View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Nebraska, Omaha

UNIVERSITY J OF
e University of Nebraska at Omaha

Omaha DigitalCommons@UNO
Student Work
9-1-2003

Spatial Data Mining Using Branch Grafted R-tree.

Priyanka Dubey

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Dubey, Priyanka, "Spatial Data Mining Using Branch Grafted R-tree." (2003). Student Work. 3542.
https://digitalcommons.unomaha.edu/studentwork/3542

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

https://core.ac.uk/display/368327344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3542?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Spatial Data Mining Using Branch Grafted R-tree

A Thesis

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

by
Priyanka Dubey

Fall, 2003

UMI Number: EP74740

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

= Dissertation Publishing

UMI EP74740
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College,
University of Nebraska, in partial fulfillment of the
requirements for the degree Master of Science in Computer Science,
University of Nebraska at Omaha

Committee

e Lidtentt

"
Chairperson ?’Z:&/w/:_f) %

Date 12/2 /2003

Spatial Data Mining Using Branch Grafted R-tree
Priyanka Dubey (MS, Computer Science)
University of Nebraska at Omaha

Advisor: Dr. Zhengxin Chen

Abstract

Spatial data mining is a process of extraction of implicit information, such as weather
patterns around latitudes, spatial features in a region, etc., with a goal of knowledge
discovery. The existing spatial data mining methods typically identify a specific data-
mining task for knowledge discovery. An example of a mining task may involve finding
weather patterns in the northwestern region of U.S.A. To find such weather patterns one
could employ an existing data structure, such as a B+ tree followed by the analysis of the
mined weather data for knowledge discovery. This is a typical top-down approach of

identifying a task, selecting a data structure, followed by queries and analysis.

This thesis provides a method and a simulation for mining spatial rules for the purpose of
knowledge discovery. The thesis takes a bottom up approach: it employs Branch Grafted
R-tree for the storage and retrieval of spatial data, followed by identifying tasks, followed
by spatial queries and analysis. The Branch Grafted R-tree is an efficient data structure
more suitable for efficient retrieval of data. This type of bottom up approach is unique

and takes the advantage of the previous work carried out using Branch Grafted R-tree.

The thesis extends [2] and [3] for spatial data storage and access. Their work can be
used for conventional spatial querying and spatial OLAP/data mining. The simulation in
the thesis forms a basis for the further development and implementation of a data mining

method.

In this thesis several queries and functions such as ‘close to’, ‘adjacent to’, etc. are
designed to extract desired information from the data stored in the Branch Grafted R-tree,
by extending window search algorithms [3]. The algorithms are developed and simulated
to analyze the data that results by executing queries, to mine spatial rules such as spatial
association rules, aggregation rules, and discriminant rules. The Branch Grafted R-tree

serves as a common ground for mining different spatial rules.

The data mining process in the thesis is simulation, carried out with relatively small data
size. The Branch Grafted R-tree uses RAM for data storage and retrieval. In the real
world, the implementation would have to address the issues of disk access due to large

data size.

Table of Contents

ADSEFAC. ... iii
List Of figUIeS..cceeiiiieiieiiniiiiiiiiieeiitienccetascocrsseccecsassecessencennes viii
Chapter 1 Introduction......cccccceiereiirieeientiiirsiimeecisscssesscssesccanccenes 1
1.1 Organization ot thesis..........cc.cooiiiiiiiiiiiiii i 4
Chapter 2 Literature RevieW....cccceiivueiiiniiiieiiiicieerieeciieeiincncnnenss 6
2.1 Issues Related to Spatial Data Mining.............ccovvveeieennennn. 6
2.2 Review of Spatial Data Mining Methods...............ccoeeiveenn... 7
2.2.1 Statistical Methods..........cooeiiiiiiiiiiiiiiiiiiiii i 7
2.2.2 Generalization based Knowledge Discovery.................... 8
2.2. 3 CIUSEEIINE. ..ot nteeieeate e et eteertieete e e eeaeeeneiiaeanns 10
2.2.4 Approximation and Aggregation...........coeevrereneernaeinnnen. 12
2.2.5 Spatial Data Cube Construction and Spatial OLAP............. 13
2.3 A Brief Discussion about Data Mining Methods..................... 16
‘Chapter 3 Spatial Queries Using Branch Grafted R-tree.................... 18
3.1 Review of Data Structures for Spatial Data Mining................ 18
B BHIEE oo RRe 19
Bl 2 R it et e 19
313 R HEC vt 21
K B R 3 (1T P 21
3.1.5 Branch Grafted R-tree.............ooviiiiiiiiiiiiiiiiic, 22
3.1.5.1 Branch Grafted Algorithm Description................c..oooeee 23
3.2 Spatial QUETIES....c.veiiieeir e eeiieeeiieeteieeeraaaen 25
3.3 Algorithms to Access Spatial data..................coooiiiiiiiiinenn. 28
3.3.1 Window Search Algorithm (overlap)..........c...ccooiviiiiiiiint, 29
3.3.2 Window Search Algorithm (contains).........ccovviieniiiiiiiiisiieins 30
3.3.3 Search by Distance Algorithm..............coovviiiiiiiiiiiiiiiiin., 31

3.3.4 Nearest Neighbor Algorithmc..c 33

3.4 Extending Spatial Queries for Spatial Data Mining - 35

3.4.1 Spatial Association Rules.............ooeiviiiiiiiiiiiiiiiiiiiiinnn 35
3.4.2 Spatial Classification Rules.............ccooeoiiiii, 37
3.4.3 Spatial Aggregation Rules..............c.oooiiiiiii 37
3.4.4 Spatial Discriminant Rules.................oooi 38

3.5 Motivation and focus of the thesisc.ooooiiiiiiiiiiin, 38
Chapter 4 Spatial Data Mining Program Construction......................... 41
4.1 Module Design Layout..........cooveeiiiiiiiiiiiiiiiniiiiiii i 41
4.1.1 Spatial Query Design..L..ciiieiieeeiiiiereeerienneeeinrerreerareennenns 44
4.1.2 Spatial Query Algorithm...........cooviiiiiiiiiiiiiinrereeeean, 49
4.1.2 Algorithm for‘close_to’ function................coooiviiiiiiiiinnn, 50
4.1.2.2 Algorithm for ‘adjacent to’ functionoeiiiiini. 53
4.1.2.3 Algorithm for ‘distant_from’ function....................0..ooee. 55
4.1.2.4 Algorithm for ‘intersects’ functionccevevevrueiinnennen. 57
4.1.2.5 Algorithm for ‘within’ function, 59
4.2 Mining Spatial Rules.........ccooooiiiiiiiiiiiii 60
4.2.1 Spatial Association Rule..........c....ooooiiiiiiii 62
4.2.2 Spatial Aggregation Rulecooiiiiiiiiiiiiiii 64
4.2.3 Spatial Discriminant Ruleccoooiiiiiiiiiiiiiiiiiiiiiiin 66

4.3 Computational Complexity of Algorithms..........cocoeevviiiiiiiii. 68
4.4 Chapter SUMIMATIY.oo.uiuuiniitiitt ettt 69
Chapter 5 Program Testing and Result AnalysiS...ccceeevieennnenneennnnnnn.... 70
5.1 Description of Spatial Data.............covviiiiiiiiiiiiiiiii 70

5.2 Implementation of QUeries..........ovuiieiiiieii i 72

5.3 Output Files Obtained by Running Queriesccoevveivninnen. 74

5.4 Analysis of Output for Mining Rulescooociiiiiiii.. 77

5.5 Mining Spatial Rules............coooiiiiiiii i 79

5.6 Chapter SUmMmary........ooeoviiiiiiiiii e 81

vii

Chapter 6 Conclusions......c.oveiieeiiueiiiiiieiiiiiieiiieteieiecctonssentesessenssnnss 82
O.1FUUIE WOTK . oo oot e e e 84
0.2 R EICIICES. . vttt e e e e s 85

List of figures

2.1 An illustration of Concept Hierarchy............oovviiiiiiiiiieienininiennenen.
2.2 Example of Spatial Data Dominant Generalization Method....................
2.3 Example of Non Spatial Data Dominant Generalization Method...............
2.4 Example of Star Schema............ccoiiiiiiiiiiiiii
3.1 AnExample of BHtree.....ooouiiiiiiiiii i
3.2 An Example of Branch Grafted R-tree............coooovviiiiiiiiiiiiiiniii,
3.3 Branch Gratfting Insert Pseudo Codecoiiiiiiiiiiiiiiiiiiiii s,
3.4 Branch Grafting Overflow Pseudo Codecccooiiiiiiiiiiiiiiiiin ..

3.5 Branch Grafting Overlap Pseudo Code............cc.oooviiiiiiiiiiiiiiiiii e

3.6 Window (Contains) Search Algorithm Pseudo Code............................

3.7 Search by Distance Algorithm Pseudo Code..............ccoviviiiiiiiiininnnnn.
3.8 Nearest Neighbor Algorithm Pseudo Code................coooiiii.
4.1 Module design layout of the program............c..coeviiiiiiiiiiiiiiin i,

4.2 Functions used in the spatial qUeries............coeeiiiiiiiiniiiiiiiiiiiiiin

4.3 Graphical representation of spatial data record set and topological queries ...

4.4 Graphical representation of spatial data record set and directional queries
4.5 Algorithm to execute the qUETIeS........covreiiiiiiiiiiiiiiiiiiiiii e,
4.6 An example of spatial query using ‘close to’ function...........................
4.7 An example of spatial query that uses ‘adjacent to’ function....................

4.8 An example of spatial query that uses ‘distant_from’ function...................

4.9 An example of spatial query that uses ‘intersects’ function

viii

10

15

19

22

24

24

29

30

32

34

43

46

47

4.10 Algorithm for mining spatial rules.i ... 61
4.11 Algorithm for mining association rule............ccooveiiiiiiiiiiiiiiiininnnn. 63
4.12 Algorithm for mining aggregationrule................cooiiiiiiiiiiiiii 65
4.13 Algorithm for mining discriminant rule..............coooiiiiiiiiiiiii i, 67
4.14 Computational Complexity of the algorithms in the thesis....................... 68
5.1 Spatial Data Format............c.oooiiiiiiiiiiii i 71
5.2 Data set used in the thesis work..............oooii 71
5.3 Example of QUeTies......couiiiiiiiiiiiiii i e 73

5.4 An example of output file...........oooeiiiiiiiiii 75

Chapter 1 - Introduction

Spatial data mining refers to the extraction of implicit knowledge, spatial relationships,
or other patterns, not explicitly stored in spatial databases. Spatial data differs from data
stored in relational databases. It carries topological information usually organized by
multidimensional indexing structures, accessed by spatial data access methods. Spatial
reasoning, geometrical computations, and spatial knowledge representational techniques
are used for spatial data processing. Spatial knowledge discovery can be defined as a
process of extracting valid, novel, potentially useful, and ultimately understandable

patterns from data.

Spatial data databases are very large databases and require special handling techniques.
This type of data collected over long period of time requires knowledge discovery (not
defined at the time of data collection) for providing meaningful information. This
requires .efﬁcient and effective handling of the data, developing optimized queries,
followed by analysis for knowledge discovery. Spatial data mining aims at discovering
various kinds of patterns (rules) of interesting and regular knowledge from large spatial
database. One example of mining a spatial rule is to find big cities with nearby spatial

features, like large water bodies.

The spatial data is represented in the form of x and y coordinates with some non-spatial
attributes (e.g. name). The examples of spatial data include data about cities, rivers,
roads, counties, states, and mountain ranges and non-spatial attributes are census, number

of industries in a geographical region etc.

Spatial data mining thus requires understanding of the spatial data and the relationship
between the non-spatial and spatial information. The spatial data involves organizing the
spatial data, designing queries for information retrieval with the intent of knowledge
discovery and for analyzing result-sets to mine rules for knowledge discovery. In this
thesis, programming techniques using Branch Grafted R-tree data structure have been
developed for data mining. The Branch Grafted R-tree data structure has been used for
the storage (in memory) of spatial data. R-trees are specialized forms of B+ trees adapted
for the efficient representation, access and management of spatial data. R-trees are
similar to B+ trees in the way the nodes are organized and managed [4]. The comparison
between R-trees and B+ trees has been further discussed in the section 3.1.2. This Branch
Grafted R-tree is like a basic R-tree with an enhanced method of record reorganization at

the leaf node level resulting in a better performance over R-tree [2].

The existing data mining methods use the data structure such as R-tree, MBR technique
or their variations. These methods focus on the task of mining itself and have strength in
problem solving at conceptual level because of their top down approach. In one example

the high level goal is to mine spatial association rule. A spatial association rule describes

the implication of one or a set of features by another set of features in spatial databases

[9].

First relevant data set from the relational database (containing spatial data) is queried to
extract the task relevant objects. The task-relevant-objects are refined at a coarse
resolution level using R-trees, MBR techniques, and plane-sweep algorithms to extract
the objects that are close to each other. The coarse level data further refined and filtered

to find predicates. Apriori algorithm is then used for mining spatial association rules.

This thesis takes a different approach than the above-described methods. Simulation of
the Branch Grafted R-tree (the generic spatial data of interest from text files stored in
Branch Grafted R-tree) is first carried out. The goal is to efficiently retrieve relevant data
objects. Thus, the approach is a bottom up approach. The bottom-up approach exploits
the performance advantages of the Branch Grafted R-tree. The specific spatial rules are

‘then mined as a last step.

The thesis extends the previous work, a thesis [2] and a thesis-equivalent project [3] on
spatial data access methods developed on a Branch Grafted R-tree. The thesis equivalent
project [3] extends the thesis work by [2] to access spatial data for conventional spatial
querying and spatial OLAP/ data mining. The approach of the thesis is to integrate the

conventional spatial query methods and spatial OLAP/ data mining by extending the

previous works [2] and [3]. Different data mining tasks use Branch Grafted R-tree as a

common data structure.

The Branch Grafted R-tree is a general-purpose spatial data management data structure.
The Branch Graﬁéd R-tree has been analyzed and compared with R-tree [2]. The
comparison shows that Branch Grafted R-trée has a better and improved performance
over R-tree. Another important factor is that a spatial query design for the retrieval of
coarse information. The mining of rules totally depends on the above-mentioned data.
This thesis focuses on developing a method of spatial query design and functions such as
‘close to’, ‘within’, ‘intersects’, etc. This is followed by the analysis of coarse data
(relevant information) retrieved as a result of spatial query. The algorithm for analysis
has been specifically designed for the thesis work. The Future Work section discusses the

limitations of the work.

1.1 Organization of the thesis

e Chapter 2 is a review of literature and related previous works, data mining techniques,
applications, and mining rules.

e Chapter 3 contains issues and challenges in spatial data mining. Spatial queries, data
structures, and search algorithms used in data mining have been discussed.

e Chapter 4 covers details of the design of queries, functions and data mining rules for

the thesis work.

Chapter 5 describes the structure and organization of related spatial data, description
of the algorithm for query retrieval, description of search algorithm, and description
of analysis process.

Chapter 6 discusses the results obtained, conclusion, and future work.

Chapter 2 -- Literature Review

Spatial data mining 1s the extraction of implicit knowledge, general relationships between
spatial and non-spatial data, or other interesting patterns and characteristics not explicitly
stored in spatial databases. Such discovery of knowledge may play an important role in
understanding spatial data, capturing intrinsic relationships between non-spatial and
spatial data, presenting data regularity in a concise manner and reorganizing spatial

databases to achieve high performance.

Initially, statistical analysis was used for the mining of data. The statistical cluster
analysis technique was modified for the use in spatial data mining [16]. The limitation of
statistical approach to handle interrelated spatial data gave rise to other spatial data

mining methods.

2.1 Issues Related to Spatial Data Mining

Over the years different methods related to spatial data mining have been developed. The
main issues related to data mining are

a. Suitable data structures

b. Efficient and scalable data mining queries/ algorithms

c. Accurate and user friendly presentation of data mining results (mined spatial

rules/ patterns)

2.2 Review of Spatial Data Mining Methods

Spatial data mining methods can be applied to extract interesting patterns and regular
knowledge from large spatial databases. These methods are used for understanding
spatial data, for discovering relationships between spatial and non-spatial data, and for
constructing spatial knowledge bases and query optimization, and for capturing the
general characteristic in concise manner. The spatial data mining methods have wide
application in geographic information systems, remote sensing, image databases, imaging
and other areas where the data type is spatial. The review of spatial data mining methods
provides an overall picture of the methods of spatial data mining, their strengths and
weaknesses. This review also provides the information about the work carried out so far

and potential future challenges.

2.2.1 Statistical Method

Statistics is a most common approach for analysis of the spatial data. There exist a large
number of algorithms and various optimization techniques [16, 24] for statistical analysis
of spatial data. These methods handle the numerical data well and are based on the

assumption of statistical independence among the spatially distributed data.

The assumption of statistical independence can cause problems in case of interrelated
data. The neighboring objects influence spatial objects in consideration. The dependent
variables can make the modeling process complicated. Statistical analysis requires the

domain knowledge and statistical expertise. Statistical methods do not work well with

incomplete and inconclusive data. These methods could be computationally intensive

and expensive.

2.2.2 Generalization Based Knowledge Discovery

Generalization based knowledge discovery needs background knowledge in the form of
concept hierarchies. The concept hierarchies [17] are given by experts or, in some cases,
automatically generated by data analysis. The idea behind the generation of concept
hierarchy is to group the data based upon their common attributes or characteristics.
Figure 2.1 shows an example of concept hierarchy. As we ascend the concept tree,
information becomes more and more general and remains consistent with the lower

concept levels.

p asmine I lBasmati

Figure 2.1 an illustration of Concept Hierarchy
Both jasmine and basmati can be generalized to the concept rice, which in turn can be

generalized to the concept grains, which also includes wheat

There are two types of concept hierarchies: Spatial and Non-Spatial. [18] The Spatial
Data dominant generalization (figure 2.2) performed on spatial data by merging the spatial
regions according to a description stored in a concept hierarchy, which may lead to a map,
consisting of small number of areas. Then, a non-spatial description of each area is
produced using the attributes. In the figure2.2 the non-spatial attributes are moderate and
hot while the spatial regions are northeast and east central.

Figure 2.2 [7] Example of a query an the result of the execution of the spatial-data-

dominant generalization method

Spatml-datmdammant

SN modemte
generahzatmn AN

eastn

central

| hoi(409”) or:
modemfe (60?’)

em
Ak :3“ :

L ’extract charactersst: rule.

K 1-ﬁfom iemperature«map 3
where provmc@ = ”B _C"

The Non-Spatial Data dominant generalization (figure 2.3) is used for generalization of
non-spatial data to a higher concept level. The algorithm creates maps, which consist of a
small number of regions sharing the same high-level non-spatial description. The
neighboring areas with the same generalized attribute values are merged together. In the
figure 2.3 the generalized attribute values are ‘very dry’, ‘moderately wet’, ‘fair’, ‘wet’
etc. The user’s requests in the form of queries initiate the general data characteristics and

discovery process. The syntax of query is similar to SQL.

10

Figure2.3 [7] Example of a query and the result of execution of the non-spatial-data-

dominant generalization method

Nonspat:ak—data«-demmant .
' general:zatmn moderately

5 ;;;extract reglon e L

from precxpztataen—map | o g
where provmce ="B.C." and L % NE
anci period = sprmg" énd year 1990 very.

' modefateb’ L

- im reievance to prempltatmn and regxon

The drawbacks of the above-described approach are:

In some cases such hierarchies are not present as priori. In case of spatial data the
components are merged at a lower level of concept hierarchies. The quality of the mined
characteristic rules depends considerably on concept hierarchies especially in case of
spatial data. In many cases such hierarchies given by experts may not always be entirely

appropriate.

2.2.3 Clustering

Data clustering is a branch of statistics. Data clustering discovers the distribution pattern
of the data set in large spatial databases [13]. The advantage of this method is that the
clusters can be found without much background knowledge or concept hierarchies. The
techniques PAM (Partitioning Around Medoids) and CLARA (Clustering Large

Applications) [19] have been used to discover the patterns. These algorithms attempt to

11

define clusters in a data set. PAM attempts to define cluster in the whole data set while
CLARA operates on a sample of the data set and uses PAM algorithm on the samples to
define clusters. Assuming that there are n objects, PAM finds k clusters by first finding a
representative object for each cluster. A most centrally located point in the cluster is
called as medoid. After selecting k medoids, the algorithm repeatedly tries to make a
better choice of medoids analyzing all possible pairs of objects such that one object is
medoid and other is not. CLARA draws multiple samples outputs the best clustering out
of these samples. Both these algorithms are proven to be inefficient from the
computational complexity point of view. A new algorithm CLARANS (Clustering Large
Applications based upon Randomized Search) developed by Ng and Han [13] for cluster
analysis helped improve the quality and efficiency of clustering. The main advantage of
the technique is that cluster can be found directly from the data without the need of

concept hierarchies.

The CLARANS algorithm assumes that the objects need to be clustered in the main
memory. This may not be valid in case of large databases. The integration of CLARANS
with R*-tree [23] to reduce the cost of computations alleviates the above described
drawback. The medoids of the clusters are easily calculated with the help of central most
object of a leaf node of the R*-tree containing neighboring points. The queries retrieve

the central object of a leaf node.

12

2.2.4 Approximation and Aggregation

The aggregate proximity is the measure of closeness of set of points in the cluster to a
certain feature. This method finds features of the clusters. Knorr and Ng [12] presented a
method to find features close to clusters. The algorithm reports the features with the best
aggregate proximity showing minimum and maximum distances of points in the cluster,
average distance, and percentages of points, located in the distance less than specified

thresholds.

The algorithm proposed by Knorr and Ng measures the aggregate proximity in order to
find the reason of cluster formation. At the same time CLARANS (Clustering Large

Applications based upon Randomized Search) algorithm is used to locate the clusters.

The use of k nearest neighbor searches using structures such as k-d trees, R-tree and its
variants seem an obvious solution but such searches are unable to perform the search

needed for their purpose.

To solve the problem Knorr and Ng [12] proposed CRH (C-encompassing circle, R-
isothetic rectangle, H- Convex hull) algorithm that uses the computational geometry [20]
concepts for distance computations, shape description, and overlap computations. The

CRH algorithm is scalable, consistent, efficient, and computes relatively faster.

13

The approximation and aggregation methods consider features of the neighboring objects
to find the characteristic of the clusters. The problem with this method is that a feature
may have to be tested for overlap with a cluster many times. This may result in multiple

computations.

2.2.5 Spatial Data Cube Construction and Spatial OLAP

On-line analytical processing (OLAP) [21] describes a class of technologies designed for
live ad hoc data access and analysis. While transaction processing generally relies solely
on relational databases, OLAP has become synonymous with multidimensional views of
data. OLAP is generally used for the on-line mining of data. The relational data helps to
integrate the spatial data to construct a data warehouse that facilitates spatial data mining.
The fast and flexible on-line analytical processing for spatial data mining in spatial data
warehouse has always been a challenge. For example, with a spatial data warehouse that
supports spatial OLAP, a user can view a weather pattern on a map by month, by region,
and by different combinations of temperature and precipitation. The wuser can
dynamically drill down or roll up along any dimension to explore desired weather patterns

such as “wet and hot regions in California in Summer 2000.”

The integration of spatial data from heterogeneous sources and systems is a challenge
regarding construction and utilization of spatial data warehouse that support OLAP. The
star schema model in figure 2.4 is a good choice for modeling spatial data warehouse

since it provides a concise and organized warehouse structure and facilitates OLAP

14

operations. In a spatial data warehouse both dimensions and measures may contain
spatial components. A spatial data cube has three types of dimensions namely a non-
spatial dimension, spatial to non-spatial dimension, and spatial to spatial dimension.

- A non-spatial dimension contains only non-spatial data.

- A spatial to non-spatial dimension is a dimension whose primitive-level data are spatial
but whose generalization, starting at a certain high level, becomes non-spatial dimension.
- A spatial to spatial dimension is a dimension whose primitive level and all of its high-
level generaliied data are spatial.

- A numerical measure contains only numerical data. For example one measure in a
spatial data warehouse could be the monthly revenue of a region, so that a roll-up may
compute the total revenue by year, by country, etc.

- A spatial measure contains a collection of pointers to spatial objects.

In general OLAP provides users flexibility to carry out a given task dynamically. The
efficient implementation of spatial data cube and OLAP is necessary otherwise on-line
computation becomes a costly operation. Unlike non-spatial data, for spatial databases
grouping and hierarchies can be numerous and unknown at design time therefore well
known OLAP techniques may not be directly applicable. Many applications such as
traffic supervision in a region generally need summarized data. This information can be
obtained from transactional spatial databases but it may be computationally expensive.

The spatial data warehouse and spatial cube construction are pre-requisites for OLAP.

15

Figure2.4 [7] A star schema of BC wheather spatial data warehouse and corresponding

British Columbia (Canada) weather probes map

. region

~ dimensiontable

16

2.3 A Brief Discussion about Data Mining Methods

The spatial data mining methods described in this chapter have their limitations with the
size or the type of data. The statistical method described in section 2.2.1 may hide
valuable information because these methods draw inferences based upon numbers that are
result of intensive computational manipulations. Such results may not represent the
population well. The generalization based knowledge discovery method (section 2.2.2)
requires the existence of background knowledge in the form of concept hierarchies. The
advantage of the clustering method (section 2.2.3) is that clusters can be found without
much background knowledge or concept hierarchies. The medoids (a most centrally
located point in the cluster) of the clusters are easily calculated with the help of central
most object of a leaf node of the R*-tree containing neighboring points. R*-tree helps to
reduce the cost of computations. The approximation and aggregation method (section
2.2.4) considers features of the neighboring objects to find the characteristic of the
clusters, thus focusing on clusters only. The problem with this method is that a feature
may have to be tested for overlap with a cluster many times. This may result in multiple
computations. The on-line analytiéal processing (section 2.2.5) is a class of technologies
designed for live ad hoc data access and analysis. OLAP provides users flexibility to
carry out a given task dynamically. The efficient implementation of spatial data cube [22]

and OLAP is necessary otherwise on-line computation becomes a costly operation.

17

The literature review continues through Chapter 3 with the review of various data
structures including R-tree, Branch Grafted R-tree, and description of branch grafting
algorithm. The review continues with the discussion of spatial queries and algorithms to
access spatial data in a R-tree. The work in the thesis has modified windows search
algorithm to search desired spatial object stored in the Branch Grafted R-tree. The
literature review in Chapter 3 also contains the review of spatial data mining rules such as
spatial association rule, discriminant rule, aggregation rule, and classification rule

followed by justification of the thesis work.

18

Chapter 3 - Spatial Queries using Branch Grafted' R-tree

3.1 Review of Data Structures for Spatial Data Mining

Spatial operations like spatial joins, map overlays, and spatial queries are used in the
algorithms for spatial data mining. Spatial data access methods and data structures have
an important role in spatial data mining. Spatial data structure consists of points, lines,
rectangles, etc. Multidimensional trees such as Quad-trees, K-d trees, R-trees, R*-trees
are used to build the indices of these trees. Spatial join is one of the expensive spatial
operations. The section 3.1 describes some of the important data structures used for
organization and storage of spatial data. The important data structures are R-tree, R -tree,
R*-tree, and Branch Grafted R-tree. The thesis uses Branch Grafted R-tree due to
improved performance over R*-tree. The insertion and search operations play a key role

in the data retrieval used in the thesis.

19

3.1.1 B'-tree

B+-tree [4] is most widely used dynamic data structure. It is balanced tree in which the
internal nodes direct the search and the leaf nodes contain the data entries. The searching
for records requires just a traversal from root to a leaf. The purpose of the intermediate
nodes is to hold keys that partition and refine the node domain. Figure 3.1 shows and

example of a B+ tree data structure.

40|75|

2 ||] s || 80

10 [[]]] % IE [{] 75 80 [{] 9 [|100

Figure 3.1 An Example of B+ tree

3.1.2 R-tree

R-tree [5] is a simple data structure used in spatial data mining. It is a height-balanced
tree that contains all leaves at the same level. The root nodé has at least two children.
The non-leaf nodes contain [m/21 entries, where m is the maximum number of entries in
a node. The spatial data is represented as rectangles called minimum bounding rectangle.
A non-leaf node contains information of the bounding rectangle, in the form of the
coordinates, of its child node. The leaf node of an R-tree stores the record of spétial data

stored, in the form of the coordinates of a rectangle, in relational database.

20

R-trees are specialized forms of B+ trees adapted for the efficient representation, access
and management of spatial data. R-trees are similar to B+ trees in the way the nodes are
organized and managed [4]. In R-tree and B+ trees, the actual data either resides in the
leaf nodes or is directly pointed to by the leaf nodes. The intermediate nodes hold keys.
These keys partition and refine the node domain as one travels from the root node to the
leaf nodes. The spatial data represents n-dimensional objects and often quite large. If
this data were stored in a normal B+ tree, the nodes would only be capable of holding a
few records and the tree would become high. The height of the tree will result in poor
performance of several operations. In R-tree by locating the data, or pointers directly to
the data, in the leaf nodes allows one to store more intermediate node records in fewer

nodes, making the resulting tree height considerably lower.

The two trees differ in their representation and management of keys. The keys in an n-
dimensional R-tree may be coordinates of the minimum point (x,y,z,... coordinates) and
the dimensions of the minimal n-dimensional box that bounds the n-dimensional boxes of
all child nodes under the said node. These differ from traditional B+-tree keys, which are
generally one-dimensional with an order implied among records within each node. The
maximum number of records per node for the B+ tree in figure 3.1 is two and the

minimum number of records per B+ tree node is one.

21

3.1.3R" tree

R* tree is similar to R-tree [10] in structure. The R tree stores bounding rectangles that
do not overlap. In case of overlapping rectangles split algorithm ensures that the
rectangle that is overlapping the two bounding rectangles splits into two disjoint
rectangles. Such a node splitting algorithm is complex and produces duplicate data

records. The search efficiency of R tree is better than that of the R-tree.

3.1.4 R* tree

R*-tree [4] [23] uses the basic R-tree and utilizes a split algorithm to minimize cover,
overlap, and margin of each bounding rectangle in the nodes. This tree supports both
point and spatial data. It is more expensive to implement in comparison to R-tree. Data
lrepresentation using an R*-tree is more accurate resulting in efficient query retrievals,

insertions and deletions.

In order to reduce the need of splitting nodes, certain numbers of records are deleted from
the node and reinserted in other nodes. This improves the quality of data organization in

the R*-tree.

22

3.1.5 Branch Grafted R-tree

The Branch Grafted élgorithm uses the R-tree with better reorganization of records at
leaf-node level. The algorithm uses the grafting of a leaf or a branch node in the tree in
order to reduce the number of nodes in the R-tree. The more accurate data structure
improves the performance of query. The split in R-tree does not consider rest of the
nodes in the tree while the Branch Grafted tree scans the other nodes in order to find an
opening. This opening can accommodate a rectangle. This could avoid the need of a
split and reduces the number of node in the tree. The improvement in search time is a
result of lesser number of nodes in the tree.

The data structure used for storing spatial data in the thesis is Branch Grafted R-tree.

Reference [2] carried out the implementation of the data structure.

R1 [R2

Figure3.2 An Example of Branch Grafted R-tree

23

3.1.5.1 Branch Grafting Algorithm Description

The Branch Grafting algorithm [1] and [2] improves the accuracy and speed of the node
overflow operations. In case of a node overflow, the Branch Grafting algorithm first looks
for records in the parent node that overlap the bounding directory of the full node.
Individual records in the full node are then evaluated for placement under the overlapping
parent nodes. Records are moved under a parent node if the resulting area of coverage for
all nodes involved is smaller. If no records are moved to make room for the initially

inserted record, then a split is performed using the original R-tree split algorithm.

The R-tree is a hierarchical data structure in which each node corresponds to the smallest
d-dimensional rectangle that encloses its child nodes. The leaf nodes contain pointers to
the actual data in the database. The parameters of the tree are chosen such that a small
number of nodes are visited during the spatial query. This increases the response time of
the data structure. The rectangles corresponding to different nodes may overlap, so that
the spatial query may often require several nodes to be visited before ascertaining the

presence or absence of a particular rectangle.

24

Figure3.3 Branch Grafting Insert Pseudo Code
This describes the record insertion process. The letter “N” represents a node in the tree.
The letter “E” represents the new entry to be added and the letter “M” represents the

-maximum number of records per node.

S1 — invoke choose sub tree with the desired tree level as a parameter to find a
node N into which the new entry E may be placed.

S2 -if N has less than M records
then insert E into N.
else invoke the overflow operation
end if (S2)

$3 — adjust all covering rectangles in the insertion path such that their minimum
bounding rectangles enclose their child nodes. Grow the tree if necessary.

Figure3.4 Branch Grafting Overflow Pseudo Code
This describes the process to deal with attempted insertions into nodes that are full. The

letter N represents the full node.

S1 — invoke the find opening operation
S2 — for each candidate target node
invoke the make move operation
if one or more nodes are moved out of N
then return success.
else invoke split node
end if
end for

25

3.2 Spatial Queries

Location based and feature based queries are the two main types of spatial queries. The
first type of query is location-based query. In this case, we search for the nature of the
feature associated with a particular location or in its proximity. The second is feature-
based. In this case, we probe for the presence or absence of a feature, as well as seek its

actual location.

The location-based queries are used to search the features associated with a location.
These types of queries are easy to answer. The queries search tree in top down manner
until the object is found. In order to find the feature in the proximity of a particular

location the search is continued in the neighborhood of the node containing the object.

The feature-based queries are considered to be difficult due to absence of indexing-by-
features that are related to spatial objects. The indexing is based on spatial occupancy
only. The feature based queries process the data without examining every location in

space.

The types of the location-based queries are regional-queries and point-queries. A regional
query finds all data objects that intersect a given spatial rectangle formed around a spatial

object that overlap or fall within the query window.

26

A point-query is a special case of the region query in which an aligned rectangle is a

single point.

Following are some types of location-based queries [3]

1.

2.

Point-in-polygon query: Find all objects containing a point.

Window query: Find all objects within a query rectangle.

Overlap query: Find all objects that overlap a query rectangle.

Nearest neighbor query: Find the object closest to a query object.

Distance scanning: Enumerate the objects in increasing distance from a query object.
Spatial join: Find all pairs of objects that satisfy join condition, which may be
intersection, containment, equality or others.

Buffer query: Determine the buffer around a query object, i.e., this query determines
the amount of dead space in a node.

Path query: Determine a path between two points.

Spatial operation and spatial-join operations can be implemented by extending the

window search algorithms described in the literature review (Chapter 2). The ‘oveflap’

algorithm can be used to find objects that satisfy the join condition. The Contains

algorithm can be used to find all objects that satisfy the given containment condition.

The objective of the path query is to find a path between two objects. The path query can

be implemented by combining the window-search algorithm and the nearest-neighbor

algorithm. This can be achieved by calculating the distance between coordinates of the

27

centers of the two points. A path must be found between these two points. These two
centers can be used as the coordinates of the search window. A window search operation
can be executed to find all data rectangles that lie in this window. The nearest-neighbor
algorithm is used to find the closest data rectangles. This rectangle is the path between

the two points.

The objective of spatial data access method is to minimize the number of index pages for
a given query. The three main design objectives namely area, overlap, and perimeter
should be considered to achieve the best possible performance in an index structure for

multidimensional objects [4].

The area of the minimum-bounding rectangle that corresponds to different nodes must be
small. The smaller area increases the probability of accessing a particular node. The area
covered by a bounding rectangle should be reduced in order to minimize the dead space.
This improves performance because the path to be traversed can be decided at a higher

level.

The overlap between different minimum bounding rectangles is a critical factor. The
overlap usually occurs in densely populated regions of the database. The overlap must be

kept small as it reduces the number of paths to be traversed.

28

The minimum bounding rectangles are best for region queries. It is important that the
perimeter of the minimum bounding rectangles also be as small as possible. The
minimum margin of a bounding rectangle makes the rectangle more quadratic because,
for a fixed area, the rectangular object with the smallest margin is a square. The quadratic

rectangles can be packed easily and thus build a smaller rectangle.

The point-in-polygon query is a special case of window search algorithms (Contains).
The nearest-neighbor query has been used in the nearest neighbor algorithm implemented

in the thesis.

Branch Grafted R-tree has an advantage when a huge amount of spatial data needs to be
stored. Grafting reduces the height of the tree, which helps in information retrieval from
the tree. The information retrieval is faster as the search algorithm traverses fewer search

paths due to lesser number of nodes reduced by grafting.

3.3 Algorithms to Access Spatial Data

Once the spatial data is organized using an efficient data structure such as Branch Grafted
R-tree, a data retrieval method is needed for further processing. Section 2.3 contains a
brief description spatial data access/ search algorithms. The algorithms have been

implemented to test the performance of the Branch Grafted R-Tree [3].

29

3.3.1 Window Search Algorithm (Overlap)

The original overlap algorithm was described in [5]. This algorithm, (figure 3.5) finds all
the objects that overlap a specified search window and can be used for location-based
queries. It finds all the data records represented in the form of rectangles in the data

structure that intersect the specified query object.

The algorithm is implemented by a complete tree traversal i.e. by visiting representative
blocks in a top-down manner. The algorithm checks for overlap at each stage. In case of
overlapping- non-leaf node the algorithm works recursively to reach at the lowest level of
hierarchy. The. objects that match with the query window are considered to be satisfying

the query.

Figure 3.5 Overlap Algorithm Pseudo Code

if data record overlaps search window
return true

else
return false

[or]

if ((srch_win.x > (data_rec.x + data_rec.dx)) ||
((srch_win.x + srch_win.dx) < data rec.x) ||
(srch_win.y > (data_rec.y + data_rec.dy)) ||
((srch_win.y + srch_win.dy) < data_rec.y))
return false

else
return true

30

3.3.2 Window Search Algorithm (Contains)

This is a variation of the above described overlap algorithm. This algorithm finds all
objects within a specified search window. This algorithm is implemented by a full tree
traversal. The method involves visiting the blocks in a top-down manner. At each stage
the block is checked for whether it lies completely within the given query window. In
case of a non-leaf block that satisfies the given condition, the algorithm is applied
recursively to reach at the lowest level of the hierarchy. The objects in the block that
satisfy the given query window are reported. The method developed in the thesis uses
similar approach for the retrieval of data stored in Branch Grafted R-tree. The
implementation details have been discussed in the Chapter 4.

Figure 3.6 Window (Contains) Search Algorithm Pseudo Code

To find all index records that fall within the search window S.
Root Node - T
Search Window — S
Index Record — E

S1 - Search subtree
if T is not a leaf node
then check each entry E to determine if rectangle
part of index entry E is enclosed by S

for all matching entries, call search on the tree
whose root node is pointed to by the child pointer of E
end for

end if

S2 - Search leaf node

if T is a leaf node
then check all entries E to determine if rectangle
part of index entry E is enclosed by S

if it is enclosed return E
end if
end if

31

3.3.3 Search by Distance Algorithm

The search-by-distance algorithm (figure 3.7) works similarly to the nearest-neighbor
algorithm [8]. The algorithm has metrics such as search by the minimum distance, center-
to-center distance, and maximum distance from the query window. The algorithm is
implemented by a tree-traversal method, where the blocks are visited in a top-down
manner. It checks at each stage the distance between the block and the query window. If
the distance between the two is equal to the specified distance then the block is
considered. If the block in the tree is a non-leaf node then the algorithm is applied
recursively to reach at the lowest level of the hierarchy. If the objects at the leaf nodes are

at the specified distance from the query window, then they are reported.

At each node, the algorithm sorts all of the entries using minimum distance MINDIST (P,
R), maximum distance MAXDIST (P, R), and center distance CTRDIST (P, R) between

the data records where P is the data record and R is the search window.'

32

Figure 3.7 Search by Distance Algorithm Pseudo Code

To find all records that lie within a specified distance from the search window.

Root—-T

Search Window — S
Distance — D

S1 - Search subtree

if node is not a leaf node
then check each data record of the node to determine
if the distance of the data record E from the
search window is less than D

for all records that match call the search routine
on the tree whose node is pointed to by the child
pointer of index record E
end for

end if

S2 — Search leaf node
if the node is a leaf node
for all data records E of the node
if the distance from the search window is less than
D then return E
end for
end if

33

3.3.4 Nearest Neighbor Algorithm

This algorithm is an extension of the search-by-distance algorithm. The nearest-neighbor-
search [8] finds points with minimum point-to-point distance from a given query point.
The Nearest Neighbor ranks all objects in terms of their distances from a query in an
incremental manner. The nearest neighbor algorithm uses a list/queue as a data structure

to store the blocks of the underlying data structure and objects.

The algorithm works in a top-down manner in the tree. In this process the algorithm
computes the distance between the centers of the bounding rectangle of the record and the
query window. The record that lies within the specified distance is considered to be the
candidate record. The nearest neighbor is retrieved from the elements of the candidate

record list or the neighbor list.

The method developed in the thesis uses similar approach for the retrieval of data stored
in Branch Grafted R-tree. The implementation details have been discussed in the Chapter

4.

Figure 3.8 Nearest Neighbor Algorithm Pseudo Code

34

To find “n” closest records from the search window

Root-T

Search Window — §
Distance — D

S1-

S2 -

S3 -

Search subtree
if node is not a leaf node

end if

then check each data record of the node to determine
if the distance of the data record E from the
search window is less than D

for all records that match call the search routine
on the tree whose node is pointed to by the child
pointer of index record E

end for

Search leaf node
if the node is a leaf node

end if

for all data records E of the node
if the distance from the search window is less than
D thenreturn E

call insert neighbor function to insert the record into the nearest neighbor list
end for

Find nearest neighbor
for all records in the nearest neighbor list find n closest neighbors

return

end for

35

3.4 Extending Spatial Queries for Spatial Data Mining

The search algorithms and spatial queries mentioned in the previous sections retrieve the
relevant information from the large spatial data set. The representation and analysis of
the information, thus obtained as result of spatial queries, is important for the better
understanding, usage, and meaningful insight into the spatial data. Recent studies of
mining spatial rules have led to a set of interesting techniques to represent the patterns
and features in a spatial data set. Strong spatial rules indicate the patterns and implication
relationships in the large spatial data set. The following section contains a review of four

spatial rules: association rules, classification, aggregation, and discriminant rules.

3.4.1 Spatial Association Rule

Spatial association is a rule that describes the implication of one or a set of features by
another set of features in spatial database. A spatial association rule is of the form “X >
Y” where X and Y are the sets of predicates and some of them are spatial ones. In a large
database many relationships may exist but some may occur rarely and may not hold in

most cases.

Koperski and Han [7] suggested a method in order to find various rules. First, the set of
relevant data is retrieved by executing of the data retrieval methods of the data mining
query, which extracts the following data sets whose spatial portion is inside British

Columbia: (1) towns: only large towns; (2) roads: only divided highways; (3) water: only

36

seas, oceans, large lakes and large rivers; (4) mines: any mines; and (5) boundary: only

the boundary of B.C., and U.S.A.

Secondly, the “generalized close to" (g_close_to) relationship between (large) towns and
the other four classes of entities is computed at a relatively coarse resolution level. This
is achieved by using a less expensive spatial algorithm such as the MBR data structure
and a plane sweeping algorithm or R*-trees and other approximations. The derived
spatial predicates are collected in a g_close_to table, which follows an extended relational
model: each slot of the table may contain a set of entries. The support of each entry is
then computed. The entries with support below the minimum support thresholds are

removed from the table.

Notice that from the computed g close to relation, interesting large item sets can be
discovered at different concept levels and the spatial association rules can be presented
accordingly. For example, the following two spatial association rules can be discovered

from this relation.

is_a(X, large town) ~ g_close to(X,water) : (80%)

is_a(X, large town) " g_close to(X,sea) = g_close to(X,us boundary) : (92%)

37

3.4.2 Spatial Classification Rule
Classification is a data mining technique where the data stored in a database is analyzed
in rder to find rules that describe the partition of the database in a given set of classes

[15].

Geographic data consists of spatial objects and non-spatial description of these objects.
Non-spatial descriptions can be stored in a relational database with a pointer to the spatial
description of the object. The process of spatial classification is to find a rule to partition
a set of classified objects into a number of classes using spatial relations of the classified
objects to other objects in the database.

The example of the classification rule is “big cities in North America are closer to big
rivers while smaller cities are closer to smaller rivers”. In this example the cities have

been classified based upon the size of the river closer to them.

3.4.3 Spatial Aggregation Rule

Aggregate values for areas close to spatial objects plays a very important role in the
analysis of many business objects like stores, gas stations, etc. [15]. To handle the
aggregate values of non-spatial attributes in thematic maps one can calculate aggregate
values for the intersecting objects. The aggregate data can also be generalized and:
merged with the predicates. Finally each object can be classified using a set of predicates

I3
7

describing properties of both thematic map and other intersecting objects. One example

38

of aggregation rule is the total number of cities in Canada located close to USA Canada

border.

3.4.4 Spatial Discriminant Rule

A spatial discriminant rule is a general description of the contrasting or discriminating
features of a class of spatial;related data from other classes. Discriminant-rule mining is
basically mining of a set of comparison rules that contrast the general features of different
classes of the relevant sets of data in a database. This is a comparison of one set of data,
known as the target class, to the other sets of data known as contrasting class (es).

For example comparison of the weather pattern in two geographic regions is a spatial

discriminant-rule.

3.5 Motivation and Focus of the Thesis

There are several spatial data mining methods discussed in the Chapter 2. The purpose of
the discussion of several data mining methods is to provide the overall picture of spatial
data mining process. Each method has been discussed with its advantages and
shortcomings. Individual description of each method for spatial data mining also

provides a brief comparison with the method developed in the thesis.

39

The main issues and challenges with the spatial data mining are to retrieve data faster, to
avoid heavy computations, to provide a simple user interface, and to represent results

comprehensively.

The method developed in this thesis focuses on the above challenges. The data structures
used for the storage and organization of spatial data play an important role in the mining
of spatial data. Many data mining methods use relational database structure for the
organization and storage of data. The various types of data structures have been
discussed in the section 3.1. R-tree is a general-purpose algorithm used in the mining of
spatial data. The data structure used in the method developed in the thesis is Branch
Grafted R-tree. The Branch grafted R-tree is an improved data structure. The grafting
process results in a reduced height tree. The reduced height tree helps in faster data
retrieval i.e. better performance of Branch Grafted R-tree over R-tree. The spatial data in
the form of coordinates of bounding rectangles, is stored and organized using Branch
Grafted R-tree. The spatial data stored in the Branch Grafted R-tree is retrieved with the
help of algorithms similar to the search algorithms described in the section 3.3. The idea
behind the search is to traverse the tree to find nodes within a certain distance from a
given node. Minor computations used in the search process help to make mining efficient

and fast.

A good user interface is an important factor for spatial data mining process. The method

developed in the thesis is initiated by SQL-like query. Several functions and search

40

algorithms developed in the thesis solve queries that retrieve data stored in the Branch
Grafted R-tree. The end user can mine data using queries as an easy to use and flexible
interface. The data retrieved as a result of several queries performed on a given spatial
data set. The result data set is then analyzed to mine spatial rules viz. spatial association

rule, discriminant rule, aggregation rule, and classification rule.

The approach to mining spatial rules in the thesis is different from the previous methods
discussed in the literature survey. This is a unique bottom up approach where the
performance of the data structure (Branch Grafted R-tree) has already been tested and
analyzed. There is a hope of developing a spatial data mining method using Branch

QGrafted R-tee.

In the Chapters 2 and Chapter 3 the focus was to review the data structures to store spatial
data and different methods to search the data structure. The next chapters describe the
development of a method to mine spatial rules using the Branch Grafted R-tree for

storage of the spatial data.

41

Chapter 4 - Spatial Data Mining Program Construction

In the previous chapter different data structures, algorithms to access data in Branch
Grafted R-Tree data structures, spatial queries and their design were discussed. The
extension of spatial queries for mining spatial rules was also discussed. This was then
followed by a brief discussion on motivation and focus of the thesis. Next, specific
algorithms that are used in this thesis, to retrieve data from data structures and for mining

spatial rules, are discussed.

This chapter starts with the description of the modules of the programs and their
objectives. The chapter continues with the description of spatial queries developed in the
thesis. The queries designed in this method are implemented for the retrieval of data
stored in the Branch Grafted R-tree. The data stored in the Branch Grafted R-tree is in
the form of coordinates of bounding rectangles of spatial objects. The chapter ends with

the discussion on complexity analysis of the algorithms in the thesis.

4.1 Module design layout

The program to mine spatial rules contains three parts viz. building Branch Grafted R-
tree, spatial query to retrieve relevant information from the pool of spatial data stored in

the tree, and mining spatial rules from the relevant data.

42

The link between the three modules described above has been shown in the figure 4.1.

The Module 1 builds a data structure using input data files and stores the data in the
Branch Grafted R-Tree. The algorithm of Branch Grafted R-tree [2] has been used for
this purpose. The details of the data used in the program are described in section 5.1.
The algorithm itself has been described in section 3.1.4.1 of the Chapter 3. The input
data file is the spatial data used for data mining e.g. town, river, water body data, schools,
mines, hospitals etc. The input user queries in the program are also fed in the form of a

text file.

The Module 2 is designed to retrieve relevant data stored in the Branch Grafted R-Tree
with the help of queries and stores the relevant output in a text file. The program first
takes one query and two data files as input and finds the coordinates of the query object,
e.g. a ‘water_body’, and searches the tree that stores ‘town’ data to find the matching
coordinates that satisfy the given criteria such as nearest, close to etc. The matching

coordinates are stored in an output text file.

The Module 3 describes the mining of the spatial rules viz. spatial association rule,
aggregation rule, and discriminant rules from the pool of matching coordinates. These
rules are basically statistics about a certain criteria for example percentage of major cities
in US located close to a water body. These spatial rules haye been explained in detail in

the later part of the chapter.

Figure 4.1 Module design layout of the program

Module 1 Module 2
Input data file Build Branch Query Spatial data to

Grafted R-tree retrieve relevant

information
Output stored in text
file
Mining spatial rules
Module 3

Output spatial rules

43

44

4.1.1 Spatial Query Design
The purpose of the query is to search the spatial data stored in Branch Grafted R-tree.

The data records stored in the Branch Grafted R-tree are in the form of bounding

rectangles of the spatial objects. These records are stored at the leaf nodes.

Functions were designed and written in C language to help in the implementation of such
queries. Combinations of these functions were then used to design meaningful queries.

These queries were then run on the Branch Grafted R-tree.

The main spatial operators used for the query design in the thesis can be mainly divided
in two categories; topological and directional. The spatial operators such as
‘containment’, ‘intersection’, ‘adjacency’, ‘inside’, and ‘within’ fall under the category of
topological operators while ‘northwest’, ‘distance compared to’, ‘near’, and ‘close to’

are directional operators.

The operators described above play a key role in the implementation of the queries.
These operators have been implemented in the form of functio.ns to access spatial data.
Spatial objects are interrelated objects. Spatial objects affect neighboring objects. A
query using both topological and directional operators must be used to find neighboring

objects.

45

The target spatial objects may intersect, overlap, be very close to, adjacent to, or exist
inside the query object. I have implemented a number of functions to find all pairs of
objects that satisfy a join condition, which may be intersection, containment, equality or
others. These functions--‘close to’, ‘distant from’, ‘adjécent_to’, ‘intersects’, and
‘within’--guide the search of spatial objects stored in the Branch Grafted R-tree. The role

and details of these functions are described later in chapter (figure 4.2)

Main functions used for the query design are as follows:

Function Parameters Description

name

close to (name,d) Returns true 1if calculated distance
name: description | between coordinates of two spatial objects
of spatial object (rectangles)<=d

distant from | (name, d) Returns true if calculated distance
name: description | between coordinates of two spatial objects
of spatial object - (rectangles)<=d
d: distance

intersects (name) Returns true if calculated distance
name: description | between coordinates of two spatial objects
of spatial object (rectangles) is <= 0

adjacent_to (name) Returns true if calculated distance
name: description | between coordinates of two spatial objects
of spatial object (rectangles) is within the range of 1 to 5

near_to (name) Returns true if calculated distance
name: description | between coordinates of two spatial objects
of spatial object | (rectangles) is within the range of 1 to 10

contains (name)
name: description
of spatial object

inside (name)
name: description
of spatial object

within (name)
name: description
of spatial object

Figure 4.2 functions used in the spatial queries

46

47

The following example shows a method to solve topological operators such as
‘intersects’, ‘adjacent to’, ‘contains’, “within’, and ‘inside’ in a spatial query. Figure 4.3
is a graphical representation of spatial data records. The search window is represented in
the form of dotted lines represents the coordinates to be searched in a given spatial data

pool stored in Branch Grafted R-tree.

The rectangles A and C are completely inside the dotted rectangle, B overlaps and D is

completely outside. The search algorithm only considers rectangles A, C and B as ‘hit’.

Figure 4.3 graphical representation of spatial data record set and topological queries

48

The following example shows a method to solve directional operators such as distance
compared to, close to, northwest, near in a spatial query. Figure 4.4 is a graphical
representation of spatial data records. The search window is represented in the form of
dotted lines represents the coordinates to be searched in a given spatial data pool stored in

Branch Grafted R-tree.

The distances between the centers of the rectangles A, B and D are 4.6, 7, and 8.2
respectively. If the specified distance is 7 then only A and B meet the criteria of the
specified distance. The distances between the search rectangle and A, B are less than or

equal to the specified distance to be considered as hit.

Figure 4.4 graphical representation of spatial data record set and directional queries

49

4.1.2 Spatial Query Algorithm

The algorithm defined in figure 4.5 reads input queries from the keyboard or input text
file. The text files are used in the thesis to process multiple queries in short time. The
input queries are SQL like queries and extract task relevant objects or information from
the data stored in the Branch Grafted R-tree data structure. In order to extract information
from more than one data source e.g. ‘water body’ and ‘city’ the Branch Grafted R-trees
are built first to store the required data mentioned in the ‘FROM’ clause of the query.
The next step is to analyze the ‘WHERE’ clause of the query. The ‘WHERE’ clause of
the query contains, conditions and functions figure 3.9 specified by users to retrieve the
data.

For example: WHERE CITY _LOCATION CLOSE TO (WATER BODY) AND

WATER BODY = ‘Lake Michigan’

In the above example the ‘WHERE?’ clause contains the information about the location of
the object to be retrieved i.e. close to water body and name of water body as Lake
Michigan.

In order to retrieve a spatial object, based upon the conditions mentioned in the
‘WHERE’ clause of the query, first the coordinates of the spatial objects mentioned in the
‘WHERE’ clause are determined. The coordinates of the objects mentioned in the

‘WHERE’ clause act as a search window in the tree. The functions such as ‘close_to’ etc.

50

are solved with the help of the search window coordinates. The various functions

developed for the queries in the thesis have been discussed in detail in the next section.

Figure 4.5 Algorithm to execute the queries is as follows:

S1 - Build required trees

S2 - Read user defined queries from input files or key boards

S3 - Get coordinates to be searched (search window) from the tree defined in the ‘where’
clause of the query

S4 - Call function defined in the “where’ clause of the query

S5 - Update the output file with the number of ‘hits’ returned by the functions

The examples of various functions are as follows:

4.1.2.1 Algorithm for ‘close_to’ function

close to()
d=30
if node is not a leaf node
then check each data record of the node to determine
if the distance of the data record from the
search object (rectangle) is less than d

for all records that match call the routine
on the tree whose node is pointed to by the child
pointer of index record
end for
end if

if the node is a leaf node
for all data records of the node
if the distance from the search object (rectangle) is less than
d then return the node
hit = hit +1
end for
end if

51

Calculation of distance

dx — distance along the x direction between
search window and data record

dy — distance along the y direction between
search window and data record

Distance — Sqrt((dx; * dx,) + (dy; * dy,))

if distance between centers of data record and
search object < specified distance
return hit
else
calculate all possible combination of distances between the four coordinates of
bounding rectangle of target
object stored in Branch Grafted R-tree and four coordinates of search objects
store the distances in and array
for all distances in the array
find min distance
end
if minimum distance between the bounding rectangle of the
target object and the coordinates of search rectangle < specified distance
return hit
else

return miss
end if

The ‘close_to’ function finds spatial objects stored in the Branch Grafted R-tree within
the specified or at a given distance of the given spatial object. The algorithm searches the
tree in top down manner and calculates the distance between the given spatial object
(query) and records stored in the leaf nodes of the Branch Grafted R-tree. All possible
distances are calculated between the bounding rectangle of given (query) object and the
records stored in the leaf nodes of the Branch Grafted R-tree. To minimize calculations
first the distance between the centers of the two objects is calculated. If the distance

between the centers of the two spatial objects is less than or equal to the given or

52

specified distance in the query then the object is considered as hit. Otherwise the all-
possible distances are calculated between the two objects and if the minimum distance
between the two objects is less than or equal to the specified distance then the object is

considered as hit.

SELECT CITY_NAME, CITY_LOCATION

FROM CITY, HYDRO

WHERE CITY_LOCATION LOCATION CLOSE_TO (WATER_BODY)
AND WATER BODY = ‘Lake Michigan’

Figure 4.6 An example of spatial query using ‘close to’ function

The query in figure 4.6 is designed to select the city name and its location and the city
from the database that contains all the cities in North America and located within 60

miles radius of Lake Michigan.

The information related to all the water bodies in North America is stored in the database
called HYDRO. There are various functions that govern search such as ‘close to’,

‘intersects’, ‘adjacent _to’, ‘distance_from’ (figure 3.1) etc.

The ‘close_to’ function accepts the water body name and distance as the parameters. It
then finds the coordinates of the bounding rectangle of the water body and, using the

coordinates to find the cities that are within 60 miles of the water body. The user can use

53

the query and thus find cities close to a water body and within a desired distance from the

water body.

Calculating the distance between the coordinates of the given spatial object and the target
node of the tree solves the functions described above. The calculated di»stance is
compared to the specified distance sent to the functions in the form of parameter. To the
parameter distance figure a +5% of tolerance figure is added in some functions in order to
consider range of distance.

4.1.2.2 Algorithm for ‘adjacent_to’ function

adjacent to()
distance range=1to 5
if node is not a leaf node then
check each data record of the node to determine
if the distance of the data record from the
search object (rectangle) is within distance range

for all records that match call the routine
on the tree whose node is pointed to by the child
pointer of index record
end for
end if

if the node is a leaf node then
for all data records of the node
if the distance from the search object (rectangle) is less than
the distance range then return the node
hit = hit +1
end for
end if

The ‘adjacent to’ function finds the spatial objects stored in the Branch Grafted R-tree
within the specified or a given distance of the given spatial object. The algorithm

searches the tree in top down manner and calculates the distance between the given

54

spatial object (query) and records stored in the leaf nodes of the Branch Grafted R-tree.
All possible distances are calculated between the bounding rectangle of given (query)
object and the records stored in the leaf nodes of the Branch Grafted R—ﬁee. To minimize
calculations first the distance between the centers of the two objects is calculated. If the
.distance‘ between the centers of the two spatial objects is less than or equal to the given or
specified distance in the query then the object‘ is considered as hit. Otherwise all the
possible distances are calculated between the two objects and if the minimum distance
between the two objects is less than or equal to the specified distance then the object is

considered as hit.

SELECT CITY NAME, CITY LOCATION

FROM CITY, HYDRO

WHERE CITY LOCATION ADJACENT TO (WATER_BODY)

AND CLOSE_TO (US_ BUNDARYJ30) AND WATER BODY =
‘ATLANTIC_OCEAN?

Figure 4.7 An example of spatial query that uses ‘adjacent to’ function

The ADJACENT TO function accepts the water body name as the parameters. It then
finds the coordinates of the bounding rectangle of the water body and, using the
coordinates to find the cities that are within 5 miles of the water body and at 30 miles of
distance with us boundary. The user can use the query and thus find cities adjacent to a

water body and within a desired distance from the water body.

55

Calculating the distance between the coordinates of the given spatial object and the target
node of the tree solves the functions described above. The calculated distance is
compared to the specified distance sent to the functions in the form of parameter. To the
parameter distance figure a +5% of tolerance figure is added in some functions in order to
consider range of distance.

4.1.2.3 Algorithm for ‘distant_from’ function

distant from()

if node is not a leaf node
then check each data record of the node to determine
if the distance of the data record from the
search object (rectangle) is less than specified distance d

for all records that match call the routine
on the tree whose node is pointed to by the child
pointer of index record
end for
end if

if the node is a leaf node
for all data records of the node
if the distance from the search object (rectangle) is less than
the specified distance d then return the node
hit = hit +1
end for
end if

The ‘distant_from’ function finds the spatial objects stored in the Branch Grafted R-tree
within the specified or a given distance of the given spatial object. The algorithm
searches the tree in fop down manner and calculates the distance between the given
spatial object (query) and records stored in the leaf nodes of the Branch Grafted R-tree.
All possible distances are calculated between the bounding rectangle of given (query)

object and the records stored in the leaf nodes of the Branch Grafted R-tree. To minimize

56

calculations first the distance between the centers of the two objects is calculated. If the
distance between the centers of the two spatial objects is less than or equal to the given or
specified distance in the query then the object is considered as hit. Otherwise the all -
possible distances are calculated between the two objects and if the minimum distance
between the two objects‘is less than or equal to the specified distance then the object is

considered as hit.

SELECT CITY_NAME, CITY_LOCATION

FROM CITY, HYDRO

WHERE CITY_LOCATION DISTANT_FROM (WATER_BODY,50)

AND CLOSE_TO (US_BOUNDARY, 20) AND WATER_BODY = ‘PACIFIC OCEAN’

Figure 4.8 an example of spatial query using ‘distant_from’ function

The ‘distant_from’ function accepts the water body name as the parameters. It then finds
the coordinates of the water body, using the coordinates to find the cities that are at a 50
miles of distance with Pacific Ocean and 20 miles of distance with US boundary. The

user can use the query and thus find cities that are distant from a given object.

Calculating the distance between the coordinates of the given spatial object and the target
node of the tree solves the functions described above. The calculated distance is

compared to the specified distance sent to the functions in the form of parameter. In the

57

calculated distance a tolerance of +5 % has been added, as the objective is to find

intersecting objects.
4.1.2.4 Algorithm for ‘intersects’ function

intersects()

if node is not a leaf node
then check each data record of the node to determine
if the distance of the data record from the
search object (rectangle) is less than d

for all records that match call the routine
on the tree whose node is pointed to by the child
pointer of index record
end for
end if

if the node is a leaf node
for all data records of the node
if x1 or yl coordinate of search object rectangle are greater than
x2 or y2 coordinates of target data object rectangle or
x2, or y2 coordinated of search object rectangle are less than
x1 or y! coordinates of target data object rectangle
return miss
else
return hit = hit +1
end for
end if

The ‘intersects’ function finds the spatial objects stored in the Branch Grafted R-tree

within the specified or a given distance of the given spatial object.

The algorithm

searches the tree in top down manner and calculates the distance between the given

spatial object (query) and records stored in the leaf nodes of the Branch Grafted R-tree.

In order to find whether the bounding rectangles of two objects intersect the coordinates

are tested. If x1 or yl coordinate of search object rectangle are greater than x2 or y2

coordinates of target data object rectangle or x2, or y2 coordinated of search object

rectangle are less than x1 or yl coordinates of target data object rectangle then object are

58

not considered to be intersecting objects. Otherwise in all other conditions the objects are

considered to be intersecting objects (hit).

SELECT CITY NAME, CITY LOCATION

FROM CITY, HYDRO

WHERE CITY_LOCATION INTERSECTS (MAJOR_US_HIGHWAY)

AND CLOSE TO (WATER BODY, 30) AND WATER BODY = °‘LAKE
MICHIGAN> AND MAJOR_US_HIGHWAY = ‘I-90’

Figure 4.9 an example of spatial query using ‘intersects’ function

The ‘intersects’ function accepts the major us highway name as the parameters. It then
finds the coordinates of the highway, using the coordinates to find the cities that are at a
zero miles of distance and of the water body and at 30 miles of distance. The user can

use the query and thus find cities that intersect a given object.

Calculating the distance between the coordinates of the given spatial object and the target
node of the tree solves the functions described above. The calculated distance is
compared to the specified distance sent to the functions in the form of parameter. In the

calculated distance no tolerance is added, as the objective is to find intersecting objects.

59

4.1.2.5 Algorithm for ‘within’ function
within ()

if node is not a leat node
then check each data record of the node to determine
if the distance of the data record from the
search object (rectangle) is less than d

for all records that match call the routine
on the tree whose node is pointed to by the child
pointer of index record
end for '
end if

if the node is a leaf node
for all data records of the node
if x1 and yl coordinate of search object rectangle are less than
x1 and y1 coordinates of target data object rectangle
and x2 and y2 coordinated of search object rectangle are greater than
x1 and y1 coordinates of target data object rectangle
then return node
hit = hit +1
end for
end if

The ‘within’ function finds the spatial objects stored in the Branch Grafted R-tree within
a specified or a given distance of the given spatial object. The algorithm searches the tree
in top down manner and calculates the distance between the given spatial object (query)
and records stored in the leaf nodes of the Branch Grafted R-tree. In order to find
whether the bounding rectangles of target or data object is within the search object or
window the coordinates are compared. If x1 and yl coordinates of the search objects are
less than the x1 and yl coordinates of the target or the data object and x2, or y2
coordinates of search object rectangle are greater than x2 and y2 coordinates of target data
object rectangle then data object is considered to be within the search object window

(hit).

60

4.2 Mining Spatial Rules

The output data of the queries is stored in a text file. The text file contains a variety of
the result sets from different queries. This result set cannot be directly used to mine
spatial rules. The grouping of the data is necessary to find the predicates. Spatial
predicates are the topological relations like (close to, water). The predicates
determination is the first step in mining of the spatial rules. The algorithm described in
figure 4.5 computes large predicates. For example for each row of the output file resulted
from queries (i.e. each large town), if the water attribute is non empty the count of water
is incremented by one such a count contributes to 1-predicate rows. The program also
computes the support counts for each predicate set. If the support count is less than the
minimum threshold the row is not considered for further analysis. The 2-predicate rows
are formed by the pair-wise combination of the large 1-predicates with their count. In the
thesis only 1 and 2-predicate sets are considered. The example of 2-prédicate sets is

(adjacent to, water), (close_to, us_boundary).

The algorithm, developed in the thesis work, to determine predicates and support count
reads the results of queries and stores them in linked list. The records are categorized into
different categories such as size (big, small), type of the spatial object (e.g. ‘water body’,
‘us boundary’, ‘gas station’) etc. If each categorized attribute of the record matches with

the attributes of a record stored in the sample node of the linked list, the support count of

61

the record stored in the linked list is incremented by one. Otherwise a new node is
created with support count equal to one. In this way all the data obtained as a result of

queries is grouped in the form of predicates with their support count.

For example the output of a query: CITY B CLOSE TO MINNESOTA RIVER B
indicates that there is a big city close to big Minnesota River. This record when
processed to determine the predicate then the result of predicate is (close to,

big_water body)

Figure 4.10 algorithm for mining spatial rules is as follows:

n > existing node of linked list
r - record from output file

S1 - Read output file (result of queries) records
S2 - for each output record r of output file
if first node of linked list the
head = create_node(r)
else
for each node n of the linked list
if (data stored in n =r) then
n->support_count = n->support_count + 1? increment support count
else
tail = create_node (r)
n->.support_count = n ->support_count + 1
S3 - mine rules

62

4.2.1 Spatial Association Rule

In order to mine the spatial association rules described in the section 3.4.1 first the
predicates need to be determined. Spatial predicates are the topological relations like
(close to, water). The result data set of the queries is first analyzed to determine
predicates and suppoi't for each predicate. Once all the predicates and support for each

predicate are determined then this result set is analyzed for mining association rule.

The method used in the thesis is based upon the calculation of confidence of the
predicates. The confidence (percentage) of a rule is calculated with the help of support

count of predicates. The following is an example of extraction of association rule.

Predicates Support Count
CITY (CLOSE_TO, water) 11
CITY (CLOSE_TO, ‘US boundary’), (CLOSE_TO, water) 6

In the above example the association rule is extracted with the help of confidence (%)
calculation

(6/11) * 100 = 54%

The mined spatial association rule is:

CITY ~ CLOSE_TO (water_body) = CLOSE_TO ‘US boundary’ (54%).

The above mined rule means that 54% of cities in US close to water body are close US

boundary.

63

The algorithm developed to mine association rule in the thesis (figure 3.14) .takes the
grouped data records (predicates) stored in the linked list as input. For each node of the
linked list that contains 1-predicate set all the nodes with 2-predicate sets are compared.
If the 1-predicate set and its attributes (big, small) matches with one of the 2-predicate set
and attributes then the confidence is calculated. Confidence of rule is calculated by the

fraction of the support counts of 1 and 2-predicate sets.

Figure 4.11 algorithm for mining association rule is as follows:
mine_association_rule()
S1 - for each predicate set stored in the node n1 of list L1 containing 1- predicate set
Traversé the list to find nodes that contain 2-predicate sets
'Compare the predicate set from L1 stored in n1 and predicate sets stored in n2
If 1-predicate set (n1) matches with one of the 2-predicate sets (n2) then
? Calculate Confidence C
C =(support count of 2-predicate set / support count of 1-predicate set) * 100
Update the output list L2

S2 - Update output file with the help of output linked list L2

64

4.2.2 Spatial Aggregation Rule

In order to mine the spatial association rules described in the section 3.4.3. The result
data set of the queries is the first analyzed to determine predicates and support count for
each predicates. Once the predicates and support count for each predicate are determined
then this result set is analyzed for mining aggregation rule. The method used in the thesis
is based upon the counting of the support count of the predicates. One example of mining
of aggregation rule is to find the total number of big cities in North America close to big

water bodies.

The predicates are determined with the help of the algorithm described in the figure 3.15
and stored in the linked list. For each predicate-set in the node of the linked list the
algorithm searches the complete linked list in order to find predicates having same
attributes in 1-predicate and 2-predicate sets. The support counts of the matching

predicates are added to mine aggregation rule.

Support Count
CITY BCLOSE TO water body B 11
CITY B CLOSE_TO water body B CLOSE_TO ‘US boundary’ 4

B - Big size of city and water body

In the above example the aggregation rule is extracted by adding the support counts of the
big cities close to big water bodies. Both the records have at least one predicate set in

common along with the size attribute.

65

The mined spatial aggregation rule is:
Total number of big cities in North America located close to big water bodies are 11+ 4 =

15

The algorithm developed to mine association rule in the thesis (figure 3.4) processes the
grouped data records (predicates) stored in the linked list. For each node of the linked list
that contains 1-predicate set remaining nodes of the linked list are compared. If a
predicate set and its attributes (e.g. big, small) match with other sets of predicates and

attributes then their support counts are added for mining aggregation rule.

The algorithm for mining aggregation rule is as follows:
Figure 4.12 algorithm for ‘mine aggregation rule’
'S1 - For each predicate set stored in the node nl of list L containing k - predicate sets

Compare the predicate sets and attributes of n1 and n2

If n2 contains 2-predicate sets then
Compare the predicate sets of n2 with nl
If matching predicate is found then
Total count =nl. Support_count +n2. Support_count

Update output list
S2 - Update output file

66

4.2.3 Spatial Discriminant Rule

Mining of spatial discriminant rules described in the section 3.4.4 starts with the analysis
of data set obtained as a result of spatial queries. The purpose of the analysis is to
determine predicates and calculate support count for each predicate. Once the predicate
sets and support count for each predicate set are determined, the result set is then further
analyzed for mining of aggregation rule. The method used in the thesis is based upon the
grouping of similar predicates. This method is similar to the mining of aggregation rules
method .and there is no need of a separate algorithm for the mining of discriminant rule.
The user can mine discriminant rule with the help of the grouped predicates to find

contrasting groups.

One example of mining of discriminant rule is that ‘big cities are located close to big
water bodies while smaller cities are located close to small water bodies in North
America’.

The predicates are determined with the help of the algorithm described in the figure 3.16
and stored in the liniced list. For each predicated set in the node of the linked list the
algorithm searches the complete linked list in order to find predicates having same
attributes in 1-predicate and 2-predicate sets. The support count of two predicate sets are
added and stored in another. This results in a new list containing the grouped predicates
with the total support counts. The resulting output is self-explanatory and two contrasting

predicate groups result in discriminant rule.

Figure 4.13 algorithm for mining discriminant rule

S1 - For each predicate set stored in the node nl of list L. containing k - predicate sets
Search the list
Compare the predicate sets and attributes of two nodes n1 and n2
If n2 contains 2-predicate sets then
Compare the predicate sets of the n2 with nl
If matching predicate is found then
Total count = nl. Support count+ n2. Support_count
Update output list
end if
end if

67

4.3 Computational Complexity of Algorithms

68

Figure 4.14 summaries the three modules of the thesis and the complexity associated with

these modules.

Start

Build Tree from Data:
Complexity: O(n)

Module # 1
Complexity: O(n)

ead input queries
Complexity: O(1)

Search coords. in BGRT
Complexity: O(n)

Module # 2
Complexity: O(n)

Complexity: O(n)

Call functions based on input queries to find relevant data in BGRT

Store query results in output file (A)
Complexity: O(1)

ead from text file (A) for mining spatial rules
Complexity: O(1)

Module # 3
Complexity: on?)

Group relevant data set determine support count
Complexity: O(n*)

ine spatial rules for knowledge discovery
Complexity: O(n) and O(nz)

End

Figure 4.14 Computational Complexity of the algorithms in the thesis

69

4.4 Chapter Summary

This chapter first lays out the different modules involved in the program structure. The
three modules described include: Build the Branch Grafted R- Tree, Retrieving data from
the Branch Grafted R-Tree using queries, and mining spatial rules. Fach module’s
function has been described briefly. This is followed by spatial query design for data
retrieval, format of the spatial queries, algorithm for spatial queries, and different
functions 1ised by SQL like spatial queries. Different algorithms that are used for analysis
of the relevant output of the queries to mine spatial rules such as spatial association rules,
aggregation rule, and discriminant rule have been discussed. The chapter ends with the

summary of complexity analysis of the different algorithms used in the thesis.

The next chapter uses actual data and simulates the above-described steps. These steps

are illustrated in detail.

70

Chapter S -Program Testing and Result Analysis

K

The previous chapter contains the description of the modules of the programs and their
objectives. The chapter contains the description of spatial queries developed in the thesis
for the retrieval of data stored in the Branch Grafted R-tree. The methods to retrieve
spatial data and mining of spatial rules have been discussed at the algorithmic levei.
Next, the implementation details of the spatial ‘queries and spatial data mining methods

used in the thesis are discussed.

This chapter starts with the description and example of spatial data used in the thesis.
The description of the spatial data is followed by spatial query design and method to
implement the query used in the thesis with an example. The output of the queries has
been shown in the form of a text file. The output is followed by the analysis of the output

to mine rules.

5.1 Description of Spatial Data

The spatial data for the work has been down loaded from TIGER/LINE. The TIGER
database contains spatial information about hydrology, transportation, and other objects
like national and state parks, churches, universities etc. The data used in this work deals
water bodies in the North America, cities of North America, and US highways. More

information about cities by counties was obtained from LANDVIEW3 site. This data

71

contains the spatial and detailed non-spatial information as, census, industries, income
level, etc. The raw data from different counties and states was rearranged and merged to
make a master data file. The data format is as follows:

minimum x coordinate, minimum y coordinate, positive delta x, positive delta y, name

-121.950938 37.685388 0.008408 0.005066 TOWN 14
-121.690552 37.591956 0.001539 0.001361 TOWN 15
-121.689014 37.591354 0.000001 0.000602 TOWN 16
-121.689014 37.585831 0.001264 0.005523 TOWN_17
-121.68775 37.585831 0.001245 0.000007 TOWN 18
~-121.686505 37.585838 0.003179 0.000051 TOWN 19
-121.683326 37.585883 0.00117¢9 0.000006 TOWN 20
-121.680127 37.583727 0.000001 0.000522 TOWN 21
-121.680126 37.576767 0.000011 0.00696 TOWN 22
-121.680115 37.572106 0.000007 0.004661 TOWN_ 23
-121.687508 37.564131 0.0074 0.007975 TOWN_24
-121.688781 37.564122 0.001273 0.000009 TOWN 25
-121.689319 37.564122 0.000538 0.00121 TOWN_ 26
-121.691202 37.565332 0.001883 0.00135 TOWN_27
-121.694097 37.566682 0.002895 0.002076 TOWN_ 28
-121.699571 37.569861 0.003951 0.002855 TOWN_ 29
-121.716276 37.577567 0.009862 0.008694 TOWN_30
-121.733522 37.595505 0.003644 0.003436 TOWN_ 31
-121.690948 37.593306 0.000396 0.000011 TOWN_ 32
-121.706282 37.593072 0.015334 0.000234 TOWN_ 33
-121.708758 37.597509 0.001437 0.002799 TOWN 34
Figure 5.1 Spatial data format
Data Set Name Data Set Type Records

rail_tiger95 Real — railroad spatial data 31,059
hydro_tiger95 Real — hydrographic spatial 360,330

data
town_tiger95 Real — town borders spatial 234,251

data
rail_river Real — railroad river spatial 128,971

data
street Real — street spatial data 131,461

Figure 5.2 Data set used in the thesis

72

5.2 Implementation of Queries

Two different trees are built, namely, ‘Hydro’ and ‘Town’ to store data related to the
above query. The program first searches the name of the water body in the data stored in
the Branch Grafted R-tree returning the coordinates of the bounding rectangle of the
water body. Then with the help of the coordinates thus obtained, the instance of the
Branch Grafted R-tree that stores CITYT DATA is searched with the help of the window
search algorithm. The Branch Grafted R-tree is traversed in top-down manner to find the
leaf nodes that satisfy the given condition in the query. The conditions could be the
distance between the coordinates of the bounding rectangle stored in the leaf node and the
coordinates of the water body. If the leaf node satisfies the given condition then it is
considered to be a ‘hit’. The number of such ‘hits’ are counted and returned to the calling

program.

The input queries are in the form of a text file, the program reads to process multiple
queries at once at a faster rate. The p‘rogram has also been designed to take the input

from keyboard.

The important queries used are listed below:

CITY
CITY
CITY
CITY
CITY
CITY
CITY
CITY
CITY
CITY
GAS_S
GAS_S
GAS_S
CITY
CITY
CITY
cITY
CITY
CITY
CITY
CITY
CITY
CITY

CITY

CLOSE_TO
CLOSE_TO
CLOSE_TO
CLOSE_TO
ADJACENT_TO
ADJACENT _TO
ADJACENT TO
DISTANT _FROM
DISTANT FROM
DISTANT FROM
CLOSE_TO
CLOSE_TO
CLOSE_TO
INTERSECTS
INTERSECTS
INTERSECTS
CLOSE_TO
CLOSE_TO
CLOSE_TO

ADJACENT_TO

ADJACENT_TO

MISSISSIPPIRIVER
MISSISSIPPI(INTERNMENT)

TR-MINNESOTA

CANNON

‘TR-MINNESOTA RIVER

VERMILLION RIVER

OFFSTREAM

LAKE ONTARIO

MISSOURIE RIVER

CHICAGO RIVER

1-80

1-94

I-35W

1-80

1-94

I-35W

MISSISSIPPIRIVER

TR-MINNESOTA

CANNON

TR-MINNESOTA RIVER

VERMILLION RIVER

DISTANT_FROM LAKE ONTARIO

DISTANT_FROM MISSOURIE RIVER

CLOSE_TO

ATLANTIC OCEAN 20

20

30

10

0

0

20

15

CLOSE_TO

20
20
30

10

20
15

15

20
CLOSE_TO
INTERSECTS
CLOSE_TO
CLOSE_TO

CLOSE_TO

US_BOUNDARY
135W

ST.PAUL

ST PAUL

ST PAUL

DISTANT_FROMUS_BOUNDARY

DISTANT_FROMUS_BOUNDARY

US_BOUNDARY 20

20

30

10

10

10

20

I5

73

Figure 5.3 Combination of such queries was used to mine rules from the result data set

obtained as a result of the above queries.

74

5.3 Output Files Obtained By Running Queries

The results of the above queries are stored in an output file with the help of a C program.
An example of the output, in reference to the above listed query, is in the form listed
below:

CITY CLOSE_TO Lake Michigan X, where X is the number of hits

The above suggests that X number of cities have been located in the spatial database

within 30 miles of the water body ‘lake Michigan’.

Such output obtained is a result of several queries performed on the spatial data with the
intent of knowledge discovery. The queries designed have thus helped in mining the
database and in reaching a higher refinement level. Although conclusions cannot be
drawn at this stage, meaningful insight has certainly been obtained. The information
obtained at this stage requires further processing. Further mining and analysis is then

carried out.

Figure 5.4 Example of output file:

objectl sizel functionl object 2 object type2 size 2 distancel
CITY B CLOSE TO MISSISSIPPIRIVER w R 20
CITY B CLOSE_TO MISSISSIPPI INTERNMENT) W B 6
CITY B CLOSE_TO TR-MINNESOTA w S 3
CITY S CLOSE_TO CANNON w B 2
CITY B ADJACENT_TO TR-MINNESOTA RIVER w S 3
CITY S ADJACENT_TO VERMILLION RIVER w S 2
CITY S ADJACENT_TO OFFSTREAM w S 1
CITY B ADJACENT_TO TR NEWPORT BAY w S 2
CITY B ADJACENT_TO ATLANTIC OCEAN w B 15
CITY S ADJACENT_TO LAKE ERIE W B 10
CITY B ADJACENT_TO PACIFIC OCEAN w B 35
CITY B DISTANT_FROM LAKE ONTARIO w B 15
CITY S DISTANT_FROM MISSOURIE RIVER w B 16
CITY S DISTANT_FROM GREAT EGG HARBOR RIVER W S 10
CITY S DISTANT_FROM TUCKAHOE RIVER W S 11
CITY S DISTANT_FROM LAKE HURON w B 22
CITY B DISTANT_FROM CHICAGO RIVER w S 10
bITY B CLOSE_TO GULF OF MEXICO W B 17
CITY B CLOSE_TO ATLANTIC OCEAN W B 50
GAS S B CLOSE_TO 1-80 H B 32
GAS_S S CLOSE_TO 1-94 H B 14
GAS S S CLOSE_TO I-35W H S 9
GAS S S CLOSE_TO 1-494 H B 5
GAS_S S CLOSE_TO 1-680 H B 6
CITY B INTERSECTS 1-80 H B 15
CITY S INTERSECTS 1-94 H B 6
CITY S INTERSECTS 1-35W H B 9
CITY B CLOSE_TO MISSISSIPPIRIVER B W CLOSE_TO US_BOUNDARY 11
CITY B CLOSE_TO MISSISSIPPIINTERNMENT)BCLOSE_TO US_BOUNDARY 0
CITY S CLOSE_TO TR-MINNESOTA B W INTERSECTS -35W 5

25

20

10

10

15

17

CITY S CLOSE_TO CANNON S W CLOSE_TO ST.PAUL 3
CITY S ADJACENT TO TR-MINNESOTA RIVERB W CLOSE_TO ST PAUL 5
CITY S ADJACENT_TO VERMILLIONRIVERS W CLOSE_TO ST PAUL

CITY S ADJACENT TO OFFSTREAM S CLUSE_TO ST PAUL 2
CITY S ADJACENT TO TR NEWPORT BAY S CLOSE_TO US_BOUNDARY 3
CITY B ADJACENT TO ATLANTIC OCEAN B CLOSE_TO US_BOUNDARY
CITY S ADJACENT TO LAKE ERIE B CLOSE_TO US_BOUNDARY 7
CITY B ADJACENT TO PACIFICOCEAN B CLOSE_TO US_BOUNDARY
CITY B DISTANT FROM LAKE ONTARIO B DISTANT FROM US_BOUNDARY
CITY B DISTANT FROM MISSOURIE RIVER S DISTANT FROM US_BOUNDARY 0
Ity s DISTANT FROM GREAT EGG HARBOR RIVER S DISTANT FROM US_BOUNDARY
CITY S DISTANT FROM TUCKAHOE RIVER S DISTANT FROM US_BOUNDARY 5
CITY B DISTANT_FROM LAKE HURON S DISTANT FROM US_BOUNDARY 6
CITY B DISTANT_FROM CHICAGORIVER S DISTANT FROM US_BOUNDARY 2
CITY B CLOSE_TO GULF OF MEXICO B CLOSE_TO US_BOUNDARY
CITY B CLOSE_TO ATLANTIC OCEANB CLOSE_TO US_BOUNDARY
GAS.S B CLOSE_TO 1-80 B INSIDE COLORADO 5
GAS.S B CLOSE_TO 1-94 B INSIDE MINNESOTA 4
GAS S S CLOSE_TO -35W S OUTSEDE MINNESOTA 7
GAS S B CLOSE_TO 1494 s OUTSIDE MINNESOTA 2

GAS.S S CLOSE_TO 1-680 S CLOSE_TO NEBRASKA 3
CITY B INTERSECTS 1-80 B CLOSE_TO MISSOURIE RIVER 3
CITY B INTERSECTS 194 B CLOSE_TO MISSISIPI RIVER 5
CITY B INTERSECTS -35W s CLOSE_TO MISSISIPIRIVER 6

77

5.4 Analysis of Output for Mining Rules

In order to analyze the results obtained above a C program was written. The program
reads the output file generated by the execution of the queries and processes it to mine
rules. The program categorizes the result sets based on the functions and given condition

parameters.

The algorithm in figure 4.5 for mining spatial rules reads the output record one by one
and makes a linked list. If the record is already present in the linked list then the record
counter is incremented by one ofherwise a new node is added to the linked list. The
objective of the algorithms is to categorize the result obtained by query processing. The
criteria for categorizations are the type of spatial object (W -> water, H->highway, U->
US boundary including US Canada, US Mexico boundary and shore lines), size (B-> Big,
S-> Small), and function (close_to, intersects, distant from, adjaceﬁt_to, within, inside

etc.).

78

Once the final linked list is formed then the linked list is traversed to mine spatial rules.
For example:

CITY B CLOSE_TO B ‘lake Michigan’ 5

CITY B CLOSE_TO B ‘Atlantic ocean’ 6

CITY B ADJACENT TO B ‘Mississippi’ river 8

CITY S ADJACENT TO S ‘Off streams’ 13

CITY B CLOSE_TO ‘Atlantic Ocean B CLOSE_TO ‘US boundary’ 4

The programs categorizes the above example data as follows and stores it in a linked list:

CITY CLOSE_TO water 5+6=11
CITY ADJACENT TO water 21
CITY CLOSE_TO ‘US boundary’ and water 4

For mining a rule the program now traverses the linked list and performs the following
calculation:

(4/11) * 100 = 36.36%

The mined spatial association rule would then be:

CITY ~ CLOSE_TO (big_water body)—> CLOSE_TO ‘US boundary’ (36.36%).

The above mined rule means that 36.36% of cities in US close to water body are close_to

US boundary.

The mined spatial aggregation rule mine from the above example data is:
CITY CLOSE_TO (big_water body) =5+ 6+4 =15

Total 15 big cities in North America are close to big water body

79

The spatial discriminant rule mined from the given example data is:
Big CITY ADJACENT TO (big_water body) while Small CITY ADJACENT TO

(small water body)

The above-mentioned result is new information (knowledge) that has been generated by
using the current information (present in the database), performed specific queries, and by
carrying out analysis on the results of the query. The new information thus obtained is
now available for mining application, as for natural resource management, city planning,
or by real estate industry.

5.5 Mining Spatial Rules

Following are some spatial rules discovered by the implemented programs:

Spatial Association Rules

is_a (big_town) ” close to (big_water body) -2 close to (us_boundary): 70%

e is a(small town) " close to (big water body) - close to (us_boundary): 85%

e is a(big_town) ” close to (small_water_body) -> close to (us_boundary): 32%

e is_a(small town) " close to (small water body) = close to (us_boundary): 40%

e is_a(small town) " adjacent_to(big_water body) > adjacent to (us_boundary): 78%
e is a(big town) " adjacent_to(big_water body) > adjacent to (us_boundary): 67%

e is a(big town) " closc_to(big_watcr body) = intersects(inajor lighway): 97%

e is a(small town)"close to(small water body)-> intersects(major_us highway): 56%

80

Spatial Aggregation Rules

e Total number of big cities located close_to(big_water bodies) in North America: 43
e Total number of gas stations located close to (major_us_highways) in NY: 107

e Total number of small cities close_to(big_watér_bodies) in North America: 134

e Total number of big cities located close to(us_boundary) in North America: 32

e Total number of small cities located close to (us_boundary) in North America: 59

Spatial Discriminant Rule

e Large number of gas stations are located close_to (major_us_highways) while small
number of gas stations are located close_to(small_streets)

o Big cities are located close to(big_water bodies) while small cities located
close to(small water bodies)

e Large number of industries are located within(big_cities) while small number of cities

located within(small_cities)

81

5.6 Chapter Summary

This chapter first describes the format, source and preparation of the spatial data used in
the thesis. The description of the data is followed by implementation and examples of
input files of the spatial queries, designed to retrieve relevant information stored in the
data structure. The output file resulting from execution of spatial queries is presented.
This is followed by the analysis of the output file to mine spatial rules. The three types of
spatial rules viz. spatial association rule, spatial aggregation rule, and spatial discriminant
rules are then described. The chapter describes examples to elaborate upon the analysis
process in order to mine spatial rules.

The concluding remarks and scope of the future work have been described in the next

chapter.

82

Chapter 6 - Conclusions

This thesis provides a method to mine several spatial data mining rules from the pool of
spatial data stored in the Branch Grafted R-tree. The work began with the discussion of
issues related to spatial data mining because of their direct relevance to the thesis.
Desired characteristics of search algorithms, relevance of efficient data structure, and the

relevance of data security were discussed.

The spatial data used for the thesis was described along with the source of the data. The
spatial query design implementation was then described. Query design is a key process
for spatial data mining. Queries were developed as a combination of functions (written in
C language). The queries were designed to be run on the spatial data and to extract

information that could be used for further processing in the data mining process.

The output files that were obtained as a result of the above queries were then described.
A program (in C language) was written to process the output files in order to mine rules.

The significance of the mined rules was then discussed.

The process discussed in the work can be used to mine spatial data efficiently and
effectively, using efficient Branch Grafted R-tree data structure. The work was

performed on real data. The size of the data was approximately 17,000 records per file.

83

Three such files (CITY, HYDRO, US_HIGHWAY) were used. Spatial data used in real

life would be of much larger size.

The key issues with the spatial data mining in general are fast data retrieval and easy to
comprehend representation of results. There has always been a need of an efficient data
mining method with fast data retrieval. The Branch Grafted R-tree used for the
organization and storage of spatial data in the thesis has been proven to be an improved'
and efficient data structure [2]. The grafting of nodes results in reduced tree height and
helps in faster data retrieval i.e. better performance of Branch Grafted R-tree over R-tree.
The data stored in the leaf nodes of tree is retrieved with the help of search methods or

functions to find nodes within a certain distance with a given node.

The data mining process developed in the thesis is initiated by user’s query. Several
functions and search algorithms developed in the thesis have been used to solve queries
that retrieve data stored in the Branch Grafted R-tree. The data retrieved as a result of
several queries is analyzed to mine spatial rules viz. spatial association rule, discriminant
rule, aggregation rule, and classification fule. The results of the mining process are easy
to comprehend and represented in the form of spatial rules. The data mining method
developed in the thesis can be used by end-users for minihg spatial rules. The method
developed in the thesis is a complete data mining method in itself and thus provides

convenience to the end user.

84

6.1 Future Work

The previous works related to Branch Grafted R-tree [2] and [3] were simulations with
small size spatial data sets. This thesis work also is a simulation with small size data.
For the large sets of real data the physical implementation and disk access will be major
issues. The small data sets are stored using the Branch Grafted R-tee in memory. The
implementation of the thesis work in real world scenario with large data sets would
require large memory space. There would be a need to store data on the hard disk in real
world scenario. Only the part of the data should be stored in the data structure temporarily
to avoid the issues related to frequent disk access. There is a potential of designing a
user-friendly graphical interface. A good graphical interface helps users to input the
query effectively. The graphical representation of result data set will help an end user to
understand the result easily. The thesis can be extended by improvement in the usage of
Branch Grafted R-tree for data storage. The data structure implemented in the thesis can
be used to design, build, and physically implement relational databases. Data can be
more efficiently stored in and easily queried from the relational databases. The query
retrieval can be improved with the help of an efficient query builder on top of a relational

database schema.

85

6.2 References:

[1] B. Asato, ‘Branch-Grafting Heuristic for R-tree Implementation.” Working Paper,

Department of Computer Science University of Nebraska at Omaha (1994)

[2] T. M. Schreck, ‘An Implementation Analysis of the Branch Grafting and R*-Treee
Algorithms.” Thesis, Department of Computer Science University of Nebraska at Omaha,

May 1999

[3] M. Khanijo, ‘An Implementation and Performance Analysis of Spatial Data Access
Methods for the Branch Grafted R-tree Algorithm’ Thesis Equivalent Project,

Department of Computer Science University of Nebraska at Omaha, fall 1999

[4] N. Bckmann, H. Kriegel, R. Schneider, and B. Seeger, The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles ACM SIGMOND, May (1990), pages

322-331

[S] A. Guttman, R-trees: A Dynamic Index Structure for Spatial Searching, Proceedings

of the 1984 ACM-SIGMOND Conference on Management of Data (1984), pages 47-57.

[6] K. Kopcrski, J. [Han, and J. Adhikary, Mining Knowledge in Geographical Data,

IEEE Computer, 1998

86

[7] K. Koperski, J. Han, and J. Adhikary, Spatial Data Mining: Progress and Challenges,
1996 SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge

Discovery (DMKD'96), Montreal, Canada, June (1996)

[8] N. Roussopoulos, S. Kelley and F. Vincent, Nearest Neighbor Queries, in
Proceedings of the ACM-SIGMOD International Conference on the Management of Data,

San Jose, USA, pp. 507 — 518, Sept. 1995

[9] K. Koperski, and J. Han, Discovery of Spatial Association Rules in Geographic

Information Databases, 1995

[10] T. Sellis, N. Roussopoulos, C. Faloutsos, The R+ tree: A dynamic index for Multi-

Dimensional Objects VLDB 1987 pages 507 — 518

[11] U. Fayyad and P. Smyth Image Database Exploration, Progress and Challenges. In
Proc. 1993 Knowledge Discovery in Databases Workshop, pp. 14-27, Washington D.C.

July 1993

87

[12] E. Knorr and R.T. Ng. Applying Computational Geometry Concepts to Discovering
Spatial Aggregate Proximity Relationships, in Technical Report, University of British

Columbia, 1995

[13] R. Ng and J. Han Efficient and effective clustering method for spatial data mining, in

Proc. 1994 Int. Conf. Very Large Databases, pp. 145-155 Santiago Chile, September 1994

[14] P. Smyth, M.C. Burl, U.M. Fayyad, and P. Perona. Knowledge Discovery on Large
Image Databases: Dealing with Uncertainties in Ground Truth. In Proc. of AAAI-94

workshop on KDD-95, pp.109-120, Seattle WA, July 1994

[15] K. Koperski, J. Han, and N. Stefanovic, An Efficient Two Step Method for
Classification of Spatial Data, Proc. 1998 International Symposium on Spatial Data

Handling SDH'98, Vancouver, BC, Canada, July 1998, pp. 45-54

[16] S. Fotheringham and P. Rogerson, Spatial Analysis and GIS, Taylor and Francis,

1994

[17]J. Han and Y. Fu Dynamic Generation and Refinement of Concept Hierarchies for
Knowledge Discovery in Databases, workshop on Knowledge Discovery Seattle WA,

July 1994

88

[18] W. Lu, Jan and B. Ooi. Discovery of General Knowledge in Large Spatial

Databases, in Proc. Far East Workshop on GIS Singapore, June 1993

[19] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data, an Introduction to Cluster

Analysis, John Wiley & Sons, 1990.

[20] F. Preparata and M. Shamos, Computational Geometry, An Introduction, Springer-

verlag NewYork 1985

[21] E. Thomsen. OLAP Solution, Building Multidimensional Information Systems, John

Wiley & Sons, 1997

[22] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes

efficiently, In SIGMOD'96, pp. 205-216, Montreal, Canada, June 1996

[23] N. Beckmann, H. P. Kﬁegel, R. Schneider, and B. Seeger, The R*-tree: An Efficient
and Robust Access Method for Point and Rectangles, in proceedings of 1990 to ACM

SIGMOD Intl. Conf on Management of Data pp. 322-331 Atlantic City USA May 1990

[24] G. Shaw and D. Wheeler. Statistical Techniques in Geographical Analysis, London

David Fulton, 1994

	Spatial Data Mining Using Branch Grafted R-tree.
	Recommended Citation

	tmp.1608220803.pdf.W6J4T

