

INPUT D(X)
NEXT X

FOR X=1 TO N
T=T+D(X)
NEXT X

M=T/N
PRINT

"COMPUTING ... PLEASE WAIT ...";

REM SORT ROUTINE.

FOR

X=1] TO N

PRINT "...";

FOR Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

Co=1
W=0

FOR X=1 TO N
CO=X+1
IF CO LT N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:C0O=CO+1l:GOTO

IF IW>W THEN W=IW:MO=D(X)

IwW=0

NEXT X
REM CALCULATE STANDARD DEVIATION.

T=0

PRINT"***",

FOR X=1 TO N
T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

500
510
520
530
540
550
560
570
580
590
6500

59

REM DISPLAY STATISTICS.
PRINT

PRINT"SUMMARY STATISTICS"
PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ; M
PRINT"MODE" ; MO

PRINT

PRINT "VARIABILITY"
PRINT"RANGE" ; RA
PRINT"STANDARD DEVIATION";SD
PRINT

?BAD SUBSCRIPT ERROR

Appendix I
BASIC program listing
Misuse error

Type and line number message

60

10

20

30

40

50

60

70

30

90

100
110
120
130
1490
150
160
170
180
190
200
2190
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
370
380
390
400
410
420
430
140
450
460
470
480
490

61

REM I ZEXEEE SRS AR A SRR E R EEE R SRR R E R R RS,

REM Purpose of this program:
REM To compute Mean (the average of a

REM
REM
REM
REM
REM
REM

set of numbers), Mode (the most
often occuring score), Standard
deviation (average amt. a set of
numbers varies), and the RANGE
of the set of numbers input by
the user.

REM**********************************

PRINT
PRINT

"DESCRIPTIVE STATISTICS"
"BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT

"NUMBER OF CASES";N

DIM D(N), F(N)
FOR X=1 TO N

PRINT

"ENTER CASE #";X;

INPUT D(X)
NEXT X

FOR X=1 TO N
T=T+D(X)
NEXT X

M=T/N
PRINT

"COMPUTING ... PLEASE WAIT ...";

REM SORT ROUTINE.

FOR X=1 TO N

PRINT "...";

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

Co=1
W=0

FOR X=1 TO N
CO=X+1
IF CO LT N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO

IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X
REM CALCULATE STANDARD DEVIATION,

T=0

PRINT" **x*",

FOR

X=1 TO N

T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

500
510
520
530
540
550
560
570
580
590
600

REM DISPLAY STATISTICS.
PRINT

PRINT"SUMMARY STATISTICS"
PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ;M
PRINT"MODE" ; MO

PRINT

PRINT "VARIABILITY"
PRINT"RANGE" ; RA
PRINT"STANDARD DEVIATION";SD
PRINT

?BAD SUBSCRIPT ERROR IN 370

62

Type,

Appendix J
BASIC program listing
Misuse error

line number and place message

63

10

20

30

40

50

60

70

8U

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
370
380
390
400
410
420
430
440
450
460
470
480
490

REM hkhhkhkhkhkhhhhhkhkhkhkhkhkhkhkhkhkkhkhkhhkhkdkhkhdthkhkhk

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user,
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #";X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N :

PRINT "COMPUTING ... PLEASE WAIT ...":
REM SORT ROUTINE.

FOR X=1 TO N

PRINT "...":

FOR Y¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE,

Co=1

W=0

FOR X=1 TO N

CO=X+1

IF CO LT N+1l THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1l:GOTO

IF IW>W THEN W=IW:MO=D(X)

IwW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.
FOR X=1 TO N

T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.

RA=D(N)-D(1)

64

500 REM DISPLAY STATISTICS.
510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"
540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE" ;RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT

?BAD SUBSCRIPT ERROR IN 370

LINE WAS: 370 IF CO LT N+1 THEN IF D(X)=D(CO) THEN IX=IX+1l:
X

CO=CO0+1:GOTO 370

X MARKS WHERE COMPUTER STOPPED ON LINE

Type,

Appendix KX
BASIC program listing
Misuse error

line number and text message

66

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
370
380
390
400
410
420
430
440
450
460
470
480
490

REM khkkhkhkhhkkhkhhkkhkhkhhkhkhkhhhkhkhkhhkkhhkhhkkx

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES":N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...":
REM SORT ROUTINE,.

FOR X=1 TO N

PRINT "...";

FOR Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

co=1

W=0

FOR X=1 TO N

CO=X+1

IF CO LT N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:G0OTO

IF IW>W THEN W=IW:MO=D(X)
IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION,
gRgNT"***";

FOR X=1 TO N
T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

67

500 REM DISPLAY STATISTICS.
510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"
540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT

2BAD SUBSCRIPT ERROR IN 370

BAD SUBSCRIPT ERROR. The program was trying
to reference an element of an array whose
number is outside of the range specified in the DIM statement.

IF STATEMENT. Tests the relationship. If it

is true, the comptuer executes the instruction
following THEN, If it is not true the computer
executes the next line of the program.
examples of this statement:

IF A=5 THEN 300

IF B=0 THEN PRINT 0

IF A=3 THEN PRINT 4

68

Type,

Appendix L

BASIC program listing

Misuse error

line number,

dump and trace message

69

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
370
380
390
400
410
420
430
440
450
460
470
4380
490

70

REM khkhkkhkhkhkhkhkhkhhhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkkhkkk

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM D(N), F(N)

FOR X=1 TO N

PRINT "ENTER CASE #";X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...";
REM SORT ROUTINE.

FOR X=1 TO N

PRINT ",...":

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

Co=1

W=0

FOR X=1 TO N

CO=X+1

IF CO LT N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO

IF IW>W THEN W=IW:MO=D(X)
IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.
gRgNT"***":

FOR X=1 TO N
T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.
RA=D(N)-D(1)

500 REM DISPLAY STATISTICS.
510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"
540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT |

?BAD SUBSCRIPT ERROR IN 370

LAST 20 LINES RUN

-300- -290- -300-~ -310- -320- -330- -340- -350- -360- =370~
-380- -390- -400- -360- -370- -380- -390- -400- -360- -370-

VARIABLES WHEN PROGRAM STOPPED WERE:

W
COOWN M

Appendix M
BASIC program listing
Flow error

Type only message

72

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

73

REM **kkkkkkkhkkhhhkhdhhhhhhhhdhhhhhkhhdhk

REM Purpose of this program:
REM To compute Mean (the averaye of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt, a set of
REM numpbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM F(N)

FOR X=1 TO N

PRINT "ENTER CASE #";X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...";
REM SORT ROUTINE,

FOR X=1 TO N

PRINT "...";

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

CO=1

W=0

FOR X=1 TO N

CO=X+1

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370
IF IW>W THEN W=IW:MO=D(X)

Iw=0

NEXT X

REM CALCULATE STANDARD DEVIATION.

T=0

PRINT"*#%*%" .,

FOR X=1 TO N

T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.

RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510
520
530
540
550
560
570
580
590
600

PRINT

PRINT"SUMMARY STATISTICS"
PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ; M

PRINT"MODE" ; MO

PRINT

PRINT "VARIABILITY"
PRINT"RANGE" ; RA
PRINT"STANDARD DEVIATION";SD
PRINT

?BAD SUBSCRIPT ERROR

74

Appendix N
BASIC program listing
Flow error

Type and line number message

75

76

10 REM khkkkhkhkhkhhkhkkhhdhhkhhkhhhhhkhhhhhkkhhkkx

20 REM Purpose of this program:

30 REM To compute Mean (the average of a
40 REM set of numbers), Mode (the most
50 REM often occuring score), Standard
60 REM deviation (average amt. a set of
70 REM numbers varies), and the RANGE
80 REM of the set of numbers input by
90 REM the user. .
100 REM**********************************
110 PRINT "DESCRIPTIVE STATISTICS"

120 PRINT "BY DAVID LIONELL DAWSON"

130 REM KEYBOARD DATA ENTRY.

140 INPUT "NUMBER OF CASES":N

150 DIM F(N)

160 FOR X=1 TO N

170 PRINT "ENTER CASE #";X;

180 INPUT D(X)

190 NEXT X

200 FOR X=1 TO N

210 T=T+D(X)

220 NEXT X

230 M=T/N

240 PRINT "COMPUTING ... PLEASE WAIT ...";
250 REM SORT ROUTINE.

260 FOR X=1 TO N

270 PRINT "...":

280 FOR ¥=1 TO N

290 IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
300 NEXT Y

310 NEXT X

320 REM CALCULATE MODE.

330 co=1

340 wW=0

350 FOR X=1 TO N

360 CO=X+1

370 IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1:CO=CO+1:GOTO 370
380 IF IW>W THEN W=IW:MO=D(X)

390 IwW=0

400 NEXT X

410 REM CALCULATE STANDARD DEVIATION,

420 T=0

430 PRINT"**%".

440 FOR X=1 TO N

450 T=T+(D(X)-M)"2

460 NEXT X

470 SD=SQR(T/N)

480 REM CALCULATE RANGE.

490 RA=D(N)-D(1l)

500 REM DISPLAY STATISTICS.

510
520
530
540
550
560
570
580
590
600

PRINT

PRINT"SUMMARY STATISTICS"
PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ;M

PRINT"MODE" ; MO

PRINT

PRINT "VARIABILITY"
PRINT"RANGE" ;RA
PRINT"STANDARD DEVIATION";SD
PRINT

?BAD SUBSCRIPT ERROR IN 180

77

Type,

Appendix O

BASIC program listing

Flow error

line number,

and place message

78

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

79

REM hhkkhkkkhkhkkhkhkkhkhhkhkhkkkhkkhkkhkhkhkhkkhkkx

REM Purpose of this program:
REM To compute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt, a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY,

INPUT "NUMBER OF CASES":N

DIM F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X;

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...";
REM SORT ROQUTINE.

FOR X=1 TO N

PRINT "...";

FOR Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

CO=1

W=0

FOR X=1 TO N

CO=X+1

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370
IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION,

T=0

PRINT"#**%",

FOR X=1 TO N

T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE,

RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510 PRINT

520 PRINT"SUMMARY STATISTICS"

230 PRINT"
540 PRINT"
550 PRINT"

560 PRINT
570 PRINT

580 PRINT"
590 PRINT"

600 PRINT

CENTRAL TENDENCY"
MEAN" ;M
MODE" ; MO

"VARIABILITY"
RANGE" ; RA
STANDARD DEVIATION";SD

?BAD SUBSCRIPT ERROR IN 180

LINE WAS:

X MARKS WHERE COMPUTER STOPPED ON LINE

180 INPUT D(X)
X

80

Type,

Appendix P
BASIC program listing
Flow error

line number and text message

81

10

20

3n

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
430
490
500

82

REM Khkkhkhkkhkhkhkkdbhhkkhkhkhkhkhkhkhkhkhkhkhkdhkhhkhhkhktx

REM Purpose of this program:
REM To caompute Mean (the average of a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt. a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user,
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";N

DIM F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X;:

INPUT D(X)

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...":;
REM SORT ROUTINE.

FOR X=1 TO N

PRINT "...";

FOR Y=1 TO N

IF b(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y

NEXT X

REM CALCULATE MODE.

Co=1

W=0

FOR X=1 TO N

CO=X+1

IF CO < N+41 THEN IF D(X)=D(CO) THEN IW=IW+1:CO=C0O+1:GOTO 370
IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION.

T=0

PRINT" ***" .

FOR X=1 TO N

T=T+(D(X)-M)"2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.

RA=D(N)-D(1)

REM DISPLAY STATISTICS.

83

510 PRINT

520 PRINT"SUMMARY STATISTICS"
530 PRINT"CENTRAL TENDENCY"

540 PRINT"MEAN";M

550 PRINT"MODE" ;MO

560 PRINT

570 PRINT "VARIABILITY"

580 PRINT"RANGE";RA

590 PRINT"STANDARD DEVIATION";SD
600 PRINT

?BAD SUBSCRIPT ERROR IN 180

BAD SUBSCRIPT ERROR. The program was trying
to reference an element of an array whose
number is outside the range specified

in the DIM statement

INPUT STATEMENT. Caused the computer to

stop and await input from the device you specify. If you do not
specify a device, the computer will await input from the
keyboard

examples of this statement:

INPUT XS

INPUT X

Type,

Appendix Q

BASIC program listing

Flow error

line number,

dump and trace message

84

l60
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

85

REM khkhkhkkkhkhkhkkhkhkhkhhkhhhhkkhkhkhhhhkkhkhhkhhhkk

REM Purpose of this program:
REM To compute Mean (the average af a
REM set of numbers), Mode (the most
REM often occuring score), Standard
REM deviation (average amt, a set of
REM numbers varies), and the RANGE
REM of the set of numbers input by
REM the user.
REM**********************************
PRINT "DESCRIPTIVE STATISTICS"

PRINT "BY DAVID LIONELL DAWSON"

REM KEYBOARD DATA ENTRY.

INPUT "NUMBER OF CASES";:N

DIM F(N)

FOR X=1 TO N

PRINT "ENTER CASE #":X:

INPUT D(X) '

NEXT X

FOR X=1 TO N

T=T+D(X)

NEXT X

M=T/N

PRINT "COMPUTING ... PLEASE WAIT ...";
REM SORT ROUTINE.

FOR X=1 TO N

PRINT "...":

FOR ¥Y=1 TO N

IF D(X) < D(Y) THEN W=D(Y):D(Y)=D(X):D(X)=W
NEXT Y :
NEXT X

REM CALCULATE MODE.

CO=1

W=0

FOR X=1 TO N

CO=X+1

IF CO < N+1 THEN IF D(X)=D(CO) THEN IW=IW+1l:CO=CO+1:GOTO 370
IF IW>W THEN W=IW:MO=D(X)

IW=0

NEXT X

REM CALCULATE STANDARD DEVIATION,.

T=0

PRINT"***".

FOR X=1 TO N

T=T+(D(X)-M) "2

NEXT X

SD=SQR(T/N)

REM CALCULATE RANGE.

RA=D(N)-D(1)

REM DISPLAY STATISTICS.

510
520
530
540
550
560
570
580
590
600

PRINT

PRINT"SUMMARY STATISTICS"
PRINT"CENTRAL TENDENCY"
PRINT"MEAN" ;M
PRINT"MODE" ;MO

PRINT
PRINT

"VARIABILITY"

PRINT"RANGE" ; RA
PRINT"STANDARD DEVIATION";SD

PRINT

?BAD SUBSCRIPT ERROR IN 180

LAST 20 LINES RUN:
-170- -180- -190- -170- -180- -190- -170-

-180- -190- -170- -180- -190- -170- -180- -190- -170- -180-

VARIABLES WHEN PROGRAM

N=11

STOPPED WERE:

-180- -190- -170-

86

D(1)=1
D(2)=2
D(3)=3
D(4)
D(5
D(6
D(7
D(8
D(9
D(1
F(1
F(2
F(3
F(4
F(5
F(6
F(7
F(8
F(9
F(1l
F(11
X=11

~

’_J

O v o e e e e e e e (D) N N e e s

~c~= W~

Il CcCoOoooOCCOoOOoOOoOibpOoOWERWL

oo

	The effects of various error messages and error types on program debugging time.
	Recommended Citation

	tmp.1608220803.pdf.ga21W

