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An Evolutionary Approach to Vehicle Routing Problem with Dynamic

Time and Precedence Relationships

Darin C. Plum, MS

University of Nebraska, 2003
Advisor: Dr. Hesham Ali
The vehicle routing problem (VRP) deals with the allocation of vehicles to the customers
that have requested products from a main depot. When the postal service, the bus system,
or trucking industry plan for their everyday tasks of delivery goods or providing basic
transportation needs to people, they are attempting to solve the VRP. However, this can
be a daunting task because the YRP is computationally intensive. In this paper, we will
address two areas of the VRP that have been relatively unexplored by previous research,
yet play an important part in real-world applications of the VRP as well as define and
create an evolutionary approach based on these ideas. The first area that we will address
deals with the lack of real-world data sets when calculating the times between customers.
This new implementation will allow the algorithm to calculate the actual time between
customers at a given time of day, thus providing a final solution that is closer to a true
optimal set of routes. The second addition to the VRP model will be contributed in the
area of precedence relationships. These relationships often exist in real-world
applications and are necessary in order to help the algorithm establish routes that are
desired by the customers. The evolutionary approach provides global optimization

insight to thc problem.
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1.0 Introduction

Understanding the Vehicle Routing Problem (VRP) is essential when one attempts to
understand how our society works. The basic VRP, which has several variations that will
be discussed later in this section, can simply be defined as a fleet of vehicles with limited
capacity that service customers in different locations with the objective of minimizing
travel distance as well as the number of vehicles used. There may also be other
constraints applied to this problem such as specific time windows for each location in
which the vehicle must arrive, the weight of the goods the vehicle can transport, or the
ability of the goods to be divided among multiple vehicles. Since the VRP problem is
computationally intensive [7], it is often necessary to use a heuristic to find a near

optimal solution in a relatively short amount of time.

This section will introduce the VRP and explain the motivation for the selection of the
topic. Previous research will also be overviewed including both non-polynomial optimal-
solution approaches and heuristic approaches. After these details have been presented,

the proposed project goals will be stated.

1.1 Basic Problem

When the postal service, the bus system, or trucking industry plan for their every day
tasks of delivery goods or providing basic transport_ation needs to people, they are

attempting to solve a version of the VRP. The best optimal-solution approaches run in



non-polynomial time and can only handle limited numbers of customers and then only for
certain data sets. Even with a relatively small number of customers, these algorithms
often have to be tailored to handle real-world data sets [2]. Alternatively, heuristic
approaches can solve large real-world data sets in a reasonable amount of time with

potentially optimal to near optimal solutions.

The VRP can be defined as the allocation of vehicles to customers that have requested
goods or services. These vehicles are initially located at a depot, and after they complete
their assigned routes they return to the central depot. The objective of the problem is to
service all of the customers using the minimum number of vehicles and minimizing the
total distance traveled by the vehicles. There are several common constraints placed on
the problem:

e Vehicles must complete their routes within a given time frame or work day

e There are a limited number of vehicles that can be used to service the customers

e Each customer is visited once by a single vehicle

e Vehicles may be limited to a certain capacity

Other variations of the basic VRP include the Multiple Vehicle Routing Problem
(MVRP), the Vehicle Routing Problem with Time Windows (VRPTW), the Multiple
Vehicle Routing Problem with Time Windows (MVRPTW), and the Multiple Vehicle
Routing Problém with Split Pickups. The MVRP differs from the standard VRP in that

the same vehicle can be used on more than one route. This allows the vehicle to service



several customers on a route, then return to the depot, refill its payload, and service

several new customers on a new route. Time windows are added to the basic problem for

the vehicles to arrive at the customer within a predefined time window. If the vehicle
arrives early, the vehicle must wait until it is within the time window before the customer
will accept the goods. If the vehicle arrives after the time window, it is marked as tardy
and is penalized. Another variation of the VRP allows for split pickups (VRPSP). This
allows each customer to potentially be serviced by multiple vehicles. This type of
variation is often found in industries where the size of goods being picked up or delivered

is often large enough that one truck can not hold the capacity requested by a customer.

<y
e

Figure 1-1: Diagram Illustrating How the Variations of the VRP Relate to Each
Other



It is important to note that although the VRP is usually defined in terms of automobiles
‘servicing customers, the ideas presented in this paper may be applied to a wide range of
fields. The VRP could potentially be applied to packets sent over a network, the
administrativ¢ procésses within a company, or the complex allocation of data and

products within an e-business framework.

1.2 Motivation of Work

This work was motivated by a real-world example of the VRP found in the armored
transport industry. Armored transport companies drop off and pick up funds from banks
on a daily basis. Routihg the armored transports between the banks can be a complicated
problem because the number of banks may change on a daily basis as well as the banks
themselves. The armored transport companies must determine the most efficient routes
using the minimum number of armored transports. In the case that inspired this work, the
armored car company is using several people to determine the best route for the armored
transports. This is quite expensive for the companies and could be replaced by a
computer-based approach using a heuristic such as a genetic algorithm (GA) to find a
near optimal solution. The computer-based approach could save the company money
both in the human resources of the planners and the drivers, as well as the cost of using
extra vehicles do to improperly, non-optimal routes that often arise when manual routing

is done.



Although the problem 1s challenging, the benefits of solving the VRP can be great. A
study in Oyster Bay New York showed the computerized schedule for the sanitation
vehicles saved three vehicles out of 40 and $750,000 per year [8]. The Montreal Urban
Community Transit system also saved 3% of the drivers’ salaries over the previous

manual system or about 2 million dollars per year [8].

1.3 Summary of Previous Work

There has been a great deal of research in the past decade to improve the scalability of
optimal-so]ution approaches to solving the VRP and its variations. In 1993, Fisher did
one of the most successful exact approaches for the basic form of the VRP. He used the
k-tree method to solve the problem for 71 customers [10]. There are also several
noteworthy exact methods for the VRPTW. In 1991, Desrochers, Desrosiers, and
Solomon were able to optimally solve problems containing 100 customers. They used a
method of set partitioning in which the solution space is narrowed by a subprogram that
generates feasible columns (routes) and only these columns are considered for set
partitioning [7]. In 1997, Kohl et al. produced similar results with an approach that was
able to solve the VRPTW with 100 customers [6]. It is also worthy to note, however, that
the VRPTW has the potential of reducing the solution space by using small time windows
for the customers that do not overlap; thus allowing for larger customer sets to be solved.
Overall, the robustness and scalability of the optimal-solution approaches often falls short

of real-world applications and data sets.



With the limitation of the optimal-solution approaches, the use of heuristics is justified
when solving real-world vehicle routing problems. Several heuristic techniques have
been used to solve the VRP and its variations. These techniques include genetic
algorithms, ant colony algorithms, and tabu searches. Genetic algorithms were used in
1999 by Louis, Yin, and Yaun to solve the VRPTW. Their work emphasized the merge
crossover technique to enhance the performance of genetic algorithms on clustered
customer locations. This approach preformed optimally or within 0.23% of optimal in
their test benchmarks [1]. Ant colony research was also done in 1999 by Gambardella,
Taillard, and Agazzi to solve the VRPTW using a Multiple Ant Colony System (MACS).
The basic idea of Ant Colony Optimization is that a large number of simple, goal-
oriented agents can produce good solutions to hard combinatorial optimization problems
via low-level communications. MACS solves the VRPTW by using two ACO
populations: one to minimize the travel time and one to minimize the number of vehicles.
These two colonies then communicate via low-level communications using shared
memory similar in idea to the pheromone trails left by ants. This approach produced
results that were comparable to the genetic algorithm approach [6]. Another method that
is recognized as one of the best heuristics for solving the VRP [6] is the tabu search
approach. In 1995, Taillard, Laporte, and Gendreau expanded the work of Rochat and
Taillard. The Rochat and Taillard algorithm using tabu search works in a similar manner
to a genetic algorithm, allowing a population of VRP routes to be optimized over several

generations. A tabu search uses penalties to avoid cycles in the search path. When a



move is made that will take the path to a point in the solution space that has already been

visited, that move is penalized and possibly forbidden, therefore avoiding cycles [4].

1.4 Shortcomings

Our research has shown that there are numerous heuristic as well as non-polynomial,
optimal algorithms for solving the VRP. The shortcomings of the non-polynomial,
optimal algorithms are fairly straightforward:

e They can only handle a limited number of customers.

e They run in non-polynomial time.

e They are often tailored to a specific data set. When the data set changes, which
often occurs in a real-world situations, the algorithm can not handle the new data
set and must be modified.

Heuristic algorithms lack many of these shortcomings, but of course do not guarantee an
optimal solution. We noticed two significant areas of weakness during our research:

1. The ability of the algorithms to handle real-world data sets

2. The narrowness of the previous research.

While examining the past research done on the VRP, we discovered several relatively
unexplored areas. The first area that we found during our research was that algorithms
for the VRP were not applied to a data set that reflected real-world situations such as
variations in time between customers based on the time of day. For example, businesses

in metropolitan areas face the difficult task of routing vehicles between customers



throughout the city, but the time between customer A and customer B may be 20 minutes
at 11am and 45 minutes at 4pm. Algorithms that do not take this variation into account
could provide “optimal” solutions, but in the end be unfeasible unless they use the
maximum time between the two customers for calculations within the algorithm.
Although this approach may indeed provide a feasible solution, it will not take advantage
of the cost-savings gained by considering the lesser time of 20 minutes at 11am. At first
this may seem trivial, but in reality, during the 25 minutes saved by using the lesser time,
another customer mi ght have been served by that vehicle. Over the period of a day, this
could possibly save the use of several vehicles. This would amount to large cost savings

for the company and provide a more “optimal” solution.

The second area of weakness has to deal with the narrowness of the scope of the previous
research. Although many different types of algorithms were proposed and implemented
in the previous research, the model does not include things such as precedence
relationships and criticality of customers. Precedence relationships can occur in many
real-world situations. The armored car routing problem presented early in this paper can
be expanded to require precedence relationships. For example, it maybe required that
banks that have funds to be picked up by the armored cars be serviced prior to the banks
that require funds to be dropped off so that the armored cars contain the correct amount

of funds to be delivered.



1.5 Project Goals

In this project we will address two of the shortcomings that were identified in the
previous research. The first shortcoming that we will address deals with the lack of real-
world data sets when calculating the times between customers. 'T'his new implementation
will allow the genetic algorithm to calculate the actual time between customers at a given
time of day, thus providing a final solution that is closer to a true optimal set of routes.
The second addition to the VRP model will be contributed in the area of precedence
relationships. These relationships often exist in real-world data sets and are necessary in
order to help the genetic algorithm to establish routes that are feasible and desired. These

contributions to the model will be obtained in three main steps:

* 1. Define a new, innovative VRP model powerful enough and flexible enough to
incorporate new features that allow the VRP model to handle real-world data
2. Implement a genetic algorithm to solve the new VRP model
3. Provide a graphiéal user interface for interaction with the genetic algorithm and a
database to store the information entered by the user as well as the completed

routes

The following more detailed steps will be completed in order to achieve our main

objectives:



10

Research the VRP. Describe in detail what the VRP is, what research has been
done in the past, and what direction the vehicle routing problem may take in the
future.

Define a new, real-world based method for solving the VRP that allows for
different travel times based on the time of day. This contributes both to the VRP
model and to the database model for this problem. The solution generated by this
approach will be closer to the “optimal” solution than earlier approaches by
allowing the travel time to more accurately reflect the actual travel time of the trip
at different times of day.

Expand the VRP model to provide the ability to establish and enforce precedence
refationships when creating the routes.

Provide a solution to the newly defined VRP model using a genetic algorithm
approach.

Implement the genetic algorithm solution using Java. This implementafion will
place an emphasis on performance as well as its ability to produce near optimal
results.

Provide a user interface for interaction with the genetic algorithm. The user
interface shall also allow the user to input data concerning the travel time for
routes at specific times of day. The travel time data will then be stored in a
database for use by the genetic algorithm.

Compare and contrast the genetic algorithm’s results from the new model where

the travel time is dynamic based on the time of day to the previous models where
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the travel time is the maximum time between two customers. This comparison
will involve the number of vehicles used, the total time traveled by each vehicle,
and the number of customers served by each vehicle. This testing can be done by
reducing the problem from dynamic time to one set maximum route time by
simply providing one time for each route in the distance matrix. The overall
performance of the GA will also be measured on speed of resolution, the quality
of the results, and the optimality of the routes.

Present the results in an informative manner that will reflect the genetic algorithm

with dynamic travel time model used for solving the VRP used in this paper.
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2.0 Definition

When the postal service, the bus system, or trucking industry plan for their every day
tasks of delivery goods or providing basic transportation needs to people, they are
attcmpting to solvc thc VRDP. In this scction, we will definc the basic VRP, the basic
concepts of the evolutionary approach, and our additions to the VRP model. These
additions to the model include the use of dynamic travel time and precedence

relationships.

2.1 Vehicle Routing Problem Definition

The basic version of the VRP can be formally defined as follows: Let G = (V, E) be an
undirected graph where V = {vy, vy, ..., v, } is a set of vertices where vy represents the
main depot and V\{vy} represents the customers, and E = { (vi, vj) | vi, vje V,i<j} is an
edge set represénting the non-negative edges between the vertices. Identical vehicles, m,
are located at the depot, vo, each with a capacity of Q. Each customer, V\{vo}, has a non-
negative demand, q;, and non-negative service time, s;. A distance matrix, c;j, is defined
on E [4]. The objective of the VRP is to minimize the total distance for each vehicle
while visiting all of the customers. The following constraints are generally applied to the
VRP: the capacity of an individual vehicle can not exceed Q, at most m vehicles can be
used, routes (which may contain multiple customers) must start and end at the main

depot, the total time must not exceed a preset limit, and each customer is visited only

once.
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2.2 Evolutionary Algorithm Definition

The genetic algorithm approach essentially emulates the same process of real-world
natural evolution that was first explained be Charles Darwin. It establishes an initial
bopulation, then uses natural selection by means of a fitness function to determine the
quality of the individuals in the population. Individuals are then chosen from the
population usihg a selection function that takes into account the individuals fitness.
These individuals are then bred using a cross over function, then move on to the next
generation. The other important part of the genetic algorithm is a mutation function that
introduces new chromosomes into the population so that it does not become too
homogeneous, thus narrowing the solution space too quickly. Our approach will be

discussed in greater detail in section 4.3.1

2.3 Proposed Additions to the Model

To illustrate our first improvement to the VRP which adds realistic data sets by means of
using dynamic travel time between vertices, one might consider a common problem:
driving to work. At one time or another, anyone that works in a metropolitan area has
experienced the problem that you are driving the same way as everyone else going to
work, and when you are leaving work, you are once again traveling the same direction as
the majority of the people. For example, going into the city at 8am may take 45 minutes;

going into the city at Spm may only take 20 minutes. Conversely, going out of the city at
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8am may take 20 minutes; going out of the city at Spm may take 45 minutes.

Graphically, the problem may look something like this:

Travel Time

50
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i
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Time of Day

Figure 2-1: Travel Time to Work

This new approach to solving the VRP with travel time dynamically based on the time of
day will use this type of scenario to its advantage. It will be able to plan routes so that
the minimal travel time is taken into account. In essence, the main problem is that the
more congested a road, the longer it takes to travel on that road. This new model will

favor traveling on roads when the traffic is minimal.
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Furthermore, using travel time data based on the time of day has implications for the
entire model: the algorithm, the user interface, and the database will all be affected. The
algorithm might be faced with scheduling a segment that may fit into a route in the
morning hours but not in the afternoon, as the travel time may have increased, therefore
no longer allowing that segment to fit in. This solution will essentially change the
structure of the distance matrix E used in the standard VRP. This will create a
complicated scheduling problem which should be able to be handled by a genetic
algorithm. The user interfaqe and database are also affected by the addition of several

new features that allow the entry and management of data related to time.

The addition of precedence relationships to the VRP model will allow customer priority
to influence route creation. The precedence relationships will be enforced in a manner
that allows each customer to be serviced by any vehicle as long as the precedence
relationships hold. For example, if there is a precedence relationship between A and B
(A->B)and customer A is serviced by vehicle 1 at 10:30 am, then customer B can be
serviced by any vehicle after 10:30 am. This is applicable to many real-world companies

that use a priority basis when servicing their customers.
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3.0 Background and Previous Research

Several aspects of the Vehicle Routing Problem (VRP) have been researched in the past.
This section will provide information concerning the previous research and algorithms

used to solve the VRP as well as the research’s place in the overall map of the VRP.

3.1 Previous Research

3.1.1 Overview

The VRP has existed for some time, but in the past two decades more research has been
given to this non-trivial problem. Bertsiman and Simchi-Levi [2] address the new
developments in the VRP over the time span of the mid-nineteen-eighties to the mid-
nineteen-nineties. The main objective of their work was to outline and define the
developments during this time frame with an emphasis on the new insight gained and the

new algorithms that have been developed.

One of the main areas of research was the robustness of the VRP heuristics. The
algorithms often have to be tailored to the specific applications because these real-world
situations often have cases that the algorithms have trouble solving. This leads to
heuristic algorithms with ever-increasing complexities that are extremely sensitive to
changes in the data set. This has led to research on what causes the complexity within the

VRP, which in turn has led to more robust heuristics. The second area of study is the role
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uncertainty plays in the VRP. The uncertainty often occurs in real-world situations

concerning the customer’s demands, location, or time schedule.

Bodin [8] summarizes his twenty years of personal experiences in the routing and
scheduling field as well as the algorithmic, computational, graphical, and geographical
areas. His experience provides a diverse set of examples such as scheduling street
sweepers, barges, and hoist compactors for New York City, scheduling household refuse
collection vehicles, school buses, planes and crews, and meter readers for public utilities.
He also provides an excellent example of how computer based al gofithms can save
companies substantial amounts of money. In the solid-waste collection problems
communities must decide on the number and location of disposal facilities and determine
the best set of routes to use during collection. A study in Oyster Bay, New York showed
the computerized schedule for the sanitation vehicles saved three vehicles out of 40 and
$750,000 per year. A Montreal Urban Community Transit system also saved 3% of the
drivers’ salaries over the previous manual system or about 2 million -dollars per year.
Bodin also highlights the history and major advances of the VRP from 1970 to 1990.
Possibly the most dramatic improvement was the computation power of the machines that
the algorithms run on. The computers went from batch algorithms operating on large
computers with no graphical interfaces to visualize the routes to extremely fast
microcomputers with interactive graphical displays. Geographic Information Systems
(GIS) and widely available positional data have also advanced the VRP and helped move

it from theoretical applications to practical, real-world applications.
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3.1.2 Genetic Algorithm approach to VRP with Time Windows

The VRP with Time Windows (VRPTW) has been researched and solved using genetic
algorithms. The paper by Louis, Yin, and Yaun [1] expands on previous work that shows
the merged-crossover works better than the traditional crossover, except when presented
with non-random customer locations. They modified the merged crossover operation to
perform better against clustered customer locations in order to solve the non-random
customer location problem. The merged crossover operations are based on the idea that
there exists a “global precedence,” regardless of the chromosome, of some alleles to
occur before others in within the same chromosome. In the VRPTW problem this
translates to each customer being represented by an allele with an associated time
window; there is a natural precedence relationshivp among all customers based on their
time window. The results éf their modifications showed optimal solutions to three out of
the six benchmark problems and was very close to the optimal solution in the other three

cases.

3.1.3 Ant Colony approach to VRP with Time Windows

Gambardella, Taillard, and Agazzi [6] approached the VRPTW using a Multiple Ant
Colony System (MACS). The basic idea of Ant Colony Optimization (ACO) is that a
large number of simple, goal-oriented agents can produce good solutions to hard
combinatorial optimization problems via low-level communications. MACS solves the
VRPTW by using two ACO populations: one to minimize the travel time and one to

minimize the number of vehicles. These two colonies then communicate via low-level
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communications using shared memory similar in i1dea to the pheromone trails left by ants.

This approach produced results that where comparable to the genetic algorithm approach.

3.1.4 Set Covering Formulation for the VRPTW

In 1991, Desrochers, Desrosiers, and Solomon [7] published a paper reporting their effort
to design and implement a new algorithm capable of optimally solving larger VRPTW
data sets. The algorithm uses column generation for set partitioning formulation and is
capable of optimally solving problems up to six times larger than previous published
researéh. Because the solution space is too large to allow set partitioning to be applied
directly, a dynamic subprogram was used to generate feasible columns. Set partitioning

was then applied only considering these feasible solutions.

In 1993, Bramel and Simchi-Levi [9] studied the effectiveness of the model used by
Desrochers, Desrosiers, and Solomon [7] with the objective of analytically defining why
the set-covering approach using column generation was so effective. They found that the
gap between fractional and integer solutions to the set-covering problem tends to
converge as the number of customers in the VRP increases; thus allowing for larger data

sets to be solved.
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3.1.5 Dynamic Programming approach to VRP with Split Pick-Ups

The VRP with Split Pick-Ups is a variation of the traditional VRP that allows multiple
vehicles to pick up parts from a supplier. This situation is applicable in industries where
the payload constraints play a large factor in the shipments. It also can help maximize
the payload of a truck by allowing it to pick up partial shipments of different suppliers
that are on a similar route. In the paper by Chi-Guhn lee, Marina Epelman, Chelsea C.
White III, and Yavuz A. Bozer [3], they formulate a dynamic program with infinite states
and action space. This dynamic program is then reddced to a finite dynamic program for
any given initial condition. A best-fit shortest path search is then used to solve the

problem.

3.1.6 Minimum K-Trees optimal approach to the VRP

Fisher [10] uses minimal K-trees to solve moderately siged VRP. Given a graph with n +
1 edges, Fisher defines a K-tree to be a set of n + K edges that span the graph, where n is
the number of customers and K is the number of vehicles. He then models the VRP as a
minimal K-tree with degree 2K at the depot and each customer node having the degree of
2. This approach is then used to solve a variety of benchmark and real-world data sets.
These data sets are provided in the appendix and may provide a good benchmark for the

research of this paper.
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3.1.7 Tabu Search Heuristic

The paper by Taillard, Laporte, and Gendreau [4] expands the work of Rochat and
Taillard. The Rochat and Taillard algorithm using tabu search works in a similar to a
genetic algorithm, allowing a population of VRP routes to be optimized over several
generations. A tabu search uses penalties to avoid cycles in the search path. When a
move is made that will tal;e the path to a point in the solution space that has already been
visited, that move is penalized and possibly forbidden, therefore avoiding cycles. The
Rochat and Taillard algorithm first produces several viable VRP routes using tabu search.
These routes are then selected and combined with other routes to form the next
generation and the process is repeated. Some of the routes are then selected from the

final generation as candidates for the final VRP solution.

The Taillard, Laporte, and Gendreau algorithm consists of three parts. It first generates a
large set of viable routes using the Rochat and Taillard algorithm. The second step is to
select a subset of these routes based on the total distance and the frequency that they
appear in the population. These routes are then placed in a search tree and all viable
routes that can be formed by combining these selected routes are generated. The third
step is the application of a bin packing heuristic to sort the routes into feasible working

day solutions.
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4.0 Specification
4.1 Problem Statement

In this project we will address two of the shortcomings that were identified in the
previous research. The first shortcoming that we will address deals with the lack of rcal-
world data sets when calculating the times between customers. The new implementation
developed in this project will allow the genetic algorithm to calculate the actual time
between customers at a given time of day, thus providing a final solution that is closer to
a true optimal set of routes. The second addition to the VRP model will be contributed in
the area of precedence relationships. These relationships often exist in real-world data
sets and are necessary in order to help the genetic algorithm to establish routes that
desired by the customers. These contributions to the model will be obtained in three

main steps:

1. Define a new, innovative VRP model powerful enough and flexible enough to
incorporate new features that allow the VRP model to handle real-world data

2. Implement a genetic algorithm to solve the new VRP model

3. Provide a graphical user interface for interaction with the genetic algorithm and a
database to store the information entered by the user as well as the completed

routes
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4.2 Proposed Model

To illustrate the innovative improvements made to the VRP, it is first necessary to
describe a basic VRP model example. This example will then be re-illustrated using the

enhanced the precedence relationship model and the dynamic time VRP model.

4.2.1 Basic VRP Model

The basic VRP model consists of an undirected graph G = (V, E) where V is a set of
vertices { vo, Vi, ..., vo} and E is an edge set representing the non-negative edges between
the vertices. The depot is represented by vy, and V\{vo} represents the customers.
Identical vehicles m are initially located at the depot vo. A distance matrix, cjj, is defined
on E. The objective of the VRP is to minimize the total distance for each vehicle while

visiting all of the customers.

For this example, we will assume that the number of vehicles m equals two, and the set of

vertices, V, contains {depot, a, b, c }.



24

Depot 4 c

Figure 4-1: Undirected Graph of Set V

Figure 4-2: Distance Matrix ¢ Measured in Minutes

This would allow the first vehicle to travel a route of {depot, b, depot} and vehicle 2 to
travel a route of {depot, a, c, deport}. Vehicle 1 would finish in 20 minutes and vehicle 2
would finish in 37 minutes, thus minimizing the total time to visit each location with two

vehicles while not repeating any nodes.
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4.2.2 Precedence Relationship VRP Model

Precedence relationships can provide a useful means of ensuring that one customer is
served before another customer. The main expansions to the model will occur in the
fitness and crossover functions. We will go in to more detail on these expansions in

section 4.3 detailing our approach. Of course, the major constraint for precedence

relationships is that the precedence relationship graph must not contain any cycles.

A simple example of the precedence relationships effect on the model is shown by
expanding on the basic example. We will still assume that the number of vehicles m
equals two and set of vertices, V, contains {depot, a, b, c}. However, in this example
there is an overall precedence felatio'nship between vertex b and vertex a where vertex b

must precede vertex a.

Figure 4-3: Undirected Graph of Set V
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Figure 4-4: Distance Matrix ¢ Measured in Minutes

This would allow the first vehicle (m,) to travel a route of {depot, b, a, depot} and
vehicle 2 (my) to travel a route of {depot, ¢, deport}. Vehicle 1 would finish in 23

minutes and vehicle 2 would finish in 40 minutes

There are several methods of defining the precedence relationships between the
customers. One method might be to force the customers associated in the precedence
relationship to be serviced by the same vehicle. With this type of constraint, you could
ensure that customer B is always served before customer A. In real-world situations, one
of the main uses for precedence relationships may stem from the need to transfer goods
between two customers. For example, in the armored car example, customer B may
contain the payroll for customer A, therefore the same vehicle must service customer B
first to pick up the payroll, then service customer A to drop the payroll off. Another
method of enforcing the precedence relationship is to start vehicle 1 at 8:00am and send it
to customer B where in this example it would arrive at 8:10am. Vehicle 2 could then be

delayed and depart for customer A at 8:06am where it would arrive at 8:11am, thus
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enforcing the precedence relationship, but using two vehicles. A third method is to
enforce the precedence relationships in a manner that allows each customer to be serviced
by any vehicle as long as the precedence relationships hold. For example, if there is a
precedence relationship between A and B (A > B) and customer A is serviced by vehicle
1 at 10:30 am, then customer B can be serviced by any vehicle after 10:30 am. This is
applicable to many real-world companies that use a priority basis when servicing their

customers.

For our model, we believe that the third method is the preferred choice. This allows the
genetic algorithm (GA) to work in a broader solution space that does not have many of its
vehicle’s routes predefined by these precedence relationships. For example, if you were
to input the precedence relationships of A>B, B>C, C->D, D->E in the first situation,
one vehicle must have a route of (A, B, C, D, E). However, using the third approach
would allow the customers to be serviced any number of ways, as long as the precedence

relationships hold, thus expanding the GA’s solution space.

4.2.3 Dynamic Travel Time VRP Model

The dynamic travel time model will allow for a more optimal solution to the overall
vehicle routes by allowing the genetic algorithm to measure the time each route takes

using actual travel times for the applicable time-of-day the route will be completed.



28

The major difference between the basic VRP and the Dynamic Travel Time VRP is the
distance matrix cj; is expanded to contain the time. The new distance matrix, which can
be denoted c;;j where t represents the desired time the route will take place, is shown in

Figure 4-6.

Time |Depo [a |b |¢

Figure 4-5: Undirected Graph of
Set V
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a 8:20a 15 m 5
m Figure 4-6: Distance Matrix Cgjj in
b 8:20a | 35 Minutes
m
c 8:20a 7

Using the new distance matrix with the includes the desired time of travel, one

possible result of the VRP using 2 vehicles would look as follows:

The first vehicle could travel a route of {depot, c, depot} and vehicle 2 could travel a
route of {depot, a, b, deport}. Vehicle 1 would finish in 27 minutes and vehicle 2
would finish in 38 minutes, thus minimizing the total time to visit each location with

2 vehicles while not repeating any nodes.

One thing to note is that in these examples, the dynamic travel time approach did not
actually improve upon the result of the basic VRP model. But, as discussed in section
1.4, in order to create the distance matrix (c;j) for the basic VRP from the distance
matrix with time of travel (c;), one must take the maximum distance fromitoj
regardless of the time of travel t. If this was not the case, then the distances/times
used to calculate the basic VRP may be too short and it would create routes that are
infeasible. Using the maximum distance regardless of time ensures that the basic
VRP will be forced to use the travel time for the busiest time of day, thus creating a

conservative VRP solution. It is our contention that this solution is drastically over-
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constrictive, and that is why the dynamic vehicle travel time VRP model will create a

better and still feasible solution.

4.3 Proposed Approach

In this section, we will introduce the genetic algorithm approach we have selected to
solve the VRP with precedence relationships and dynamic travel time. The essential
parts of the genetic algorithm approach, such as the make up of the chromosome and

the fitness function, will also be defined.

4.3.1 Genetic Algorithm
A genetic algorithm was chosen to solve this problem because of the computationally
intense nature of this problem. The section defines the approach used for the genetic

algorithm.

4.3.1.1 VRP Basic Genetic Algorithm Structure

The algorithm for the VRP GA will follow the basic structure used for most genetic
algorithms. The majority of the enhancements to the model will occur when

calculating the fitness of the individuals.

Inputs to the VRP GA will consist of:

Read inputs
¢ Graph G that defines the set of vertices V



generation=0

Initialize_Population P(generation)

Evaluate P(generation)

While (not Terminate) do

generation = generation + 1

Select P (generation)

From P (generation ~ 1)

consisting of the customer locations as
well as the main depot

e 3D distance matrix eijc that consists of the
times between vertices over the time of
day

e The size of the initial population P

¢ The maximum number of vehicles

e The amount of time for all routes to be

competed (e.g. 8am to Spm workday)
Set initial generation number to zero
Initialize a random population of individuals
Evaluate fitness of all initial individuals of
population
Continue evolving generations until the
termination condition
Increment the generation number

Select a subset of the current population to be
used to create the next generation. This will
typically be the fittest members of the current
population, although some less fit members will

be included in order to keep a more diverse gene
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Crossover P (generation)

Mutate P (generation)

Fitness P (generation)

End While

32

pool.

Crossover the genes of selected parents to form

the next generation

Randomly mutate a small percent of the
population

Evaluate its new fitness



4.3.1.2 The Distance Matrix

The distance matrix will be expanded from the original VRP to include the time the
route will begin to be traveled. When accessing the new distance matrix you will
need to specify not only the origin vertex and the destination vertex, but also the time
in which the route will begin to be traveled. If no time exists for the specified time of
day, the next earliest time of day will be used as the travel time. The ultimate goal
will be to provide a means for the end user to record the actual time traveled between
the two vertices after each route is executed. This will enable the model to use more
accurate times in the future, thus increasing the performance of the model as the end

user uses it.

4.3.1.3 The Precedence Relationship

The precedence relationships will be defined by a precedence graph (potentially
disconnected) that will in essence overlay the main graph used by the .VRP. It will
be predefined by the user and used by the fitness function when evaluating
individuals of the population. It is important to note that not all customers may
require a precedence relationship with another customer. For example, the precedence

graph from the example in Section 4.2.2 would look like this:

Figure 4-7:Precedence Relationship

33
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Th‘e Chromosome

The chromosome for this implementation of the VRP contains the order in which the

customers were visited as well as which vehicle was used.

Using the example from Section 4.2.1, it can be represented as:

1 2 3
Vehicle 1 2 2
Customer Visited b a C

Figure 4-8:The Chromosome

The Vehicle row may contain the values 1 though m where m is the maximum
number of vehicles available, and the Customer Visited row contains the values 1

through [V\{vp}|.

It is important to note that because each vehicle must begin and end its route at the
depot, the depot itself does not need to be encoded in the chromosome. However, the
distance from the depot to the first customer, as well as the distance from the last

customer to the depot, will be included when calculating the overall time of the route.

4.3.1.4 The Fitness Function

The fitness function evaluates the quality of each individual in the population. The

fitness value that it assigns to each individual decreases as the individual improves in



quality. It will evaluate the individuals in the populations based on the following
attributes:
e The total time for all vehicles to visit all of the customers and return to the
depot

o This is calculated based on the dynamic travel time distance matrix
based on the current time of day along the route.

o The total time includes the “Time Per Stop” provided by the user.

o The dynamic distance calculation uses the travel time for the vehicle
for the current time of day along the route. If no travel time exists for
the given time of day, the next earliest time of day is used.

e Must service all customers

o Individuals are penalized for not servicing all customers.

o The algorithm simply penalizes the individual by increasing its fitness
10 times.

e The precedence relationships are enforced

o Individuals are penalized if the relationships are not present in their
solution.

o Like the customer rule, the algo‘rithm simply penalizes the individual
by increasing its fitness 10 times. This forces the algorithm to take the
precedence relationships into account regardless of how much extra it

costs the fitness value in terms of actual distance.

e The number of vehicles used

35
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Individuals are rewarded for using fewer vehicles.

This is done by using a ratio that approaches 1 as fewer vehicles are
used.

The algorithm, however, still has to take into account the maximum
workday, so it is almost always impossible for one vehicle to service
all of the customers in larger examples. But the GA will try to service
as many customers as it can with each vehicle.

The “maximum number of vehicles” is supplied to the user, but this
does not mean that the algorithm must use all of the vehicles. The
fitness of any individual will improve with fewer vehicles used.

The following equation is used to determine the penalty applied to the

fitness function:

N2
i (vthsea’[i])2

=0 )

(numVehiclesUsed*

This equation was selected in order to reward the individual for
servicing as many customers as possible with each vehicle. For
example, if individual A used 3 vehicles to service 25 customers (15
with vehicle 1, 7 with vehicle 2, and 4 with vehicle 3) the equation

would look like this:

- 252 625 625
15°+7°+3 225+49+9 283



However, if individual B used 3 vehicles to service 25 customers (16
with vehicle 1, 8 with vehicle 2, and 2 with vehicle 3) the equation

would look like this;:

5 2 62 6
0 VO - N WY1 G
16°+8° +2 256+64+4 324

However, if individual C used 2 vehicles to service 25 customers (15
with vehicle 1 and 10 with vehicle 2) the equation would look like

this:

25
@ = ol =82 Y- 2 )77
15% +10 225+ 100 325

However, if individual D used 1 vehicle to service all 25 customers

(25 with vehicle 1) the equation would look like this:

252 625
12 =1 == p=1.
((252)> (1(625} !

As you can see, the fitness penalty is reduced to 1 as the each vehicle

service more customers. The difference between individual A and
individual B was that individual B serviced more customers with two
of the vehicles and less with the third, thus bringing it closer to the
goal of reducing the total number of vehicles used. The effect of
reducing the number of vehicles by one, such as the change between
individual B and individual C, was quite‘dramatic'in that the penalty

was reduced by more than half. This reward strongly encourages the
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individuals to use fewer vehicles. Keep in mind though that the other
parts of the fitness function may increase their penalty if their
objectives are not met. For example, if the vehicle finishes past the
maximum workday value or any of the precedence relationships are-
violated it will be penalized.
e The time the last vehicle returns to the depot

o Individuals are penalized if their routes exceed the maximum work
time.

o This is done using a ratio that penalizes the individual the more they
exceed the maximum workday.

o Fof example, an individual whose last vehicle returned to the depot 10
minutes late would not be penalized as much as one that returns 90

minutes late.

The actual fitness function looks something like this:

fitness = (totalDistAllVehicles) *
(1+ numMissedCustomers) *

(1+ numPr ecedenceViolations) *

2
(numVehiclesUsed 2 N *

m

> (vehUsed]i1)

i=0
(1+ numMinutesOverWorkDay / 60)
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4.4 Greedy Algorithm Solution: An Alternative Approach

In order to validate that the genetic algorithm method was producing high quality
valid results, two versions of greedy algorithms were written for comparison

purposes: a relatively simple greedy algorithm and a more complex greedy algorithm.

The simple greedy algorithm allocates each vehicle to the closest customer, and then
from the customers left, allocates each vehicle to the next closest unvisited customer.
This continues until no customers are left. At that point, the vehicles return to the
main depot. This ensures that it is a valid solution. This greedy algorithm solution is
a fairly simple one in the fact that it uses the maximum number of vehicles allowed
and does not try to reduce that number like the GA does. However, in order to
present a fair comparison between the GA and the simple greedy algorithms, the
maximum number of vehicles must be set to an optim'al value so they will both use
the same number of vehicles. For example, if the initial problem consist of 50
customers, and it is shown through the GA solution that it is possible to service all of
the customers in the allotted time (work day) with two vehicles, then the maximum
number of vehicles will be set to two. If this is not done, the simple greedy algorithm
will use all of the vehicles that it can. The other drawback of the simple greedy
algorithm is that it does not use dynamic time as the GA does. This too can be
overcome by using a distance matrix with only one time between nodes, essentially

reducing the problem to the basic VRP. When this isvdone, both the GA and the
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simple greedy algorithm will use the same time between the node regardless of the

time of day.

In order to overcome the limitations of the simple greedy algorithm, a more complex
greedy algorithm was written. This algorithm routes one vehicle at a time until the
vehicle can service no more customers in the allotted workday. Then that vehicle
returns to the depot, and the next vehicle is routed. It uses the same general principle
as the simple greedy algorithm to pick the next customer to service, however it uses
dynamic time to determine the closest customer based on the time of day. This
version of the greedy algorithm is easier to compare to the GA than the simple
version. By planning the vehicles one at a time, it can minimize the number of
vehicles used and also attempt to minimize the distance traveled by each vehicle. The
more complex greedy algorithm also takes into account the precedence relationships.
This is more difficult for the greedy algorithm than it is for the GA because the GA
can see the entire route that is traveled by the individual, and then if precedence
relationships are violated, it is penalized in its fitness value. The greedy algorithm,
however, only knows the route as it progresses and must pick the best customer at
that point in time. This lack of knowledge makes resolving the precedence
relationships more difficult. For example, if there was a precedence violation
between customer A and D (A - D) and customers D and B (D = B), then as the
greedy algorithm creates the foute, it may find that A is the closest customer and

customer D and customer B have not yet been planned, so it adds A to the route. Then



B may be the next closest customer, but it can not be added because of the precedence
relationship D> B, so the next closest customer is D, and it is added to the route. At
this point, the vehicle does not have enough time to service any more customers, so it
returns to the depot. Then the next vehicle is started and it finds that B is the closest
customer; the problem is that the second vehicle is started at the beginning of the day
(because this is how the route will be executed by the vehicles). So when customer B
is serviced, it ends up being before D, thus violating the precedence relationship
D->B. With that said, the greedy algorithm’s precedence relationships are valid for

each vehicle, just not between the vehicles.

With the exception of the precedence relationships, the more complex greedy
algorithm compares quite favorably to the GA when random data is generated for the
distance matrix. This is due to the fact that normal traffic patterns are not taken into
account when generating the random data. By using the fitness function, the GA is
able to see the whole route, and avoid situations where going a short distance at the
beginning of the route means that you must take a very long distance later in the
route. This is often the case of traffic patterns in cities as illustrated in section 1.4.
Example of thgse comparisons will be presented in section 5.1.3. When using more

complex, realistic travel time data, the GA tends to out-perform the greedy algorithm.
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4.5 Random Distance Matrix Generation

A random distance matrix generator was written to assist in the testing of the
algorithm. This was necessary in order to test a wide range of data with a large
number of customers. The three-dimensional distance matrix grows rapidly, and it
can be quite time consuming to input a large number of nodes as well as the time
between these nodes over the course of the day. For example, 100 customers with

-travel times for five different times of day would require 50,000 entries.

In order to simulate realistic data for testing purposes with both the greedy algorithm
and the GA, it was necessary to build a certain amount of intelligence into the random
distance matrix generator. The generator takes as inputs the number of customers
(N), the length of the work day, a seed to start the random generator so the results can
be reproduced, the number of times you wish to allocate throughodt the day, and the
dimensions of a graph to map the customers and depot onto. Next, it uses these
inputs to create coordinate points on a graph of the customers and depot. It then
calculates the Pythagorea;l distance between the points and uses this for a stating
point to generate the times between the customers. It then randomly selects a method
for each customer to use when defining the distance between the customers
throughout the day. These methods are as follows where c is the original distance
between two points:

e Time is constant over the day

o Each allocated time between those two customers is set to c.
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e Time increases over the day
o Time starts at ¢, then each subsequent time increases by 10%.
¢ Time decreases over the day
o Time starts at c, then each subsequent time decreases by 10%.
e Time starts high, decreases, then increases
o Timeissettoc+c* (sin ([currentTime]/(workday/m))).
o This uses a sine function with a value that changes from 1 to O then

back to 1.
o When this is added to the c, it gives the effect of the time between the
two nodes decreasing and then increasing as the day goes on.
e Time starts low, increases, then decreases
o Timeissettoc+c* (1 + (n/2) + cos ([currentTime]/(workday/x))).
o This uses a cosine function with a value that changes from O to | then

back to O.

o When this is added to c, it gives the effect of the time between the two

nodes increasing and then decreasing as the day goes on.

These times are then placed in the three-dimensional distance matrix and used by

both the GA and the greedy algorithm.



4.6 The Graphical User Interface

The graphical user interface (GUI) for the VRP project allows the user (o input the
desired settings to be used by the genetic algorithm as well as watch the VRP genetic
algorithms progress as it is running. The interface provides graphs of the current
route, the fitness for each generation, and the total distance traveled by the vehicles.
It also displays the current generation and information that is used by the fitness
function to decide the quality of the results. This includes the total number of vehicles
used, the number of precedence violations, the time the last vehicle returns to the
depot, and the number of customers not served. The GUI also has a feature that
allows the user to stop the GA at the current generation. This feature is useful when
the GA results as viewed by the fitness function graph are not making improvements

from one generation to the next.

The GUI works independently from the GA. The GUI first writes the inputs to the
database and then starts the GA. The GA writes its output to the database after some
set number of generations. The output from the GA includes the best route so far and
the performance data of the individual using that route. The GA also looks for
termination information that is written to the database when the “Stop” button is
pushed on the GUL The GUI then reads the GA output from the database and graphs
some of the information, including the current best route, the fitness ovcf all
_generat‘ions, and the total distance traveled over all generations. The GUI also

displays some other information from the current best individual including the
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number of vehicles used, the number of precedence violations, the number of
customers not served, and the time that the last vehicle returns to the depot.

The basic architecture looks as follows:

LQ — A =
VRP Interface

VRP Genetic
Algorithm

Figure 4-9:VRP Architecture

Here is an example of the GUI for the VRP:

41 VRP Interface : Fa
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Nuabes of Vehicles Usad  Number of Precedancs Viclations NotServed  Last Complotion Time
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Figure 4-10: VRP Graphical User Interface
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The Interface for the VRP inputs look as follows:

HH Inputs

VRP Inputs
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Figure 4-11: VRP Input Interface



4.7 The Database

The database used for this project contains tables that hold the information both for

the inputs to the VRP as well as the outputs of the VRP. The database acts as the

central location for communication of inputs and outputs from both the GA and the

GUI. The tables contained in the VRP database are as follows:

Field Name Data Type -~ ' | Description - _

generation Long Integer The route generation

customer Integer The customer served

X Integer The x coordinate of the customer
served

y Integer The y coordinate of the customer
served

vehicle Integer The vehicle used to served the
customer

time Integer The time of day the customer was
served

Figure 4-12: VRP Route Output Table

Field Name Data Type - | Description SRR

generation Long Integer The generation of the performance
information

fitness Integer The fitness of the best individual

distance Integer The total distance traveled of the best
individual

numVehUsed Integer The total distance traveled of the best

‘ individual

numPrecViolations | Integer The number of precedence violations
committed by the best individual

customersNotServed | Integer The number of customers not served

lastCompletionTime | Integer The time the last vehicle returns to the
depot

Figure 4-13: VRP Performance Data Output Table
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Field Name Data Type Description v

inputld Long Integer The unique identifier of the input set

inputSetName String The name of the input set

numGenerations Integer The number of desired generations

timePerStop | Integer The time in minutes that each vehicle
spends at each customer they visit 1n
minutes

vehMutationRate Double The percent of individuals in the
population that will have their vehicle
mutated

seqMutationRate Double The percent of individuals in the
population that will have their
sequence mutated

workDay Integer The time that is allotted for all
customers to be served in minutes

N Integer The number of customers to be served

randSeed Long Integer The seed that will be used for the
random number generator

usePrecedence Boolean A flag indicating if the precedence
relationships should be used

useRandInputs Boolean A flag indicating if random inputs

. should be used
useGreedy Boolean A flag indicating if the greedy
. algorithm should be used

useMaxDist Boolean A flag indicating if the traditional VRP
using the maximum travel time should
be used when computing the distance
between the customers

currentInputs Boolean A flag indicating that this is the current
inputs with which to run the VRP GA

Figure 4-14: VRP Inputs Table

Field Name Data Type Description

i Integer The vertex from which the route begins

j Integer The vertex from which the route ends

time_of_day Integer The time the route will be traveled

travel_time Integer The time between the two vertices

Figure 4-15: VRP Distance Matrix Table
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Field Name Data Type Description
primary Integer The customer that must be served
v before the secondary customer
secondary Integer The customer that must be served after
the primary customer
Figure 4-16: VRP Precedence Matrix Table
Field Name Data Type Description CAES
generation Long Integer The generation that the GA will stop.

This is initially set to the number of
generations that is inputted, but is
updated when the user presses the
“Stop” button on the GUI

Figure 4-17: VRP GA Termination Table
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5.0 Obtained Results

5.1 Example Test Results
5.1.1 Basic City Routing Example

This example illustrates how the software operates when defining the vehicle routes
in a city. The city environment presents dynamic traffic conditions where the travel
time from one customer to another may vary throughout the day. The “dynamic
distance” used by this software will allow for a more optimal solution in this
environment. The precedence relationships will also be used to establish a relative

importance of certain customers.

In this example, there are 13 customers to be serviced from one central depot. There
are a maximum of 5 vehicles that can be used to service these customers, but the
software places an emphasis on using only as many vehicles as necessary to complete
the routes in the specified working hours (in this case 8am-2pm). Each vehicle will

leave the depot at 8am, visit the designated customers, and return to the depot.

Software Inp-uts
The inputs that are required for this software are described in the figure below. This
information is read from the database using a JDBC connection. The following

values were used for this example:



The distance matrix e represents the time between the nodes throughout the day:

Software Inputs Value

n 13

length of workday (min) 360 (8am to 2pm)
time per stop (min) 20

max number of vehicles 5

p

c
(see below)

22562911 >10

P

Figure 5-1: Basic City Example Software Inputs
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2121818 |93 123 21 19 1715 8 7] 11 31| 51| 71|91

g g g JC; 3 3 2l 71 8 9 1011 9ldepot| 20| 22| 24| 26|28
=252 iEl_9 4 5 6 7 g9 o 6| 37 35| 33 31|29

from jto 4ldepotf 23| 25| 27| 25/23 9l 7] 52| 56| 58] 56/52
depotj 1] 15 17 19 21123 4 of 3| 13 23] 13 3 10ldepot| 55| 60| 65 6055
depot] 4 23 21] 19| 171184 3 5| 10| 15 20[25 100 11| g 9 15 9o 3
depot| 5 30| 32) 34| 36138 4 5[ of g 7] 6 5 10] 12| 40| 35| 30| 25|20
depot] 6 12| 16) 20| 2428/ glyepot| 30| 23 16] 9 2 10| 13| 12 13 14] 1519
depoti & 48 45 42| 39341 5f 4 o 4 6 810 11|depot] 42 43[ 44| 45/46
depot| 9 20| 22 24) 26128 5 5 15[ 19 40] 1232 11| 1o 3 711 7 3
depot] 10} 55 50| 45 40038/ g 4 ol 11| 13 15/17 11| 12| 31| 37 43] 4955
depot] 11) 42 46| 50 5458 glyenot| g 12| 16] 20[24 11| 13 7] 8 9 g7
fidepot) 15| 14] 13} 1211 6| 7] 42 50 58 50042 12 10| 40| 37| 34] 31|28

1 3 23 25 27 293 6| 9| 37 35 33 31|29 12| 11| 31| 41| 21] 11|31
95 2 3 4 5 7l 6| 42| 46 50 54|58 12| 13] 19| 22| 25| 28|31

2 3 7 8 9 101 71 g 1110 9 d 7 130 10| 12| 10| g 6 4
24 4 3 5 7 9N 7 o 529 4] 44 ag52 13l 11 7] 9 11] 1315

2 SI1Y 9 7 5 8ldepot| 51| 41| 31| 21|11 13 12| 19| 29| 39| 29/19

Figure 5-2: Basic City Example Dynamic Distance Matrix e
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The Genetic Algorithm Inputs
The genetic algorithm also uses several inputé. These consist of the size of the
genetic algorithm population, the mutation rate for the vehicle sequences, and the

mutation rate for the vehicle used to service the customers.

GA Inputs Value
Population Size 100
Maximum number of generations 500
Sequence Mutation Rate 30%,
Vehicle Used Mutation Rate 30%

Figure 5-3: Basic City Example Genetic Algorithm inputs

Results

kg kkckskkskskk Gen 349 ******—k***
cust veh time

( 8:32
9:27
10:45
11:12
8:43
9:13
9:42
10:07
10:37
9:02
9:31
10:20
11:08

PR PR RS R --0000

Total distance traveled by all vehicles = 644
Total customers not served =0

Total number of precedence violations =0
Total number of vehicles used = 3

Last vehicle arrives back at depot at 12:03
Fitness 17184.631578947367
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Analysis of Basic City Example

This example shows how the GA uses dynamic time to find the shortest route between all of the
customers. It also shows the effects of the precedence relationships. The algorithm found a
route that enforced all of the precedence relationships (2 =2 5; 6 = 9; 11 = 10). The following
chart shows the total distance traveled as it relates to the fitness value of the GA and the current

generation of the GA.

Fitness Vs. Distance

10000000

1000000 ‘\\
100000 - -

10000 | —e&—Fitness |

1000 i S i NS | —=m—Distance.

100 -

10

1 g
24 49 74 99 124 149 174 199 224 249 274 299 324 349

-

Generation

Figure 5-4: Fitness Function Vs. Total Distance Traveled.
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5.1.2 Random Example Case Study

In order to test the software on larger examples that have a wide range of inputs, the random
distance matrix generator described in section 4.3.3 was used. The following sections
illustrate the behavior of the GA, the Greedy algorithm, and the GA using the maximum
distance instead of the dynamic distance. Using the maximum distance provides a good
comparison with what algorithms that do not take advantage of dynamic distance would have

to use for their times in order to ensure a feasible solution.

In this example, the distance matrix is generated with ten time entries for the distance
between customers for the hours of 8:00am to 5:00pm. Precedence relationships are also

created between some of the customers.

Software Inputs

The following values were used for all of the random examples in this section:

Software Inputs Value

n 50

Length of workday (min) » 540 (8am to Spm)
Time per stop (min) 10

Max number of vehicles 5

p 6-->3

3-->26

36-->40
47-->11
27-->32; 27-->9
50-->11

7-->35

11-->31
22-->20
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13-->14
5-->4

Ten time entries between each customer.
The matrix itself is too large to display.

5.1.2.1 Small Population

Genetic Algorithm Inputs

Figure 5-5: Random Example Software Inputs

The following inputs were used for the genetic algorithm:

GA Inputs Value
Population size 80
Maximum number of generations 15000
Sequence mutation rate 35%
Vehicle used mutation rate 25%
Random seed 13675

Figure 5-6: Small Population Genetic Algorithm Inputs

GA Results
custx Yy
6 87 28
45 86 34
50 88 34
36 97 66
34 34 57
10 34 61
9 24 46
11 1 7
42 9 27
28 31 7
8 69 6
49 65 79
15 61 91
27 70 91
30 64 81
48 79 63
20 87 46
24 67 18
4 43 14

35 87 12

NN NN RN NDNDN = — — = o ot o

time
9:11
9:28
9:40
10:19
11:19
11:36
11:56
12:33
8:34
9:13
9:57
11:05
11:23
11:39
11:55
12:37
13:05
13:32
13:51
14:18

44 89 27 2 14:32
16 78 27 2 14:55
33 66 63 2 15:16
46 20 90 2 15:36
1 36 64 2 15:52
12 55 93 2 16:08
38 25 70 2 16:21
17 8 43 2 16:34
26 15 25 2 16:45
19 3 ] 2 16:57
2 30 23 3 8:22

18 51 14 3 8:54

43 51 27 3 9:21

5 62 35 3 9:44

7 58 39 3 9:59

21 96 21 3 10:42
47 92 67 3 11:24
23 57 52 3 12:00
3 13 53 3 12:36
22 12 76 3 12:57
40 7 87 3 13:25




13 30 90 3 13:44 39 26 14 3 16:41

31 21 88 3 14:03 Total distance traveled by all vehicles = 1366

32 22 89 3 14:15 Total customers not served = 0

29 31 67 3 14:34 Total number of precedence violations =0

14 89 69 3 15:01 Total number of vehicles used = 3

41 79 63 3 15:14 Last vehicle arrives back at depot at 16:59

37 77 62 3 15:26 Fitness 32420.88607594937

25 49 0 3 15:49
Greedy Results

custx y veh time 38 25 70 1 [1:19

28 31 7 0. 8:15 10 34 61 1 11:41

4 43 14 0 8:38 34 34 57 [ 11:56

18 51 14 0 8:56 46 20 90 1 12:27

25 49 0 0 9:20 31 21 88 1 12:39

43 51 27 0 9:57 22 12 76 I 12:56

5 62 35 0 10:20 13 30 90 1 13:17

7 58 39 0 10:35 40 7 87 1 13:50

23 57 52 0 10:58 11 1 7 1 14:32

33 66 63 0 11:24 19 3 1 1 14:48

41 79 63 0 11:49 8 69 6 1 15:17

48 79 63 0 11:59 35 87 12 1 15:45

37 77 62 0 12:11 6 87 28 2 9:11

49 65 79 0 12:33 44 89 27 2 9:23

30 64 81 0 12:45 21 96 21 2 9:41

15 61 91 0 13:10 -45 86 34 2 10:07

27 70 91 0 13:24 50 88 34 2 10:20

47 92 67 0 13:47 16 78 27 2 10:44

36 97 66 0 13:59 12 55 93 2 11:42

20 87 46 0 14:31 32 22 89 2 12:38

24 67 18 0 14:51 14 89 69 2 13:57

39 26 14 1 8:17 1 36 64 2 14:28

2 30 23 1 8:36 Total distance traveled by all vehicles = 1543

26 15 25 1 9:01 Total customers not served = 0

42 9 27 1 9:17 Total number of precedence violations = 5

17 8 43 1 9:43 Total number of vehicles used = 3

3 13 53 1 10:05 Last vehicle arrives back at depot at 16:02

9 24 46 1 10:33 Fitness 1967325.0

29 31 67 1 11:05
GA Max Time Results
cust X y veh time 14 89 69 0 11:54
2 30 23 0 8:22 32 22 89 0 13:13
5 62 35 0 9:06 46 20 90 0 13:25
33 66 63 0 10:09 31 21 88 0 13:37
37 77 62 0 10:41 15 61 91 0 14:27
47 92 67 0 11:21 12 55 93 0 14:43
36 97 66 0 11:36 7 58 39 1 8:51
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6 87 28 1 9:32 11 1 7 3 13:27
50 88 34 1 9:48 19 3 1 3. 13:43
45 86 34 1 10:02 28 31 7 3 14:21
16 78 27 1 10:22 42 9 27 4 8:59
24 67 18 ] 10:46 3 13 53 4 9:35
35 87 12 1 11:37 27 70 91 4 10:53
44 89 27 1 12:02 30 64 81 4 11:14
21 96 21 1 12:21 23 57 52 4 11:53
8 69 6 1 13:01 | 36 64 4 12:27
20 87 46 1 13:54 38 25 70 4 12:49
49 65 79 1 14:43 10 34 61 4 13:11
34 34 57 1 15:31 43 51 27 4 13:59
9 24 46 1 15:55 4 43 14 4 14:24
26 I5 25 1 16:27 18 51 14 4 14:42
39 26 14 1 16:52 25 49 0 4 15:06
48 79 63 3 9:22 Total distance traveled by all vehicles = 1866
41 79 63 3 9:32 Total customers not served = 0

29 31 67 3 10:30 Total number of precedence violations = 0
13 30 90 3 11:03 Total number of vehicles used = 4

40 7 87 3 11:36 Last vehicle arrives back at depot at 16:55
22 12 76 3 11:58 Fitness 115900.62111801242

17 8 43 3 12:41

Analysis

The GA using dynamic time out-performed the greedy algorithm and the GA max time. The
GA using dynamic time and the greedy algorithm used three vehicles to service all of the
customers, while the GA max time took four vehicles to service the same set of customers.
The GA using dynamic distance also found the lowest travel time between customers (1366
minutes for all vehicles.) All three algorithms were able to service all of the customers within
the workday (8:00am to 5:00pm). The greedy algorithm did have trouble solving the
precedence relationships, but the other two algorithms were able to satisfy all of the
precedence relationships. Overall, the GA using dynamic distance out-performed the other

two methods in all categories.



5.1.2.2 Medium Population

Genetic Algorithm Inputs

The following inputs were used for the genetic algorithm:

GA Inputs Value
Population size 160
Maximum number of generations 15000
Sequence mutation rate 35%
Vehicle used mutation rate 25%
Random seed ‘ 13675

Figure 5-7: Medium Popuiation Genetic Algorithm Inputs

GA Results
custx y . veh time 31 21 38 1 15:56
15 61 91 0 9:36 1 36 64 1 16:11
27 70 91 0 9:54 12 55 93 | 16:24
41 79 63 0 10:27 37 77 62 1 16:37
47 92 67 0 10:47 39 26 14 - 1 16:54
36 97 66 0 11:00 17 8 43 4 8:47
48 79 63 0 11:33 29 31 67 4 9:30
5 62 35 0 12:15 10 34 61 4 9:48
9 24 46 0 13:06 23 57 52 4 10:17
14 89 69 0 13:50 7 58 39 4 10:47
2 30 23 0 14:29 34 34 57 4 11:27
28 31 7 1 8:15 3 13 53 4 11:51
25 49 0 i 8:44 22 12 76 4 12:14
50 88 34 1 9:45 40 7 87 4 12:40
45 86 34 1 9:58 13 30 90 4 13:01
21 96 21 1 10:27 30 64 81 4 13:28
35 87 12 1 10:54 49 65 79 4 13:41
44 89 27 1 11:14 26 15 25 4 14:20
6 87 28 1 11:26 42 9 27 4 14:36
16 78 27 1 11:42 19 3 1 4 14:54
43 51 27 1 12:08 38 25 70 4 15:25
11 1 7 1 12:50 4 43 14 4 15:46
18 51 14 1 13:25 Total distance traveled by all vehicles = 1404
24 67 18 1 13:51 Total customers not served = 0
20 87 46 ] 14:14 Total number of precedence violations = 0
8 69 6 1 14:41 Total number of vehicles used =3
33 66 63 ] 15:08 Last vehicle arrives hack at depot at 16:57
46 20 90 1 15:34 Fitness 34411.76470588235
32 22 89 | 15:45 Stats: parent = 0.34375 child = 0.65625




Greedy Results

custx y veh time 38 25 70 1 11:19

28 31 7 0 8:15 10 34 61 1 11:41

4 43 14 0 8:38 34 34 57 1 11:56

18 51 14 0 - 8:56 46 20 90 1 12:27

25 49 0 0 9:20 31 21 88 1 12:39

43 51 27 0 9:57 22 12 76 1 12:56

5 62 35 0 10:20 13 30 90 | 13:17

7 58 39 0 10:35 40 7 87 1 13:50

23 57 52 0 10:58 11 1 7 1 14:32

33 66 63 0 11:24 19 3 1 | 14:48

41 79 63 0 11:49 8 69 6 1 15:17

48 79 63 0 11:59 35 87 12 1 15:45

37 77 62 0 12:11 6 87 28 2 9:11

49 65 79 0 12:33 44 89 27 2 9:23

30 64 81 0 12:45 21 96 21 2 9:4]

15 61 91 0 13:10 45 86 34 2 10:07

27 70 91 0 13:24 50 88 34 2 10:20

47 92 67 0 13:47 16 78 27 2 10:44

36 97 66 0 13:59 12 55 93 2 11:42

20 87 46 0 14:31 32 22 - 89 2 12:38

24 67 18 0 14:51 14 89 69 2 13:57

39 26 14 1 8:17 1 36 64 2 14:28

2 30 23 1 8:36 Total distance traveled by all vehicles = 1543

26 15 25 1 9:01 Total customers not served = 0

42 9 27 1 9:17 Total number of precedence violations = 5

17 8 43 1 9:43 Total number of vehicles used = 3

3 13 53 1 10:05 Last vehicle arrives back at depot at 16:02

9 24 46 1 10:33 Fitness 1967325.0 ’

29 31 67 1 11:05
GA Max Time Results
cust X y veh time 28 31 7 0 16:30
43 51 27 0 8:38 27 70 91 2 9:40
5 62 35 0 9:01 48 79 63 2 10:19
44 89 27 0 9:39 36 97 66 2 10:47
21 96 21 0 9:58 30 64 81 2 11:33
6 87 28 0 10:19 49 65 79 2 11:47
16 78 27 0 10:38 15 61 91 2 12:09
23 57 52 0 11:20 12 55 93 2 12:25
33 66 63 0 11:58 40 7 87 2 13:23
29 31 67 0 12:43 22 12 76 2 13:45
1 36 64 0 13:04 3 13 53 2 14:18
13 30 90 0 13:40 17 8 43 2 14:39
46 20 90 0 14:00 39 26 14 2 15:23
32 22 ]9 0 14:12 7 58 39 3 8:51
31 21 88 0 14:23 50 88 34 3 9:31
38 25 70 0 14:51 45 86 34 3 9:45
10 34 61 0 15:13 35 87 12 3 10:17
9 24 46 0 15:41 18 51 14 3 11:03
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25 49 0 3 11:27 20 87 46 4 14:00
8 69 6 3 12:18 41 79 63 4 14:28
24 67 18 3 12:51 14 39 69 4 14:49
4 43 14 3 13:25 34 34 57 4 “15:55
42 9 27 3 14:11 Total distance traveled by all vehicles = 1938
26 15 25 3 14:33 Total customers not served = 0

2 30 23 3 15:11 Total number of precedence violations = 0
47 92 67 4 9:35 Total number of vehicles used = 4

37 77 62 4 10:16 Last vehicle arrives back at depot at 16:4]
11 1 7 4 11:59 Fitness 114674.55621301776

19 3 1 4 12:15

Analysis

The GA using dynamic time out-performed the greedy Algorithm and the GA max time. The
GA using dynamic time and the greedy algorithm used three vehicles to service all of the
customers, while the GA max time took four vehicles to service the same set of customers.
The GA using dynamic distance also found the lowest travel time between customers (1404
minutes for all vehicles.) All three algorithms were able to service all of the customers within
the workday (8:00am to 5:00pm). The Greedy algorithm did have trouble solving the
precedence relationships, but the other two algorithms were able to satisfy all of the
precedence relationships. Overall, the GA using dynamic distance out preformed the other

two methods in all categories.



5.1.2.3 Large Population

‘Genetic Algorithm Inputs

The following inputs were used for the genetic algorithm:

GA Inputs Value

Population size 320
Maximum number of generations 15000
Sequence mutation rate 35%
Vehicle used mutation rate 25%
Random seed 13675

Figure 5-8: Large Population Genetic Algorithm Inputs

GA Results

cust X y veh time 25 49 0 4 8:33
38 25 70 0 9:09 43 51 27 4 9:10
34 34 57 0 9:36 18 51 14 4 9:31
10 34 61 0 9:51 7 58 39 4 10:06
12 55 93 0 10:31 6 87 28 4 10:40
15 61 - 91 0 10:46 50 88 34 4 10:54
27 70 91 0 11:02 45 86 34 4 11:06
30 64 81 0 11:20 16 78 27 4 11:23
47 92 67 0 12:01 24 67 18 4 11:47
14 89 69 0 12:14 5 62 35 4 12:15
20. 87 46 0 12:47 2 30 23 4 12:45
44 89 27 0 13:16 48 79 63 4 13:58
21 96 21 0 13:30 36 97 66 4 14:26
8 69 6 0 13:52 23 57 52 4 14:48
35 87 12 0 14:20 1 36 64 4 15:05
37 77 62 0 14:45 29 31 67 4 15:25
4] 79 63 0 14:56 32 22 89 4 15:39
49 65 79 0 15:12 31 21 88 4 15:50
9 24 46 0 15:32 46 20 90 4 16:03
33 66 63 0 15:51 40 7 87 4 16:15
39 26 14 0 16:13 28 31 7 4 16:33
13 30 90 2 9:29 4 43 14 4 16:44
22 12 76 2 10:17 Total distance traveled by all vehicles = 1340
3 13 53 2 10:45 Total customers not served = 0

17 8 43 2 11:02 Total number of precedence violations =0
26 15 25 2 11:25 Total number of vehicles used = 3

42 9 27 2 11:41 Last vehicle arrives back at depot at 16:45
11 1 7 2 12:21 Fitness 31803.79746835443

19 3 1 2 12:37




Greedy Results

cust X y v
728 31 q 0
4 43 14 0
18 51 14 0
25 49 0 0
43 51 27 0
5 62 35 0
7 58 39 0
23 57 52 0
33 66 63 0
41 79 63 0
48 79 63 0
37 77 62 0
49 65 79 0
30 64 81 0
15 61 91 0
27 70 91 0
47 92 67 0
36 97 66 0
20 87 46 0
24 67 18 0
39 26 14 1
2 30 23 1
26 15 25 1
42 9 27 1
17 8 43 1
3 13 53 1
9 24 46 1
29 31 67 1
GA Max Time Results
cust X y v
43 51 27 0
24 67 18 0
44 89 27 0
6 87 28 0
50 88 34 0
45 86 34 0
16 78 27 0
4 43 14 0
18 51 14 0
5 62 35 0
1 36 64 0
38 25 70 0
10 34 61 0
34 34 57 0
3 13 53 0
9 24 46 0

[+
=

(1]
=

time
8:15
8:38
8:56
9:20
9:57
10:20
10:35
10:58
11:24
11:49
11:59
12:11
12:33
12:45
13:10
13:24
13:47
13:59
14:31
14:51
8:17
8:36
9:01
9:17
9:43
10:05
10:33
11:05

time

8:38

9:06

9:39

9:53

10:09
10:23
10:43
11:30
11:48
12:21
13:09
13:31
13:53
14:10
14:41
15:17

38
10
34
46
31
22
13
40
11
19
8

35
6

44
21
45
50
16
12
32
14
1

25
34
34
20
21
12
30
7

1

3

69
87
87
89
96
86
88
78
55
22
89
36

70
61
57
90
88
76
90
87
7

1

6

12
28
27
21
34
34
27
93
89
69
64

DR R RN RN NN — — e e —

11:19
11:41
11:56
12:27
12:39
12:56
13:17
13:50
14:32
14:48
15:17
15:45
9:11

9:23

9:41

10:07
10:20
10:44
11:42
12:38
13:57
14:28

Total distance traveled by all vehicles = 1543
Total customers not served = 0
Total number of precedence violations = 5

Total number of vehicles used =3

Last vehicle arrives back at depot at 16:02
Fitness 1967325.0

26
39
25

37
11
19
22
13
46
15
12
49
33
29
32
31

15
26
49
58
77

12
30
20
61
55
65
66
31
22
21

25
14

39
62

76
90
90
91
93
79
63
67
89
88

NN NNPONNN == —-——O0 O

15:49
16:14
8:57

9:47

10:26
12:09
12:25
9:16

9:48

10:08
10:59
11:15
11:42
12:08
12:53
13:26
13:37
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40
42
28
17
20
41
48
47
36
14
27
30

7
31

87
79
79
92
97
89
70
64

87
27

43
46
63
63
67
66
09
91
81

N N N N N R SR &

14:15
15:25
16:04
8:47

10:16
10:44
10:54
11:17
11:32
11:50
12:29
12:50

63

23 57 52 4 13:29
21 96 21 4 14:28
35 87 12 4 15:03
8 69 6 4 15:50
2 30 23 4 16:42

Total distancc traveled by all vehicles = 1824
Total customers not served = 0

Total number of precedence violations = 0
Total number of vehicles used = 4

Last vehicle arrives back at depot at 16:54
Fitness 102184.87394957984
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Analysis

The GA using dynamic time out-performed the greedy algorithm and the GA max time. The
'GA using dynamic time and the greedy algorithm used three vehicles to service all of the
customers, while the GA max time took four vehicles to service the same set of customers.
The GA using dynamic distance also found the lowest travel time between customers (1340
minutes for all vehicles.) All three algorithms were able to service all of the customers within
the workday (8:00am to 5:00pm). The greedy algorithm did have trouble solving the
precedence relationships, but the other two algorithms were able to satisfy all of the
precedence relationships. Overall, the GA using dynamic distance out-performed the other

two methods in all categories.
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5.1.2.4 Comparison and Analysis

These examples shed light on several areas of interest in showing the advantage of the GA
using dynamic distance. The results show that the GA using dynamic distance can solve a
relatively large example containing 50 customers while not violating any of the precedence
relationships and servicing all of the customers. It also shows that the GA using dynamic
distance is superior to the greedy algorithm and the GA using maximum travel time. Thirdly,
the results show the effects of using different population sizes for the GA. The table below

shows a summary of the results from this example.

Pop Size | Method #Veﬁicles Distance | #Precedence | #Customers
Used Violations Not Served
GA Dynamic Dist | 3 1366 0 0
Small | Greedy 3 1543 5 0
GA Max Dist 4 1866 0 0
GA Dynamic Dist | 3 1404 0 0
Medium | Greedy 3 1543 5 0
GA Max Dist 4 1938 0 10
GA Dynamic Dist | 3 1340 0 0
Large Greedy 3 1543 5 0
GA Max Dist 4 1824 0 0

Figure 5-9: Comparison of Random Example Solutions



66

It can be seen from the chart that the GA using dynamic time and a large population
produced the best results using only three vehicles with a combined travel time of 1340. This
was only slightly better than the GA using dynamic distance with a small population, 1366.
While the medium sized population’s distance was 1404, it is still a great deal better that the
other two algorithms. These results in respect to the population size tend the overall answer
is not necessarily improved when population size is increased. This is due to the random

nature of the GA.

The results also show the great advantage that using dynamic time has over an algorithm that
just uses the max time between two customers. It was able to solve the problem in

approximately a quarter less time and using one less vehicle.

The comparison with the greedy algorithm was done to show how another heuristic might
solve the problem. As you can see from the results the GA, using dynamic distance out-
performs the greedy algorithm in the area of overall distance and in solving the precedence
relationships. The greedy algorithm’s difficulty solving the precedence relationships was

discussed in section 4.4.

Overall, the results of the random example show that the genetic algorithm using dynamic
distance is a great improvement over the traditional way of defining the travel time between

customers (the maximum time approach.).
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5.1.3 Graphical User Interface Example

This example demonstrates the use of the VRP GA using the graphical user interface on a
relatively large VRP. When running the VRP interface, the software and genetic algorithm
inputs are first set up, once “Use Current Inputs” is selected the main VRP interface window
is redisplayed and the “Run” button is clicked to start the GA. The GA then begins to run
and periodically updating the database with the route and performance data of the best
individual to that point. The main VRP Interface then reads from the database and displays

the current data in fields or on graphs.

5.1.3.1 GUI Example Software and GA Inputs

This contains 60 customers and uses randomly generated customer locations and times
between those customers. The all routes must be completed in a workday of 8am to 5pm
with each customer requiring a 15-minute stop for the items to be delivered before the
vehicle can continue on its route. The vehicle mutation rate is set to 30% while the route
sequence mutation rate is set to 35%. There are a maximum of eight vehicles that may be

used to complete the routes. The Inputs GUI is displayed in the following figure:
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5.1.3.2 Results

The results are displayed on the main Interface GUI as they are available from the GA via the
database. The “VRP Route Chart” displays the best solution so far. It is important to note
that this graph is based on the physical location of customers based on an x-y coordinate
system, however the VRP defined in this paper uses time not physical distance to create the
routes between customers. The random data generator, as discussed in section 4.3.3,
attempts to take in to account the physical locations of the nodes when generating the times,

however it is still possible, both in this example and real life, for a customer to physically
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located on the opposite side of the graph, yet be the closest customer in terms of travel time
at any given time of day. This is while the graph does not display the four vehicles that
where used to accomplish this solution simply partitioning the customers into four clusters

containing customers in close physically vicinity.

The VRP interface also has the useful feature that the fitness of the best individual as well as'
the distance travel of the best individual (a main component of the fitness function) are
graphed over the generations. This allows the user to receive feedback on the progress of the
GA and potentially use the “Stop” button to terminate the GA if the solution is either

acceptable to the user or is not making any noticeable improvements.
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Figure 5-11: The Interface of the VRP GUI Example

This example solved the problem using only four vehicles within the scheduled workday.

The VRP Interface worked well in its ability to display the current progress of the GA as well

as the current planned route.
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6.0 Conclusions and Future Research

The purpose of this project was to research the current VRP and provide meaningful
additions to the VRP model. With the additions of dynamic travel time and precedence
relationships, the VRP model is now closer to modeling the real world and therefore
providing better solutions. This chapter will cover our conclusions, ideas for future research,

and the numerous benefits that have come from working on this project.

6.1 Conclusions

The numerous applications of the VRP as it relates to real-world scenarios make it an
invaluable part of our society. The fact that this problem is computationally intensive gives
way to the use of heuristics such as genetic algorithms to solve it. With these two facts in
mind, it is very important that we research the use of heuristics to solve the VRP with an
emphasis placed on modeling the real world. Both enhancements to the VRP model
discussed in this paper, dynamic time and precedence relationships, help us to achieve this
goal.. Dynamic time allows for an overall better solution by allowing the algorithm to use a
more accurate travel time based on the time of day. The use of precedence relationships
allows the VRP to utilize constraints that the end solution must obey for it to correctly model
the real-world situation for which the routes will be used. The GA created in this paper also
demonstrates its benefits over other heuristics, such as the greedy algorithm, which is limited

by its inability to see the whole route at once and thus can not fully take advantage of the
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changes in distance between customers as the GA does. The VRP is a complex and common
problem in our society, and dynamic time and precedence relationships bring us closer to

managing it.

6.2 Ideas for Future Research

There is a great deal of potential for commercial applications of the VRP using dynamic time
and precedence relationships, and many of these applications may also facilitate future
research into this subject matter.

One potential way to expand on the research and additions to the VRP presented in this paper
is to add other variations of the VRP to our new model. These additions may include adding
a capacity to each vehicle and then using a model such as the vehicle routing problem with
split pick up method described earlier in this paper. This method would essentially allow
each customer to request a certain amount of a product. If this amount was greater than the
capacity of the vehicle, then it may require two or more vehicles to service the customer.
There is also the potential to have vehicles with differing capacities. This may provide
situations where a customer requires 100 units of a product, and it could either be serviced by
two vehicles, one carrying 60 units and the other carrying 40 units, or the customer could
simply be serviced by one vehicle carrying 100 units. These vehicles would then also be
constrained as to the number of customers they could serve based on their capacity. This
expansion also allows for different goods to be requested by the customers. These goods

may have varying sizes that would also be constrained by the capacity of the vehicles. The
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addition of time windows to the model would also provide expanded capability to our model,

allowing the customers to request when their products are delivered.

Although some of these additions have been previously researched, they have not been fully
integrated together. If such models as split pick-ups, time windows, limited vehicle capacity,
different product requests by customers, as well as our additions of dynamic time and
precedence relationships, were integrated into one model, it would have a great ability to

simulate real-world data sets.

6.3 Lessons Learned

This project has allowed a great deal of education in the areas of research, genetic
algorithms, the vehicle routing problem, and Java. One of the main reasons that I proposed
this project to Professor Ali was to gain experience in these areas that were of great interest
to me. Although I have had numerous research projects in the past, the research that was
done at the beginning of this project allowed me to gain experience researching a relatively
specific topic with a wide variety previous research done on it. I also analyzed that
information to find the shortcomings of the previous work in order to propose new research
that is interesting as well as applicable to real-world situations. The second area that
interested me was the use of genetic algorithms to solve this complex problem. Although I
have studied GAs in several of my computer science classes in the past, I have never had the
opportunity to implement one. This aspect of the project provided me with a great learning

‘opportunity. We also chose Java to write the GA, in part, because of my interest to become



more familiar with the language. Although I have a great deal of experience with other

languages, I have never had the opportunity to write an application in it.
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