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CHAPTER ONE: EQUIVALENCE OF LIMITS THROUGH

NETS, FILTERS, AND DIRECTED FUNCTIONS

In 1915 E. H. Moore introduced the following extension of the
calqﬁlus limif;i'If‘D-is a set'of'general-elements p;and-G isfthe
set of all Tinite clgssés s of elements p, then a number-vglued
function f = (£(s)/s) on the domain S converges to a number a if
e positive iﬁplies there exists sg in G such that 8,C s implies
If(s) - a|<;e. This concept was later refined by E. H. Moore and'
H. L. Smith (5). Their refinement closely parallels the‘aefini-
tion of limit through a net. They considered a general élass B of
elements p and a binary relation R on B which is transitive and
compositive. A numerically valued function f = (f(p)/p), not al-
ways single valued, on the domain B converges with respect to the
relation R to a number a if‘énd only if for e positive there is an
element p, iﬁ B such that pRp, implies [£(p) --al<e. If £ is not
single valued, this inequality is understood to hold for all pos-
sible values of f(p).

We now consider three well-known exteﬁsions of Moore-=Smith
type convergence obtained by taking limitsAthrough nets, filters,
and directions. Suppose henceforfh in this chapter that f:D—Y
whére D is a set and Y is a topological space. Let 7@ be the set 
of neighborhoods of the point a in Y.

First we give the following eight.basic’definitions‘felafive‘

to these three kinds of limits.



Defintion 1.1. A net is a pair (f,R) where f is a function and R
is a relation in D satisfying: (1) for each m in D, mRm, (2) for
each m and n in D there is a p in' D such that pRm and pRn, and (3)

:fbr_each m, n and p in D and mRn, nRp, then mRp.

Defintion 1.2. Let (f,R) be a net. Then l%m f = a if and only if -
for V a neighbofhood of a there exists m in D such that mRn implies
fm is in V.

Definition 1.3. A filter is a noneupty set F of subsets of D such

that @ is not in F, if X and Y are subsets of D, X is in F and X<
Y, then Y is in F and if X and Y are in F, then XNY is in F.

Definition 1l.4. Let F be a filter. Then l%m f = a if and only if

for V a neighborhood of a there exists X in F such that fXcCV.

Definition 1.5. & is a base for the filter F if and only if each.

B in & .is nonempty, B<F, and X in F implies there exists B in &
such that B&X.

Defintion 1.6. Let @& be a base for the filter F. Then %%m f=a

if and only if for V a neighborhood of a there exists B in & such
that fBCV.

The above definitions are. taken from Hildebrandt (3), and the
following définifions of a direcﬁé;‘functién and the limit tarough

it are given by McShane and Botts (4).

Definition 1.7. A directed function is a pair (f,#) where f is a

function and W is a noneﬁpty family of nonempty subsets of D such
that if N and N' are in J, then there is an N" in W such that
N"c N and N"CN',

" Definition 1.8. Let (f, V) be a directed function in D. Then




%}msf = a if and only if for e%ch neighboghood V of a there is an
N in J° such that fNc V.

Thes¢ three ways of considering limits ére equivalent as we now
shgw. We first prove a lemma showing the relationship between the
'imit' through a filter and é_‘base for the filter,

Lemma 1.1. %%P7f = a if and only if 1%m f = a.

Proof. Suppose F is a filter in D and @ is a filter base for F;

If %%m f = a, then for V in‘Vy there is a B in & such that fBcV,
Since B is in &, it is also in F. Thus, V in V3 implies there is an
element X_in F such that ch:V. Conversely, if,lgm f = a, then for
V in Y, there is an X in F such that fXCV. Since @& is a filter
base for F{ there is a B in & that is contained in X. Thus, fB<:V

“and therefore, %%p f = a.

1. Eguivalence of limits through nets and filters.

Suppoée D is a‘noneﬁpty directed setArelative to the relation
R. Then we show that D yields a filter F on D and that n £ = a if
and only if l%m f = a. We define'Bq = {q" in D | q'RQ}, 3: {Bqla
is in D}, and F = [XcD | there exists B in @ such that B<X}, F is
a noneapty collection because D is nonemnpty. The empty set is not
in F since if X is in F there is a ;min D such that Bg< X énd Bq is
nonempty since q is in Bg. Let X and Y be subsets of D such that
X is in F and Y. Then there is a B in & which is contained in
"X and hence in Y. Thus, Y is in F. Let X and Y be in F so that

there are subsets of D, Bq and By in B, so that qu.X_and BrC Y,

Because D is a directed set, there is an element s in D such that



'sRq and sRr. Since R is transitive, BgC B0 BpCXNY and XNY is in
F. Thus, F is a filter on D and & is a base for F,

Suppose l%m f = a, that is, for V in W; there is an m in D such
that nRu implies fa is in V. By is the set of all n for which nRm
'so‘fhat meCfV andl¥ém f = a;' By 1emmé l;l l%m f = a. v‘

vsufﬁdseifhét l%m'f :bﬁém'f = a.'aTheﬁ V:inVWg‘i¢plies there is

a By in @ such the fB,C V. That is, for q in D and q'Rg, fq' is

q
in V. Thus, lim f= a.
VConyersely, let F be a filter in D. We show that F is also a
direcfed set relative to the relation < and there is a relation f*
such that l%m f = a if and only if'%%m f* = a., For each X iq F, X
= X so that XCX. For each X and Y in F, XNY is in F since T is a
filter and XNYCX and XNYcY., If X.,_Y and 2 are in F and XCYC 2,
Y

Suppose l%m f = a. Define a relation f*:F—>Y by £*X = fX for

then by the definition of 'c ', X< 7.

each X in F. V in ﬁg implies there is an X in F such that fX<V,
If Y is in F and YCX, £4Y = fYCEXCEV. Thus, lim £* = a.

Now if lim f* = a and V is in ¥, there is an X in F so that
Yc X implies f*Y<V. Since X<X, f*X = fX<V. Thus, lim f = a.

F
2. Equivalence of limits through directed functions and nets.

‘Let (£,H) be a directed function on D. Then we show that J/
is é directed set relative to the relation € and there is a rela-
tion f* such that %}p'f = a if and only if lég f* = a. For each N
in N, NCN since N = No If N and N' are in JN°, there is an N" in
W such that N'"€ NON' and if N, N' and " are in N and NCN'< N",

‘then NCX" by the defimitiom of ",



Suppose %}m f=a. V iﬂ‘V; implies therg exists an N in N
such that fNCV. Define the relation £*:4'—¥ by £*N = £N for each
N in W#'. Then for V in "V, there is an N in # such that N'C N
.implies f*N' = fN'< fN<CV; hence, lém f* = a.

If %gm-f* = a. and V ig in WQ, then there is an N in J/ for
which N'C N implies f*N'C V. Since Nc N, £*N = fNCV; thus, lin £ = a.

Lef (f,R) be a net in D. We show that D yields a direction J
in p_and that 1%m f = a if and only if‘%}m f = a. For each q in D
define Nq = {.q' in D | quQ} and define J' = {qu q is in D}. JHis
nénempty since D is nonempty.ana Nq is_nonempt& since q in D implies
and N4 v in uV; there is a q" in D such that q"Rq and

q q
q"Rq'. Because R is transitive, NunZNq(\th. Thus, S is a direc-

qRq. For N

tion in D.

Suppose 1§m f = a. Then V in WQ implies there exists q in D
such that for q'Rq, fq' is in V. Nq is the set of all such q', so
quC.V and ﬁherefore, %}m f = a.

If %}m f=a and V is in VQ, then there is an Nq in U/ such
that fNqc V. If'q'Rg, q' is in Nq and fq' is in V. Thus, lﬁm f =

Se

3. Equivalence of 1imits thrOUgh‘Hirectédvfﬁnqtions and filters.
Suppose (f,H) is a directed function on D. }We show that N
yields a fiiter F in D and that lim f = a if and only if l%mff = a.
Let F = {X<D| there exists N in W such that NC€X}. The enpty set
is not in F because it is not in W#'. For X in F and X< Y<CD, there
'is an N in W such that NCc X CY which implies Y is in F, and for

X and Y in F, there are N' and N" in J#' such that N'C X and N"c Y.



Since &' is a direction, there exists an N in J such‘thatk NCN'__
and NcN", Thus, NCHN'NN"CXNY which implies XNY is in F. Then
we see that F is a filter in D.

Suppos_e' lj?'m f = a., Then V in Yé; implies there exi{stsN in W
such that fNCV. Since NCN, N is in F by the definition of F; thus
1%m’f - a. o | o

Suppose l%m f =aand Vis in V. Then there exists X in F
such that fX<€V. For X in F there is an N in J such that NCX and
fNC fXCV. Thus, lip f = a.

Let F be a'filter in D. Then we show thaﬁ F is a direction in
D and that lim f = a if and only if Lim £ - a. T is nonempty since
it is a filter and X in F is nonempty because the empty set is not
in F. For X and Y in F, XNY is in F because F is a filter so that
XNYcX and XNYCY. If N =F, N is a direction in D.

Suppose l%m f =aand Vis in V4. Then there exists an X in F
such that fX<V. There is an N in W for which N = X, so that fN =
fX<V,., Thus, léym f = a. '

Suppose 1im £ = a. If V is in Y, there exists an N in W such

that fNCV. N = X for some X in F, so that fX = fN<V. Therefore,

lim £ = a. T
F



CHAPTER TWO: GENERALIZATION OF LIMITS OF FUNCTIONS

MAPPING ONE.TOPOLOGICAL SPACE INTO ANOTHER

We now consider a funtion f which maps a topological space
into a'tdpologicalispabe. Let X and Y be top&logicéllépaces, Dc
X, £:D~>Y and nx Be ﬂhe set of neighbofhoodS'of tﬁe“?oint‘x;"Iﬁ‘
this setting T. E. Frayne (2) gave the following definition of the
‘limit through sets in both the domain and range of fhe function
_considered, thus giving a generalization of the concept of the limit

of a function mapping one topological space into another.

Definition 2.1. lim fx z b if and only if for each N in ¥|p there
xfga T

is an M in N, such that £(MNS)SNNT,

We further extend this definition by using generalized neigh-
borhoods,which'wé call vicinities. H., L. Bentley in (1) defined a
colander G to be a set suéh_ﬁhat if x and y'are in G there is a z
in G such that zexNy. We shall call a set X a space if and only
if each point x of X has a collection of vicinities where we define
the collection of vicinities of a pdint x, denoted by W;, to be a
colander such that each vicinity of.x is a subset of X containing
x. Let X and Y be spaces, DX and £:D—Y. To make the limit in
‘definition 2.1 ﬁeaningful, we shall make some restrictions on tﬁe
se?s S_and‘T and the vicinities. We require S to be a subset of D
and T to be a subset of Y. If each vicinity of a does not contain
a point of 5, there is an N in Wg such thatsNN3 = @ so that

11& fx = b for all b in Y. Hence, we shall assume that
X>a T

Restriction 1. Each vicinity of a contains a point of ‘S.



Fdr each b in Y if each vicinity of b does not contain a point of
TNrange f, there is an N in'V% such that NN TNrange f = @ so that

there is no a in D for which %i@afx = b. We thus assume that
S .
Restriction 2. Bach vicinity of b contains a point of T/ range f.

Then the following definition will be used for the remainder .
of the chapter and the context set by its hypothesis will be as-~
sumed to hold whenever we refer to the limit.

Definition 2.2. Suppose that X and Y are spacés, DcX, f:D—2Y, a

is in X and b is in Y. Also suppose that S<D, T<Y, each vicinity
of a contains a point of S and each vicinity of b contains a point

of TNrange f. Then lim fx = b if and only if for each N in W%
X—=a = :

‘there is an M in V, such that f(MNS)CNANT,
To provide an illustration of how this limit can be applied,
consider the following exanmple.,

Example 2.1. Let f:(a,b]—-)R, & be the set of all ascending se=-

quences {xi}ifo such that Xg = a and Xpy = b, and Wg be the set of
basic neighborhoods of the point L in R. Define
n=l
Se(0) = Zfxpiyy (xp5,0 - %p3)

where 6 = {x} il_lo and for e positive define Mg = {cin | for each
x in [a,Y there is an X, in 0 such that ka - x[<:e}. Then

%%;[a,b)sf(or) = L if and only if for N»in’Vi there exists M, in

Yiab1 such that Sp(M N B ) NNR. Thus, %_;_n;[a’b]sf(r) = L if and

only if J[fx dx = L.
Suppose W and Z are spaces, ECW and g:E—Z. We now cite the

first theorem from Frayne's paper (2) and give our proof of it.



Theorem 2.1. Suppose X,Y,W and Z are spaces, f:D—=>Y where\Dclxland

:E—> cW. i = i = i = c.
g:E—2>Z where ECW | If %Egbgu = ¢ and %Egafx = b, then %Egagfx = c

Proof. For N in ’VC there is a P in Vg such that g(PNT)c N NU.
For P‘thero_exists-Mtinzﬁg such that f{MNS)cPANT, Thus,-gf(Mfﬁs)
c &(PHTT)C NNu. |

The following theorem is thé caiculus“ooﬁntorpart of theorem
2.1,

Theorem 2.2. Let f and g be real valued functions of a real vari-

able such that there is a deleted basic neighborhood =« of a in D
and a deleted basic neighborhood g of b in E. if there exists a
deleted basic neighborhood # of a relative to the domain of f such
.that b is not in fH, there exists a deleted basic neighﬁorhOod d.
of a relative to the domain. of f such that f&c;domain g, %égbgqu,c
and!%§§anf= b, then %igagfx = C.
Proof. Let N be a basic neighoorhood of c. Then there is a deleted
basic neighborhood P of b such that gP<N where PCP'NP for some
aeleted basic neighborhood P' of b. Let W be a basic neighborhood
of b. Then there exists a deleted basic neighborhood M' of a.such‘
that fM'C W where M'C M"NX for some deleted basic neighborhood M
of a. N

If b is a real number, then PU{b} is a basic neighborhood of
b. Thus, there exists a deleted basic neighborhood M of a such that
fMcPU {b} where McMjN« ﬂ/”"f\d' for some deleted basic neighborhood

M) of a. Because M is contained inM, b is not in fM. M contained

in § implies fMC domain g. Thus, fMCP,
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If b is +w or -w, then P is a basic neighbérhood of b, and for
it there is a deleted basic neighborhood M of a such that fMcP
where MCMjNxNMNJ for some deleted basic neighborhood M; of a.

Thus, in either case, gfMCgPCN and lim gfx = c.
, : X=a~""

We‘now show that thcorcmlahavcan be obtained as a specigl case
of theorem 2.1. Suppose ﬁ.= R, T = (range fl)ﬁj - {v}, S = domain f
- [a} and-WQ is the set of basic neighborhoods of the point x. .Then
the vicinities of ¢ intersected with U are the basic neighborhoods
of ¢, the vicinities of b intersected with T are deleted basic
neighborhoods of b relativized to a subset of tﬁe.domain‘g and. the

vicinities of a intersected with S are deleted basic neighborhoods

relativized to the domain‘of f. Thus, %igbgu = ¢ and %igafx 5 b

reduce to the limits considered in theérem 2+.2. That there is a

deleted basic neighborhood M of a relativized to the domain of f

such that b is not in fM follows from the hypothesis that %igafx b

ga T
since if P is in Vb there is a vicinity M“of a such that f(MNS)C
PNT and b is not in £(MNS) since b is not in T. Then MNS is a
deleted basic neighborhood of a that does not contain b. That
there is a deleted basic neighborhood M' of a relativized to the
domain of f such that fM' is contained in the domain of g followé

from the hypotheses that T is contained in the domain of g and that
%igafx = b since if P is in Wg there ig an M' in W; such that
f(M'N 8)CPNT<TC domain g. Then M'N S is a deleted basic neigh-
borhood of a such that f(M'N S) Cdomain g. '

An application of theorem 2.1 is to the change of variable
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‘rules which are often used in calculus.

Example 2.2. Suppose %Egogz 5 c. We know that %iﬂ«nfx §+0.where
R

fx = 1/x so that applying theorem 2.1 we have that %ﬁﬁ{ngfx ﬁ c or

i X) = C. 1y, ) i = C. Je ki
%ﬁﬂ{og(l/x) va . Similarly, suppose tnat,%%gagxbR c ‘We know that

"igofh B a where fh = 'a + h, so that applying theorem 2.1 we have

that %%?ogfh g oor %%;Og(a+h) ﬁ c.

Given that %igafx 5 b we inguire if we can alter § and T with-
out‘affecting the value of the limit. The next several theorems
give a partial answer to this question. TheoremS’Z.B and 2.4 are

cited from Frayne's paver (2) and given with our proofs.

Theorem 2.3. Suppose X and Y are spaces, DcX and f:D—>Y. If

%igafx % b, TCT', S'© S and each vicinity of a contains a point of
S

S', then lim fx

X=>a

S|
Proof. For N in Vf there exists M in V3 such that f(MNS)CNOT,
Thus, f(MNS'")cf(MNS)cNNT<NAT' and lim fx = b.
X=a = T
st

Theorem 2.4. Suppose X and Y are spaces, DX and £:D—Y¥, If S =

S'U S", lim fx = b and lim fx = b, then lim fx = b.

‘ X—a T X—a T x—za 7
St S

Proof. For N in V}, there is an M' in 7} such that f(M'NS')CNNT

and there is an M" in Y, such that f(M"NS")<NAT. There exists
an M in ¥, such that Mc M'NIM", Then f(MNS) = f(MA(S'US")) <

1 t At 11 ’ 3 -—
f(M'n S')V £(M"N S")CNNT. Thus, %}mafx 5 b.
Theorem 2.3 shows that if lim fx = b we can replace S by a
: : X—=>a T

subset S' without changing the value of thé limit; concomitantly,
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v

we consider when we can keep the limit the szme using a set which

contains S. Theorem 2.5 answers this in part.

Theorem 2.5. Suppose X and Y are spaces, DCX, f:D—>Y, and {yn};?l

is a sequence in D -}S ;uch‘that»%égnyn gya whereﬁSf_: [yn ln‘is in

I+}, %ignfyn, b and i in It implies that therevexists Mi.in’VA such

=11

that yi is not in Mj. Then lim fx = b if and only if lim fx = b.
Xxza T b

usS

T
Proof. N in Yp implies there is a positive integer p such that
fy(I;)CZNf\T. M' in V3 impliés there is a positiye'integer q such
that y(Ia)CIM'ﬂ S'. 'Let r be the maximum of p and g. Then there
exists an M in V3 such that McM! ﬂ(zéi Mi). Then MNs'c y(I;) so

that f(HIWS')C:fy(I;)CZNITT. Thus, %%gafx 5 b. By hypothesis,

SO
,%lgafx & b, so gpplylng theoren 2.4 we have that %}gafx = b.
sug
Conversely; if lim fx = b, then we can use theorem 2.3 to show
X>a T

Sus!
that l:l;_g fx = b since SCSUS!Y,
xzsa T »

According to theorem 2.5 if %igafx.i b, we-can add a sequénce

of points in the complement of S to § without changing the value of
the limit. An analogous question is under what conditions we can
delete points from T. First we consider the problem of subtracting
a finite number of points from T.

Iemma 2.l. Suppose X and Y are spaces, DCX, £:D—>Y, b is in Y, y!
is in T and there éxists N' in W% such that y' is not in Nf. Then;
%%?afx‘i b if and only if %%§afxT_Ty%. 3

Proof. Suppose that %imafx = b and that for y' in T there exists

N' in QG such that y! is not in N'. For N in W% there exists N" in
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%,. such that N"CNNN', Then for N" there is an M in V. such that
b _ a

f(MNS)CN'NT = N"N(T=-ty*'})<NN(T~{y'f). Thus, lim fx = b.
( yenr (r-{y'1 (r-{y'1). g O
Conversely, 1f.%i§afxT-Tny, we can apply theorem 2.3 to show

that lim fx = b since T-{y'} € T.
Xoa™w T
By induction this result can be extended to give the following

theoren.

Theorem 2.6. Suppose X and Y are spaces, DCX, f:D—>Y, b is in Y,

¥i is in T for i = 1,2,...,n and there exists Nj in W% for i =

1,2y¢+..n such that yj is not in Nj. Then lin fx g b if and only if

X=a
S
lim fx = b.
X?a T- {yl}1:=l

Now suppose that %}gafx % b and consider the problem of delet-

ing from T a sequence of points which contains infinitely many

different terms. Suppose Tdrange f, Izn} is a sequence in T

@
n=1 _
containing infinitely many different zp, %gﬂnzn %.b and if N is in

¥, then N contains an infinite number of points of T-{z3} 7.

These suppositions are not sufficient to show the lim fx_ = b_as
SEPP xza T-{zp}2,
the following example illustrates.

Example-2.3. Let £:(0,1)—(0,1) by fx = 0 if x is irrational and
fx = 1/n is x is the rational m/n in reduced form %Peré n is pos=-
itive. Let S and T each be the segment (0,1). Then %%?%fx = 0.

Let z = 1/n for n in I*. Since each vicinity of % intersected

with 5 contains poinls which are mapped into {zn}ng’jl, 1 Tx £ by,
= — - Zn
S =

Another possibility, given that }ig fx = b, is to look for a
s
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condition on the function f so that we can subtract a sequence of
points in T from T and keep the limit the same. The following
example shows that having f a continuous function is not sufficient.

Example-a.#. Let f bewthe identity function on the set of real

numbers, § and T each be the set of real numbers, and W" be the set

of basic neighborhoods of x. Then 1im, fx = 1. Let {zn} be the
S .

rationals in (1,2), then any vicinity of one intersected with S con-

. PO . @
tains infinitely many points of |z so that llm fx
If lim fx = b and we do not keep S fixed as we have in our
x=»a 7
o
discussion thus far, we can prove the following theorem.

Theorem 2.7. Suppose X and Y are spaces, Dc X and f:D—>Y. If

%igafx =b, § #T'CTTNrange T, S/1f-l(T') has a nonempty inter-
S T
section with each vicinity of a and T/\range f has a nonempty

lntersectlon with each vicinity of b, then 11m__+ afx =,b.
Snf"(”')
Proof. For N in’V% there exists an M in’V; such that f(MNS)CNANT,

Then £(MNA(SN £ X(T))) crins)ns(s (T ))eNnTAT = NATT,
Another intereéting question involves conditions for the exisé-
ence of .this limit. For a fixed S and T wé can prove existence
.theorems analogous to the ones for functions in a topological space.
Suppose, however, that S and T are not fixed. We have several con-

jectured existence conditions and counterexamples to them.

Conjecture 2.1l. Suppose X and Y are spéces, DcX and f:D—Y¥. It

is sufficient for lim fx z b that if M is in V3, then there is an

S :
a' in M different from a such that %iga,fx exists through T.
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Examvnle 2.5. Define f:R—>R by fx = -1 for x negative, fx = O for

b4 =‘0 and fx = 1 for x positive. Let S and T each be the set of
real numbers and let Vi be the set of basic neighborhoods of x.
- Then for any‘vicinityTOf zero and a' different from zero in the
vicinity, lim ,fx = 1 if a' is positive and lim_,fx = -1 if a' is
X=>a T _ , T X—a T T T
S - R 8 .
negative. However, %igofx does not exist through T.
S

Conjecture 2.2. Suppose X and Y are spaces, DcX and f:D—=>Y. It

is sufficient for lim fx ='b that if M is in W;, then for all a' in
X>a T :

M different from a lim_,fx exists through T.
Xpa

The example given for conjecture 2.1 also shows  conjecture
2.2 is false.

‘Conjecture 2.3. Let M be in Vj and lim fx

-

W

b. Then there exists

=1

an a' in M different from a such that %iga,fx exists through T.
S

Example 2.6. Define f:R—>R by fx = O if x is irrational and fx =|¥]

if x is rational. Let S‘and T each be the set of real numbers and

let ‘Yx be the set of basic neighborhoods of x. Then lim fx

=0
0 ?
3 T

but if a is in T-{0}, lim fx does not exist through T.

- In the special case where V, is a countable collection, we can
prove the following existence theorem,

Theorem 2.8. Let X and Y be svaces, DCX and f:D—>Y. For lim fx

=]

b it is necessary and sufficient that if {Xn};?l is a sequence in

y =1 . .
SNf “(T) and lim xy = a, then lim fxj = b.

=1

s
Proof, Suppose %Eﬂnxn‘g a implies that %1m fxp ; b and suppose
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lin fx £ b. Then there exists N' in ¥} such that for all M in Vj
S T ° v
there is a point x in M for which fx is not in N'NT. Since ¥, is
a countable collection, we can list the vicinities of a as My, Mp,
M},.....  We'éonstrucf'a'nesfed Sequeﬁce‘of vidinities”ih the
»fbllowing"Way:‘ Mi' =le and for k a poéitive integer grgater.than
one there is an Mc' in 0; such that Mk'CLMk(THkll. For each posi-
tive integer 1 there is an xj in M;'MS such that fx; is not in
N'AT. lim xp = a because M in V, implies My'C M and xp is in.
J x-1. i i = b. Now
M! for n greater than k-1 Then, by hypothes;s, %gﬁnfxn le Now
for N' in Vb, fxz is not in N'NT for all positive integers n so

that lim fxn é b. Thus, our assumption that lim fx'% b is false.
‘o> ; X—>a
Conversely, suppose %Egafx 7 b and %&ﬂnxn § a.  Applying

theorem 2.1, %}9 fxn b.

@ P T
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CHAPTER THREE: GENERALIZED LIMITS THROUGH

DIRECTED FUNCTIONS

In this chépter.we cqnsider functionsg mapping a set D into a
space Y. Let Y be the set of vicinities of a point x im Y. Then
wé<ban.apply the notion of limifs thfough'sets.in‘the domain and
fange of the function f mapping D into Y to limits fhrqugh directed

functions giving the following definition.

Definition 3.1. Suppose Y is a space, £:D—Y, b is in ¥, (f,N) is
a directed function in Dy SCD, TCY, each vicinity of b contains a
point of TNrange f, and each set in the direction W' contains a

point of S. Then lim f = b if and only if V in V}, implies there

@5 T |
is an N in # such that f(WNS)cVvNT,

We have shown in chapter one that limits through nets, filters
and directed functions are equivalent, so that we shall use directed
functions as a representative of the three. The results we derive
fhen hold for éll three kin&snof-limits. The limit of the composi-
tion of.two funqtions is considered in this cﬁapter with an added
restriction, but the proof of the following theorem is siéilar to

the one givean for theorem 2.1. -

Theorem 3.1. Let Y and Z be spaces, f:D—Y, g:E—>Z, (f,M) be a

directed function in D and (g, ) be a directed function in E. If
lim g = ¢, 1im £ = b and N in N inplies there is a V in V| such
e T WS T P b
that VN T<NNT, then lim gf = ¢,

! A8 T

k]

Proof. W in‘V, implies there exists N in W such’ that g(NNT)CWNT

N in W implies there exists V in 'V} such that VATENANT, V in YV
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implies there exists M in M  such that f(MNS)<VNT. Thus, we have
gf(MNS)ceg(VNAT)Cg(NNT) cWNTU,
We concern ourselves with the problemof aliering S and T given

that;%}msf§§b after prdving a theorem involving subsets of S.
\ _ : T ; :

Theorem.Bfa. Suppose Y‘is a. space and_f:D—}Y. If S = s'V 38",
lim f = b and lim £ = b, then lim f = b.

HySt T WS T W,s T

Proof.‘bv in W} implies there exist N' and N" in J such that

f(N*n sY)cvnT a_Lnd f(N"NS")CVNT, There ié an N in N such that

NCN'NN", Thus, f(NNS)CE(NNA(S'USM))Cf(NNS')U (NN S")CVNT,

Theorem 3.3. Suppose Y is a space and f:D—Y. If %%m f<$ b, TCT',

' ]
S'c S, and"S'N N is nonempty for each N in W, then’%%%s'f & b.
Proof. V in1% iﬁpliés there exists N in M such that f(NNS)C
VAT. Thus, f(NNS')Cf(NNS)cVNTcvVAT',

The following theorem is a generalization of theorem 2.5, and
it has a more elegant proof in this generalized form.

Theorem 3.4. Suppose Y is é>space, f:D—>Y, {yn}'n is a sequence in

n=1

R . s + . . \ s o
D - S such that %iﬂnfyn =band iinlI }mplles there exists Ny in

. - ® .
W' such that y; is not in N;, and S' = S U{yn}nzl. Then ﬁ%?sf = b

if ahd only if lim f b.

NSt T
Proof. Suppose that %%msf % b. V in’V% implies that there exists
? .
N' in W such that f(N'NN S)CVNT and that there exists a positive
integer k such that fy(Iﬁ)C:VWWT. There is an N in N such that
k-1
NCN' N (SN;).  Thus, £(NNS')C (N N(s U {yn} 2))) and

£(NN(sS u-{yn}n":l))c £(NN3)U T (NN {yp}) cs(M'AS) Uiy (IL)C VAT,
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Cbnversely, supvose lim f = b. By theorem 3.3 lim f = b.
WSt T w,S

Lemma 3.1. Suppose Y is a space, f:D—2Y, y' is in T, b is in Y,
and there exists a V' in ¥ such that y' is not in V'. Then,

lim £ = b if and omnly if lim f = b,
H,8 T HN,S T= [y}

Proof. Suppose}%&msf = b and V" is in Vy. There exists V in’V%

. . . .
such that VEV'NV", For V there is an N in N such that £{NNS)C
VAT = VN(T-{y*])cvrn(T-f{y'}).

Conversel suppose lim f = b. By theoren 3. lim £ = b.
T je)s TN T-{y'} N 3.3 It D

As before this result can be extended by induction to give the
following theoren.

Theorem 3.5. Suppose Y is a space, f:D—>Y, b is in Y, y;i is in T

for i = 1,2,...,n and there exists Vj in ¥} such that yi is not in

V; for i=1,2,..,n. Then lim f = b if and only if lim f = b.
’ NS T N8 T-{yi}

Given that lim f = b, we can prove a theorem similar to theorem
. _

2.8 in which we changed T and made a corresponding change in S so

-~

that the value of the new limit was b.

Theorem 3.6. Suppose Y is a space and f:D—>Y. If {}m f EAb'
. )

g £ T'«TNrange £, V in’V% implies VN T' is nonempty and N in/’

implies Nf)S/]f—l(T') is nonempty, then lim b.

£ =
N,sn £'(T') T
Proof. V in‘V} implies there is an N in J such that £(NNS)CVAT,

Then, £(NN(SNEHTINCEENS) NE(E T (T))ecvnTnT = VAT,
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