UNIVERSITY JOF
e ras University of Nebraska at Omaha

Omaha DigitalCommons@UNO

Student Work
5-1-2004

Study on Dynamical process in Boolean Network.

Masahiko Kimura

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Kimura, Masahiko, "Study on Dynamical process in Boolean Network." (2004). Student Work. 3550.
https://digitalcommons.unomaha.edu/studentwork/3550

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3550?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3550&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Study on Dynamical process in Boolean Network
A Thesis
Presented to the
Department of Mathematics
and the
Faculty of the Graduate College
' University of Nebraska
In Partial Fulfillment
of the Requirements for the Degree
(Master of Art)

University of Nebraska at Omaha

by
Masahiko Kimura

May 2004

UMI Number: EP74748

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

~Dissertation Publishing

UMI EP74748
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College,
University of Nebraska, in partial ent of the
requirements for the degree (),
University of Nebraska at Omaha.

' Committee

«r*"*""w%é %75)7 %@/é Qég | M ATHE o 77 TS
Name

Department

Department

HWM (rprdor Dcrice

Name v Department

Chairpersor// /(/Q_é?é /wd {av lg Waw‘/

e __05/04/0¢

ABSTRACT

Study on Dynamical process in Boolean Network

Masahiko Kimura, MA

University of Nebraska, 2004

Advisor: Vyacheslav Rykov

This thesis began with a question about how the human brain works and then two
type of Boolean Networks , 1-D Cellular Automata and Associate Memory Model are
chosen to explore this question. In the first part of this thesis the computability of 1-D
Cellular Automata is studied by inventing a simple model, 3 colored balls model and
several logical gates are implemented in its space. Although this model is so simple, by
implementing three important logical gates, “NOT”, “AND” and “OR”, 3 colored balls
model is proved to be computatiénal universal. Since a common property
“ annihilation” is seen in each gate for having computability, the property is also used
to prove fhe computational universality of Elemental Cellular Automata. In the other

part of thesis the probability of errors in the recurrent associate memory model is

studied. To study dynamics of the recurrent model, I use the same MDS code as an
input and an output and found the probability distribution of the number of extra ones
that may appear through associate map. By the probability distribution we found that
the number of error is going to decrease when the larger MDS code is used and also by
compa@g to binomial distribution both results are close and when we choose the

larger MDS code the difference of both is getting closer.

ACKNOWLEGEMENTS

For the opportunity to work on this project, I sincerely thank my advisor Dr. Rykov
and Dr. Jack Heidel. Furthermore, I would like to extend my gratitude to Dr. Heidel for
insuring 2 year length research job in the Mathematical Cellular Biology Research
Group. My gratitude also goes out to Dr. Valentine Matache and Dr. Heifeng of my
thesis committee.

Thank to everyone who was stuck in room 243 for 2002-2003, especially, Andrew S
Buchan. Special thank goes out to all other people who help me to survive in United

States.

This thesis dedicated to my wife, Mika, and my daughter, Rino. I have never

succeeded without your help.

Contents

1. INTRODUCTION «..ooroeeeeeeteeemmeeeeseneseesessesssssesssssossseeessesessesesesosessessessessssossssmes 2
2. PHYSICS LIKE COMPUTATON. .cooeveveeeemmeeseeseeeeeeessmesssesssssesssssenssssssesse 5
2.1 REVIEW. wouiiiiiiiineteiicsseissennneesessnnnessessensesssssnsesssssssseasssssssssessssnsssasessseesess el
2.1.1 Cellular AUtOmMALA.cccevviieeieinreiiiieieneenenieeeieeenneeenteesesessssssassmsssssssessens 5
2.1.2 Computing Capability of Cellular Automata.ccccceeerievervneeererennene 9

22 COMPULAIILY OFf ID-CA. coeeurveeereeeeeeesesesssossssssessssessssessossassessmssssesns 12
2.2.1 Computing Capability of 4states 1-D CA........ccccccunvicriniremeccccicencnnes 12
2.2.2 Computing Capability of Elemental CA.c.cccceeveeeeueennns rveeieeenrerens 22

3. MATHEMATICAL ANALYSIS ON NEURAL NEWORK WITH CODING

THEORY ..ocooeieiiniiiiitiisiantcnsesstssasstenescsssassstestsssesesssssssosesbessasssssnssssnes 28
3.1 Review.......ccoueuuee. kesssresssssnsessesssssstasssssnsoses passssosssassessarsasasasssansaastassast sasnne 28
3.1.1 Superimposed Code..........ccueerirrinuenriereinionericniieseeeetensestessenesaneseesacsne 28
3.1.2 Combinatorial Model of Associative Memory........ccccceeeercemenieerereceens 39
3.2 Dynamics of Associate Memory with MDS code.........ccccevruiivrueiccacirsienne 44
3.2.1. Calculation of p-sets............. Feteesestesa st st et e st st s sas s se e st e bt s saesas s nsabens 44
3.2.2. The Probability of Extra Ones in The Recurrent Associate Map 52

1. INTRODUCTION

Regarding to the recent scientific research, many researchers are trying to clarify
the complex phenomena with computer simulaﬁo_n. We could say that the origin of
studying on complex phenomena might have gotten started by Henri Poincare who
showed that there is no analytical solution for the #-body problem (n > 2) . After that,
it gradually penetrated among researchers and now became a big research subject in
Mathematics, Physics and many other fields.

One of the reasons for this research in complex systems is J. Von Neumann’s
concept, Cellular Automata. A cellular automaton is a discrete dynamical system, i.c.,
space, time, and the states of the system are discrete. Each point in a regylar spatial
lattice, called a cell, can have any one of a finite number of states. The states of the
cells in the lattice are updated according to a local rule. That is, the state of a cell at a
given time depends only on its own state one time step previously, and the states of
its nearby neighbors at the previous time step. All cells on the lattice are updated
synchronously. Thus the state of the entire lattice advances in discrete time steps.

Although this model sounds like very simple, its dynamics is diverse and it is not as

simple as we can imagine.

Although Cellular Automata is studied mainly from a physical point of view I will
discuss the computational universality of one-dimension elemental cellular automata,
which S.Wolfram introduced. Since the elemental cellular automata is one of the
simplest cellular automata, if this model could be the computational universal, this
tells us that the computation, which we are doing inside of our brain, could be a
simple and repetitive procedure of thousands of neurons like Cellular Automata does.
Because of that, we try to prove computational universality for some Cellular
Automata models.

On the order hand, the research on brain is also one of the biggest research topics on
the complex phenomena. In the last decade of 20 century, there was a big project to
clarify the function of human brain with biological, physical, mathematical and
computational point of views in the U.S.A and also in Japan, the Ministry of
Education, Science and Culturé declared that the 21 century would be a Brain
century and give high priority to brain research.

In 1970, Palm [5] introduced an associative memory model in which all input
vectors are connected to output vectors through an associative map. Since Boolean
sum is applied to the associative map, we can see that this network model is one of
the Boolean network models. After Palm’s introduction of his model V.V.Rykov,
A.GD’yachkov [6] have done a mathematical analysis using coding theory, i.e.,
superimposed code and got several theoretical results.

In another part of this Master thesis, we try to continue A.GDyachkov and
V.VRykov’s work on Palm’s associative memory model. Since they have focused on

the model with (s,2)-superimposed code for perfect recognition, however, in

common-sense we get sometimes failure recognitions. In terms of Palm’s model, the
failure of a simulation is based on the use of the (p,f)-superimposed code, p>s, as
a question code. Hence, we figure out the behavior of Palm’s model with
(p.9)-superimposed code and we will introduce some formulas to calculate the
probability of reproduction when we use an MDS code as an input and an output

code .

2. PHYSICS LIKE COMPUTAION.

2.1 Review.

2.1.1 Cellu(ar Automata.

a. Historical Review of Cellular Automata

Cellular Automata (CA for short) theory was first introduced by the Hungarian
Mathematician J.Neumann. Before finding CA theory he was interested in Finite
State Automaton (FSA) theory because he wanted to apply this theory as a
mathematical basis for computer architecture design. However, the founder
Neumann himself was unsure that this idea could be extend and applied to other
fields. Nevertheless, it opened a new field, namely the study of so-called discrete
dynamical systems.

From 1960 to 1970 FSA and CA were studied just for the design of a circuit in a
computer or a tool of searching on Turing Machines. But the introduction of the
“game of life” invented by J.H.Conway in a science magazine Oct. 1970 provided a

turning point. In J.H.Conway’s game of life there is a rule with which some

configuration is going to spread out on a cell space. What is so interesting for many
people was to find an initial configuration leading to a final expected configuration
while observing some cell patterns appearing and disappearing on the display. It was
probably one of the first computer games in human history.

In the 1980’s, when interest in the game of life was being realized, S.Wolfram
pointed out the correspondence between CA and differential equation. In 1983,
although at that time, the center of the CA research was 2-D CA such as game of life
and others, he introduced new concept i.e., 1-D CA and furthermore, he insisted that
CA could be one of the basic model of discrete dynamical system. In 1984 he
published a famous paper among CA researchers in which he claims that there exists
only four classes in CA; class 1 corresporided to linear system, class 2 corresponded
to cyclic system, class 3 corresponded to chaos, class 4 corresponded to any other
none-linear systems.

He also studied 2-D CA with N.Packard and together they conjectured that 2-D
CA theory could be applied as a model of self-organization in many physical system.
More importantly, he proved in 1986 that Lattice Gas Automaton (LGA) that is a
branch from CA theory is equivalent to Navier-Stokes equation at macro level.

Because of this, the application of CA theory to fluid dynamics was spotlighted.

b. Fundamental principle of CA theory

The fundamental features of CA theory are the followings.{2]

e Assume that we have some uniform cells in a space.

e Every cell can have two or more states.

o The state of each cell is decided by a local rule using states of its nevighb()rs.

e The final pattern on a cell space is decided by the initial condition and the

rule.

In 1-D CA we assume that we have just a line of cells and set up the initial
condition and a rule for dynamics, then we can observe the dynamics of the cell
space as time progresses. The general form of 1-D CA is described with the cell

location i, time step #, and the state of each cell takes just one value out of

ke Z* numbers of the state value. Express a' as the state of a cell with location i

and the time step . Determining state #+1 is achieved by considering the

itr

neighboring states a” and a4, and a local rule for 0<i, r<w where

ieZ,reZ’

P i-r _i-r+l i i+r-1 _i+r
L “‘F(ar q 37 Qo4 54,

Consider hereby the case of r =1 where each cell can have two states 0 or 1. In
this case, there is 8 possible arrangements of cells at time ¢ and for the subsequent
time steps it could takes two possible states, then there exist 2*® =256 possible
rules. When r =1, S.Wolfram calls it “Elemental Rule”. Generally, there exists

k" possible rules (n = £**").

He found that although different initial configurations make space-time patterns
which differ in detail of their appearance, the characteristics of a given pattern appear
unchanged. That is all 1-D Cellular Automata rules evolving from disordered initial
condition reach to one of only four basic behavioral classes. The folloWings are the

four behavior classes.

Class cl: Al site eventually attain the same value.
Class c2: Simple stable states or periodic and separated structures emerge.
Class ¢3: Chaotic nonperiodic patterns are generated.

Class c4: Complex, localized, propagating structures are formed.

The homogeneous final states occurring for all ¢l rules, for example, are essentially
the same as a fixed point attracting final state. Similarly, the asymptotically periodic
final states of all ¢2 rules are analogous to continuous /imit cycles, while the chaotic
states generated by ¢3 rules are analogous to th¢ strange attractors appearing in
continuous dynamical system. The more complicéted localized structures emerging
from c4 class rules, on the other hand, do not appear to have any obvious continuous

analogs.

2.1.2 Computing Capability of Cellular Automata.

Computational Universality implies the ability to compute any logical function.
Any logical function above indicates Boolean function and the smallest set to be
computational universal is {4AND,NOT} or {OR,NOT}. According to the above
sentence, the personal computers we use have the ability to perform any digital
computation, so they are computational universal. Instead of personal computer,
there are some reports that the physical, chemical and biological systems in the real
or imaginary world seem to have computing capability. This sort of computation
being in nature is called “ Natural computing” 31

Computational universality is classified into two types. One is based on its
structure and another is based- on moving materials. The former type, such as an
ordihary computer containing electrical circuits and neural network stays the same
structure as time progresses. Compared with this, the latter type is based on moving
materials and is called “ Collision based computing” insofar as collisions of
moving materials are used for computing logical function. This type is also called
“ structureless computatioh”, actually it is not necessary to use the wire to transmit
information from a logic gate to others.

E.Fredkin and T.Toffoli have done works on natural computing with their Billiards
Ball Model (BBM). BBM is a model that expresses the dynamics of balls in a space.
Computational power of this model could be seen when arbitrary logical gates are
implemented in the system. They expressed two inputs with existence of balls (0 or
1) and showed its output as the result for collisions of two inputs balls. This idea was

transformed to CA theory and studied by N.Margolus. Inventing Margolus neighbor

10

leaded him to a success of simulating BBM as a CA model, and he proved that
- BBMCA is computational universal.

J.H.Conway’s game of life is also one of the coniputational universal systems. The
designer by himself found the proof of its computational universality and published a
book with the proof. Similarly, BBMCA, collisions were used in his proof,

“however, he used gliders which are one of the patterns in game of life instead of
balls.

In the mid 80’s, 1-D CA having a capabiiity of computation appeared. Since the
space of 1-D CA is just a line, 1-D CA’s moving materials have just two directions to
propagate i.e., right or left, in place of balls and gliders moving around in 2-D space,
however, it has a variety of velocity to transmit and actually these various velocities
make a 1-D CA’s rule possible to implement several collisions for many CA models.
The moving material in 1-D CA is called “soliton”. R.K.Squier and K.Steiglits
created a 1-D CA model called “particle model” and they successfully simulated a
binary adder and multiplier with it. A.Adamatzky [3] discussed in his book
information transition of soliton found in nature. |

We can find the character of computing capability above mentioned in the set of
moving DNA molecules. A.Adamatzky showed some of the logic gates based on the
collision of DNA molecules and found a 1-D CA model having the same ability of
computation.

S.wolfram’s elemental rule is supposed to be one of the most studied CA models.
He discussed the computability of elemental rules [1]. He mentioned that with an
analogy of dynamical system space-time patterns of 1-D CA could be divided into

four élasses (Fundamental principle of CA theory in this thesis) and one class out

11

of four, i.e., class 4, seems to have a computing ability. He insisted that class 4 is too
complex to define with dynamical system theory and also because there is a
similarity between a space-time pattern of class 4 and a complex pattern of game of
life, he conjectured that all of the rules belonging to this class are computational
universal. However, proving this conjecture is very hard and there is no theory that
does so as of yet. Consequently, current research aims at studying properties of class
4, As the character of class 4, it is well known that when a simulation with an
arbitrary initial condition gets statted, soliton appeared. Some researchers are calling
it glider due to an analogy of J.H.Conway’s game of life.

So far many models that are computational universal have been introduced,
however, we can not see what is the key to be computational universal. Hence, in this
chapter we introduced an original 1-D CA model that has four states, =1 and try
to show that the model may be computational universal with implementing collision
gate on its space. With this result we would like to mention that it is enough to be
computational universal with just one property which we can see in this new CA
model. And also, we try to show that two rules of elemental CA might have a

computing capability with the same method used above.

12

2.2 Computability of 1D-CA.

2.2.1 Computing Capability of 4states 1-D CA.

First, we introduce a CA model that has 4 states (k=4)and r=1. The function

(local rule) o_f this model is

if g_,=14,=0,q,,=0
=0
=3

if a,=0,a=2,a,,

1

2

4, 1sQ;s8;y) = -
/(@ 1,0,) 3 if a,=0,a=0,a
0

i+1

Otherwise

Since 3 colored balls appeared in the space-time pattern, I will call it 3 colored balls
model (3CBM). The following figures represent 3 types of particles appearing in this

model, though they are expressed numbers, rather than colors.

13

01 00O0O0O0 t
001 00O00O0 t+1

Right parti
0001000 t+2 ght particle
0000100 t+3
0002000 t
0002000 t+1]
0002000 t42 Stable particle
0 0 0 2 0 0 0 t+3
000 O0O03DPO0 ¢

Left particl
0003 00O) particle
00 30000 t+3

Fig.2.1.1 Moving particles of this CA.

Fig. 2.1.2 depicts two types of collision implemented by two particles, right direction

and left direction. Fig. 1.1.3 shows collisions between stable particle and angled

particles.
01000 30 t
1 0 t+1
00 300 * QOdd collision
000 0 000 t+2
00 000 OO t+3
0 01 00 30 t
0 0013 00 t+1 .
Even collision
0 00 0 0 O0O t+2
000 0 0 0O t+3

Fig. 2.1.2 two types of collision with two particles.

14

01 02000 t 0102030 t

0012000 t+1 0012300 t+1
0000O0O00O0 t+2 0 00 00 O0O t+2
00000V OO t+3 000 060O00O r+3

Fig. 2.1.3 two collisions between stable particle and two angled particles

Proposition 2.1.1. One can implement NOT gate (x > u; ue {o.1h with two

moving particles of 3CBM.

One of the configurations to compute NOT is ---0Z00X000300--, X e {10},
Z={03}(Z=0 when t=0) where X is an input and Z is an output. The

transformations are the followings

) , if X>0

u =

0, Otherwise

— , if Z>0

u(Z) ={ hoe
0, Otherwise

The result of this computation in seven steps is as follows

u(X) u(Z)
0 1
1 0

Table 2.1.1 NOT gate realized by collision gate.

15

0 0 X=1000300
1 3
0

i

i

o

N NNNNNN
<

Ty W T ey T my ™
H

I

I
NN AW N - O

Fig. 2.1.4 Example of NOT gate with #(X) =1, the result ;(Z)=0.

Proposition 2.1.2. One can implement OR gate (u,v)>uvv ;

ue {0,1}, ve {0,1}) with two moving particles of 3CBM..

One of the constructions to compute OR is ---01000X0002000Y0000Z0---,
Xe{0,1},Ye{03} and Ze {01} (Z=0 when t=0) where X and Y are inputs

and Z is an output. The transformations are

: 1, if X>0
u(X)—{O, Otherwise

(Y)—l’ if Y>0
v 10, Otherwise

1, if Z>0
0, Otherwise

uYV(Z)={

16

The result of this computation is

u(X) v(¥) uvv(Z)

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.1.2 OR gate realized by collision gate.

Proposition 2.1.3. One can implement AND gate ((w,v) > unav ;

uefo1}, ve{0,1}) with two moving particles of 3CBM.

One of the constructions to compute AND is---01000X000Y0020003000Z0---,
Xef01},Ye{0,1} and Ze{0,1} (Z=0 when ¢=0) where X and Y are inputs

and Z is an output. The transformations are

X I, if X>0
u =
0, Otherwise
, if Y>0
") “{o, Otherwise

1, if Z>0

nAnZ)= {o, Otherwise

17

The result of this computation is'

w(X) v(¥Y) unw(Z)

0 0 0
0 1 0
10 0
11 1

Table 2.1.3 AND gate realized by collision gate.

01000 X=100U0VY=19002020203000 Z
1 1 1 2 3 VA
1 1 1 2 3 zZ

1 1 03 z
1 1 3 zZ
1 13 Z

1 0 z

1 0 Z

1 0 z

1 Z

1 VA

1 Z

1 Z

1 V4

1 Z

0 1 zZ
1 VA

1 z

1 Z

N

Fig. 2.1.5 Example of AND gate with w(X)=1 and v(Y)=1 ,the result

uvv(Z)=1.

18

01000 X=100290Y=2202490300D002Z=00

1 1 2 3 z
1 1. 2 3 z
1 1 2 3 z
1 0 z
1 0 0 0 0 z
10 z

1 0 z

1 z

1 'z

1 z

1 z

1 z

1 z

0 1 z
1z

1z

N

1
Fig. 2.1.6 Example of OR gate with #(X)=1 and v(¥)=1 ,the result

unwz)=1.

Theorem 2.1.4. 3CBM is computational universal.
Proof: Since we can implement {NOT, AND, OR} gate with 3CBM, hence it is

computational universal.

Example 2.1.5. To show computation of binary numbers with the CA model. I will
give one example that is a binary adder Xy Xo + Yo = 2,217 - Each binary number
z,,2,,2z, is described respectively by following equation (& expresses XOR,
Exclusive OR)

w,=u,Dv,,

w, =(u, @v)®(u, AV,),

19

w, =, AV)V (1, D) A (4, AVy)),

with the following transformations

fl'.-(x',-)={:;. if x,>0

, Otherwise

L, if y,>0
v.-(y.)={0 v

, Otherwise

@) , if z,>0
w(z.)=
7 0, Otherwise

where i {0,1}and je{0,,2}.

Since XOR is used in the above computation, I will show the construction of the

XOR gate with CA Model before we introduce the construction for the computation.

Proposition 2.1.6. One can construct XOR gate ((u,v)—>u®v

-
E]

ue {0,1}, ve {0,1}) with two moving particles of this CA model.

A construction to compute XOR is ---0Z000X00Y00200030--- ,

Xe{01},Ye{01} and Ze{0,3} (Z=0 when t=0) where X and Y are inputs

and Z is an output. The transformations are

x I, if X>0
u(X)=
0, Otherwise

20

)= L if Y>0
10, Otherwise
DZ)= 1, if Z=3
“ 1o, Otherwise

The result of this computation is below.
u(X) v(¥) u®v(Z)

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1.4 XOR gate realized by collision gate.

0 Z 000 X=1001VY=00020000T0U030
z 1 0 2 3
z 1 0 2 3
zZ 1 2 3
z 1 2 3
z 1 2 3
z 0 3
z 0 3
z 3
V4 3
V4 3
z 3
z 3
Z 3 0
zZ 3
z 3
Z 3

N

3
Fig. 2.1.7 Example of XOR gate with #(X)=1 and w(¥)=0 ,he result

u®v(Z)=1.

Now we can construct Binary adder with following configurations.
For z,=x,® y,, the construction is
---0z,00x,00y,00200030--- .

which is the same as XOR gate.

For z, =(x, ®y,)®(x, Ay,), the construction is

-+-02,100020x, 0y, 0100x,00y,002000302000000000000000000000000003. --

For z,=(x, Ay)Vv((x,®y)A(x, AY,)), the construction is

XAR [On XoA¥o

+++10100000000000000000000000x, 00y, 002003000201000200x, 00y, 0020000301000200%, 00y, 0030030z, -+

(3B N (XoA¥0)

21

2.2.2 Computing Capability of Elemental CA.

It has been discussed whether there exists computational universal CA in
Wolfram’s elemental rule since he found 4 classes in 1-D CA . Especially,
computational universal of R110 is the center of the argument because of its
dynamics.

S.Wolfram [1] tried to show us that R110 is computational universal by showing
similarity to cyclic tag system that has been shown to be universal. However, it is not
clear and still, many researchers do not agree with his explanation. Therefore, in this
section we try to apply the collision gate method to elemental CA.

As we saw in section 2.2.1, A CA model could be computational universal. If we
want to use the same method for elemental CA, what kind of property is needed to be
computational universal? The common property that appears in 3CBM is
annihilation. Namely, as we see in Fig. 2.1.1 and 2.1.2, all particles annihilate after
the collision. Hence, if we could find particles that annihilate after collision in a rule
of elemental CA, the rule may be computational universal with constructing collision
gates.

In R110 space-time pattern I will use a background to show moving materials. The
background is 14 period cycle on which materials are moving. Fig. 2.2.2 shows that
all materials transmitting in space-time pattern of R110. We found a material that is
shown Fig. 2.2.3 that annihilates when two of them collide so then we will use it to

construct collision gates.

28

3. MATHEMATICAL ANALYSIS ON NEURAL

NEWORK WITH CODING THEORY

3.1 Review.

In this chapter we study a neural network model with superimposed code theory.
First, we will introduce definitions and how to construct Superimposed Code with

some examples. Secondly, an explanation of Associative Memory model is given.

3.1.1 Superimposed Code.

a. Notation and Definition.

We use the terminology of combinatorial coding theory and the following collection
of notations [7],[8]. Let
o lI<s<t, 1sk<t,N>1 beintegers;
e t—codesize, N —code length;

e X is Nxt matrix of a code;

29

o x(u)=(x, ()%, ()50, X, (1)) ,u=12,..,t, be columns of X (codewords),
and x, = (x,(1),x,(2),...,x,(t)), i=12,.,N, berows;

N
e w=min) x(u) bethe minimal weight of codewords, x,(u) € {0,1};

i=l .

N
e A=max) x,(u)x,(v) be the maximal dot product of codewords,

i=1

x,(u) e {0,1};

1
o k= maxz x,(u) be the maximal weight of rows, x,(u) e {0,1};

u=1

. [-a-l denote the least integer >aand |b]| denote the largest integer <b;

def
e = denote the equation by definition.

Let x(j) =(x,(J),x,(j)s--s 2y (J)) , F =12,...,5 denote the binary columns of

length N . The Boolean sum

X= \s/ x(H)=x(D)vxR)v..vx(s)

J=1

of column x(1),x(2),...,x(s) is the binary column x=(x,,x,,..x,) with

components

X =

z

{0, f xD=x2)=--x(s)=0

1 otherwise.

Let us say that column x covers column y if xvy=x.

30

The following is the definition of superimposed code in general.

Definition 3.1.1. [11] An N xt-matrix X is called a superimposed code (SC)
of length N, size t, strength s if the Boolean sum of any s- subset of
codewords X cannot cover codewords that are not components of the s— subset.

This code also can be called an (s,¢, N) — superimposed code.

Definition 1 is equivalent to the following condition. The Boolean sum of any
s — subset of columns X covers those and only those columns that are the

components of given Boolean sum.

The next definition is for a subset of superimposed code that is restricted with the
constant weight k£ in a row and it is used for analyzing the dynamics of a neural

network.

Definition 3.1.2. (8] An Nxt— matrix X is called a superimposed
(s,t,k)—code of length N, size t, strength s and constant k if code X is a

superimposed (s,#) —code whose maximal row weight is equal to k.

31

b. Lower Bound of Superimposed Code.

We introduce a result to determine the size of superimposed code [8].

Proposition 3.1.3. [8] Let r>k>s>1 and N>1 be integers. For any

superimposed (s,7,k) — code of length N, the following inequality holds:

NZ{(S+])t].
k

Proof: Let s21,1<k <t be fixed integers. Consider an arbitrary superimposed
(s,t,k)—code X oflength N.Let n, 0<n<t,be the number of codewords of
X having a weight s . From the definition of superimposed (s,#) —code it follows
that n< N and, for each codeword of weight < s, there exists a row in which all
the remaining elem_ents, except of this codeword, are 0’s, We delete these n rows
from X together with n codewords of weight <s. Consider the remaining
(N —n)x(t —n)matrix X'. Obviously, each column of X' has a weight >s and
each its row contains <k 1’s. Since % >s, we have

(s+D)({t-n)<k(N—-n), t(s+1)<kN —n(k —s) < kN.

32

c. Construction of Superimposed Code.
Kautz-Singleton—SuperimpoSed Codes.

Kautz and Singleton [11] introduced this superimposed codes and A.G.Dyachkov,

V.V.Rykov [10] formulated the important sufficient condition below as theorem 1.

Theorem 3.1.4. [11] Let X be a constant-weight code, i.e.,, X is a binary N xt

matrix, whose columns (codewords) x(j) have the same number of 1’s

N def N i
w= in (), j=L2,..,t, A= n:g;(zx,- k)x,(Jj)
i=1 - '

be the maximal correlation of codewords. Then the matrix X is (s, N,#) - code for

any s, satisfying the inequality

This theorem is easy to understand because if w=> sA+1, then the ith codeword
cannot possible be contained in the sum of any s other codeword, since it overlaps
each of these other codewords in no more than A positions. Thus, this code X

satisfies above condition.

" Definition 3.1.5. [10] Let 1<A<w<N be given integers, and let X be a code of
size ¢, length N with parameters w and A. A code X will be called a

Kautz-Singleton —superimposed code (XS - superimposed code) of length N, size

33

t and strength s, if inequality s< [w;l

] holds. This code also will be called an

(s, N,t) —KS-code.

c-1 KS-Superimposed Code Based on Latin Square.

Next we introduce a way to construct KS-superimposed code from well-known

Latin square. The definition of Latin square is following [4].

Definition 3.1.6. A Latin square of order g isa g xq array whose entries are from

a set of g distinct symbols such that each row and each column of the array

contains each symbol exactly once.

A Procedure for constructing a code from a Latin square is simple. The code
matrix consist of g number of columns containing three elements i.e., row, column

and its number in the Latin square.

Example 3.1.7. Let ¢=3. We produce (2,9,9)—-KS superimposed code. Since a

codeword in this code has at most one element that is the same element in other

codewords, so s = Pl;l—] =2.

1 2 3 111222333
2 31 = 123123123
31 2 123231312

34

SO
(111000 0 0 0)
000111000
0000O0O0T1 11
100100100
01001001 0]
001001001
1100001010
010100001
00101010 0

c-2 KS-Superimposed Code Based on MDS Code.

A g-ary code C is a given set of sequence of symbols where each symbol is

chosen from a set F, ={0,l,..,q—1} of ¢ distinct elements. The set F, is called

the.alphabet and is often taken to be the set Z, of integers mod g if g=p (pisa

prime number).

Distance of Code.

Definition 3.1.8. [4] The Hamming distance between two vectors x(x) and x(v)

is the number of places in which they differ.

It is denoted by d(x(u),x(u)). An important parameter of the code C is the

minimum distance, denoted d(c), which is defined to be the smallest of the

35

distances between distinct codewords. That is,
d(c) = min{d(x(u), x(v)):u= v} .
An (n,t,d)—code is a code of length n, containing ¢ codewords and having

minimum distance d .

Linear Code.

_Let alphabet F, is the Galois field GF(g) (set of elements with two operation +
(addition) and e (multiplication), with 0 and 1, where any equation of the form

ax+b=c hasasolution.), g isa prime power, and we regard (F,)" as the vector

space V(n,q).

A linear code over GF'(g) is just a subspace of V(n,q), for some positive
integer n. If C is an h-dimensional subspace of V' (n,q) then the linear code C is
called an [n,h,d]—code.

A generating set of C which is also linearly independent is called a basis of C
and An hxn matrix G whose rows form a basis of a linear [n,h,d]—code is called
a generator matrix of the code.

A parity —check matrix H for an [n,h,d]-code C is an (n~h)xn matrix
satisfying GH” =0, where H" denotes the transpose of H and 0 is the null
matrix.

C={xeV(nq):xH =0}

36

Definition 3.1.9. [4] An [n,h,n—h+1]—code (i.e., a linear code of minimum
distance d =n—k+1) is called maximum distance separable code or MDS code for

short.

Before introducing the theorem for the parity-check matrix of MDS code, we will

give three important results from theory of linear code [4].

Theorem 3.1.10. [4] Suppose C is a linear [n,k]- code over GF(q) with
parity-check matrix H . Then the minimum distance of C is 4 if and only if any
d -1 columns of H are linearly independent but some d columns are linearly

dependent.

Theorem 3.1.11. [4] Suppose a,,4a,,....a, are distinct non-zero elements of a field.

Then the so~called Vandermonde matrix

[1 1 1]

a, a, - a,

A=| a8 a} a
i r—1 azr—-l . :—l_

has a non-zero determinant.

Theorem 3.1.12. If Aisa (rx7) matrix having a non-zero determinant, then the

r columns of A are linearly independent,

37

The next theorem is for périty-check matrix of an MDS code[4].

Theorem 3.1.13. Suppose 1<h<n<gqg+1. Let a,,a,,...,a,, be the non-zero

elements of GF(q). Then the matrix

1 1 1 1 o]
| o a, 0 0
H=| a a a;, :
: : : 0 o
I aln—h—l azn—b—l a;»:;s—l 0 l_

is the parity-check matrix of an MDS [n, h,n—h+1]-code, where n=gq+1.

Example 3.1.14. Let ¢g=3, h=2, then F, = {0,1,2}. Hence we get parity-check
matrix of [3,2,2]- MDS code which has 3> =9 codewords.
H=[l 1 1]

Hence, all codewords of his [3,2,2]- MDS code are

)

Il
(— T —]
N = O
- N o
N O
—
SN =
- o N
S =N
~t\J NN

To change MDS code to superimposed code, each symbol of the g-ary alphabet

{O,L...,q-l} is substituted for the corresponding binary column of length g and the

38

weight 1, namely:

0 {,0,0....,0}, 1< {0,1,0,...,0}, 2<{0,0,.,...,0} , ---,g < {0,0,0,....1}
N ————— —— et —————

q q qa q

Hence, we have

(1

9}
It
S = O O = O O

-0 o0 =m0 O O -
S =~ O = O O O O
L - B - = R A -2
S = O O = O 0 = Q9
C O = = O 0 C = O
O = O O O = =0 O
C OO - c - @

Example 3.1.15. Let g=7, h=3, then F, ={0,....6}. So we get parity-check

matrix of [7,3,5]—-MDS code which has 7° =343 codewords.

11 1 1 1 1 1]ft111111
H={0 1 2 3 4 5 6|=|0123456
01 2* 3 4 5% 6| |01 422 41

39

3.1.2 Combinatorial Model of Associative Memory.
a. Palm’s Model and Superimposed Code.

Definition 3.1.16. [6] The question code of length n for memory of size ¢ is
defined by a nxtbinary (0 and 1) matrix X :%"xj(u)",j =1,n,u =1¢. The column
x(u) = (x,(u), x,(u),....x,(u))of X is called the codeword of question . All the

codewords are assumed to be distinct.

Definition 3.1.17. [6] The answer code Y =|y,)|,i=Lm,u=1¢t is a mxt
0-1 matrix. The codeword for answer is the column
y@) = (y,(u),y,W),....y,,(u)) . As in the question code, the answer codewords are

all distinct.

Let [t] be the set of integers from 1 to ¢ , and
p=(p,, Pys--P,), P, €lt], p, # P,, be a given permutation of the element of []
(there exist 7t such permutation). In what follows, we interpret p as a 1-1 mapping

of the question code X to the answer code Y, namely:

P —_—
x(u)=>y(p,), u=1Lt.
To the mapping p we associate the nxm 0-1 matrix A° =§“a§(i)ﬁ, j=Ln,

i =1,m, with elements

40

a? (i) = v (x,@y,(p,))
i.e, a?(i)=1 if and only if at least for one u =1,f we have x @ =y(p,)=1.
The matrix A’ is called the associative net [6] for storing the mapping p.

Let a®(i) = (a} (i), a} (i),...,al (i)) be the i—th column of the matrix A® and
X=(X,%,,00%,) s ¥ =(,Y;5mmy,) binary columns of length- » and m
respectively. Using the symbol v to denote the componentwise Boolean sum of 0-1
columns, we define in terms of the matrix AP the mapping

y=A’x, y, =Alx,
where

At T VA O=20,
' 0, if xva’(i)=a"().

Definition 3.1.18. [6] The pair of codes (X,Y) is said to have the retrieving
property of stored information of size ¢ if for any mapping p of the code X to

the code Y is representable in the form
y(p,) =Arx(u),

u=1t.

41

Theorem 3.1.19. {6] If sis the maximum number of ones in a row of the answer
code Y, then the code pair (X,Y) has the reproduction property if and only if the

question code X is a superimposed (s,f)—code.

Proof :(=>) Let s, = Z y,(u), i=1,m be the number of ones in the i—th row

u=l

of the answer code Y. Then s=max s,. For a given permutation p, we interpret

the code Y as the collection of columns y(p,), y(p,),....¥(p,), written in this
specific order. For the i-—th row of this collection, let £°(1),k"(2),....k%(s;) be the
indices of ones in this row. Suppose that the question code X is a superimposed
(s,) ~code. By construction of the matrix AP it follows that its i—th column of
the matrix AP’ is
a'@)=x(k*) v x(k*) v..vx(k’(s,)),

i.e., it is the Boolean sum of the columns of the question code X with indices
corresponding to ones in the i— th row of the collection of columns
y(2), ¥(Py)s--s (p,) . Since _the question code is superimposed (s,f) —code, any
summations of s-columns are distinct. Hence, y,(p,)=1 when incoming
codewords x are included in a® (i) =x(k* (D)) v x(k* (2)) v ...v x(k" (s,)).. Thus the

code pair (X, Y)has a reproduction property.

(<) Suppose that the code pair (X,Y)has a reproduction property. Since the

matrix AP could recognize all input vectors, then all columns of Boolean sum of

s —subsets in the matrix A® does not cover any other vectors which are not the

42

component of the columns. Thus, the question code X is a superimposed

(s,)—code O

b. The Functional Scheme of The Model.

The scheme functions in two modes — learning and recognizing. In the learning
mode, ninputs successively receive ¢ questions x(l)?x(2),...,x(t) and m inputs
successively receive the answers y(p,),y(p,).....¥(p,), arriving synchronously
with the questions. Moreover, the system has m outputs on which signals are

generated only when information is recognized.

Learning occurs when the columns x(u) and y(p,) ., u =1, , arrive

simultaneously at the question and answer inputs. If x,(#) = y,(p,) =1 for at least

one u =1, then the intersection of i—th and j—th buses are made conducting.
Intersections not made conducting in the learning mode are blocking in the

recognizing mode. In the matrix AP, a} =1 if the intersection of buses i and j

is conducting, and a} () =0 ifit is a blocking intersection.

In the recognizing mode, the signals x(#), u =1, are applied only to the

question inputs. The symbol 1 is produced on the i-th output if at least one 1
arrived at a conducting intersection of the i—th output and there were no 1°s on the
blocking intersections of this input.

In neural networks, the axons are the input buses and the exciting or retarding

43

synapses are produced in response to the signals from nerve fibers realizing the

answer inputs.

Example 3.1.20. The following is an example of associative memory model with

an input code and an output code.
In Learning process to make an associative

memory. input

.

[l =

output
i oo 1]

— D e e
[— T~ R]
c o
-t O e

Associative Memory

In recognition process, one can use an associative memory made in learning process

to recognize an incoming input. input

1

— O

Associative Memory
1 0 01

1
0
1

[~ —]
=2 I]
e~

J
I o 0 1]
Recognition result

44

3.2 Dynamics of Associate Memory with MDS code.

By theorem 3.1.16, we know that for perfect recognition the input code should be
an (s,z, N) - superimposed code for input and f(N,k)—plan in which weights of a
row is k=gs with the length of a codeword N for output. However, if we
consider real neural systems, naturally we think that it seems to be much more
complicate than the model with the combination between (s,7, N)— superimposed
code and f(N,k)—plan. So then in this section we try to find out whether or not we
can extend the condition for perfect recognition processes by using code based on

MDS code.

3.2.1. Calculation of p-sets.

As long as we choose an (s,7, N)— superimposed code as question code, the
associate memory model perfectly works. However, even if we choose an
(p,t, N)— superimposed code such that p>s rather than an
(s.t,N) — superimposed code, it is some time possible that associative model works
properly. In this section we study the case with p-sets, p>s and use the

formula to find the average number of p — sets which cover any arbitrary codewords

45

of superimposed code based on given MDS code.

Consider an arbitrary MDS code X with parameters g, h,n of volume ¢=g",
h<n-1<q and codewords x(i) = {x,(®),x,({)....,x,())},i =1,¢ . Because of MDS

distance of this code is d =n—h+1. Denote by A,(n) the number of codewords

in X ofweight w then we shall introduce a theorem without proof to compute the

number of codewords of weigh w [9]

Theorem 3.2.1: The number of codewords of weight w in an [nk,d=n—-k+1]

MDS code over GF(q) is

w-d) -1 . —
A4,(n) = (n](q - 1)2(*1)’(“.))qw_d_’ , w=d,n. ¢))
w Jj=0 J

Denote the zero codeword as
0=(0,0,...,0)
and a product of codewords x(7) and x(j) as
x()xx()) = (R G) X DX D %, (DX, (D}
We will say that the set of codewords x(1),x(2),...,x(p) dose not cover 0 if
x(1)-x(2)-...-x(p) 0. Let C,(p,n)be the number of p — sets which do not cover
0, then L(p), the average number of the codewords covers by an arbitrary

p —system, is [12]

46

7))
)

Denote by D(p,v) the number of p-— sets for which fixes v , arbitrary

L(p)=

2

coordinates of x(1)-x(2),...,x(p) # 0, then {12]

(;” '("‘I)v) if v<h

D(p,v) = 3)
(A,(v)) i v>h
P

where 4,(v)= (q_1)§ (—1)"(;’__1},”" the number of codeword with weight v
=

in [n,h] MDS-code. The explanation of this formula is following. Since p — sets of
arbitrary codewords length v dose not cover 0, we need to chose some codewords
which do not include the 0 element in itself. Hence, the number of vectors which
have nonzero entrances on all v fixed coordinates is ¢"(g~1)" for v<h.

For v> h, we fix v arbitrary strings in our MDS code X and consider a new code
Y which has the same volume and whose strings are those v strings from X, then
the number of vectors with nonzero entrances on all v fixed position s equal
A,(v). Now we can determinate C,(p,n) by.the formula of inclusion and

exclusion

Co(p:m)=n-D(p))) —(;)D(:JJ) +---(-D™ D(p,n) = i(—l)"*‘[?)o(p,:). @

47

Example 3.2.2: Consider ¢=3, =2, [3,2,2]- MDS code which has 3*=9
codewords and find C,(p,n), the number of p—sets dose not cover 0 with

p=3,n=3.

A codewords of his [3,2,2]—MDS code are

000111222
C={01 2 01201 2§
0212101202

For v=1, D(3,1) is

_ 32—1.(2)1 3 6 3
DG = [3]_ (3] =20.

111 2 2
(0 120 f 2) is the set of 6 columns from which p = 3 columns should be

chosen.

For v=2, D@3,2) is

s ()

{21 2] is the set of 4 columns from which p = 3 columns should be chosen.

For v =3, because of v>h D(3,3) is

(1122

= (31,
43)=6-D2 V| g7 =2.
=0 J

48

This is obvious when we see the code in which there are only 2 columns with weight

1 2
w=3,1ie, |1 2|. However, we can not choose p =3 columns out of 2 columns.
1 2
Hence,
)
DBJ3)= (3.4, =0.

C,(p,n), the number of p — sets dose not cover -0 is

C,(33)= G’)D(s,l) —@)D(s,z) =3x20-3x4=48.

Since this MDS code is relatively small, we can check this answer with the

(8
following calculation. There are 8 columns in the code except 0 and thus (3) =56

8
possible sets exist. However, there exist eight sets which cover 0 in (3)=56

possible sets. Thus 56 —8 = 48.

The average number of outsiders covered by an arbitrary p — sets of codewords is

E7)co0)
L(3) =23 D 2 =
:)

The following figures represent the results of the calculation of the average number

S e

of p —sets which cover any arbitrary codewords of superimposed.

25 4 (322)-MDS

8
3

Fig. 3.2.1 Calculation result of L(p) for (3,2,2)-MDS code.

700
®00 4 ©(523)-MDS
. ; QDD
500) ; : al
(542)-MDS o
400 jin]
2
-~

Fig. 3.2.2 Calculation result of L(p) for (5,h,d)-MDS code.

49

)
p (5,2.4-MDS (53.3-MDS (5:4.2-MDS
2 ©.00 000 231
3 00D 151 1452
4 000 587 4121
5 040 1321 B1.58
® 1.65 2279 131.94 -
7 338 3358 18757
8 530 4450 244108
9 730 5510 29820
0 854 6459 34782

I 953 7284 30185
2 1006 7978 47099
i3 10,16 8544 46225
14 952 8995 48927
5 94i 9343 5145
[8.70 9603 52056
17 787 9791 544.47
8 695 9019 55585
19 599 95.98 ~ 56540
20 500 0038 57236

Table. 3.2.1 Calculation result of L(p) for (5,h,d)-MDS code.

360D
©(11.2,10)-MDS
2500 B
K(H1.39)-MDS
opop 4 @ (1148)-MDS]
—~ o
S 4500 -
i}
1000 1 o]
D
500 a
jie)
0 sunnnnneRSx33¥8800 |
0 5 0 15 2D 25
P

Fig. 3.2.3 Calculation result of L(p) for (11,h,d)-MDS code.

50

Lip)
p (11,2,10)-MDS (11,3,9)-MDS (11,4,8)-MDS
2 000 ©00 00D
3 0100 ©L00 000
4 D00 OO0 Do1
5 00D 00D Q.16
(] 000 DO .03
7 00D 022 41486
8 000 ©.50 1246
9 010D 153 3048
Jike] [(ETE] 307 64.23
#il 0ol 7187 12074
2 006 1457 207.35
i3 022 2457 3309
14 058 3846 49716
15 1.23 5668 71043
16 227 8947 7188
17 378 10584 128242
i8 58D 13864 163383
9 830 17454 204051
20 11.28 21407 247955

51

Table. 3.2.2 Calculation result of L(p) for (11,h,d)-MDS code.

Remark 3.2.3: L(p) =0 means that there is no such p —set covering arbitrary
codewbrds in an MDS code, hence, if we choose the max p such that

L(p) =0 then we get (p,r, N)-superimposed code.

25
©(322)-MDS o® o
20 4 X(E24)-MDS a
0 (7.28)-MDS o
15 e
Y
~d
10 xxg"‘xxx
X X
5 x © xx
©@§% mn
o - _DMWB T T T
) 5 10 i5 20 25
P

Fig. 3.2.3 Comparing calculation results of three MDS codes.

32

3.2.2. The Probability of Extra Ones in The Recurrent Associate
' Map .

In an MDS code the number of ones in a row is calculated by the formula
p=q"".
Hence, as an input and an output code for the recurrent model of associative map, we

-1 one’s. However if we choose 4> 2, when

can choose an MDS code with p = g”
p goes to relatively large number we always get L(p)>1, i.e., any p-—sets
covers some codeword in a given MDS. So then, the following discussion is given
for h=2 MDScode, i.e., p=gq. In this case we always get L(p)<1.

Since we know the number of p — sets that cover a codeword in given MDS code,

then the probability that a p — sets covers a codeword satisfies following equation.

7 2 _El\:
I[q) - Co (pa n)

P(p,q,2) == =
g -1
.

)

Let p=gq, then equation above can be simplified and the function has only one

variable p.

p2 - l) - Co(p’ n)

o
>

©

54

input vector is included in sum of p - sets, i.e., a column of the map. If we choose a
vector from an input MDS code for recognition process, it is obvious that p
positions out of N positions have positively ones, because p number of Boolean
sums of p —sets must consist of the incoming vector itself. The problem is how
many extra ones may appear in N — p positions of an output, namely, how many

errors will occur with an incoming vector?

2
Since there are N = p’ codewords, we have (p) number of p—sets in which
p

2 —
there exist (p 1)—C‘,(p) number of p-—sets which cover a codeword and
p

C,(p) number of p—sets which do not cover any codeword. Furthermore, we
can regard the associate map as a set of p —sets which has N number of elements

4

and all elements come from (
p

2
) number of p — sets. Since p out of N positions

have always ones, this indicates us that pnumber of p-sets which covers an
incoming vector is already used and they never appear in other N — p positions
because each row in an MDS code is distinct. Hence, in order to calculate the

/

probability of extra ones in other N — p positions, we need to subtract a codeword

out of p’number of codewords.
Suppose we have x extra ones in N -—p positions, then we can choose

(pz - 1) - Co(pan)
p

X

number of p— sets which cover a vector and also

55

Co(p, .
(N"(p)] number of p-—sets which does not cover a vector. Hence, for the

probability distribution of extra ones, we multiply the both numbers and divide it by
p* -1
the total possible combination of p-—setsin N— p positions, ie., || p .
N-p

Thus, define X as a random variable of the number of extra ones in an output,

then the probability distribution of X , B(x, p), is calculated by the equation.

(” ~']~co(p) (Cotp)
p N—-p-x

B(x, p) =~ (for x=012,...,G(p) (7)

And also the probability after some iterations is calculated by the following

equation;

®

B (x,p)=|-

where y is the number of iteration. However, if we choose relatively large MDS

code, we can assume that the error of probability is going to decrease so we can get a

58

4. SUMMARY

In this thesis we tried to study the behavior of Boolean Networks, Cellular
Automata (CA) and Associate memory model with coding theory.

In the first part of the thesis we studied the computability of 1-D CA by inventing a
simple CA model, 3 colored balls model (3CBM). With the model we implemented
“NOT”, “OR” and “AND” collision based gates to show that my simple model can
be computational universal. Since the model can be computational universal and all
gates in this model have a common property that is “annihilation ”, we tried to use
this knowledge to show that other 1-D CA , R110 and R184, could be computational
universal too.

In the other part of my thesis, we studied Associate Memory quels with codixlg theory. To
study dynamics of the recurrent model, we used same MDS code as an input and an output and
found the probability distribution of the number of extra ones that may appear through associate
map. By the probability distribution we found, it was seen that the larger MDS code is used, the
number of error is going to decrease and also by comparing to binomial distribution, both results

are close and when we choose the larger MDS code the difference of both is getting closer.

(1]

[2]

[3]

[4]

(3]

[6]

(71

(8]

(9]

59

References

S. Wolfram, A New Kind of Science.
A.llachinski, Cellular Automata. World Scientific, 2001.

A. Adamatzky, Computing in nonlinear Media and Automata Collectives. 10P,
2001.

R. Hill, A First Course in Coding Theory. Oxford University Press, 1986.
G. Palm, On Associative Memory. Biological Cybernetics 36,19 31 1980.

V.V. Rykov and A.G.D’yachkov. On A Model of Associative Memory. Problemy
Predachi Informatsii, vol. 24, no.3, pp.107-110, 1988.

A.G.. D’yachkov, A.J.Macula and V.V. Rykov. New Applications and Results of
Superimposed Code Theory Arising from the Potentialities of Molecular
Biology. In the book "Numbers, Information and Complexity”, pp.265-282,

Kluwer Academic Publishers, 2000.

A.G. .D’yachkov and V.V. Rykov. Optimal Superimposed Codes and Designé
for Renyi's Search Model. Journal of Statistical Planning and Inference, vol.

100, (2002) pp. 281-302.

F.J. Macwilliams, N.J.A.Sloane. The Theory of Error-Correcting Codes.

North-Holland publishing company, 1978.

60

[10] A.G .D’yachkov and V.V. Rykov. A Survey of Superimposed Code Theory.

Problem of Control and Information Theory, Vol. 12 No. 4, pp. 229-242, 1983.

[11} W.H. Kautz, R.C. Singleton, Nonrandom Binary Superimposed Codes, IEEE

Trans. Inform. Theory, vol. 10, no. 4, pp. 363-377, 1964.

[12] V.V.Rykov and S.M.Yekhanin, Average number of vectors covered by an
arbitrary p-system of codewords of superimposed code based on MDS code.

Private correspond.

	Study on Dynamical process in Boolean Network.
	Recommended Citation

	tmp.1608220803.pdf.1uSQl

